@@ -11,6 +11,13 import numpy | |||||
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
|
14 | from matplotlib import __version__ as plt_version | |||
|
15 | ||||
|
16 | if plt_version >='3.3.4': | |||
|
17 | EXTRA_POINTS = 0 | |||
|
18 | else: | |||
|
19 | EXTRA_POINTS = 1 | |||
|
20 | ||||
14 |
|
21 | |||
15 | class SpectraPlot(Plot): |
|
22 | class SpectraPlot(Plot): | |
16 | ''' |
|
23 | ''' | |
@@ -51,7 +58,7 class SpectraPlot(Plot): | |||||
51 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor) |
|
58 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor) | |
52 |
extrapoints = spc.shape[1] % dataOut.nFFTPoints |
|
59 | extrapoints = spc.shape[1] % dataOut.nFFTPoints | |
53 |
extrapoints=1 |
|
60 | extrapoints=1 | |
54 |
meta['xrange'] = (dataOut.getFreqRange( |
|
61 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
55 | if self.CODE == 'spc_moments': |
|
62 | if self.CODE == 'spc_moments': | |
56 | data['moments'] = dataOut.moments |
|
63 | data['moments'] = dataOut.moments | |
57 | if self.CODE == 'gaussian_fit': |
|
64 | if self.CODE == 'gaussian_fit': | |
@@ -161,7 +168,7 class SpectraObliquePlot(Plot): | |||||
161 | data['spc'] = spc |
|
168 | data['spc'] = spc | |
162 | data['rti'] = dataOut.getPower() |
|
169 | data['rti'] = dataOut.getPower() | |
163 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
170 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
164 |
meta['xrange'] = (dataOut.getFreqRange( |
|
171 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
165 |
|
172 | |||
166 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
173 | data['shift1'] = dataOut.Dop_EEJ_T1[0] | |
167 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
174 | data['shift2'] = dataOut.Dop_EEJ_T2[0] | |
@@ -261,7 +268,7 class CrossSpectraPlot(Plot): | |||||
261 | spc = dataOut.data_spc |
|
268 | spc = dataOut.data_spc | |
262 | cspc = dataOut.data_cspc |
|
269 | cspc = dataOut.data_cspc | |
263 | extrapoints = spc.shape[1] % dataOut.nFFTPoints |
|
270 | extrapoints = spc.shape[1] % dataOut.nFFTPoints | |
264 |
meta['xrange'] = (dataOut.getFreqRange( |
|
271 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
265 | meta['pairs'] = dataOut.pairsList |
|
272 | meta['pairs'] = dataOut.pairsList | |
266 |
|
273 | |||
267 | tmp = [] |
|
274 | tmp = [] | |
@@ -765,7 +772,7 class SpectrogramPlot(Plot): | |||||
765 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
772 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
766 | #buffer = 10 * numpy.log10(z) |
|
773 | #buffer = 10 * numpy.log10(z) | |
767 |
|
774 | |||
768 |
meta['xrange'] = (dataOut.getFreqRange( |
|
775 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
769 |
|
776 | |||
770 |
|
777 | |||
771 | #self.hei = hei |
|
778 | #self.hei = hei | |
@@ -999,7 +1006,7 class SpectraCutPlot(Plot): | |||||
999 | meta = {} |
|
1006 | meta = {} | |
1000 | spc = 10 * numpy.log10(dataOut.data_pre[0] / dataOut.normFactor) |
|
1007 | spc = 10 * numpy.log10(dataOut.data_pre[0] / dataOut.normFactor) | |
1001 | data['spc'] = spc |
|
1008 | data['spc'] = spc | |
1002 |
meta['xrange'] = (dataOut.getFreqRange( |
|
1009 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
1003 | if self.CODE == 'cut_gaussian_fit': |
|
1010 | if self.CODE == 'cut_gaussian_fit': | |
1004 | data['gauss_fit0'] = 10 * numpy.log10(dataOut.GaussFit0 / dataOut.normFactor) |
|
1011 | data['gauss_fit0'] = 10 * numpy.log10(dataOut.GaussFit0 / dataOut.normFactor) | |
1005 | data['gauss_fit1'] = 10 * numpy.log10(dataOut.GaussFit1 / dataOut.normFactor) |
|
1012 | data['gauss_fit1'] = 10 * numpy.log10(dataOut.GaussFit1 / dataOut.normFactor) |
General Comments 0
You need to be logged in to leave comments.
Login now