@@ -315,7 +315,7 class VoltageReader(JRODataReader, ProcessingUnit): | |||
|
315 | 315 | self.nTxs, self.processingHeaderObj.nHeights)) |
|
316 | 316 | |
|
317 | 317 | self.datablock = self.datablock.reshape( |
|
318 | (self.systemHeaderObj.nChannels, self.processingHeaderObj.profilesPerBlock * self.nTxs, self.processingHeaderObj.nHeights / self.nTxs)) | |
|
318 | (self.systemHeaderObj.nChannels, self.processingHeaderObj.profilesPerBlock * self.nTxs, int(self.processingHeaderObj.nHeights / self.nTxs))) | |
|
319 | 319 | |
|
320 | 320 | self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock * self.nTxs |
|
321 | 321 | self.dataOut.heightList = numpy.arange(self.processingHeaderObj.nHeights / self.nTxs) * \ |
@@ -463,7 +463,6 class VoltageReader(JRODataReader, ProcessingUnit): | |||
|
463 | 463 | """ |
|
464 | 464 | if self.flagNoMoreFiles: |
|
465 | 465 | self.dataOut.flagNoData = True |
|
466 | print('Process finished') | |
|
467 | 466 | return 0 |
|
468 | 467 | self.flagDiscontinuousBlock = 0 |
|
469 | 468 | self.flagIsNewBlock = 0 |
@@ -492,16 +491,6 class VoltageReader(JRODataReader, ProcessingUnit): | |||
|
492 | 491 | |
|
493 | 492 | self.profileIndex += 1 |
|
494 | 493 | |
|
495 | # elif self.selBlocksize==None or self.selBlocksize==self.dataOut.nProfiles: | |
|
496 | # """ | |
|
497 | # Return all block | |
|
498 | # """ | |
|
499 | # self.dataOut.flagDataAsBlock = True | |
|
500 | # self.dataOut.data = self.datablock | |
|
501 | # self.dataOut.profileIndex = self.dataOut.nProfiles - 1 | |
|
502 | # | |
|
503 | # self.profileIndex = self.dataOut.nProfiles | |
|
504 | ||
|
505 | 494 | else: |
|
506 | 495 | """ |
|
507 | 496 | Return a block |
@@ -230,7 +230,7 class VoltageProc(ProcessingUnit): | |||
|
230 | 230 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
231 | 231 | """ |
|
232 | 232 | buffer = self.dataOut.data[:, :, 0:int(self.dataOut.nHeights-r)] |
|
233 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) | |
|
233 | buffer = buffer.reshape(self.dataOut.nChannels, self.dataOut.nProfiles, int(self.dataOut.nHeights/window), window) | |
|
234 | 234 | buffer = numpy.sum(buffer,3) |
|
235 | 235 | |
|
236 | 236 | else: |
@@ -665,8 +665,7 class Decoder(Operation): | |||
|
665 | 665 | |
|
666 | 666 | def __convolutionByBlockInTime(self, data): |
|
667 | 667 | |
|
668 | repetitions = self.__nProfiles / self.nCode | |
|
669 | ||
|
668 | repetitions = int(self.__nProfiles / self.nCode) | |
|
670 | 669 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
671 | 670 | junk = junk.flatten() |
|
672 | 671 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
General Comments 0
You need to be logged in to leave comments.
Login now