This diff has been collapsed as it changes many lines, (1077 lines changed) Show them Hide them | |||
@@ -0,0 +1,1077 | |||
|
1 | import numpy | |
|
2 | import time | |
|
3 | import os | |
|
4 | import h5py | |
|
5 | import re | |
|
6 | import datetime | |
|
7 | ||
|
8 | from schainpy.model.data.jrodata import * | |
|
9 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
|
10 | # from jroIO_base import * | |
|
11 | from schainpy.model.io.jroIO_base import * | |
|
12 | import schainpy | |
|
13 | ||
|
14 | ||
|
15 | class ParamReader(ProcessingUnit): | |
|
16 | ''' | |
|
17 | Reads HDF5 format files | |
|
18 | ||
|
19 | path | |
|
20 | ||
|
21 | startDate | |
|
22 | ||
|
23 | endDate | |
|
24 | ||
|
25 | startTime | |
|
26 | ||
|
27 | endTime | |
|
28 | ''' | |
|
29 | ||
|
30 | ext = ".hdf5" | |
|
31 | ||
|
32 | optchar = "D" | |
|
33 | ||
|
34 | timezone = None | |
|
35 | ||
|
36 | startTime = None | |
|
37 | ||
|
38 | endTime = None | |
|
39 | ||
|
40 | fileIndex = None | |
|
41 | ||
|
42 | utcList = None #To select data in the utctime list | |
|
43 | ||
|
44 | blockList = None #List to blocks to be read from the file | |
|
45 | ||
|
46 | blocksPerFile = None #Number of blocks to be read | |
|
47 | ||
|
48 | blockIndex = None | |
|
49 | ||
|
50 | path = None | |
|
51 | ||
|
52 | #List of Files | |
|
53 | ||
|
54 | filenameList = None | |
|
55 | ||
|
56 | datetimeList = None | |
|
57 | ||
|
58 | #Hdf5 File | |
|
59 | ||
|
60 | listMetaname = None | |
|
61 | ||
|
62 | listMeta = None | |
|
63 | ||
|
64 | listDataname = None | |
|
65 | ||
|
66 | listData = None | |
|
67 | ||
|
68 | listShapes = None | |
|
69 | ||
|
70 | fp = None | |
|
71 | ||
|
72 | #dataOut reconstruction | |
|
73 | ||
|
74 | dataOut = None | |
|
75 | ||
|
76 | ||
|
77 | def __init__(self): | |
|
78 | self.dataOut = Parameters() | |
|
79 | return | |
|
80 | ||
|
81 | def setup(self, **kwargs): | |
|
82 | ||
|
83 | path = kwargs['path'] | |
|
84 | startDate = kwargs['startDate'] | |
|
85 | endDate = kwargs['endDate'] | |
|
86 | startTime = kwargs['startTime'] | |
|
87 | endTime = kwargs['endTime'] | |
|
88 | walk = kwargs['walk'] | |
|
89 | if kwargs.has_key('ext'): | |
|
90 | ext = kwargs['ext'] | |
|
91 | else: | |
|
92 | ext = '.hdf5' | |
|
93 | if kwargs.has_key('timezone'): | |
|
94 | self.timezone = kwargs['timezone'] | |
|
95 | else: | |
|
96 | self.timezone = 'lt' | |
|
97 | ||
|
98 | print "[Reading] Searching files in offline mode ..." | |
|
99 | pathList, filenameList = self.__searchFilesOffLine(path, startDate=startDate, endDate=endDate, | |
|
100 | startTime=startTime, endTime=endTime, | |
|
101 | ext=ext, walk=walk) | |
|
102 | ||
|
103 | if not(filenameList): | |
|
104 | print "There is no files into the folder: %s"%(path) | |
|
105 | sys.exit(-1) | |
|
106 | ||
|
107 | self.fileIndex = -1 | |
|
108 | self.startTime = startTime | |
|
109 | self.endTime = endTime | |
|
110 | ||
|
111 | self.__readMetadata() | |
|
112 | ||
|
113 | self.__setNextFileOffline() | |
|
114 | ||
|
115 | return | |
|
116 | ||
|
117 | def __searchFilesOffLine(self, | |
|
118 | path, | |
|
119 | startDate=None, | |
|
120 | endDate=None, | |
|
121 | startTime=datetime.time(0,0,0), | |
|
122 | endTime=datetime.time(23,59,59), | |
|
123 | ext='.hdf5', | |
|
124 | walk=True): | |
|
125 | ||
|
126 | expLabel = '' | |
|
127 | self.filenameList = [] | |
|
128 | self.datetimeList = [] | |
|
129 | ||
|
130 | pathList = [] | |
|
131 | ||
|
132 | JRODataObj = JRODataReader() | |
|
133 | dateList, pathList = JRODataObj.findDatafiles(path, startDate, endDate, expLabel, ext, walk, include_path=True) | |
|
134 | ||
|
135 | if dateList == []: | |
|
136 | print "[Reading] No *%s files in %s from %s to %s)"%(ext, path, | |
|
137 | datetime.datetime.combine(startDate,startTime).ctime(), | |
|
138 | datetime.datetime.combine(endDate,endTime).ctime()) | |
|
139 | ||
|
140 | return None, None | |
|
141 | ||
|
142 | if len(dateList) > 1: | |
|
143 | print "[Reading] %d days were found in date range: %s - %s" %(len(dateList), startDate, endDate) | |
|
144 | else: | |
|
145 | print "[Reading] data was found for the date %s" %(dateList[0]) | |
|
146 | ||
|
147 | filenameList = [] | |
|
148 | datetimeList = [] | |
|
149 | ||
|
150 | #---------------------------------------------------------------------------------- | |
|
151 | ||
|
152 | for thisPath in pathList: | |
|
153 | # thisPath = pathList[pathDict[file]] | |
|
154 | ||
|
155 | fileList = glob.glob1(thisPath, "*%s" %ext) | |
|
156 | fileList.sort() | |
|
157 | ||
|
158 | for file in fileList: | |
|
159 | ||
|
160 | filename = os.path.join(thisPath,file) | |
|
161 | ||
|
162 | if not isFileInDateRange(filename, startDate, endDate): | |
|
163 | continue | |
|
164 | ||
|
165 | thisDatetime = self.__isFileInTimeRange(filename, startDate, endDate, startTime, endTime) | |
|
166 | ||
|
167 | if not(thisDatetime): | |
|
168 | continue | |
|
169 | ||
|
170 | filenameList.append(filename) | |
|
171 | datetimeList.append(thisDatetime) | |
|
172 | ||
|
173 | if not(filenameList): | |
|
174 | print "[Reading] Any file was found int time range %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime()) | |
|
175 | return None, None | |
|
176 | ||
|
177 | print "[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime) | |
|
178 | ||
|
179 | ||
|
180 | for i in range(len(filenameList)): | |
|
181 | print "[Reading] %s -> [%s]" %(filenameList[i], datetimeList[i].ctime()) | |
|
182 | ||
|
183 | self.filenameList = filenameList | |
|
184 | self.datetimeList = datetimeList | |
|
185 | ||
|
186 | return pathList, filenameList | |
|
187 | ||
|
188 | def __isFileInTimeRange(self,filename, startDate, endDate, startTime, endTime): | |
|
189 | ||
|
190 | """ | |
|
191 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. | |
|
192 | ||
|
193 | Inputs: | |
|
194 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) | |
|
195 | ||
|
196 | startDate : fecha inicial del rango seleccionado en formato datetime.date | |
|
197 | ||
|
198 | endDate : fecha final del rango seleccionado en formato datetime.date | |
|
199 | ||
|
200 | startTime : tiempo inicial del rango seleccionado en formato datetime.time | |
|
201 | ||
|
202 | endTime : tiempo final del rango seleccionado en formato datetime.time | |
|
203 | ||
|
204 | Return: | |
|
205 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de | |
|
206 | fecha especificado, de lo contrario retorna False. | |
|
207 | ||
|
208 | Excepciones: | |
|
209 | Si el archivo no existe o no puede ser abierto | |
|
210 | Si la cabecera no puede ser leida. | |
|
211 | ||
|
212 | """ | |
|
213 | ||
|
214 | try: | |
|
215 | fp = h5py.File(filename,'r') | |
|
216 | grp1 = fp['Data'] | |
|
217 | ||
|
218 | except IOError: | |
|
219 | traceback.print_exc() | |
|
220 | raise IOError, "The file %s can't be opened" %(filename) | |
|
221 | #chino rata | |
|
222 | #In case has utctime attribute | |
|
223 | grp2 = grp1['utctime'] | |
|
224 | # thisUtcTime = grp2.value[0] - 5*3600 #To convert to local time | |
|
225 | thisUtcTime = grp2.value[0] | |
|
226 | ||
|
227 | fp.close() | |
|
228 | ||
|
229 | if self.timezone == 'lt': | |
|
230 | thisUtcTime -= 5*3600 | |
|
231 | ||
|
232 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) | |
|
233 | # thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0]) | |
|
234 | thisDate = thisDatetime.date() | |
|
235 | thisTime = thisDatetime.time() | |
|
236 | ||
|
237 | startUtcTime = (datetime.datetime.combine(thisDate,startTime)- datetime.datetime(1970, 1, 1)).total_seconds() | |
|
238 | endUtcTime = (datetime.datetime.combine(thisDate,endTime)- datetime.datetime(1970, 1, 1)).total_seconds() | |
|
239 | ||
|
240 | #General case | |
|
241 | # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o | |
|
242 | #-----------o----------------------------o----------- | |
|
243 | # startTime endTime | |
|
244 | ||
|
245 | if endTime >= startTime: | |
|
246 | thisUtcLog = numpy.logical_and(thisUtcTime > startUtcTime, thisUtcTime < endUtcTime) | |
|
247 | if numpy.any(thisUtcLog): #If there is one block between the hours mentioned | |
|
248 | return thisDatetime | |
|
249 | return None | |
|
250 | ||
|
251 | #If endTime < startTime then endTime belongs to the next day | |
|
252 | #<<<<<<<<<<<o o>>>>>>>>>>> | |
|
253 | #-----------o----------------------------o----------- | |
|
254 | # endTime startTime | |
|
255 | ||
|
256 | if (thisDate == startDate) and numpy.all(thisUtcTime < startUtcTime): | |
|
257 | return None | |
|
258 | ||
|
259 | if (thisDate == endDate) and numpy.all(thisUtcTime > endUtcTime): | |
|
260 | return None | |
|
261 | ||
|
262 | if numpy.all(thisUtcTime < startUtcTime) and numpy.all(thisUtcTime > endUtcTime): | |
|
263 | return None | |
|
264 | ||
|
265 | return thisDatetime | |
|
266 | ||
|
267 | def __setNextFileOffline(self): | |
|
268 | ||
|
269 | self.fileIndex += 1 | |
|
270 | idFile = self.fileIndex | |
|
271 | ||
|
272 | if not(idFile < len(self.filenameList)): | |
|
273 | print "No more Files" | |
|
274 | return 0 | |
|
275 | ||
|
276 | filename = self.filenameList[idFile] | |
|
277 | ||
|
278 | filePointer = h5py.File(filename,'r') | |
|
279 | ||
|
280 | self.filename = filename | |
|
281 | ||
|
282 | self.fp = filePointer | |
|
283 | ||
|
284 | print "Setting the file: %s"%self.filename | |
|
285 | ||
|
286 | # self.__readMetadata() | |
|
287 | self.__setBlockList() | |
|
288 | self.__readData() | |
|
289 | # self.nRecords = self.fp['Data'].attrs['blocksPerFile'] | |
|
290 | # self.nRecords = self.fp['Data'].attrs['nRecords'] | |
|
291 | self.blockIndex = 0 | |
|
292 | return 1 | |
|
293 | ||
|
294 | def __setBlockList(self): | |
|
295 | ''' | |
|
296 | Selects the data within the times defined | |
|
297 | ||
|
298 | self.fp | |
|
299 | self.startTime | |
|
300 | self.endTime | |
|
301 | ||
|
302 | self.blockList | |
|
303 | self.blocksPerFile | |
|
304 | ||
|
305 | ''' | |
|
306 | fp = self.fp | |
|
307 | startTime = self.startTime | |
|
308 | endTime = self.endTime | |
|
309 | ||
|
310 | grp = fp['Data'] | |
|
311 | thisUtcTime = grp['utctime'].value.astype(numpy.float)[0] | |
|
312 | ||
|
313 | #ERROOOOR | |
|
314 | if self.timezone == 'lt': | |
|
315 | thisUtcTime -= 5*3600 | |
|
316 | ||
|
317 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) | |
|
318 | ||
|
319 | thisDate = thisDatetime.date() | |
|
320 | thisTime = thisDatetime.time() | |
|
321 | ||
|
322 | startUtcTime = (datetime.datetime.combine(thisDate,startTime) - datetime.datetime(1970, 1, 1)).total_seconds() | |
|
323 | endUtcTime = (datetime.datetime.combine(thisDate,endTime) - datetime.datetime(1970, 1, 1)).total_seconds() | |
|
324 | ||
|
325 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] | |
|
326 | ||
|
327 | self.blockList = ind | |
|
328 | self.blocksPerFile = len(ind) | |
|
329 | ||
|
330 | return | |
|
331 | ||
|
332 | def __readMetadata(self): | |
|
333 | ''' | |
|
334 | Reads Metadata | |
|
335 | ||
|
336 | self.pathMeta | |
|
337 | ||
|
338 | self.listShapes | |
|
339 | self.listMetaname | |
|
340 | self.listMeta | |
|
341 | ||
|
342 | ''' | |
|
343 | ||
|
344 | # grp = self.fp['Data'] | |
|
345 | # pathMeta = os.path.join(self.path, grp.attrs['metadata']) | |
|
346 | # | |
|
347 | # if pathMeta == self.pathMeta: | |
|
348 | # return | |
|
349 | # else: | |
|
350 | # self.pathMeta = pathMeta | |
|
351 | # | |
|
352 | # filePointer = h5py.File(self.pathMeta,'r') | |
|
353 | # groupPointer = filePointer['Metadata'] | |
|
354 | ||
|
355 | filename = self.filenameList[0] | |
|
356 | ||
|
357 | fp = h5py.File(filename,'r') | |
|
358 | ||
|
359 | gp = fp['Metadata'] | |
|
360 | ||
|
361 | listMetaname = [] | |
|
362 | listMetadata = [] | |
|
363 | for item in gp.items(): | |
|
364 | name = item[0] | |
|
365 | ||
|
366 | if name=='array dimensions': | |
|
367 | table = gp[name][:] | |
|
368 | listShapes = {} | |
|
369 | for shapes in table: | |
|
370 | listShapes[shapes[0]] = numpy.array([shapes[1],shapes[2],shapes[3],shapes[4],shapes[5]]) | |
|
371 | else: | |
|
372 | data = gp[name].value | |
|
373 | listMetaname.append(name) | |
|
374 | listMetadata.append(data) | |
|
375 | ||
|
376 | # if name=='type': | |
|
377 | # self.__initDataOut(data) | |
|
378 | ||
|
379 | self.listShapes = listShapes | |
|
380 | self.listMetaname = listMetaname | |
|
381 | self.listMeta = listMetadata | |
|
382 | ||
|
383 | fp.close() | |
|
384 | return | |
|
385 | ||
|
386 | def __readData(self): | |
|
387 | grp = self.fp['Data'] | |
|
388 | listdataname = [] | |
|
389 | listdata = [] | |
|
390 | ||
|
391 | for item in grp.items(): | |
|
392 | name = item[0] | |
|
393 | listdataname.append(name) | |
|
394 | ||
|
395 | array = self.__setDataArray(grp[name],self.listShapes[name]) | |
|
396 | listdata.append(array) | |
|
397 | ||
|
398 | self.listDataname = listdataname | |
|
399 | self.listData = listdata | |
|
400 | return | |
|
401 | ||
|
402 | def __setDataArray(self, dataset, shapes): | |
|
403 | ||
|
404 | nDims = shapes[0] | |
|
405 | ||
|
406 | nDim2 = shapes[1] #Dimension 0 | |
|
407 | ||
|
408 | nDim1 = shapes[2] #Dimension 1, number of Points or Parameters | |
|
409 | ||
|
410 | nDim0 = shapes[3] #Dimension 2, number of samples or ranges | |
|
411 | ||
|
412 | mode = shapes[4] #Mode of storing | |
|
413 | ||
|
414 | blockList = self.blockList | |
|
415 | ||
|
416 | blocksPerFile = self.blocksPerFile | |
|
417 | ||
|
418 | #Depending on what mode the data was stored | |
|
419 | if mode == 0: #Divided in channels | |
|
420 | arrayData = dataset.value.astype(numpy.float)[0][blockList] | |
|
421 | if mode == 1: #Divided in parameter | |
|
422 | strds = 'table' | |
|
423 | nDatas = nDim1 | |
|
424 | newShapes = (blocksPerFile,nDim2,nDim0) | |
|
425 | elif mode==2: #Concatenated in a table | |
|
426 | strds = 'table0' | |
|
427 | arrayData = dataset[strds].value | |
|
428 | #Selecting part of the dataset | |
|
429 | utctime = arrayData[:,0] | |
|
430 | u, indices = numpy.unique(utctime, return_index=True) | |
|
431 | ||
|
432 | if blockList.size != indices.size: | |
|
433 | indMin = indices[blockList[0]] | |
|
434 | if blockList[-1] + 1 >= indices.size: | |
|
435 | arrayData = arrayData[indMin:,:] | |
|
436 | else: | |
|
437 | indMax = indices[blockList[-1] + 1] | |
|
438 | arrayData = arrayData[indMin:indMax,:] | |
|
439 | return arrayData | |
|
440 | ||
|
441 | #------- One dimension --------------- | |
|
442 | if nDims == 0: | |
|
443 | arrayData = dataset.value.astype(numpy.float)[0][blockList] | |
|
444 | ||
|
445 | #------- Two dimensions ----------- | |
|
446 | elif nDims == 2: | |
|
447 | arrayData = numpy.zeros((blocksPerFile,nDim1,nDim0)) | |
|
448 | newShapes = (blocksPerFile,nDim0) | |
|
449 | nDatas = nDim1 | |
|
450 | ||
|
451 | for i in range(nDatas): | |
|
452 | data = dataset[strds + str(i)].value | |
|
453 | arrayData[:,i,:] = data[blockList,:] | |
|
454 | ||
|
455 | #------- Three dimensions --------- | |
|
456 | else: | |
|
457 | arrayData = numpy.zeros((blocksPerFile,nDim2,nDim1,nDim0)) | |
|
458 | for i in range(nDatas): | |
|
459 | ||
|
460 | data = dataset[strds + str(i)].value | |
|
461 | ||
|
462 | for b in range(blockList.size): | |
|
463 | arrayData[b,:,i,:] = data[:,:,blockList[b]] | |
|
464 | ||
|
465 | return arrayData | |
|
466 | ||
|
467 | def __setDataOut(self): | |
|
468 | listMeta = self.listMeta | |
|
469 | listMetaname = self.listMetaname | |
|
470 | listDataname = self.listDataname | |
|
471 | listData = self.listData | |
|
472 | listShapes = self.listShapes | |
|
473 | ||
|
474 | blockIndex = self.blockIndex | |
|
475 | # blockList = self.blockList | |
|
476 | ||
|
477 | for i in range(len(listMeta)): | |
|
478 | setattr(self.dataOut,listMetaname[i],listMeta[i]) | |
|
479 | ||
|
480 | for j in range(len(listData)): | |
|
481 | nShapes = listShapes[listDataname[j]][0] | |
|
482 | mode = listShapes[listDataname[j]][4] | |
|
483 | if nShapes == 1: | |
|
484 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex]) | |
|
485 | elif nShapes > 1: | |
|
486 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex,:]) | |
|
487 | elif mode==0: | |
|
488 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex]) | |
|
489 | #Mode Meteors | |
|
490 | elif mode ==2: | |
|
491 | selectedData = self.__selectDataMode2(listData[j], blockIndex) | |
|
492 | setattr(self.dataOut, listDataname[j], selectedData) | |
|
493 | return | |
|
494 | ||
|
495 | def __selectDataMode2(self, data, blockIndex): | |
|
496 | utctime = data[:,0] | |
|
497 | aux, indices = numpy.unique(utctime, return_inverse=True) | |
|
498 | selInd = numpy.where(indices == blockIndex)[0] | |
|
499 | selData = data[selInd,:] | |
|
500 | ||
|
501 | return selData | |
|
502 | ||
|
503 | def getData(self): | |
|
504 | ||
|
505 | # if self.flagNoMoreFiles: | |
|
506 | # self.dataOut.flagNoData = True | |
|
507 | # print 'Process finished' | |
|
508 | # return 0 | |
|
509 | # | |
|
510 | if self.blockIndex==self.blocksPerFile: | |
|
511 | if not( self.__setNextFileOffline() ): | |
|
512 | self.dataOut.flagNoData = True | |
|
513 | return 0 | |
|
514 | ||
|
515 | # if self.datablock == None: # setear esta condicion cuando no hayan datos por leers | |
|
516 | # self.dataOut.flagNoData = True | |
|
517 | # return 0 | |
|
518 | # self.__readData() | |
|
519 | self.__setDataOut() | |
|
520 | self.dataOut.flagNoData = False | |
|
521 | ||
|
522 | self.blockIndex += 1 | |
|
523 | ||
|
524 | return | |
|
525 | ||
|
526 | def run(self, **kwargs): | |
|
527 | ||
|
528 | if not(self.isConfig): | |
|
529 | self.setup(**kwargs) | |
|
530 | # self.setObjProperties() | |
|
531 | self.isConfig = True | |
|
532 | ||
|
533 | self.getData() | |
|
534 | ||
|
535 | return | |
|
536 | ||
|
537 | class ParamWriter(Operation): | |
|
538 | ''' | |
|
539 | HDF5 Writer, stores parameters data in HDF5 format files | |
|
540 | ||
|
541 | path: path where the files will be stored | |
|
542 | ||
|
543 | blocksPerFile: number of blocks that will be saved in per HDF5 format file | |
|
544 | ||
|
545 | mode: selects the data stacking mode: '0' channels, '1' parameters, '3' table (for meteors) | |
|
546 | ||
|
547 | metadataList: list of attributes that will be stored as metadata | |
|
548 | ||
|
549 | dataList: list of attributes that will be stores as data | |
|
550 | ||
|
551 | ''' | |
|
552 | ||
|
553 | ||
|
554 | ext = ".hdf5" | |
|
555 | ||
|
556 | optchar = "D" | |
|
557 | ||
|
558 | metaoptchar = "M" | |
|
559 | ||
|
560 | metaFile = None | |
|
561 | ||
|
562 | filename = None | |
|
563 | ||
|
564 | path = None | |
|
565 | ||
|
566 | setFile = None | |
|
567 | ||
|
568 | fp = None | |
|
569 | ||
|
570 | grp = None | |
|
571 | ||
|
572 | ds = None | |
|
573 | ||
|
574 | firsttime = True | |
|
575 | ||
|
576 | #Configurations | |
|
577 | ||
|
578 | blocksPerFile = None | |
|
579 | ||
|
580 | blockIndex = None | |
|
581 | ||
|
582 | dataOut = None | |
|
583 | ||
|
584 | #Data Arrays | |
|
585 | ||
|
586 | dataList = None | |
|
587 | ||
|
588 | metadataList = None | |
|
589 | ||
|
590 | # arrayDim = None | |
|
591 | ||
|
592 | dsList = None #List of dictionaries with dataset properties | |
|
593 | ||
|
594 | tableDim = None | |
|
595 | ||
|
596 | # dtype = [('arrayName', 'S20'),('nChannels', 'i'), ('nPoints', 'i'), ('nSamples', 'i'),('mode', 'b')] | |
|
597 | ||
|
598 | dtype = [('arrayName', 'S20'),('nDimensions', 'i'), ('dim2', 'i'), ('dim1', 'i'),('dim0', 'i'),('mode', 'b')] | |
|
599 | ||
|
600 | currentDay = None | |
|
601 | ||
|
602 | def __init__(self): | |
|
603 | ||
|
604 | Operation.__init__(self) | |
|
605 | self.isConfig = False | |
|
606 | return | |
|
607 | ||
|
608 | def setup(self, dataOut, **kwargs): | |
|
609 | ||
|
610 | self.path = kwargs['path'] | |
|
611 | ||
|
612 | if kwargs.has_key('blocksPerFile'): | |
|
613 | self.blocksPerFile = kwargs['blocksPerFile'] | |
|
614 | else: | |
|
615 | self.blocksPerFile = 10 | |
|
616 | ||
|
617 | self.metadataList = kwargs['metadataList'] | |
|
618 | self.dataList = kwargs['dataList'] | |
|
619 | self.dataOut = dataOut | |
|
620 | ||
|
621 | if kwargs.has_key('mode'): | |
|
622 | mode = kwargs['mode'] | |
|
623 | ||
|
624 | if type(mode) == int: | |
|
625 | mode = numpy.zeros(len(self.dataList)) + mode | |
|
626 | else: | |
|
627 | mode = numpy.ones(len(self.dataList)) | |
|
628 | ||
|
629 | self.mode = mode | |
|
630 | ||
|
631 | arrayDim = numpy.zeros((len(self.dataList),5)) | |
|
632 | ||
|
633 | #Table dimensions | |
|
634 | dtype0 = self.dtype | |
|
635 | tableList = [] | |
|
636 | ||
|
637 | #Dictionary and list of tables | |
|
638 | dsList = [] | |
|
639 | ||
|
640 | for i in range(len(self.dataList)): | |
|
641 | dsDict = {} | |
|
642 | dataAux = getattr(self.dataOut, self.dataList[i]) | |
|
643 | dsDict['variable'] = self.dataList[i] | |
|
644 | #--------------------- Conditionals ------------------------ | |
|
645 | #There is no data | |
|
646 | if dataAux == None: | |
|
647 | return 0 | |
|
648 | ||
|
649 | #Not array, just a number | |
|
650 | #Mode 0 | |
|
651 | if type(dataAux)==float or type(dataAux)==int: | |
|
652 | dsDict['mode'] = 0 | |
|
653 | dsDict['nDim'] = 0 | |
|
654 | arrayDim[i,0] = 0 | |
|
655 | dsList.append(dsDict) | |
|
656 | ||
|
657 | #Mode 2: meteors | |
|
658 | elif mode[i] == 2: | |
|
659 | # dsDict['nDim'] = 0 | |
|
660 | dsDict['dsName'] = 'table0' | |
|
661 | dsDict['mode'] = 2 # Mode meteors | |
|
662 | dsDict['shape'] = dataAux.shape[-1] | |
|
663 | dsDict['nDim'] = 0 | |
|
664 | dsDict['dsNumber'] = 1 | |
|
665 | ||
|
666 | arrayDim[i,3] = dataAux.shape[-1] | |
|
667 | arrayDim[i,4] = mode[i] #Mode the data was stored | |
|
668 | ||
|
669 | dsList.append(dsDict) | |
|
670 | ||
|
671 | #Mode 1 | |
|
672 | else: | |
|
673 | arrayDim0 = dataAux.shape #Data dimensions | |
|
674 | arrayDim[i,0] = len(arrayDim0) #Number of array dimensions | |
|
675 | arrayDim[i,4] = mode[i] #Mode the data was stored | |
|
676 | ||
|
677 | strtable = 'table' | |
|
678 | dsDict['mode'] = 1 # Mode parameters | |
|
679 | ||
|
680 | # Three-dimension arrays | |
|
681 | if len(arrayDim0) == 3: | |
|
682 | arrayDim[i,1:-1] = numpy.array(arrayDim0) | |
|
683 | nTables = int(arrayDim[i,2]) | |
|
684 | dsDict['dsNumber'] = nTables | |
|
685 | dsDict['shape'] = arrayDim[i,2:4] | |
|
686 | dsDict['nDim'] = 3 | |
|
687 | ||
|
688 | for j in range(nTables): | |
|
689 | dsDict = dsDict.copy() | |
|
690 | dsDict['dsName'] = strtable + str(j) | |
|
691 | dsList.append(dsDict) | |
|
692 | ||
|
693 | # Two-dimension arrays | |
|
694 | elif len(arrayDim0) == 2: | |
|
695 | arrayDim[i,2:-1] = numpy.array(arrayDim0) | |
|
696 | nTables = int(arrayDim[i,2]) | |
|
697 | dsDict['dsNumber'] = nTables | |
|
698 | dsDict['shape'] = arrayDim[i,3] | |
|
699 | dsDict['nDim'] = 2 | |
|
700 | ||
|
701 | for j in range(nTables): | |
|
702 | dsDict = dsDict.copy() | |
|
703 | dsDict['dsName'] = strtable + str(j) | |
|
704 | dsList.append(dsDict) | |
|
705 | ||
|
706 | # One-dimension arrays | |
|
707 | elif len(arrayDim0) == 1: | |
|
708 | arrayDim[i,3] = arrayDim0[0] | |
|
709 | dsDict['shape'] = arrayDim0[0] | |
|
710 | dsDict['dsNumber'] = 1 | |
|
711 | dsDict['dsName'] = strtable + str(0) | |
|
712 | dsDict['nDim'] = 1 | |
|
713 | dsList.append(dsDict) | |
|
714 | ||
|
715 | table = numpy.array((self.dataList[i],) + tuple(arrayDim[i,:]),dtype = dtype0) | |
|
716 | tableList.append(table) | |
|
717 | ||
|
718 | # self.arrayDim = arrayDim | |
|
719 | self.dsList = dsList | |
|
720 | self.tableDim = numpy.array(tableList, dtype = dtype0) | |
|
721 | self.blockIndex = 0 | |
|
722 | ||
|
723 | timeTuple = time.localtime(dataOut.utctime) | |
|
724 | self.currentDay = timeTuple.tm_yday | |
|
725 | return 1 | |
|
726 | ||
|
727 | def putMetadata(self): | |
|
728 | ||
|
729 | fp = self.createMetadataFile() | |
|
730 | self.writeMetadata(fp) | |
|
731 | fp.close() | |
|
732 | return | |
|
733 | ||
|
734 | def createMetadataFile(self): | |
|
735 | ext = self.ext | |
|
736 | path = self.path | |
|
737 | setFile = self.setFile | |
|
738 | ||
|
739 | timeTuple = time.localtime(self.dataOut.utctime) | |
|
740 | ||
|
741 | subfolder = '' | |
|
742 | fullpath = os.path.join( path, subfolder ) | |
|
743 | ||
|
744 | if not( os.path.exists(fullpath) ): | |
|
745 | os.mkdir(fullpath) | |
|
746 | setFile = -1 #inicializo mi contador de seteo | |
|
747 | ||
|
748 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) | |
|
749 | fullpath = os.path.join( path, subfolder ) | |
|
750 | ||
|
751 | if not( os.path.exists(fullpath) ): | |
|
752 | os.mkdir(fullpath) | |
|
753 | setFile = -1 #inicializo mi contador de seteo | |
|
754 | ||
|
755 | else: | |
|
756 | filesList = os.listdir( fullpath ) | |
|
757 | filesList = sorted( filesList, key=str.lower ) | |
|
758 | if len( filesList ) > 0: | |
|
759 | filesList = [k for k in filesList if 'M' in k] | |
|
760 | filen = filesList[-1] | |
|
761 | # el filename debera tener el siguiente formato | |
|
762 | # 0 1234 567 89A BCDE (hex) | |
|
763 | # x YYYY DDD SSS .ext | |
|
764 | if isNumber( filen[8:11] ): | |
|
765 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file | |
|
766 | else: | |
|
767 | setFile = -1 | |
|
768 | else: | |
|
769 | setFile = -1 #inicializo mi contador de seteo | |
|
770 | ||
|
771 | setFile += 1 | |
|
772 | ||
|
773 | file = '%s%4.4d%3.3d%3.3d%s' % (self.metaoptchar, | |
|
774 | timeTuple.tm_year, | |
|
775 | timeTuple.tm_yday, | |
|
776 | setFile, | |
|
777 | ext ) | |
|
778 | ||
|
779 | filename = os.path.join( path, subfolder, file ) | |
|
780 | self.metaFile = file | |
|
781 | #Setting HDF5 File | |
|
782 | fp = h5py.File(filename,'w') | |
|
783 | ||
|
784 | return fp | |
|
785 | ||
|
786 | def writeMetadata(self, fp): | |
|
787 | ||
|
788 | grp = fp.create_group("Metadata") | |
|
789 | grp.create_dataset('array dimensions', data = self.tableDim, dtype = self.dtype) | |
|
790 | ||
|
791 | for i in range(len(self.metadataList)): | |
|
792 | grp.create_dataset(self.metadataList[i], data=getattr(self.dataOut, self.metadataList[i])) | |
|
793 | return | |
|
794 | ||
|
795 | def dateFlag(self): | |
|
796 | ||
|
797 | timeTuple = time.localtime(self.dataOut.utctime) | |
|
798 | dataDay = timeTuple.tm_yday | |
|
799 | ||
|
800 | if dataDay == self.currentDay: | |
|
801 | return False | |
|
802 | ||
|
803 | self.currentDay = dataDay | |
|
804 | return True | |
|
805 | ||
|
806 | def setNextFile(self): | |
|
807 | ||
|
808 | ext = self.ext | |
|
809 | path = self.path | |
|
810 | setFile = self.setFile | |
|
811 | mode = self.mode | |
|
812 | ||
|
813 | timeTuple = time.localtime(self.dataOut.utctime) | |
|
814 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) | |
|
815 | ||
|
816 | fullpath = os.path.join( path, subfolder ) | |
|
817 | ||
|
818 | if os.path.exists(fullpath): | |
|
819 | filesList = os.listdir( fullpath ) | |
|
820 | filesList = [k for k in filesList if 'D' in k] | |
|
821 | if len( filesList ) > 0: | |
|
822 | filesList = sorted( filesList, key=str.lower ) | |
|
823 | filen = filesList[-1] | |
|
824 | # el filename debera tener el siguiente formato | |
|
825 | # 0 1234 567 89A BCDE (hex) | |
|
826 | # x YYYY DDD SSS .ext | |
|
827 | if isNumber( filen[8:11] ): | |
|
828 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file | |
|
829 | else: | |
|
830 | setFile = -1 | |
|
831 | else: | |
|
832 | setFile = -1 #inicializo mi contador de seteo | |
|
833 | else: | |
|
834 | os.mkdir(fullpath) | |
|
835 | setFile = -1 #inicializo mi contador de seteo | |
|
836 | ||
|
837 | setFile += 1 | |
|
838 | ||
|
839 | file = '%s%4.4d%3.3d%3.3d%s' % (self.optchar, | |
|
840 | timeTuple.tm_year, | |
|
841 | timeTuple.tm_yday, | |
|
842 | setFile, | |
|
843 | ext ) | |
|
844 | ||
|
845 | filename = os.path.join( path, subfolder, file ) | |
|
846 | ||
|
847 | #Setting HDF5 File | |
|
848 | fp = h5py.File(filename,'w') | |
|
849 | #write metadata | |
|
850 | self.writeMetadata(fp) | |
|
851 | #Write data | |
|
852 | grp = fp.create_group("Data") | |
|
853 | # grp.attrs['metadata'] = self.metaFile | |
|
854 | ||
|
855 | # grp.attrs['blocksPerFile'] = 0 | |
|
856 | ds = [] | |
|
857 | data = [] | |
|
858 | dsList = self.dsList | |
|
859 | i = 0 | |
|
860 | while i < len(dsList): | |
|
861 | dsInfo = dsList[i] | |
|
862 | #One-dimension data | |
|
863 | if dsInfo['mode'] == 0: | |
|
864 | # ds0 = grp.create_dataset(self.dataList[i], (1,1), maxshape=(1,self.blocksPerFile) , chunks = True, dtype='S20') | |
|
865 | ds0 = grp.create_dataset(dsInfo['variable'], (1,1), maxshape=(1,self.blocksPerFile) , chunks = True, dtype=numpy.float64) | |
|
866 | ds.append(ds0) | |
|
867 | data.append([]) | |
|
868 | i += 1 | |
|
869 | continue | |
|
870 | # nDimsForDs.append(nDims[i]) | |
|
871 | ||
|
872 | elif dsInfo['mode'] == 2: | |
|
873 | grp0 = grp.create_group(dsInfo['variable']) | |
|
874 | ds0 = grp0.create_dataset(dsInfo['dsName'], (1,dsInfo['shape']), data = numpy.zeros((1,dsInfo['shape'])) , maxshape=(None,dsInfo['shape']), chunks=True) | |
|
875 | ds.append(ds0) | |
|
876 | data.append([]) | |
|
877 | i += 1 | |
|
878 | continue | |
|
879 | ||
|
880 | elif dsInfo['mode'] == 1: | |
|
881 | grp0 = grp.create_group(dsInfo['variable']) | |
|
882 | ||
|
883 | for j in range(dsInfo['dsNumber']): | |
|
884 | dsInfo = dsList[i] | |
|
885 | tableName = dsInfo['dsName'] | |
|
886 | shape = dsInfo['shape'] | |
|
887 | ||
|
888 | if dsInfo['nDim'] == 3: | |
|
889 | ds0 = grp0.create_dataset(tableName, (shape[0],shape[1],1) , data = numpy.zeros((shape[0],shape[1],1)), maxshape = (None,shape[1],None), chunks=True) | |
|
890 | else: | |
|
891 | ds0 = grp0.create_dataset(tableName, (1,shape), data = numpy.zeros((1,shape)) , maxshape=(None,shape), chunks=True) | |
|
892 | ||
|
893 | ds.append(ds0) | |
|
894 | data.append([]) | |
|
895 | i += 1 | |
|
896 | # nDimsForDs.append(nDims[i]) | |
|
897 | ||
|
898 | fp.flush() | |
|
899 | fp.close() | |
|
900 | ||
|
901 | # self.nDatas = nDatas | |
|
902 | # self.nDims = nDims | |
|
903 | # self.nDimsForDs = nDimsForDs | |
|
904 | #Saving variables | |
|
905 | print 'Writing the file: %s'%filename | |
|
906 | self.filename = filename | |
|
907 | # self.fp = fp | |
|
908 | # self.grp = grp | |
|
909 | # self.grp.attrs.modify('nRecords', 1) | |
|
910 | self.ds = ds | |
|
911 | self.data = data | |
|
912 | # self.setFile = setFile | |
|
913 | self.firsttime = True | |
|
914 | self.blockIndex = 0 | |
|
915 | return | |
|
916 | ||
|
917 | def putData(self): | |
|
918 | ||
|
919 | if self.blockIndex == self.blocksPerFile or self.dateFlag(): | |
|
920 | self.setNextFile() | |
|
921 | ||
|
922 | # if not self.firsttime: | |
|
923 | self.readBlock() | |
|
924 | self.setBlock() #Prepare data to be written | |
|
925 | self.writeBlock() #Write data | |
|
926 | ||
|
927 | return | |
|
928 | ||
|
929 | def readBlock(self): | |
|
930 | ||
|
931 | ''' | |
|
932 | data Array configured | |
|
933 | ||
|
934 | ||
|
935 | self.data | |
|
936 | ''' | |
|
937 | dsList = self.dsList | |
|
938 | ds = self.ds | |
|
939 | #Setting HDF5 File | |
|
940 | fp = h5py.File(self.filename,'r+') | |
|
941 | grp = fp["Data"] | |
|
942 | ind = 0 | |
|
943 | ||
|
944 | # grp.attrs['blocksPerFile'] = 0 | |
|
945 | while ind < len(dsList): | |
|
946 | dsInfo = dsList[ind] | |
|
947 | ||
|
948 | if dsInfo['mode'] == 0: | |
|
949 | ds0 = grp[dsInfo['variable']] | |
|
950 | ds[ind] = ds0 | |
|
951 | ind += 1 | |
|
952 | else: | |
|
953 | ||
|
954 | grp0 = grp[dsInfo['variable']] | |
|
955 | ||
|
956 | for j in range(dsInfo['dsNumber']): | |
|
957 | dsInfo = dsList[ind] | |
|
958 | ds0 = grp0[dsInfo['dsName']] | |
|
959 | ds[ind] = ds0 | |
|
960 | ind += 1 | |
|
961 | ||
|
962 | self.fp = fp | |
|
963 | self.grp = grp | |
|
964 | self.ds = ds | |
|
965 | ||
|
966 | return | |
|
967 | ||
|
968 | def setBlock(self): | |
|
969 | ''' | |
|
970 | data Array configured | |
|
971 | ||
|
972 | ||
|
973 | self.data | |
|
974 | ''' | |
|
975 | #Creating Arrays | |
|
976 | dsList = self.dsList | |
|
977 | data = self.data | |
|
978 | ind = 0 | |
|
979 | ||
|
980 | while ind < len(dsList): | |
|
981 | dsInfo = dsList[ind] | |
|
982 | dataAux = getattr(self.dataOut, dsInfo['variable']) | |
|
983 | ||
|
984 | mode = dsInfo['mode'] | |
|
985 | nDim = dsInfo['nDim'] | |
|
986 | ||
|
987 | if mode == 0 or mode == 2 or nDim == 1: | |
|
988 | data[ind] = dataAux | |
|
989 | ind += 1 | |
|
990 | # elif nDim == 1: | |
|
991 | # data[ind] = numpy.reshape(dataAux,(numpy.size(dataAux),1)) | |
|
992 | # ind += 1 | |
|
993 | elif nDim == 2: | |
|
994 | for j in range(dsInfo['dsNumber']): | |
|
995 | data[ind] = dataAux[j,:] | |
|
996 | ind += 1 | |
|
997 | elif nDim == 3: | |
|
998 | for j in range(dsInfo['dsNumber']): | |
|
999 | data[ind] = dataAux[:,j,:] | |
|
1000 | ind += 1 | |
|
1001 | ||
|
1002 | self.data = data | |
|
1003 | return | |
|
1004 | ||
|
1005 | def writeBlock(self): | |
|
1006 | ''' | |
|
1007 | Saves the block in the HDF5 file | |
|
1008 | ''' | |
|
1009 | dsList = self.dsList | |
|
1010 | ||
|
1011 | for i in range(len(self.ds)): | |
|
1012 | dsInfo = dsList[i] | |
|
1013 | nDim = dsInfo['nDim'] | |
|
1014 | mode = dsInfo['mode'] | |
|
1015 | ||
|
1016 | # First time | |
|
1017 | if self.firsttime: | |
|
1018 | # self.ds[i].resize(self.data[i].shape) | |
|
1019 | # self.ds[i][self.blockIndex,:] = self.data[i] | |
|
1020 | if type(self.data[i]) == numpy.ndarray: | |
|
1021 | ||
|
1022 | if nDim == 3: | |
|
1023 | self.data[i] = self.data[i].reshape((self.data[i].shape[0],self.data[i].shape[1],1)) | |
|
1024 | self.ds[i].resize(self.data[i].shape) | |
|
1025 | if mode == 2: | |
|
1026 | self.ds[i].resize(self.data[i].shape) | |
|
1027 | self.ds[i][:] = self.data[i] | |
|
1028 | else: | |
|
1029 | ||
|
1030 | # From second time | |
|
1031 | # Meteors! | |
|
1032 | if mode == 2: | |
|
1033 | dataShape = self.data[i].shape | |
|
1034 | dsShape = self.ds[i].shape | |
|
1035 | self.ds[i].resize((self.ds[i].shape[0] + dataShape[0],self.ds[i].shape[1])) | |
|
1036 | self.ds[i][dsShape[0]:,:] = self.data[i] | |
|
1037 | # No dimension | |
|
1038 | elif mode == 0: | |
|
1039 | self.ds[i].resize((self.ds[i].shape[0], self.ds[i].shape[1] + 1)) | |
|
1040 | self.ds[i][0,-1] = self.data[i] | |
|
1041 | # One dimension | |
|
1042 | elif nDim == 1: | |
|
1043 | self.ds[i].resize((self.ds[i].shape[0] + 1, self.ds[i].shape[1])) | |
|
1044 | self.ds[i][-1,:] = self.data[i] | |
|
1045 | # Two dimension | |
|
1046 | elif nDim == 2: | |
|
1047 | self.ds[i].resize((self.ds[i].shape[0] + 1,self.ds[i].shape[1])) | |
|
1048 | self.ds[i][self.blockIndex,:] = self.data[i] | |
|
1049 | # Three dimensions | |
|
1050 | elif nDim == 3: | |
|
1051 | self.ds[i].resize((self.ds[i].shape[0],self.ds[i].shape[1],self.ds[i].shape[2]+1)) | |
|
1052 | self.ds[i][:,:,-1] = self.data[i] | |
|
1053 | ||
|
1054 | self.firsttime = False | |
|
1055 | self.blockIndex += 1 | |
|
1056 | ||
|
1057 | #Close to save changes | |
|
1058 | self.fp.flush() | |
|
1059 | self.fp.close() | |
|
1060 | return | |
|
1061 | ||
|
1062 | def run(self, dataOut, **kwargs): | |
|
1063 | ||
|
1064 | if not(self.isConfig): | |
|
1065 | flagdata = self.setup(dataOut, **kwargs) | |
|
1066 | ||
|
1067 | if not(flagdata): | |
|
1068 | return | |
|
1069 | ||
|
1070 | self.isConfig = True | |
|
1071 | # self.putMetadata() | |
|
1072 | self.setNextFile() | |
|
1073 | ||
|
1074 | self.putData() | |
|
1075 | return | |
|
1076 | ||
|
1077 |
@@ -1,14 +1,14 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JRODataIO.py 169 2012-11-19 21:57:03Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | from jroIO_voltage import * |
|
8 | 8 | from jroIO_spectra import * |
|
9 | 9 | from jroIO_heispectra import * |
|
10 | 10 | from jroIO_usrp import * |
|
11 | 11 | |
|
12 | from jroIO_amisr import * | |
|
13 |
from jroIO_ |
|
|
12 | from jroIO_kamisr import * | |
|
13 | from jroIO_param import * | |
|
14 | 14 | from jroIO_hf import * No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now