@@ -1,511 +1,512 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import os, sys |
|
8 | 8 | import copy |
|
9 | 9 | import numpy |
|
10 | 10 | import datetime |
|
11 | 11 | |
|
12 | 12 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
13 | 13 | |
|
14 | 14 | def hildebrand_sekhon(data, navg): |
|
15 | 15 | """ |
|
16 | 16 | This method is for the objective determination of de noise level in Doppler spectra. This |
|
17 | 17 | implementation technique is based on the fact that the standard deviation of the spectral |
|
18 | 18 | densities is equal to the mean spectral density for white Gaussian noise |
|
19 | 19 | |
|
20 | 20 | Inputs: |
|
21 | 21 | Data : heights |
|
22 | 22 | navg : numbers of averages |
|
23 | 23 | |
|
24 | 24 | Return: |
|
25 | 25 | -1 : any error |
|
26 | 26 | anoise : noise's level |
|
27 | 27 | """ |
|
28 | 28 | |
|
29 | 29 | dataflat = data.copy().reshape(-1) |
|
30 | 30 | dataflat.sort() |
|
31 | 31 | npts = dataflat.size #numbers of points of the data |
|
32 | npts_noise = 0.2*npts | |
|
32 | 33 | |
|
33 | 34 | if npts < 32: |
|
34 | 35 | print "error in noise - requires at least 32 points" |
|
35 | 36 | return -1.0 |
|
36 | 37 | |
|
37 | 38 | dataflat2 = numpy.power(dataflat,2) |
|
38 | 39 | |
|
39 | 40 | cs = numpy.cumsum(dataflat) |
|
40 | 41 | cs2 = numpy.cumsum(dataflat2) |
|
41 | 42 | |
|
42 | 43 | # data sorted in ascending order |
|
43 | 44 | nmin = int((npts + 7.)/8) |
|
44 | 45 | |
|
45 | 46 | for i in range(nmin, npts): |
|
46 | 47 | s = cs[i] |
|
47 | 48 | s2 = cs2[i] |
|
48 | 49 | p = s / float(i); |
|
49 | 50 | p2 = p**2; |
|
50 | 51 | q = s2 / float(i) - p2; |
|
51 | 52 | leftc = p2; |
|
52 | 53 | rightc = q * float(navg); |
|
53 | 54 | R2 = leftc/rightc |
|
54 | 55 | |
|
55 | 56 | # Signal detect: R2 < 1 (R2 = leftc/rightc) |
|
56 | 57 | if R2 < 1: |
|
57 | 58 | npts_noise = i |
|
58 | 59 | break |
|
59 | 60 | |
|
60 | 61 | |
|
61 | 62 | anoise = numpy.average(dataflat[0:npts_noise]) |
|
62 | 63 | |
|
63 | 64 | return anoise; |
|
64 | 65 | |
|
65 | 66 | def sorting_bruce(data, navg): |
|
66 | 67 | |
|
67 | 68 | data = data.copy() |
|
68 | 69 | |
|
69 | 70 | sortdata = numpy.sort(data) |
|
70 | 71 | lenOfData = len(data) |
|
71 | 72 | nums_min = lenOfData/10 |
|
72 | 73 | |
|
73 | 74 | if (lenOfData/10) > 0: |
|
74 | 75 | nums_min = lenOfData/10 |
|
75 | 76 | else: |
|
76 | 77 | nums_min = 0 |
|
77 | 78 | |
|
78 | 79 | rtest = 1.0 + 1.0/navg |
|
79 | 80 | |
|
80 | 81 | sum = 0. |
|
81 | 82 | |
|
82 | 83 | sumq = 0. |
|
83 | 84 | |
|
84 | 85 | j = 0 |
|
85 | 86 | |
|
86 | 87 | cont = 1 |
|
87 | 88 | |
|
88 | 89 | while((cont==1)and(j<lenOfData)): |
|
89 | 90 | |
|
90 | 91 | sum += sortdata[j] |
|
91 | 92 | |
|
92 | 93 | sumq += sortdata[j]**2 |
|
93 | 94 | |
|
94 | 95 | j += 1 |
|
95 | 96 | |
|
96 | 97 | if j > nums_min: |
|
97 | 98 | if ((sumq*j) <= (rtest*sum**2)): |
|
98 | 99 | lnoise = sum / j |
|
99 | 100 | else: |
|
100 | 101 | j = j - 1 |
|
101 | 102 | sum = sum - sordata[j] |
|
102 | 103 | sumq = sumq - sordata[j]**2 |
|
103 | 104 | cont = 0 |
|
104 | 105 | |
|
105 | 106 | if j == nums_min: |
|
106 | 107 | lnoise = sum /j |
|
107 | 108 | |
|
108 | 109 | return lnoise |
|
109 | 110 | |
|
110 | 111 | class JROData: |
|
111 | 112 | |
|
112 | 113 | # m_BasicHeader = BasicHeader() |
|
113 | 114 | # m_ProcessingHeader = ProcessingHeader() |
|
114 | 115 | |
|
115 | 116 | systemHeaderObj = SystemHeader() |
|
116 | 117 | |
|
117 | 118 | radarControllerHeaderObj = RadarControllerHeader() |
|
118 | 119 | |
|
119 | 120 | # data = None |
|
120 | 121 | |
|
121 | 122 | type = None |
|
122 | 123 | |
|
123 | 124 | dtype = None |
|
124 | 125 | |
|
125 | 126 | # nChannels = None |
|
126 | 127 | |
|
127 | 128 | # nHeights = None |
|
128 | 129 | |
|
129 | 130 | nProfiles = None |
|
130 | 131 | |
|
131 | 132 | heightList = None |
|
132 | 133 | |
|
133 | 134 | channelList = None |
|
134 | 135 | |
|
135 | 136 | flagNoData = True |
|
136 | 137 | |
|
137 | 138 | flagTimeBlock = False |
|
138 | 139 | |
|
139 | 140 | utctime = None |
|
140 | 141 | |
|
141 | 142 | blocksize = None |
|
142 | 143 | |
|
143 | 144 | nCode = None |
|
144 | 145 | |
|
145 | 146 | nBaud = None |
|
146 | 147 | |
|
147 | 148 | code = None |
|
148 | 149 | |
|
149 | 150 | flagDecodeData = True #asumo q la data esta decodificada |
|
150 | 151 | |
|
151 | 152 | flagDeflipData = True #asumo q la data esta sin flip |
|
152 | 153 | |
|
153 | 154 | flagShiftFFT = False |
|
154 | 155 | |
|
155 | 156 | ippSeconds = None |
|
156 | 157 | |
|
157 | 158 | timeInterval = None |
|
158 | 159 | |
|
159 | 160 | nCohInt = None |
|
160 | 161 | |
|
161 | 162 | noise = None |
|
162 | 163 | |
|
163 | 164 | #Speed of ligth |
|
164 | 165 | C = 3e8 |
|
165 | 166 | |
|
166 | 167 | frequency = 49.92e6 |
|
167 | 168 | |
|
168 | 169 | def __init__(self): |
|
169 | 170 | |
|
170 | 171 | raise ValueError, "This class has not been implemented" |
|
171 | 172 | |
|
172 | 173 | def copy(self, inputObj=None): |
|
173 | 174 | |
|
174 | 175 | if inputObj == None: |
|
175 | 176 | return copy.deepcopy(self) |
|
176 | 177 | |
|
177 | 178 | for key in inputObj.__dict__.keys(): |
|
178 | 179 | self.__dict__[key] = inputObj.__dict__[key] |
|
179 | 180 | |
|
180 | 181 | def deepcopy(self): |
|
181 | 182 | |
|
182 | 183 | return copy.deepcopy(self) |
|
183 | 184 | |
|
184 | 185 | def isEmpty(self): |
|
185 | 186 | |
|
186 | 187 | return self.flagNoData |
|
187 | 188 | |
|
188 | 189 | def getNoise(self): |
|
189 | 190 | |
|
190 | 191 | raise ValueError, "Not implemented" |
|
191 | 192 | |
|
192 | 193 | def getNChannels(self): |
|
193 | 194 | |
|
194 | 195 | return len(self.channelList) |
|
195 | 196 | |
|
196 | 197 | def getChannelIndexList(self): |
|
197 | 198 | |
|
198 | 199 | return range(self.nChannels) |
|
199 | 200 | |
|
200 | 201 | def getNHeights(self): |
|
201 | 202 | |
|
202 | 203 | return len(self.heightList) |
|
203 | 204 | |
|
204 | 205 | def getHeiRange(self, extrapoints=0): |
|
205 | 206 | |
|
206 | 207 | heis = self.heightList |
|
207 | 208 | # deltah = self.heightList[1] - self.heightList[0] |
|
208 | 209 | # |
|
209 | 210 | # heis.append(self.heightList[-1]) |
|
210 | 211 | |
|
211 | 212 | return heis |
|
212 | 213 | |
|
213 | 214 | def getDatatime(self): |
|
214 | 215 | |
|
215 | 216 | datatime = datetime.datetime.utcfromtimestamp(self.utctime) |
|
216 | 217 | return datatime |
|
217 | 218 | |
|
218 | 219 | def getTimeRange(self): |
|
219 | 220 | |
|
220 | 221 | datatime = [] |
|
221 | 222 | |
|
222 | 223 | datatime.append(self.utctime) |
|
223 | 224 | datatime.append(self.utctime + self.timeInterval) |
|
224 | 225 | |
|
225 | 226 | datatime = numpy.array(datatime) |
|
226 | 227 | |
|
227 | 228 | return datatime |
|
228 | 229 | |
|
229 | 230 | def getFmax(self): |
|
230 | 231 | |
|
231 | 232 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
232 | 233 | |
|
233 | 234 | fmax = PRF/2. |
|
234 | 235 | |
|
235 | 236 | return fmax |
|
236 | 237 | |
|
237 | 238 | def getVmax(self): |
|
238 | 239 | |
|
239 | 240 | _lambda = self.C/self.frequency |
|
240 | 241 | |
|
241 | 242 | vmax = self.getFmax() * _lambda / 2. |
|
242 | 243 | |
|
243 | 244 | return vmax |
|
244 | 245 | |
|
245 | 246 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
246 | 247 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
247 | 248 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
248 | 249 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
249 | 250 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
250 | 251 | |
|
251 | 252 | class Voltage(JROData): |
|
252 | 253 | |
|
253 | 254 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
254 | 255 | data = None |
|
255 | 256 | |
|
256 | 257 | def __init__(self): |
|
257 | 258 | ''' |
|
258 | 259 | Constructor |
|
259 | 260 | ''' |
|
260 | 261 | |
|
261 | 262 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
262 | 263 | |
|
263 | 264 | self.systemHeaderObj = SystemHeader() |
|
264 | 265 | |
|
265 | 266 | self.type = "Voltage" |
|
266 | 267 | |
|
267 | 268 | self.data = None |
|
268 | 269 | |
|
269 | 270 | self.dtype = None |
|
270 | 271 | |
|
271 | 272 | # self.nChannels = 0 |
|
272 | 273 | |
|
273 | 274 | # self.nHeights = 0 |
|
274 | 275 | |
|
275 | 276 | self.nProfiles = None |
|
276 | 277 | |
|
277 | 278 | self.heightList = None |
|
278 | 279 | |
|
279 | 280 | self.channelList = None |
|
280 | 281 | |
|
281 | 282 | # self.channelIndexList = None |
|
282 | 283 | |
|
283 | 284 | self.flagNoData = True |
|
284 | 285 | |
|
285 | 286 | self.flagTimeBlock = False |
|
286 | 287 | |
|
287 | 288 | self.utctime = None |
|
288 | 289 | |
|
289 | 290 | self.nCohInt = None |
|
290 | 291 | |
|
291 | 292 | self.blocksize = None |
|
292 | 293 | |
|
293 | 294 | def getNoisebyHildebrand(self): |
|
294 | 295 | """ |
|
295 | 296 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
296 | 297 | |
|
297 | 298 | Return: |
|
298 | 299 | noiselevel |
|
299 | 300 | """ |
|
300 | 301 | |
|
301 | 302 | for channel in range(self.nChannels): |
|
302 | 303 | daux = self.data_spc[channel,:,:] |
|
303 | 304 | self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt) |
|
304 | 305 | |
|
305 | 306 | return self.noise |
|
306 | 307 | |
|
307 | 308 | def getNoise(self, type = 1): |
|
308 | 309 | |
|
309 | 310 | self.noise = numpy.zeros(self.nChannels) |
|
310 | 311 | |
|
311 | 312 | if type == 1: |
|
312 | 313 | noise = self.getNoisebyHildebrand() |
|
313 | 314 | |
|
314 | 315 | return 10*numpy.log10(noise) |
|
315 | 316 | |
|
316 | 317 | class Spectra(JROData): |
|
317 | 318 | |
|
318 | 319 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
319 | 320 | data_spc = None |
|
320 | 321 | |
|
321 | 322 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
322 | 323 | data_cspc = None |
|
323 | 324 | |
|
324 | 325 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
325 | 326 | data_dc = None |
|
326 | 327 | |
|
327 | 328 | nFFTPoints = None |
|
328 | 329 | |
|
329 | 330 | nPairs = None |
|
330 | 331 | |
|
331 | 332 | pairsList = None |
|
332 | 333 | |
|
333 | 334 | nIncohInt = None |
|
334 | 335 | |
|
335 | 336 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
336 | 337 | |
|
337 | 338 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
338 | 339 | |
|
339 | 340 | def __init__(self): |
|
340 | 341 | ''' |
|
341 | 342 | Constructor |
|
342 | 343 | ''' |
|
343 | 344 | |
|
344 | 345 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
345 | 346 | |
|
346 | 347 | self.systemHeaderObj = SystemHeader() |
|
347 | 348 | |
|
348 | 349 | self.type = "Spectra" |
|
349 | 350 | |
|
350 | 351 | # self.data = None |
|
351 | 352 | |
|
352 | 353 | self.dtype = None |
|
353 | 354 | |
|
354 | 355 | # self.nChannels = 0 |
|
355 | 356 | |
|
356 | 357 | # self.nHeights = 0 |
|
357 | 358 | |
|
358 | 359 | self.nProfiles = None |
|
359 | 360 | |
|
360 | 361 | self.heightList = None |
|
361 | 362 | |
|
362 | 363 | self.channelList = None |
|
363 | 364 | |
|
364 | 365 | # self.channelIndexList = None |
|
365 | 366 | |
|
366 | 367 | self.flagNoData = True |
|
367 | 368 | |
|
368 | 369 | self.flagTimeBlock = False |
|
369 | 370 | |
|
370 | 371 | self.utctime = None |
|
371 | 372 | |
|
372 | 373 | self.nCohInt = None |
|
373 | 374 | |
|
374 | 375 | self.nIncohInt = None |
|
375 | 376 | |
|
376 | 377 | self.blocksize = None |
|
377 | 378 | |
|
378 | 379 | self.nFFTPoints = None |
|
379 | 380 | |
|
380 | 381 | self.wavelength = None |
|
381 | 382 | |
|
382 | 383 | def getNoisebyHildebrand(self): |
|
383 | 384 | """ |
|
384 | 385 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
385 | 386 | |
|
386 | 387 | Return: |
|
387 | 388 | noiselevel |
|
388 | 389 | """ |
|
389 | 390 | |
|
390 | 391 | for channel in range(self.nChannels): |
|
391 | 392 | daux = self.data_spc[channel,:,:] |
|
392 | 393 | self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
393 | 394 | |
|
394 | 395 | return self.noise |
|
395 | 396 | |
|
396 | 397 | def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1): |
|
397 | 398 | """ |
|
398 | 399 | Determina el ruido del canal utilizando la ventana indicada con las coordenadas: |
|
399 | 400 | (heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx) |
|
400 | 401 | |
|
401 | 402 | Inputs: |
|
402 | 403 | heiIndexMin: Limite inferior del eje de alturas |
|
403 | 404 | heiIndexMax: Limite superior del eje de alturas |
|
404 | 405 | freqIndexMin: Limite inferior del eje de frecuencia |
|
405 | 406 | freqIndexMax: Limite supoerior del eje de frecuencia |
|
406 | 407 | """ |
|
407 | 408 | |
|
408 | 409 | data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax] |
|
409 | 410 | |
|
410 | 411 | for channel in range(self.nChannels): |
|
411 | 412 | daux = data[channel,:,:] |
|
412 | 413 | self.noise[channel] = numpy.average(daux) |
|
413 | 414 | |
|
414 | 415 | return self.noise |
|
415 | 416 | |
|
416 | 417 | def getNoisebySort(self): |
|
417 | 418 | |
|
418 | 419 | for channel in range(self.nChannels): |
|
419 | 420 | daux = self.data_spc[channel,:,:] |
|
420 | 421 | self.noise[channel] = sorting_bruce(daux, self.nIncohInt) |
|
421 | 422 | |
|
422 | 423 | return self.noise |
|
423 | 424 | |
|
424 | 425 | def getNoise(self, type = 1): |
|
425 | 426 | |
|
426 | 427 | self.noise = numpy.zeros(self.nChannels) |
|
427 | 428 | |
|
428 | 429 | if type == 1: |
|
429 | 430 | noise = self.getNoisebyHildebrand() |
|
430 | 431 | |
|
431 | 432 | if type == 2: |
|
432 | 433 | noise = self.getNoisebySort() |
|
433 | 434 | |
|
434 | 435 | if type == 3: |
|
435 | 436 | noise = self.getNoisebyWindow() |
|
436 | 437 | |
|
437 | 438 | return 10*numpy.log10(noise) |
|
438 | 439 | |
|
439 | 440 | |
|
440 | 441 | def getFreqRange(self, extrapoints=0): |
|
441 | 442 | |
|
442 | 443 | delfreq = 2 * self.getFmax() / self.nFFTPoints |
|
443 | 444 | freqrange = deltafreqs*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
444 | 445 | |
|
445 | 446 | return freqrange |
|
446 | 447 | |
|
447 | 448 | def getVelRange(self, extrapoints=0): |
|
448 | 449 | |
|
449 | 450 | deltav = 2 * self.getVmax() / self.nFFTPoints |
|
450 | 451 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 |
|
451 | 452 | |
|
452 | 453 | return velrange |
|
453 | 454 | |
|
454 | 455 | def getNPairs(self): |
|
455 | 456 | |
|
456 | 457 | return len(self.pairsList) |
|
457 | 458 | |
|
458 | 459 | def getPairsIndexList(self): |
|
459 | 460 | |
|
460 | 461 | return range(self.nPairs) |
|
461 | 462 | |
|
462 | 463 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") |
|
463 | 464 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") |
|
464 | 465 | |
|
465 | 466 | class SpectraHeis(JROData): |
|
466 | 467 | |
|
467 | 468 | data_spc = None |
|
468 | 469 | |
|
469 | 470 | data_cspc = None |
|
470 | 471 | |
|
471 | 472 | data_dc = None |
|
472 | 473 | |
|
473 | 474 | nFFTPoints = None |
|
474 | 475 | |
|
475 | 476 | nPairs = None |
|
476 | 477 | |
|
477 | 478 | pairsList = None |
|
478 | 479 | |
|
479 | 480 | nIncohInt = None |
|
480 | 481 | |
|
481 | 482 | def __init__(self): |
|
482 | 483 | |
|
483 | 484 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
484 | 485 | |
|
485 | 486 | self.systemHeaderObj = SystemHeader() |
|
486 | 487 | |
|
487 | 488 | self.type = "SpectraHeis" |
|
488 | 489 | |
|
489 | 490 | self.dtype = None |
|
490 | 491 | |
|
491 | 492 | # self.nChannels = 0 |
|
492 | 493 | |
|
493 | 494 | # self.nHeights = 0 |
|
494 | 495 | |
|
495 | 496 | self.nProfiles = None |
|
496 | 497 | |
|
497 | 498 | self.heightList = None |
|
498 | 499 | |
|
499 | 500 | self.channelList = None |
|
500 | 501 | |
|
501 | 502 | # self.channelIndexList = None |
|
502 | 503 | |
|
503 | 504 | self.flagNoData = True |
|
504 | 505 | |
|
505 | 506 | self.flagTimeBlock = False |
|
506 | 507 | |
|
507 | 508 | self.nPairs = 0 |
|
508 | 509 | |
|
509 | 510 | self.utctime = None |
|
510 | 511 | |
|
511 | 512 | self.blocksize = None |
General Comments 0
You need to be logged in to leave comments.
Login now