@@ -1,102 +1,102 | |||
|
1 | 1 | # Signal Chain |
|
2 | 2 | |
|
3 | 3 | Signal Chain is a radar data processing library wich includes modules to read, |
|
4 | 4 | and write different files formats, besides modules to process and visualize the |
|
5 | 5 | data. |
|
6 | 6 | |
|
7 | 7 | ## Dependencies |
|
8 | 8 | |
|
9 | 9 | - GCC (gcc or gfortran) |
|
10 | 10 | - Python.h (python-dev or python-devel) |
|
11 | 11 | - Python-TK (python-tk) |
|
12 | 12 | - HDF5 libraries (libhdf5-dev) |
|
13 | 13 | |
|
14 | 14 | ## Installation |
|
15 | 15 | |
|
16 | 16 | To get started the easiest way to install it is through [PyPI](https://pypi.org/project/schainpy/) with pip: |
|
17 | 17 | |
|
18 | 18 | ```bash |
|
19 | 19 | pip install schainpy |
|
20 | 20 | ``` |
|
21 | 21 | |
|
22 | 22 | ### From source |
|
23 | 23 | |
|
24 | 24 | First, ensure that you have the above-listed dependencies installed, then clone |
|
25 | 25 | the repository and install as normal python package: |
|
26 | 26 | |
|
27 | 27 | ```bash |
|
28 | 28 | git clone https://github.com/JRO-Peru/schain.git |
|
29 | 29 | cd schain |
|
30 | 30 | git checkout `branch-name` (optional) |
|
31 | 31 | sudo pip install ./ |
|
32 | 32 | ``` |
|
33 | 33 | |
|
34 | 34 | ### Using Docker |
|
35 | 35 | |
|
36 | 36 | Download Dockerfile from the repository, and create a docker image: |
|
37 | 37 | |
|
38 | 38 | ```bash |
|
39 | 39 | docker build -t schain . |
|
40 | 40 | ``` |
|
41 | 41 | |
|
42 | 42 | You can run a container using an xml file or a schain script also you need to |
|
43 | 43 | mount a volume for the data input and for the output files/plots: |
|
44 | 44 | |
|
45 | 45 | ```bash |
|
46 | 46 | docker run -it --rm --volume /path/to/host/data:/data schain xml /data/test.xml |
|
47 | 47 | docker run -it --rm --volume /path/to/host/data:/data --entrypoint /urs/local/bin/python schain /data/test.py |
|
48 | 48 | ``` |
|
49 | 49 | |
|
50 | 50 | ## CLI (command line interface) |
|
51 | 51 | |
|
52 | 52 | Signal Chain provides the following commands: |
|
53 | 53 | |
|
54 | 54 | - schainGUI: Open the GUI |
|
55 | 55 | - schain: Signal chain command line |
|
56 | 56 | |
|
57 | 57 | ## Example |
|
58 | 58 | |
|
59 | 59 | Here you can find an script to read Spectra data (.pdata), remove dc and plot |
|
60 | 60 | self-spectra & RTI: |
|
61 | 61 | |
|
62 | 62 | ```python |
|
63 | 63 | #!/usr/bin/python |
|
64 | 64 | |
|
65 | 65 | from schainpy.controller import Project |
|
66 | 66 | |
|
67 | 67 | prj = Project() |
|
68 | 68 | |
|
69 | 69 | read_unit = prj.addReadUnit( |
|
70 | 70 | datatype='Spectra', |
|
71 | 71 | path='/path/to/pdata/', |
|
72 | 72 | startDate='2014/01/31', |
|
73 | 73 | endDate='2014/03/31', |
|
74 | 74 | startTime='00:00:00', |
|
75 | 75 | endTime='23:59:59', |
|
76 | 76 | online=0, |
|
77 | 77 | walk=0 |
|
78 | 78 | ) |
|
79 | 79 | |
|
80 | 80 | proc_unit = prj.addProcUnit( |
|
81 | 81 | datatype='Spectra', |
|
82 | 82 | inputId=read_unit.getId() |
|
83 | 83 | ) |
|
84 | 84 | |
|
85 | 85 | op = proc_unit.addOperation(name='selectChannels') |
|
86 | 86 | op.addParameter(name='channelList', value='0,1') |
|
87 | 87 | |
|
88 | 88 | op = proc_unit.addOperation(name='selectHeights') |
|
89 | 89 | op.addParameter(name='minHei', value='80') |
|
90 | 90 | op.addParameter(name='maxHei', value='200') |
|
91 | 91 | |
|
92 | 92 | op = proc_unit.addOperation(name='removeDC') |
|
93 | 93 | |
|
94 | 94 | op = proc_unit.addOperation(name='SpectraPlot') |
|
95 | 95 | op.addParameter(name='wintitle', value='Spectra', format='str') |
|
96 | 96 | |
|
97 |
op = proc |
|
|
97 | op = proc_unit.addOperation(name='RTIPlot') | |
|
98 | 98 | op.addParameter(name='wintitle', value='RTI', format='str') |
|
99 | 99 | |
|
100 | 100 | prj.start() |
|
101 | 101 | |
|
102 | 102 | ``` |
@@ -1,716 +1,665 | |||
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
|
2 | # All rights reserved. | |
|
3 | # | |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
|
5 | """Base class to create plot operations | |
|
6 | ||
|
7 | """ | |
|
1 | 8 | |
|
2 | 9 | import os |
|
3 | 10 | import sys |
|
4 | 11 | import zmq |
|
5 | 12 | import time |
|
6 | 13 | import numpy |
|
7 | 14 | import datetime |
|
8 | try: | |
|
9 | from queue import Queue | |
|
10 | except: | |
|
11 | from Queue import Queue | |
|
15 | from multiprocessing import Queue | |
|
12 | 16 | from functools import wraps |
|
13 | 17 | from threading import Thread |
|
14 | 18 | import matplotlib |
|
15 | 19 | |
|
16 | 20 | if 'BACKEND' in os.environ: |
|
17 | 21 | matplotlib.use(os.environ['BACKEND']) |
|
18 | 22 | elif 'linux' in sys.platform: |
|
19 | 23 | matplotlib.use("TkAgg") |
|
20 | 24 | elif 'darwin' in sys.platform: |
|
21 | 25 | matplotlib.use('WxAgg') |
|
22 | 26 | else: |
|
23 | 27 | from schainpy.utils import log |
|
24 | 28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
25 | 29 | matplotlib.use('Agg') |
|
26 | 30 | |
|
27 | 31 | import matplotlib.pyplot as plt |
|
28 | 32 | from matplotlib.patches import Polygon |
|
29 | 33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
30 | 34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
31 | 35 | |
|
32 | 36 | from schainpy.model.data.jrodata import PlotterData |
|
33 | 37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
34 | 38 | from schainpy.utils import log |
|
35 | 39 | |
|
36 | 40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
37 | 41 | blu_values = matplotlib.pyplot.get_cmap( |
|
38 | 42 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
39 | 43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
40 | 44 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
41 | 45 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
42 | 46 | |
|
43 | 47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
44 | 48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
45 | 49 | |
|
46 | 50 | EARTH_RADIUS = 6.3710e3 |
|
47 | 51 | |
|
48 | 52 | def ll2xy(lat1, lon1, lat2, lon2): |
|
49 | 53 | |
|
50 | 54 | p = 0.017453292519943295 |
|
51 | 55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
52 | 56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
53 | 57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
54 | 58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
55 | 59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
56 | 60 | theta = -theta + numpy.pi/2 |
|
57 | 61 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
58 | 62 | |
|
59 | 63 | |
|
60 | 64 | def km2deg(km): |
|
61 | 65 | ''' |
|
62 | 66 | Convert distance in km to degrees |
|
63 | 67 | ''' |
|
64 | 68 | |
|
65 | 69 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
66 | 70 | |
|
67 | 71 | |
|
68 | 72 | def figpause(interval): |
|
69 | 73 | backend = plt.rcParams['backend'] |
|
70 | 74 | if backend in matplotlib.rcsetup.interactive_bk: |
|
71 | 75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
72 | 76 | if figManager is not None: |
|
73 | 77 | canvas = figManager.canvas |
|
74 | 78 | if canvas.figure.stale: |
|
75 | 79 | canvas.draw() |
|
76 | 80 | try: |
|
77 | 81 | canvas.start_event_loop(interval) |
|
78 | 82 | except: |
|
79 | 83 | pass |
|
80 | 84 | return |
|
81 | 85 | |
|
82 | 86 | |
|
83 | 87 | def popup(message): |
|
84 | 88 | ''' |
|
85 | 89 | ''' |
|
86 | 90 | |
|
87 | 91 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
88 | 92 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
89 | 93 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
90 | 94 | size='20', weight='heavy', color='w') |
|
91 | 95 | fig.show() |
|
92 | 96 | figpause(1000) |
|
93 | 97 | |
|
94 | 98 | |
|
95 | 99 | class Throttle(object): |
|
96 | 100 | ''' |
|
97 | 101 | Decorator that prevents a function from being called more than once every |
|
98 | 102 | time period. |
|
99 | 103 | To create a function that cannot be called more than once a minute, but |
|
100 | 104 | will sleep until it can be called: |
|
101 | 105 | @Throttle(minutes=1) |
|
102 | 106 | def foo(): |
|
103 | 107 | pass |
|
104 | 108 | |
|
105 | 109 | for i in range(10): |
|
106 | 110 | foo() |
|
107 | 111 | print "This function has run %s times." % i |
|
108 | 112 | ''' |
|
109 | 113 | |
|
110 | 114 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
111 | 115 | self.throttle_period = datetime.timedelta( |
|
112 | 116 | seconds=seconds, minutes=minutes, hours=hours |
|
113 | 117 | ) |
|
114 | 118 | |
|
115 | 119 | self.time_of_last_call = datetime.datetime.min |
|
116 | 120 | |
|
117 | 121 | def __call__(self, fn): |
|
118 | 122 | @wraps(fn) |
|
119 | 123 | def wrapper(*args, **kwargs): |
|
120 | 124 | coerce = kwargs.pop('coerce', None) |
|
121 | 125 | if coerce: |
|
122 | 126 | self.time_of_last_call = datetime.datetime.now() |
|
123 | 127 | return fn(*args, **kwargs) |
|
124 | 128 | else: |
|
125 | 129 | now = datetime.datetime.now() |
|
126 | 130 | time_since_last_call = now - self.time_of_last_call |
|
127 | 131 | time_left = self.throttle_period - time_since_last_call |
|
128 | 132 | |
|
129 | 133 | if time_left > datetime.timedelta(seconds=0): |
|
130 | 134 | return |
|
131 | 135 | |
|
132 | 136 | self.time_of_last_call = datetime.datetime.now() |
|
133 | 137 | return fn(*args, **kwargs) |
|
134 | 138 | |
|
135 | 139 | return wrapper |
|
136 | 140 | |
|
137 | 141 | def apply_throttle(value): |
|
138 | 142 | |
|
139 | 143 | @Throttle(seconds=value) |
|
140 | 144 | def fnThrottled(fn): |
|
141 | 145 | fn() |
|
142 | 146 | |
|
143 | 147 | return fnThrottled |
|
144 | 148 | |
|
145 | 149 | |
|
146 | 150 | @MPDecorator |
|
147 | 151 | class Plot(Operation): |
|
148 | ''' | |
|
149 | Base class for Schain plotting operations | |
|
150 | ''' | |
|
152 | """Base class for Schain plotting operations | |
|
153 | ||
|
154 | This class should never be use directtly you must subclass a new operation, | |
|
155 | children classes must be defined as follow: | |
|
156 | ||
|
157 | ExamplePlot(Plot): | |
|
158 | ||
|
159 | CODE = 'code' | |
|
160 | colormap = 'jet' | |
|
161 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') | |
|
162 | ||
|
163 | def setup(self): | |
|
164 | pass | |
|
165 | ||
|
166 | def plot(self): | |
|
167 | pass | |
|
168 | ||
|
169 | """ | |
|
151 | 170 | |
|
152 | 171 | CODE = 'Figure' |
|
153 | 172 | colormap = 'jet' |
|
154 | 173 | bgcolor = 'white' |
|
155 | 174 | buffering = True |
|
156 | 175 | __missing = 1E30 |
|
157 | 176 | |
|
158 | 177 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
159 | 178 | 'showprofile'] |
|
160 | 179 | |
|
161 | 180 | def __init__(self): |
|
162 | 181 | |
|
163 | 182 | Operation.__init__(self) |
|
164 | 183 | self.isConfig = False |
|
165 | 184 | self.isPlotConfig = False |
|
166 |
self.save_ |
|
|
185 | self.save_time = 0 | |
|
167 | 186 | self.sender_time = 0 |
|
168 | 187 | self.data = None |
|
169 | 188 | self.firsttime = True |
|
170 | 189 | self.sender_queue = Queue(maxsize=60) |
|
171 | 190 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
172 | 191 | |
|
173 | 192 | def __fmtTime(self, x, pos): |
|
174 | 193 | ''' |
|
175 | 194 | ''' |
|
176 | 195 | |
|
177 | 196 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
178 | 197 | |
|
179 | 198 | def __setup(self, **kwargs): |
|
180 | 199 | ''' |
|
181 | 200 | Initialize variables |
|
182 | 201 | ''' |
|
183 | 202 | |
|
184 | 203 | self.figures = [] |
|
185 | 204 | self.axes = [] |
|
186 | 205 | self.cb_axes = [] |
|
187 | 206 | self.localtime = kwargs.pop('localtime', True) |
|
188 | 207 | self.show = kwargs.get('show', True) |
|
189 | 208 | self.save = kwargs.get('save', False) |
|
190 |
self.save_period = kwargs.get('save_period', |
|
|
209 | self.save_period = kwargs.get('save_period', 60) | |
|
191 | 210 | self.colormap = kwargs.get('colormap', self.colormap) |
|
192 | 211 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
193 | 212 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
194 | 213 | self.colormaps = kwargs.get('colormaps', None) |
|
195 | 214 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
196 | 215 | self.showprofile = kwargs.get('showprofile', False) |
|
197 | 216 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
198 | 217 | self.cb_label = kwargs.get('cb_label', None) |
|
199 | 218 | self.cb_labels = kwargs.get('cb_labels', None) |
|
200 | 219 | self.labels = kwargs.get('labels', None) |
|
201 | 220 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
202 | 221 | self.zmin = kwargs.get('zmin', None) |
|
203 | 222 | self.zmax = kwargs.get('zmax', None) |
|
204 | 223 | self.zlimits = kwargs.get('zlimits', None) |
|
205 | 224 | self.xmin = kwargs.get('xmin', None) |
|
206 | 225 | self.xmax = kwargs.get('xmax', None) |
|
207 | 226 | self.xrange = kwargs.get('xrange', 12) |
|
208 | 227 | self.xscale = kwargs.get('xscale', None) |
|
209 | 228 | self.ymin = kwargs.get('ymin', None) |
|
210 | 229 | self.ymax = kwargs.get('ymax', None) |
|
211 | 230 | self.yscale = kwargs.get('yscale', None) |
|
212 | 231 | self.xlabel = kwargs.get('xlabel', None) |
|
213 | 232 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
214 | 233 | self.decimation = kwargs.get('decimation', None) |
|
215 | 234 | self.showSNR = kwargs.get('showSNR', False) |
|
216 | 235 | self.oneFigure = kwargs.get('oneFigure', True) |
|
217 | 236 | self.width = kwargs.get('width', None) |
|
218 | 237 | self.height = kwargs.get('height', None) |
|
219 | 238 | self.colorbar = kwargs.get('colorbar', True) |
|
220 | 239 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
221 | 240 | self.channels = kwargs.get('channels', None) |
|
222 | 241 | self.titles = kwargs.get('titles', []) |
|
223 | 242 | self.polar = False |
|
224 | 243 | self.type = kwargs.get('type', 'iq') |
|
225 | 244 | self.grid = kwargs.get('grid', False) |
|
226 | 245 | self.pause = kwargs.get('pause', False) |
|
227 |
self.save_code = kwargs.get('save_code', |
|
|
246 | self.save_code = kwargs.get('save_code', self.CODE) | |
|
228 | 247 | self.throttle = kwargs.get('throttle', 0) |
|
229 | 248 | self.exp_code = kwargs.get('exp_code', None) |
|
230 | 249 | self.plot_server = kwargs.get('plot_server', False) |
|
231 | 250 | self.sender_period = kwargs.get('sender_period', 60) |
|
232 | 251 | self.tag = kwargs.get('tag', '') |
|
233 | 252 | self.height_index = kwargs.get('height_index', None) |
|
234 | 253 | self.__throttle_plot = apply_throttle(self.throttle) |
|
235 | 254 | self.data = PlotterData( |
|
236 | 255 | self.CODE, self.throttle, self.exp_code, self.localtime, self.buffering, snr=self.showSNR) |
|
237 | 256 | |
|
238 | 257 | if self.plot_server: |
|
239 | 258 | if not self.plot_server.startswith('tcp://'): |
|
240 | 259 | self.plot_server = 'tcp://{}'.format(self.plot_server) |
|
241 | 260 | log.success( |
|
242 | 261 | 'Sending to server: {}'.format(self.plot_server), |
|
243 | 262 | self.name |
|
244 | 263 | ) |
|
245 | if 'plot_name' in kwargs: | |
|
246 | self.plot_name = kwargs['plot_name'] | |
|
247 | 264 | |
|
248 | 265 | def __setup_plot(self): |
|
249 | 266 | ''' |
|
250 | 267 | Common setup for all figures, here figures and axes are created |
|
251 | 268 | ''' |
|
252 | 269 | |
|
253 | 270 | self.setup() |
|
254 | 271 | |
|
255 | 272 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
256 | 273 | |
|
257 | 274 | if self.width is None: |
|
258 | 275 | self.width = 8 |
|
259 | 276 | |
|
260 | 277 | self.figures = [] |
|
261 | 278 | self.axes = [] |
|
262 | 279 | self.cb_axes = [] |
|
263 | 280 | self.pf_axes = [] |
|
264 | 281 | self.cmaps = [] |
|
265 | 282 | |
|
266 | 283 | size = '15%' if self.ncols == 1 else '30%' |
|
267 | 284 | pad = '4%' if self.ncols == 1 else '8%' |
|
268 | 285 | |
|
269 | 286 | if self.oneFigure: |
|
270 | 287 | if self.height is None: |
|
271 | 288 | self.height = 1.4 * self.nrows + 1 |
|
272 | 289 | fig = plt.figure(figsize=(self.width, self.height), |
|
273 | 290 | edgecolor='k', |
|
274 | 291 | facecolor='w') |
|
275 | 292 | self.figures.append(fig) |
|
276 | 293 | for n in range(self.nplots): |
|
277 | 294 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
278 | 295 | n + 1, polar=self.polar) |
|
279 | 296 | ax.tick_params(labelsize=8) |
|
280 | 297 | ax.firsttime = True |
|
281 | 298 | ax.index = 0 |
|
282 | 299 | ax.press = None |
|
283 | 300 | self.axes.append(ax) |
|
284 | 301 | if self.showprofile: |
|
285 | 302 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
286 | 303 | cax.tick_params(labelsize=8) |
|
287 | 304 | self.pf_axes.append(cax) |
|
288 | 305 | else: |
|
289 | 306 | if self.height is None: |
|
290 | 307 | self.height = 3 |
|
291 | 308 | for n in range(self.nplots): |
|
292 | 309 | fig = plt.figure(figsize=(self.width, self.height), |
|
293 | 310 | edgecolor='k', |
|
294 | 311 | facecolor='w') |
|
295 | 312 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
296 | 313 | ax.tick_params(labelsize=8) |
|
297 | 314 | ax.firsttime = True |
|
298 | 315 | ax.index = 0 |
|
299 | 316 | ax.press = None |
|
300 | 317 | self.figures.append(fig) |
|
301 | 318 | self.axes.append(ax) |
|
302 | 319 | if self.showprofile: |
|
303 | 320 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
304 | 321 | cax.tick_params(labelsize=8) |
|
305 | 322 | self.pf_axes.append(cax) |
|
306 | 323 | |
|
307 | 324 | for n in range(self.nrows): |
|
308 | 325 | if self.colormaps is not None: |
|
309 | 326 | cmap = plt.get_cmap(self.colormaps[n]) |
|
310 | 327 | else: |
|
311 | 328 | cmap = plt.get_cmap(self.colormap) |
|
312 | 329 | cmap.set_bad(self.bgcolor, 1.) |
|
313 | 330 | self.cmaps.append(cmap) |
|
314 | 331 | |
|
315 | 332 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
316 | 333 | ''' |
|
317 | 334 | Add new axes to the given figure |
|
318 | 335 | ''' |
|
319 | 336 | divider = make_axes_locatable(ax) |
|
320 | 337 | nax = divider.new_horizontal(size=size, pad=pad) |
|
321 | 338 | ax.figure.add_axes(nax) |
|
322 | 339 | return nax |
|
323 | 340 | |
|
324 | 341 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
325 | 342 | ''' |
|
326 | 343 | Create a masked array for missing data |
|
327 | 344 | ''' |
|
328 | 345 | if x_buffer.shape[0] < 2: |
|
329 | 346 | return x_buffer, y_buffer, z_buffer |
|
330 | 347 | |
|
331 | 348 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
332 | 349 | x_median = numpy.median(deltas) |
|
333 | 350 | |
|
334 | 351 | index = numpy.where(deltas > 5 * x_median) |
|
335 | 352 | |
|
336 | 353 | if len(index[0]) != 0: |
|
337 | 354 | z_buffer[::, index[0], ::] = self.__missing |
|
338 | 355 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
339 | 356 | 0.99 * self.__missing, |
|
340 | 357 | 1.01 * self.__missing) |
|
341 | 358 | |
|
342 | 359 | return x_buffer, y_buffer, z_buffer |
|
343 | 360 | |
|
344 | 361 | def decimate(self): |
|
345 | 362 | |
|
346 | 363 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
347 | 364 | dy = int(len(self.y) / self.decimation) + 1 |
|
348 | 365 | |
|
349 | 366 | # x = self.x[::dx] |
|
350 | 367 | x = self.x |
|
351 | 368 | y = self.y[::dy] |
|
352 | 369 | z = self.z[::, ::, ::dy] |
|
353 | 370 | |
|
354 | 371 | return x, y, z |
|
355 | 372 | |
|
356 | 373 | def format(self): |
|
357 | 374 | ''' |
|
358 | 375 | Set min and max values, labels, ticks and titles |
|
359 | 376 | ''' |
|
360 | ||
|
361 | if self.xmin is None: | |
|
362 | xmin = self.data.min_time | |
|
363 | else: | |
|
364 | if self.xaxis is 'time': | |
|
365 | dt = self.getDateTime(self.data.min_time) | |
|
366 | xmin = (dt.replace(hour=int(self.xmin), minute=0, second=0) - | |
|
367 | datetime.datetime(1970, 1, 1)).total_seconds() | |
|
368 | if self.data.localtime: | |
|
369 | xmin += time.timezone | |
|
370 | else: | |
|
371 | xmin = self.xmin | |
|
372 | ||
|
373 | if self.xmax is None: | |
|
374 | xmax = xmin + self.xrange * 60 * 60 | |
|
375 | else: | |
|
376 | if self.xaxis is 'time': | |
|
377 | dt = self.getDateTime(self.data.max_time) | |
|
378 | xmax = self.xmax - 1 | |
|
379 | xmax = (dt.replace(hour=int(xmax), minute=59, second=59) - | |
|
380 | datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=1)).total_seconds() | |
|
381 | if self.data.localtime: | |
|
382 | xmax += time.timezone | |
|
383 | else: | |
|
384 | xmax = self.xmax | |
|
385 | ||
|
386 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | |
|
387 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |
|
388 | 377 | |
|
389 | 378 | for n, ax in enumerate(self.axes): |
|
390 | 379 | if ax.firsttime: |
|
391 | ||
|
392 | dig = int(numpy.log10(ymax)) | |
|
393 |
|
|
|
394 | digD = len(str(ymax)) - 2 | |
|
395 |
|
|
|
396 | ||
|
397 | dig = int(numpy.log10(ydec)) | |
|
398 | ystep = ((ydec + (10**(dig)))//10**(dig))*(10**(dig)) | |
|
399 | ystep = ystep/5 | |
|
400 | ystep = ystep/(10**digD) | |
|
401 | ||
|
402 | else: | |
|
403 | ystep = ((ymax + (10**(dig)))//10**(dig))*(10**(dig)) | |
|
404 | ystep = ystep/5 | |
|
405 | ||
|
406 | if self.xaxis is not 'time': | |
|
407 | ||
|
408 | dig = int(numpy.log10(xmax)) | |
|
409 | ||
|
410 | if dig <= 0: | |
|
411 | digD = len(str(xmax)) - 2 | |
|
412 | xdec = xmax*(10**digD) | |
|
413 | ||
|
414 | dig = int(numpy.log10(xdec)) | |
|
415 | xstep = ((xdec + (10**(dig)))//10**(dig))*(10**(dig)) | |
|
416 | xstep = xstep*0.5 | |
|
417 | xstep = xstep/(10**digD) | |
|
418 | ||
|
419 | else: | |
|
420 | xstep = ((xmax + (10**(dig)))//10**(dig))*(10**(dig)) | |
|
421 | xstep = xstep/5 | |
|
422 | ||
|
380 | if self.xaxis != 'time': | |
|
381 | xmin = self.xmin | |
|
382 | xmax = self.xmax | |
|
383 | else: | |
|
384 | xmin = self.tmin | |
|
385 | xmax = self.tmin + self.xrange*60*60 | |
|
386 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) | |
|
387 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
|
388 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | |
|
389 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |
|
423 | 390 | ax.set_facecolor(self.bgcolor) |
|
424 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) | |
|
425 | 391 | if self.xscale: |
|
426 | 392 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
427 | 393 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
428 |
if self. |
|
|
394 | if self.yscale: | |
|
429 | 395 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
430 | 396 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
431 | if self.xaxis is 'time': | |
|
432 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) | |
|
433 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
|
434 | else: | |
|
435 | ax.xaxis.set_major_locator(MultipleLocator(xstep)) | |
|
436 | 397 | if self.xlabel is not None: |
|
437 | 398 | ax.set_xlabel(self.xlabel) |
|
438 |
|
|
|
439 | ax.firsttime = False | |
|
399 | if self.ylabel is not None: | |
|
400 | ax.set_ylabel(self.ylabel) | |
|
440 | 401 | if self.showprofile: |
|
441 | 402 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
442 | 403 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
443 | 404 | self.pf_axes[n].set_xlabel('dB') |
|
444 | 405 | self.pf_axes[n].grid(b=True, axis='x') |
|
445 | 406 | [tick.set_visible(False) |
|
446 | 407 | for tick in self.pf_axes[n].get_yticklabels()] |
|
447 | 408 | if self.colorbar: |
|
448 | 409 | ax.cbar = plt.colorbar( |
|
449 | 410 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
450 | 411 | ax.cbar.ax.tick_params(labelsize=8) |
|
451 | 412 | ax.cbar.ax.press = None |
|
452 | 413 | if self.cb_label: |
|
453 | 414 | ax.cbar.set_label(self.cb_label, size=8) |
|
454 | 415 | elif self.cb_labels: |
|
455 | 416 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
456 | 417 | else: |
|
457 | 418 | ax.cbar = None |
|
458 | if self.grid: | |
|
459 | ax.grid(True) | |
|
460 | ||
|
461 | if not self.polar: | |
|
462 | 419 | ax.set_xlim(xmin, xmax) |
|
463 | 420 | ax.set_ylim(ymin, ymax) |
|
421 | ax.firsttime = False | |
|
422 | if self.grid: | |
|
423 | ax.grid(True) | |
|
424 | if not self.polar: | |
|
464 | 425 | ax.set_title('{} {} {}'.format( |
|
465 | 426 | self.titles[n], |
|
466 | 427 | self.getDateTime(self.data.max_time).strftime( |
|
467 | 428 | '%Y-%m-%d %H:%M:%S'), |
|
468 | 429 | self.time_label), |
|
469 | 430 | size=8) |
|
470 | 431 | else: |
|
471 | 432 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
472 | 433 | ax.set_ylim(0, 90) |
|
473 | 434 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
474 | 435 | ax.yaxis.labelpad = 40 |
|
475 | 436 | |
|
476 | 437 | if self.firsttime: |
|
477 | 438 | for n, fig in enumerate(self.figures): |
|
478 | 439 | fig.subplots_adjust(**self.plots_adjust) |
|
479 | 440 | self.firsttime = False |
|
480 | 441 | |
|
481 | 442 | def clear_figures(self): |
|
482 | 443 | ''' |
|
483 | 444 | Reset axes for redraw plots |
|
484 | 445 | ''' |
|
485 | 446 | |
|
486 | 447 | for ax in self.axes+self.pf_axes+self.cb_axes: |
|
487 | 448 | ax.clear() |
|
488 | 449 | ax.firsttime = True |
|
489 | 450 | if hasattr(ax, 'cbar') and ax.cbar: |
|
490 | 451 | ax.cbar.remove() |
|
491 | 452 | |
|
492 | 453 | def __plot(self): |
|
493 | 454 | ''' |
|
494 | 455 | Main function to plot, format and save figures |
|
495 | 456 | ''' |
|
496 | 457 | |
|
497 | 458 | self.plot() |
|
498 | 459 | self.format() |
|
499 | 460 | |
|
500 | 461 | for n, fig in enumerate(self.figures): |
|
501 | 462 | if self.nrows == 0 or self.nplots == 0: |
|
502 | 463 | log.warning('No data', self.name) |
|
503 | 464 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
504 | 465 | fig.canvas.manager.set_window_title(self.CODE) |
|
505 | 466 | continue |
|
506 | 467 | |
|
507 | 468 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
508 | 469 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
509 | 470 | fig.canvas.draw() |
|
510 | 471 | if self.show: |
|
511 | 472 | fig.show() |
|
512 | 473 | figpause(0.01) |
|
513 | 474 | |
|
514 | 475 | if self.save: |
|
515 | 476 | self.save_figure(n) |
|
516 | 477 | |
|
517 | 478 | if self.plot_server: |
|
518 | 479 | self.send_to_server() |
|
519 | 480 | |
|
520 | 481 | def save_figure(self, n): |
|
521 | 482 | ''' |
|
522 | 483 | ''' |
|
523 | 484 | |
|
524 |
if self. |
|
|
525 | self.save_counter += 1 | |
|
485 | if (self.data.tm - self.save_time) < self.sender_period: | |
|
526 | 486 | return |
|
527 | 487 | |
|
528 |
self.save_ |
|
|
488 | self.save_time = self.data.tm | |
|
529 | 489 | |
|
530 | 490 | fig = self.figures[n] |
|
531 | 491 | |
|
532 | if self.save_code: | |
|
533 | if isinstance(self.save_code, str): | |
|
534 | labels = [self.save_code for x in self.figures] | |
|
535 | else: | |
|
536 | labels = self.save_code | |
|
537 | else: | |
|
538 | labels = [self.CODE for x in self.figures] | |
|
539 | ||
|
540 | 492 | figname = os.path.join( |
|
541 | 493 | self.save, |
|
542 |
|
|
|
494 | self.save_code, | |
|
543 | 495 | '{}_{}.png'.format( |
|
544 |
|
|
|
496 | self.save_code, | |
|
545 | 497 | self.getDateTime(self.data.max_time).strftime( |
|
546 | 498 | '%Y%m%d_%H%M%S' |
|
547 | 499 | ), |
|
548 | 500 | ) |
|
549 | 501 | ) |
|
550 | 502 | log.log('Saving figure: {}'.format(figname), self.name) |
|
551 | 503 | if not os.path.isdir(os.path.dirname(figname)): |
|
552 | 504 | os.makedirs(os.path.dirname(figname)) |
|
553 | 505 | fig.savefig(figname) |
|
554 | 506 | |
|
555 | 507 | if self.throttle == 0: |
|
556 | 508 | figname = os.path.join( |
|
557 | 509 | self.save, |
|
558 | 510 | '{}_{}.png'.format( |
|
559 |
|
|
|
511 | self.save_code, | |
|
560 | 512 | self.getDateTime(self.data.min_time).strftime( |
|
561 | 513 | '%Y%m%d' |
|
562 | 514 | ), |
|
563 | 515 | ) |
|
564 | 516 | ) |
|
565 | 517 | fig.savefig(figname) |
|
566 | 518 | |
|
567 | 519 | def send_to_server(self): |
|
568 | 520 | ''' |
|
569 | 521 | ''' |
|
570 | 522 | |
|
571 | 523 | interval = self.data.tm - self.sender_time |
|
572 | 524 | if interval < self.sender_period: |
|
573 | 525 | return |
|
574 | 526 | |
|
575 | 527 | self.sender_time = self.data.tm |
|
576 | 528 | |
|
577 | 529 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
578 | 530 | for attr in attrs: |
|
579 | 531 | value = getattr(self, attr) |
|
580 | 532 | if value: |
|
581 | 533 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
582 | 534 | value = round(float(value), 2) |
|
583 | 535 | self.data.meta[attr] = value |
|
584 | 536 | if self.colormap == 'jet': |
|
585 | 537 | self.data.meta['colormap'] = 'Jet' |
|
586 | 538 | elif 'RdBu' in self.colormap: |
|
587 | 539 | self.data.meta['colormap'] = 'RdBu' |
|
588 | 540 | else: |
|
589 | 541 | self.data.meta['colormap'] = 'Viridis' |
|
590 | 542 | self.data.meta['interval'] = int(interval) |
|
591 | # msg = self.data.jsonify(self.data.tm, self.plot_name, self.plot_type) | |
|
543 | ||
|
592 | 544 | try: |
|
593 | 545 | self.sender_queue.put(self.data.tm, block=False) |
|
594 | 546 | except: |
|
595 | 547 | tm = self.sender_queue.get() |
|
596 | 548 | self.sender_queue.put(self.data.tm) |
|
597 | 549 | |
|
598 | 550 | while True: |
|
599 | 551 | if self.sender_queue.empty(): |
|
600 | 552 | break |
|
601 | 553 | tm = self.sender_queue.get() |
|
602 | 554 | try: |
|
603 |
msg = self.data.jsonify(tm, self. |
|
|
555 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) | |
|
604 | 556 | except: |
|
605 | 557 | continue |
|
606 | 558 | self.socket.send_string(msg) |
|
607 | 559 | socks = dict(self.poll.poll(5000)) |
|
608 | 560 | if socks.get(self.socket) == zmq.POLLIN: |
|
609 | 561 | reply = self.socket.recv_string() |
|
610 | 562 | if reply == 'ok': |
|
611 | 563 | log.log("Response from server ok", self.name) |
|
612 | 564 | time.sleep(0.2) |
|
613 | 565 | continue |
|
614 | 566 | else: |
|
615 | 567 | log.warning( |
|
616 | 568 | "Malformed reply from server: {}".format(reply), self.name) |
|
617 | 569 | else: |
|
618 | 570 | log.warning( |
|
619 | 571 | "No response from server, retrying...", self.name) |
|
620 | 572 | self.sender_queue.put(self.data.tm) |
|
621 | 573 | self.socket.setsockopt(zmq.LINGER, 0) |
|
622 | 574 | self.socket.close() |
|
623 | 575 | self.poll.unregister(self.socket) |
|
624 | 576 | time.sleep(0.1) |
|
625 | 577 | self.socket = self.context.socket(zmq.REQ) |
|
626 | 578 | self.socket.connect(self.plot_server) |
|
627 | 579 | self.poll.register(self.socket, zmq.POLLIN) |
|
628 | 580 | break |
|
629 | 581 | |
|
630 | 582 | def setup(self): |
|
631 | 583 | ''' |
|
632 | 584 | This method should be implemented in the child class, the following |
|
633 | 585 | attributes should be set: |
|
634 | 586 | |
|
635 | 587 | self.nrows: number of rows |
|
636 | 588 | self.ncols: number of cols |
|
637 | 589 | self.nplots: number of plots (channels or pairs) |
|
638 | 590 | self.ylabel: label for Y axes |
|
639 | 591 | self.titles: list of axes title |
|
640 | 592 | |
|
641 | 593 | ''' |
|
642 | 594 | raise NotImplementedError |
|
643 | 595 | |
|
644 | 596 | def plot(self): |
|
645 | 597 | ''' |
|
646 | 598 | Must be defined in the child class |
|
647 | 599 | ''' |
|
648 | 600 | raise NotImplementedError |
|
649 | 601 | |
|
650 | 602 | def run(self, dataOut, **kwargs): |
|
651 | 603 | ''' |
|
652 | 604 | Main plotting routine |
|
653 | 605 | ''' |
|
654 | 606 | |
|
655 | 607 | if self.isConfig is False: |
|
656 | 608 | self.__setup(**kwargs) |
|
657 | ||
|
658 | t = getattr(dataOut, self.attr_time) | |
|
659 | 609 | |
|
660 | 610 | if self.localtime: |
|
661 | 611 | self.getDateTime = datetime.datetime.fromtimestamp |
|
662 | 612 | else: |
|
663 | 613 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
664 | ||
|
665 | if self.xmin is None: | |
|
666 | self.tmin = t | |
|
667 | if 'buffer' in self.plot_type: | |
|
668 | self.xmin = self.getDateTime(t).hour | |
|
669 | else: | |
|
670 | self.tmin = ( | |
|
671 | self.getDateTime(t).replace( | |
|
672 | hour=int(self.xmin), | |
|
673 | minute=0, | |
|
674 | second=0) - self.getDateTime(0)).total_seconds() | |
|
675 | 614 | |
|
676 | 615 | self.data.setup() |
|
677 | 616 | self.isConfig = True |
|
678 | 617 | if self.plot_server: |
|
679 | 618 | self.context = zmq.Context() |
|
680 | 619 | self.socket = self.context.socket(zmq.REQ) |
|
681 | 620 | self.socket.connect(self.plot_server) |
|
682 | 621 | self.poll = zmq.Poller() |
|
683 | 622 | self.poll.register(self.socket, zmq.POLLIN) |
|
684 | 623 | |
|
685 | 624 | tm = getattr(dataOut, self.attr_time) |
|
686 | 625 | |
|
687 | if self.data and (tm - self.tmin) >= self.xrange*60*60: | |
|
626 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: | |
|
688 | 627 | self.save_counter = self.save_period |
|
689 | 628 | self.__plot() |
|
690 | if 'time' in self.xaxis: | |
|
691 | self.xmin += self.xrange | |
|
692 | if self.xmin >= 24: | |
|
693 | self.xmin -= 24 | |
|
694 | 629 | self.tmin += self.xrange*60*60 |
|
695 | 630 | self.data.setup() |
|
696 | 631 | self.clear_figures() |
|
697 | 632 | |
|
698 | 633 | self.data.update(dataOut, tm) |
|
699 | 634 | |
|
700 | 635 | if self.isPlotConfig is False: |
|
701 | 636 | self.__setup_plot() |
|
702 | 637 | self.isPlotConfig = True |
|
638 | if self.xaxis == 'time': | |
|
639 | dt = self.getDateTime(tm) | |
|
640 | if self.xmin is None: | |
|
641 | self.tmin = tm | |
|
642 | self.xmin = dt.hour | |
|
643 | minutes = (self.xmin-int(self.xmin)) * 60 | |
|
644 | seconds = (minutes - int(minutes)) * 60 | |
|
645 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - | |
|
646 | datetime.datetime(1970, 1, 1)).total_seconds() | |
|
647 | if self.localtime: | |
|
648 | self.tmin += time.timezone | |
|
649 | ||
|
650 | if self.xmin is not None and self.xmax is not None: | |
|
651 | self.xrange = self.xmax - self.xmin | |
|
703 | 652 | |
|
704 | 653 | if self.throttle == 0: |
|
705 | 654 | self.__plot() |
|
706 | 655 | else: |
|
707 | 656 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
708 | 657 | |
|
709 | 658 | def close(self): |
|
710 | 659 | |
|
711 | 660 | if self.data and not self.data.flagNoData: |
|
712 | 661 | self.save_counter = self.save_period |
|
713 | 662 | self.__plot() |
|
714 | 663 | if self.data and not self.data.flagNoData and self.pause: |
|
715 | 664 | figpause(10) |
|
716 | 665 |
@@ -1,346 +1,339 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | colormap = 'jet' |
|
39 | plot_name = 'SpectralMoments' | |
|
40 | 39 | plot_type = 'pcolor' |
|
41 | 40 | |
|
42 | 41 | |
|
43 | 42 | class SnrPlot(RTIPlot): |
|
44 | 43 | ''' |
|
45 | 44 | Plot for SNR Data |
|
46 | 45 | ''' |
|
47 | 46 | |
|
48 | 47 | CODE = 'snr' |
|
49 | 48 | colormap = 'jet' |
|
50 | plot_name = 'SNR' | |
|
51 | 49 | |
|
52 | 50 | |
|
53 | 51 | class DopplerPlot(RTIPlot): |
|
54 | 52 | ''' |
|
55 | 53 | Plot for DOPPLER Data (1st moment) |
|
56 | 54 | ''' |
|
57 | 55 | |
|
58 | 56 | CODE = 'dop' |
|
59 | 57 | colormap = 'jet' |
|
60 | plot_name = 'DopplerShift' | |
|
61 | 58 | |
|
62 | 59 | |
|
63 | 60 | class PowerPlot(RTIPlot): |
|
64 | 61 | ''' |
|
65 | 62 | Plot for Power Data (0 moment) |
|
66 | 63 | ''' |
|
67 | 64 | |
|
68 | 65 | CODE = 'pow' |
|
69 | 66 | colormap = 'jet' |
|
70 | plot_name = 'TotalPower' | |
|
71 | 67 | |
|
72 | 68 | |
|
73 | 69 | class SpectralWidthPlot(RTIPlot): |
|
74 | 70 | ''' |
|
75 | 71 | Plot for Spectral Width Data (2nd moment) |
|
76 | 72 | ''' |
|
77 | 73 | |
|
78 | 74 | CODE = 'width' |
|
79 | 75 | colormap = 'jet' |
|
80 | plot_name = 'SpectralWidth' | |
|
81 | 76 | |
|
82 | 77 | |
|
83 | 78 | class SkyMapPlot(Plot): |
|
84 | 79 | ''' |
|
85 | 80 | Plot for meteors detection data |
|
86 | 81 | ''' |
|
87 | 82 | |
|
88 | 83 | CODE = 'param' |
|
89 | 84 | |
|
90 | 85 | def setup(self): |
|
91 | 86 | |
|
92 | 87 | self.ncols = 1 |
|
93 | 88 | self.nrows = 1 |
|
94 | 89 | self.width = 7.2 |
|
95 | 90 | self.height = 7.2 |
|
96 | 91 | self.nplots = 1 |
|
97 | 92 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
98 | 93 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
99 | 94 | self.polar = True |
|
100 | 95 | self.ymin = -180 |
|
101 | 96 | self.ymax = 180 |
|
102 | 97 | self.colorbar = False |
|
103 | 98 | |
|
104 | 99 | def plot(self): |
|
105 | 100 | |
|
106 | 101 | arrayParameters = numpy.concatenate(self.data['param']) |
|
107 | 102 | error = arrayParameters[:, -1] |
|
108 | 103 | indValid = numpy.where(error == 0)[0] |
|
109 | 104 | finalMeteor = arrayParameters[indValid, :] |
|
110 | 105 | finalAzimuth = finalMeteor[:, 3] |
|
111 | 106 | finalZenith = finalMeteor[:, 4] |
|
112 | 107 | |
|
113 | 108 | x = finalAzimuth * numpy.pi / 180 |
|
114 | 109 | y = finalZenith |
|
115 | 110 | |
|
116 | 111 | ax = self.axes[0] |
|
117 | 112 | |
|
118 | 113 | if ax.firsttime: |
|
119 | 114 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
120 | 115 | else: |
|
121 | 116 | ax.plot.set_data(x, y) |
|
122 | 117 | |
|
123 | 118 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
124 | 119 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
125 | 120 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
126 | 121 | dt2, |
|
127 | 122 | len(x)) |
|
128 | 123 | self.titles[0] = title |
|
129 | 124 | |
|
130 | 125 | |
|
131 | 126 | class ParametersPlot(RTIPlot): |
|
132 | 127 | ''' |
|
133 | 128 | Plot for data_param object |
|
134 | 129 | ''' |
|
135 | 130 | |
|
136 | 131 | CODE = 'param' |
|
137 | 132 | colormap = 'seismic' |
|
138 | plot_name = 'Parameters' | |
|
139 | 133 | |
|
140 | 134 | def setup(self): |
|
141 | 135 | self.xaxis = 'time' |
|
142 | 136 | self.ncols = 1 |
|
143 | 137 | self.nrows = self.data.shape(self.CODE)[0] |
|
144 | 138 | self.nplots = self.nrows |
|
145 | 139 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
146 | 140 | |
|
147 | 141 | if not self.xlabel: |
|
148 | 142 | self.xlabel = 'Time' |
|
149 | 143 | |
|
150 | 144 | if self.showSNR: |
|
151 | 145 | self.nrows += 1 |
|
152 | 146 | self.nplots += 1 |
|
153 | 147 | |
|
154 | 148 | self.ylabel = 'Height [km]' |
|
155 | 149 | if not self.titles: |
|
156 | 150 | self.titles = self.data.parameters \ |
|
157 | 151 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] |
|
158 | 152 | if self.showSNR: |
|
159 | 153 | self.titles.append('SNR') |
|
160 | 154 | |
|
161 | 155 | def plot(self): |
|
162 | 156 | self.data.normalize_heights() |
|
163 | 157 | self.x = self.data.times |
|
164 | 158 | self.y = self.data.heights |
|
165 | 159 | if self.showSNR: |
|
166 | 160 | self.z = numpy.concatenate( |
|
167 | 161 | (self.data[self.CODE], self.data['snr']) |
|
168 | 162 | ) |
|
169 | 163 | else: |
|
170 | 164 | self.z = self.data[self.CODE] |
|
171 | 165 | |
|
172 | 166 | self.z = numpy.ma.masked_invalid(self.z) |
|
173 | 167 | |
|
174 | 168 | if self.decimation is None: |
|
175 | 169 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
176 | 170 | else: |
|
177 | 171 | x, y, z = self.fill_gaps(*self.decimate()) |
|
178 | 172 | |
|
179 | 173 | for n, ax in enumerate(self.axes): |
|
180 | 174 | |
|
181 | 175 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
182 | 176 | self.z[n]) |
|
183 | 177 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
184 | 178 | self.z[n]) |
|
185 | 179 | |
|
186 | 180 | if ax.firsttime: |
|
187 | 181 | if self.zlimits is not None: |
|
188 | 182 | self.zmin, self.zmax = self.zlimits[n] |
|
189 | 183 | |
|
190 | 184 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
191 | 185 | vmin=self.zmin, |
|
192 | 186 | vmax=self.zmax, |
|
193 | 187 | cmap=self.cmaps[n] |
|
194 | 188 | ) |
|
195 | 189 | else: |
|
196 | 190 | if self.zlimits is not None: |
|
197 | 191 | self.zmin, self.zmax = self.zlimits[n] |
|
198 | 192 | ax.collections.remove(ax.collections[0]) |
|
199 | 193 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
200 | 194 | vmin=self.zmin, |
|
201 | 195 | vmax=self.zmax, |
|
202 | 196 | cmap=self.cmaps[n] |
|
203 | 197 | ) |
|
204 | 198 | |
|
205 | 199 | |
|
206 | 200 | class OutputPlot(ParametersPlot): |
|
207 | 201 | ''' |
|
208 | 202 | Plot data_output object |
|
209 | 203 | ''' |
|
210 | 204 | |
|
211 | 205 | CODE = 'output' |
|
212 | 206 | colormap = 'seismic' |
|
213 | plot_name = 'Output' | |
|
214 | 207 | |
|
215 | 208 | |
|
216 | 209 | class PolarMapPlot(Plot): |
|
217 | 210 | ''' |
|
218 | 211 | Plot for weather radar |
|
219 | 212 | ''' |
|
220 | 213 | |
|
221 | 214 | CODE = 'param' |
|
222 | 215 | colormap = 'seismic' |
|
223 | 216 | |
|
224 | 217 | def setup(self): |
|
225 | 218 | self.ncols = 1 |
|
226 | 219 | self.nrows = 1 |
|
227 | 220 | self.width = 9 |
|
228 | 221 | self.height = 8 |
|
229 | 222 | self.mode = self.data.meta['mode'] |
|
230 | 223 | if self.channels is not None: |
|
231 | 224 | self.nplots = len(self.channels) |
|
232 | 225 | self.nrows = len(self.channels) |
|
233 | 226 | else: |
|
234 | 227 | self.nplots = self.data.shape(self.CODE)[0] |
|
235 | 228 | self.nrows = self.nplots |
|
236 | 229 | self.channels = list(range(self.nplots)) |
|
237 | 230 | if self.mode == 'E': |
|
238 | 231 | self.xlabel = 'Longitude' |
|
239 | 232 | self.ylabel = 'Latitude' |
|
240 | 233 | else: |
|
241 | 234 | self.xlabel = 'Range (km)' |
|
242 | 235 | self.ylabel = 'Height (km)' |
|
243 | 236 | self.bgcolor = 'white' |
|
244 | 237 | self.cb_labels = self.data.meta['units'] |
|
245 | 238 | self.lat = self.data.meta['latitude'] |
|
246 | 239 | self.lon = self.data.meta['longitude'] |
|
247 | 240 | self.xmin, self.xmax = float( |
|
248 | 241 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
249 | 242 | self.ymin, self.ymax = float( |
|
250 | 243 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
251 | 244 | # self.polar = True |
|
252 | 245 | |
|
253 | 246 | def plot(self): |
|
254 | 247 | |
|
255 | 248 | for n, ax in enumerate(self.axes): |
|
256 | 249 | data = self.data['param'][self.channels[n]] |
|
257 | 250 | |
|
258 | 251 | zeniths = numpy.linspace( |
|
259 | 252 | 0, self.data.meta['max_range'], data.shape[1]) |
|
260 | 253 | if self.mode == 'E': |
|
261 | 254 | azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 |
|
262 | 255 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
263 | 256 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
264 | 257 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
265 | 258 | x = km2deg(x) + self.lon |
|
266 | 259 | y = km2deg(y) + self.lat |
|
267 | 260 | else: |
|
268 | 261 | azimuths = numpy.radians(self.data.heights) |
|
269 | 262 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
270 | 263 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
271 | 264 | self.y = zeniths |
|
272 | 265 | |
|
273 | 266 | if ax.firsttime: |
|
274 | 267 | if self.zlimits is not None: |
|
275 | 268 | self.zmin, self.zmax = self.zlimits[n] |
|
276 | 269 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
277 | 270 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
278 | 271 | vmin=self.zmin, |
|
279 | 272 | vmax=self.zmax, |
|
280 | 273 | cmap=self.cmaps[n]) |
|
281 | 274 | else: |
|
282 | 275 | if self.zlimits is not None: |
|
283 | 276 | self.zmin, self.zmax = self.zlimits[n] |
|
284 | 277 | ax.collections.remove(ax.collections[0]) |
|
285 | 278 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
286 | 279 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
287 | 280 | vmin=self.zmin, |
|
288 | 281 | vmax=self.zmax, |
|
289 | 282 | cmap=self.cmaps[n]) |
|
290 | 283 | |
|
291 | 284 | if self.mode == 'A': |
|
292 | 285 | continue |
|
293 | 286 | |
|
294 | 287 | # plot district names |
|
295 | 288 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
296 | 289 | for line in f: |
|
297 | 290 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
298 | 291 | lat = float(lat) |
|
299 | 292 | lon = float(lon) |
|
300 | 293 | # ax.plot(lon, lat, '.b', ms=2) |
|
301 | 294 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
302 | 295 | va='bottom', size='8', color='black') |
|
303 | 296 | |
|
304 | 297 | # plot limites |
|
305 | 298 | limites = [] |
|
306 | 299 | tmp = [] |
|
307 | 300 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
308 | 301 | if '#' in line: |
|
309 | 302 | if tmp: |
|
310 | 303 | limites.append(tmp) |
|
311 | 304 | tmp = [] |
|
312 | 305 | continue |
|
313 | 306 | values = line.strip().split(',') |
|
314 | 307 | tmp.append((float(values[0]), float(values[1]))) |
|
315 | 308 | for points in limites: |
|
316 | 309 | ax.add_patch( |
|
317 | 310 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
318 | 311 | |
|
319 | 312 | # plot Cuencas |
|
320 | 313 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
321 | 314 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
322 | 315 | values = [line.strip().split(',') for line in f] |
|
323 | 316 | points = [(float(s[0]), float(s[1])) for s in values] |
|
324 | 317 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
325 | 318 | |
|
326 | 319 | # plot grid |
|
327 | 320 | for r in (15, 30, 45, 60): |
|
328 | 321 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
329 | 322 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
330 | 323 | ax.text( |
|
331 | 324 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
332 | 325 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
333 | 326 | '{}km'.format(r), |
|
334 | 327 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
335 | 328 | |
|
336 | 329 | if self.mode == 'E': |
|
337 | 330 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
338 | 331 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
339 | 332 | else: |
|
340 | 333 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
341 | 334 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
342 | 335 | |
|
343 | 336 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
344 | 337 | self.titles = ['{} {}'.format( |
|
345 | 338 | self.data.parameters[x], title) for x in self.channels] |
|
346 | 339 |
@@ -1,651 +1,643 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | Modified on May 10, 2020 |
|
4 | 4 | |
|
5 | 5 | @author: Juan C. Espinoza |
|
6 | 6 | ''' |
|
7 | 7 | |
|
8 | 8 | import os |
|
9 | 9 | import datetime |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | plot_name = 'Spectra' | |
|
23 | 22 | plot_type = 'pcolor' |
|
24 | 23 | |
|
25 | 24 | def setup(self): |
|
26 | 25 | self.nplots = len(self.data.channels) |
|
27 | 26 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | 27 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 |
self.height = |
|
|
28 | self.height = 2.6 * self.nrows | |
|
30 | 29 | self.cb_label = 'dB' |
|
31 | 30 | if self.showprofile: |
|
32 | 31 | self.width = 4 * self.ncols |
|
33 | 32 | else: |
|
34 | 33 | self.width = 3.5 * self.ncols |
|
35 | 34 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
36 | 35 | self.ylabel = 'Range [km]' |
|
37 | 36 | |
|
38 | 37 | def plot(self): |
|
39 | 38 | if self.xaxis == "frequency": |
|
40 | 39 | x = self.data.xrange[0] |
|
41 | 40 | self.xlabel = "Frequency (kHz)" |
|
42 | 41 | elif self.xaxis == "time": |
|
43 | 42 | x = self.data.xrange[1] |
|
44 | 43 | self.xlabel = "Time (ms)" |
|
45 | 44 | else: |
|
46 | 45 | x = self.data.xrange[2] |
|
47 | 46 | self.xlabel = "Velocity (m/s)" |
|
48 | 47 | |
|
49 | 48 | if self.CODE == 'spc_moments': |
|
50 | 49 | x = self.data.xrange[2] |
|
51 | 50 | self.xlabel = "Velocity (m/s)" |
|
52 | 51 | |
|
53 | 52 | self.titles = [] |
|
54 | 53 | |
|
55 | 54 | y = self.data.heights |
|
56 | 55 | self.y = y |
|
57 | 56 | z = self.data['spc'] |
|
58 | 57 | |
|
59 | 58 | for n, ax in enumerate(self.axes): |
|
60 | 59 | noise = self.data['noise'][n][-1] |
|
61 | 60 | if self.CODE == 'spc_moments': |
|
62 | 61 | mean = self.data['moments'][n, :, 1, :][-1] |
|
63 | 62 | if ax.firsttime: |
|
64 | 63 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
65 | 64 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
66 | 65 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
67 | 66 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
68 | 67 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
69 | 68 | vmin=self.zmin, |
|
70 | 69 | vmax=self.zmax, |
|
71 | 70 | cmap=plt.get_cmap(self.colormap) |
|
72 | 71 | ) |
|
73 | 72 | |
|
74 | 73 | if self.showprofile: |
|
75 | 74 | ax.plt_profile = self.pf_axes[n].plot( |
|
76 | 75 | self.data['rti'][n][-1], y)[0] |
|
77 | 76 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
78 | 77 | color="k", linestyle="dashed", lw=1)[0] |
|
79 | 78 | if self.CODE == 'spc_moments': |
|
80 | 79 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
81 | 80 | else: |
|
82 | 81 | ax.plt.set_array(z[n].T.ravel()) |
|
83 | 82 | if self.showprofile: |
|
84 | 83 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
85 | 84 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
86 | 85 | if self.CODE == 'spc_moments': |
|
87 | 86 | ax.plt_mean.set_data(mean, y) |
|
88 | 87 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
89 | 88 | |
|
90 | 89 | |
|
91 | 90 | class CrossSpectraPlot(Plot): |
|
92 | 91 | |
|
93 | 92 | CODE = 'cspc' |
|
94 | 93 | colormap = 'jet' |
|
95 | plot_name = 'CrossSpectra' | |
|
96 | 94 | plot_type = 'pcolor' |
|
97 | 95 | zmin_coh = None |
|
98 | 96 | zmax_coh = None |
|
99 | 97 | zmin_phase = None |
|
100 | 98 | zmax_phase = None |
|
101 | 99 | |
|
102 | 100 | def setup(self): |
|
103 | 101 | |
|
104 | 102 | self.ncols = 4 |
|
105 | 103 | self.nrows = len(self.data.pairs) |
|
106 | 104 | self.nplots = self.nrows * 4 |
|
107 |
self.width = 3. |
|
|
108 |
self.height = |
|
|
105 | self.width = 3.1 * self.ncols | |
|
106 | self.height = 2.6 * self.nrows | |
|
109 | 107 | self.ylabel = 'Range [km]' |
|
110 | 108 | self.showprofile = False |
|
111 | self.plots_adjust.update({'bottom': 0.08}) | |
|
109 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
|
112 | 110 | |
|
113 | 111 | def plot(self): |
|
114 | 112 | |
|
115 | 113 | if self.xaxis == "frequency": |
|
116 | 114 | x = self.data.xrange[0] |
|
117 | 115 | self.xlabel = "Frequency (kHz)" |
|
118 | 116 | elif self.xaxis == "time": |
|
119 | 117 | x = self.data.xrange[1] |
|
120 | 118 | self.xlabel = "Time (ms)" |
|
121 | 119 | else: |
|
122 | 120 | x = self.data.xrange[2] |
|
123 | 121 | self.xlabel = "Velocity (m/s)" |
|
124 | 122 | |
|
125 | 123 | self.titles = [] |
|
126 | 124 | |
|
127 | 125 | y = self.data.heights |
|
128 | 126 | self.y = y |
|
129 | 127 | nspc = self.data['spc'] |
|
130 | 128 | spc = self.data['cspc'][0] |
|
131 | 129 | cspc = self.data['cspc'][1] |
|
132 | 130 | |
|
133 | 131 | for n in range(self.nrows): |
|
134 | 132 | noise = self.data['noise'][:,-1] |
|
135 | 133 | pair = self.data.pairs[n] |
|
136 | 134 | ax = self.axes[4 * n] |
|
137 | 135 | if ax.firsttime: |
|
138 | 136 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
139 | 137 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
140 | 138 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
141 | 139 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
142 | 140 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
143 | 141 | vmin=self.zmin, |
|
144 | 142 | vmax=self.zmax, |
|
145 | 143 | cmap=plt.get_cmap(self.colormap) |
|
146 | 144 | ) |
|
147 | 145 | else: |
|
148 | 146 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
149 | 147 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
150 | 148 | |
|
151 | 149 | ax = self.axes[4 * n + 1] |
|
152 | 150 | if ax.firsttime: |
|
153 | 151 | ax.plt = ax.pcolormesh(x , y, nspc[pair[1]].T, |
|
154 | 152 | vmin=self.zmin, |
|
155 | 153 | vmax=self.zmax, |
|
156 | 154 | cmap=plt.get_cmap(self.colormap) |
|
157 | 155 | ) |
|
158 | 156 | else: |
|
159 | 157 | ax.plt.set_array(nspc[pair[1]].T.ravel()) |
|
160 | 158 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
161 | 159 | |
|
162 | 160 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
163 | 161 | coh = numpy.abs(out) |
|
164 | 162 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
165 | 163 | |
|
166 | 164 | ax = self.axes[4 * n + 2] |
|
167 | 165 | if ax.firsttime: |
|
168 | 166 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
169 | 167 | vmin=0, |
|
170 | 168 | vmax=1, |
|
171 | 169 | cmap=plt.get_cmap(self.colormap_coh) |
|
172 | 170 | ) |
|
173 | 171 | else: |
|
174 | 172 | ax.plt.set_array(coh.T.ravel()) |
|
175 | 173 | self.titles.append( |
|
176 | 174 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
177 | 175 | |
|
178 | 176 | ax = self.axes[4 * n + 3] |
|
179 | 177 | if ax.firsttime: |
|
180 | 178 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
181 | 179 | vmin=-180, |
|
182 | 180 | vmax=180, |
|
183 | 181 | cmap=plt.get_cmap(self.colormap_phase) |
|
184 | 182 | ) |
|
185 | 183 | else: |
|
186 | 184 | ax.plt.set_array(phase.T.ravel()) |
|
187 | 185 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
188 | 186 | |
|
189 | 187 | |
|
190 | 188 | class RTIPlot(Plot): |
|
191 | 189 | ''' |
|
192 | 190 | Plot for RTI data |
|
193 | 191 | ''' |
|
194 | 192 | |
|
195 | 193 | CODE = 'rti' |
|
196 | 194 | colormap = 'jet' |
|
197 | plot_name = 'RTI' | |
|
198 | 195 | plot_type = 'pcolorbuffer' |
|
199 | 196 | |
|
200 | 197 | def setup(self): |
|
201 | 198 | self.xaxis = 'time' |
|
202 | 199 | self.ncols = 1 |
|
203 | 200 | self.nrows = len(self.data.channels) |
|
204 | 201 | self.nplots = len(self.data.channels) |
|
205 | 202 | self.ylabel = 'Range [km]' |
|
206 | 203 | self.xlabel = 'Time' |
|
207 | 204 | self.cb_label = 'dB' |
|
208 | 205 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
209 | 206 | self.titles = ['{} Channel {}'.format( |
|
210 | 207 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
211 | 208 | |
|
212 | 209 | def plot(self): |
|
213 | 210 | self.x = self.data.times |
|
214 | 211 | self.y = self.data.heights |
|
215 | 212 | self.z = self.data[self.CODE] |
|
216 | 213 | self.z = numpy.ma.masked_invalid(self.z) |
|
217 | 214 | |
|
218 | 215 | if self.decimation is None: |
|
219 | 216 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
220 | 217 | else: |
|
221 | 218 | x, y, z = self.fill_gaps(*self.decimate()) |
|
222 | 219 | |
|
223 | 220 | for n, ax in enumerate(self.axes): |
|
224 | 221 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
225 | 222 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
226 | 223 | if ax.firsttime: |
|
227 | 224 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
228 | 225 | vmin=self.zmin, |
|
229 | 226 | vmax=self.zmax, |
|
230 | 227 | cmap=plt.get_cmap(self.colormap) |
|
231 | 228 | ) |
|
232 | 229 | if self.showprofile: |
|
233 | 230 | ax.plot_profile = self.pf_axes[n].plot( |
|
234 | 231 | self.data['rti'][n][-1], self.y)[0] |
|
235 | 232 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
236 | 233 | color="k", linestyle="dashed", lw=1)[0] |
|
237 | 234 | else: |
|
238 | 235 | ax.collections.remove(ax.collections[0]) |
|
239 | 236 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
240 | 237 | vmin=self.zmin, |
|
241 | 238 | vmax=self.zmax, |
|
242 | 239 | cmap=plt.get_cmap(self.colormap) |
|
243 | 240 | ) |
|
244 | 241 | if self.showprofile: |
|
245 | 242 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
246 | 243 | ax.plot_noise.set_data(numpy.repeat( |
|
247 | 244 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
248 | 245 | |
|
249 | 246 | |
|
250 | 247 | class CoherencePlot(RTIPlot): |
|
251 | 248 | ''' |
|
252 | 249 | Plot for Coherence data |
|
253 | 250 | ''' |
|
254 | 251 | |
|
255 | 252 | CODE = 'coh' |
|
256 | plot_name = 'Coherence' | |
|
257 | 253 | |
|
258 | 254 | def setup(self): |
|
259 | 255 | self.xaxis = 'time' |
|
260 | 256 | self.ncols = 1 |
|
261 | 257 | self.nrows = len(self.data.pairs) |
|
262 | 258 | self.nplots = len(self.data.pairs) |
|
263 | 259 | self.ylabel = 'Range [km]' |
|
264 | 260 | self.xlabel = 'Time' |
|
265 | 261 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
266 | 262 | if self.CODE == 'coh': |
|
267 | 263 | self.cb_label = '' |
|
268 | 264 | self.titles = [ |
|
269 | 265 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
270 | 266 | else: |
|
271 | 267 | self.cb_label = 'Degrees' |
|
272 | 268 | self.titles = [ |
|
273 | 269 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
274 | 270 | |
|
275 | 271 | |
|
276 | 272 | class PhasePlot(CoherencePlot): |
|
277 | 273 | ''' |
|
278 | 274 | Plot for Phase map data |
|
279 | 275 | ''' |
|
280 | 276 | |
|
281 | 277 | CODE = 'phase' |
|
282 | 278 | colormap = 'seismic' |
|
283 | plot_name = 'Phase' | |
|
284 | 279 | |
|
285 | 280 | |
|
286 | 281 | class NoisePlot(Plot): |
|
287 | 282 | ''' |
|
288 | 283 | Plot for noise |
|
289 | 284 | ''' |
|
290 | 285 | |
|
291 | 286 | CODE = 'noise' |
|
292 | plot_name = 'Noise' | |
|
293 | 287 | plot_type = 'scatterbuffer' |
|
294 | 288 | |
|
295 | 289 | |
|
296 | 290 | def setup(self): |
|
297 | 291 | self.xaxis = 'time' |
|
298 | 292 | self.ncols = 1 |
|
299 | 293 | self.nrows = 1 |
|
300 | 294 | self.nplots = 1 |
|
301 | 295 | self.ylabel = 'Intensity [dB]' |
|
302 | 296 | self.xlabel = 'Time' |
|
303 | 297 | self.titles = ['Noise'] |
|
304 | 298 | self.colorbar = False |
|
305 | 299 | |
|
306 | 300 | def plot(self): |
|
307 | 301 | |
|
308 | 302 | x = self.data.times |
|
309 | 303 | xmin = self.data.min_time |
|
310 | 304 | xmax = xmin + self.xrange * 60 * 60 |
|
311 | 305 | Y = self.data[self.CODE] |
|
312 | 306 | |
|
313 | 307 | if self.axes[0].firsttime: |
|
314 | 308 | for ch in self.data.channels: |
|
315 | 309 | y = Y[ch] |
|
316 | 310 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
317 | 311 | plt.legend() |
|
318 | 312 | else: |
|
319 | 313 | for ch in self.data.channels: |
|
320 | 314 | y = Y[ch] |
|
321 | 315 | self.axes[0].lines[ch].set_data(x, y) |
|
322 | 316 | |
|
323 | 317 | self.ymin = numpy.nanmin(Y) - 5 |
|
324 | 318 | self.ymax = numpy.nanmax(Y) + 5 |
|
325 | 319 | |
|
326 | 320 | |
|
327 | 321 | class PowerProfilePlot(Plot): |
|
328 | 322 | |
|
329 | 323 | CODE = 'spcprofile' |
|
330 | plot_name = 'Power Profile' | |
|
331 | 324 | plot_type = 'scatter' |
|
332 | 325 | buffering = False |
|
333 | 326 | |
|
334 | 327 | def setup(self): |
|
335 | 328 | |
|
336 | 329 | self.ncols = 1 |
|
337 | 330 | self.nrows = 1 |
|
338 | 331 | self.nplots = 1 |
|
339 | 332 | self.height = 4 |
|
340 | 333 | self.width = 3 |
|
341 | 334 | self.ylabel = 'Range [km]' |
|
342 | 335 | self.xlabel = 'Intensity [dB]' |
|
343 | 336 | self.titles = ['Power Profile'] |
|
344 | 337 | self.colorbar = False |
|
345 | 338 | |
|
346 | 339 | def plot(self): |
|
347 | 340 | |
|
348 | 341 | y = self.data.heights |
|
349 | 342 | self.y = y |
|
350 | 343 | |
|
351 | 344 | x = self.data['spcprofile'] |
|
352 | 345 | |
|
353 | 346 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
354 | 347 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
355 | 348 | |
|
356 | 349 | if self.axes[0].firsttime: |
|
357 | 350 | for ch in self.data.channels: |
|
358 | 351 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
359 | 352 | plt.legend() |
|
360 | 353 | else: |
|
361 | 354 | for ch in self.data.channels: |
|
362 | 355 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
363 | 356 | |
|
364 | 357 | |
|
365 | 358 | class SpectraCutPlot(Plot): |
|
366 | 359 | |
|
367 | 360 | CODE = 'spc_cut' |
|
368 | plot_name = 'Spectra Cut' | |
|
369 | 361 | plot_type = 'scatter' |
|
370 | 362 | buffering = False |
|
371 | 363 | |
|
372 | 364 | def setup(self): |
|
373 | 365 | |
|
374 | 366 | self.nplots = len(self.data.channels) |
|
375 | 367 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
376 | 368 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
377 | 369 | self.width = 3.4 * self.ncols + 1.5 |
|
378 | 370 | self.height = 3 * self.nrows |
|
379 | 371 | self.ylabel = 'Power [dB]' |
|
380 | 372 | self.colorbar = False |
|
381 | 373 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
382 | 374 | |
|
383 | 375 | def plot(self): |
|
384 | 376 | if self.xaxis == "frequency": |
|
385 | 377 | x = self.data.xrange[0][1:] |
|
386 | 378 | self.xlabel = "Frequency (kHz)" |
|
387 | 379 | elif self.xaxis == "time": |
|
388 | 380 | x = self.data.xrange[1] |
|
389 | 381 | self.xlabel = "Time (ms)" |
|
390 | 382 | else: |
|
391 | 383 | x = self.data.xrange[2] |
|
392 | 384 | self.xlabel = "Velocity (m/s)" |
|
393 | 385 | |
|
394 | 386 | self.titles = [] |
|
395 | 387 | |
|
396 | 388 | y = self.data.heights |
|
397 | 389 | #self.y = y |
|
398 | 390 | z = self.data['spc_cut'] |
|
399 | 391 | |
|
400 | 392 | if self.height_index: |
|
401 | 393 | index = numpy.array(self.height_index) |
|
402 | 394 | else: |
|
403 | 395 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
404 | 396 | |
|
405 | 397 | for n, ax in enumerate(self.axes): |
|
406 | 398 | if ax.firsttime: |
|
407 | 399 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
408 | 400 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
409 | 401 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
410 | 402 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
411 | 403 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
412 | 404 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
413 | 405 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
414 | 406 | else: |
|
415 | 407 | for i, line in enumerate(ax.plt): |
|
416 | 408 | line.set_data(x, z[n, :, i]) |
|
417 | 409 | self.titles.append('CH {}'.format(n)) |
|
418 | 410 | |
|
419 | 411 | |
|
420 | 412 | class BeaconPhase(Plot): |
|
421 | 413 | |
|
422 | 414 | __isConfig = None |
|
423 | 415 | __nsubplots = None |
|
424 | 416 | |
|
425 | 417 | PREFIX = 'beacon_phase' |
|
426 | 418 | |
|
427 | 419 | def __init__(self): |
|
428 | 420 | Plot.__init__(self) |
|
429 | 421 | self.timerange = 24*60*60 |
|
430 | 422 | self.isConfig = False |
|
431 | 423 | self.__nsubplots = 1 |
|
432 | 424 | self.counter_imagwr = 0 |
|
433 | 425 | self.WIDTH = 800 |
|
434 | 426 | self.HEIGHT = 400 |
|
435 | 427 | self.WIDTHPROF = 120 |
|
436 | 428 | self.HEIGHTPROF = 0 |
|
437 | 429 | self.xdata = None |
|
438 | 430 | self.ydata = None |
|
439 | 431 | |
|
440 | 432 | self.PLOT_CODE = BEACON_CODE |
|
441 | 433 | |
|
442 | 434 | self.FTP_WEI = None |
|
443 | 435 | self.EXP_CODE = None |
|
444 | 436 | self.SUB_EXP_CODE = None |
|
445 | 437 | self.PLOT_POS = None |
|
446 | 438 | |
|
447 | 439 | self.filename_phase = None |
|
448 | 440 | |
|
449 | 441 | self.figfile = None |
|
450 | 442 | |
|
451 | 443 | self.xmin = None |
|
452 | 444 | self.xmax = None |
|
453 | 445 | |
|
454 | 446 | def getSubplots(self): |
|
455 | 447 | |
|
456 | 448 | ncol = 1 |
|
457 | 449 | nrow = 1 |
|
458 | 450 | |
|
459 | 451 | return nrow, ncol |
|
460 | 452 | |
|
461 | 453 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
462 | 454 | |
|
463 | 455 | self.__showprofile = showprofile |
|
464 | 456 | self.nplots = nplots |
|
465 | 457 | |
|
466 | 458 | ncolspan = 7 |
|
467 | 459 | colspan = 6 |
|
468 | 460 | self.__nsubplots = 2 |
|
469 | 461 | |
|
470 | 462 | self.createFigure(id = id, |
|
471 | 463 | wintitle = wintitle, |
|
472 | 464 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
473 | 465 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
474 | 466 | show=show) |
|
475 | 467 | |
|
476 | 468 | nrow, ncol = self.getSubplots() |
|
477 | 469 | |
|
478 | 470 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
479 | 471 | |
|
480 | 472 | def save_phase(self, filename_phase): |
|
481 | 473 | f = open(filename_phase,'w+') |
|
482 | 474 | f.write('\n\n') |
|
483 | 475 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
484 | 476 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
485 | 477 | f.close() |
|
486 | 478 | |
|
487 | 479 | def save_data(self, filename_phase, data, data_datetime): |
|
488 | 480 | f=open(filename_phase,'a') |
|
489 | 481 | timetuple_data = data_datetime.timetuple() |
|
490 | 482 | day = str(timetuple_data.tm_mday) |
|
491 | 483 | month = str(timetuple_data.tm_mon) |
|
492 | 484 | year = str(timetuple_data.tm_year) |
|
493 | 485 | hour = str(timetuple_data.tm_hour) |
|
494 | 486 | minute = str(timetuple_data.tm_min) |
|
495 | 487 | second = str(timetuple_data.tm_sec) |
|
496 | 488 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
497 | 489 | f.close() |
|
498 | 490 | |
|
499 | 491 | def plot(self): |
|
500 | 492 | log.warning('TODO: Not yet implemented...') |
|
501 | 493 | |
|
502 | 494 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
503 | 495 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
504 | 496 | timerange=None, |
|
505 | 497 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
506 | 498 | server=None, folder=None, username=None, password=None, |
|
507 | 499 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
508 | 500 | |
|
509 | 501 | if dataOut.flagNoData: |
|
510 | 502 | return dataOut |
|
511 | 503 | |
|
512 | 504 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
513 | 505 | return |
|
514 | 506 | |
|
515 | 507 | if pairsList == None: |
|
516 | 508 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
517 | 509 | else: |
|
518 | 510 | pairsIndexList = [] |
|
519 | 511 | for pair in pairsList: |
|
520 | 512 | if pair not in dataOut.pairsList: |
|
521 | 513 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
522 | 514 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
523 | 515 | |
|
524 | 516 | if pairsIndexList == []: |
|
525 | 517 | return |
|
526 | 518 | |
|
527 | 519 | # if len(pairsIndexList) > 4: |
|
528 | 520 | # pairsIndexList = pairsIndexList[0:4] |
|
529 | 521 | |
|
530 | 522 | hmin_index = None |
|
531 | 523 | hmax_index = None |
|
532 | 524 | |
|
533 | 525 | if hmin != None and hmax != None: |
|
534 | 526 | indexes = numpy.arange(dataOut.nHeights) |
|
535 | 527 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
536 | 528 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
537 | 529 | |
|
538 | 530 | if hmin_list.any(): |
|
539 | 531 | hmin_index = hmin_list[0] |
|
540 | 532 | |
|
541 | 533 | if hmax_list.any(): |
|
542 | 534 | hmax_index = hmax_list[-1]+1 |
|
543 | 535 | |
|
544 | 536 | x = dataOut.getTimeRange() |
|
545 | 537 | #y = dataOut.getHeiRange() |
|
546 | 538 | |
|
547 | 539 | |
|
548 | 540 | thisDatetime = dataOut.datatime |
|
549 | 541 | |
|
550 | 542 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
551 | 543 | xlabel = "Local Time" |
|
552 | 544 | ylabel = "Phase (degrees)" |
|
553 | 545 | |
|
554 | 546 | update_figfile = False |
|
555 | 547 | |
|
556 | 548 | nplots = len(pairsIndexList) |
|
557 | 549 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
558 | 550 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
559 | 551 | for i in range(nplots): |
|
560 | 552 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
561 | 553 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
562 | 554 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
563 | 555 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
564 | 556 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
565 | 557 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
566 | 558 | |
|
567 | 559 | if dataOut.beacon_heiIndexList: |
|
568 | 560 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
569 | 561 | else: |
|
570 | 562 | phase_beacon[i] = numpy.average(phase) |
|
571 | 563 | |
|
572 | 564 | if not self.isConfig: |
|
573 | 565 | |
|
574 | 566 | nplots = len(pairsIndexList) |
|
575 | 567 | |
|
576 | 568 | self.setup(id=id, |
|
577 | 569 | nplots=nplots, |
|
578 | 570 | wintitle=wintitle, |
|
579 | 571 | showprofile=showprofile, |
|
580 | 572 | show=show) |
|
581 | 573 | |
|
582 | 574 | if timerange != None: |
|
583 | 575 | self.timerange = timerange |
|
584 | 576 | |
|
585 | 577 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
586 | 578 | |
|
587 | 579 | if ymin == None: ymin = 0 |
|
588 | 580 | if ymax == None: ymax = 360 |
|
589 | 581 | |
|
590 | 582 | self.FTP_WEI = ftp_wei |
|
591 | 583 | self.EXP_CODE = exp_code |
|
592 | 584 | self.SUB_EXP_CODE = sub_exp_code |
|
593 | 585 | self.PLOT_POS = plot_pos |
|
594 | 586 | |
|
595 | 587 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
596 | 588 | self.isConfig = True |
|
597 | 589 | self.figfile = figfile |
|
598 | 590 | self.xdata = numpy.array([]) |
|
599 | 591 | self.ydata = numpy.array([]) |
|
600 | 592 | |
|
601 | 593 | update_figfile = True |
|
602 | 594 | |
|
603 | 595 | #open file beacon phase |
|
604 | 596 | path = '%s%03d' %(self.PREFIX, self.id) |
|
605 | 597 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
606 | 598 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
607 | 599 | #self.save_phase(self.filename_phase) |
|
608 | 600 | |
|
609 | 601 | |
|
610 | 602 | #store data beacon phase |
|
611 | 603 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
612 | 604 | |
|
613 | 605 | self.setWinTitle(title) |
|
614 | 606 | |
|
615 | 607 | |
|
616 | 608 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
617 | 609 | |
|
618 | 610 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
619 | 611 | |
|
620 | 612 | axes = self.axesList[0] |
|
621 | 613 | |
|
622 | 614 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
623 | 615 | |
|
624 | 616 | if len(self.ydata)==0: |
|
625 | 617 | self.ydata = phase_beacon.reshape(-1,1) |
|
626 | 618 | else: |
|
627 | 619 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
628 | 620 | |
|
629 | 621 | |
|
630 | 622 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
631 | 623 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
632 | 624 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
633 | 625 | XAxisAsTime=True, grid='both' |
|
634 | 626 | ) |
|
635 | 627 | |
|
636 | 628 | self.draw() |
|
637 | 629 | |
|
638 | 630 | if dataOut.ltctime >= self.xmax: |
|
639 | 631 | self.counter_imagwr = wr_period |
|
640 | 632 | self.isConfig = False |
|
641 | 633 | update_figfile = True |
|
642 | 634 | |
|
643 | 635 | self.save(figpath=figpath, |
|
644 | 636 | figfile=figfile, |
|
645 | 637 | save=save, |
|
646 | 638 | ftp=ftp, |
|
647 | 639 | wr_period=wr_period, |
|
648 | 640 | thisDatetime=thisDatetime, |
|
649 | 641 | update_figfile=update_figfile) |
|
650 | 642 | |
|
651 | 643 | return dataOut No newline at end of file |
@@ -1,302 +1,297 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
11 | 11 | |
|
12 | 12 | |
|
13 | 13 | class ScopePlot(Plot): |
|
14 | 14 | |
|
15 | 15 | ''' |
|
16 | 16 | Plot for Scope |
|
17 | 17 | ''' |
|
18 | 18 | |
|
19 | 19 | CODE = 'scope' |
|
20 | plot_name = 'Scope' | |
|
21 | 20 | plot_type = 'scatter' |
|
22 | 21 | |
|
23 | 22 | def setup(self): |
|
24 | 23 | |
|
25 | 24 | self.xaxis = 'Range (Km)' |
|
26 | 25 | self.ncols = 1 |
|
27 | 26 | self.nrows = 1 |
|
28 | 27 | self.nplots = 1 |
|
29 | 28 | self.ylabel = 'Intensity [dB]' |
|
30 | 29 | self.titles = ['Scope'] |
|
31 | 30 | self.colorbar = False |
|
32 | 31 | self.width = 6 |
|
33 | 32 | self.height = 4 |
|
34 | 33 | |
|
35 | 34 | def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
36 | 35 | |
|
37 | 36 | yreal = y[channelIndexList,:].real |
|
38 | 37 | yimag = y[channelIndexList,:].imag |
|
39 | 38 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
40 | 39 | self.xlabel = "Range (Km)" |
|
41 | 40 | self.ylabel = "Intensity - IQ" |
|
42 | 41 | |
|
43 | 42 | self.y = yreal |
|
44 | 43 | self.x = x |
|
45 | 44 | self.xmin = min(x) |
|
46 | 45 | self.xmax = max(x) |
|
47 | 46 | |
|
48 | 47 | |
|
49 | 48 | self.titles[0] = title |
|
50 | 49 | |
|
51 | 50 | for i,ax in enumerate(self.axes): |
|
52 | 51 | title = "Channel %d" %(i) |
|
53 | 52 | if ax.firsttime: |
|
54 | 53 | ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0] |
|
55 | 54 | ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0] |
|
56 | 55 | else: |
|
57 | 56 | ax.plt_r.set_data(x, yreal[i,:]) |
|
58 | 57 | ax.plt_i.set_data(x, yimag[i,:]) |
|
59 | 58 | |
|
60 | 59 | def plot_power(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
61 | 60 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) |
|
62 | 61 | yreal = y.real |
|
63 | 62 | yreal = 10*numpy.log10(yreal) |
|
64 | 63 | self.y = yreal |
|
65 | 64 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
66 | 65 | self.xlabel = "Range (Km)" |
|
67 | 66 | self.ylabel = "Intensity" |
|
68 | 67 | self.xmin = min(x) |
|
69 | 68 | self.xmax = max(x) |
|
70 | 69 | |
|
71 | 70 | |
|
72 | 71 | self.titles[0] = title |
|
73 | 72 | |
|
74 | 73 | for i,ax in enumerate(self.axes): |
|
75 | 74 | title = "Channel %d" %(i) |
|
76 | 75 | |
|
77 | 76 | ychannel = yreal[i,:] |
|
78 | 77 | |
|
79 | 78 | if ax.firsttime: |
|
80 | 79 | ax.plt_r = ax.plot(x, ychannel)[0] |
|
81 | 80 | else: |
|
82 | 81 | #pass |
|
83 | 82 | ax.plt_r.set_data(x, ychannel) |
|
84 | 83 | |
|
85 | 84 | def plot_weatherpower(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
86 | 85 | |
|
87 | 86 | |
|
88 | 87 | y = y[channelIndexList,:] |
|
89 | 88 | yreal = y.real |
|
90 | 89 | yreal = 10*numpy.log10(yreal) |
|
91 | 90 | self.y = yreal |
|
92 | 91 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
93 | 92 | self.xlabel = "Range (Km)" |
|
94 | 93 | self.ylabel = "Intensity" |
|
95 | 94 | self.xmin = min(x) |
|
96 | 95 | self.xmax = max(x) |
|
97 | 96 | |
|
98 | 97 | self.titles[0] =title |
|
99 | 98 | for i,ax in enumerate(self.axes): |
|
100 | 99 | title = "Channel %d" %(i) |
|
101 | 100 | |
|
102 | 101 | ychannel = yreal[i,:] |
|
103 | 102 | |
|
104 | 103 | if ax.firsttime: |
|
105 | 104 | ax.plt_r = ax.plot(x, ychannel)[0] |
|
106 | 105 | else: |
|
107 | 106 | #pass |
|
108 | 107 | ax.plt_r.set_data(x, ychannel) |
|
109 | 108 | |
|
110 | 109 | def plot_weathervelocity(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
111 | 110 | |
|
112 | 111 | x = x[channelIndexList,:] |
|
113 | 112 | yreal = y |
|
114 | 113 | self.y = yreal |
|
115 | 114 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
116 | 115 | self.xlabel = "Velocity (m/s)" |
|
117 | 116 | self.ylabel = "Range (Km)" |
|
118 | 117 | self.xmin = numpy.min(x) |
|
119 | 118 | self.xmax = numpy.max(x) |
|
120 | 119 | self.titles[0] =title |
|
121 | 120 | for i,ax in enumerate(self.axes): |
|
122 | 121 | title = "Channel %d" %(i) |
|
123 | 122 | xchannel = x[i,:] |
|
124 | 123 | if ax.firsttime: |
|
125 | 124 | ax.plt_r = ax.plot(xchannel, yreal)[0] |
|
126 | 125 | else: |
|
127 | 126 | #pass |
|
128 | 127 | ax.plt_r.set_data(xchannel, yreal) |
|
129 | 128 | |
|
130 | 129 | def plot_weatherspecwidth(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
131 | 130 | |
|
132 | 131 | x = x[channelIndexList,:] |
|
133 | 132 | yreal = y |
|
134 | 133 | self.y = yreal |
|
135 | 134 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
136 | 135 | self.xlabel = "width " |
|
137 | 136 | self.ylabel = "Range (Km)" |
|
138 | 137 | self.xmin = numpy.min(x) |
|
139 | 138 | self.xmax = numpy.max(x) |
|
140 | 139 | self.titles[0] =title |
|
141 | 140 | for i,ax in enumerate(self.axes): |
|
142 | 141 | title = "Channel %d" %(i) |
|
143 | 142 | xchannel = x[i,:] |
|
144 | 143 | if ax.firsttime: |
|
145 | 144 | ax.plt_r = ax.plot(xchannel, yreal)[0] |
|
146 | 145 | else: |
|
147 | 146 | #pass |
|
148 | 147 | ax.plt_r.set_data(xchannel, yreal) |
|
149 | 148 | |
|
150 | 149 | def plot(self): |
|
151 | 150 | if self.channels: |
|
152 | 151 | channels = self.channels |
|
153 | 152 | else: |
|
154 | 153 | channels = self.data.channels |
|
155 | 154 | |
|
156 | 155 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) |
|
157 | 156 | if self.CODE == "pp_power": |
|
158 | 157 | scope = self.data['pp_power'] |
|
159 | 158 | elif self.CODE == "pp_signal": |
|
160 | 159 | scope = self.data["pp_signal"] |
|
161 | 160 | elif self.CODE == "pp_velocity": |
|
162 | 161 | scope = self.data["pp_velocity"] |
|
163 | 162 | elif self.CODE == "pp_specwidth": |
|
164 | 163 | scope = self.data["pp_specwidth"] |
|
165 | 164 | else: |
|
166 | 165 | scope =self.data["scope"] |
|
167 | 166 | |
|
168 | 167 | if self.data.flagDataAsBlock: |
|
169 | 168 | |
|
170 | 169 | for i in range(self.data.nProfiles): |
|
171 | 170 | |
|
172 | 171 | wintitle1 = " [Profile = %d] " %i |
|
173 | 172 | if self.CODE =="scope": |
|
174 | 173 | if self.type == "power": |
|
175 | 174 | self.plot_power(self.data.heights, |
|
176 | 175 | scope[:,i,:], |
|
177 | 176 | channels, |
|
178 | 177 | thisDatetime, |
|
179 | 178 | wintitle1 |
|
180 | 179 | ) |
|
181 | 180 | |
|
182 | 181 | if self.type == "iq": |
|
183 | 182 | self.plot_iq(self.data.heights, |
|
184 | 183 | scope[:,i,:], |
|
185 | 184 | channels, |
|
186 | 185 | thisDatetime, |
|
187 | 186 | wintitle1 |
|
188 | 187 | ) |
|
189 | 188 | if self.CODE=="pp_power": |
|
190 | 189 | self.plot_weatherpower(self.data.heights, |
|
191 | 190 | scope[:,i,:], |
|
192 | 191 | channels, |
|
193 | 192 | thisDatetime, |
|
194 | 193 | wintitle |
|
195 | 194 | ) |
|
196 | 195 | if self.CODE=="pp_signal": |
|
197 | 196 | self.plot_weatherpower(self.data.heights, |
|
198 | 197 | scope[:,i,:], |
|
199 | 198 | channels, |
|
200 | 199 | thisDatetime, |
|
201 | 200 | wintitle |
|
202 | 201 | ) |
|
203 | 202 | if self.CODE=="pp_velocity": |
|
204 | 203 | self.plot_weathervelocity(scope[:,i,:], |
|
205 | 204 | self.data.heights, |
|
206 | 205 | channels, |
|
207 | 206 | thisDatetime, |
|
208 | 207 | wintitle |
|
209 | 208 | ) |
|
210 | 209 | if self.CODE=="pp_spcwidth": |
|
211 | 210 | self.plot_weatherspecwidth(scope[:,i,:], |
|
212 | 211 | self.data.heights, |
|
213 | 212 | channels, |
|
214 | 213 | thisDatetime, |
|
215 | 214 | wintitle |
|
216 | 215 | ) |
|
217 | 216 | else: |
|
218 | 217 | wintitle = " [Profile = %d] " %self.data.profileIndex |
|
219 | 218 | if self.CODE== "scope": |
|
220 | 219 | if self.type == "power": |
|
221 | 220 | self.plot_power(self.data.heights, |
|
222 | 221 | scope, |
|
223 | 222 | channels, |
|
224 | 223 | thisDatetime, |
|
225 | 224 | wintitle |
|
226 | 225 | ) |
|
227 | 226 | |
|
228 | 227 | if self.type == "iq": |
|
229 | 228 | self.plot_iq(self.data.heights, |
|
230 | 229 | scope, |
|
231 | 230 | channels, |
|
232 | 231 | thisDatetime, |
|
233 | 232 | wintitle |
|
234 | 233 | ) |
|
235 | 234 | if self.CODE=="pp_power": |
|
236 | 235 | self.plot_weatherpower(self.data.heights, |
|
237 | 236 | scope, |
|
238 | 237 | channels, |
|
239 | 238 | thisDatetime, |
|
240 | 239 | wintitle |
|
241 | 240 | ) |
|
242 | 241 | if self.CODE=="pp_signal": |
|
243 | 242 | self.plot_weatherpower(self.data.heights, |
|
244 | 243 | scope, |
|
245 | 244 | channels, |
|
246 | 245 | thisDatetime, |
|
247 | 246 | wintitle |
|
248 | 247 | ) |
|
249 | 248 | if self.CODE=="pp_velocity": |
|
250 | 249 | self.plot_weathervelocity(scope, |
|
251 | 250 | self.data.heights, |
|
252 | 251 | channels, |
|
253 | 252 | thisDatetime, |
|
254 | 253 | wintitle |
|
255 | 254 | ) |
|
256 | 255 | if self.CODE=="pp_specwidth": |
|
257 | 256 | self.plot_weatherspecwidth(scope, |
|
258 | 257 | self.data.heights, |
|
259 | 258 | channels, |
|
260 | 259 | thisDatetime, |
|
261 | 260 | wintitle |
|
262 | 261 | ) |
|
263 | 262 | |
|
264 | 263 | |
|
265 | 264 | |
|
266 | 265 | class PulsepairPowerPlot(ScopePlot): |
|
267 | 266 | ''' |
|
268 | 267 | Plot for P= S+N |
|
269 | 268 | ''' |
|
270 | 269 | |
|
271 | 270 | CODE = 'pp_power' |
|
272 | plot_name = 'PulsepairPower' | |
|
273 | 271 | plot_type = 'scatter' |
|
274 | 272 | buffering = False |
|
275 | 273 | |
|
276 | 274 | class PulsepairVelocityPlot(ScopePlot): |
|
277 | 275 | ''' |
|
278 | 276 | Plot for VELOCITY |
|
279 | 277 | ''' |
|
280 | 278 | CODE = 'pp_velocity' |
|
281 | plot_name = 'PulsepairVelocity' | |
|
282 | 279 | plot_type = 'scatter' |
|
283 | 280 | buffering = False |
|
284 | 281 | |
|
285 | 282 | class PulsepairSpecwidthPlot(ScopePlot): |
|
286 | 283 | ''' |
|
287 | 284 | Plot for WIDTH |
|
288 | 285 | ''' |
|
289 | 286 | CODE = 'pp_specwidth' |
|
290 | plot_name = 'PulsepairSpecwidth' | |
|
291 | 287 | plot_type = 'scatter' |
|
292 | 288 | buffering = False |
|
293 | 289 | |
|
294 | 290 | class PulsepairSignalPlot(ScopePlot): |
|
295 | 291 | ''' |
|
296 | 292 | Plot for S |
|
297 | 293 | ''' |
|
298 | 294 | |
|
299 | 295 | CODE = 'pp_signal' |
|
300 | plot_name = 'PulsepairSignal' | |
|
301 | 296 | plot_type = 'scatter' |
|
302 | 297 | buffering = False |
@@ -1,326 +1,351 | |||
|
1 | ''' | |
|
2 | @author: Juan C. Espinoza | |
|
3 | ''' | |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
|
2 | # All rights reserved. | |
|
3 | # | |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
|
5 | """Utilities for publish/send data, files & plots over different protocols | |
|
6 | """ | |
|
4 | 7 | |
|
5 | 8 | import os |
|
6 | 9 | import glob |
|
7 | 10 | import time |
|
8 | 11 | import json |
|
9 | 12 | import numpy |
|
10 | 13 | import zmq |
|
11 | 14 | import datetime |
|
12 | 15 | import ftplib |
|
13 | 16 | from functools import wraps |
|
14 | 17 | from threading import Thread |
|
15 | 18 | from multiprocessing import Process |
|
16 | 19 | |
|
17 | 20 | from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit, MPDecorator |
|
18 | 21 | from schainpy.model.data.jrodata import JROData |
|
19 | 22 | from schainpy.utils import log |
|
20 | 23 | |
|
21 | MAXNUMX = 500 | |
|
22 | MAXNUMY = 500 | |
|
23 | 24 | |
|
24 | 25 | PLOT_CODES = { |
|
25 | 26 | 'rti': 0, # Range time intensity (RTI). |
|
26 | 27 | 'spc': 1, # Spectra (and Cross-spectra) information. |
|
27 | 28 | 'cspc': 2, # Cross-Correlation information. |
|
28 | 29 | 'coh': 3, # Coherence map. |
|
29 | 30 | 'base': 4, # Base lines graphic. |
|
30 | 31 | 'row': 5, # Row Spectra. |
|
31 | 32 | 'total': 6, # Total Power. |
|
32 | 33 | 'drift': 7, # Drifts graphics. |
|
33 | 34 | 'height': 8, # Height profile. |
|
34 | 35 | 'phase': 9, # Signal Phase. |
|
35 | 36 | 'power': 16, |
|
36 | 37 | 'noise': 17, |
|
37 | 38 | 'beacon': 18, |
|
38 | 39 | 'wind': 22, |
|
39 | 40 | 'skymap': 23, |
|
40 | 41 | 'Unknown': 24, |
|
41 | 42 | 'V-E': 25, # PIP Velocity. |
|
42 | 43 | 'Z-E': 26, # PIP Reflectivity. |
|
43 | 44 | 'V-A': 27, # RHI Velocity. |
|
44 | 45 | 'Z-A': 28, # RHI Reflectivity. |
|
45 | 46 | } |
|
46 | 47 | |
|
47 | 48 | def get_plot_code(s): |
|
48 | 49 | label = s.split('_')[0] |
|
49 | 50 | codes = [key for key in PLOT_CODES if key in label] |
|
50 | 51 | if codes: |
|
51 | 52 | return PLOT_CODES[codes[0]] |
|
52 | 53 | else: |
|
53 | 54 | return 24 |
|
54 | 55 | |
|
55 | def decimate(z, MAXNUMY): | |
|
56 | dy = int(len(z[0])/MAXNUMY) + 1 | |
|
57 | ||
|
58 | return z[::, ::dy] | |
|
59 | ||
|
60 | 56 | |
|
61 | 57 | class PublishData(Operation): |
|
62 | 58 | ''' |
|
63 | 59 | Operation to send data over zmq. |
|
64 | 60 | ''' |
|
65 | 61 | |
|
66 | 62 | __attrs__ = ['host', 'port', 'delay', 'verbose'] |
|
67 | 63 | |
|
68 | 64 | def setup(self, server='zmq.pipe', delay=0, verbose=True, **kwargs): |
|
69 | 65 | self.counter = 0 |
|
70 | 66 | self.delay = kwargs.get('delay', 0) |
|
71 | 67 | self.cnt = 0 |
|
72 | 68 | self.verbose = verbose |
|
73 | 69 | context = zmq.Context() |
|
74 | 70 | self.zmq_socket = context.socket(zmq.PUSH) |
|
75 | 71 | server = kwargs.get('server', 'zmq.pipe') |
|
76 | 72 | |
|
77 | 73 | if 'tcp://' in server: |
|
78 | 74 | address = server |
|
79 | 75 | else: |
|
80 | 76 | address = 'ipc:///tmp/%s' % server |
|
81 | 77 | |
|
82 | 78 | self.zmq_socket.connect(address) |
|
83 | 79 | time.sleep(1) |
|
84 | 80 | |
|
85 | 81 | |
|
86 | 82 | def publish_data(self): |
|
87 | 83 | self.dataOut.finished = False |
|
88 | 84 | |
|
89 | 85 | if self.verbose: |
|
90 | 86 | log.log( |
|
91 | 87 | 'Sending {} - {}'.format(self.dataOut.type, self.dataOut.datatime), |
|
92 | 88 | self.name |
|
93 | 89 | ) |
|
94 | 90 | self.zmq_socket.send_pyobj(self.dataOut) |
|
95 | 91 | |
|
96 | 92 | def run(self, dataOut, **kwargs): |
|
97 | 93 | self.dataOut = dataOut |
|
98 | 94 | if not self.isConfig: |
|
99 | 95 | self.setup(**kwargs) |
|
100 | 96 | self.isConfig = True |
|
101 | 97 | |
|
102 | 98 | self.publish_data() |
|
103 | 99 | time.sleep(self.delay) |
|
104 | 100 | |
|
105 | 101 | def close(self): |
|
106 | 102 | |
|
107 | 103 | self.dataOut.finished = True |
|
108 | 104 | self.zmq_socket.send_pyobj(self.dataOut) |
|
109 | 105 | time.sleep(0.1) |
|
110 | 106 | self.zmq_socket.close() |
|
111 | 107 | |
|
112 | 108 | |
|
113 | 109 | class ReceiverData(ProcessingUnit): |
|
114 | 110 | |
|
115 | 111 | __attrs__ = ['server'] |
|
116 | 112 | |
|
117 | 113 | def __init__(self, **kwargs): |
|
118 | 114 | |
|
119 | 115 | ProcessingUnit.__init__(self, **kwargs) |
|
120 | 116 | |
|
121 | 117 | self.isConfig = False |
|
122 | 118 | server = kwargs.get('server', 'zmq.pipe') |
|
123 | 119 | if 'tcp://' in server: |
|
124 | 120 | address = server |
|
125 | 121 | else: |
|
126 | 122 | address = 'ipc:///tmp/%s' % server |
|
127 | 123 | |
|
128 | 124 | self.address = address |
|
129 | 125 | self.dataOut = JROData() |
|
130 | 126 | |
|
131 | 127 | def setup(self): |
|
132 | 128 | |
|
133 | 129 | self.context = zmq.Context() |
|
134 | 130 | self.receiver = self.context.socket(zmq.PULL) |
|
135 | 131 | self.receiver.bind(self.address) |
|
136 | 132 | time.sleep(0.5) |
|
137 | 133 | log.success('ReceiverData from {}'.format(self.address)) |
|
138 | 134 | |
|
139 | 135 | |
|
140 | 136 | def run(self): |
|
141 | 137 | |
|
142 | 138 | if not self.isConfig: |
|
143 | 139 | self.setup() |
|
144 | 140 | self.isConfig = True |
|
145 | 141 | |
|
146 | 142 | self.dataOut = self.receiver.recv_pyobj() |
|
147 | 143 | log.log('{} - {}'.format(self.dataOut.type, |
|
148 | 144 | self.dataOut.datatime.ctime(),), |
|
149 | 145 | 'Receiving') |
|
150 | 146 | |
|
151 | 147 | @MPDecorator |
|
152 | 148 | class SendToFTP(Operation): |
|
153 | ||
|
154 | ''' | |
|
155 | Operation to send data over FTP. | |
|
156 | patternX = 'local, remote, ext, period, exp_code, sub_exp_code' | |
|
157 | ''' | |
|
158 | ||
|
149 | """Operation for send files over FTP | |
|
150 | ||
|
151 | This operation is used to send files over FTP, you can send different files | |
|
152 | from different folders by adding as many `pattern` as you wish. | |
|
153 | ||
|
154 | Parameters: | |
|
155 | ----------- | |
|
156 | server : str | |
|
157 | FTP server address. | |
|
158 | username : str | |
|
159 | FTP username | |
|
160 | password : str | |
|
161 | FTP password | |
|
162 | timeout : int | |
|
163 | timeout to restart the connection | |
|
164 | patternX : list | |
|
165 | detail of files to be send must have the following order: local, remote | |
|
166 | ext, period, exp_code, sub_exp_code | |
|
167 | ||
|
168 | Example: | |
|
169 | -------- | |
|
170 | ||
|
171 | ftp = proc_unit.addOperation(name='SendToFTP', optype='external') | |
|
172 | ftp.addParameter(name='server', value='jro-app.igp.gob.pe') | |
|
173 | ftp.addParameter(name='username', value='wmaster') | |
|
174 | ftp.addParameter(name='password', value='mst2010vhf') | |
|
175 | ftp.addParameter( | |
|
176 | name='pattern1', | |
|
177 | value='/local/path/rti,/remote/path,png,300,11,0' | |
|
178 | ) | |
|
179 | ftp.addParameter( | |
|
180 | name='pattern2', | |
|
181 | value='/local/path/spc,/remote/path,png,300,11,0' | |
|
182 | ) | |
|
183 | ftp.addParameter( | |
|
184 | name='pattern3', | |
|
185 | value='/local/path/param,/remote/path,hdf5,300,,' | |
|
186 | ) | |
|
187 | ||
|
188 | """ | |
|
189 | ||
|
159 | 190 | __attrs__ = ['server', 'username', 'password', 'timeout', 'patternX'] |
|
160 | 191 | |
|
161 | 192 | def __init__(self): |
|
162 | 193 | ''' |
|
163 | 194 | ''' |
|
164 | 195 | Operation.__init__(self) |
|
165 | 196 | self.ftp = None |
|
166 | 197 | self.ready = False |
|
167 | 198 | |
|
168 | 199 | def setup(self, server, username, password, timeout, **kwargs): |
|
169 | 200 | ''' |
|
170 | 201 | ''' |
|
171 | 202 | |
|
172 | 203 | self.server = server |
|
173 | 204 | self.username = username |
|
174 | 205 | self.password = password |
|
175 | 206 | self.timeout = timeout |
|
176 | 207 | self.patterns = [] |
|
177 | 208 | self.times = [] |
|
178 | 209 | self.latest = [] |
|
179 | 210 | for arg, value in kwargs.items(): |
|
180 | 211 | if 'pattern' in arg: |
|
181 | 212 | self.patterns.append(value) |
|
182 |
self.times.append( |
|
|
213 | self.times.append(0) | |
|
183 | 214 | self.latest.append('') |
|
184 | 215 | |
|
185 | 216 | def connect(self): |
|
186 | 217 | ''' |
|
187 | 218 | ''' |
|
188 | 219 | |
|
189 | 220 | log.log('Connecting to ftp://{}'.format(self.server), self.name) |
|
190 | 221 | try: |
|
191 | 222 | self.ftp = ftplib.FTP(self.server, timeout=self.timeout) |
|
192 | 223 | except ftplib.all_errors: |
|
193 | 224 | log.error('Server connection fail: {}'.format(self.server), self.name) |
|
194 | 225 | if self.ftp is not None: |
|
195 | 226 | self.ftp.close() |
|
196 | 227 | self.ftp = None |
|
197 | 228 | self.ready = False |
|
198 | 229 | return |
|
199 | 230 | |
|
200 | 231 | try: |
|
201 | 232 | self.ftp.login(self.username, self.password) |
|
202 | 233 | except ftplib.all_errors: |
|
203 | 234 | log.error('The given username y/o password are incorrect', self.name) |
|
204 | 235 | if self.ftp is not None: |
|
205 | 236 | self.ftp.close() |
|
206 | 237 | self.ftp = None |
|
207 | 238 | self.ready = False |
|
208 | 239 | return |
|
209 | 240 | |
|
210 | 241 | log.success('Connection success', self.name) |
|
211 | 242 | self.ready = True |
|
212 | 243 | return |
|
213 | 244 | |
|
214 | 245 | def check(self): |
|
215 | 246 | |
|
216 | 247 | try: |
|
217 | 248 | self.ftp.voidcmd("NOOP") |
|
218 | 249 | except: |
|
219 | 250 | log.warning('Connection lost... trying to reconnect', self.name) |
|
220 | 251 | if self.ftp is not None: |
|
221 | 252 | self.ftp.close() |
|
222 | 253 | self.ftp = None |
|
223 | 254 | self.connect() |
|
224 | 255 | |
|
225 | 256 | def find_files(self, path, ext): |
|
226 | 257 | |
|
227 | files = glob.glob1(path, '*{}'.format(ext)) | |
|
258 | files = glob.glob1(path.strip(), '*{}'.format(ext.strip())) | |
|
228 | 259 | files.sort() |
|
229 | 260 | if files: |
|
230 | 261 | return files[-1] |
|
231 | 262 | return None |
|
232 | 263 | |
|
233 | 264 | def getftpname(self, filename, exp_code, sub_exp_code): |
|
234 | 265 | |
|
235 | 266 | thisDatetime = datetime.datetime.strptime(filename.split('_')[1], '%Y%m%d') |
|
236 | 267 | YEAR_STR = '%4.4d' % thisDatetime.timetuple().tm_year |
|
237 | 268 | DOY_STR = '%3.3d' % thisDatetime.timetuple().tm_yday |
|
238 | 269 | exp_code = '%3.3d' % exp_code |
|
239 | 270 | sub_exp_code = '%2.2d' % sub_exp_code |
|
240 | 271 | plot_code = '%2.2d' % get_plot_code(filename) |
|
241 | 272 | name = YEAR_STR + DOY_STR + '00' + exp_code + sub_exp_code + plot_code + '00.png' |
|
242 | 273 | return name |
|
243 | 274 | |
|
244 | 275 | def upload(self, src, dst): |
|
245 | 276 | |
|
246 | 277 | log.log('Uploading {} -> {} '.format( |
|
247 | 278 | src.split('/')[-1], dst.split('/')[-1]), |
|
248 | 279 | self.name, |
|
249 | 280 | nl=False |
|
250 | 281 | ) |
|
251 | 282 | |
|
252 | 283 | fp = open(src, 'rb') |
|
253 | 284 | command = 'STOR {}'.format(dst) |
|
254 | 285 | |
|
255 | 286 | try: |
|
256 | 287 | self.ftp.storbinary(command, fp, blocksize=1024) |
|
257 | 288 | except Exception as e: |
|
258 | 289 | log.error('{}'.format(e), self.name) |
|
259 | if self.ftp is not None: | |
|
260 | self.ftp.close() | |
|
261 | self.ftp = None | |
|
262 | 290 | return 0 |
|
263 | 291 | |
|
264 | 292 | try: |
|
265 | 293 | self.ftp.sendcmd('SITE CHMOD 755 {}'.format(dst)) |
|
266 | 294 | except Exception as e: |
|
267 | 295 | log.error('{}'.format(e), self.name) |
|
268 | if self.ftp is not None: | |
|
269 | self.ftp.close() | |
|
270 | self.ftp = None | |
|
271 | 296 | return 0 |
|
272 | 297 | |
|
273 | 298 | fp.close() |
|
274 | 299 | log.success('OK', tag='') |
|
275 | 300 | return 1 |
|
276 | 301 | |
|
277 | 302 | def send_files(self): |
|
278 | 303 | |
|
279 | 304 | for x, pattern in enumerate(self.patterns): |
|
280 | 305 | local, remote, ext, period, exp_code, sub_exp_code = pattern |
|
281 | if time.time()-self.times[x] >= int(period): | |
|
282 | srcname = self.find_files(local, ext) | |
|
283 | src = os.path.join(local, srcname) | |
|
284 | if os.path.getmtime(src) < time.time() - 30*60: | |
|
285 | log.warning('Skipping old file {}'.format(srcname)) | |
|
286 |
|
|
|
287 | ||
|
288 | if srcname is None or srcname == self.latest[x]: | |
|
289 | log.warning('File alreday uploaded {}'.format(srcname)) | |
|
290 | continue | |
|
291 | ||
|
292 |
|
|
|
293 | dstname = self.getftpname(srcname, int(exp_code), int(sub_exp_code)) | |
|
294 |
|
|
|
295 | dstname = srcname | |
|
296 |
|
|
|
297 | dst = os.path.join(remote, dstname) | |
|
298 | ||
|
299 | if self.upload(src, dst): | |
|
300 | self.times[x] = time.time() | |
|
301 | self.latest[x] = srcname | |
|
302 | else: | |
|
303 |
|
|
|
304 |
|
|
|
306 | ||
|
307 | if (self.dataOut.utctime - self.times[x]) < int(period): | |
|
308 | continue | |
|
309 | ||
|
310 | srcname = self.find_files(local, ext) | |
|
311 | ||
|
312 | if srcname is None: | |
|
313 | continue | |
|
314 | ||
|
315 | if srcname == self.latest[x]: | |
|
316 | log.warning('File alreday uploaded {}'.format(srcname)) | |
|
317 | continue | |
|
318 | ||
|
319 | if exp_code.strip(): | |
|
320 | dstname = self.getftpname(srcname, int(exp_code), int(sub_exp_code)) | |
|
321 | else: | |
|
322 | dstname = srcname | |
|
323 | ||
|
324 | src = os.path.join(local, srcname) | |
|
325 | dst = os.path.join(remote.strip(), dstname) | |
|
326 | ||
|
327 | if self.upload(src, dst): | |
|
328 | self.times[x] = self.dataOut.utctime | |
|
329 | self.latest[x] = srcname | |
|
305 | 330 | |
|
306 | 331 | def run(self, dataOut, server, username, password, timeout=10, **kwargs): |
|
307 | 332 | |
|
308 | 333 | if not self.isConfig: |
|
309 | 334 | self.setup( |
|
310 | 335 | server=server, |
|
311 | 336 | username=username, |
|
312 | 337 | password=password, |
|
313 | 338 | timeout=timeout, |
|
314 | 339 | **kwargs |
|
315 | 340 | ) |
|
316 | 341 | self.isConfig = True |
|
317 | if not self.ready: | |
|
318 | 342 | self.connect() |
|
319 | if self.ftp is not None: | |
|
320 | self.check() | |
|
321 |
|
|
|
343 | ||
|
344 | self.dataOut = dataOut | |
|
345 | self.check() | |
|
346 | self.send_files() | |
|
322 | 347 | |
|
323 | 348 | def close(self): |
|
324 | 349 | |
|
325 | 350 | if self.ftp is not None: |
|
326 | 351 | self.ftp.close() |
General Comments 0
You need to be logged in to leave comments.
Login now