@@ -1,1295 +1,1302 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
|
14 | from matplotlib import __version__ as plt_version | |||
|
15 | ||||
|
16 | if plt_version >='3.3.4': | |||
|
17 | EXTRA_POINTS = 0 | |||
|
18 | else: | |||
|
19 | EXTRA_POINTS = 1 | |||
|
20 | ||||
14 |
|
21 | |||
15 | class SpectraPlot(Plot): |
|
22 | class SpectraPlot(Plot): | |
16 | ''' |
|
23 | ''' | |
17 | Plot for Spectra data |
|
24 | Plot for Spectra data | |
18 | ''' |
|
25 | ''' | |
19 |
|
26 | |||
20 | CODE = 'spc' |
|
27 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
28 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
29 | plot_type = 'pcolor' | |
23 | buffering = False |
|
30 | buffering = False | |
24 |
|
31 | |||
25 | def setup(self): |
|
32 | def setup(self): | |
26 |
|
33 | |||
27 | self.nplots = len(self.data.channels) |
|
34 | self.nplots = len(self.data.channels) | |
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
35 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
36 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
30 | self.height = 2.6 * self.nrows |
|
37 | self.height = 2.6 * self.nrows | |
31 | self.cb_label = 'dB' |
|
38 | self.cb_label = 'dB' | |
32 | if self.showprofile: |
|
39 | if self.showprofile: | |
33 | self.width = 4 * self.ncols |
|
40 | self.width = 4 * self.ncols | |
34 | else: |
|
41 | else: | |
35 | self.width = 3.5 * self.ncols |
|
42 | self.width = 3.5 * self.ncols | |
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
43 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
37 | self.ylabel = 'Range [km]' |
|
44 | self.ylabel = 'Range [km]' | |
38 |
|
45 | |||
39 | def update(self, dataOut): |
|
46 | def update(self, dataOut): | |
40 |
|
47 | |||
41 | data = {} |
|
48 | data = {} | |
42 | meta = {} |
|
49 | meta = {} | |
43 | spc = 10 * numpy.log10(dataOut.data_spc / dataOut.normFactor) |
|
50 | spc = 10 * numpy.log10(dataOut.data_spc / dataOut.normFactor) | |
44 | data['spc'] = spc |
|
51 | data['spc'] = spc | |
45 | data['rti'] = dataOut.getPower() |
|
52 | data['rti'] = dataOut.getPower() | |
46 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
53 | if hasattr(dataOut, 'LagPlot'): #Double Pulse | |
47 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot |
|
54 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot | |
48 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) |
|
55 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) | |
49 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) |
|
56 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) | |
50 | else: |
|
57 | else: | |
51 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor) |
|
58 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor) | |
52 |
extrapoints = spc.shape[1] % dataOut.nFFTPoints |
|
59 | extrapoints = spc.shape[1] % dataOut.nFFTPoints | |
53 |
extrapoints=1 |
|
60 | extrapoints=1 | |
54 |
meta['xrange'] = (dataOut.getFreqRange( |
|
61 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
55 | if self.CODE == 'spc_moments': |
|
62 | if self.CODE == 'spc_moments': | |
56 | data['moments'] = dataOut.moments |
|
63 | data['moments'] = dataOut.moments | |
57 | if self.CODE == 'gaussian_fit': |
|
64 | if self.CODE == 'gaussian_fit': | |
58 | data['gaussfit'] = dataOut.DGauFitParams |
|
65 | data['gaussfit'] = dataOut.DGauFitParams | |
59 |
|
66 | |||
60 |
return data, meta |
|
67 | return data, meta | |
61 |
|
68 | |||
62 | def plot(self): |
|
69 | def plot(self): | |
63 |
|
70 | |||
64 | if self.xaxis == "frequency": |
|
71 | if self.xaxis == "frequency": | |
65 | x = self.data.xrange[0] |
|
72 | x = self.data.xrange[0] | |
66 | self.xlabel = "Frequency (kHz)" |
|
73 | self.xlabel = "Frequency (kHz)" | |
67 | elif self.xaxis == "time": |
|
74 | elif self.xaxis == "time": | |
68 | x = self.data.xrange[1] |
|
75 | x = self.data.xrange[1] | |
69 | self.xlabel = "Time (ms)" |
|
76 | self.xlabel = "Time (ms)" | |
70 | else: |
|
77 | else: | |
71 | x = self.data.xrange[2] |
|
78 | x = self.data.xrange[2] | |
72 | self.xlabel = "Velocity (m/s)" |
|
79 | self.xlabel = "Velocity (m/s)" | |
73 |
|
80 | |||
74 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
81 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
75 | x = self.data.xrange[2] |
|
82 | x = self.data.xrange[2] | |
76 | self.xlabel = "Velocity (m/s)" |
|
83 | self.xlabel = "Velocity (m/s)" | |
77 |
|
84 | |||
78 | self.titles = [] |
|
85 | self.titles = [] | |
79 |
|
86 | |||
80 | y = self.data.yrange |
|
87 | y = self.data.yrange | |
81 | self.y = y |
|
88 | self.y = y | |
82 |
|
89 | |||
83 | data = self.data[-1] |
|
90 | data = self.data[-1] | |
84 | z = data['spc'] |
|
91 | z = data['spc'] | |
85 |
|
92 | |||
86 | for n, ax in enumerate(self.axes): |
|
93 | for n, ax in enumerate(self.axes): | |
87 | noise = data['noise'][n] |
|
94 | noise = data['noise'][n] | |
88 |
|
95 | |||
89 | if self.CODE == 'spc_moments': |
|
96 | if self.CODE == 'spc_moments': | |
90 | mean = data['moments'][n, 1] |
|
97 | mean = data['moments'][n, 1] | |
91 |
if self.CODE == 'gaussian_fit': |
|
98 | if self.CODE == 'gaussian_fit': | |
92 | gau0 = data['gaussfit'][n][2,:,0] |
|
99 | gau0 = data['gaussfit'][n][2,:,0] | |
93 | gau1 = data['gaussfit'][n][2,:,1] |
|
100 | gau1 = data['gaussfit'][n][2,:,1] | |
94 | if ax.firsttime: |
|
101 | if ax.firsttime: | |
95 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
102 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
96 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
103 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax | |
97 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
104 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
98 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
105 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
99 | if self.zlimits is not None: |
|
106 | if self.zlimits is not None: | |
100 | self.zmin, self.zmax = self.zlimits[n] |
|
107 | self.zmin, self.zmax = self.zlimits[n] | |
101 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
108 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
102 | vmin=self.zmin, |
|
109 | vmin=self.zmin, | |
103 | vmax=self.zmax, |
|
110 | vmax=self.zmax, | |
104 | cmap=plt.get_cmap(self.colormap) |
|
111 | cmap=plt.get_cmap(self.colormap) | |
105 | ) |
|
112 | ) | |
106 |
|
113 | |||
107 | if self.showprofile: |
|
114 | if self.showprofile: | |
108 | ax.plt_profile = self.pf_axes[n].plot( |
|
115 | ax.plt_profile = self.pf_axes[n].plot( | |
109 | data['rti'][n], y)[0] |
|
116 | data['rti'][n], y)[0] | |
110 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
117 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
111 | color="k", linestyle="dashed", lw=1)[0] |
|
118 | color="k", linestyle="dashed", lw=1)[0] | |
112 | if self.CODE == 'spc_moments': |
|
119 | if self.CODE == 'spc_moments': | |
113 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
120 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
114 | if self.CODE == 'gaussian_fit': |
|
121 | if self.CODE == 'gaussian_fit': | |
115 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
122 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
116 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
123 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
117 | else: |
|
124 | else: | |
118 | if self.zlimits is not None: |
|
125 | if self.zlimits is not None: | |
119 | self.zmin, self.zmax = self.zlimits[n] |
|
126 | self.zmin, self.zmax = self.zlimits[n] | |
120 | ax.plt.set_array(z[n].T.ravel()) |
|
127 | ax.plt.set_array(z[n].T.ravel()) | |
121 | if self.showprofile: |
|
128 | if self.showprofile: | |
122 | ax.plt_profile.set_data(data['rti'][n], y) |
|
129 | ax.plt_profile.set_data(data['rti'][n], y) | |
123 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
130 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
124 | if self.CODE == 'spc_moments': |
|
131 | if self.CODE == 'spc_moments': | |
125 | ax.plt_mean.set_data(mean, y) |
|
132 | ax.plt_mean.set_data(mean, y) | |
126 | if self.CODE == 'gaussian_fit': |
|
133 | if self.CODE == 'gaussian_fit': | |
127 | ax.plt_gau0.set_data(gau0, y) |
|
134 | ax.plt_gau0.set_data(gau0, y) | |
128 | ax.plt_gau1.set_data(gau1, y) |
|
135 | ax.plt_gau1.set_data(gau1, y) | |
129 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
136 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
130 |
|
137 | |||
131 | class SpectraObliquePlot(Plot): |
|
138 | class SpectraObliquePlot(Plot): | |
132 | ''' |
|
139 | ''' | |
133 | Plot for Spectra data |
|
140 | Plot for Spectra data | |
134 |
|
141 | |||
135 | Written by R. Flores |
|
142 | Written by R. Flores | |
136 | ''' |
|
143 | ''' | |
137 |
|
144 | |||
138 | CODE = 'spc_oblique' |
|
145 | CODE = 'spc_oblique' | |
139 | colormap = 'jet' |
|
146 | colormap = 'jet' | |
140 | plot_type = 'pcolor' |
|
147 | plot_type = 'pcolor' | |
141 |
|
148 | |||
142 | def setup(self): |
|
149 | def setup(self): | |
143 | self.xaxis = "oblique" |
|
150 | self.xaxis = "oblique" | |
144 | self.nplots = len(self.data.channels) |
|
151 | self.nplots = len(self.data.channels) | |
145 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
152 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
146 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
153 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
147 | self.height = 2.6 * self.nrows |
|
154 | self.height = 2.6 * self.nrows | |
148 | self.cb_label = 'dB' |
|
155 | self.cb_label = 'dB' | |
149 | if self.showprofile: |
|
156 | if self.showprofile: | |
150 | self.width = 4 * self.ncols |
|
157 | self.width = 4 * self.ncols | |
151 | else: |
|
158 | else: | |
152 | self.width = 3.5 * self.ncols |
|
159 | self.width = 3.5 * self.ncols | |
153 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
160 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
154 | self.ylabel = 'Range [km]' |
|
161 | self.ylabel = 'Range [km]' | |
155 |
|
162 | |||
156 | def update(self, dataOut): |
|
163 | def update(self, dataOut): | |
157 |
|
164 | |||
158 | data = {} |
|
165 | data = {} | |
159 | meta = {} |
|
166 | meta = {} | |
160 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
167 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
161 | data['spc'] = spc |
|
168 | data['spc'] = spc | |
162 | data['rti'] = dataOut.getPower() |
|
169 | data['rti'] = dataOut.getPower() | |
163 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
170 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
164 |
meta['xrange'] = (dataOut.getFreqRange( |
|
171 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
165 |
|
172 | |||
166 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
173 | data['shift1'] = dataOut.Dop_EEJ_T1[0] | |
167 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
174 | data['shift2'] = dataOut.Dop_EEJ_T2[0] | |
168 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
175 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] | |
169 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
176 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] | |
170 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
177 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] | |
171 |
|
178 | |||
172 |
return data, meta |
|
179 | return data, meta | |
173 |
|
180 | |||
174 | def plot(self): |
|
181 | def plot(self): | |
175 |
|
182 | |||
176 | if self.xaxis == "frequency": |
|
183 | if self.xaxis == "frequency": | |
177 | x = self.data.xrange[0] |
|
184 | x = self.data.xrange[0] | |
178 | self.xlabel = "Frequency (kHz)" |
|
185 | self.xlabel = "Frequency (kHz)" | |
179 | elif self.xaxis == "time": |
|
186 | elif self.xaxis == "time": | |
180 | x = self.data.xrange[1] |
|
187 | x = self.data.xrange[1] | |
181 | self.xlabel = "Time (ms)" |
|
188 | self.xlabel = "Time (ms)" | |
182 | else: |
|
189 | else: | |
183 | x = self.data.xrange[2] |
|
190 | x = self.data.xrange[2] | |
184 | self.xlabel = "Velocity (m/s)" |
|
191 | self.xlabel = "Velocity (m/s)" | |
185 |
|
192 | |||
186 | self.titles = [] |
|
193 | self.titles = [] | |
187 |
|
194 | |||
188 | y = self.data.yrange |
|
195 | y = self.data.yrange | |
189 | self.y = y |
|
196 | self.y = y | |
190 | data = self.data[-1] |
|
197 | data = self.data[-1] | |
191 | z = data['spc'] |
|
198 | z = data['spc'] | |
192 |
|
199 | |||
193 | for n, ax in enumerate(self.axes): |
|
200 | for n, ax in enumerate(self.axes): | |
194 | noise = self.data['noise'][n][-1] |
|
201 | noise = self.data['noise'][n][-1] | |
195 | shift1 = data['shift1'] |
|
202 | shift1 = data['shift1'] | |
196 | shift2 = data['shift2'] |
|
203 | shift2 = data['shift2'] | |
197 | max_val_2 = data['max_val_2'] |
|
204 | max_val_2 = data['max_val_2'] | |
198 | err1 = data['shift1_error'] |
|
205 | err1 = data['shift1_error'] | |
199 | err2 = data['shift2_error'] |
|
206 | err2 = data['shift2_error'] | |
200 | if ax.firsttime: |
|
207 | if ax.firsttime: | |
201 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
208 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
202 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
209 | self.xmin = self.xmin if self.xmin else -self.xmax | |
203 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
210 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
204 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
211 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
205 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
212 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
206 | vmin=self.zmin, |
|
213 | vmin=self.zmin, | |
207 | vmax=self.zmax, |
|
214 | vmax=self.zmax, | |
208 | cmap=plt.get_cmap(self.colormap) |
|
215 | cmap=plt.get_cmap(self.colormap) | |
209 | ) |
|
216 | ) | |
210 |
|
217 | |||
211 | if self.showprofile: |
|
218 | if self.showprofile: | |
212 | ax.plt_profile = self.pf_axes[n].plot( |
|
219 | ax.plt_profile = self.pf_axes[n].plot( | |
213 | self.data['rti'][n][-1], y)[0] |
|
220 | self.data['rti'][n][-1], y)[0] | |
214 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
221 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
215 | color="k", linestyle="dashed", lw=1)[0] |
|
222 | color="k", linestyle="dashed", lw=1)[0] | |
216 |
|
223 | |||
217 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
224 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
218 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
225 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
219 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
226 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
220 | else: |
|
227 | else: | |
221 | self.ploterr1.remove() |
|
228 | self.ploterr1.remove() | |
222 | self.ploterr2.remove() |
|
229 | self.ploterr2.remove() | |
223 | self.ploterr3.remove() |
|
230 | self.ploterr3.remove() | |
224 | ax.plt.set_array(z[n].T.ravel()) |
|
231 | ax.plt.set_array(z[n].T.ravel()) | |
225 | if self.showprofile: |
|
232 | if self.showprofile: | |
226 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
233 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
227 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
234 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
228 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
235 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
229 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
236 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
230 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
237 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
231 |
|
238 | |||
232 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
239 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
233 |
|
240 | |||
234 |
|
241 | |||
235 | class CrossSpectraPlot(Plot): |
|
242 | class CrossSpectraPlot(Plot): | |
236 |
|
243 | |||
237 | CODE = 'cspc' |
|
244 | CODE = 'cspc' | |
238 | colormap = 'jet' |
|
245 | colormap = 'jet' | |
239 | plot_type = 'pcolor' |
|
246 | plot_type = 'pcolor' | |
240 | zmin_coh = None |
|
247 | zmin_coh = None | |
241 | zmax_coh = None |
|
248 | zmax_coh = None | |
242 | zmin_phase = None |
|
249 | zmin_phase = None | |
243 | zmax_phase = None |
|
250 | zmax_phase = None | |
244 |
|
251 | |||
245 | def setup(self): |
|
252 | def setup(self): | |
246 |
|
253 | |||
247 | self.ncols = 4 |
|
254 | self.ncols = 4 | |
248 | self.nplots = len(self.data.pairs) * 2 |
|
255 | self.nplots = len(self.data.pairs) * 2 | |
249 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
256 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
250 | self.width = 3.1 * self.ncols |
|
257 | self.width = 3.1 * self.ncols | |
251 | self.height = 5 * self.nrows |
|
258 | self.height = 5 * self.nrows | |
252 | self.ylabel = 'Range [km]' |
|
259 | self.ylabel = 'Range [km]' | |
253 | self.showprofile = False |
|
260 | self.showprofile = False | |
254 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
261 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
255 |
|
262 | |||
256 | def update(self, dataOut): |
|
263 | def update(self, dataOut): | |
257 |
|
264 | |||
258 | data = {} |
|
265 | data = {} | |
259 | meta = {} |
|
266 | meta = {} | |
260 |
|
267 | |||
261 | spc = dataOut.data_spc |
|
268 | spc = dataOut.data_spc | |
262 | cspc = dataOut.data_cspc |
|
269 | cspc = dataOut.data_cspc | |
263 | extrapoints = spc.shape[1] % dataOut.nFFTPoints |
|
270 | extrapoints = spc.shape[1] % dataOut.nFFTPoints | |
264 |
meta['xrange'] = (dataOut.getFreqRange( |
|
271 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
265 | meta['pairs'] = dataOut.pairsList |
|
272 | meta['pairs'] = dataOut.pairsList | |
266 |
|
273 | |||
267 | tmp = [] |
|
274 | tmp = [] | |
268 |
|
275 | |||
269 | for n, pair in enumerate(meta['pairs']): |
|
276 | for n, pair in enumerate(meta['pairs']): | |
270 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
277 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
271 | coh = numpy.abs(out) |
|
278 | coh = numpy.abs(out) | |
272 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
279 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
273 | tmp.append(coh) |
|
280 | tmp.append(coh) | |
274 | tmp.append(phase) |
|
281 | tmp.append(phase) | |
275 |
|
282 | |||
276 | data['cspc'] = numpy.array(tmp) |
|
283 | data['cspc'] = numpy.array(tmp) | |
277 |
|
284 | |||
278 |
return data, meta |
|
285 | return data, meta | |
279 |
|
286 | |||
280 | def plot(self): |
|
287 | def plot(self): | |
281 |
|
288 | |||
282 | if self.xaxis == "frequency": |
|
289 | if self.xaxis == "frequency": | |
283 | x = self.data.xrange[0] |
|
290 | x = self.data.xrange[0] | |
284 | self.xlabel = "Frequency (kHz)" |
|
291 | self.xlabel = "Frequency (kHz)" | |
285 | elif self.xaxis == "time": |
|
292 | elif self.xaxis == "time": | |
286 | x = self.data.xrange[1] |
|
293 | x = self.data.xrange[1] | |
287 | self.xlabel = "Time (ms)" |
|
294 | self.xlabel = "Time (ms)" | |
288 | else: |
|
295 | else: | |
289 | x = self.data.xrange[2] |
|
296 | x = self.data.xrange[2] | |
290 | self.xlabel = "Velocity (m/s)" |
|
297 | self.xlabel = "Velocity (m/s)" | |
291 |
|
298 | |||
292 | self.titles = [] |
|
299 | self.titles = [] | |
293 |
|
300 | |||
294 | y = self.data.yrange |
|
301 | y = self.data.yrange | |
295 | self.y = y |
|
302 | self.y = y | |
296 |
|
303 | |||
297 | data = self.data[-1] |
|
304 | data = self.data[-1] | |
298 | cspc = data['cspc'] |
|
305 | cspc = data['cspc'] | |
299 |
|
306 | |||
300 | for n in range(len(self.data.pairs)): |
|
307 | for n in range(len(self.data.pairs)): | |
301 | pair = self.data.pairs[n] |
|
308 | pair = self.data.pairs[n] | |
302 | coh = cspc[n * 2] |
|
309 | coh = cspc[n * 2] | |
303 | phase = cspc[n * 2 + 1] |
|
310 | phase = cspc[n * 2 + 1] | |
304 | ax = self.axes[2 * n] |
|
311 | ax = self.axes[2 * n] | |
305 | if ax.firsttime: |
|
312 | if ax.firsttime: | |
306 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
313 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
307 | vmin=0, |
|
314 | vmin=0, | |
308 | vmax=1, |
|
315 | vmax=1, | |
309 | cmap=plt.get_cmap(self.colormap_coh) |
|
316 | cmap=plt.get_cmap(self.colormap_coh) | |
310 | ) |
|
317 | ) | |
311 | else: |
|
318 | else: | |
312 | ax.plt.set_array(coh.T.ravel()) |
|
319 | ax.plt.set_array(coh.T.ravel()) | |
313 | self.titles.append( |
|
320 | self.titles.append( | |
314 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
321 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
315 |
|
322 | |||
316 | ax = self.axes[2 * n + 1] |
|
323 | ax = self.axes[2 * n + 1] | |
317 | if ax.firsttime: |
|
324 | if ax.firsttime: | |
318 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
325 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
319 | vmin=-180, |
|
326 | vmin=-180, | |
320 | vmax=180, |
|
327 | vmax=180, | |
321 | cmap=plt.get_cmap(self.colormap_phase) |
|
328 | cmap=plt.get_cmap(self.colormap_phase) | |
322 | ) |
|
329 | ) | |
323 | else: |
|
330 | else: | |
324 | ax.plt.set_array(phase.T.ravel()) |
|
331 | ax.plt.set_array(phase.T.ravel()) | |
325 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
332 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
326 |
|
333 | |||
327 |
|
334 | |||
328 | class CrossSpectra4Plot(Plot): |
|
335 | class CrossSpectra4Plot(Plot): | |
329 |
|
336 | |||
330 | CODE = 'cspc' |
|
337 | CODE = 'cspc' | |
331 | colormap = 'jet' |
|
338 | colormap = 'jet' | |
332 | plot_type = 'pcolor' |
|
339 | plot_type = 'pcolor' | |
333 | zmin_coh = None |
|
340 | zmin_coh = None | |
334 | zmax_coh = None |
|
341 | zmax_coh = None | |
335 | zmin_phase = None |
|
342 | zmin_phase = None | |
336 | zmax_phase = None |
|
343 | zmax_phase = None | |
337 |
|
344 | |||
338 | def setup(self): |
|
345 | def setup(self): | |
339 |
|
346 | |||
340 | self.ncols = 4 |
|
347 | self.ncols = 4 | |
341 | self.nrows = len(self.data.pairs) |
|
348 | self.nrows = len(self.data.pairs) | |
342 | self.nplots = self.nrows * 4 |
|
349 | self.nplots = self.nrows * 4 | |
343 | self.width = 3.1 * self.ncols |
|
350 | self.width = 3.1 * self.ncols | |
344 | self.height = 5 * self.nrows |
|
351 | self.height = 5 * self.nrows | |
345 | self.ylabel = 'Range [km]' |
|
352 | self.ylabel = 'Range [km]' | |
346 | self.showprofile = False |
|
353 | self.showprofile = False | |
347 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
354 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
348 |
|
355 | |||
349 | def plot(self): |
|
356 | def plot(self): | |
350 |
|
357 | |||
351 | if self.xaxis == "frequency": |
|
358 | if self.xaxis == "frequency": | |
352 | x = self.data.xrange[0] |
|
359 | x = self.data.xrange[0] | |
353 | self.xlabel = "Frequency (kHz)" |
|
360 | self.xlabel = "Frequency (kHz)" | |
354 | elif self.xaxis == "time": |
|
361 | elif self.xaxis == "time": | |
355 | x = self.data.xrange[1] |
|
362 | x = self.data.xrange[1] | |
356 | self.xlabel = "Time (ms)" |
|
363 | self.xlabel = "Time (ms)" | |
357 | else: |
|
364 | else: | |
358 | x = self.data.xrange[2] |
|
365 | x = self.data.xrange[2] | |
359 | self.xlabel = "Velocity (m/s)" |
|
366 | self.xlabel = "Velocity (m/s)" | |
360 |
|
367 | |||
361 | self.titles = [] |
|
368 | self.titles = [] | |
362 |
|
369 | |||
363 |
|
370 | |||
364 | y = self.data.heights |
|
371 | y = self.data.heights | |
365 | self.y = y |
|
372 | self.y = y | |
366 | nspc = self.data['spc'] |
|
373 | nspc = self.data['spc'] | |
367 | #print(numpy.shape(self.data['spc'])) |
|
374 | #print(numpy.shape(self.data['spc'])) | |
368 | spc = self.data['cspc'][0] |
|
375 | spc = self.data['cspc'][0] | |
369 | #print(numpy.shape(nspc)) |
|
376 | #print(numpy.shape(nspc)) | |
370 | #exit() |
|
377 | #exit() | |
371 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
378 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) | |
372 | #print(numpy.shape(spc)) |
|
379 | #print(numpy.shape(spc)) | |
373 | #exit() |
|
380 | #exit() | |
374 | cspc = self.data['cspc'][1] |
|
381 | cspc = self.data['cspc'][1] | |
375 |
|
382 | |||
376 | #xflip=numpy.flip(x) |
|
383 | #xflip=numpy.flip(x) | |
377 | #print(numpy.shape(cspc)) |
|
384 | #print(numpy.shape(cspc)) | |
378 | #exit() |
|
385 | #exit() | |
379 |
|
386 | |||
380 | for n in range(self.nrows): |
|
387 | for n in range(self.nrows): | |
381 | noise = self.data['noise'][:,-1] |
|
388 | noise = self.data['noise'][:,-1] | |
382 | pair = self.data.pairs[n] |
|
389 | pair = self.data.pairs[n] | |
383 | #print(pair) |
|
390 | #print(pair) | |
384 | #exit() |
|
391 | #exit() | |
385 | ax = self.axes[4 * n] |
|
392 | ax = self.axes[4 * n] | |
386 | if ax.firsttime: |
|
393 | if ax.firsttime: | |
387 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
394 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
388 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
395 | self.xmin = self.xmin if self.xmin else -self.xmax | |
389 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
396 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |
390 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
397 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |
391 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
398 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |
392 | vmin=self.zmin, |
|
399 | vmin=self.zmin, | |
393 | vmax=self.zmax, |
|
400 | vmax=self.zmax, | |
394 | cmap=plt.get_cmap(self.colormap) |
|
401 | cmap=plt.get_cmap(self.colormap) | |
395 | ) |
|
402 | ) | |
396 | else: |
|
403 | else: | |
397 | #print(numpy.shape(nspc[pair[0]].T)) |
|
404 | #print(numpy.shape(nspc[pair[0]].T)) | |
398 | #exit() |
|
405 | #exit() | |
399 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
406 | ax.plt.set_array(nspc[pair[0]].T.ravel()) | |
400 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
407 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) | |
401 |
|
408 | |||
402 | ax = self.axes[4 * n + 1] |
|
409 | ax = self.axes[4 * n + 1] | |
403 |
|
410 | |||
404 | if ax.firsttime: |
|
411 | if ax.firsttime: | |
405 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
412 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, | |
406 | vmin=self.zmin, |
|
413 | vmin=self.zmin, | |
407 | vmax=self.zmax, |
|
414 | vmax=self.zmax, | |
408 | cmap=plt.get_cmap(self.colormap) |
|
415 | cmap=plt.get_cmap(self.colormap) | |
409 | ) |
|
416 | ) | |
410 | else: |
|
417 | else: | |
411 |
|
418 | |||
412 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
419 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) | |
413 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
420 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) | |
414 |
|
421 | |||
415 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
422 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
416 | coh = numpy.abs(out) |
|
423 | coh = numpy.abs(out) | |
417 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
424 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
418 |
|
425 | |||
419 | ax = self.axes[4 * n + 2] |
|
426 | ax = self.axes[4 * n + 2] | |
420 | if ax.firsttime: |
|
427 | if ax.firsttime: | |
421 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
428 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, | |
422 | vmin=0, |
|
429 | vmin=0, | |
423 | vmax=1, |
|
430 | vmax=1, | |
424 | cmap=plt.get_cmap(self.colormap_coh) |
|
431 | cmap=plt.get_cmap(self.colormap_coh) | |
425 | ) |
|
432 | ) | |
426 | else: |
|
433 | else: | |
427 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
434 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) | |
428 | self.titles.append( |
|
435 | self.titles.append( | |
429 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
436 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
430 |
|
437 | |||
431 | ax = self.axes[4 * n + 3] |
|
438 | ax = self.axes[4 * n + 3] | |
432 | if ax.firsttime: |
|
439 | if ax.firsttime: | |
433 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
440 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, | |
434 | vmin=-180, |
|
441 | vmin=-180, | |
435 | vmax=180, |
|
442 | vmax=180, | |
436 | cmap=plt.get_cmap(self.colormap_phase) |
|
443 | cmap=plt.get_cmap(self.colormap_phase) | |
437 | ) |
|
444 | ) | |
438 | else: |
|
445 | else: | |
439 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
446 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) | |
440 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
447 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
441 |
|
448 | |||
442 |
|
449 | |||
443 | class CrossSpectra2Plot(Plot): |
|
450 | class CrossSpectra2Plot(Plot): | |
444 |
|
451 | |||
445 | CODE = 'cspc' |
|
452 | CODE = 'cspc' | |
446 | colormap = 'jet' |
|
453 | colormap = 'jet' | |
447 | plot_type = 'pcolor' |
|
454 | plot_type = 'pcolor' | |
448 | zmin_coh = None |
|
455 | zmin_coh = None | |
449 | zmax_coh = None |
|
456 | zmax_coh = None | |
450 | zmin_phase = None |
|
457 | zmin_phase = None | |
451 | zmax_phase = None |
|
458 | zmax_phase = None | |
452 |
|
459 | |||
453 | def setup(self): |
|
460 | def setup(self): | |
454 |
|
461 | |||
455 | self.ncols = 1 |
|
462 | self.ncols = 1 | |
456 | self.nrows = len(self.data.pairs) |
|
463 | self.nrows = len(self.data.pairs) | |
457 | self.nplots = self.nrows * 1 |
|
464 | self.nplots = self.nrows * 1 | |
458 | self.width = 3.1 * self.ncols |
|
465 | self.width = 3.1 * self.ncols | |
459 | self.height = 5 * self.nrows |
|
466 | self.height = 5 * self.nrows | |
460 | self.ylabel = 'Range [km]' |
|
467 | self.ylabel = 'Range [km]' | |
461 | self.showprofile = False |
|
468 | self.showprofile = False | |
462 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
469 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
463 |
|
470 | |||
464 | def plot(self): |
|
471 | def plot(self): | |
465 |
|
472 | |||
466 | if self.xaxis == "frequency": |
|
473 | if self.xaxis == "frequency": | |
467 | x = self.data.xrange[0] |
|
474 | x = self.data.xrange[0] | |
468 | self.xlabel = "Frequency (kHz)" |
|
475 | self.xlabel = "Frequency (kHz)" | |
469 | elif self.xaxis == "time": |
|
476 | elif self.xaxis == "time": | |
470 | x = self.data.xrange[1] |
|
477 | x = self.data.xrange[1] | |
471 | self.xlabel = "Time (ms)" |
|
478 | self.xlabel = "Time (ms)" | |
472 | else: |
|
479 | else: | |
473 | x = self.data.xrange[2] |
|
480 | x = self.data.xrange[2] | |
474 | self.xlabel = "Velocity (m/s)" |
|
481 | self.xlabel = "Velocity (m/s)" | |
475 |
|
482 | |||
476 | self.titles = [] |
|
483 | self.titles = [] | |
477 |
|
484 | |||
478 |
|
485 | |||
479 | y = self.data.heights |
|
486 | y = self.data.heights | |
480 | self.y = y |
|
487 | self.y = y | |
481 | #nspc = self.data['spc'] |
|
488 | #nspc = self.data['spc'] | |
482 | #print(numpy.shape(self.data['spc'])) |
|
489 | #print(numpy.shape(self.data['spc'])) | |
483 | #spc = self.data['cspc'][0] |
|
490 | #spc = self.data['cspc'][0] | |
484 | #print(numpy.shape(spc)) |
|
491 | #print(numpy.shape(spc)) | |
485 | #exit() |
|
492 | #exit() | |
486 | cspc = self.data['cspc'][1] |
|
493 | cspc = self.data['cspc'][1] | |
487 | #print(numpy.shape(cspc)) |
|
494 | #print(numpy.shape(cspc)) | |
488 | #exit() |
|
495 | #exit() | |
489 |
|
496 | |||
490 | for n in range(self.nrows): |
|
497 | for n in range(self.nrows): | |
491 | noise = self.data['noise'][:,-1] |
|
498 | noise = self.data['noise'][:,-1] | |
492 | pair = self.data.pairs[n] |
|
499 | pair = self.data.pairs[n] | |
493 | #print(pair) #exit() |
|
500 | #print(pair) #exit() | |
494 |
|
501 | |||
495 |
|
502 | |||
496 |
|
503 | |||
497 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
504 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
498 |
|
505 | |||
499 | #print(out[:,53]) |
|
506 | #print(out[:,53]) | |
500 | #exit() |
|
507 | #exit() | |
501 | cross = numpy.abs(out) |
|
508 | cross = numpy.abs(out) | |
502 | z = cross/self.data.nFactor |
|
509 | z = cross/self.data.nFactor | |
503 | #print("here") |
|
510 | #print("here") | |
504 | #print(dataOut.data_spc[0,0,0]) |
|
511 | #print(dataOut.data_spc[0,0,0]) | |
505 | #exit() |
|
512 | #exit() | |
506 |
|
513 | |||
507 | cross = 10*numpy.log10(z) |
|
514 | cross = 10*numpy.log10(z) | |
508 | #print(numpy.shape(cross)) |
|
515 | #print(numpy.shape(cross)) | |
509 | #print(cross[0,:]) |
|
516 | #print(cross[0,:]) | |
510 | #print(self.data.nFactor) |
|
517 | #print(self.data.nFactor) | |
511 | #exit() |
|
518 | #exit() | |
512 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
519 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
513 |
|
520 | |||
514 | ax = self.axes[1 * n] |
|
521 | ax = self.axes[1 * n] | |
515 | if ax.firsttime: |
|
522 | if ax.firsttime: | |
516 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
523 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
517 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
524 | self.xmin = self.xmin if self.xmin else -self.xmax | |
518 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
525 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
519 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
526 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
520 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
527 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
521 | vmin=self.zmin, |
|
528 | vmin=self.zmin, | |
522 | vmax=self.zmax, |
|
529 | vmax=self.zmax, | |
523 | cmap=plt.get_cmap(self.colormap) |
|
530 | cmap=plt.get_cmap(self.colormap) | |
524 | ) |
|
531 | ) | |
525 | else: |
|
532 | else: | |
526 | ax.plt.set_array(cross.T.ravel()) |
|
533 | ax.plt.set_array(cross.T.ravel()) | |
527 | self.titles.append( |
|
534 | self.titles.append( | |
528 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
535 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
529 |
|
536 | |||
530 |
|
537 | |||
531 | class CrossSpectra3Plot(Plot): |
|
538 | class CrossSpectra3Plot(Plot): | |
532 |
|
539 | |||
533 | CODE = 'cspc' |
|
540 | CODE = 'cspc' | |
534 | colormap = 'jet' |
|
541 | colormap = 'jet' | |
535 | plot_type = 'pcolor' |
|
542 | plot_type = 'pcolor' | |
536 | zmin_coh = None |
|
543 | zmin_coh = None | |
537 | zmax_coh = None |
|
544 | zmax_coh = None | |
538 | zmin_phase = None |
|
545 | zmin_phase = None | |
539 | zmax_phase = None |
|
546 | zmax_phase = None | |
540 |
|
547 | |||
541 | def setup(self): |
|
548 | def setup(self): | |
542 |
|
549 | |||
543 | self.ncols = 3 |
|
550 | self.ncols = 3 | |
544 | self.nrows = len(self.data.pairs) |
|
551 | self.nrows = len(self.data.pairs) | |
545 | self.nplots = self.nrows * 3 |
|
552 | self.nplots = self.nrows * 3 | |
546 | self.width = 3.1 * self.ncols |
|
553 | self.width = 3.1 * self.ncols | |
547 | self.height = 5 * self.nrows |
|
554 | self.height = 5 * self.nrows | |
548 | self.ylabel = 'Range [km]' |
|
555 | self.ylabel = 'Range [km]' | |
549 | self.showprofile = False |
|
556 | self.showprofile = False | |
550 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
557 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
551 |
|
558 | |||
552 | def plot(self): |
|
559 | def plot(self): | |
553 |
|
560 | |||
554 | if self.xaxis == "frequency": |
|
561 | if self.xaxis == "frequency": | |
555 | x = self.data.xrange[0] |
|
562 | x = self.data.xrange[0] | |
556 | self.xlabel = "Frequency (kHz)" |
|
563 | self.xlabel = "Frequency (kHz)" | |
557 | elif self.xaxis == "time": |
|
564 | elif self.xaxis == "time": | |
558 | x = self.data.xrange[1] |
|
565 | x = self.data.xrange[1] | |
559 | self.xlabel = "Time (ms)" |
|
566 | self.xlabel = "Time (ms)" | |
560 | else: |
|
567 | else: | |
561 | x = self.data.xrange[2] |
|
568 | x = self.data.xrange[2] | |
562 | self.xlabel = "Velocity (m/s)" |
|
569 | self.xlabel = "Velocity (m/s)" | |
563 |
|
570 | |||
564 | self.titles = [] |
|
571 | self.titles = [] | |
565 |
|
572 | |||
566 |
|
573 | |||
567 | y = self.data.heights |
|
574 | y = self.data.heights | |
568 | self.y = y |
|
575 | self.y = y | |
569 | #nspc = self.data['spc'] |
|
576 | #nspc = self.data['spc'] | |
570 | #print(numpy.shape(self.data['spc'])) |
|
577 | #print(numpy.shape(self.data['spc'])) | |
571 | #spc = self.data['cspc'][0] |
|
578 | #spc = self.data['cspc'][0] | |
572 | #print(numpy.shape(spc)) |
|
579 | #print(numpy.shape(spc)) | |
573 | #exit() |
|
580 | #exit() | |
574 | cspc = self.data['cspc'][1] |
|
581 | cspc = self.data['cspc'][1] | |
575 | #print(numpy.shape(cspc)) |
|
582 | #print(numpy.shape(cspc)) | |
576 | #exit() |
|
583 | #exit() | |
577 |
|
584 | |||
578 | for n in range(self.nrows): |
|
585 | for n in range(self.nrows): | |
579 | noise = self.data['noise'][:,-1] |
|
586 | noise = self.data['noise'][:,-1] | |
580 | pair = self.data.pairs[n] |
|
587 | pair = self.data.pairs[n] | |
581 | #print(pair) #exit() |
|
588 | #print(pair) #exit() | |
582 |
|
589 | |||
583 |
|
590 | |||
584 |
|
591 | |||
585 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
592 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
586 |
|
593 | |||
587 | #print(out[:,53]) |
|
594 | #print(out[:,53]) | |
588 | #exit() |
|
595 | #exit() | |
589 | cross = numpy.abs(out) |
|
596 | cross = numpy.abs(out) | |
590 | z = cross/self.data.nFactor |
|
597 | z = cross/self.data.nFactor | |
591 | cross = 10*numpy.log10(z) |
|
598 | cross = 10*numpy.log10(z) | |
592 |
|
599 | |||
593 | out_r= out.real/self.data.nFactor |
|
600 | out_r= out.real/self.data.nFactor | |
594 | #out_r = 10*numpy.log10(out_r) |
|
601 | #out_r = 10*numpy.log10(out_r) | |
595 |
|
602 | |||
596 | out_i= out.imag/self.data.nFactor |
|
603 | out_i= out.imag/self.data.nFactor | |
597 | #out_i = 10*numpy.log10(out_i) |
|
604 | #out_i = 10*numpy.log10(out_i) | |
598 | #print(numpy.shape(cross)) |
|
605 | #print(numpy.shape(cross)) | |
599 | #print(cross[0,:]) |
|
606 | #print(cross[0,:]) | |
600 | #print(self.data.nFactor) |
|
607 | #print(self.data.nFactor) | |
601 | #exit() |
|
608 | #exit() | |
602 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
609 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
603 |
|
610 | |||
604 | ax = self.axes[3 * n] |
|
611 | ax = self.axes[3 * n] | |
605 | if ax.firsttime: |
|
612 | if ax.firsttime: | |
606 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
613 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
607 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
614 | self.xmin = self.xmin if self.xmin else -self.xmax | |
608 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
615 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
609 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
616 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
610 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
617 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
611 | vmin=self.zmin, |
|
618 | vmin=self.zmin, | |
612 | vmax=self.zmax, |
|
619 | vmax=self.zmax, | |
613 | cmap=plt.get_cmap(self.colormap) |
|
620 | cmap=plt.get_cmap(self.colormap) | |
614 | ) |
|
621 | ) | |
615 | else: |
|
622 | else: | |
616 | ax.plt.set_array(cross.T.ravel()) |
|
623 | ax.plt.set_array(cross.T.ravel()) | |
617 | self.titles.append( |
|
624 | self.titles.append( | |
618 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
625 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
619 |
|
626 | |||
620 | ax = self.axes[3 * n + 1] |
|
627 | ax = self.axes[3 * n + 1] | |
621 | if ax.firsttime: |
|
628 | if ax.firsttime: | |
622 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
629 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
623 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
630 | self.xmin = self.xmin if self.xmin else -self.xmax | |
624 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
631 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
625 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
632 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
626 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
633 | ax.plt = ax.pcolormesh(x, y, out_r.T, | |
627 | vmin=-1.e6, |
|
634 | vmin=-1.e6, | |
628 | vmax=0, |
|
635 | vmax=0, | |
629 | cmap=plt.get_cmap(self.colormap) |
|
636 | cmap=plt.get_cmap(self.colormap) | |
630 | ) |
|
637 | ) | |
631 | else: |
|
638 | else: | |
632 | ax.plt.set_array(out_r.T.ravel()) |
|
639 | ax.plt.set_array(out_r.T.ravel()) | |
633 | self.titles.append( |
|
640 | self.titles.append( | |
634 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
641 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) | |
635 |
|
642 | |||
636 | ax = self.axes[3 * n + 2] |
|
643 | ax = self.axes[3 * n + 2] | |
637 |
|
644 | |||
638 |
|
645 | |||
639 | if ax.firsttime: |
|
646 | if ax.firsttime: | |
640 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
647 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
641 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
648 | self.xmin = self.xmin if self.xmin else -self.xmax | |
642 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
649 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
643 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
650 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
644 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
651 | ax.plt = ax.pcolormesh(x, y, out_i.T, | |
645 | vmin=-1.e6, |
|
652 | vmin=-1.e6, | |
646 | vmax=1.e6, |
|
653 | vmax=1.e6, | |
647 | cmap=plt.get_cmap(self.colormap) |
|
654 | cmap=plt.get_cmap(self.colormap) | |
648 | ) |
|
655 | ) | |
649 | else: |
|
656 | else: | |
650 | ax.plt.set_array(out_i.T.ravel()) |
|
657 | ax.plt.set_array(out_i.T.ravel()) | |
651 | self.titles.append( |
|
658 | self.titles.append( | |
652 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
659 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) | |
653 |
|
660 | |||
654 | class RTIPlot(Plot): |
|
661 | class RTIPlot(Plot): | |
655 | ''' |
|
662 | ''' | |
656 | Plot for RTI data |
|
663 | Plot for RTI data | |
657 | ''' |
|
664 | ''' | |
658 |
|
665 | |||
659 | CODE = 'rti' |
|
666 | CODE = 'rti' | |
660 | colormap = 'jet' |
|
667 | colormap = 'jet' | |
661 | plot_type = 'pcolorbuffer' |
|
668 | plot_type = 'pcolorbuffer' | |
662 |
|
669 | |||
663 | def setup(self): |
|
670 | def setup(self): | |
664 | self.xaxis = 'time' |
|
671 | self.xaxis = 'time' | |
665 | self.ncols = 1 |
|
672 | self.ncols = 1 | |
666 | self.nrows = len(self.data.channels) |
|
673 | self.nrows = len(self.data.channels) | |
667 | self.nplots = len(self.data.channels) |
|
674 | self.nplots = len(self.data.channels) | |
668 | self.ylabel = 'Range [km]' |
|
675 | self.ylabel = 'Range [km]' | |
669 | self.xlabel = 'Time' |
|
676 | self.xlabel = 'Time' | |
670 | self.cb_label = 'dB' |
|
677 | self.cb_label = 'dB' | |
671 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
678 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
672 | self.titles = ['{} Channel {}'.format( |
|
679 | self.titles = ['{} Channel {}'.format( | |
673 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
680 | self.CODE.upper(), x) for x in range(self.nrows)] | |
674 |
|
681 | |||
675 | def update(self, dataOut): |
|
682 | def update(self, dataOut): | |
676 |
|
683 | |||
677 | data = {} |
|
684 | data = {} | |
678 | meta = {} |
|
685 | meta = {} | |
679 | data['rti'] = dataOut.getPower() |
|
686 | data['rti'] = dataOut.getPower() | |
680 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor) |
|
687 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor) | |
681 |
|
688 | |||
682 | return data, meta |
|
689 | return data, meta | |
683 |
|
690 | |||
684 | def plot(self): |
|
691 | def plot(self): | |
685 | self.x = self.data.times |
|
692 | self.x = self.data.times | |
686 | self.y = self.data.yrange |
|
693 | self.y = self.data.yrange | |
687 | self.z = self.data[self.CODE] |
|
694 | self.z = self.data[self.CODE] | |
688 |
|
695 | |||
689 | self.z = numpy.ma.masked_invalid(self.z) |
|
696 | self.z = numpy.ma.masked_invalid(self.z) | |
690 |
|
697 | |||
691 | if self.decimation is None: |
|
698 | if self.decimation is None: | |
692 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
699 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
693 | else: |
|
700 | else: | |
694 | x, y, z = self.fill_gaps(*self.decimate()) |
|
701 | x, y, z = self.fill_gaps(*self.decimate()) | |
695 |
|
702 | |||
696 | for n, ax in enumerate(self.axes): |
|
703 | for n, ax in enumerate(self.axes): | |
697 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
704 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
698 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
705 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
699 | if ax.firsttime: |
|
706 | if ax.firsttime: | |
700 | if self.zlimits is not None: |
|
707 | if self.zlimits is not None: | |
701 | self.zmin, self.zmax = self.zlimits[n] |
|
708 | self.zmin, self.zmax = self.zlimits[n] | |
702 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
709 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
703 | vmin=self.zmin, |
|
710 | vmin=self.zmin, | |
704 | vmax=self.zmax, |
|
711 | vmax=self.zmax, | |
705 | cmap=plt.get_cmap(self.colormap) |
|
712 | cmap=plt.get_cmap(self.colormap) | |
706 | ) |
|
713 | ) | |
707 | if self.showprofile: |
|
714 | if self.showprofile: | |
708 | ax.plot_profile = self.pf_axes[n].plot( |
|
715 | ax.plot_profile = self.pf_axes[n].plot( | |
709 | self.data['rti'][n][-1], self.y)[0] |
|
716 | self.data['rti'][n][-1], self.y)[0] | |
710 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
717 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
711 | color="k", linestyle="dashed", lw=1)[0] |
|
718 | color="k", linestyle="dashed", lw=1)[0] | |
712 | else: |
|
719 | else: | |
713 | if self.zlimits is not None: |
|
720 | if self.zlimits is not None: | |
714 | self.zmin, self.zmax = self.zlimits[n] |
|
721 | self.zmin, self.zmax = self.zlimits[n] | |
715 | ax.plt.remove() |
|
722 | ax.plt.remove() | |
716 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
723 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
717 | vmin=self.zmin, |
|
724 | vmin=self.zmin, | |
718 | vmax=self.zmax, |
|
725 | vmax=self.zmax, | |
719 | cmap=plt.get_cmap(self.colormap) |
|
726 | cmap=plt.get_cmap(self.colormap) | |
720 | ) |
|
727 | ) | |
721 | if self.showprofile: |
|
728 | if self.showprofile: | |
722 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
729 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
723 | ax.plot_noise.set_data(numpy.repeat( |
|
730 | ax.plot_noise.set_data(numpy.repeat( | |
724 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
731 | self.data['noise'][n][-1], len(self.y)), self.y) | |
725 |
|
732 | |||
726 |
|
733 | |||
727 | class SpectrogramPlot(Plot): |
|
734 | class SpectrogramPlot(Plot): | |
728 | ''' |
|
735 | ''' | |
729 | Plot for Spectrogram data |
|
736 | Plot for Spectrogram data | |
730 | ''' |
|
737 | ''' | |
731 |
|
738 | |||
732 | CODE = 'Spectrogram_Profile' |
|
739 | CODE = 'Spectrogram_Profile' | |
733 | colormap = 'binary' |
|
740 | colormap = 'binary' | |
734 | plot_type = 'pcolorbuffer' |
|
741 | plot_type = 'pcolorbuffer' | |
735 |
|
742 | |||
736 | def setup(self): |
|
743 | def setup(self): | |
737 | self.xaxis = 'time' |
|
744 | self.xaxis = 'time' | |
738 | self.ncols = 1 |
|
745 | self.ncols = 1 | |
739 | self.nrows = len(self.data.channels) |
|
746 | self.nrows = len(self.data.channels) | |
740 | self.nplots = len(self.data.channels) |
|
747 | self.nplots = len(self.data.channels) | |
741 | self.xlabel = 'Time' |
|
748 | self.xlabel = 'Time' | |
742 | #self.cb_label = 'dB' |
|
749 | #self.cb_label = 'dB' | |
743 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
750 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) | |
744 | self.titles = [] |
|
751 | self.titles = [] | |
745 |
|
752 | |||
746 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
753 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( | |
747 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
754 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] | |
748 |
|
755 | |||
749 | self.titles = ['{} Channel {}'.format( |
|
756 | self.titles = ['{} Channel {}'.format( | |
750 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
757 | self.CODE.upper(), x) for x in range(self.nrows)] | |
751 |
|
758 | |||
752 |
|
759 | |||
753 | def update(self, dataOut): |
|
760 | def update(self, dataOut): | |
754 | data = {} |
|
761 | data = {} | |
755 | meta = {} |
|
762 | meta = {} | |
756 |
|
763 | |||
757 | maxHei = 1620#+12000 |
|
764 | maxHei = 1620#+12000 | |
758 | maxHei = 1180 |
|
765 | maxHei = 1180 | |
759 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
766 | indb = numpy.where(dataOut.heightList <= maxHei) | |
760 | hei = indb[0][-1] |
|
767 | hei = indb[0][-1] | |
761 | #print(dataOut.heightList) |
|
768 | #print(dataOut.heightList) | |
762 |
|
769 | |||
763 | factor = dataOut.nIncohInt |
|
770 | factor = dataOut.nIncohInt | |
764 | z = dataOut.data_spc[:,:,hei] / factor |
|
771 | z = dataOut.data_spc[:,:,hei] / factor | |
765 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
772 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
766 | #buffer = 10 * numpy.log10(z) |
|
773 | #buffer = 10 * numpy.log10(z) | |
767 |
|
774 | |||
768 |
meta['xrange'] = (dataOut.getFreqRange( |
|
775 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
769 |
|
776 | |||
770 |
|
777 | |||
771 | #self.hei = hei |
|
778 | #self.hei = hei | |
772 | #self.heightList = dataOut.heightList |
|
779 | #self.heightList = dataOut.heightList | |
773 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
780 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
774 | #self.nProfiles = dataOut.nProfiles |
|
781 | #self.nProfiles = dataOut.nProfiles | |
775 |
|
782 | |||
776 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
783 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) | |
777 |
|
784 | |||
778 | data['hei'] = hei |
|
785 | data['hei'] = hei | |
779 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
786 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
780 | data['nProfiles'] = dataOut.nProfiles |
|
787 | data['nProfiles'] = dataOut.nProfiles | |
781 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
788 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
782 | ''' |
|
789 | ''' | |
783 | import matplotlib.pyplot as plt |
|
790 | import matplotlib.pyplot as plt | |
784 | plt.plot(10 * numpy.log10(z[0,:])) |
|
791 | plt.plot(10 * numpy.log10(z[0,:])) | |
785 | plt.show() |
|
792 | plt.show() | |
786 |
|
793 | |||
787 | from time import sleep |
|
794 | from time import sleep | |
788 | sleep(10) |
|
795 | sleep(10) | |
789 | ''' |
|
796 | ''' | |
790 | return data, meta |
|
797 | return data, meta | |
791 |
|
798 | |||
792 | def plot(self): |
|
799 | def plot(self): | |
793 |
|
800 | |||
794 | self.x = self.data.times |
|
801 | self.x = self.data.times | |
795 | self.z = self.data[self.CODE] |
|
802 | self.z = self.data[self.CODE] | |
796 | self.y = self.data.xrange[0] |
|
803 | self.y = self.data.xrange[0] | |
797 |
|
804 | |||
798 | hei = self.data['hei'][-1] |
|
805 | hei = self.data['hei'][-1] | |
799 | DH = self.data['DH'][-1] |
|
806 | DH = self.data['DH'][-1] | |
800 | nProfiles = self.data['nProfiles'][-1] |
|
807 | nProfiles = self.data['nProfiles'][-1] | |
801 |
|
808 | |||
802 | self.ylabel = "Frequency (kHz)" |
|
809 | self.ylabel = "Frequency (kHz)" | |
803 |
|
810 | |||
804 | self.z = numpy.ma.masked_invalid(self.z) |
|
811 | self.z = numpy.ma.masked_invalid(self.z) | |
805 |
|
812 | |||
806 | if self.decimation is None: |
|
813 | if self.decimation is None: | |
807 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
814 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
808 | else: |
|
815 | else: | |
809 | x, y, z = self.fill_gaps(*self.decimate()) |
|
816 | x, y, z = self.fill_gaps(*self.decimate()) | |
810 |
|
817 | |||
811 | for n, ax in enumerate(self.axes): |
|
818 | for n, ax in enumerate(self.axes): | |
812 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
819 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
813 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
820 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
814 | data = self.data[-1] |
|
821 | data = self.data[-1] | |
815 | if ax.firsttime: |
|
822 | if ax.firsttime: | |
816 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
823 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
817 | vmin=self.zmin, |
|
824 | vmin=self.zmin, | |
818 | vmax=self.zmax, |
|
825 | vmax=self.zmax, | |
819 | cmap=plt.get_cmap(self.colormap) |
|
826 | cmap=plt.get_cmap(self.colormap) | |
820 | ) |
|
827 | ) | |
821 | else: |
|
828 | else: | |
822 | ax.collections.remove(ax.collections[0]) |
|
829 | ax.collections.remove(ax.collections[0]) | |
823 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
830 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
824 | vmin=self.zmin, |
|
831 | vmin=self.zmin, | |
825 | vmax=self.zmax, |
|
832 | vmax=self.zmax, | |
826 | cmap=plt.get_cmap(self.colormap) |
|
833 | cmap=plt.get_cmap(self.colormap) | |
827 | ) |
|
834 | ) | |
828 |
|
835 | |||
829 | #self.titles.append('Spectrogram') |
|
836 | #self.titles.append('Spectrogram') | |
830 |
|
837 | |||
831 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
838 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( | |
832 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
839 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) | |
833 |
|
840 | |||
834 | class CoherencePlot(RTIPlot): |
|
841 | class CoherencePlot(RTIPlot): | |
835 | ''' |
|
842 | ''' | |
836 | Plot for Coherence data |
|
843 | Plot for Coherence data | |
837 | ''' |
|
844 | ''' | |
838 |
|
845 | |||
839 | CODE = 'coh' |
|
846 | CODE = 'coh' | |
840 |
|
847 | |||
841 | def setup(self): |
|
848 | def setup(self): | |
842 | self.xaxis = 'time' |
|
849 | self.xaxis = 'time' | |
843 | self.ncols = 1 |
|
850 | self.ncols = 1 | |
844 | self.nrows = len(self.data.pairs) |
|
851 | self.nrows = len(self.data.pairs) | |
845 | self.nplots = len(self.data.pairs) |
|
852 | self.nplots = len(self.data.pairs) | |
846 | self.ylabel = 'Range [km]' |
|
853 | self.ylabel = 'Range [km]' | |
847 | self.xlabel = 'Time' |
|
854 | self.xlabel = 'Time' | |
848 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
855 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
849 | if self.CODE == 'coh': |
|
856 | if self.CODE == 'coh': | |
850 | self.cb_label = '' |
|
857 | self.cb_label = '' | |
851 | self.titles = [ |
|
858 | self.titles = [ | |
852 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
859 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
853 | else: |
|
860 | else: | |
854 | self.cb_label = 'Degrees' |
|
861 | self.cb_label = 'Degrees' | |
855 | self.titles = [ |
|
862 | self.titles = [ | |
856 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
863 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
857 |
|
864 | |||
858 | def update(self, dataOut): |
|
865 | def update(self, dataOut): | |
859 |
|
866 | |||
860 | data = {} |
|
867 | data = {} | |
861 | meta = {} |
|
868 | meta = {} | |
862 | data['coh'] = dataOut.getCoherence() |
|
869 | data['coh'] = dataOut.getCoherence() | |
863 | meta['pairs'] = dataOut.pairsList |
|
870 | meta['pairs'] = dataOut.pairsList | |
864 |
|
871 | |||
865 | return data, meta |
|
872 | return data, meta | |
866 |
|
873 | |||
867 | class PhasePlot(CoherencePlot): |
|
874 | class PhasePlot(CoherencePlot): | |
868 | ''' |
|
875 | ''' | |
869 | Plot for Phase map data |
|
876 | Plot for Phase map data | |
870 | ''' |
|
877 | ''' | |
871 |
|
878 | |||
872 | CODE = 'phase' |
|
879 | CODE = 'phase' | |
873 | colormap = 'seismic' |
|
880 | colormap = 'seismic' | |
874 |
|
881 | |||
875 | def update(self, dataOut): |
|
882 | def update(self, dataOut): | |
876 |
|
883 | |||
877 | data = {} |
|
884 | data = {} | |
878 | meta = {} |
|
885 | meta = {} | |
879 | data['phase'] = dataOut.getCoherence(phase=True) |
|
886 | data['phase'] = dataOut.getCoherence(phase=True) | |
880 | meta['pairs'] = dataOut.pairsList |
|
887 | meta['pairs'] = dataOut.pairsList | |
881 |
|
888 | |||
882 | return data, meta |
|
889 | return data, meta | |
883 |
|
890 | |||
884 | class NoisePlot(Plot): |
|
891 | class NoisePlot(Plot): | |
885 | ''' |
|
892 | ''' | |
886 | Plot for noise |
|
893 | Plot for noise | |
887 | ''' |
|
894 | ''' | |
888 |
|
895 | |||
889 | CODE = 'noise' |
|
896 | CODE = 'noise' | |
890 | plot_type = 'scatterbuffer' |
|
897 | plot_type = 'scatterbuffer' | |
891 |
|
898 | |||
892 | def setup(self): |
|
899 | def setup(self): | |
893 | self.xaxis = 'time' |
|
900 | self.xaxis = 'time' | |
894 | self.ncols = 1 |
|
901 | self.ncols = 1 | |
895 | self.nrows = 1 |
|
902 | self.nrows = 1 | |
896 | self.nplots = 1 |
|
903 | self.nplots = 1 | |
897 | self.ylabel = 'Intensity [dB]' |
|
904 | self.ylabel = 'Intensity [dB]' | |
898 | self.xlabel = 'Time' |
|
905 | self.xlabel = 'Time' | |
899 | self.titles = ['Noise'] |
|
906 | self.titles = ['Noise'] | |
900 | self.colorbar = False |
|
907 | self.colorbar = False | |
901 | self.plots_adjust.update({'right': 0.85 }) |
|
908 | self.plots_adjust.update({'right': 0.85 }) | |
902 |
|
909 | |||
903 | def update(self, dataOut): |
|
910 | def update(self, dataOut): | |
904 |
|
911 | |||
905 | data = {} |
|
912 | data = {} | |
906 | meta = {} |
|
913 | meta = {} | |
907 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
914 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
908 | meta['yrange'] = numpy.array([]) |
|
915 | meta['yrange'] = numpy.array([]) | |
909 |
|
916 | |||
910 | return data, meta |
|
917 | return data, meta | |
911 |
|
918 | |||
912 | def plot(self): |
|
919 | def plot(self): | |
913 |
|
920 | |||
914 | x = self.data.times |
|
921 | x = self.data.times | |
915 | xmin = self.data.min_time |
|
922 | xmin = self.data.min_time | |
916 | xmax = xmin + self.xrange * 60 * 60 |
|
923 | xmax = xmin + self.xrange * 60 * 60 | |
917 | Y = self.data['noise'] |
|
924 | Y = self.data['noise'] | |
918 |
|
925 | |||
919 | if self.axes[0].firsttime: |
|
926 | if self.axes[0].firsttime: | |
920 | self.ymin = numpy.nanmin(Y) - 5 |
|
927 | self.ymin = numpy.nanmin(Y) - 5 | |
921 | self.ymax = numpy.nanmax(Y) + 5 |
|
928 | self.ymax = numpy.nanmax(Y) + 5 | |
922 | for ch in self.data.channels: |
|
929 | for ch in self.data.channels: | |
923 | y = Y[ch] |
|
930 | y = Y[ch] | |
924 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
931 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
925 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
932 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
926 | else: |
|
933 | else: | |
927 | for ch in self.data.channels: |
|
934 | for ch in self.data.channels: | |
928 | y = Y[ch] |
|
935 | y = Y[ch] | |
929 | self.axes[0].lines[ch].set_data(x, y) |
|
936 | self.axes[0].lines[ch].set_data(x, y) | |
930 |
|
937 | |||
931 | self.ymin = numpy.nanmin(Y) - 5 |
|
938 | self.ymin = numpy.nanmin(Y) - 5 | |
932 | self.ymax = numpy.nanmax(Y) + 10 |
|
939 | self.ymax = numpy.nanmax(Y) + 10 | |
933 |
|
940 | |||
934 |
|
941 | |||
935 | class PowerProfilePlot(Plot): |
|
942 | class PowerProfilePlot(Plot): | |
936 |
|
943 | |||
937 | CODE = 'pow_profile' |
|
944 | CODE = 'pow_profile' | |
938 | plot_type = 'scatter' |
|
945 | plot_type = 'scatter' | |
939 |
|
946 | |||
940 | def setup(self): |
|
947 | def setup(self): | |
941 |
|
948 | |||
942 | self.ncols = 1 |
|
949 | self.ncols = 1 | |
943 | self.nrows = 1 |
|
950 | self.nrows = 1 | |
944 | self.nplots = 1 |
|
951 | self.nplots = 1 | |
945 | self.height = 4 |
|
952 | self.height = 4 | |
946 | self.width = 3 |
|
953 | self.width = 3 | |
947 | self.ylabel = 'Range [km]' |
|
954 | self.ylabel = 'Range [km]' | |
948 | self.xlabel = 'Intensity [dB]' |
|
955 | self.xlabel = 'Intensity [dB]' | |
949 | self.titles = ['Power Profile'] |
|
956 | self.titles = ['Power Profile'] | |
950 | self.colorbar = False |
|
957 | self.colorbar = False | |
951 |
|
958 | |||
952 | def update(self, dataOut): |
|
959 | def update(self, dataOut): | |
953 |
|
960 | |||
954 | data = {} |
|
961 | data = {} | |
955 | meta = {} |
|
962 | meta = {} | |
956 | data[self.CODE] = dataOut.getPower() |
|
963 | data[self.CODE] = dataOut.getPower() | |
957 |
|
964 | |||
958 | return data, meta |
|
965 | return data, meta | |
959 |
|
966 | |||
960 | def plot(self): |
|
967 | def plot(self): | |
961 |
|
968 | |||
962 | y = self.data.yrange |
|
969 | y = self.data.yrange | |
963 | self.y = y |
|
970 | self.y = y | |
964 |
|
971 | |||
965 | x = self.data[-1][self.CODE] |
|
972 | x = self.data[-1][self.CODE] | |
966 |
|
973 | |||
967 | if self.xmin is None: self.xmin = numpy.nanmin(x) * 0.9 |
|
974 | if self.xmin is None: self.xmin = numpy.nanmin(x) * 0.9 | |
968 | if self.xmax is None: self.xmax = numpy.nanmax(x) * 1.1 |
|
975 | if self.xmax is None: self.xmax = numpy.nanmax(x) * 1.1 | |
969 |
|
976 | |||
970 | if self.axes[0].firsttime: |
|
977 | if self.axes[0].firsttime: | |
971 | for ch in self.data.channels: |
|
978 | for ch in self.data.channels: | |
972 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
979 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
973 | plt.legend() |
|
980 | plt.legend() | |
974 | else: |
|
981 | else: | |
975 | for ch in self.data.channels: |
|
982 | for ch in self.data.channels: | |
976 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
983 | self.axes[0].lines[ch].set_data(x[ch], y) | |
977 |
|
984 | |||
978 |
|
985 | |||
979 | class SpectraCutPlot(Plot): |
|
986 | class SpectraCutPlot(Plot): | |
980 |
|
987 | |||
981 | CODE = 'spc_cut' |
|
988 | CODE = 'spc_cut' | |
982 | plot_type = 'scatter' |
|
989 | plot_type = 'scatter' | |
983 | buffering = False |
|
990 | buffering = False | |
984 |
|
991 | |||
985 | def setup(self): |
|
992 | def setup(self): | |
986 |
|
993 | |||
987 | self.nplots = len(self.data.channels) |
|
994 | self.nplots = len(self.data.channels) | |
988 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
995 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
989 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
996 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
990 | self.width = 3.4 * self.ncols + 1.5 |
|
997 | self.width = 3.4 * self.ncols + 1.5 | |
991 | self.height = 3 * self.nrows |
|
998 | self.height = 3 * self.nrows | |
992 | self.ylabel = 'Power [dB]' |
|
999 | self.ylabel = 'Power [dB]' | |
993 | self.colorbar = False |
|
1000 | self.colorbar = False | |
994 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
1001 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
995 |
|
1002 | |||
996 | def update(self, dataOut): |
|
1003 | def update(self, dataOut): | |
997 |
|
1004 | |||
998 | data = {} |
|
1005 | data = {} | |
999 | meta = {} |
|
1006 | meta = {} | |
1000 | spc = 10 * numpy.log10(dataOut.data_pre[0] / dataOut.normFactor) |
|
1007 | spc = 10 * numpy.log10(dataOut.data_pre[0] / dataOut.normFactor) | |
1001 | data['spc'] = spc |
|
1008 | data['spc'] = spc | |
1002 |
meta['xrange'] = (dataOut.getFreqRange( |
|
1009 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS) / 1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
1003 | if self.CODE == 'cut_gaussian_fit': |
|
1010 | if self.CODE == 'cut_gaussian_fit': | |
1004 | data['gauss_fit0'] = 10 * numpy.log10(dataOut.GaussFit0 / dataOut.normFactor) |
|
1011 | data['gauss_fit0'] = 10 * numpy.log10(dataOut.GaussFit0 / dataOut.normFactor) | |
1005 | data['gauss_fit1'] = 10 * numpy.log10(dataOut.GaussFit1 / dataOut.normFactor) |
|
1012 | data['gauss_fit1'] = 10 * numpy.log10(dataOut.GaussFit1 / dataOut.normFactor) | |
1006 | return data, meta |
|
1013 | return data, meta | |
1007 |
|
1014 | |||
1008 | def plot(self): |
|
1015 | def plot(self): | |
1009 | if self.xaxis == "frequency": |
|
1016 | if self.xaxis == "frequency": | |
1010 | x = self.data.xrange[0][1:] |
|
1017 | x = self.data.xrange[0][1:] | |
1011 | self.xlabel = "Frequency (kHz)" |
|
1018 | self.xlabel = "Frequency (kHz)" | |
1012 | elif self.xaxis == "time": |
|
1019 | elif self.xaxis == "time": | |
1013 | x = self.data.xrange[1] |
|
1020 | x = self.data.xrange[1] | |
1014 | self.xlabel = "Time (ms)" |
|
1021 | self.xlabel = "Time (ms)" | |
1015 | else: |
|
1022 | else: | |
1016 | x = self.data.xrange[2][:-1] |
|
1023 | x = self.data.xrange[2][:-1] | |
1017 | self.xlabel = "Velocity (m/s)" |
|
1024 | self.xlabel = "Velocity (m/s)" | |
1018 |
|
1025 | |||
1019 | if self.CODE == 'cut_gaussian_fit': |
|
1026 | if self.CODE == 'cut_gaussian_fit': | |
1020 | x = self.data.xrange[2][:-1] |
|
1027 | x = self.data.xrange[2][:-1] | |
1021 | self.xlabel = "Velocity (m/s)" |
|
1028 | self.xlabel = "Velocity (m/s)" | |
1022 |
|
1029 | |||
1023 | self.titles = [] |
|
1030 | self.titles = [] | |
1024 |
|
1031 | |||
1025 | y = self.data.yrange |
|
1032 | y = self.data.yrange | |
1026 | data = self.data[-1] |
|
1033 | data = self.data[-1] | |
1027 | z = data['spc'] |
|
1034 | z = data['spc'] | |
1028 |
|
1035 | |||
1029 | if self.height_index: |
|
1036 | if self.height_index: | |
1030 | index = numpy.array(self.height_index) |
|
1037 | index = numpy.array(self.height_index) | |
1031 | else: |
|
1038 | else: | |
1032 | index = numpy.arange(0, len(y), int((len(y)) / 9)) |
|
1039 | index = numpy.arange(0, len(y), int((len(y)) / 9)) | |
1033 |
|
1040 | |||
1034 | for n, ax in enumerate(self.axes): |
|
1041 | for n, ax in enumerate(self.axes): | |
1035 |
if self.CODE == 'cut_gaussian_fit': |
|
1042 | if self.CODE == 'cut_gaussian_fit': | |
1036 | gau0 = data['gauss_fit0'] |
|
1043 | gau0 = data['gauss_fit0'] | |
1037 | gau1 = data['gauss_fit1'] |
|
1044 | gau1 = data['gauss_fit1'] | |
1038 | if ax.firsttime: |
|
1045 | if ax.firsttime: | |
1039 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1046 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1040 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1047 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1041 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1048 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) | |
1042 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1049 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) | |
1043 |
|
1050 | |||
1044 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1051 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
1045 | if self.CODE == 'cut_gaussian_fit': |
|
1052 | if self.CODE == 'cut_gaussian_fit': | |
1046 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1053 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
1047 | for i, line in enumerate(ax.plt_gau0): |
|
1054 | for i, line in enumerate(ax.plt_gau0): | |
1048 |
line.set_color(ax.plt[i].get_color()) |
|
1055 | line.set_color(ax.plt[i].get_color()) | |
1049 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1056 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
1050 | for i, line in enumerate(ax.plt_gau1): |
|
1057 | for i, line in enumerate(ax.plt_gau1): | |
1051 |
line.set_color(ax.plt[i].get_color()) |
|
1058 | line.set_color(ax.plt[i].get_color()) | |
1052 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1059 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
1053 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1060 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
1054 | else: |
|
1061 | else: | |
1055 | for i, line in enumerate(ax.plt): |
|
1062 | for i, line in enumerate(ax.plt): | |
1056 | line.set_data(x, z[n, :, index[i]].T) |
|
1063 | line.set_data(x, z[n, :, index[i]].T) | |
1057 | for i, line in enumerate(ax.plt_gau0): |
|
1064 | for i, line in enumerate(ax.plt_gau0): | |
1058 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1065 | line.set_data(x, gau0[n, :, index[i]].T) | |
1059 | line.set_color(ax.plt[i].get_color()) |
|
1066 | line.set_color(ax.plt[i].get_color()) | |
1060 | for i, line in enumerate(ax.plt_gau1): |
|
1067 | for i, line in enumerate(ax.plt_gau1): | |
1061 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1068 | line.set_data(x, gau1[n, :, index[i]].T) | |
1062 | line.set_color(ax.plt[i].get_color()) |
|
1069 | line.set_color(ax.plt[i].get_color()) | |
1063 | self.titles.append('CH {}'.format(n)) |
|
1070 | self.titles.append('CH {}'.format(n)) | |
1064 |
|
1071 | |||
1065 |
|
1072 | |||
1066 | class BeaconPhase(Plot): |
|
1073 | class BeaconPhase(Plot): | |
1067 |
|
1074 | |||
1068 | __isConfig = None |
|
1075 | __isConfig = None | |
1069 | __nsubplots = None |
|
1076 | __nsubplots = None | |
1070 |
|
1077 | |||
1071 | PREFIX = 'beacon_phase' |
|
1078 | PREFIX = 'beacon_phase' | |
1072 |
|
1079 | |||
1073 | def __init__(self): |
|
1080 | def __init__(self): | |
1074 | Plot.__init__(self) |
|
1081 | Plot.__init__(self) | |
1075 | self.timerange = 24 * 60 * 60 |
|
1082 | self.timerange = 24 * 60 * 60 | |
1076 | self.isConfig = False |
|
1083 | self.isConfig = False | |
1077 | self.__nsubplots = 1 |
|
1084 | self.__nsubplots = 1 | |
1078 | self.counter_imagwr = 0 |
|
1085 | self.counter_imagwr = 0 | |
1079 | self.WIDTH = 800 |
|
1086 | self.WIDTH = 800 | |
1080 | self.HEIGHT = 400 |
|
1087 | self.HEIGHT = 400 | |
1081 | self.WIDTHPROF = 120 |
|
1088 | self.WIDTHPROF = 120 | |
1082 | self.HEIGHTPROF = 0 |
|
1089 | self.HEIGHTPROF = 0 | |
1083 | self.xdata = None |
|
1090 | self.xdata = None | |
1084 | self.ydata = None |
|
1091 | self.ydata = None | |
1085 |
|
1092 | |||
1086 | self.PLOT_CODE = BEACON_CODE |
|
1093 | self.PLOT_CODE = BEACON_CODE | |
1087 |
|
1094 | |||
1088 | self.FTP_WEI = None |
|
1095 | self.FTP_WEI = None | |
1089 | self.EXP_CODE = None |
|
1096 | self.EXP_CODE = None | |
1090 | self.SUB_EXP_CODE = None |
|
1097 | self.SUB_EXP_CODE = None | |
1091 | self.PLOT_POS = None |
|
1098 | self.PLOT_POS = None | |
1092 |
|
1099 | |||
1093 | self.filename_phase = None |
|
1100 | self.filename_phase = None | |
1094 |
|
1101 | |||
1095 | self.figfile = None |
|
1102 | self.figfile = None | |
1096 |
|
1103 | |||
1097 | self.xmin = None |
|
1104 | self.xmin = None | |
1098 | self.xmax = None |
|
1105 | self.xmax = None | |
1099 |
|
1106 | |||
1100 | def getSubplots(self): |
|
1107 | def getSubplots(self): | |
1101 |
|
1108 | |||
1102 | ncol = 1 |
|
1109 | ncol = 1 | |
1103 | nrow = 1 |
|
1110 | nrow = 1 | |
1104 |
|
1111 | |||
1105 | return nrow, ncol |
|
1112 | return nrow, ncol | |
1106 |
|
1113 | |||
1107 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1114 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1108 |
|
1115 | |||
1109 | self.__showprofile = showprofile |
|
1116 | self.__showprofile = showprofile | |
1110 | self.nplots = nplots |
|
1117 | self.nplots = nplots | |
1111 |
|
1118 | |||
1112 | ncolspan = 7 |
|
1119 | ncolspan = 7 | |
1113 | colspan = 6 |
|
1120 | colspan = 6 | |
1114 | self.__nsubplots = 2 |
|
1121 | self.__nsubplots = 2 | |
1115 |
|
1122 | |||
1116 | self.createFigure(id=id, |
|
1123 | self.createFigure(id=id, | |
1117 | wintitle=wintitle, |
|
1124 | wintitle=wintitle, | |
1118 | widthplot=self.WIDTH + self.WIDTHPROF, |
|
1125 | widthplot=self.WIDTH + self.WIDTHPROF, | |
1119 | heightplot=self.HEIGHT + self.HEIGHTPROF, |
|
1126 | heightplot=self.HEIGHT + self.HEIGHTPROF, | |
1120 | show=show) |
|
1127 | show=show) | |
1121 |
|
1128 | |||
1122 | nrow, ncol = self.getSubplots() |
|
1129 | nrow, ncol = self.getSubplots() | |
1123 |
|
1130 | |||
1124 | self.addAxes(nrow, ncol * ncolspan, 0, 0, colspan, 1) |
|
1131 | self.addAxes(nrow, ncol * ncolspan, 0, 0, colspan, 1) | |
1125 |
|
1132 | |||
1126 | def save_phase(self, filename_phase): |
|
1133 | def save_phase(self, filename_phase): | |
1127 | f = open(filename_phase, 'w+') |
|
1134 | f = open(filename_phase, 'w+') | |
1128 | f.write('\n\n') |
|
1135 | f.write('\n\n') | |
1129 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1136 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1130 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n') |
|
1137 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n') | |
1131 | f.close() |
|
1138 | f.close() | |
1132 |
|
1139 | |||
1133 | def save_data(self, filename_phase, data, data_datetime): |
|
1140 | def save_data(self, filename_phase, data, data_datetime): | |
1134 | f = open(filename_phase, 'a') |
|
1141 | f = open(filename_phase, 'a') | |
1135 | timetuple_data = data_datetime.timetuple() |
|
1142 | timetuple_data = data_datetime.timetuple() | |
1136 | day = str(timetuple_data.tm_mday) |
|
1143 | day = str(timetuple_data.tm_mday) | |
1137 | month = str(timetuple_data.tm_mon) |
|
1144 | month = str(timetuple_data.tm_mon) | |
1138 | year = str(timetuple_data.tm_year) |
|
1145 | year = str(timetuple_data.tm_year) | |
1139 | hour = str(timetuple_data.tm_hour) |
|
1146 | hour = str(timetuple_data.tm_hour) | |
1140 | minute = str(timetuple_data.tm_min) |
|
1147 | minute = str(timetuple_data.tm_min) | |
1141 | second = str(timetuple_data.tm_sec) |
|
1148 | second = str(timetuple_data.tm_sec) | |
1142 | f.write(day + ' ' + month + ' ' + year + ' ' + hour + ' ' + minute + ' ' + second + ' ' + str(data[0]) + ' ' + str(data[1]) + ' ' + str(data[2]) + ' ' + str(data[3]) + '\n') |
|
1149 | f.write(day + ' ' + month + ' ' + year + ' ' + hour + ' ' + minute + ' ' + second + ' ' + str(data[0]) + ' ' + str(data[1]) + ' ' + str(data[2]) + ' ' + str(data[3]) + '\n') | |
1143 | f.close() |
|
1150 | f.close() | |
1144 |
|
1151 | |||
1145 | def plot(self): |
|
1152 | def plot(self): | |
1146 | log.warning('TODO: Not yet implemented...') |
|
1153 | log.warning('TODO: Not yet implemented...') | |
1147 |
|
1154 | |||
1148 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1155 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1149 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1156 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1150 | timerange=None, |
|
1157 | timerange=None, | |
1151 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1158 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1152 | server=None, folder=None, username=None, password=None, |
|
1159 | server=None, folder=None, username=None, password=None, | |
1153 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1160 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1154 |
|
1161 | |||
1155 | if dataOut.flagNoData: |
|
1162 | if dataOut.flagNoData: | |
1156 | return dataOut |
|
1163 | return dataOut | |
1157 |
|
1164 | |||
1158 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1165 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1159 | return |
|
1166 | return | |
1160 |
|
1167 | |||
1161 | if pairsList == None: |
|
1168 | if pairsList == None: | |
1162 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1169 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1163 | else: |
|
1170 | else: | |
1164 | pairsIndexList = [] |
|
1171 | pairsIndexList = [] | |
1165 | for pair in pairsList: |
|
1172 | for pair in pairsList: | |
1166 | if pair not in dataOut.pairsList: |
|
1173 | if pair not in dataOut.pairsList: | |
1167 | raise ValueError("Pair %s is not in dataOut.pairsList" % (pair)) |
|
1174 | raise ValueError("Pair %s is not in dataOut.pairsList" % (pair)) | |
1168 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1175 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1169 |
|
1176 | |||
1170 | if pairsIndexList == []: |
|
1177 | if pairsIndexList == []: | |
1171 | return |
|
1178 | return | |
1172 |
|
1179 | |||
1173 | # if len(pairsIndexList) > 4: |
|
1180 | # if len(pairsIndexList) > 4: | |
1174 | # pairsIndexList = pairsIndexList[0:4] |
|
1181 | # pairsIndexList = pairsIndexList[0:4] | |
1175 |
|
1182 | |||
1176 | hmin_index = None |
|
1183 | hmin_index = None | |
1177 | hmax_index = None |
|
1184 | hmax_index = None | |
1178 |
|
1185 | |||
1179 | if hmin != None and hmax != None: |
|
1186 | if hmin != None and hmax != None: | |
1180 | indexes = numpy.arange(dataOut.nHeights) |
|
1187 | indexes = numpy.arange(dataOut.nHeights) | |
1181 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1188 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1182 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1189 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1183 |
|
1190 | |||
1184 | if hmin_list.any(): |
|
1191 | if hmin_list.any(): | |
1185 | hmin_index = hmin_list[0] |
|
1192 | hmin_index = hmin_list[0] | |
1186 |
|
1193 | |||
1187 | if hmax_list.any(): |
|
1194 | if hmax_list.any(): | |
1188 | hmax_index = hmax_list[-1] + 1 |
|
1195 | hmax_index = hmax_list[-1] + 1 | |
1189 |
|
1196 | |||
1190 | x = dataOut.getTimeRange() |
|
1197 | x = dataOut.getTimeRange() | |
1191 |
|
1198 | |||
1192 | thisDatetime = dataOut.datatime |
|
1199 | thisDatetime = dataOut.datatime | |
1193 |
|
1200 | |||
1194 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1201 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1195 | xlabel = "Local Time" |
|
1202 | xlabel = "Local Time" | |
1196 | ylabel = "Phase (degrees)" |
|
1203 | ylabel = "Phase (degrees)" | |
1197 |
|
1204 | |||
1198 | update_figfile = False |
|
1205 | update_figfile = False | |
1199 |
|
1206 | |||
1200 | nplots = len(pairsIndexList) |
|
1207 | nplots = len(pairsIndexList) | |
1201 | # phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1208 | # phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1202 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1209 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1203 | for i in range(nplots): |
|
1210 | for i in range(nplots): | |
1204 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1211 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1205 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1212 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1206 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1213 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1207 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1214 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1208 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
1215 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
1209 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real) * 180 / numpy.pi |
|
1216 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real) * 180 / numpy.pi | |
1210 |
|
1217 | |||
1211 | if dataOut.beacon_heiIndexList: |
|
1218 | if dataOut.beacon_heiIndexList: | |
1212 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1219 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1213 | else: |
|
1220 | else: | |
1214 | phase_beacon[i] = numpy.average(phase) |
|
1221 | phase_beacon[i] = numpy.average(phase) | |
1215 |
|
1222 | |||
1216 | if not self.isConfig: |
|
1223 | if not self.isConfig: | |
1217 |
|
1224 | |||
1218 | nplots = len(pairsIndexList) |
|
1225 | nplots = len(pairsIndexList) | |
1219 |
|
1226 | |||
1220 | self.setup(id=id, |
|
1227 | self.setup(id=id, | |
1221 | nplots=nplots, |
|
1228 | nplots=nplots, | |
1222 | wintitle=wintitle, |
|
1229 | wintitle=wintitle, | |
1223 | showprofile=showprofile, |
|
1230 | showprofile=showprofile, | |
1224 | show=show) |
|
1231 | show=show) | |
1225 |
|
1232 | |||
1226 | if timerange != None: |
|
1233 | if timerange != None: | |
1227 | self.timerange = timerange |
|
1234 | self.timerange = timerange | |
1228 |
|
1235 | |||
1229 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1236 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1230 |
|
1237 | |||
1231 | if ymin == None: ymin = 0 |
|
1238 | if ymin == None: ymin = 0 | |
1232 | if ymax == None: ymax = 360 |
|
1239 | if ymax == None: ymax = 360 | |
1233 |
|
1240 | |||
1234 | self.FTP_WEI = ftp_wei |
|
1241 | self.FTP_WEI = ftp_wei | |
1235 | self.EXP_CODE = exp_code |
|
1242 | self.EXP_CODE = exp_code | |
1236 | self.SUB_EXP_CODE = sub_exp_code |
|
1243 | self.SUB_EXP_CODE = sub_exp_code | |
1237 | self.PLOT_POS = plot_pos |
|
1244 | self.PLOT_POS = plot_pos | |
1238 |
|
1245 | |||
1239 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1246 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1240 | self.isConfig = True |
|
1247 | self.isConfig = True | |
1241 | self.figfile = figfile |
|
1248 | self.figfile = figfile | |
1242 | self.xdata = numpy.array([]) |
|
1249 | self.xdata = numpy.array([]) | |
1243 | self.ydata = numpy.array([]) |
|
1250 | self.ydata = numpy.array([]) | |
1244 |
|
1251 | |||
1245 | update_figfile = True |
|
1252 | update_figfile = True | |
1246 |
|
1253 | |||
1247 | # open file beacon phase |
|
1254 | # open file beacon phase | |
1248 | path = '%s%03d' % (self.PREFIX, self.id) |
|
1255 | path = '%s%03d' % (self.PREFIX, self.id) | |
1249 | beacon_file = os.path.join(path, '%s.txt' % self.name) |
|
1256 | beacon_file = os.path.join(path, '%s.txt' % self.name) | |
1250 | self.filename_phase = os.path.join(figpath, beacon_file) |
|
1257 | self.filename_phase = os.path.join(figpath, beacon_file) | |
1251 | # self.save_phase(self.filename_phase) |
|
1258 | # self.save_phase(self.filename_phase) | |
1252 |
|
1259 | |||
1253 |
|
1260 | |||
1254 | # store data beacon phase |
|
1261 | # store data beacon phase | |
1255 | # self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1262 | # self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1256 |
|
1263 | |||
1257 | self.setWinTitle(title) |
|
1264 | self.setWinTitle(title) | |
1258 |
|
1265 | |||
1259 |
|
1266 | |||
1260 | title = "Phase Plot %s" % (thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1267 | title = "Phase Plot %s" % (thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1261 |
|
1268 | |||
1262 | legendlabels = ["Pair (%d,%d)" % (pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1269 | legendlabels = ["Pair (%d,%d)" % (pair[0], pair[1]) for pair in dataOut.pairsList] | |
1263 |
|
1270 | |||
1264 | axes = self.axesList[0] |
|
1271 | axes = self.axesList[0] | |
1265 |
|
1272 | |||
1266 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1273 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1267 |
|
1274 | |||
1268 | if len(self.ydata) == 0: |
|
1275 | if len(self.ydata) == 0: | |
1269 | self.ydata = phase_beacon.reshape(-1, 1) |
|
1276 | self.ydata = phase_beacon.reshape(-1, 1) | |
1270 | else: |
|
1277 | else: | |
1271 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1, 1))) |
|
1278 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1, 1))) | |
1272 |
|
1279 | |||
1273 |
|
1280 | |||
1274 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1281 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1275 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1282 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1276 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1283 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1277 | XAxisAsTime=True, grid='both' |
|
1284 | XAxisAsTime=True, grid='both' | |
1278 | ) |
|
1285 | ) | |
1279 |
|
1286 | |||
1280 | self.draw() |
|
1287 | self.draw() | |
1281 |
|
1288 | |||
1282 | if dataOut.ltctime >= self.xmax: |
|
1289 | if dataOut.ltctime >= self.xmax: | |
1283 | self.counter_imagwr = wr_period |
|
1290 | self.counter_imagwr = wr_period | |
1284 | self.isConfig = False |
|
1291 | self.isConfig = False | |
1285 | update_figfile = True |
|
1292 | update_figfile = True | |
1286 |
|
1293 | |||
1287 | self.save(figpath=figpath, |
|
1294 | self.save(figpath=figpath, | |
1288 | figfile=figfile, |
|
1295 | figfile=figfile, | |
1289 | save=save, |
|
1296 | save=save, | |
1290 | ftp=ftp, |
|
1297 | ftp=ftp, | |
1291 | wr_period=wr_period, |
|
1298 | wr_period=wr_period, | |
1292 | thisDatetime=thisDatetime, |
|
1299 | thisDatetime=thisDatetime, | |
1293 | update_figfile=update_figfile) |
|
1300 | update_figfile=update_figfile) | |
1294 |
|
1301 | |||
1295 | return dataOut |
|
1302 | return dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now