@@ -1,356 +1,362 | |||
|
1 | 1 | import numpy,os,time |
|
2 | 2 | import matplotlib |
|
3 | 3 | import argparse |
|
4 | 4 | import matplotlib.pyplot as plt |
|
5 | 5 | from wradlib.io import read_generic_hdf5 |
|
6 | 6 | from wradlib.util import get_wradlib_data_file |
|
7 | 7 | from plotting_codes import sophy_cb_tables |
|
8 | 8 | from scipy import stats |
|
9 | 9 | |
|
10 | 10 | for name, cb_table in sophy_cb_tables: |
|
11 | 11 | ncmap = matplotlib.colors.ListedColormap(cb_table, name=name) |
|
12 | 12 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
13 | 13 | ''' |
|
14 | 14 | NOTA: |
|
15 | 15 | - python3.10 |
|
16 | 16 | - Conda environment: |
|
17 | 17 | WR_CONDA_JUN14 * /home/soporte/anaconda3/envs/WR_CONDA_JUN14 |
|
18 | 18 | export WRADLIB_DATA = "/media/soporte/TOSHIBAEXT/sophy/HYO_CC4_CC64_COMB@2022-12-26T00-00-32/param-EVENTO/" |
|
19 | 19 | - Update de plotting_codes |
|
20 | 20 | ''' |
|
21 | 21 | PARAM = { |
|
22 | 22 | 'S': {'var': 'power','vmin': -45, 'vmax': -15, 'cmap': 'jet', 'label': 'Power','unit': 'dBm'}, |
|
23 | 23 | 'V': {'var': 'velocity', 'vmin': -10, 'vmax': 10 , 'cmap': 'sophy_v', 'label': 'Velocity','unit': 'm/s'}, |
|
24 | 24 | 'Z': {'var': 'reflectivity','vmin': -20, 'vmax': 80 , 'cmap': 'sophy_z','label': 'Reflectivity','unit': 'dBZ'}, |
|
25 | 25 | 'W': {'var': 'spectral_width', 'vmin': 0 , 'vmax': 12 , 'cmap': 'sophy_w','label': 'Spectral Width','unit': 'm/s'}, |
|
26 | 26 | 'R': {'var':'rhoHV','vmin': 0.2, 'vmax': 1, 'cmap': 'sophy_r','label': 'RhoHV', 'unit': ' '}, |
|
27 | 27 | 'D': {'var': 'differential_reflectivity','vmin': -9, 'vmax': 12, 'cmap': 'sophy_d','label': 'ZDR' , 'unit': 'dB'} |
|
28 | 28 | } |
|
29 | 29 | |
|
30 | 30 | class Readsophy(): |
|
31 | 31 | def __init__(self): |
|
32 | 32 | self.list_file = None |
|
33 | 33 | self.grado = None |
|
34 | 34 | self.variable = None |
|
35 | 35 | self.save = None |
|
36 | 36 | self.range = None |
|
37 | 37 | def setup(self, path_file,mode,type,grado,range,r_min,variable,save): |
|
38 | 38 | self.path_file = path_file |
|
39 | 39 | self.mode = mode |
|
40 | 40 | self.range = range |
|
41 | 41 | self.grado = grado |
|
42 | 42 | self.r_min = r_min |
|
43 | 43 | self.variable = variable |
|
44 | 44 | self.save = save |
|
45 | 45 | self.type_ = type |
|
46 | 46 | self.list_file = self.read_files(path_file=self.path_file,mode=self.mode,grado=self.grado, variable=self.variable) |
|
47 | 47 | print("self.list_file",self.list_file) |
|
48 | 48 | |
|
49 | 49 | def read_files(self,path_file,mode=None,grado=None, variable=None): |
|
50 | 50 | if mode =='PPI': |
|
51 | 51 | filter= "_E"+str(grado)+".0_"+variable |
|
52 | 52 | else: |
|
53 | 53 | filter= "_A"+str(grado)+".0_"+variable |
|
54 | 54 | print("Filter :",filter) |
|
55 | 55 | validFilelist = [] |
|
56 | 56 | fileList= os.listdir(path_file) |
|
57 | 57 | for thisFile in fileList: |
|
58 | 58 | #print(thisFile) |
|
59 | 59 | if not os.path.splitext(thisFile)[0][-7:] in filter: |
|
60 | 60 | print("s_:",os.path.splitext(thisFile)[0][-7:]) |
|
61 | 61 | continue |
|
62 | 62 | validFilelist.append(thisFile) |
|
63 | 63 | validFilelist.sort() |
|
64 | 64 | return validFilelist |
|
65 | 65 | |
|
66 | 66 | def readAttributes(self,obj,variable): |
|
67 | 67 | var = PARAM[variable]['var'] |
|
68 | 68 | unit = PARAM[variable]['unit'] |
|
69 | 69 | cmap = PARAM[variable]['cmap'] |
|
70 | 70 | vmin = PARAM[variable]['vmin'] |
|
71 | 71 | vmax = PARAM[variable]['vmax'] |
|
72 | 72 | label = PARAM[variable]['label'] |
|
73 | 73 | var_ = 'Data/'+var+'/H' |
|
74 | 74 | data_arr = numpy.array(obj[var_]['data']) # data |
|
75 | 75 | utc_time = numpy.array(obj['Data/time']['data']) |
|
76 | 76 | data_azi = numpy.array(obj['Metadata/azimuth']['data']) # th |
|
77 | 77 | data_ele = numpy.array(obj["Metadata/elevation"]['data']) |
|
78 | 78 | heightList = numpy.array(obj["Metadata/range"]['data']) # r |
|
79 | 79 | return data_arr, utc_time, data_azi,data_ele, heightList,unit,cmap,vmin,vmax,label |
|
80 | 80 | |
|
81 | 81 | def selectHeights(self,heightList,minHei,maxHei): |
|
82 | 82 | |
|
83 | 83 | if minHei and maxHei: |
|
84 | 84 | if (minHei < heightList[0]): |
|
85 | 85 | minHei = heightList[0] |
|
86 | 86 | if (maxHei > heightList[-1]): |
|
87 | 87 | maxHei = heightList[-1] |
|
88 | 88 | minIndex = 0 |
|
89 | 89 | maxIndex = 0 |
|
90 | 90 | heights = heightList |
|
91 | 91 | |
|
92 | 92 | inda = numpy.where(heights >= minHei) |
|
93 | 93 | indb = numpy.where(heights <= maxHei) |
|
94 | 94 | |
|
95 | 95 | try: |
|
96 | 96 | minIndex = inda[0][0] |
|
97 | 97 | except: |
|
98 | 98 | minIndex = 0 |
|
99 | 99 | |
|
100 | 100 | try: |
|
101 | 101 | maxIndex = indb[0][-1] |
|
102 | 102 | except: |
|
103 | 103 | maxIndex = len(heights) |
|
104 | 104 | |
|
105 | 105 | new_heightList= self.selectHeightsByIndex(heightList=heightList,minIndex=minIndex, maxIndex=maxIndex) |
|
106 | 106 | |
|
107 | 107 | return new_heightList, minIndex,maxIndex |
|
108 | 108 | |
|
109 | 109 | def selectHeightsByIndex(self,heightList,minIndex, maxIndex): |
|
110 | 110 | |
|
111 | 111 | if (minIndex < 0) or (minIndex > maxIndex): |
|
112 | 112 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
113 | 113 | |
|
114 | 114 | if (maxIndex >= len(heightList)): |
|
115 | 115 | maxIndex = len(heightList) |
|
116 | 116 | |
|
117 | 117 | new_h = heightList[minIndex:maxIndex] |
|
118 | 118 | return new_h |
|
119 | 119 | |
|
120 | 120 | def plot_RTI_PPI_RHI(self,count,x,y,z,cmap,my_time,vmin,vmax,label,unit,mode,grado): |
|
121 | 121 | if count==1: |
|
122 | 122 | fig = plt.figure(figsize=(8,6)) |
|
123 | 123 | plt.pcolormesh(x,y,z,cmap =cmap, vmin = vmin, vmax = vmax) |
|
124 | title = 'Sophy Plot'+label+"-"+ my_time+" "+mode+" "+grado | |
|
124 | title = 'Sophy Plot '+label+"-"+ my_time+" "+mode+" "+grado+" NΒ° "+str(count) | |
|
125 | 125 | t = plt.title(title, fontsize=12,y=1.05) |
|
126 | 126 | cbar = plt.colorbar() |
|
127 | 127 | cbar.set_label(label+'[' + unit + ']') |
|
128 | 128 | else: |
|
129 | 129 | plt.pcolormesh(x,y,z, cmap =cmap, vmin = vmin, vmax = vmax) |
|
130 | title = 'Sophy Plot'+label+"-"+ my_time+" "+mode+" "+grado | |
|
130 | title = 'Sophy Plot '+label+"-"+ my_time+" "+mode+" "+grado+" NΒ° "+str(count) | |
|
131 | 131 | t = plt.title(title, fontsize=12,y=1.05) |
|
132 | 132 | cbar = plt.colorbar() |
|
133 | 133 | cbar.set_label(label+'[' + unit + ']') |
|
134 | 134 | |
|
135 | 135 | def plot_PROFILE(self,count,z,y,my_time,label,mode,grado): |
|
136 | 136 | if count==1: |
|
137 | 137 | fig = plt.figure(figsize=(8,6)) |
|
138 | plt.plot(z,y) | |
|
139 | title = 'Sophy Plot '+label+"-"+ my_time+" "+mode+" "+grado | |
|
138 | plt.plot(numpy.nanmean(z,1),y) | |
|
139 | title = 'Sophy Plot '+label+"-"+ my_time+" "+mode+" "+grado+" NΒ° "+str(count) | |
|
140 | 140 | t = plt.title(title, fontsize=12,y=1.05) |
|
141 | 141 | plt.ylim(0,self.range+1) |
|
142 | 142 | plt.xlabel(label) |
|
143 | 143 | plt.ylabel('Height(Km)') |
|
144 | 144 | if self.variable=="R": |
|
145 | 145 | plt.xlim(-1,3) |
|
146 | 146 | if self.variable=='D': |
|
147 | 147 | plt.xlim(-10,10) |
|
148 | if self.variable=='Z': | |
|
149 | plt.xlim(-20,80) | |
|
148 | 150 | else: |
|
149 | plt.plot(z,y) | |
|
150 | title = 'Sophy Plot '+label+"-"+ my_time+" "+mode+" "+grado | |
|
151 | plt.plot(numpy.nanmean(z,1),y) | |
|
152 | title = 'Sophy Plot '+label+"-"+ my_time+" "+mode+" "+grado+" NΒ° "+str(count) | |
|
151 | 153 | t = plt.title(title, fontsize=12,y=1.05) |
|
152 | 154 | plt.ylim(0,self.range+1) |
|
153 | 155 | plt.xlabel(label) |
|
154 | 156 | plt.ylabel('Height(Km)') |
|
155 | 157 | if self.variable=="R": |
|
156 | 158 | plt.xlim(-1,3) |
|
157 | 159 | if self.variable=='D': |
|
158 | 160 | plt.xlim(-10,10) |
|
161 | if self.variable=='Z': | |
|
162 | plt.xlim(-20,80) | |
|
159 | 163 | |
|
160 | 164 | def save_PIC(self,count,time_save): |
|
161 | 165 | if count ==1: |
|
162 | 166 | filename = "SOPHY"+"_"+time_save+"_"+self.mode+"_"+self.grado+"_"+self.variable+str(self.range)+".png" |
|
163 | 167 | dir =self.variable+"_"+self.mode+self.grado+"CH0/" |
|
164 | 168 | filesavepath = os.path.join(self.path_file,dir) |
|
165 | 169 | try: |
|
166 | 170 | os.mkdir(filesavepath) |
|
167 | 171 | except: |
|
168 | 172 | pass |
|
169 | 173 | else: |
|
170 | 174 | dir =self.variable+"_"+self.mode+self.grado+"CH0/" |
|
171 | 175 | filesavepath = os.path.join(self.path_file,dir) |
|
172 | 176 | filename = "SOPHY"+"_"+time_save+"_"+"E."+self.grado+"_"+self.variable+str(self.range)+".png" |
|
173 | 177 | plt.savefig(filesavepath+filename) |
|
174 | 178 | |
|
175 | def seleccion_roHV_min(self,count,z,arr): | |
|
179 | def seleccion_roHV_min(self,count,z,y,arr_): | |
|
180 | ##print("y",y) | |
|
176 | 181 | if self.variable=='R': |
|
177 | 182 | len_Z= z.shape[1] |
|
178 | 183 | min_CC=numpy.zeros(len_Z) |
|
179 | 184 | min_index_CC = numpy.zeros(len_Z) |
|
180 | 185 | for i in range(len_Z): |
|
181 | 186 | tmp=numpy.nanmin(z[:,i]) |
|
182 | 187 | tmp_index = numpy.nanargmin((z[:,i])) |
|
183 | ||
|
184 | if tmp <0.6: | |
|
188 | if tmp <0.5: | |
|
185 | 189 | tmp_index= numpy.nan |
|
186 | 190 | value = numpy.nan |
|
187 | 191 | else: |
|
188 |
value= |
|
|
192 | value= y[tmp_index] | |
|
189 | 193 | min_CC[i] =value |
|
190 | 194 | moda_,count_m_ = stats.mode(min_CC) |
|
191 | print(moda_) | |
|
195 | #print("MODA",moda_) | |
|
192 | 196 | for i in range(len_Z): |
|
193 | 197 | if min_CC[i]>moda_[0]+0.15 or min_CC[i]<moda_[0]-0.15: |
|
194 | 198 | min_CC[i]=numpy.nan |
|
195 | ||
|
196 | min_index_CC=min_CC/0.06 | |
|
199 | print("MIN_CC",min_CC) | |
|
200 | print("y[0]",y[0]) | |
|
201 | min_index_CC=((min_CC-y[0])/0.06) | |
|
197 | 202 | if count == 0: |
|
198 | 203 | arr_ = min_index_CC |
|
199 | 204 | else: |
|
200 | 205 | arr_ = numpy.append(arr_,min_index_CC) |
|
206 | print("arr_",min_index_CC) | |
|
201 | 207 | return arr_ |
|
202 | 208 | else: |
|
203 | print("Operation JUST for roHV ") | |
|
209 | print("Operation JUST for roHV - EXIT ") | |
|
210 | exit() | |
|
211 | ||
|
212 | def pp_BB(self,count,x,y,z,filename,c_max,prom_List): | |
|
213 | #print("z shape",z.shape) | |
|
214 | len_Z = z.shape[1] | |
|
215 | len_X = x.shape[0] | |
|
216 | try: | |
|
217 | min_CC = numpy.load(filename) | |
|
218 | except: | |
|
219 | print("There is no file") | |
|
220 | exit() | |
|
221 | ||
|
222 | #print(min_CC.shape,len_X) | |
|
223 | #print(min_CC) | |
|
224 | if count ==1: | |
|
225 | c_min = 0 | |
|
226 | c_max = c_max+ len_X | |
|
227 | plt.plot(x,y[0]+min_CC[c_min:c_max]*0.06,'yo') | |
|
228 | else: | |
|
229 | c_min = c_max | |
|
230 | c_max = c_min+len_X | |
|
231 | try: | |
|
232 | plt.plot(x,y[0]+min_CC[c_min:c_max]*0.06,'yo') | |
|
233 | except: | |
|
234 | print("Check number of file") | |
|
235 | return 0 | |
|
236 | ||
|
237 | bb = numpy.zeros(len_Z) | |
|
238 | min_READ_CC = min_CC[c_min:c_max] | |
|
239 | #print(min_READ_CC[0:50]) | |
|
240 | for i in range(len_Z): | |
|
241 | if min_READ_CC[i]==numpy.nan: | |
|
242 | bb[i]=numpy.nan | |
|
243 | try: | |
|
244 | bb[i]=z[int(min_READ_CC[i])][i] | |
|
245 | except: | |
|
246 | bb[i]=numpy.nan | |
|
247 | print("bb _ prom_ZDR",numpy.nanmean(bb)) | |
|
248 | prom_List.append(numpy.nanmean(bb)) | |
|
249 | return c_max | |
|
250 | ||
|
204 | 251 | |
|
205 | 252 | def run(self): |
|
206 | 253 | count = 0 |
|
207 | 254 | len_files = len(self.list_file) |
|
208 | 255 | SAVE_PARAM= [] |
|
209 | 256 | for thisFile in self.list_file: |
|
210 | 257 | count= count +1 |
|
211 | 258 | print("Count :", count) |
|
212 | 259 | fullpathfile = self.path_file + thisFile |
|
213 | 260 | filename = get_wradlib_data_file(fullpathfile) |
|
214 | 261 | test_hdf5 = read_generic_hdf5(filename) |
|
215 | 262 | # LECTURA |
|
216 | 263 | data_arr, utc_time, data_azi,data_ele, heightList,unit,cmap,vmin,vmax,label = self.readAttributes(obj= test_hdf5,variable=self.variable) |
|
217 | 264 | len_X= data_arr.shape[0] |
|
218 | 265 | # SELECCION DE ALTURAS |
|
219 | 266 | if self.range==0: |
|
220 | 267 | self.range == heightList[-1] |
|
221 | 268 | if self.r_min==0: |
|
222 | 269 | self.r_min = 0.01 |
|
223 | 270 | new_heightList,minIndex,maxIndex = self.selectHeights(heightList,self.r_min,self.range) |
|
224 | 271 | # TIEMPO |
|
225 | 272 | utc_time[0] = utc_time[0]+60*60*5 |
|
226 | 273 | my_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(utc_time[0])) |
|
227 | 274 | time_save = time.strftime('%Y%m%d_%H%M%S',time.localtime(utc_time[0])) |
|
228 | 275 | data_arr= data_arr[:,minIndex:maxIndex].transpose() |
|
229 | 276 | # VARIABLES |
|
230 | 277 | x=numpy.linspace(1,len_X,len_X) |
|
231 | 278 | y= new_heightList |
|
232 | 279 | z=data_arr |
|
233 | 280 | profile = numpy.mean(z,1) |
|
234 | # Seleccion del arreglo | |
|
235 | ''' | |
|
236 | len_Z= z.shape[1] | |
|
237 | min_CC=numpy.zeros(len_Z) | |
|
238 | min_index_CC = numpy.zeros(len_Z) | |
|
239 | for i in range(len_Z): | |
|
240 | tmp=numpy.nanmin(z[:,i]) | |
|
241 | tmp_index = numpy.nanargmin((z[:,i])) | |
|
242 | ||
|
243 | if tmp <0.6: | |
|
244 | tmp_index= numpy.nan | |
|
245 | value = numpy.nan | |
|
246 | else: | |
|
247 | value= new_heightList[tmp_index] | |
|
248 | min_CC[i] =value | |
|
249 | moda_,count_m_ = stats.mode(min_CC) | |
|
250 | print(moda_) | |
|
251 | for i in range(len_Z): | |
|
252 | if min_CC[i]>moda_[0]+0.15 or min_CC[i]<moda_[0]-0.15: | |
|
253 | min_CC[i]=numpy.nan | |
|
254 | ||
|
255 | min_index_CC=min_CC/0.06 | |
|
256 | #print(min_CC.shape,min_CC) | |
|
257 | print("LONGITUD",min_index_CC.shape) | |
|
258 | ''' | |
|
259 | len_Z= z.shape[1] | |
|
260 | min_CC = numpy.zeros(len_Z) | |
|
261 | min_CC = numpy.load("index.npy") | |
|
262 | bb = numpy.zeros(len_Z) | |
|
263 | ||
|
264 | for i in range(len_Z): | |
|
265 | if min_CC[i]==numpy.nan: | |
|
266 | bb[i]=numpy.nan | |
|
267 | try: | |
|
268 | bb[i]=z[int(min_CC[i]*0.06)][i] | |
|
269 | except: | |
|
270 | bb[i]=numpy.nan | |
|
271 | #print("bb ",bb) | |
|
272 | print("bb _ prom_ZDR",numpy.nanmean(bb)) | |
|
273 | SAVE_PARAM.append(numpy.nanmean(bb)) | |
|
274 | 281 | if count ==1: |
|
275 | 282 | if self.type_ =="PROFILE": |
|
276 | 283 | self.plot_PROFILE(count=count ,z=z,y=y,my_time=my_time,label=label,mode=self.mode,grado=self.grado) |
|
277 | 284 | if self.type_ =="RTI": |
|
278 | 285 | self.plot_RTI_PPI_RHI(count=count,x=x,y=y,z=z,cmap=cmap,my_time=my_time,vmin=vmin,vmax=vmax,label =label,unit=unit, mode=self.mode,grado=self.grado) |
|
279 | 286 | if self.type_ =='roHV_MIN': |
|
280 | arr_= self.seleccion_roHV_min(count=count,z=z,arr_= 0) | |
|
281 | #arr_ = min_index_CC | |
|
282 | cota_min = 0 | |
|
283 | cota_max= len_X | |
|
284 | #plt.plot(x,min_CC[0:len_X]*0.06,'yo') | |
|
285 | ||
|
287 | arr_= self.seleccion_roHV_min(count=count,z=z,y=y,arr_= 0) | |
|
288 | if self.type_ =='pp_BB': | |
|
289 | self.plot_RTI_PPI_RHI(count=count,x=x,y=y,z=z,cmap=cmap,my_time=my_time,vmin=vmin,vmax=vmax,label =label,unit=unit, mode=self.mode,grado=self.grado) | |
|
290 | c_max = self.pp_BB(count=count,x=x,y=y,z=z,filename='index.npy',c_max=0,prom_List=SAVE_PARAM) | |
|
286 | 291 | else: |
|
287 | #arr_ = numpy.append(arr_,min_index_CC) | |
|
288 | 292 | if self.type_=="RTI": |
|
289 | 293 | self.plot_RTI_PPI_RHI(count=count,x=x,y=y,z=z,cmap=cmap,my_time=my_time,vmin=vmin,vmax=vmax,label =label,unit=unit, mode=self.mode,grado=self.grado) |
|
290 | 294 | if self.type_ =="PROFILE": |
|
291 | 295 | self. plot_PROFILE(count=count,z=z,y=y,my_time=my_time,label=label,mode=self.mode,grado=self.grado) |
|
292 | 296 | if self.type_ =='roHV_MIN': |
|
293 | arr_= self.seleccion_roHV_min(count=count,z=z,arr_= arr_) | |
|
294 | ||
|
297 | arr_= self.seleccion_roHV_min(count=count,z=z,y=y,arr_= arr_) | |
|
298 | if self.type_ =='pp_BB': | |
|
299 | self.plot_RTI_PPI_RHI(count=count,x=x,y=y,z=z,cmap=cmap,my_time=my_time,vmin=vmin,vmax=vmax,label =label,unit=unit, mode=self.mode,grado=self.grado) | |
|
300 | c_max = self.pp_BB(count=count,x=x,y=y,z=z,filename='index.npy',c_max=c_max,prom_List=SAVE_PARAM) | |
|
301 | if c_max ==0: | |
|
302 | count=len_files | |
|
295 | 303 | |
|
296 | #arr_ = numpy.append(arr_,min_index_CC) | |
|
297 | cota_min= cota_min+len_X | |
|
298 | cota_max= cota_min+len_X | |
|
299 | #plt.plot(x,min_CC[cota_min:cota_max]*0.06,'yo') | |
|
300 | print("Y",len_X) | |
|
301 | 304 | if self.save == 1: |
|
302 | 305 | self.save_PIC(count=count,time_save=time_save) |
|
303 | 306 | plt.pause(1) |
|
304 | 307 | plt.clf() |
|
305 | 308 | if count == len_files: |
|
306 | 309 | if self.type_ =='roHV_MIN': |
|
307 | 310 | numpy.save("/home/soporte/WRJAN2023/schain/schainpy/scripts/index.npy",arr_) |
|
308 | numpy.save("/home/soporte/WRJAN2023/schain/schainpy/scripts/index_"+self.variable+"_prom.npy",SAVE_PARAM) | |
|
311 | if self.type_ =='pp_BB': | |
|
312 | numpy.save("/home/soporte/WRJAN2023/schain/schainpy/scripts/index_"+self.variable+"_prom.npy",SAVE_PARAM) | |
|
313 | print("-----ADIOS-------------------") | |
|
309 | 314 | plt.close() |
|
315 | exit() | |
|
310 | 316 | plt.show() |
|
311 | 317 | |
|
312 | 318 | |
|
313 | 319 | def main(args): |
|
314 | 320 | grado = args.grado |
|
315 | 321 | parameters = args.parameters |
|
316 | 322 | r_min = args.r_min |
|
317 | 323 | save = args.save |
|
318 | 324 | range = args.range |
|
319 | 325 | mode = args.mode |
|
320 | 326 | type = args.type |
|
321 | 327 | obj = Readsophy() |
|
322 | 328 | print("MODE :", mode) |
|
323 | 329 | if not mode =='PPI' and not mode =='RHI': |
|
324 | 330 | print("Error - Choose Mode RHI or PPI") |
|
325 | 331 | return None |
|
326 | 332 | for param in parameters: |
|
327 | 333 | print("Parameters : ", param) |
|
328 | 334 | if mode =='PPI': |
|
329 | 335 | PATH = "/media/soporte/TOSHIBAEXT/sophy/HYO_CC4_CC64_COMB@2022-12-26T00-00-32/param-EVENTO/"+str(param)+"_PPI_EL_"+str(grado)+".0/" |
|
330 | 336 | else: |
|
331 | 337 | PATH = "/media/soporte/TOSHIBAEXT/sophy/HYO_CC4_CC64_COMB@2022-12-26T00-00-32/param-EVENTO/"+str(param)+"_RHI_AZ_"+str(grado)+".0/" |
|
332 | 338 | print("Path : ",PATH) |
|
333 | 339 | obj.setup(path_file =PATH,mode=mode,type=type,grado = grado,range=range,r_min=r_min, variable=param,save=int(save)) |
|
334 | 340 | print("SETUP OK") |
|
335 | 341 | obj.run() |
|
336 | 342 | |
|
337 | 343 | if __name__ == '__main__': |
|
338 | 344 | |
|
339 | 345 | parser = argparse.ArgumentParser(description='Script to process SOPHy data.') |
|
340 | 346 | parser.add_argument('--parameters', nargs='*', default=['S'], |
|
341 | 347 | help='Variables to process: P, Z, V ,W,D') |
|
342 | 348 | parser.add_argument('--grado', default=2, |
|
343 | 349 | help='Angle in Elev to plot') |
|
344 | 350 | parser.add_argument('--mode',default='PPI', |
|
345 | 351 | help='MODE PPI or RHI') |
|
346 | 352 | parser.add_argument('--save', default=0, |
|
347 | 353 | help='Save plot') |
|
348 | 354 | parser.add_argument('--range', default=0, type=float, |
|
349 | 355 | help='Max range to plot') |
|
350 | 356 | parser.add_argument('--r_min', default=0, type=float, |
|
351 | 357 | help='Min range to plot') |
|
352 | 358 | parser.add_argument('--type', default='RTI', |
|
353 | 359 | help='TYPE Profile or RTI') |
|
354 | 360 | args = parser.parse_args() |
|
355 | 361 | |
|
356 | 362 | main(args) |
General Comments 0
You need to be logged in to leave comments.
Login now