@@ -251,7 +251,7 class Plot(Operation): | |||||
251 | self.ang_min = kwargs.get('ang_min', None) |
|
251 | self.ang_min = kwargs.get('ang_min', None) | |
252 | self.ang_max = kwargs.get('ang_max', None) |
|
252 | self.ang_max = kwargs.get('ang_max', None) | |
253 | self.mode = kwargs.get('mode', None) |
|
253 | self.mode = kwargs.get('mode', None) | |
254 |
self. |
|
254 | self.mask = kwargs.get('mask', False) | |
255 |
|
255 | |||
256 |
|
256 | |||
257 | if self.server: |
|
257 | if self.server: |
@@ -426,14 +426,15 class WeatherParamsPlot(Plot): | |||||
426 | else: |
|
426 | else: | |
427 | factor = 1 |
|
427 | factor = 1 | |
428 |
|
428 | |||
429 | mask = dataOut.data_param[:,3,:] < self.snr_threshold |
|
429 | if 'S' in self.attr_data[0]: | |
430 |
|
430 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) | ||
431 | if 'S' in self.attr_data[0]: |
|
|||
432 | # data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) |
|
|||
433 | tmp = numpy.ma.masked_array(10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)), mask=mask) |
|
|||
434 | else: |
|
431 | else: | |
435 |
tmp = |
|
432 | tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] | |
436 | # tmp = getattr(dataOut, self.attr_data[0]) |
|
433 | ||
|
434 | ||||
|
435 | if self.mask: | |||
|
436 | mask = dataOut.data_param[:,3,:] < self.mask | |||
|
437 | tmp = numpy.ma.masked_array(tmp, mask=mask) | |||
437 |
|
438 | |||
438 | r = dataOut.heightList |
|
439 | r = dataOut.heightList | |
439 | delta_height = r[1]-r[0] |
|
440 | delta_height = r[1]-r[0] | |
@@ -458,9 +459,14 class WeatherParamsPlot(Plot): | |||||
458 | var = data['data'].flatten() |
|
459 | var = data['data'].flatten() | |
459 | r = numpy.tile(data['r'], data['data'].shape[0]).reshape(data['data'].shape)*1000 |
|
460 | r = numpy.tile(data['r'], data['data'].shape[0]).reshape(data['data'].shape)*1000 | |
460 | lla = georef.spherical_to_proj(r, data['azi'], data['ele'], (-75.295893, -12.040436, 3379.2147)) |
|
461 | lla = georef.spherical_to_proj(r, data['azi'], data['ele'], (-75.295893, -12.040436, 3379.2147)) | |
461 | meta['lat'] = lla[:,:,1].flatten()[var.mask==False] |
|
462 | if self.mask: | |
462 |
meta['l |
|
463 | meta['lat'] = lla[:,:,1].flatten()[var.mask==False] | |
463 |
|
|
464 | meta['lon'] = lla[:,:,0].flatten()[var.mask==False] | |
|
465 | data['var'] = numpy.array([var[var.mask==False]]) | |||
|
466 | else: | |||
|
467 | meta['lat'] = lla[:,:,1].flatten() | |||
|
468 | meta['lon'] = lla[:,:,0].flatten() | |||
|
469 | data['var'] = numpy.array([var]) | |||
464 |
|
470 | |||
465 | return data, meta |
|
471 | return data, meta | |
466 |
|
472 |
General Comments 0
You need to be logged in to leave comments.
Login now