##// END OF EJS Templates
plot extra point depending on matplotlib version
rflores -
r1732:8e0a97a787ce
parent child
Show More
@@ -11,6 +11,13 import numpy
11
11
12 from schainpy.model.graphics.jroplot_base import Plot, plt, log
12 from schainpy.model.graphics.jroplot_base import Plot, plt, log
13
13
14 from matplotlib import __version__ as plt_version
15
16 if plt_version >='3.3.4':
17 EXTRA_POINTS = 0
18 else:
19 EXTRA_POINTS = 1
20
14
21
15 class SpectraPlot(Plot):
22 class SpectraPlot(Plot):
16 '''
23 '''
@@ -51,7 +58,7 class SpectraPlot(Plot):
51 data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor)
58 data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor)
52 extrapoints = spc.shape[1] % dataOut.nFFTPoints
59 extrapoints = spc.shape[1] % dataOut.nFFTPoints
53 extrapoints=1
60 extrapoints=1
54 meta['xrange'] = (dataOut.getFreqRange(extrapoints) / 1000., dataOut.getAcfRange(extrapoints), dataOut.getVelRange(extrapoints))
61 meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
55 if self.CODE == 'spc_moments':
62 if self.CODE == 'spc_moments':
56 data['moments'] = dataOut.moments
63 data['moments'] = dataOut.moments
57 if self.CODE == 'gaussian_fit':
64 if self.CODE == 'gaussian_fit':
@@ -161,7 +168,7 class SpectraObliquePlot(Plot):
161 data['spc'] = spc
168 data['spc'] = spc
162 data['rti'] = dataOut.getPower()
169 data['rti'] = dataOut.getPower()
163 data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
170 data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
164 meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
171 meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
165
172
166 data['shift1'] = dataOut.Dop_EEJ_T1[0]
173 data['shift1'] = dataOut.Dop_EEJ_T1[0]
167 data['shift2'] = dataOut.Dop_EEJ_T2[0]
174 data['shift2'] = dataOut.Dop_EEJ_T2[0]
@@ -261,7 +268,7 class CrossSpectraPlot(Plot):
261 spc = dataOut.data_spc
268 spc = dataOut.data_spc
262 cspc = dataOut.data_cspc
269 cspc = dataOut.data_cspc
263 extrapoints = spc.shape[1] % dataOut.nFFTPoints
270 extrapoints = spc.shape[1] % dataOut.nFFTPoints
264 meta['xrange'] = (dataOut.getFreqRange(extrapoints) / 1000., dataOut.getAcfRange(extrapoints), dataOut.getVelRange(extrapoints))
271 meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
265 meta['pairs'] = dataOut.pairsList
272 meta['pairs'] = dataOut.pairsList
266
273
267 tmp = []
274 tmp = []
@@ -765,7 +772,7 class SpectrogramPlot(Plot):
765 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
772 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
766 #buffer = 10 * numpy.log10(z)
773 #buffer = 10 * numpy.log10(z)
767
774
768 meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
775 meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
769
776
770
777
771 #self.hei = hei
778 #self.hei = hei
@@ -999,7 +1006,7 class SpectraCutPlot(Plot):
999 meta = {}
1006 meta = {}
1000 spc = 10 * numpy.log10(dataOut.data_pre[0] / dataOut.normFactor)
1007 spc = 10 * numpy.log10(dataOut.data_pre[0] / dataOut.normFactor)
1001 data['spc'] = spc
1008 data['spc'] = spc
1002 meta['xrange'] = (dataOut.getFreqRange(1) / 1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
1009 meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
1003 if self.CODE == 'cut_gaussian_fit':
1010 if self.CODE == 'cut_gaussian_fit':
1004 data['gauss_fit0'] = 10 * numpy.log10(dataOut.GaussFit0 / dataOut.normFactor)
1011 data['gauss_fit0'] = 10 * numpy.log10(dataOut.GaussFit0 / dataOut.normFactor)
1005 data['gauss_fit1'] = 10 * numpy.log10(dataOut.GaussFit1 / dataOut.normFactor)
1012 data['gauss_fit1'] = 10 * numpy.log10(dataOut.GaussFit1 / dataOut.normFactor)
General Comments 0
You need to be logged in to leave comments. Login now