This diff has been collapsed as it changes many lines, (828 lines changed) Show them Hide them | |||||
@@ -1,5672 +1,6214 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | from scipy.fftpack import fft |
|
4 | from scipy.fftpack import fft | |
5 | import scipy |
|
5 | import scipy | |
6 | import re |
|
6 | import re | |
7 | import datetime |
|
7 | import datetime | |
8 | import copy |
|
8 | import copy | |
9 | import sys |
|
9 | import sys | |
10 | import importlib |
|
10 | import importlib | |
11 | import itertools |
|
11 | import itertools | |
12 | from multiprocessing import Pool, TimeoutError |
|
12 | from multiprocessing import Pool, TimeoutError | |
13 | from multiprocessing.pool import ThreadPool |
|
13 | from multiprocessing.pool import ThreadPool | |
14 | import time |
|
14 | import time | |
15 |
|
15 | |||
|
16 | import matplotlib.pyplot as plt | |||
16 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
17 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
17 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
18 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
18 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
19 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
19 | from scipy import asarray as ar,exp |
|
20 | from scipy import asarray as ar,exp | |
20 | from scipy.optimize import fmin, curve_fit |
|
21 | from scipy.optimize import fmin, curve_fit | |
21 | from schainpy.utils import log |
|
22 | from schainpy.utils import log | |
22 | import warnings |
|
23 | import warnings | |
23 | from numpy import NaN |
|
24 | from numpy import NaN | |
24 | from scipy.optimize.optimize import OptimizeWarning |
|
25 | from scipy.optimize.optimize import OptimizeWarning | |
25 | warnings.filterwarnings('ignore') |
|
26 | warnings.filterwarnings('ignore') | |
26 |
|
27 | |||
27 |
|
28 | |||
28 | SPEED_OF_LIGHT = 299792458 |
|
29 | SPEED_OF_LIGHT = 299792458 | |
29 |
|
30 | |||
30 | '''solving pickling issue''' |
|
31 | '''solving pickling issue''' | |
31 |
|
32 | |||
32 | def _pickle_method(method): |
|
33 | def _pickle_method(method): | |
33 | func_name = method.__func__.__name__ |
|
34 | func_name = method.__func__.__name__ | |
34 | obj = method.__self__ |
|
35 | obj = method.__self__ | |
35 | cls = method.__self__.__class__ |
|
36 | cls = method.__self__.__class__ | |
36 | return _unpickle_method, (func_name, obj, cls) |
|
37 | return _unpickle_method, (func_name, obj, cls) | |
37 |
|
38 | |||
38 | def _unpickle_method(func_name, obj, cls): |
|
39 | def _unpickle_method(func_name, obj, cls): | |
39 | for cls in cls.mro(): |
|
40 | for cls in cls.mro(): | |
40 | try: |
|
41 | try: | |
41 | func = cls.__dict__[func_name] |
|
42 | func = cls.__dict__[func_name] | |
42 | except KeyError: |
|
43 | except KeyError: | |
43 | pass |
|
44 | pass | |
44 | else: |
|
45 | else: | |
45 | break |
|
46 | break | |
46 | return func.__get__(obj, cls) |
|
47 | return func.__get__(obj, cls) | |
47 |
|
48 | |||
48 | # @MPDecorator |
|
49 | # @MPDecorator | |
49 | class ParametersProc(ProcessingUnit): |
|
50 | class ParametersProc(ProcessingUnit): | |
50 |
|
51 | |||
51 | METHODS = {} |
|
52 | METHODS = {} | |
52 | nSeconds = None |
|
53 | nSeconds = None | |
53 |
|
54 | |||
54 | def __init__(self): |
|
55 | def __init__(self): | |
55 | ProcessingUnit.__init__(self) |
|
56 | ProcessingUnit.__init__(self) | |
56 |
|
57 | |||
57 | self.buffer = None |
|
58 | self.buffer = None | |
58 | self.firstdatatime = None |
|
59 | self.firstdatatime = None | |
59 | self.profIndex = 0 |
|
60 | self.profIndex = 0 | |
60 | self.dataOut = Parameters() |
|
61 | self.dataOut = Parameters() | |
61 | self.setupReq = False #Agregar a todas las unidades de proc |
|
62 | self.setupReq = False #Agregar a todas las unidades de proc | |
62 |
|
63 | |||
63 | def __updateObjFromInput(self): |
|
64 | def __updateObjFromInput(self): | |
64 |
|
65 | |||
65 | self.dataOut.inputUnit = self.dataIn.type |
|
66 | self.dataOut.inputUnit = self.dataIn.type | |
66 |
|
67 | |||
67 | self.dataOut.timeZone = self.dataIn.timeZone |
|
68 | self.dataOut.timeZone = self.dataIn.timeZone | |
68 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
69 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
69 | self.dataOut.errorCount = self.dataIn.errorCount |
|
70 | self.dataOut.errorCount = self.dataIn.errorCount | |
70 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
71 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
71 |
|
72 | |||
72 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
73 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
73 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
74 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
74 | self.dataOut.channelList = self.dataIn.channelList |
|
75 | self.dataOut.channelList = self.dataIn.channelList | |
75 | self.dataOut.heightList = self.dataIn.heightList |
|
76 | self.dataOut.heightList = self.dataIn.heightList | |
76 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
77 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
77 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
78 | # self.dataOut.nHeights = self.dataIn.nHeights | |
78 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
79 | # self.dataOut.nChannels = self.dataIn.nChannels | |
79 | # self.dataOut.nBaud = self.dataIn.nBaud |
|
80 | # self.dataOut.nBaud = self.dataIn.nBaud | |
80 | # self.dataOut.nCode = self.dataIn.nCode |
|
81 | # self.dataOut.nCode = self.dataIn.nCode | |
81 | # self.dataOut.code = self.dataIn.code |
|
82 | # self.dataOut.code = self.dataIn.code | |
82 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
83 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
83 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
84 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
84 | # self.dataOut.utctime = self.firstdatatime |
|
85 | # self.dataOut.utctime = self.firstdatatime | |
85 | self.dataOut.utctime = self.dataIn.utctime |
|
86 | self.dataOut.utctime = self.dataIn.utctime | |
86 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
87 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
87 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
88 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
88 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
89 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
89 | # self.dataOut.nIncohInt = 1 |
|
90 | # self.dataOut.nIncohInt = 1 | |
90 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
91 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
91 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
92 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
92 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
93 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
93 | self.dataOut.heightList = self.dataIn.heightList |
|
94 | self.dataOut.heightList = self.dataIn.heightList | |
94 | self.dataOut.frequency = self.dataIn.frequency |
|
95 | self.dataOut.frequency = self.dataIn.frequency | |
95 | #self.dataOut.noise = self.dataIn.noise |
|
96 | #self.dataOut.noise = self.dataIn.noise | |
96 |
|
97 | |||
97 | def run(self): |
|
98 | def run(self): | |
98 |
|
99 | |||
99 | #---------------------- Voltage Data --------------------------- |
|
100 | #---------------------- Voltage Data --------------------------- | |
100 |
|
101 | |||
101 | if self.dataIn.type == "Voltage": |
|
102 | if self.dataIn.type == "Voltage": | |
102 |
|
103 | |||
103 | self.__updateObjFromInput() |
|
104 | self.__updateObjFromInput() | |
104 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
105 | self.dataOut.data_pre = self.dataIn.data.copy() | |
105 | self.dataOut.flagNoData = False |
|
106 | self.dataOut.flagNoData = False | |
106 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
107 | self.dataOut.utctimeInit = self.dataIn.utctime | |
107 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
108 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
108 | if hasattr(self.dataIn, 'dataPP_POW'): |
|
109 | if hasattr(self.dataIn, 'dataPP_POW'): | |
109 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW |
|
110 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW | |
110 |
|
111 | |||
111 | if hasattr(self.dataIn, 'dataPP_POWER'): |
|
112 | if hasattr(self.dataIn, 'dataPP_POWER'): | |
112 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER |
|
113 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER | |
113 |
|
114 | |||
114 | if hasattr(self.dataIn, 'dataPP_DOP'): |
|
115 | if hasattr(self.dataIn, 'dataPP_DOP'): | |
115 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP |
|
116 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP | |
116 |
|
117 | |||
117 | if hasattr(self.dataIn, 'dataPP_SNR'): |
|
118 | if hasattr(self.dataIn, 'dataPP_SNR'): | |
118 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR |
|
119 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR | |
119 |
|
120 | |||
120 | if hasattr(self.dataIn, 'dataPP_WIDTH'): |
|
121 | if hasattr(self.dataIn, 'dataPP_WIDTH'): | |
121 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH |
|
122 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH | |
122 | return |
|
123 | return | |
123 |
|
124 | |||
124 | #---------------------- Spectra Data --------------------------- |
|
125 | #---------------------- Spectra Data --------------------------- | |
125 |
|
126 | |||
126 | if self.dataIn.type == "Spectra": |
|
127 | if self.dataIn.type == "Spectra": | |
127 |
|
128 | |||
128 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] |
|
129 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] | |
129 | self.dataOut.data_spc = self.dataIn.data_spc |
|
130 | self.dataOut.data_spc = self.dataIn.data_spc | |
130 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
131 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
|
132 | # for JULIA processing | |||
|
133 | self.dataOut.data_diffcspc = self.dataIn.data_diffcspc | |||
|
134 | self.dataOut.nDiffIncohInt = self.dataIn.nDiffIncohInt | |||
|
135 | # for JULIA processing | |||
131 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
136 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
132 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
137 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
133 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
138 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
134 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
139 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
135 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
140 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
136 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
141 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
137 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
142 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
138 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
143 | # self.dataOut.normFactor = self.dataIn.normFactor | |
139 | self.dataOut.pairsList = self.dataIn.pairsList |
|
144 | self.dataOut.pairsList = self.dataIn.pairsList | |
140 | self.dataOut.groupList = self.dataIn.pairsList |
|
145 | self.dataOut.groupList = self.dataIn.pairsList | |
141 | self.dataOut.flagNoData = False |
|
146 | self.dataOut.flagNoData = False | |
142 |
|
147 | |||
143 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
148 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
144 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
149 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
145 | else: self.dataOut.ChanDist = None |
|
150 | else: self.dataOut.ChanDist = None | |
146 |
|
151 | |||
147 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
152 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
148 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
153 | # self.dataOut.VelRange = self.dataIn.VelRange | |
149 | #else: self.dataOut.VelRange = None |
|
154 | #else: self.dataOut.VelRange = None | |
150 |
|
155 | |||
151 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
156 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
152 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
157 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
153 |
|
158 | |||
154 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
159 | if hasattr(self.dataIn, 'NPW'): #NPW | |
155 | self.dataOut.NPW = self.dataIn.NPW |
|
160 | self.dataOut.NPW = self.dataIn.NPW | |
156 |
|
161 | |||
157 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
162 | if hasattr(self.dataIn, 'COFA'): #COFA | |
158 | self.dataOut.COFA = self.dataIn.COFA |
|
163 | self.dataOut.COFA = self.dataIn.COFA | |
159 |
|
164 | |||
160 |
|
165 | |||
161 |
|
166 | |||
162 | #---------------------- Correlation Data --------------------------- |
|
167 | #---------------------- Correlation Data --------------------------- | |
163 |
|
168 | |||
164 | if self.dataIn.type == "Correlation": |
|
169 | if self.dataIn.type == "Correlation": | |
165 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
170 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
166 |
|
171 | |||
167 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
172 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
168 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
173 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
169 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
174 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
170 |
|
175 | |||
171 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
176 | self.dataOut.abscissaList = self.dataIn.lagRange | |
172 | self.dataOut.noise = self.dataIn.noise |
|
177 | self.dataOut.noise = self.dataIn.noise | |
173 | self.dataOut.data_snr = self.dataIn.SNR |
|
178 | self.dataOut.data_snr = self.dataIn.SNR | |
174 | self.dataOut.flagNoData = False |
|
179 | self.dataOut.flagNoData = False | |
175 | self.dataOut.nAvg = self.dataIn.nAvg |
|
180 | self.dataOut.nAvg = self.dataIn.nAvg | |
176 |
|
181 | |||
177 | #---------------------- Parameters Data --------------------------- |
|
182 | #---------------------- Parameters Data --------------------------- | |
178 |
|
183 | |||
179 | if self.dataIn.type == "Parameters": |
|
184 | if self.dataIn.type == "Parameters": | |
180 | self.dataOut.copy(self.dataIn) |
|
185 | self.dataOut.copy(self.dataIn) | |
181 | self.dataOut.flagNoData = False |
|
186 | self.dataOut.flagNoData = False | |
182 |
|
187 | |||
183 | return True |
|
188 | return True | |
184 |
|
189 | |||
185 | self.__updateObjFromInput() |
|
190 | self.__updateObjFromInput() | |
186 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
191 | self.dataOut.utctimeInit = self.dataIn.utctime | |
187 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
192 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
188 |
|
193 | |||
189 | return |
|
194 | return | |
190 |
|
195 | |||
191 |
|
196 | |||
192 | def target(tups): |
|
197 | def target(tups): | |
193 |
|
198 | |||
194 | obj, args = tups |
|
199 | obj, args = tups | |
195 |
|
200 | |||
196 | return obj.FitGau(args) |
|
201 | return obj.FitGau(args) | |
197 |
|
202 | |||
198 | class RemoveWideGC(Operation): |
|
203 | class RemoveWideGC(Operation): | |
199 | ''' This class remove the wide clutter and replace it with a simple interpolation points |
|
204 | ''' This class remove the wide clutter and replace it with a simple interpolation points | |
200 | This mainly applies to CLAIRE radar |
|
205 | This mainly applies to CLAIRE radar | |
201 |
|
206 | |||
202 | ClutterWidth : Width to look for the clutter peak |
|
207 | ClutterWidth : Width to look for the clutter peak | |
203 |
|
208 | |||
204 | Input: |
|
209 | Input: | |
205 |
|
210 | |||
206 | self.dataOut.data_pre : SPC and CSPC |
|
211 | self.dataOut.data_pre : SPC and CSPC | |
207 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
212 | self.dataOut.spc_range : To select wind and rainfall velocities | |
208 |
|
213 | |||
209 | Affected: |
|
214 | Affected: | |
210 |
|
215 | |||
211 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
216 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
212 |
|
217 | |||
213 | Written by D. ScipiΓ³n 25.02.2021 |
|
218 | Written by D. ScipiΓ³n 25.02.2021 | |
214 | ''' |
|
219 | ''' | |
215 | def __init__(self): |
|
220 | def __init__(self): | |
216 | Operation.__init__(self) |
|
221 | Operation.__init__(self) | |
217 | self.i = 0 |
|
222 | self.i = 0 | |
218 | self.ich = 0 |
|
223 | self.ich = 0 | |
219 | self.ir = 0 |
|
224 | self.ir = 0 | |
220 |
|
225 | |||
221 | def run(self, dataOut, ClutterWidth=2.5): |
|
226 | def run(self, dataOut, ClutterWidth=2.5): | |
222 |
|
227 | |||
223 | self.spc = dataOut.data_pre[0].copy() |
|
228 | self.spc = dataOut.data_pre[0].copy() | |
224 | self.spc_out = dataOut.data_pre[0].copy() |
|
229 | self.spc_out = dataOut.data_pre[0].copy() | |
225 | self.Num_Chn = self.spc.shape[0] |
|
230 | self.Num_Chn = self.spc.shape[0] | |
226 | self.Num_Hei = self.spc.shape[2] |
|
231 | self.Num_Hei = self.spc.shape[2] | |
227 | VelRange = dataOut.spc_range[2][:-1] |
|
232 | VelRange = dataOut.spc_range[2][:-1] | |
228 | dv = VelRange[1]-VelRange[0] |
|
233 | dv = VelRange[1]-VelRange[0] | |
229 |
|
234 | |||
230 | # Find the velocities that corresponds to zero |
|
235 | # Find the velocities that corresponds to zero | |
231 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) |
|
236 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) | |
232 |
|
237 | |||
233 | # Removing novalid data from the spectra |
|
238 | # Removing novalid data from the spectra | |
234 | for ich in range(self.Num_Chn) : |
|
239 | for ich in range(self.Num_Chn) : | |
235 | for ir in range(self.Num_Hei) : |
|
240 | for ir in range(self.Num_Hei) : | |
236 | # Estimate the noise at each range |
|
241 | # Estimate the noise at each range | |
237 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) |
|
242 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) | |
238 |
|
243 | |||
239 | # Removing the noise floor at each range |
|
244 | # Removing the noise floor at each range | |
240 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) |
|
245 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) | |
241 | self.spc[ich,novalid,ir] = HSn |
|
246 | self.spc[ich,novalid,ir] = HSn | |
242 |
|
247 | |||
243 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) |
|
248 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) | |
244 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) |
|
249 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) | |
245 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) |
|
250 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) | |
246 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : |
|
251 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : | |
247 | continue |
|
252 | continue | |
248 | junk3 = numpy.squeeze(numpy.diff(j1index)) |
|
253 | junk3 = numpy.squeeze(numpy.diff(j1index)) | |
249 | junk4 = numpy.squeeze(numpy.diff(j2index)) |
|
254 | junk4 = numpy.squeeze(numpy.diff(j2index)) | |
250 |
|
255 | |||
251 | valleyindex = j2index[numpy.where(junk4>1)] |
|
256 | valleyindex = j2index[numpy.where(junk4>1)] | |
252 | peakindex = j1index[numpy.where(junk3>1)] |
|
257 | peakindex = j1index[numpy.where(junk3>1)] | |
253 |
|
258 | |||
254 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) |
|
259 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) | |
255 | if numpy.size(isvalid) == 0 : |
|
260 | if numpy.size(isvalid) == 0 : | |
256 | continue |
|
261 | continue | |
257 | if numpy.size(isvalid) >1 : |
|
262 | if numpy.size(isvalid) >1 : | |
258 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) |
|
263 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) | |
259 | isvalid = isvalid[vindex] |
|
264 | isvalid = isvalid[vindex] | |
260 |
|
265 | |||
261 | # clutter peak |
|
266 | # clutter peak | |
262 | gcpeak = peakindex[isvalid] |
|
267 | gcpeak = peakindex[isvalid] | |
263 | vl = numpy.where(valleyindex < gcpeak) |
|
268 | vl = numpy.where(valleyindex < gcpeak) | |
264 | if numpy.size(vl) == 0: |
|
269 | if numpy.size(vl) == 0: | |
265 | continue |
|
270 | continue | |
266 | gcvl = valleyindex[vl[0][-1]] |
|
271 | gcvl = valleyindex[vl[0][-1]] | |
267 | vr = numpy.where(valleyindex > gcpeak) |
|
272 | vr = numpy.where(valleyindex > gcpeak) | |
268 | if numpy.size(vr) == 0: |
|
273 | if numpy.size(vr) == 0: | |
269 | continue |
|
274 | continue | |
270 | gcvr = valleyindex[vr[0][0]] |
|
275 | gcvr = valleyindex[vr[0][0]] | |
271 |
|
276 | |||
272 | # Removing the clutter |
|
277 | # Removing the clutter | |
273 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) |
|
278 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) | |
274 | gcindex = gc_values[gcvl+1:gcvr-1] |
|
279 | gcindex = gc_values[gcvl+1:gcvr-1] | |
275 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) |
|
280 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) | |
276 |
|
281 | |||
277 | dataOut.data_pre[0] = self.spc_out |
|
282 | dataOut.data_pre[0] = self.spc_out | |
278 |
|
283 | |||
279 | return dataOut |
|
284 | return dataOut | |
280 |
|
285 | |||
281 | class SpectralFilters(Operation): |
|
286 | class SpectralFilters(Operation): | |
282 | ''' This class allows to replace the novalid values with noise for each channel |
|
287 | ''' This class allows to replace the novalid values with noise for each channel | |
283 | This applies to CLAIRE RADAR |
|
288 | This applies to CLAIRE RADAR | |
284 |
|
289 | |||
285 | PositiveLimit : RightLimit of novalid data |
|
290 | PositiveLimit : RightLimit of novalid data | |
286 | NegativeLimit : LeftLimit of novalid data |
|
291 | NegativeLimit : LeftLimit of novalid data | |
287 |
|
292 | |||
288 | Input: |
|
293 | Input: | |
289 |
|
294 | |||
290 | self.dataOut.data_pre : SPC and CSPC |
|
295 | self.dataOut.data_pre : SPC and CSPC | |
291 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
296 | self.dataOut.spc_range : To select wind and rainfall velocities | |
292 |
|
297 | |||
293 | Affected: |
|
298 | Affected: | |
294 |
|
299 | |||
295 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
300 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
296 |
|
301 | |||
297 | Written by D. ScipiΓ³n 29.01.2021 |
|
302 | Written by D. ScipiΓ³n 29.01.2021 | |
298 | ''' |
|
303 | ''' | |
299 | def __init__(self): |
|
304 | def __init__(self): | |
300 | Operation.__init__(self) |
|
305 | Operation.__init__(self) | |
301 | self.i = 0 |
|
306 | self.i = 0 | |
302 |
|
307 | |||
303 | def run(self, dataOut, ): |
|
308 | def run(self, dataOut, ): | |
304 |
|
309 | |||
305 | self.spc = dataOut.data_pre[0].copy() |
|
310 | self.spc = dataOut.data_pre[0].copy() | |
306 | self.Num_Chn = self.spc.shape[0] |
|
311 | self.Num_Chn = self.spc.shape[0] | |
307 | VelRange = dataOut.spc_range[2] |
|
312 | VelRange = dataOut.spc_range[2] | |
308 |
|
313 | |||
309 | # novalid corresponds to data within the Negative and PositiveLimit |
|
314 | # novalid corresponds to data within the Negative and PositiveLimit | |
310 |
|
315 | |||
311 |
|
316 | |||
312 | # Removing novalid data from the spectra |
|
317 | # Removing novalid data from the spectra | |
313 | for i in range(self.Num_Chn): |
|
318 | for i in range(self.Num_Chn): | |
314 | self.spc[i,novalid,:] = dataOut.noise[i] |
|
319 | self.spc[i,novalid,:] = dataOut.noise[i] | |
315 | dataOut.data_pre[0] = self.spc |
|
320 | dataOut.data_pre[0] = self.spc | |
316 | return dataOut |
|
321 | return dataOut | |
317 |
|
322 | |||
318 |
|
323 | |||
319 |
|
324 | |||
320 | class GaussianFit(Operation): |
|
325 | class GaussianFit(Operation): | |
321 |
|
326 | |||
322 | ''' |
|
327 | ''' | |
323 | Function that fit of one and two generalized gaussians (gg) based |
|
328 | Function that fit of one and two generalized gaussians (gg) based | |
324 | on the PSD shape across an "power band" identified from a cumsum of |
|
329 | on the PSD shape across an "power band" identified from a cumsum of | |
325 | the measured spectrum - noise. |
|
330 | the measured spectrum - noise. | |
326 |
|
331 | |||
327 | Input: |
|
332 | Input: | |
328 | self.dataOut.data_pre : SelfSpectra |
|
333 | self.dataOut.data_pre : SelfSpectra | |
329 |
|
334 | |||
330 | Output: |
|
335 | Output: | |
331 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
336 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
332 |
|
337 | |||
333 | ''' |
|
338 | ''' | |
334 | def __init__(self): |
|
339 | def __init__(self): | |
335 | Operation.__init__(self) |
|
340 | Operation.__init__(self) | |
336 | self.i=0 |
|
341 | self.i=0 | |
337 |
|
342 | |||
338 |
|
343 | |||
339 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
344 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
340 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): |
|
345 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |
341 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
346 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
342 | methods: generalized, squared |
|
347 | methods: generalized, squared | |
343 | input: spc |
|
348 | input: spc | |
344 | output: |
|
349 | output: | |
345 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 |
|
350 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |
346 | """ |
|
351 | """ | |
347 | print ('Entering ',method,' double Gaussian fit') |
|
352 | print ('Entering ',method,' double Gaussian fit') | |
348 | self.spc = dataOut.data_pre[0].copy() |
|
353 | self.spc = dataOut.data_pre[0].copy() | |
349 | self.Num_Hei = self.spc.shape[2] |
|
354 | self.Num_Hei = self.spc.shape[2] | |
350 | self.Num_Bin = self.spc.shape[1] |
|
355 | self.Num_Bin = self.spc.shape[1] | |
351 | self.Num_Chn = self.spc.shape[0] |
|
356 | self.Num_Chn = self.spc.shape[0] | |
352 |
|
357 | |||
353 | start_time = time.time() |
|
358 | start_time = time.time() | |
354 |
|
359 | |||
355 | pool = Pool(processes=self.Num_Chn) |
|
360 | pool = Pool(processes=self.Num_Chn) | |
356 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] |
|
361 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |
357 | objs = [self for __ in range(self.Num_Chn)] |
|
362 | objs = [self for __ in range(self.Num_Chn)] | |
358 | attrs = list(zip(objs, args)) |
|
363 | attrs = list(zip(objs, args)) | |
359 | DGauFitParam = pool.map(target, attrs) |
|
364 | DGauFitParam = pool.map(target, attrs) | |
360 | # Parameters: |
|
365 | # Parameters: | |
361 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power |
|
366 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | |
362 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) |
|
367 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |
363 |
|
368 | |||
364 | # Double Gaussian Curves |
|
369 | # Double Gaussian Curves | |
365 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
370 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
366 | gau0[:] = numpy.NaN |
|
371 | gau0[:] = numpy.NaN | |
367 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
372 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
368 | gau1[:] = numpy.NaN |
|
373 | gau1[:] = numpy.NaN | |
369 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) |
|
374 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |
370 | for iCh in range(self.Num_Chn): |
|
375 | for iCh in range(self.Num_Chn): | |
371 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) |
|
376 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |
372 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) |
|
377 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |
373 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) |
|
378 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |
374 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) |
|
379 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |
375 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) |
|
380 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |
376 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) |
|
381 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |
377 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) |
|
382 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |
378 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) |
|
383 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |
379 | if method == 'generalized': |
|
384 | if method == 'generalized': | |
380 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) |
|
385 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |
381 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) |
|
386 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |
382 | elif method == 'squared': |
|
387 | elif method == 'squared': | |
383 | p0 = 2. |
|
388 | p0 = 2. | |
384 | p1 = 2. |
|
389 | p1 = 2. | |
385 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 |
|
390 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |
386 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 |
|
391 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |
387 | dataOut.GaussFit0 = gau0 |
|
392 | dataOut.GaussFit0 = gau0 | |
388 | dataOut.GaussFit1 = gau1 |
|
393 | dataOut.GaussFit1 = gau1 | |
389 |
|
394 | |||
390 | print('Leaving ',method ,' double Gaussian fit') |
|
395 | print('Leaving ',method ,' double Gaussian fit') | |
391 | return dataOut |
|
396 | return dataOut | |
392 |
|
397 | |||
393 | def FitGau(self, X): |
|
398 | def FitGau(self, X): | |
394 | # print('Entering FitGau') |
|
399 | # print('Entering FitGau') | |
395 | # Assigning the variables |
|
400 | # Assigning the variables | |
396 | Vrange, ch, wnoise, num_intg, SNRlimit = X |
|
401 | Vrange, ch, wnoise, num_intg, SNRlimit = X | |
397 | # Noise Limits |
|
402 | # Noise Limits | |
398 | noisebl = wnoise * 0.9 |
|
403 | noisebl = wnoise * 0.9 | |
399 | noisebh = wnoise * 1.1 |
|
404 | noisebh = wnoise * 1.1 | |
400 | # Radar Velocity |
|
405 | # Radar Velocity | |
401 | Va = max(Vrange) |
|
406 | Va = max(Vrange) | |
402 | deltav = Vrange[1] - Vrange[0] |
|
407 | deltav = Vrange[1] - Vrange[0] | |
403 | x = numpy.arange(self.Num_Bin) |
|
408 | x = numpy.arange(self.Num_Bin) | |
404 |
|
409 | |||
405 | # print ('stop 0') |
|
410 | # print ('stop 0') | |
406 |
|
411 | |||
407 | # 5 parameters, 2 Gaussians |
|
412 | # 5 parameters, 2 Gaussians | |
408 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) |
|
413 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |
409 | DGauFitParam[:] = numpy.NaN |
|
414 | DGauFitParam[:] = numpy.NaN | |
410 |
|
415 | |||
411 | # SPCparam = [] |
|
416 | # SPCparam = [] | |
412 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
417 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
413 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
418 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
414 | # SPC_ch1[:] = 0 #numpy.NaN |
|
419 | # SPC_ch1[:] = 0 #numpy.NaN | |
415 | # SPC_ch2[:] = 0 #numpy.NaN |
|
420 | # SPC_ch2[:] = 0 #numpy.NaN | |
416 | # print ('stop 1') |
|
421 | # print ('stop 1') | |
417 | for ht in range(self.Num_Hei): |
|
422 | for ht in range(self.Num_Hei): | |
418 | # print (ht) |
|
423 | # print (ht) | |
419 | # print ('stop 2') |
|
424 | # print ('stop 2') | |
420 | # Spectra at each range |
|
425 | # Spectra at each range | |
421 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
426 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
422 | snr = ( spc.mean() - wnoise ) / wnoise |
|
427 | snr = ( spc.mean() - wnoise ) / wnoise | |
423 | snrdB = 10.*numpy.log10(snr) |
|
428 | snrdB = 10.*numpy.log10(snr) | |
424 |
|
429 | |||
425 | #print ('stop 3') |
|
430 | #print ('stop 3') | |
426 | if snrdB < SNRlimit : |
|
431 | if snrdB < SNRlimit : | |
427 | # snr = numpy.NaN |
|
432 | # snr = numpy.NaN | |
428 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
433 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
429 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
434 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
430 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
435 | # SPCparam = (SPC_ch1,SPC_ch2) | |
431 | # print ('SNR less than SNRth') |
|
436 | # print ('SNR less than SNRth') | |
432 | continue |
|
437 | continue | |
433 | # wnoise = hildebrand_sekhon(spc,num_intg) |
|
438 | # wnoise = hildebrand_sekhon(spc,num_intg) | |
434 | # print ('stop 2.01') |
|
439 | # print ('stop 2.01') | |
435 | ############################################# |
|
440 | ############################################# | |
436 | # normalizing spc and noise |
|
441 | # normalizing spc and noise | |
437 | # This part differs from gg1 |
|
442 | # This part differs from gg1 | |
438 | # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021 |
|
443 | # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021 | |
439 | #spc = spc / spc_norm_max |
|
444 | #spc = spc / spc_norm_max | |
440 | # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 |
|
445 | # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 | |
441 | ############################################# |
|
446 | ############################################# | |
442 |
|
447 | |||
443 | # print ('stop 2.1') |
|
448 | # print ('stop 2.1') | |
444 | fatspectra=1.0 |
|
449 | fatspectra=1.0 | |
445 | # noise per channel.... we might want to use the noise at each range |
|
450 | # noise per channel.... we might want to use the noise at each range | |
446 |
|
451 | |||
447 | # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 |
|
452 | # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 | |
448 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
453 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
449 | #if wnoise>1.1*pnoise: # to be tested later |
|
454 | #if wnoise>1.1*pnoise: # to be tested later | |
450 | # wnoise=pnoise |
|
455 | # wnoise=pnoise | |
451 | # noisebl = wnoise*0.9 |
|
456 | # noisebl = wnoise*0.9 | |
452 | # noisebh = wnoise*1.1 |
|
457 | # noisebh = wnoise*1.1 | |
453 | spc = spc - wnoise # signal |
|
458 | spc = spc - wnoise # signal | |
454 |
|
459 | |||
455 | # print ('stop 2.2') |
|
460 | # print ('stop 2.2') | |
456 | minx = numpy.argmin(spc) |
|
461 | minx = numpy.argmin(spc) | |
457 | #spcs=spc.copy() |
|
462 | #spcs=spc.copy() | |
458 | spcs = numpy.roll(spc,-minx) |
|
463 | spcs = numpy.roll(spc,-minx) | |
459 | cum = numpy.cumsum(spcs) |
|
464 | cum = numpy.cumsum(spcs) | |
460 | # tot_noise = wnoise * self.Num_Bin #64; |
|
465 | # tot_noise = wnoise * self.Num_Bin #64; | |
461 |
|
466 | |||
462 | # print ('stop 2.3') |
|
467 | # print ('stop 2.3') | |
463 | # snr = sum(spcs) / tot_noise |
|
468 | # snr = sum(spcs) / tot_noise | |
464 | # snrdB = 10.*numpy.log10(snr) |
|
469 | # snrdB = 10.*numpy.log10(snr) | |
465 | #print ('stop 3') |
|
470 | #print ('stop 3') | |
466 | # if snrdB < SNRlimit : |
|
471 | # if snrdB < SNRlimit : | |
467 | # snr = numpy.NaN |
|
472 | # snr = numpy.NaN | |
468 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
473 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
469 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
474 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
470 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
475 | # SPCparam = (SPC_ch1,SPC_ch2) | |
471 | # print ('SNR less than SNRth') |
|
476 | # print ('SNR less than SNRth') | |
472 | # continue |
|
477 | # continue | |
473 |
|
478 | |||
474 |
|
479 | |||
475 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
480 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
476 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
481 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
477 | # print ('stop 4') |
|
482 | # print ('stop 4') | |
478 | cummax = max(cum) |
|
483 | cummax = max(cum) | |
479 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region |
|
484 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |
480 | cumlo = cummax * epsi |
|
485 | cumlo = cummax * epsi | |
481 | cumhi = cummax * (1-epsi) |
|
486 | cumhi = cummax * (1-epsi) | |
482 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
487 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
483 |
|
488 | |||
484 | # print ('stop 5') |
|
489 | # print ('stop 5') | |
485 | if len(powerindex) < 1:# case for powerindex 0 |
|
490 | if len(powerindex) < 1:# case for powerindex 0 | |
486 | # print ('powerindex < 1') |
|
491 | # print ('powerindex < 1') | |
487 | continue |
|
492 | continue | |
488 | powerlo = powerindex[0] |
|
493 | powerlo = powerindex[0] | |
489 | powerhi = powerindex[-1] |
|
494 | powerhi = powerindex[-1] | |
490 | powerwidth = powerhi-powerlo |
|
495 | powerwidth = powerhi-powerlo | |
491 | if powerwidth <= 1: |
|
496 | if powerwidth <= 1: | |
492 | # print('powerwidth <= 1') |
|
497 | # print('powerwidth <= 1') | |
493 | continue |
|
498 | continue | |
494 |
|
499 | |||
495 | # print ('stop 6') |
|
500 | # print ('stop 6') | |
496 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location |
|
501 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |
497 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location |
|
502 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |
498 | midpeak = (firstpeak + secondpeak)/2. |
|
503 | midpeak = (firstpeak + secondpeak)/2. | |
499 | firstamp = spcs[int(firstpeak)] |
|
504 | firstamp = spcs[int(firstpeak)] | |
500 | secondamp = spcs[int(secondpeak)] |
|
505 | secondamp = spcs[int(secondpeak)] | |
501 | midamp = spcs[int(midpeak)] |
|
506 | midamp = spcs[int(midpeak)] | |
502 |
|
507 | |||
503 | y_data = spc + wnoise |
|
508 | y_data = spc + wnoise | |
504 |
|
509 | |||
505 | ''' single Gaussian ''' |
|
510 | ''' single Gaussian ''' | |
506 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) |
|
511 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) | |
507 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
512 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
508 | power0 = 2. |
|
513 | power0 = 2. | |
509 | amplitude0 = midamp |
|
514 | amplitude0 = midamp | |
510 | state0 = [shift0,width0,amplitude0,power0,wnoise] |
|
515 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |
511 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
516 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
512 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) |
|
517 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |
513 | # print ('stop 7.1') |
|
518 | # print ('stop 7.1') | |
514 | # print (bnds) |
|
519 | # print (bnds) | |
515 |
|
520 | |||
516 | chiSq1=lsq1[1] |
|
521 | chiSq1=lsq1[1] | |
517 |
|
522 | |||
518 | # print ('stop 8') |
|
523 | # print ('stop 8') | |
519 | if fatspectra<1.0 and powerwidth<4: |
|
524 | if fatspectra<1.0 and powerwidth<4: | |
520 | choice=0 |
|
525 | choice=0 | |
521 | Amplitude0=lsq1[0][2] |
|
526 | Amplitude0=lsq1[0][2] | |
522 | shift0=lsq1[0][0] |
|
527 | shift0=lsq1[0][0] | |
523 | width0=lsq1[0][1] |
|
528 | width0=lsq1[0][1] | |
524 | p0=lsq1[0][3] |
|
529 | p0=lsq1[0][3] | |
525 | Amplitude1=0. |
|
530 | Amplitude1=0. | |
526 | shift1=0. |
|
531 | shift1=0. | |
527 | width1=0. |
|
532 | width1=0. | |
528 | p1=0. |
|
533 | p1=0. | |
529 | noise=lsq1[0][4] |
|
534 | noise=lsq1[0][4] | |
530 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
535 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
531 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
536 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
532 | # print ('stop 9') |
|
537 | # print ('stop 9') | |
533 | ''' two Gaussians ''' |
|
538 | ''' two Gaussians ''' | |
534 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
539 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
535 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) |
|
540 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |
536 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
541 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |
537 | width0 = powerwidth/6. |
|
542 | width0 = powerwidth/6. | |
538 | width1 = width0 |
|
543 | width1 = width0 | |
539 | power0 = 2. |
|
544 | power0 = 2. | |
540 | power1 = power0 |
|
545 | power1 = power0 | |
541 | amplitude0 = firstamp |
|
546 | amplitude0 = firstamp | |
542 | amplitude1 = secondamp |
|
547 | amplitude1 = secondamp | |
543 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
548 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
544 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
549 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
545 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
550 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
546 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
551 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
547 |
|
552 | |||
548 | # print ('stop 10') |
|
553 | # print ('stop 10') | |
549 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
554 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
550 |
|
555 | |||
551 | # print ('stop 11') |
|
556 | # print ('stop 11') | |
552 | chiSq2 = lsq2[1] |
|
557 | chiSq2 = lsq2[1] | |
553 |
|
558 | |||
554 | # print ('stop 12') |
|
559 | # print ('stop 12') | |
555 |
|
560 | |||
556 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
561 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
557 |
|
562 | |||
558 | # print ('stop 13') |
|
563 | # print ('stop 13') | |
559 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
564 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
560 | if oneG: |
|
565 | if oneG: | |
561 | choice = 0 |
|
566 | choice = 0 | |
562 | else: |
|
567 | else: | |
563 | w1 = lsq2[0][1]; w2 = lsq2[0][5] |
|
568 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |
564 | a1 = lsq2[0][2]; a2 = lsq2[0][6] |
|
569 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |
565 | p1 = lsq2[0][3]; p2 = lsq2[0][7] |
|
570 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |
566 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 |
|
571 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |
567 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 |
|
572 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |
568 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
573 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |
569 |
|
574 | |||
570 | if gp1>gp2: |
|
575 | if gp1>gp2: | |
571 | if a1>0.7*a2: |
|
576 | if a1>0.7*a2: | |
572 | choice = 1 |
|
577 | choice = 1 | |
573 | else: |
|
578 | else: | |
574 | choice = 2 |
|
579 | choice = 2 | |
575 | elif gp2>gp1: |
|
580 | elif gp2>gp1: | |
576 | if a2>0.7*a1: |
|
581 | if a2>0.7*a1: | |
577 | choice = 2 |
|
582 | choice = 2 | |
578 | else: |
|
583 | else: | |
579 | choice = 1 |
|
584 | choice = 1 | |
580 | else: |
|
585 | else: | |
581 | choice = numpy.argmax([a1,a2])+1 |
|
586 | choice = numpy.argmax([a1,a2])+1 | |
582 | #else: |
|
587 | #else: | |
583 | #choice=argmin([std2a,std2b])+1 |
|
588 | #choice=argmin([std2a,std2b])+1 | |
584 |
|
589 | |||
585 | else: # with low SNR go to the most energetic peak |
|
590 | else: # with low SNR go to the most energetic peak | |
586 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
591 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
587 |
|
592 | |||
588 | # print ('stop 14') |
|
593 | # print ('stop 14') | |
589 | shift0 = lsq2[0][0] |
|
594 | shift0 = lsq2[0][0] | |
590 | vel0 = Vrange[0] + shift0 * deltav |
|
595 | vel0 = Vrange[0] + shift0 * deltav | |
591 | shift1 = lsq2[0][4] |
|
596 | shift1 = lsq2[0][4] | |
592 | # vel1=Vrange[0] + shift1 * deltav |
|
597 | # vel1=Vrange[0] + shift1 * deltav | |
593 |
|
598 | |||
594 | # max_vel = 1.0 |
|
599 | # max_vel = 1.0 | |
595 | # Va = max(Vrange) |
|
600 | # Va = max(Vrange) | |
596 | # deltav = Vrange[1]-Vrange[0] |
|
601 | # deltav = Vrange[1]-Vrange[0] | |
597 | # print ('stop 15') |
|
602 | # print ('stop 15') | |
598 | #first peak will be 0, second peak will be 1 |
|
603 | #first peak will be 0, second peak will be 1 | |
599 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021 |
|
604 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021 | |
600 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range |
|
605 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |
601 | shift0 = lsq2[0][0] |
|
606 | shift0 = lsq2[0][0] | |
602 | width0 = lsq2[0][1] |
|
607 | width0 = lsq2[0][1] | |
603 | Amplitude0 = lsq2[0][2] |
|
608 | Amplitude0 = lsq2[0][2] | |
604 | p0 = lsq2[0][3] |
|
609 | p0 = lsq2[0][3] | |
605 |
|
610 | |||
606 | shift1 = lsq2[0][4] |
|
611 | shift1 = lsq2[0][4] | |
607 | width1 = lsq2[0][5] |
|
612 | width1 = lsq2[0][5] | |
608 | Amplitude1 = lsq2[0][6] |
|
613 | Amplitude1 = lsq2[0][6] | |
609 | p1 = lsq2[0][7] |
|
614 | p1 = lsq2[0][7] | |
610 | noise = lsq2[0][8] |
|
615 | noise = lsq2[0][8] | |
611 | else: |
|
616 | else: | |
612 | shift1 = lsq2[0][0] |
|
617 | shift1 = lsq2[0][0] | |
613 | width1 = lsq2[0][1] |
|
618 | width1 = lsq2[0][1] | |
614 | Amplitude1 = lsq2[0][2] |
|
619 | Amplitude1 = lsq2[0][2] | |
615 | p1 = lsq2[0][3] |
|
620 | p1 = lsq2[0][3] | |
616 |
|
621 | |||
617 | shift0 = lsq2[0][4] |
|
622 | shift0 = lsq2[0][4] | |
618 | width0 = lsq2[0][5] |
|
623 | width0 = lsq2[0][5] | |
619 | Amplitude0 = lsq2[0][6] |
|
624 | Amplitude0 = lsq2[0][6] | |
620 | p0 = lsq2[0][7] |
|
625 | p0 = lsq2[0][7] | |
621 | noise = lsq2[0][8] |
|
626 | noise = lsq2[0][8] | |
622 |
|
627 | |||
623 | if Amplitude0<0.05: # in case the peak is noise |
|
628 | if Amplitude0<0.05: # in case the peak is noise | |
624 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] |
|
629 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
625 | if Amplitude1<0.05: |
|
630 | if Amplitude1<0.05: | |
626 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] |
|
631 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
627 |
|
632 | |||
628 | # print ('stop 16 ') |
|
633 | # print ('stop 16 ') | |
629 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) |
|
634 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |
630 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) |
|
635 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |
631 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
636 | # SPCparam = (SPC_ch1,SPC_ch2) | |
632 |
|
637 | |||
633 | DGauFitParam[0,ht,0] = noise |
|
638 | DGauFitParam[0,ht,0] = noise | |
634 | DGauFitParam[0,ht,1] = noise |
|
639 | DGauFitParam[0,ht,1] = noise | |
635 | DGauFitParam[1,ht,0] = Amplitude0 |
|
640 | DGauFitParam[1,ht,0] = Amplitude0 | |
636 | DGauFitParam[1,ht,1] = Amplitude1 |
|
641 | DGauFitParam[1,ht,1] = Amplitude1 | |
637 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav |
|
642 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |
638 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav |
|
643 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |
639 | DGauFitParam[3,ht,0] = width0 * deltav |
|
644 | DGauFitParam[3,ht,0] = width0 * deltav | |
640 | DGauFitParam[3,ht,1] = width1 * deltav |
|
645 | DGauFitParam[3,ht,1] = width1 * deltav | |
641 | DGauFitParam[4,ht,0] = p0 |
|
646 | DGauFitParam[4,ht,0] = p0 | |
642 | DGauFitParam[4,ht,1] = p1 |
|
647 | DGauFitParam[4,ht,1] = p1 | |
643 |
|
648 | |||
644 | return DGauFitParam |
|
649 | return DGauFitParam | |
645 |
|
650 | |||
646 | def y_model1(self,x,state): |
|
651 | def y_model1(self,x,state): | |
647 | shift0, width0, amplitude0, power0, noise = state |
|
652 | shift0, width0, amplitude0, power0, noise = state | |
648 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) |
|
653 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |
649 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) |
|
654 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
650 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) |
|
655 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
651 | return model0 + model0u + model0d + noise |
|
656 | return model0 + model0u + model0d + noise | |
652 |
|
657 | |||
653 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
658 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
654 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state |
|
659 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |
655 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
660 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
656 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) |
|
661 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
657 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) |
|
662 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
658 |
|
663 | |||
659 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) |
|
664 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |
660 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) |
|
665 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |
661 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) |
|
666 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | |
662 | return model0 + model0u + model0d + model1 + model1u + model1d + noise |
|
667 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |
663 |
|
668 | |||
664 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
669 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
665 |
|
670 | |||
666 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
671 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
667 |
|
672 | |||
668 | def misfit2(self,state,y_data,x,num_intg): |
|
673 | def misfit2(self,state,y_data,x,num_intg): | |
669 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
674 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
670 |
|
675 | |||
671 | class Oblique_Gauss_Fit(Operation): |
|
676 | class Oblique_Gauss_Fit(Operation): | |
672 |
|
677 | |||
673 | def __init__(self): |
|
678 | def __init__(self): | |
674 | Operation.__init__(self) |
|
679 | Operation.__init__(self) | |
675 |
|
680 | |||
676 | def Gauss_fit(self,spc,x,nGauss): |
|
681 | def Gauss_fit(self,spc,x,nGauss): | |
677 |
|
682 | |||
678 |
|
683 | |||
679 | def gaussian(x, a, b, c, d): |
|
684 | def gaussian(x, a, b, c, d): | |
680 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d |
|
685 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |
681 | return val |
|
686 | return val | |
682 |
|
687 | |||
683 | if nGauss == 'first': |
|
688 | if nGauss == 'first': | |
684 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) |
|
689 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) | |
685 | spc_2_aux = numpy.flip(spc_1_aux) |
|
690 | spc_2_aux = numpy.flip(spc_1_aux) | |
686 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) |
|
691 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) | |
687 |
|
692 | |||
688 | len_dif = len(x)-len(spc_3_aux) |
|
693 | len_dif = len(x)-len(spc_3_aux) | |
689 |
|
694 | |||
690 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] |
|
695 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] | |
691 |
|
696 | |||
692 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) |
|
697 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) | |
693 |
|
698 | |||
694 | y = spc_new |
|
699 | y = spc_new | |
695 |
|
700 | |||
696 | elif nGauss == 'second': |
|
701 | elif nGauss == 'second': | |
697 | y = spc |
|
702 | y = spc | |
698 |
|
703 | |||
699 |
|
704 | |||
700 | # estimate starting values from the data |
|
705 | # estimate starting values from the data | |
701 | a = y.max() |
|
706 | a = y.max() | |
702 | b = x[numpy.argmax(y)] |
|
707 | b = x[numpy.argmax(y)] | |
703 | if nGauss == 'first': |
|
708 | if nGauss == 'first': | |
704 | c = 1.#b#b#numpy.std(spc) |
|
709 | c = 1.#b#b#numpy.std(spc) | |
705 | elif nGauss == 'second': |
|
710 | elif nGauss == 'second': | |
706 | c = b |
|
711 | c = b | |
707 | else: |
|
712 | else: | |
708 | print("ERROR") |
|
713 | print("ERROR") | |
709 |
|
714 | |||
710 | d = numpy.mean(y[-100:]) |
|
715 | d = numpy.mean(y[-100:]) | |
711 |
|
716 | |||
712 | # define a least squares function to optimize |
|
717 | # define a least squares function to optimize | |
713 | def minfunc(params): |
|
718 | def minfunc(params): | |
714 | return sum((y-gaussian(x,params[0],params[1],params[2],params[3]))**2) |
|
719 | return sum((y-gaussian(x,params[0],params[1],params[2],params[3]))**2) | |
715 |
|
720 | |||
716 | # fit |
|
721 | # fit | |
717 | popt = fmin(minfunc,[a,b,c,d],disp=False) |
|
722 | popt = fmin(minfunc,[a,b,c,d],disp=False) | |
718 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) |
|
723 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) | |
719 |
|
724 | |||
720 |
|
725 | |||
721 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] |
|
726 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] | |
722 |
|
727 | |||
723 |
|
728 | |||
724 | def Gauss_fit_2(self,spc,x,nGauss): |
|
729 | def Gauss_fit_2(self,spc,x,nGauss): | |
725 |
|
730 | |||
726 |
|
731 | |||
727 | def gaussian(x, a, b, c, d): |
|
732 | def gaussian(x, a, b, c, d): | |
728 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d |
|
733 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |
729 | return val |
|
734 | return val | |
730 |
|
735 | |||
731 | if nGauss == 'first': |
|
736 | if nGauss == 'first': | |
732 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) |
|
737 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) | |
733 | spc_2_aux = numpy.flip(spc_1_aux) |
|
738 | spc_2_aux = numpy.flip(spc_1_aux) | |
734 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) |
|
739 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) | |
735 |
|
740 | |||
736 | len_dif = len(x)-len(spc_3_aux) |
|
741 | len_dif = len(x)-len(spc_3_aux) | |
737 |
|
742 | |||
738 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] |
|
743 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] | |
739 |
|
744 | |||
740 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) |
|
745 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) | |
741 |
|
746 | |||
742 | y = spc_new |
|
747 | y = spc_new | |
743 |
|
748 | |||
744 | elif nGauss == 'second': |
|
749 | elif nGauss == 'second': | |
745 | y = spc |
|
750 | y = spc | |
746 |
|
751 | |||
747 |
|
752 | |||
748 | # estimate starting values from the data |
|
753 | # estimate starting values from the data | |
749 | a = y.max() |
|
754 | a = y.max() | |
750 | b = x[numpy.argmax(y)] |
|
755 | b = x[numpy.argmax(y)] | |
751 | if nGauss == 'first': |
|
756 | if nGauss == 'first': | |
752 | c = 1.#b#b#numpy.std(spc) |
|
757 | c = 1.#b#b#numpy.std(spc) | |
753 | elif nGauss == 'second': |
|
758 | elif nGauss == 'second': | |
754 | c = b |
|
759 | c = b | |
755 | else: |
|
760 | else: | |
756 | print("ERROR") |
|
761 | print("ERROR") | |
757 |
|
762 | |||
758 | d = numpy.mean(y[-100:]) |
|
763 | d = numpy.mean(y[-100:]) | |
759 |
|
764 | |||
760 | # define a least squares function to optimize |
|
765 | # define a least squares function to optimize | |
761 | popt,pcov = curve_fit(gaussian,x,y,p0=[a,b,c,d]) |
|
766 | popt,pcov = curve_fit(gaussian,x,y,p0=[a,b,c,d]) | |
762 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) |
|
767 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) | |
763 |
|
768 | |||
764 |
|
769 | |||
765 | #return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] |
|
770 | #return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] | |
766 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]),popt[0], popt[1], popt[2], popt[3] |
|
771 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]),popt[0], popt[1], popt[2], popt[3] | |
767 |
|
772 | |||
768 | def Double_Gauss_fit(self,spc,x,A1,B1,C1,A2,B2,C2,D): |
|
773 | def Double_Gauss_fit(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |
769 |
|
774 | |||
770 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): |
|
775 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |
771 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d |
|
776 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |
772 | return val |
|
777 | return val | |
773 |
|
778 | |||
774 |
|
779 | |||
775 | y = spc |
|
780 | y = spc | |
776 |
|
781 | |||
777 | # estimate starting values from the data |
|
782 | # estimate starting values from the data | |
778 | a1 = A1 |
|
783 | a1 = A1 | |
779 | b1 = B1 |
|
784 | b1 = B1 | |
780 | c1 = C1#numpy.std(spc) |
|
785 | c1 = C1#numpy.std(spc) | |
781 |
|
786 | |||
782 | a2 = A2#y.max() |
|
787 | a2 = A2#y.max() | |
783 | b2 = B2#x[numpy.argmax(y)] |
|
788 | b2 = B2#x[numpy.argmax(y)] | |
784 | c2 = C2#numpy.std(spc) |
|
789 | c2 = C2#numpy.std(spc) | |
785 | d = D |
|
790 | d = D | |
786 |
|
791 | |||
787 | # define a least squares function to optimize |
|
792 | # define a least squares function to optimize | |
788 | def minfunc(params): |
|
793 | def minfunc(params): | |
789 | return sum((y-double_gaussian(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2) |
|
794 | return sum((y-double_gaussian(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2) | |
790 |
|
795 | |||
791 | # fit |
|
796 | # fit | |
792 | popt = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d],disp=False) |
|
797 | popt = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d],disp=False) | |
793 |
|
798 | |||
794 | return double_gaussian(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] |
|
799 | return double_gaussian(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |
795 |
|
800 | |||
796 | def Double_Gauss_fit_2(self,spc,x,A1,B1,C1,A2,B2,C2,D): |
|
801 | def Double_Gauss_fit_2(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |
797 |
|
802 | |||
798 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): |
|
803 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |
799 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d |
|
804 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |
800 | return val |
|
805 | return val | |
801 |
|
806 | |||
802 |
|
807 | |||
803 | y = spc |
|
808 | y = spc | |
804 |
|
809 | |||
805 | # estimate starting values from the data |
|
810 | # estimate starting values from the data | |
806 | a1 = A1 |
|
811 | a1 = A1 | |
807 | b1 = B1 |
|
812 | b1 = B1 | |
808 | c1 = C1#numpy.std(spc) |
|
813 | c1 = C1#numpy.std(spc) | |
809 |
|
814 | |||
810 | a2 = A2#y.max() |
|
815 | a2 = A2#y.max() | |
811 | b2 = B2#x[numpy.argmax(y)] |
|
816 | b2 = B2#x[numpy.argmax(y)] | |
812 | c2 = C2#numpy.std(spc) |
|
817 | c2 = C2#numpy.std(spc) | |
813 | d = D |
|
818 | d = D | |
814 |
|
819 | |||
815 | # fit |
|
820 | # fit | |
816 |
|
821 | |||
817 | popt,pcov = curve_fit(double_gaussian,x,y,p0=[a1,b1,c1,a2,b2,c2,d]) |
|
822 | popt,pcov = curve_fit(double_gaussian,x,y,p0=[a1,b1,c1,a2,b2,c2,d]) | |
818 |
|
823 | |||
819 | error = numpy.sqrt(numpy.diag(pcov)) |
|
824 | error = numpy.sqrt(numpy.diag(pcov)) | |
820 |
|
825 | |||
821 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6], error[0], error[1], error[2], error[3], error[4], error[5], error[6] |
|
826 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6], error[0], error[1], error[2], error[3], error[4], error[5], error[6] | |
822 |
|
827 | |||
823 | def run(self, dataOut): |
|
828 | def run(self, dataOut): | |
824 |
|
829 | |||
825 | pwcode = 1 |
|
830 | pwcode = 1 | |
826 |
|
831 | |||
827 | if dataOut.flagDecodeData: |
|
832 | if dataOut.flagDecodeData: | |
828 | pwcode = numpy.sum(dataOut.code[0]**2) |
|
833 | pwcode = numpy.sum(dataOut.code[0]**2) | |
829 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
834 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
830 | normFactor = dataOut.nProfiles * dataOut.nIncohInt * dataOut.nCohInt * pwcode * dataOut.windowOfFilter |
|
835 | normFactor = dataOut.nProfiles * dataOut.nIncohInt * dataOut.nCohInt * pwcode * dataOut.windowOfFilter | |
831 | factor = normFactor |
|
836 | factor = normFactor | |
832 | z = dataOut.data_spc / factor |
|
837 | z = dataOut.data_spc / factor | |
833 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
838 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
834 | dataOut.power = numpy.average(z, axis=1) |
|
839 | dataOut.power = numpy.average(z, axis=1) | |
835 | dataOut.powerdB = 10 * numpy.log10(dataOut.power) |
|
840 | dataOut.powerdB = 10 * numpy.log10(dataOut.power) | |
836 |
|
841 | |||
837 |
|
842 | |||
838 | x = dataOut.getVelRange(0) |
|
843 | x = dataOut.getVelRange(0) | |
839 |
|
844 | |||
840 | dataOut.Oblique_params = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN |
|
845 | dataOut.Oblique_params = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |
841 | dataOut.Oblique_param_errors = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN |
|
846 | dataOut.Oblique_param_errors = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |
842 |
|
847 | |||
843 | dataOut.VelRange = x |
|
848 | dataOut.VelRange = x | |
844 |
|
849 | |||
845 |
|
850 | |||
846 | l1=range(22,36) |
|
851 | l1=range(22,36) | |
847 | l2=range(58,99) |
|
852 | l2=range(58,99) | |
848 |
|
853 | |||
849 | for hei in itertools.chain(l1, l2): |
|
854 | for hei in itertools.chain(l1, l2): | |
850 |
|
855 | |||
851 | try: |
|
856 | try: | |
852 | spc = dataOut.data_spc[0,:,hei] |
|
857 | spc = dataOut.data_spc[0,:,hei] | |
853 |
|
858 | |||
854 | spc_fit, A1, B1, C1, D1 = self.Gauss_fit_2(spc,x,'first') |
|
859 | spc_fit, A1, B1, C1, D1 = self.Gauss_fit_2(spc,x,'first') | |
855 |
|
860 | |||
856 | spc_diff = spc - spc_fit |
|
861 | spc_diff = spc - spc_fit | |
857 | spc_diff[spc_diff < 0] = 0 |
|
862 | spc_diff[spc_diff < 0] = 0 | |
858 |
|
863 | |||
859 | spc_fit_diff, A2, B2, C2, D2 = self.Gauss_fit_2(spc_diff,x,'second') |
|
864 | spc_fit_diff, A2, B2, C2, D2 = self.Gauss_fit_2(spc_diff,x,'second') | |
860 |
|
865 | |||
861 | D = (D1+D2) |
|
866 | D = (D1+D2) | |
862 |
|
867 | |||
863 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_param_errors[0,0,hei],dataOut.Oblique_param_errors[0,1,hei],dataOut.Oblique_param_errors[0,2,hei],dataOut.Oblique_param_errors[0,3,hei],dataOut.Oblique_param_errors[0,4,hei],dataOut.Oblique_param_errors[0,5,hei],dataOut.Oblique_param_errors[0,6,hei] = self.Double_Gauss_fit_2(spc,x,A1,B1,C1,A2,B2,C2,D) |
|
868 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_param_errors[0,0,hei],dataOut.Oblique_param_errors[0,1,hei],dataOut.Oblique_param_errors[0,2,hei],dataOut.Oblique_param_errors[0,3,hei],dataOut.Oblique_param_errors[0,4,hei],dataOut.Oblique_param_errors[0,5,hei],dataOut.Oblique_param_errors[0,6,hei] = self.Double_Gauss_fit_2(spc,x,A1,B1,C1,A2,B2,C2,D) | |
864 | #spc_double_fit,dataOut.Oblique_params = self.Double_Gauss_fit(spc,x,A1,B1,C1,A2,B2,C2,D) |
|
869 | #spc_double_fit,dataOut.Oblique_params = self.Double_Gauss_fit(spc,x,A1,B1,C1,A2,B2,C2,D) | |
865 |
|
870 | |||
866 | except: |
|
871 | except: | |
867 | ###dataOut.Oblique_params[0,:,hei] = dataOut.Oblique_params[0,:,hei]*numpy.NAN |
|
872 | ###dataOut.Oblique_params[0,:,hei] = dataOut.Oblique_params[0,:,hei]*numpy.NAN | |
868 | pass |
|
873 | pass | |
869 |
|
874 | |||
870 | return dataOut |
|
875 | return dataOut | |
871 |
|
876 | |||
872 | class PrecipitationProc(Operation): |
|
877 | class PrecipitationProc(Operation): | |
873 |
|
878 | |||
874 | ''' |
|
879 | ''' | |
875 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
880 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
876 |
|
881 | |||
877 | Input: |
|
882 | Input: | |
878 | self.dataOut.data_pre : SelfSpectra |
|
883 | self.dataOut.data_pre : SelfSpectra | |
879 |
|
884 | |||
880 | Output: |
|
885 | Output: | |
881 |
|
886 | |||
882 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
887 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
883 |
|
888 | |||
884 |
|
889 | |||
885 | Parameters affected: |
|
890 | Parameters affected: | |
886 | ''' |
|
891 | ''' | |
887 |
|
892 | |||
888 | def __init__(self): |
|
893 | def __init__(self): | |
889 | Operation.__init__(self) |
|
894 | Operation.__init__(self) | |
890 | self.i=0 |
|
895 | self.i=0 | |
891 |
|
896 | |||
892 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
897 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
893 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350, SNRdBlimit=-30, |
|
898 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350, SNRdBlimit=-30, | |
894 | channel=None): |
|
899 | channel=None): | |
895 |
|
900 | |||
896 | # print ('Entering PrecepitationProc ... ') |
|
901 | # print ('Entering PrecepitationProc ... ') | |
897 |
|
902 | |||
898 | if radar == "MIRA35C" : |
|
903 | if radar == "MIRA35C" : | |
899 |
|
904 | |||
900 | self.spc = dataOut.data_pre[0].copy() |
|
905 | self.spc = dataOut.data_pre[0].copy() | |
901 | self.Num_Hei = self.spc.shape[2] |
|
906 | self.Num_Hei = self.spc.shape[2] | |
902 | self.Num_Bin = self.spc.shape[1] |
|
907 | self.Num_Bin = self.spc.shape[1] | |
903 | self.Num_Chn = self.spc.shape[0] |
|
908 | self.Num_Chn = self.spc.shape[0] | |
904 | Ze = self.dBZeMODE2(dataOut) |
|
909 | Ze = self.dBZeMODE2(dataOut) | |
905 |
|
910 | |||
906 | else: |
|
911 | else: | |
907 |
|
912 | |||
908 | self.spc = dataOut.data_pre[0].copy() |
|
913 | self.spc = dataOut.data_pre[0].copy() | |
909 |
|
914 | |||
910 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX |
|
915 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX | |
911 | self.spc[:,:,0:7]= numpy.NaN |
|
916 | self.spc[:,:,0:7]= numpy.NaN | |
912 |
|
917 | |||
913 | self.Num_Hei = self.spc.shape[2] |
|
918 | self.Num_Hei = self.spc.shape[2] | |
914 | self.Num_Bin = self.spc.shape[1] |
|
919 | self.Num_Bin = self.spc.shape[1] | |
915 | self.Num_Chn = self.spc.shape[0] |
|
920 | self.Num_Chn = self.spc.shape[0] | |
916 |
|
921 | |||
917 | VelRange = dataOut.spc_range[2] |
|
922 | VelRange = dataOut.spc_range[2] | |
918 |
|
923 | |||
919 | ''' Se obtiene la constante del RADAR ''' |
|
924 | ''' Se obtiene la constante del RADAR ''' | |
920 |
|
925 | |||
921 | self.Pt = Pt |
|
926 | self.Pt = Pt | |
922 | self.Gt = Gt |
|
927 | self.Gt = Gt | |
923 | self.Gr = Gr |
|
928 | self.Gr = Gr | |
924 | self.Lambda = Lambda |
|
929 | self.Lambda = Lambda | |
925 | self.aL = aL |
|
930 | self.aL = aL | |
926 | self.tauW = tauW |
|
931 | self.tauW = tauW | |
927 | self.ThetaT = ThetaT |
|
932 | self.ThetaT = ThetaT | |
928 | self.ThetaR = ThetaR |
|
933 | self.ThetaR = ThetaR | |
929 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB |
|
934 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB | |
930 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB |
|
935 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB | |
931 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB |
|
936 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB | |
932 |
|
937 | |||
933 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
938 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
934 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
939 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
935 | RadarConstant = 10e-26 * Numerator / Denominator # |
|
940 | RadarConstant = 10e-26 * Numerator / Denominator # | |
936 | ExpConstant = 10**(40/10) #Constante Experimental |
|
941 | ExpConstant = 10**(40/10) #Constante Experimental | |
937 |
|
942 | |||
938 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
943 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
939 | for i in range(self.Num_Chn): |
|
944 | for i in range(self.Num_Chn): | |
940 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] |
|
945 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] | |
941 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 |
|
946 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 | |
942 |
|
947 | |||
943 | if channel is None: |
|
948 | if channel is None: | |
944 | SPCmean = numpy.mean(SignalPower, 0) |
|
949 | SPCmean = numpy.mean(SignalPower, 0) | |
945 | else: |
|
950 | else: | |
946 | SPCmean = SignalPower[channel] |
|
951 | SPCmean = SignalPower[channel] | |
947 | Pr = SPCmean[:,:]/dataOut.normFactor |
|
952 | Pr = SPCmean[:,:]/dataOut.normFactor | |
948 |
|
953 | |||
949 | # Declaring auxiliary variables |
|
954 | # Declaring auxiliary variables | |
950 | Range = dataOut.heightList*1000. #Range in m |
|
955 | Range = dataOut.heightList*1000. #Range in m | |
951 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] |
|
956 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] | |
952 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) |
|
957 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) | |
953 | zMtrx = rMtrx+Altitude |
|
958 | zMtrx = rMtrx+Altitude | |
954 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] |
|
959 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] | |
955 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) |
|
960 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) | |
956 |
|
961 | |||
957 | # height dependence to air density Foote and Du Toit (1969) |
|
962 | # height dependence to air density Foote and Du Toit (1969) | |
958 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 |
|
963 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 | |
959 | VMtrx = VelMtrx / delv_z #Normalized velocity |
|
964 | VMtrx = VelMtrx / delv_z #Normalized velocity | |
960 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN |
|
965 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN | |
961 | # Diameter is related to the fall speed of falling drops |
|
966 | # Diameter is related to the fall speed of falling drops | |
962 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] |
|
967 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] | |
963 | # Only valid for D>= 0.16 mm |
|
968 | # Only valid for D>= 0.16 mm | |
964 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN |
|
969 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN | |
965 |
|
970 | |||
966 | #Calculate Radar Reflectivity ETAn |
|
971 | #Calculate Radar Reflectivity ETAn | |
967 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) |
|
972 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) | |
968 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z |
|
973 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z | |
969 | # Radar Cross Section |
|
974 | # Radar Cross Section | |
970 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 |
|
975 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 | |
971 | # Drop Size Distribution |
|
976 | # Drop Size Distribution | |
972 | DSD = ETAn / sigmaD |
|
977 | DSD = ETAn / sigmaD | |
973 | # Equivalente Reflectivy |
|
978 | # Equivalente Reflectivy | |
974 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) |
|
979 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) | |
975 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] |
|
980 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] | |
976 | # RainFall Rate |
|
981 | # RainFall Rate | |
977 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr |
|
982 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr | |
978 |
|
983 | |||
979 | # Censoring the data |
|
984 | # Censoring the data | |
980 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal |
|
985 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal | |
981 | SNRth = 10**(SNRdBlimit/10) #-30dB |
|
986 | SNRth = 10**(SNRdBlimit/10) #-30dB | |
982 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better |
|
987 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better | |
983 | W = numpy.nanmean(dataOut.data_dop,0) |
|
988 | W = numpy.nanmean(dataOut.data_dop,0) | |
984 | W[novalid] = numpy.NaN |
|
989 | W[novalid] = numpy.NaN | |
985 | Ze_org[novalid] = numpy.NaN |
|
990 | Ze_org[novalid] = numpy.NaN | |
986 | RR[novalid] = numpy.NaN |
|
991 | RR[novalid] = numpy.NaN | |
987 |
|
992 | |||
988 | dataOut.data_output = RR[8] |
|
993 | dataOut.data_output = RR[8] | |
989 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
994 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
990 | dataOut.channelList = [0,1,2] |
|
995 | dataOut.channelList = [0,1,2] | |
991 |
|
996 | |||
992 | dataOut.data_param[0]=10*numpy.log10(Ze_org) |
|
997 | dataOut.data_param[0]=10*numpy.log10(Ze_org) | |
993 | dataOut.data_param[1]=-W |
|
998 | dataOut.data_param[1]=-W | |
994 | dataOut.data_param[2]=RR |
|
999 | dataOut.data_param[2]=RR | |
995 |
|
1000 | |||
996 | # print ('Leaving PrecepitationProc ... ') |
|
1001 | # print ('Leaving PrecepitationProc ... ') | |
997 | return dataOut |
|
1002 | return dataOut | |
998 |
|
1003 | |||
999 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
1004 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
1000 |
|
1005 | |||
1001 | NPW = dataOut.NPW |
|
1006 | NPW = dataOut.NPW | |
1002 | COFA = dataOut.COFA |
|
1007 | COFA = dataOut.COFA | |
1003 |
|
1008 | |||
1004 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
1009 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
1005 | RadarConst = dataOut.RadarConst |
|
1010 | RadarConst = dataOut.RadarConst | |
1006 | #frequency = 34.85*10**9 |
|
1011 | #frequency = 34.85*10**9 | |
1007 |
|
1012 | |||
1008 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
1013 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
1009 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
1014 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
1010 |
|
1015 | |||
1011 | ETA = numpy.sum(SNR,1) |
|
1016 | ETA = numpy.sum(SNR,1) | |
1012 |
|
1017 | |||
1013 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) |
|
1018 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) | |
1014 |
|
1019 | |||
1015 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
1020 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
1016 |
|
1021 | |||
1017 | for r in range(self.Num_Hei): |
|
1022 | for r in range(self.Num_Hei): | |
1018 |
|
1023 | |||
1019 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
1024 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
1020 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
1025 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
1021 |
|
1026 | |||
1022 | return Ze |
|
1027 | return Ze | |
1023 |
|
1028 | |||
1024 | # def GetRadarConstant(self): |
|
1029 | # def GetRadarConstant(self): | |
1025 | # |
|
1030 | # | |
1026 | # """ |
|
1031 | # """ | |
1027 | # Constants: |
|
1032 | # Constants: | |
1028 | # |
|
1033 | # | |
1029 | # Pt: Transmission Power dB 5kW 5000 |
|
1034 | # Pt: Transmission Power dB 5kW 5000 | |
1030 | # Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
1035 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
1031 | # Gr: Reception Gain dB 18.5 dB 70.7945 |
|
1036 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
1032 | # Lambda: Wavelenght m 0.6741 m 0.6741 |
|
1037 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
1033 | # aL: Attenuation loses dB 4dB 2.5118 |
|
1038 | # aL: Attenuation loses dB 4dB 2.5118 | |
1034 | # tauW: Width of transmission pulse s 4us 4e-6 |
|
1039 | # tauW: Width of transmission pulse s 4us 4e-6 | |
1035 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
1040 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
1036 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
1041 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
1037 | # |
|
1042 | # | |
1038 | # """ |
|
1043 | # """ | |
1039 | # |
|
1044 | # | |
1040 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
1045 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
1041 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
1046 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
1042 | # RadarConstant = Numerator / Denominator |
|
1047 | # RadarConstant = Numerator / Denominator | |
1043 | # |
|
1048 | # | |
1044 | # return RadarConstant |
|
1049 | # return RadarConstant | |
1045 |
|
1050 | |||
1046 |
|
1051 | |||
1047 | class FullSpectralAnalysis(Operation): |
|
1052 | class FullSpectralAnalysis(Operation): | |
1048 |
|
1053 | |||
1049 | """ |
|
1054 | """ | |
1050 | Function that implements Full Spectral Analysis technique. |
|
1055 | Function that implements Full Spectral Analysis technique. | |
1051 |
|
1056 | |||
1052 | Input: |
|
1057 | Input: | |
1053 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data |
|
1058 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data | |
1054 | self.dataOut.groupList : Pairlist of channels |
|
1059 | self.dataOut.groupList : Pairlist of channels | |
1055 | self.dataOut.ChanDist : Physical distance between receivers |
|
1060 | self.dataOut.ChanDist : Physical distance between receivers | |
1056 |
|
1061 | |||
1057 |
|
1062 | |||
1058 | Output: |
|
1063 | Output: | |
1059 |
|
1064 | |||
1060 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind |
|
1065 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind | |
1061 |
|
1066 | |||
1062 |
|
1067 | |||
1063 | Parameters affected: Winds, height range, SNR |
|
1068 | Parameters affected: Winds, height range, SNR | |
1064 |
|
1069 | |||
1065 | """ |
|
1070 | """ | |
1066 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, |
|
1071 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, | |
1067 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): |
|
1072 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): | |
1068 |
|
1073 | |||
1069 | spc = dataOut.data_pre[0].copy() |
|
1074 | spc = dataOut.data_pre[0].copy() | |
1070 | cspc = dataOut.data_pre[1] |
|
1075 | cspc = dataOut.data_pre[1] | |
1071 | nHeights = spc.shape[2] |
|
1076 | nHeights = spc.shape[2] | |
1072 |
|
1077 | |||
1073 | # first_height = 0.75 #km (ref: data header 20170822) |
|
1078 | # first_height = 0.75 #km (ref: data header 20170822) | |
1074 | # resolution_height = 0.075 #km |
|
1079 | # resolution_height = 0.075 #km | |
1075 | ''' |
|
1080 | ''' | |
1076 | finding height range. check this when radar parameters are changed! |
|
1081 | finding height range. check this when radar parameters are changed! | |
1077 | ''' |
|
1082 | ''' | |
1078 | if maxheight is not None: |
|
1083 | if maxheight is not None: | |
1079 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical |
|
1084 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical | |
1080 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better |
|
1085 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better | |
1081 | else: |
|
1086 | else: | |
1082 | range_max = nHeights |
|
1087 | range_max = nHeights | |
1083 | if minheight is not None: |
|
1088 | if minheight is not None: | |
1084 | # range_min = int((minheight - first_height) / resolution_height) # theoretical |
|
1089 | # range_min = int((minheight - first_height) / resolution_height) # theoretical | |
1085 | range_min = int(13.26 * minheight - 5) # empirical, works better |
|
1090 | range_min = int(13.26 * minheight - 5) # empirical, works better | |
1086 | if range_min < 0: |
|
1091 | if range_min < 0: | |
1087 | range_min = 0 |
|
1092 | range_min = 0 | |
1088 | else: |
|
1093 | else: | |
1089 | range_min = 0 |
|
1094 | range_min = 0 | |
1090 |
|
1095 | |||
1091 | pairsList = dataOut.groupList |
|
1096 | pairsList = dataOut.groupList | |
1092 | if dataOut.ChanDist is not None : |
|
1097 | if dataOut.ChanDist is not None : | |
1093 | ChanDist = dataOut.ChanDist |
|
1098 | ChanDist = dataOut.ChanDist | |
1094 | else: |
|
1099 | else: | |
1095 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) |
|
1100 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
1096 |
|
1101 | |||
1097 | # 4 variables: zonal, meridional, vertical, and average SNR |
|
1102 | # 4 variables: zonal, meridional, vertical, and average SNR | |
1098 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN |
|
1103 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN | |
1099 | velocityX = numpy.zeros([nHeights]) * numpy.NaN |
|
1104 | velocityX = numpy.zeros([nHeights]) * numpy.NaN | |
1100 | velocityY = numpy.zeros([nHeights]) * numpy.NaN |
|
1105 | velocityY = numpy.zeros([nHeights]) * numpy.NaN | |
1101 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN |
|
1106 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN | |
1102 |
|
1107 | |||
1103 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) |
|
1108 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) | |
1104 |
|
1109 | |||
1105 | '''***********************************************WIND ESTIMATION**************************************''' |
|
1110 | '''***********************************************WIND ESTIMATION**************************************''' | |
1106 | for Height in range(nHeights): |
|
1111 | for Height in range(nHeights): | |
1107 |
|
1112 | |||
1108 | if Height >= range_min and Height < range_max: |
|
1113 | if Height >= range_min and Height < range_max: | |
1109 | # error_code will be useful in future analysis |
|
1114 | # error_code will be useful in future analysis | |
1110 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, |
|
1115 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, | |
1111 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) |
|
1116 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) | |
1112 |
|
1117 | |||
1113 | if abs(Vzon) < 100. and abs(Vmer) < 100.: |
|
1118 | if abs(Vzon) < 100. and abs(Vmer) < 100.: | |
1114 | velocityX[Height] = Vzon |
|
1119 | velocityX[Height] = Vzon | |
1115 | velocityY[Height] = -Vmer |
|
1120 | velocityY[Height] = -Vmer | |
1116 | velocityZ[Height] = Vver |
|
1121 | velocityZ[Height] = Vver | |
1117 |
|
1122 | |||
1118 | # Censoring data with SNR threshold |
|
1123 | # Censoring data with SNR threshold | |
1119 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN |
|
1124 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN | |
1120 |
|
1125 | |||
1121 | data_param[0] = velocityX |
|
1126 | data_param[0] = velocityX | |
1122 | data_param[1] = velocityY |
|
1127 | data_param[1] = velocityY | |
1123 | data_param[2] = velocityZ |
|
1128 | data_param[2] = velocityZ | |
1124 | data_param[3] = dbSNR |
|
1129 | data_param[3] = dbSNR | |
1125 | dataOut.data_param = data_param |
|
1130 | dataOut.data_param = data_param | |
1126 | return dataOut |
|
1131 | return dataOut | |
1127 |
|
1132 | |||
1128 | def moving_average(self,x, N=2): |
|
1133 | def moving_average(self,x, N=2): | |
1129 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ |
|
1134 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ | |
1130 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
1135 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
1131 |
|
1136 | |||
1132 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
1137 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
1133 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) |
|
1138 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) | |
1134 |
|
1139 | |||
1135 | def Moments(self, ySamples, xSamples): |
|
1140 | def Moments(self, ySamples, xSamples): | |
1136 | Power = numpy.nanmean(ySamples) # Power, 0th Moment |
|
1141 | Power = numpy.nanmean(ySamples) # Power, 0th Moment | |
1137 | yNorm = ySamples / numpy.nansum(ySamples) |
|
1142 | yNorm = ySamples / numpy.nansum(ySamples) | |
1138 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment |
|
1143 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment | |
1139 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment |
|
1144 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment | |
1140 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral |
|
1145 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral | |
1141 | return numpy.array([Power,RadVel,StdDev]) |
|
1146 | return numpy.array([Power,RadVel,StdDev]) | |
1142 |
|
1147 | |||
1143 | def StopWindEstimation(self, error_code): |
|
1148 | def StopWindEstimation(self, error_code): | |
1144 | Vzon = numpy.NaN |
|
1149 | Vzon = numpy.NaN | |
1145 | Vmer = numpy.NaN |
|
1150 | Vmer = numpy.NaN | |
1146 | Vver = numpy.NaN |
|
1151 | Vver = numpy.NaN | |
1147 | return Vzon, Vmer, Vver, error_code |
|
1152 | return Vzon, Vmer, Vver, error_code | |
1148 |
|
1153 | |||
1149 | def AntiAliasing(self, interval, maxstep): |
|
1154 | def AntiAliasing(self, interval, maxstep): | |
1150 | """ |
|
1155 | """ | |
1151 | function to prevent errors from aliased values when computing phaseslope |
|
1156 | function to prevent errors from aliased values when computing phaseslope | |
1152 | """ |
|
1157 | """ | |
1153 | antialiased = numpy.zeros(len(interval)) |
|
1158 | antialiased = numpy.zeros(len(interval)) | |
1154 | copyinterval = interval.copy() |
|
1159 | copyinterval = interval.copy() | |
1155 |
|
1160 | |||
1156 | antialiased[0] = copyinterval[0] |
|
1161 | antialiased[0] = copyinterval[0] | |
1157 |
|
1162 | |||
1158 | for i in range(1,len(antialiased)): |
|
1163 | for i in range(1,len(antialiased)): | |
1159 | step = interval[i] - interval[i-1] |
|
1164 | step = interval[i] - interval[i-1] | |
1160 | if step > maxstep: |
|
1165 | if step > maxstep: | |
1161 | copyinterval -= 2*numpy.pi |
|
1166 | copyinterval -= 2*numpy.pi | |
1162 | antialiased[i] = copyinterval[i] |
|
1167 | antialiased[i] = copyinterval[i] | |
1163 | elif step < maxstep*(-1): |
|
1168 | elif step < maxstep*(-1): | |
1164 | copyinterval += 2*numpy.pi |
|
1169 | copyinterval += 2*numpy.pi | |
1165 | antialiased[i] = copyinterval[i] |
|
1170 | antialiased[i] = copyinterval[i] | |
1166 | else: |
|
1171 | else: | |
1167 | antialiased[i] = copyinterval[i].copy() |
|
1172 | antialiased[i] = copyinterval[i].copy() | |
1168 |
|
1173 | |||
1169 | return antialiased |
|
1174 | return antialiased | |
1170 |
|
1175 | |||
1171 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): |
|
1176 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): | |
1172 | """ |
|
1177 | """ | |
1173 | Function that Calculates Zonal, Meridional and Vertical wind velocities. |
|
1178 | Function that Calculates Zonal, Meridional and Vertical wind velocities. | |
1174 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. |
|
1179 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. | |
1175 |
|
1180 | |||
1176 | Input: |
|
1181 | Input: | |
1177 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. |
|
1182 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. | |
1178 | pairsList : Pairlist of channels |
|
1183 | pairsList : Pairlist of channels | |
1179 | ChanDist : array of xi_ij and eta_ij |
|
1184 | ChanDist : array of xi_ij and eta_ij | |
1180 | Height : height at which data is processed |
|
1185 | Height : height at which data is processed | |
1181 | noise : noise in [channels] format for specific height |
|
1186 | noise : noise in [channels] format for specific height | |
1182 | Abbsisarange : range of the frequencies or velocities |
|
1187 | Abbsisarange : range of the frequencies or velocities | |
1183 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit |
|
1188 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit | |
1184 |
|
1189 | |||
1185 | Output: |
|
1190 | Output: | |
1186 | Vzon, Vmer, Vver : wind velocities |
|
1191 | Vzon, Vmer, Vver : wind velocities | |
1187 | error_code : int that states where code is terminated |
|
1192 | error_code : int that states where code is terminated | |
1188 |
|
1193 | |||
1189 | 0 : no error detected |
|
1194 | 0 : no error detected | |
1190 | 1 : Gaussian of mean spc exceeds widthlimit |
|
1195 | 1 : Gaussian of mean spc exceeds widthlimit | |
1191 | 2 : no Gaussian of mean spc found |
|
1196 | 2 : no Gaussian of mean spc found | |
1192 | 3 : SNR to low or velocity to high -> prec. e.g. |
|
1197 | 3 : SNR to low or velocity to high -> prec. e.g. | |
1193 | 4 : at least one Gaussian of cspc exceeds widthlimit |
|
1198 | 4 : at least one Gaussian of cspc exceeds widthlimit | |
1194 | 5 : zero out of three cspc Gaussian fits converged |
|
1199 | 5 : zero out of three cspc Gaussian fits converged | |
1195 | 6 : phase slope fit could not be found |
|
1200 | 6 : phase slope fit could not be found | |
1196 | 7 : arrays used to fit phase have different length |
|
1201 | 7 : arrays used to fit phase have different length | |
1197 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) |
|
1202 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) | |
1198 |
|
1203 | |||
1199 | """ |
|
1204 | """ | |
1200 |
|
1205 | |||
1201 | error_code = 0 |
|
1206 | error_code = 0 | |
1202 |
|
1207 | |||
1203 | nChan = spc.shape[0] |
|
1208 | nChan = spc.shape[0] | |
1204 | nProf = spc.shape[1] |
|
1209 | nProf = spc.shape[1] | |
1205 | nPair = cspc.shape[0] |
|
1210 | nPair = cspc.shape[0] | |
1206 |
|
1211 | |||
1207 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height |
|
1212 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height | |
1208 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values |
|
1213 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values | |
1209 | phase = numpy.zeros([nPair, nProf]) # phase between channels |
|
1214 | phase = numpy.zeros([nPair, nProf]) # phase between channels | |
1210 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise |
|
1215 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise | |
1211 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise |
|
1216 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise | |
1212 | xFrec = AbbsisaRange[0][:-1] # frequency range |
|
1217 | xFrec = AbbsisaRange[0][:-1] # frequency range | |
1213 | xVel = AbbsisaRange[2][:-1] # velocity range |
|
1218 | xVel = AbbsisaRange[2][:-1] # velocity range | |
1214 | xSamples = xFrec # the frequency range is taken |
|
1219 | xSamples = xFrec # the frequency range is taken | |
1215 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x |
|
1220 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x | |
1216 |
|
1221 | |||
1217 | # only consider velocities with in NegativeLimit and PositiveLimit |
|
1222 | # only consider velocities with in NegativeLimit and PositiveLimit | |
1218 | if (NegativeLimit is None): |
|
1223 | if (NegativeLimit is None): | |
1219 | NegativeLimit = numpy.min(xVel) |
|
1224 | NegativeLimit = numpy.min(xVel) | |
1220 | if (PositiveLimit is None): |
|
1225 | if (PositiveLimit is None): | |
1221 | PositiveLimit = numpy.max(xVel) |
|
1226 | PositiveLimit = numpy.max(xVel) | |
1222 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) |
|
1227 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) | |
1223 | xSamples_zoom = xSamples[xvalid] |
|
1228 | xSamples_zoom = xSamples[xvalid] | |
1224 |
|
1229 | |||
1225 | '''Getting Eij and Nij''' |
|
1230 | '''Getting Eij and Nij''' | |
1226 | Xi01, Xi02, Xi12 = ChanDist[:,0] |
|
1231 | Xi01, Xi02, Xi12 = ChanDist[:,0] | |
1227 | Eta01, Eta02, Eta12 = ChanDist[:,1] |
|
1232 | Eta01, Eta02, Eta12 = ChanDist[:,1] | |
1228 |
|
1233 | |||
1229 | # spwd limit - updated by D. ScipiΓ³n 30.03.2021 |
|
1234 | # spwd limit - updated by D. ScipiΓ³n 30.03.2021 | |
1230 | widthlimit = 10 |
|
1235 | widthlimit = 10 | |
1231 | '''************************* SPC is normalized ********************************''' |
|
1236 | '''************************* SPC is normalized ********************************''' | |
1232 | spc_norm = spc.copy() |
|
1237 | spc_norm = spc.copy() | |
1233 | # For each channel |
|
1238 | # For each channel | |
1234 | for i in range(nChan): |
|
1239 | for i in range(nChan): | |
1235 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power |
|
1240 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power | |
1236 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) |
|
1241 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) | |
1237 |
|
1242 | |||
1238 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' |
|
1243 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' | |
1239 |
|
1244 | |||
1240 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because |
|
1245 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because | |
1241 | you only fit the curve and don't need the absolute value of height for calculation, |
|
1246 | you only fit the curve and don't need the absolute value of height for calculation, | |
1242 | only for estimation of width. for normalization of cross spectra, you need initial, |
|
1247 | only for estimation of width. for normalization of cross spectra, you need initial, | |
1243 | unnormalized self-spectra With noise. |
|
1248 | unnormalized self-spectra With noise. | |
1244 |
|
1249 | |||
1245 | Technically, you don't even need to normalize the self-spectra, as you only need the |
|
1250 | Technically, you don't even need to normalize the self-spectra, as you only need the | |
1246 | width of the peak. However, it was left this way. Note that the normalization has a flaw: |
|
1251 | width of the peak. However, it was left this way. Note that the normalization has a flaw: | |
1247 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1252 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be | |
1248 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1253 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) | |
1249 | """ |
|
1254 | """ | |
1250 | # initial conditions |
|
1255 | # initial conditions | |
1251 | popt = [1e-10,0,1e-10] |
|
1256 | popt = [1e-10,0,1e-10] | |
1252 | # Spectra average |
|
1257 | # Spectra average | |
1253 | SPCMean = numpy.average(SPC_Samples,0) |
|
1258 | SPCMean = numpy.average(SPC_Samples,0) | |
1254 | # Moments in frequency |
|
1259 | # Moments in frequency | |
1255 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) |
|
1260 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) | |
1256 |
|
1261 | |||
1257 | # Gauss Fit SPC in frequency domain |
|
1262 | # Gauss Fit SPC in frequency domain | |
1258 | if dbSNR > SNRlimit: # only if SNR > SNRth |
|
1263 | if dbSNR > SNRlimit: # only if SNR > SNRth | |
1259 | try: |
|
1264 | try: | |
1260 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) |
|
1265 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) | |
1261 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION |
|
1266 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION | |
1262 | return self.StopWindEstimation(error_code = 1) |
|
1267 | return self.StopWindEstimation(error_code = 1) | |
1263 | FitGauss = self.gaus(xSamples_zoom,*popt) |
|
1268 | FitGauss = self.gaus(xSamples_zoom,*popt) | |
1264 | except :#RuntimeError: |
|
1269 | except :#RuntimeError: | |
1265 | return self.StopWindEstimation(error_code = 2) |
|
1270 | return self.StopWindEstimation(error_code = 2) | |
1266 | else: |
|
1271 | else: | |
1267 | return self.StopWindEstimation(error_code = 3) |
|
1272 | return self.StopWindEstimation(error_code = 3) | |
1268 |
|
1273 | |||
1269 | '''***************************** CSPC Normalization ************************* |
|
1274 | '''***************************** CSPC Normalization ************************* | |
1270 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1275 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation | |
1271 | influence the norm which is not desired. First, a range is identified where the |
|
1276 | influence the norm which is not desired. First, a range is identified where the | |
1272 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
|
1277 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |
1273 | around it gets cut off and values replaced by mean determined by the boundary |
|
1278 | around it gets cut off and values replaced by mean determined by the boundary | |
1274 | data -> sum_noise (spc is not normalized here, thats why the noise is important) |
|
1279 | data -> sum_noise (spc is not normalized here, thats why the noise is important) | |
1275 |
|
1280 | |||
1276 | The sums are then added and multiplied by range/datapoints, because you need |
|
1281 | The sums are then added and multiplied by range/datapoints, because you need | |
1277 | an integral and not a sum for normalization. |
|
1282 | an integral and not a sum for normalization. | |
1278 |
|
1283 | |||
1279 | A norm is found according to Briggs 92. |
|
1284 | A norm is found according to Briggs 92. | |
1280 | ''' |
|
1285 | ''' | |
1281 | # for each pair |
|
1286 | # for each pair | |
1282 | for i in range(nPair): |
|
1287 | for i in range(nPair): | |
1283 | cspc_norm = cspc[i,:].copy() |
|
1288 | cspc_norm = cspc[i,:].copy() | |
1284 | chan_index0 = pairsList[i][0] |
|
1289 | chan_index0 = pairsList[i][0] | |
1285 | chan_index1 = pairsList[i][1] |
|
1290 | chan_index1 = pairsList[i][1] | |
1286 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) |
|
1291 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) | |
1287 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) |
|
1292 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) | |
1288 |
|
1293 | |||
1289 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), |
|
1294 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), | |
1290 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), |
|
1295 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), | |
1291 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) |
|
1296 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) | |
1292 |
|
1297 | |||
1293 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] |
|
1298 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] | |
1294 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) |
|
1299 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) | |
1295 |
|
1300 | |||
1296 | '''*******************************FIT GAUSS CSPC************************************''' |
|
1301 | '''*******************************FIT GAUSS CSPC************************************''' | |
1297 | try: |
|
1302 | try: | |
1298 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) |
|
1303 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) | |
1299 | if popt01[2] > widthlimit: # CONDITION |
|
1304 | if popt01[2] > widthlimit: # CONDITION | |
1300 | return self.StopWindEstimation(error_code = 4) |
|
1305 | return self.StopWindEstimation(error_code = 4) | |
1301 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) |
|
1306 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) | |
1302 | if popt02[2] > widthlimit: # CONDITION |
|
1307 | if popt02[2] > widthlimit: # CONDITION | |
1303 | return self.StopWindEstimation(error_code = 4) |
|
1308 | return self.StopWindEstimation(error_code = 4) | |
1304 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) |
|
1309 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) | |
1305 | if popt12[2] > widthlimit: # CONDITION |
|
1310 | if popt12[2] > widthlimit: # CONDITION | |
1306 | return self.StopWindEstimation(error_code = 4) |
|
1311 | return self.StopWindEstimation(error_code = 4) | |
1307 |
|
1312 | |||
1308 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) |
|
1313 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) | |
1309 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) |
|
1314 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) | |
1310 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) |
|
1315 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) | |
1311 | except: |
|
1316 | except: | |
1312 | return self.StopWindEstimation(error_code = 5) |
|
1317 | return self.StopWindEstimation(error_code = 5) | |
1313 |
|
1318 | |||
1314 |
|
1319 | |||
1315 | '''************* Getting Fij ***************''' |
|
1320 | '''************* Getting Fij ***************''' | |
1316 | # x-axis point of the gaussian where the center is located from GaussFit of spectra |
|
1321 | # x-axis point of the gaussian where the center is located from GaussFit of spectra | |
1317 | GaussCenter = popt[1] |
|
1322 | GaussCenter = popt[1] | |
1318 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] |
|
1323 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] | |
1319 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] |
|
1324 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] | |
1320 |
|
1325 | |||
1321 | # Point where e^-1 is located in the gaussian |
|
1326 | # Point where e^-1 is located in the gaussian | |
1322 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) |
|
1327 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) | |
1323 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" |
|
1328 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" | |
1324 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1329 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1325 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) |
|
1330 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) | |
1326 |
|
1331 | |||
1327 | '''********** Taking frequency ranges from mean SPCs **********''' |
|
1332 | '''********** Taking frequency ranges from mean SPCs **********''' | |
1328 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 |
|
1333 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 | |
1329 | Range = numpy.empty(2) |
|
1334 | Range = numpy.empty(2) | |
1330 | Range[0] = GaussCenter - GauWidth |
|
1335 | Range[0] = GaussCenter - GauWidth | |
1331 | Range[1] = GaussCenter + GauWidth |
|
1336 | Range[1] = GaussCenter + GauWidth | |
1332 | # Point in x-axis where the bandwidth is located (min:max) |
|
1337 | # Point in x-axis where the bandwidth is located (min:max) | |
1333 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] |
|
1338 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] | |
1334 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] |
|
1339 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] | |
1335 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] |
|
1340 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] | |
1336 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] |
|
1341 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] | |
1337 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1342 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) | |
1338 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] |
|
1343 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] | |
1339 |
|
1344 | |||
1340 | '''************************** Getting Phase Slope ***************************''' |
|
1345 | '''************************** Getting Phase Slope ***************************''' | |
1341 | for i in range(nPair): |
|
1346 | for i in range(nPair): | |
1342 | if len(FrecRange) > 5: |
|
1347 | if len(FrecRange) > 5: | |
1343 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() |
|
1348 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() | |
1344 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1349 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1345 | if len(FrecRange) == len(PhaseRange): |
|
1350 | if len(FrecRange) == len(PhaseRange): | |
1346 | try: |
|
1351 | try: | |
1347 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) |
|
1352 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) | |
1348 | PhaseSlope[i] = slope |
|
1353 | PhaseSlope[i] = slope | |
1349 | PhaseInter[i] = intercept |
|
1354 | PhaseInter[i] = intercept | |
1350 | except: |
|
1355 | except: | |
1351 | return self.StopWindEstimation(error_code = 6) |
|
1356 | return self.StopWindEstimation(error_code = 6) | |
1352 | else: |
|
1357 | else: | |
1353 | return self.StopWindEstimation(error_code = 7) |
|
1358 | return self.StopWindEstimation(error_code = 7) | |
1354 | else: |
|
1359 | else: | |
1355 | return self.StopWindEstimation(error_code = 8) |
|
1360 | return self.StopWindEstimation(error_code = 8) | |
1356 |
|
1361 | |||
1357 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' |
|
1362 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' | |
1358 |
|
1363 | |||
1359 | '''Getting constant C''' |
|
1364 | '''Getting constant C''' | |
1360 | cC=(Fij*numpy.pi)**2 |
|
1365 | cC=(Fij*numpy.pi)**2 | |
1361 |
|
1366 | |||
1362 | '''****** Getting constants F and G ******''' |
|
1367 | '''****** Getting constants F and G ******''' | |
1363 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) |
|
1368 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1364 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) |
|
1369 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) | |
1365 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) |
|
1370 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) | |
1366 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) |
|
1371 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
1367 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) |
|
1372 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |
1368 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) |
|
1373 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) | |
1369 | MijResults = numpy.array([MijResult1, MijResult2]) |
|
1374 | MijResults = numpy.array([MijResult1, MijResult2]) | |
1370 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1375 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1371 |
|
1376 | |||
1372 | '''****** Getting constants A, B and H ******''' |
|
1377 | '''****** Getting constants A, B and H ******''' | |
1373 | W01 = numpy.nanmax( FitGauss01 ) |
|
1378 | W01 = numpy.nanmax( FitGauss01 ) | |
1374 | W02 = numpy.nanmax( FitGauss02 ) |
|
1379 | W02 = numpy.nanmax( FitGauss02 ) | |
1375 | W12 = numpy.nanmax( FitGauss12 ) |
|
1380 | W12 = numpy.nanmax( FitGauss12 ) | |
1376 |
|
1381 | |||
1377 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) |
|
1382 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
1378 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) |
|
1383 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |
1379 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) |
|
1384 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
1380 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) |
|
1385 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) | |
1381 |
|
1386 | |||
1382 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) |
|
1387 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1383 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1388 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1384 |
|
1389 | |||
1385 | VxVy = numpy.array([[cA,cH],[cH,cB]]) |
|
1390 | VxVy = numpy.array([[cA,cH],[cH,cB]]) | |
1386 | VxVyResults = numpy.array([-cF,-cG]) |
|
1391 | VxVyResults = numpy.array([-cF,-cG]) | |
1387 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1392 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) | |
1388 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) |
|
1393 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) | |
1389 | error_code = 0 |
|
1394 | error_code = 0 | |
1390 |
|
1395 | |||
1391 | return Vzon, Vmer, Vver, error_code |
|
1396 | return Vzon, Vmer, Vver, error_code | |
1392 |
|
1397 | |||
1393 | class SpectralMoments(Operation): |
|
1398 | class SpectralMoments(Operation): | |
1394 |
|
1399 | |||
1395 | ''' |
|
1400 | ''' | |
1396 | Function SpectralMoments() |
|
1401 | Function SpectralMoments() | |
1397 |
|
1402 | |||
1398 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1403 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1399 |
|
1404 | |||
1400 | Type of dataIn: Spectra |
|
1405 | Type of dataIn: Spectra | |
1401 |
|
1406 | |||
1402 | Configuration Parameters: |
|
1407 | Configuration Parameters: | |
1403 |
|
1408 | |||
1404 | proc_type : (0) First spectral moments routine (Default), |
|
1409 | proc_type : (0) First spectral moments routine (Default), | |
1405 | (1) Spectral moment routine similar to JULIA. |
|
1410 | (1) Spectral moment routine similar to JULIA. | |
1406 | mode_fit : (0) No gaussian fit |
|
1411 | mode_fit : (0) No gaussian fit | |
1407 | (1) One gaussian fit for 150Km processing. |
|
1412 | (1) One gaussian fit for 150Km processing. | |
1408 |
|
1413 | |||
1409 | exp : '150EEJ' To select 128 points window |
|
1414 | exp : '150EEJ' To select 128 points window | |
1410 | 'ESF_EW' To select full window. |
|
1415 | 'ESF_EW' To select full window. | |
1411 |
|
1416 | |||
1412 | Input: |
|
1417 | Input: | |
1413 | channelList : simple channel list to select e.g. [2,3,7] |
|
1418 | channelList : simple channel list to select e.g. [2,3,7] | |
1414 | self.dataOut.data_pre : Spectral data |
|
1419 | self.dataOut.data_pre : Spectral data | |
1415 | self.dataOut.abscissaList : List of frequencies |
|
1420 | self.dataOut.abscissaList : List of frequencies | |
1416 | self.dataOut.noise : Noise level per channel |
|
1421 | self.dataOut.noise : Noise level per channel | |
1417 |
|
1422 | |||
1418 | Affected: |
|
1423 | Affected: | |
1419 | self.dataOut.moments : Parameters per channel |
|
1424 | self.dataOut.moments : Parameters per channel | |
1420 | self.dataOut.data_snr : SNR per channel |
|
1425 | self.dataOut.data_snr : SNR per channel | |
1421 |
|
1426 | |||
1422 | ''' |
|
1427 | ''' | |
1423 |
|
1428 | |||
1424 | def run(self, dataOut, proc_type=0, mode_fit=0, exp='150EEJ'): |
|
|||
1425 |
|
||||
1426 | absc = dataOut.abscissaList[:-1] |
|
|||
1427 | #noise = dataOut.noise |
|
|||
1428 | nChannel = dataOut.data_pre[0].shape[0] |
|
|||
1429 | nHei = dataOut.data_pre[0].shape[2] |
|
|||
1430 | data_param = numpy.zeros((nChannel, 4 + proc_type*3, nHei)) |
|
|||
1431 |
|
||||
1432 | if proc_type == 1: |
|
|||
1433 | type1 = mode_fit |
|
|||
1434 | fwindow = numpy.zeros(absc.size) + 1 |
|
|||
1435 | if exp == '150EEJ': |
|
|||
1436 | b=64 |
|
|||
1437 | fwindow[0:absc.size//2 - b] = 0 |
|
|||
1438 | fwindow[absc.size//2 + b:] = 0 |
|
|||
1439 | vers = 1 # new |
|
|||
1440 | nProfiles = dataOut.nProfiles |
|
|||
1441 | nCohInt = dataOut.nCohInt |
|
|||
1442 | nIncohInt = dataOut.nIncohInt |
|
|||
1443 | M = numpy.power(numpy.array(1/(nProfiles * nCohInt) ,dtype='float32'),2) |
|
|||
1444 | N = numpy.array(M / nIncohInt,dtype='float32') |
|
|||
1445 | data = dataOut.data_pre[0] * N |
|
|||
1446 | #noise = dataOut.noise * N |
|
|||
1447 | noise = numpy.zeros(nChannel) |
|
|||
1448 | for ind in range(nChannel): |
|
|||
1449 | noise[ind] = self.__NoiseByChannel(nProfiles, nIncohInt, data[ind,:,:]) |
|
|||
1450 | smooth=3 |
|
|||
1451 | else: |
|
|||
1452 | data = dataOut.data_pre[0] |
|
|||
1453 | noise = dataOut.noise |
|
|||
1454 | fwindow = None |
|
|||
1455 | vers = 0 # old |
|
|||
1456 | nIncohInt = None |
|
|||
1457 | smooth=None |
|
|||
1458 |
|
||||
1459 | for ind in range(nChannel): |
|
|||
1460 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind], nicoh=nIncohInt, smooth=smooth, type1=type1, fwindow=fwindow, vers=vers) |
|
|||
1461 | #print('snr:',data_param[:,0]) |
|
|||
1462 |
|
||||
1463 | if proc_type == 1: |
|
|||
1464 | dataOut.moments = data_param[:,1:,:] |
|
|||
1465 | #dataOut.data_dop = data_param[:,0] |
|
|||
1466 | dataOut.data_dop = data_param[:,2] |
|
|||
1467 | dataOut.data_width = data_param[:,1] |
|
|||
1468 | # dataOut.data_snr = data_param[:,2] |
|
|||
1469 | dataOut.data_snr = data_param[:,0] |
|
|||
1470 | dataOut.data_pow = data_param[:,6] # to compare with type0 proccessing |
|
|||
1471 | dataOut.spcpar=numpy.stack((dataOut.data_dop,dataOut.data_width,dataOut.data_snr, data_param[:,3], data_param[:,4],data_param[:,5]),axis=2) |
|
|||
1472 |
|
||||
1473 | else: |
|
|||
1474 | dataOut.moments = data_param[:,1:,:] |
|
|||
1475 | dataOut.data_snr = data_param[:,0] |
|
|||
1476 | dataOut.data_pow = data_param[:,1] |
|
|||
1477 | dataOut.data_dop = data_param[:,2] |
|
|||
1478 | dataOut.data_width = data_param[:,3] |
|
|||
1479 | dataOut.spcpar=numpy.stack((dataOut.data_dop,dataOut.data_width,dataOut.data_snr, dataOut.data_pow),axis=2) |
|
|||
1480 |
|
||||
1481 | return dataOut |
|
|||
1482 |
|
||||
1483 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1429 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1484 |
nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, |
|
1430 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, \ | |
|
1431 | snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None, \ | |||
|
1432 | vers= None, Hei= None, debug=False, dbg_hei=None, ymax=0.1, curr_ch=0, sel_ch=[0,1]): | |||
1485 |
|
1433 | |||
1486 | def __GAUSSWINFIT1(A, flagPDER=0): |
|
1434 | def __GAUSSWINFIT1(A, flagPDER=0): | |
1487 | nonlocal truex, xvalid |
|
1435 | nonlocal truex, xvalid | |
1488 | nparams = 4 |
|
1436 | nparams = 4 | |
1489 | M=truex.size |
|
1437 | M=truex.size | |
1490 | mm=numpy.arange(M,dtype='f4') |
|
1438 | mm=numpy.arange(M,dtype='f4') | |
1491 | delta = numpy.zeros(M,dtype='f4') |
|
1439 | delta = numpy.zeros(M,dtype='f4') | |
1492 | delta[0] = 1.0 |
|
1440 | delta[0] = 1.0 | |
1493 | Ts = numpy.array([1.0/(2*truex[0])],dtype='f4')[0] |
|
1441 | Ts = numpy.array([1.0/(2*truex[0])],dtype='f4')[0] | |
1494 | jj = -1j |
|
1442 | jj = -1j | |
1495 | #if self.winauto is None: self.winauto = (1.0 - mm/M) |
|
1443 | #if self.winauto is None: self.winauto = (1.0 - mm/M) | |
1496 | winauto = (1.0 - mm/M) |
|
1444 | winauto = (1.0 - mm/M) | |
1497 | winauto = winauto/winauto.max() # Normalized to 1 |
|
1445 | winauto = winauto/winauto.max() # Normalized to 1 | |
1498 | #ON_ERROR,2 # IDL sentence: Return to caller if an error occurs |
|
1446 | #ON_ERROR,2 # IDL sentence: Return to caller if an error occurs | |
1499 | A[0] = numpy.abs(A[0]) |
|
1447 | A[0] = numpy.abs(A[0]) | |
1500 | A[2] = numpy.abs(A[2]) |
|
1448 | A[2] = numpy.abs(A[2]) | |
1501 | A[3] = numpy.abs(A[3]) |
|
1449 | A[3] = numpy.abs(A[3]) | |
1502 | pi=numpy.array([numpy.pi],dtype='f4')[0] |
|
1450 | pi=numpy.array([numpy.pi],dtype='f4')[0] | |
1503 | if A[2] != 0: |
|
1451 | if A[2] != 0: | |
1504 | Z = numpy.exp(-2*numpy.power((pi*A[2]*mm*Ts),2,dtype='f4')+jj*2*pi*A[1]*mm*Ts, dtype='c8') # Get Z |
|
1452 | Z = numpy.exp(-2*numpy.power((pi*A[2]*mm*Ts),2,dtype='f4')+jj*2*pi*A[1]*mm*Ts, dtype='c8') # Get Z | |
1505 | else: |
|
1453 | else: | |
1506 | Z = mm*0.0 |
|
1454 | Z = mm*0.0 | |
1507 | A[0] = 0.0 |
|
1455 | A[0] = 0.0 | |
1508 | junkF = numpy.roll(2*fft(winauto*(A[0]*Z+A[3]*delta)).real - \ |
|
1456 | junkF = numpy.roll(2*fft(winauto*(A[0]*Z+A[3]*delta)).real - \ | |
1509 | winauto[0]*(A[0]+A[3]), M//2) # *M scale for fft not needed in python |
|
1457 | winauto[0]*(A[0]+A[3]), M//2) # *M scale for fft not needed in python | |
1510 | F = junkF[xvalid] |
|
1458 | F = junkF[xvalid] | |
1511 | if flagPDER == 0: #NEED PARTIAL? |
|
1459 | if flagPDER == 0: #NEED PARTIAL? | |
1512 | return F |
|
1460 | return F | |
1513 | PDER = numpy.zeros((M,nparams)) #YES, MAKE ARRAY. |
|
1461 | PDER = numpy.zeros((M,nparams)) #YES, MAKE ARRAY. | |
1514 | PDER[:,0] = numpy.shift(2*(fft(winauto*Z)*M) - winauto[0], M/2) |
|
1462 | PDER[:,0] = numpy.shift(2*(fft(winauto*Z)*M) - winauto[0], M/2) | |
1515 | PDER[:,1] = numpy.shift(2*(fft(winauto*jj*2*numpy.pi*mm*Ts*A[0]*Z)*M), M/2) |
|
1463 | PDER[:,1] = numpy.shift(2*(fft(winauto*jj*2*numpy.pi*mm*Ts*A[0]*Z)*M), M/2) | |
1516 | PDER[:,2] = numpy.shift(2*(fft(winauto*(-4*numpy.power(numpy.pi*mm*Ts,2)*A[2]*A[0]*Z))*M), M/2) |
|
1464 | PDER[:,2] = numpy.shift(2*(fft(winauto*(-4*numpy.power(numpy.pi*mm*Ts,2)*A[2]*A[0]*Z))*M), M/2) | |
1517 | PDER[:,3] = numpy.shift(2*(fft(winauto*delta)*M) - winauto[0], M/2) |
|
1465 | PDER[:,3] = numpy.shift(2*(fft(winauto*delta)*M) - winauto[0], M/2) | |
1518 | PDER = PDER[xvalid,:] |
|
1466 | PDER = PDER[xvalid,:] | |
1519 | return F, PDER |
|
1467 | return F, PDER | |
1520 |
|
1468 | |||
1521 | def __curvefit_koki(y, a, Weights, FlagNoDerivative=1, |
|
1469 | def __curvefit_koki(y, a, Weights, FlagNoDerivative=1, | |
1522 | itmax=20, tol=None): |
|
1470 | itmax=20, tol=None): | |
1523 | #ON_ERROR,2 IDL SENTENCE: RETURN TO THE CALLER IF ERROR |
|
1471 | #ON_ERROR,2 IDL SENTENCE: RETURN TO THE CALLER IF ERROR | |
1524 | if tol == None: |
|
1472 | if tol == None: | |
1525 | tol = numpy.array([1.e-3],dtype='f4')[0] |
|
1473 | tol = numpy.array([1.e-3],dtype='f4')[0] | |
1526 | typ=a.dtype |
|
1474 | typ=a.dtype | |
1527 | double = 1 if typ == numpy.float64 else 0 |
|
1475 | double = 1 if typ == numpy.float64 else 0 | |
1528 | if typ != numpy.float32: |
|
1476 | if typ != numpy.float32: | |
1529 | a=a.astype(numpy.float32) #Make params floating |
|
1477 | a=a.astype(numpy.float32) #Make params floating | |
1530 | # if we will be estimating partial derivates then compute machine precision |
|
1478 | # if we will be estimating partial derivates then compute machine precision | |
1531 | if FlagNoDerivative == 1: |
|
1479 | if FlagNoDerivative == 1: | |
1532 | res=numpy.MachAr(float_conv=numpy.float32) |
|
1480 | res=numpy.MachAr(float_conv=numpy.float32) | |
1533 | eps=numpy.sqrt(res.eps) |
|
1481 | eps=numpy.sqrt(res.eps) | |
1534 |
|
1482 | |||
1535 | nterms = a.size # Number of parameters |
|
1483 | nterms = a.size # Number of parameters | |
1536 | nfree=numpy.array([numpy.size(y) - nterms],dtype='f4')[0] # Degrees of freedom |
|
1484 | nfree=numpy.array([numpy.size(y) - nterms],dtype='f4')[0] # Degrees of freedom | |
1537 | if nfree <= 0: print('Curvefit - not enough data points.') |
|
1485 | if nfree <= 0: print('Curvefit - not enough data points.') | |
1538 | flambda= numpy.array([0.001],dtype='f4')[0] # Initial lambda |
|
1486 | flambda= numpy.array([0.001],dtype='f4')[0] # Initial lambda | |
1539 | #diag=numpy.arange(nterms)*(nterms+1) # Subscripta of diagonal elements |
|
1487 | #diag=numpy.arange(nterms)*(nterms+1) # Subscripta of diagonal elements | |
1540 | # Use diag method in python |
|
1488 | # Use diag method in python | |
1541 | converge=1 |
|
1489 | converge=1 | |
1542 |
|
1490 | |||
1543 | #Define the partial derivative array |
|
1491 | #Define the partial derivative array | |
1544 | PDER = numpy.zeros((nterms,numpy.size(y)),dtype='f8') if double == 1 else numpy.zeros((nterms,numpy.size(y)),dtype='f4') |
|
1492 | PDER = numpy.zeros((nterms,numpy.size(y)),dtype='f8') if double == 1 else numpy.zeros((nterms,numpy.size(y)),dtype='f4') | |
1545 |
|
1493 | |||
1546 | for Niter in range(itmax): #Iteration loop |
|
1494 | for Niter in range(itmax): #Iteration loop | |
1547 |
|
1495 | |||
1548 | if FlagNoDerivative == 1: |
|
1496 | if FlagNoDerivative == 1: | |
1549 | #Evaluate function and estimate partial derivatives |
|
1497 | #Evaluate function and estimate partial derivatives | |
1550 | yfit = __GAUSSWINFIT1(a) |
|
1498 | yfit = __GAUSSWINFIT1(a) | |
1551 | for term in range(nterms): |
|
1499 | for term in range(nterms): | |
1552 | p=a.copy() # Copy current parameters |
|
1500 | p=a.copy() # Copy current parameters | |
1553 | #Increment size for forward difference derivative |
|
1501 | #Increment size for forward difference derivative | |
1554 | inc = eps * abs(p[term]) |
|
1502 | inc = eps * abs(p[term]) | |
1555 | if inc == 0: inc = eps |
|
1503 | if inc == 0: inc = eps | |
1556 | p[term] = p[term] + inc |
|
1504 | p[term] = p[term] + inc | |
1557 | yfit1 = __GAUSSWINFIT1(p) |
|
1505 | yfit1 = __GAUSSWINFIT1(p) | |
1558 | PDER[term,:] = (yfit1-yfit)/inc |
|
1506 | PDER[term,:] = (yfit1-yfit)/inc | |
1559 | else: |
|
1507 | else: | |
1560 | #The user's procedure will return partial derivatives |
|
1508 | #The user's procedure will return partial derivatives | |
1561 | yfit,PDER=__GAUSSWINFIT1(a, flagPDER=1) |
|
1509 | yfit,PDER=__GAUSSWINFIT1(a, flagPDER=1) | |
1562 |
|
1510 | |||
1563 | beta = numpy.dot(PDER,(y-yfit)*Weights) |
|
1511 | beta = numpy.dot(PDER,(y-yfit)*Weights) | |
1564 | alpha = numpy.dot(PDER * numpy.tile(Weights,(nterms,1)), numpy.transpose(PDER)) |
|
1512 | alpha = numpy.dot(PDER * numpy.tile(Weights,(nterms,1)), numpy.transpose(PDER)) | |
1565 | # save current values of return parameters |
|
1513 | # save current values of return parameters | |
1566 | sigma1 = numpy.sqrt( 1.0 / numpy.diag(alpha) ) # Current sigma. |
|
1514 | sigma1 = numpy.sqrt( 1.0 / numpy.diag(alpha) ) # Current sigma. | |
1567 | sigma = sigma1 |
|
1515 | sigma = sigma1 | |
1568 |
|
1516 | |||
1569 | chisq1 = numpy.sum(Weights*numpy.power(y-yfit,2,dtype='f4'),dtype='f4')/nfree # Current chi squared. |
|
1517 | chisq1 = numpy.sum(Weights*numpy.power(y-yfit,2,dtype='f4'),dtype='f4')/nfree # Current chi squared. | |
1570 | chisq = chisq1 |
|
1518 | chisq = chisq1 | |
1571 | yfit1 = yfit |
|
1519 | yfit1 = yfit | |
1572 | elev7=numpy.array([1.0e7],dtype='f4')[0] |
|
1520 | elev7=numpy.array([1.0e7],dtype='f4')[0] | |
1573 | compara =numpy.sum(abs(y))/elev7/nfree |
|
1521 | compara =numpy.sum(abs(y))/elev7/nfree | |
1574 | done_early = chisq1 < compara |
|
1522 | done_early = chisq1 < compara | |
1575 |
|
1523 | |||
1576 | if done_early: |
|
1524 | if done_early: | |
1577 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) |
|
1525 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) | |
1578 | if done_early: Niter -= 1 |
|
1526 | if done_early: Niter -= 1 | |
1579 | #save_tp(chisq,Niter,yfit) |
|
1527 | #save_tp(chisq,Niter,yfit) | |
1580 | return yfit, a, converge, sigma, chisq # return result |
|
1528 | return yfit, a, converge, sigma, chisq # return result | |
1581 | #c = numpy.dot(c, c) # this operator implemented at the next lines |
|
1529 | #c = numpy.dot(c, c) # this operator implemented at the next lines | |
1582 | c_tmp = numpy.sqrt(numpy.diag(alpha)) |
|
1530 | c_tmp = numpy.sqrt(numpy.diag(alpha)) | |
1583 | siz=len(c_tmp) |
|
1531 | siz=len(c_tmp) | |
1584 | c=numpy.dot(c_tmp.reshape(siz,1),c_tmp.reshape(1,siz)) |
|
1532 | c=numpy.dot(c_tmp.reshape(siz,1),c_tmp.reshape(1,siz)) | |
1585 | lambdaCount = 0 |
|
1533 | lambdaCount = 0 | |
1586 | while True: |
|
1534 | while True: | |
1587 | lambdaCount += 1 |
|
1535 | lambdaCount += 1 | |
1588 | # Normalize alpha to have unit diagonal. |
|
1536 | # Normalize alpha to have unit diagonal. | |
1589 | array = alpha / c |
|
1537 | array = alpha / c | |
1590 | # Augment the diagonal. |
|
1538 | # Augment the diagonal. | |
1591 | one=numpy.array([1.],dtype='f4')[0] |
|
1539 | one=numpy.array([1.],dtype='f4')[0] | |
1592 | numpy.fill_diagonal(array,numpy.diag(array)*(one+flambda)) |
|
1540 | numpy.fill_diagonal(array,numpy.diag(array)*(one+flambda)) | |
1593 | # Invert modified curvature matrix to find new parameters. |
|
1541 | # Invert modified curvature matrix to find new parameters. | |
1594 |
|
1542 | |||
1595 | try: |
|
1543 | try: | |
1596 | array = (1.0/array) if array.size == 1 else numpy.linalg.inv(array) |
|
1544 | array = (1.0/array) if array.size == 1 else numpy.linalg.inv(array) | |
1597 | except Exception as e: |
|
1545 | except Exception as e: | |
1598 | print(e) |
|
1546 | print(e) | |
1599 | array[:]=numpy.NaN |
|
1547 | array[:]=numpy.NaN | |
1600 |
|
1548 | |||
1601 | b = a + numpy.dot(numpy.transpose(beta),array/c) # New params |
|
1549 | b = a + numpy.dot(numpy.transpose(beta),array/c) # New params | |
1602 | yfit = __GAUSSWINFIT1(b) # Evaluate function |
|
1550 | yfit = __GAUSSWINFIT1(b) # Evaluate function | |
1603 | chisq = numpy.sum(Weights*numpy.power(y-yfit,2,dtype='f4'),dtype='f4')/nfree # New chisq |
|
1551 | chisq = numpy.sum(Weights*numpy.power(y-yfit,2,dtype='f4'),dtype='f4')/nfree # New chisq | |
1604 | sigma = numpy.sqrt(numpy.diag(array)/numpy.diag(alpha)) # New sigma |
|
1552 | sigma = numpy.sqrt(numpy.diag(array)/numpy.diag(alpha)) # New sigma | |
1605 | if (numpy.isfinite(chisq) == 0) or \ |
|
1553 | if (numpy.isfinite(chisq) == 0) or \ | |
1606 | (lambdaCount > 30 and chisq >= chisq1): |
|
1554 | (lambdaCount > 30 and chisq >= chisq1): | |
1607 | # Reject changes made this iteration, use old values. |
|
1555 | # Reject changes made this iteration, use old values. | |
1608 | yfit = yfit1 |
|
1556 | yfit = yfit1 | |
1609 | sigma = sigma1 |
|
1557 | sigma = sigma1 | |
1610 | chisq = chisq1 |
|
1558 | chisq = chisq1 | |
1611 | converge = 0 |
|
1559 | converge = 0 | |
1612 | #print('Failed to converge.') |
|
1560 | #print('Failed to converge.') | |
1613 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) |
|
1561 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) | |
1614 | if done_early: Niter -= 1 |
|
1562 | if done_early: Niter -= 1 | |
1615 | #save_tp(chisq,Niter,yfit) |
|
|||
1616 | return yfit, a, converge, sigma, chisq, chi2 # return result |
|
1563 | return yfit, a, converge, sigma, chisq, chi2 # return result | |
1617 | ten=numpy.array([10.0],dtype='f4')[0] |
|
1564 | ten=numpy.array([10.0],dtype='f4')[0] | |
1618 | flambda *= ten # Assume fit got worse |
|
1565 | flambda *= ten # Assume fit got worse | |
1619 | if chisq <= chisq1: |
|
1566 | if chisq <= chisq1: | |
1620 | break |
|
1567 | break | |
1621 | hundred=numpy.array([100.0],dtype='f4')[0] |
|
1568 | hundred=numpy.array([100.0],dtype='f4')[0] | |
1622 | flambda /= hundred |
|
1569 | flambda /= hundred | |
1623 |
|
1570 | |||
1624 | a=b # Save new parameter estimate. |
|
1571 | a=b # Save new parameter estimate. | |
1625 | if ((chisq1-chisq)/chisq1) <= tol: # Finished? |
|
1572 | if ((chisq1-chisq)/chisq1) <= tol: # Finished? | |
1626 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) |
|
1573 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) | |
1627 | if done_early: Niter -= 1 |
|
1574 | if done_early: Niter -= 1 | |
1628 | #save_tp(chisq,Niter,yfit) |
|
|||
1629 | return yfit, a, converge, sigma, chisq, chi2 # return result |
|
1575 | return yfit, a, converge, sigma, chisq, chi2 # return result | |
1630 | converge = 0 |
|
1576 | converge = 0 | |
1631 | chi2 = chisq |
|
1577 | chi2 = chisq | |
1632 | #print('Failed to converge.') |
|
1578 | #print('Failed to converge.') | |
1633 | #save_tp(chisq,Niter,yfit) |
|
|||
1634 | return yfit, a, converge, sigma, chisq, chi2 |
|
1579 | return yfit, a, converge, sigma, chisq, chi2 | |
1635 |
|
1580 | |||
|
1581 | ||||
|
1582 | def spectral_cut(Hei, ind, dbg_hei, freq, fd, snr, n1, w, ymax, spec, spec2, n0, max_spec, ss1, m, bb0, curr_ch, sel_ch): | |||
|
1583 | if Hei[ind] > dbg_hei[0] and Hei[ind] < dbg_hei[1] and (curr_ch in sel_ch): | |||
|
1584 | nsa=len(freq) | |||
|
1585 | aux='H=%iKm, dop: %4.1f, snr: %4.1f, noise: %4.1f, sw: %4.1f'%(Hei[ind],fd, 10*numpy.log10(snr),10*numpy.log10(n1), w) | |||
|
1586 | plt.subplots() | |||
|
1587 | plt.ylim(0,ymax) | |||
|
1588 | plt.plot(freq,spec,'b-',freq,spec2,'b--', freq,numpy.repeat(n1, nsa),'k--', freq,numpy.repeat(n0, nsa),'k-', freq,numpy.repeat(max_spec, nsa),'y.-', numpy.repeat(fd, nsa),numpy.linspace(0,ymax,nsa),'r--', numpy.repeat(freq[ss1], nsa),numpy.linspace(0,ymax,nsa),'g-.', numpy.repeat(freq[m + bb0], nsa),numpy.linspace(0,ymax,nsa),'g-.') | |||
|
1589 | plt.title(aux) | |||
|
1590 | plt.show() | |||
|
1591 | ||||
|
1592 | ||||
1636 | if (nicoh is None): nicoh = 1 |
|
1593 | if (nicoh is None): nicoh = 1 | |
1637 | if (smooth is None): smooth = 0 |
|
1594 | if (smooth is None): smooth = 0 | |
1638 | if (type1 is None): type1 = 0 |
|
1595 | if (type1 is None): type1 = 0 | |
1639 | if (vers is None): vers = 0 |
|
1596 | if (vers is None): vers = 0 | |
1640 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
1597 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1641 | if (snrth is None): snrth = -20.0 |
|
1598 | if (snrth is None): snrth = -20.0 | |
1642 | #if (snrth is None): snrth = -21.0 # abs test |
|
|||
1643 | if (dc is None): dc = 0 |
|
1599 | if (dc is None): dc = 0 | |
1644 | if (aliasing is None): aliasing = 0 |
|
1600 | if (aliasing is None): aliasing = 0 | |
1645 | if (oldfd is None): oldfd = 0 |
|
1601 | if (oldfd is None): oldfd = 0 | |
1646 | if (wwauto is None): wwauto = 0 |
|
1602 | if (wwauto is None): wwauto = 0 | |
1647 |
|
1603 | |||
1648 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1604 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1649 |
|
1605 | |||
1650 | xvalid = numpy.where(fwindow == 1)[0] |
|
1606 | xvalid = numpy.where(fwindow == 1)[0] | |
1651 | freq = oldfreq |
|
1607 | freq = oldfreq | |
1652 | truex = oldfreq |
|
1608 | truex = oldfreq | |
1653 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1609 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1654 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1610 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1655 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1611 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1656 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1612 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1657 | vec_n1 = numpy.empty(oldspec.shape[1]) |
|
1613 | vec_n1 = numpy.empty(oldspec.shape[1]) | |
1658 | vec_fp = numpy.empty(oldspec.shape[1]) |
|
1614 | vec_fp = numpy.empty(oldspec.shape[1]) | |
1659 | vec_sigma_fd = numpy.empty(oldspec.shape[1]) |
|
1615 | vec_sigma_fd = numpy.empty(oldspec.shape[1]) | |
1660 |
|
1616 | |||
1661 | for ind in range(oldspec.shape[1]): |
|
1617 | for ind in range(oldspec.shape[1]): | |
1662 |
|
||||
1663 | spec = oldspec[:,ind] |
|
1618 | spec = oldspec[:,ind] | |
1664 | if (smooth == 0): |
|
1619 | if (smooth == 0): | |
1665 | spec2 = spec |
|
1620 | spec2 = spec | |
1666 | else: |
|
1621 | else: | |
1667 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1622 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1668 |
|
1623 | |||
1669 | aux = spec2*fwindow |
|
1624 | aux = spec2*fwindow | |
1670 | max_spec = aux.max() |
|
1625 | max_spec = aux.max() | |
1671 | m = aux.tolist().index(max_spec) |
|
1626 | m = aux.tolist().index(max_spec) | |
1672 |
|
1627 | |||
1673 | if m > 2 and m < oldfreq.size - 3: |
|
1628 | if m > 2 and m < oldfreq.size - 3: | |
1674 | newindex = m + numpy.array([-2,-1,0,1,2]) |
|
1629 | newindex = m + numpy.array([-2,-1,0,1,2]) | |
1675 | newfreq = numpy.arange(20)/20.0*(numpy.max(freq[newindex])-numpy.min(freq[newindex]))+numpy.min(freq[newindex]) |
|
1630 | newfreq = numpy.arange(20)/20.0*(numpy.max(freq[newindex])-numpy.min(freq[newindex]))+numpy.min(freq[newindex]) | |
1676 | #peakspec = SPLINE(,) |
|
|||
1677 | tck = interpolate.splrep(freq[newindex], spec2[newindex]) |
|
1631 | tck = interpolate.splrep(freq[newindex], spec2[newindex]) | |
1678 | peakspec = interpolate.splev(newfreq, tck) |
|
1632 | peakspec = interpolate.splev(newfreq, tck) | |
1679 | # max_spec = MAX(peakspec,) |
|
|||
1680 | max_spec = numpy.max(peakspec) |
|
1633 | max_spec = numpy.max(peakspec) | |
1681 | mnew = numpy.argmax(peakspec) |
|
1634 | mnew = numpy.argmax(peakspec) | |
1682 | #fp = newfreq(mnew) |
|
|||
1683 | fp = newfreq[mnew] |
|
1635 | fp = newfreq[mnew] | |
1684 | else: |
|
1636 | else: | |
1685 | fp = freq[m] |
|
1637 | fp = freq[m] | |
1686 |
|
1638 | |||
1687 | if vers ==0: |
|
1639 | if vers ==0: | |
1688 |
|
1640 | |||
1689 | # Moments Estimation |
|
1641 | # Moments Estimation | |
1690 | bb = spec2[numpy.arange(m,spec2.size)] |
|
1642 | bb = spec2[numpy.arange(m,spec2.size)] | |
1691 | bb = (bb<n0).nonzero() |
|
1643 | bb = (bb<n0).nonzero() | |
1692 | bb = bb[0] |
|
1644 | bb = bb[0] | |
1693 |
|
1645 | |||
1694 | ss = spec2[numpy.arange(0,m + 1)] |
|
1646 | ss = spec2[numpy.arange(0,m + 1)] | |
1695 | ss = (ss<n0).nonzero() |
|
1647 | ss = (ss<n0).nonzero() | |
1696 | ss = ss[0] |
|
1648 | ss = ss[0] | |
1697 |
|
1649 | |||
1698 | if (bb.size == 0): |
|
1650 | if (bb.size == 0): | |
1699 | bb0 = spec.size - 1 - m |
|
1651 | bb0 = spec.size - 1 - m | |
1700 | else: |
|
1652 | else: | |
1701 | bb0 = bb[0] - 1 |
|
1653 | bb0 = bb[0] - 1 | |
1702 | if (bb0 < 0): |
|
1654 | if (bb0 < 0): | |
1703 | bb0 = 0 |
|
1655 | bb0 = 0 | |
1704 |
|
1656 | |||
1705 | if (ss.size == 0): |
|
1657 | if (ss.size == 0): | |
1706 | ss1 = 1 |
|
1658 | ss1 = 1 | |
1707 | else: |
|
1659 | else: | |
1708 | ss1 = max(ss) + 1 |
|
1660 | ss1 = max(ss) + 1 | |
1709 |
|
1661 | |||
1710 | if (ss1 > m): |
|
1662 | if (ss1 > m): | |
1711 | ss1 = m |
|
1663 | ss1 = m | |
1712 |
|
1664 | |||
1713 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 |
|
1665 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |
1714 |
|
1666 | |||
1715 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition |
|
1667 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition | |
1716 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition |
|
1668 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition | |
1717 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() |
|
1669 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() | |
1718 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power |
|
1670 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power | |
1719 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) |
|
1671 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) | |
1720 | snr = (spec2.mean()-n0)/n0 |
|
1672 | snr = (spec2.mean()-n0)/n0 | |
1721 | if (snr < 1.e-20): snr = 1.e-20 |
|
1673 | if (snr < 1.e-20): snr = 1.e-20 | |
1722 |
|
1674 | |||
1723 | vec_power[ind] = total_power |
|
1675 | vec_power[ind] = total_power | |
1724 | vec_fd[ind] = fd |
|
1676 | vec_fd[ind] = fd | |
1725 | vec_w[ind] = w |
|
1677 | vec_w[ind] = w | |
1726 | vec_snr[ind] = snr |
|
1678 | vec_snr[ind] = snr | |
1727 | else: |
|
1679 | else: | |
1728 | # Noise by heights |
|
1680 | # Noise by heights | |
1729 | n1, stdv = self.__get_noise2(spec, nicoh) |
|
1681 | n1, stdv = self.__get_noise2(spec, nicoh) | |
1730 | # Moments Estimation |
|
1682 | # Moments Estimation | |
1731 | bb = spec2[numpy.arange(m,spec2.size)] |
|
1683 | bb = spec2[numpy.arange(m,spec2.size)] | |
1732 | bb = (bb<n1).nonzero() |
|
1684 | bb = (bb<n1).nonzero() | |
1733 | bb = bb[0] |
|
1685 | bb = bb[0] | |
1734 |
|
1686 | |||
1735 | ss = spec2[numpy.arange(0,m + 1)] |
|
1687 | ss = spec2[numpy.arange(0,m + 1)] | |
1736 | ss = (ss<n1).nonzero() |
|
1688 | ss = (ss<n1).nonzero() | |
1737 | ss = ss[0] |
|
1689 | ss = ss[0] | |
1738 |
|
1690 | |||
1739 | if (bb.size == 0): |
|
1691 | if (bb.size == 0): | |
1740 | bb0 = spec.size - 1 - m |
|
1692 | bb0 = spec.size - 1 - m | |
1741 | else: |
|
1693 | else: | |
1742 | bb0 = bb[0] - 1 |
|
1694 | bb0 = bb[0] - 1 | |
1743 | if (bb0 < 0): |
|
1695 | if (bb0 < 0): | |
1744 | bb0 = 0 |
|
1696 | bb0 = 0 | |
1745 |
|
1697 | |||
1746 | if (ss.size == 0): |
|
1698 | if (ss.size == 0): | |
1747 | ss1 = 1 |
|
1699 | ss1 = 1 | |
1748 | else: |
|
1700 | else: | |
1749 | ss1 = max(ss) + 1 |
|
1701 | ss1 = max(ss) + 1 | |
1750 |
|
1702 | |||
1751 | if (ss1 > m): |
|
1703 | if (ss1 > m): | |
1752 | ss1 = m |
|
1704 | ss1 = m | |
1753 |
|
1705 | |||
1754 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 |
|
1706 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |
1755 |
|
1707 | |||
1756 | power = ((spec[valid] - n1)*fwindow[valid]).sum() |
|
1708 | power = ((spec[valid] - n1)*fwindow[valid]).sum() | |
1757 | fd = ((spec[valid]- n1)*freq[valid]*fwindow[valid]).sum()/power |
|
1709 | fd = ((spec[valid]- n1)*freq[valid]*fwindow[valid]).sum()/power | |
1758 | try: |
|
1710 | try: | |
1759 | w = numpy.sqrt(((spec[valid] - n1)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1711 | w = numpy.sqrt(((spec[valid] - n1)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1760 | except: |
|
1712 | except: | |
1761 | w = float("NaN") |
|
1713 | w = float("NaN") | |
1762 | snr = power/(n0*fwindow.sum()) |
|
1714 | snr = power/(n0*fwindow.sum()) | |
|
1715 | ||||
|
1716 | if debug: | |||
|
1717 | spectral_cut(Hei, ind, dbg_hei, freq, fd, snr, n1, w, ymax, spec, spec2, n0, max_spec, ss1, m, bb0, curr_ch, sel_ch) | |||
|
1718 | ||||
1763 | if snr < 1.e-20: snr = 1.e-20 |
|
1719 | if snr < 1.e-20: snr = 1.e-20 | |
1764 |
|
1720 | |||
1765 | # Here start gaussean adjustment |
|
1721 | # Here start gaussean adjustment | |
1766 |
|
1722 | |||
1767 | if type1 == 1 and snr > numpy.power(10,0.1*snrth): |
|
1723 | if type1 == 1 and snr > numpy.power(10,0.1*snrth): | |
1768 |
|
1724 | |||
1769 | a = numpy.zeros(4,dtype='f4') |
|
1725 | a = numpy.zeros(4,dtype='f4') | |
1770 | a[0] = snr * n0 |
|
1726 | a[0] = snr * n0 | |
1771 | a[1] = fd |
|
1727 | a[1] = fd | |
1772 | a[2] = w |
|
1728 | a[2] = w | |
1773 | a[3] = n0 |
|
1729 | a[3] = n0 | |
1774 |
|
1730 | |||
1775 | np = spec.size |
|
1731 | np = spec.size | |
1776 | aold = a.copy() |
|
1732 | aold = a.copy() | |
1777 | spec2 = spec.copy() |
|
1733 | spec2 = spec.copy() | |
1778 | oldxvalid = xvalid.copy() |
|
1734 | oldxvalid = xvalid.copy() | |
1779 |
|
1735 | |||
1780 | for i in range(2): |
|
1736 | for i in range(2): | |
1781 |
|
1737 | |||
1782 | ww = 1.0/(numpy.power(spec2,2)/nicoh) |
|
1738 | ww = 1.0/(numpy.power(spec2,2)/nicoh) | |
1783 | ww[np//2] = 0.0 |
|
1739 | ww[np//2] = 0.0 | |
1784 |
|
1740 | |||
1785 | a = aold.copy() |
|
1741 | a = aold.copy() | |
1786 | xvalid = oldxvalid.copy() |
|
1742 | xvalid = oldxvalid.copy() | |
1787 | #self.show_var(xvalid) |
|
1743 | #self.show_var(xvalid) | |
1788 |
|
1744 | |||
1789 | gaussfn = __curvefit_koki(spec[xvalid], a, ww[xvalid]) |
|
1745 | gaussfn = __curvefit_koki(spec[xvalid], a, ww[xvalid]) | |
1790 | a = gaussfn[1] |
|
1746 | a = gaussfn[1] | |
1791 | converge = gaussfn[2] |
|
1747 | converge = gaussfn[2] | |
1792 |
|
1748 | |||
1793 | xvalid = numpy.arange(np) |
|
1749 | xvalid = numpy.arange(np) | |
1794 | spec2 = __GAUSSWINFIT1(a) |
|
1750 | spec2 = __GAUSSWINFIT1(a) | |
1795 |
|
1751 | |||
1796 | xvalid = oldxvalid.copy() |
|
1752 | xvalid = oldxvalid.copy() | |
1797 | power = a[0] * np |
|
1753 | power = a[0] * np | |
1798 | fd = a[1] |
|
1754 | fd = a[1] | |
1799 | sigma_fd = gaussfn[3][1] |
|
1755 | sigma_fd = gaussfn[3][1] | |
1800 | snr = max(power/ (max(a[3],n0) * len(oldxvalid)) * converge, 1e-20) |
|
1756 | snr = max(power/ (max(a[3],n0) * len(oldxvalid)) * converge, 1e-20) | |
1801 | w = numpy.abs(a[2]) |
|
1757 | w = numpy.abs(a[2]) | |
1802 | n1 = max(a[3], n0) |
|
1758 | n1 = max(a[3], n0) | |
1803 |
|
1759 | |||
1804 | #gauss_adj=[fd,w,snr,n1,fp,sigma_fd] |
|
1760 | #gauss_adj=[fd,w,snr,n1,fp,sigma_fd] | |
1805 | else: |
|
1761 | else: | |
1806 | sigma_fd=numpy.nan # to avoid UnboundLocalError: local variable 'sigma_fd' referenced before assignment |
|
1762 | sigma_fd=numpy.nan # to avoid UnboundLocalError: local variable 'sigma_fd' referenced before assignment | |
1807 |
|
1763 | |||
1808 | vec_fd[ind] = fd |
|
1764 | vec_fd[ind] = fd | |
1809 | vec_w[ind] = w |
|
1765 | vec_w[ind] = w | |
1810 | vec_snr[ind] = snr |
|
1766 | vec_snr[ind] = snr | |
1811 | vec_n1[ind] = n1 |
|
1767 | vec_n1[ind] = n1 | |
1812 | vec_fp[ind] = fp |
|
1768 | vec_fp[ind] = fp | |
1813 | vec_sigma_fd[ind] = sigma_fd |
|
1769 | vec_sigma_fd[ind] = sigma_fd | |
1814 | vec_power[ind] = power # to compare with type 0 proccessing |
|
1770 | vec_power[ind] = power # to compare with type 0 proccessing | |
1815 |
|
1771 | |||
1816 | if vers==1: |
|
1772 | if vers==1: | |
1817 |
|
|
1773 | return numpy.vstack((vec_snr, vec_w, vec_fd, vec_n1, vec_fp, vec_sigma_fd, vec_power)) | |
1818 | return numpy.vstack((vec_snr, vec_w, vec_fd, vec_n1, vec_fp, vec_sigma_fd, vec_power)) # snr and fd exchanged to compare doppler of both types |
|
|||
1819 | else: |
|
1774 | else: | |
1820 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1775 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1821 |
|
1776 | |||
1822 | def __get_noise2(self,POWER, fft_avg, TALK=0): |
|
1777 | def __get_noise2(self,POWER, fft_avg, TALK=0): | |
1823 | ''' |
|
1778 | ''' | |
1824 | Rutina para cΓ‘lculo de ruido por alturas(n1). Similar a IDL |
|
1779 | Rutina para cΓ‘lculo de ruido por alturas(n1). Similar a IDL | |
1825 | ''' |
|
1780 | ''' | |
1826 | SPECT_PTS = len(POWER) |
|
1781 | SPECT_PTS = len(POWER) | |
1827 | fft_avg = fft_avg*1.0 |
|
1782 | fft_avg = fft_avg*1.0 | |
1828 | NOMIT = 0 |
|
1783 | NOMIT = 0 | |
1829 | NN = SPECT_PTS - NOMIT |
|
1784 | NN = SPECT_PTS - NOMIT | |
1830 | N = NN//2 |
|
1785 | N = NN//2 | |
1831 | ARR = numpy.concatenate((POWER[0:N+1],POWER[N+NOMIT+1:SPECT_PTS])) |
|
1786 | ARR = numpy.concatenate((POWER[0:N+1],POWER[N+NOMIT+1:SPECT_PTS])) | |
1832 | ARR = numpy.sort(ARR) |
|
1787 | ARR = numpy.sort(ARR) | |
1833 | NUMS_MIN = (SPECT_PTS+7)//8 |
|
1788 | NUMS_MIN = (SPECT_PTS+7)//8 | |
1834 | RTEST = (1.0+1.0/fft_avg) |
|
1789 | RTEST = (1.0+1.0/fft_avg) | |
1835 | SUM = 0.0 |
|
1790 | SUM = 0.0 | |
1836 | SUMSQ = 0.0 |
|
1791 | SUMSQ = 0.0 | |
1837 | J = 0 |
|
1792 | J = 0 | |
1838 | for I in range(NN): |
|
1793 | for I in range(NN): | |
1839 | J = J + 1 |
|
1794 | J = J + 1 | |
1840 | SUM = SUM + ARR[I] |
|
1795 | SUM = SUM + ARR[I] | |
1841 | SUMSQ = SUMSQ + ARR[I]*ARR[I] |
|
1796 | SUMSQ = SUMSQ + ARR[I]*ARR[I] | |
1842 | AVE = SUM*1.0/J |
|
1797 | AVE = SUM*1.0/J | |
1843 | if J > NUMS_MIN: |
|
1798 | if J > NUMS_MIN: | |
1844 | if (SUMSQ*J <= RTEST*SUM*SUM): RNOISE = AVE |
|
1799 | if (SUMSQ*J <= RTEST*SUM*SUM): RNOISE = AVE | |
1845 | else: |
|
1800 | else: | |
1846 | if J == NUMS_MIN: RNOISE = AVE |
|
1801 | if J == NUMS_MIN: RNOISE = AVE | |
1847 | if TALK == 1: print('Noise Power (2):%4.4f' %RNOISE) |
|
1802 | if TALK == 1: print('Noise Power (2):%4.4f' %RNOISE) | |
1848 | stdv = numpy.sqrt(SUMSQ/J - numpy.power(SUM/J,2)) |
|
1803 | stdv = numpy.sqrt(SUMSQ/J - numpy.power(SUM/J,2)) | |
1849 | return RNOISE, stdv |
|
1804 | return RNOISE, stdv | |
1850 |
|
1805 | |||
1851 | def __get_noise1(self, power, fft_avg, TALK=0): |
|
1806 | def __get_noise1(self, power, fft_avg, TALK=0): | |
1852 | ''' |
|
1807 | ''' | |
1853 | Rutina para cΓ‘lculo de ruido por alturas(n0). Similar a IDL |
|
1808 | Rutina para cΓ‘lculo de ruido por alturas(n0). Similar a IDL | |
1854 | ''' |
|
1809 | ''' | |
1855 | num_pts = numpy.size(power) |
|
1810 | num_pts = numpy.size(power) | |
1856 | #print('num_pts',num_pts) |
|
|||
1857 | #print('power',power.shape) |
|
|||
1858 | #print(power[256:267,0:2]) |
|
|||
1859 | fft_avg = fft_avg*1.0 |
|
1811 | fft_avg = fft_avg*1.0 | |
1860 |
|
||||
1861 | ind = numpy.argsort(power, axis=None, kind='stable') |
|
1812 | ind = numpy.argsort(power, axis=None, kind='stable') | |
1862 | #ind = numpy.argsort(numpy.reshape(power,-1)) |
|
|||
1863 | #print(ind.shape) |
|
|||
1864 | #print(ind[0:11]) |
|
|||
1865 | #print(numpy.reshape(power,-1)[ind[0:11]]) |
|
|||
1866 | ARR = numpy.reshape(power,-1)[ind] |
|
1813 | ARR = numpy.reshape(power,-1)[ind] | |
1867 | #print('ARR',len(ARR)) |
|
|||
1868 | #print('ARR',ARR.shape) |
|
|||
1869 | NUMS_MIN = num_pts//10 |
|
1814 | NUMS_MIN = num_pts//10 | |
1870 | RTEST = (1.0+1.0/fft_avg) |
|
1815 | RTEST = (1.0+1.0/fft_avg) | |
1871 | SUM = 0.0 |
|
1816 | SUM = 0.0 | |
1872 | SUMSQ = 0.0 |
|
1817 | SUMSQ = 0.0 | |
1873 | J = 0 |
|
1818 | J = 0 | |
1874 | cont = 1 |
|
1819 | cont = 1 | |
1875 | while cont == 1 and J < num_pts: |
|
1820 | while cont == 1 and J < num_pts: | |
1876 |
|
1821 | |||
1877 | SUM = SUM + ARR[J] |
|
1822 | SUM = SUM + ARR[J] | |
1878 | SUMSQ = SUMSQ + ARR[J]*ARR[J] |
|
1823 | SUMSQ = SUMSQ + ARR[J]*ARR[J] | |
1879 | J = J + 1 |
|
1824 | J = J + 1 | |
1880 |
|
1825 | |||
1881 | if J > NUMS_MIN: |
|
1826 | if J > NUMS_MIN: | |
1882 | if (SUMSQ*J <= RTEST*SUM*SUM): |
|
1827 | if (SUMSQ*J <= RTEST*SUM*SUM): | |
1883 | LNOISE = SUM*1.0/J |
|
1828 | LNOISE = SUM*1.0/J | |
1884 | else: |
|
1829 | else: | |
1885 | J = J - 1 |
|
1830 | J = J - 1 | |
1886 | SUM = SUM - ARR[J] |
|
1831 | SUM = SUM - ARR[J] | |
1887 | SUMSQ = SUMSQ - ARR[J]*ARR[J] |
|
1832 | SUMSQ = SUMSQ - ARR[J]*ARR[J] | |
1888 | cont = 0 |
|
1833 | cont = 0 | |
1889 | else: |
|
1834 | else: | |
1890 | if J == NUMS_MIN: LNOISE = SUM*1.0/J |
|
1835 | if J == NUMS_MIN: LNOISE = SUM*1.0/J | |
1891 | if TALK == 1: print('Noise Power (1):%8.8f' %LNOISE) |
|
1836 | if TALK == 1: print('Noise Power (1):%8.8f' %LNOISE) | |
1892 | stdv = numpy.sqrt(SUMSQ/J - numpy.power(SUM/J,2)) |
|
1837 | stdv = numpy.sqrt(SUMSQ/J - numpy.power(SUM/J,2)) | |
1893 | return LNOISE, stdv |
|
1838 | return LNOISE, stdv | |
1894 |
|
1839 | |||
1895 | def __NoiseByChannel(self, num_prof, num_incoh, spectra,talk=0): |
|
1840 | def __NoiseByChannel(self, num_prof, num_incoh, spectra,talk=0): | |
1896 |
|
1841 | |||
1897 | val_frq = numpy.arange(num_prof-2)+1 |
|
1842 | val_frq = numpy.arange(num_prof-2)+1 | |
1898 | val_frq[(num_prof-2)//2:] = val_frq[(num_prof-2)//2:] + 1 |
|
1843 | val_frq[(num_prof-2)//2:] = val_frq[(num_prof-2)//2:] + 1 | |
1899 | junkspc = numpy.sum(spectra[val_frq,:], axis=1) |
|
1844 | junkspc = numpy.sum(spectra[val_frq,:], axis=1) | |
1900 | junkid = numpy.argsort(junkspc) |
|
1845 | junkid = numpy.argsort(junkspc) | |
1901 | noisezone = val_frq[junkid[0:num_prof//2]] |
|
1846 | noisezone = val_frq[junkid[0:num_prof//2]] | |
1902 | specnoise = spectra[noisezone,:] |
|
1847 | specnoise = spectra[noisezone,:] | |
1903 | noise, stdvnoise = self.__get_noise1(specnoise,num_incoh) |
|
1848 | noise, stdvnoise = self.__get_noise1(specnoise,num_incoh) | |
1904 |
|
1849 | |||
1905 | if talk: |
|
1850 | if talk: | |
1906 | print('noise =', noise) |
|
1851 | print('noise =', noise) | |
1907 | return noise |
|
1852 | return noise, stdvnoise | |
|
1853 | ||||
|
1854 | def run(self, dataOut, proc_type=0, mode_fit=0, exp='150EEJ', debug=False, dbg_hei=None, ymax=1, sel_ch=[0,1]): | |||
|
1855 | ||||
|
1856 | absc = dataOut.abscissaList[:-1] | |||
|
1857 | nChannel = dataOut.data_pre[0].shape[0] | |||
|
1858 | nHei = dataOut.data_pre[0].shape[2] | |||
|
1859 | Hei=dataOut.heightList | |||
|
1860 | data_param = numpy.zeros((nChannel, 4 + proc_type*3, nHei)) | |||
|
1861 | nProfiles = dataOut.nProfiles | |||
|
1862 | nCohInt = dataOut.nCohInt | |||
|
1863 | nIncohInt = dataOut.nIncohInt | |||
|
1864 | M = numpy.power(numpy.array(1/(nProfiles * nCohInt) ,dtype='float32'),2) | |||
|
1865 | N = numpy.array(M / nIncohInt,dtype='float32') | |||
|
1866 | ||||
|
1867 | if proc_type == 1: | |||
|
1868 | type1 = mode_fit | |||
|
1869 | fwindow = numpy.zeros(absc.size) + 1 | |||
|
1870 | if exp == '150EEJ': | |||
|
1871 | b=64 | |||
|
1872 | fwindow[0:absc.size//2 - b] = 0 | |||
|
1873 | fwindow[absc.size//2 + b:] = 0 | |||
|
1874 | vers = 1 # new | |||
|
1875 | ||||
|
1876 | data = dataOut.data_pre[0] * N | |||
|
1877 | ||||
|
1878 | noise = numpy.zeros(nChannel) | |||
|
1879 | stdvnoise = numpy.zeros(nChannel) | |||
|
1880 | for ind in range(nChannel): | |||
|
1881 | noise[ind], stdvnoise[ind] = self.__NoiseByChannel(nProfiles, nIncohInt, data[ind,:,:]) | |||
|
1882 | smooth=3 | |||
|
1883 | else: | |||
|
1884 | data = dataOut.data_pre[0] | |||
|
1885 | noise = dataOut.noise | |||
|
1886 | fwindow = None | |||
|
1887 | type1 = None | |||
|
1888 | vers = 0 # old | |||
|
1889 | nIncohInt = None | |||
|
1890 | smooth=None | |||
|
1891 | ||||
|
1892 | for ind in range(nChannel): | |||
|
1893 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:] , absc , noise[ind], nicoh=nIncohInt, smooth=smooth, type1=type1, fwindow=fwindow, vers=vers, Hei=Hei, debug=debug, dbg_hei=dbg_hei, ymax=ymax, curr_ch=ind, sel_ch=sel_ch) | |||
|
1894 | #data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:] , absc , noise[ind], nicoh=nIncohInt, smooth=smooth, type1=type1, fwindow=fwindow, vers=vers, Hei=Hei, debug=debug) | |||
|
1895 | if exp == 'ESF_EW': | |||
|
1896 | data_param[ind,0,:]*=(noise[ind]/stdvnoise[ind]) | |||
|
1897 | data_param[ind,3,:]*=(1.0/M) | |||
|
1898 | ||||
|
1899 | if proc_type == 1: | |||
|
1900 | dataOut.moments = data_param[:,1:,:] | |||
|
1901 | dataOut.data_dop = data_param[:,2] | |||
|
1902 | dataOut.data_width = data_param[:,1] | |||
|
1903 | dataOut.data_snr = data_param[:,0] | |||
|
1904 | dataOut.data_pow = data_param[:,6] # to compare with type0 proccessing | |||
|
1905 | dataOut.spcpar=numpy.stack((dataOut.data_dop,dataOut.data_width,dataOut.data_snr, data_param[:,3], data_param[:,4],data_param[:,5]),axis=2) | |||
|
1906 | ||||
|
1907 | if exp == 'ESF_EW': | |||
|
1908 | spc=dataOut.data_pre[0]* N | |||
|
1909 | cspc=dataOut.data_pre[1]* N | |||
|
1910 | nHei=dataOut.data_pre[1].shape[2] | |||
|
1911 | cross_pairs=dataOut.pairsList | |||
|
1912 | nDiffIncohInt = dataOut.nDiffIncohInt | |||
|
1913 | N2=numpy.array(1 / nDiffIncohInt,dtype='float32') | |||
|
1914 | diffcspectra=dataOut.data_diffcspc.copy()* N2 * M * M | |||
|
1915 | num_pairs=len(dataOut.pairsList) | |||
|
1916 | ||||
|
1917 | if num_pairs >= 0: | |||
|
1918 | fbinv=numpy.where(absc != 0)[0] | |||
|
1919 | ccf=numpy.sum(cspc[:,fbinv,:], axis=1) | |||
|
1920 | jvpower=numpy.sum(spc[:,fbinv,:], axis=1) | |||
|
1921 | coh=ccf/numpy.sqrt(jvpower[cross_pairs[0][0],:]*jvpower[cross_pairs[0][1],:]) | |||
|
1922 | dccf=numpy.sum(diffcspectra[:,fbinv,:], axis=1) | |||
|
1923 | dataOut.ccfpar = numpy.zeros((num_pairs,nHei,3)) | |||
|
1924 | dataOut.ccfpar[:,:,0]=numpy.abs(coh) | |||
|
1925 | dataOut.ccfpar[:,:,1]=numpy.arctan(numpy.imag(coh)/numpy.real(coh)) | |||
|
1926 | dataOut.ccfpar[:,:,2]=numpy.arctan(numpy.imag(dccf)/numpy.real(dccf)) | |||
|
1927 | else: | |||
|
1928 | dataOut.moments = data_param[:,1:,:] | |||
|
1929 | dataOut.data_snr = data_param[:,0] | |||
|
1930 | dataOut.data_pow = data_param[:,1] | |||
|
1931 | dataOut.data_dop = data_param[:,2] | |||
|
1932 | dataOut.data_width = data_param[:,3] | |||
|
1933 | dataOut.spcpar=numpy.stack((dataOut.data_dop,dataOut.data_width,dataOut.data_snr, dataOut.data_pow),axis=2) | |||
|
1934 | ||||
|
1935 | return dataOut | |||
1908 |
|
1936 | |||
1909 | class JULIADriftsEstimation(Operation): |
|
|||
1910 |
|
1937 | |||
1911 | def __init__(self): |
|
1938 | class JULIA_DayVelocities(Operation): | |
1912 | Operation.__init__(self) |
|
1939 | ''' | |
|
1940 | Function SpectralMoments() | |||
|
1941 | ||||
|
1942 | From espectral parameters calculates: | |||
|
1943 | ||||
|
1944 | 1. Signal to noise level (SNL) | |||
|
1945 | 2. Vertical velocity | |||
|
1946 | 3. Zonal velocity | |||
|
1947 | 4. Vertical velocity error | |||
|
1948 | 5. Zonal velocity error. | |||
|
1949 | ||||
|
1950 | Type of dataIn: SpectralMoments | |||
1913 |
|
1951 | |||
|
1952 | Configuration Parameters: | |||
|
1953 | ||||
|
1954 | zenith : Pairs of angles corresponding to the two beams related to the perpendicular to B from the center of the antenna. | |||
|
1955 | zenithCorrection : Adjustment angle for the zenith. Default 0. | |||
|
1956 | heights : Range to process 150kM echoes. By default [125,185]. | |||
|
1957 | nchan : To process 2 or 1 channel. 2 by default. | |||
|
1958 | chan : If nchan = 1, chan indicates which of the 2 channels to process. | |||
|
1959 | clean : 2nd cleaning processing (Graphical). Default False | |||
|
1960 | driftstdv_th : Diferencia mΓ‘xima entre valores promedio consecutivos de vertical. | |||
|
1961 | zonalstdv_th : Diferencia mΓ‘xima entre valores promedio consecutivos de zonal. | |||
1914 |
|
1962 | |||
|
1963 | Input: | |||
|
1964 | ||||
|
1965 | Affected: | |||
|
1966 | ||||
|
1967 | ''' | |||
|
1968 | ||||
|
1969 | def __init__(self): | |||
|
1970 | Operation.__init__(self) | |||
|
1971 | self.old_drift=None | |||
|
1972 | self.old_zonal=None | |||
|
1973 | self.count_drift=0 | |||
|
1974 | self.count_zonal=0 | |||
|
1975 | self.oldTime_drift=None | |||
|
1976 | self.oldTime_zonal=None | |||
|
1977 | ||||
1915 | def newtotal(self, data): |
|
1978 | def newtotal(self, data): | |
1916 | return numpy.nansum(data) |
|
1979 | return numpy.nansum(data) | |
1917 |
|
1980 | |||
1918 | #def data_filter(self, parm, snrth=-19.5, swth=20, wErrth=500): |
|
|||
1919 | def data_filter(self, parm, snrth=-20, swth=20, wErrth=500): |
|
1981 | def data_filter(self, parm, snrth=-20, swth=20, wErrth=500): | |
1920 | #def data_filter(self, parm, snrth=-21, swth=20, wErrth=500): # abs test |
|
|||
1921 |
|
1982 | |||
1922 | Sz0 = parm.shape # Sz0: h,p |
|
1983 | Sz0 = parm.shape # Sz0: h,p | |
1923 | drift = parm[:,0] |
|
1984 | drift = parm[:,0] | |
1924 | sw = 2*parm[:,1] |
|
1985 | sw = 2*parm[:,1] | |
1925 | snr = 10*numpy.log10(parm[:,2]) |
|
1986 | snr = 10*numpy.log10(parm[:,2]) | |
1926 | Sz = drift.shape # Sz: h |
|
1987 | Sz = drift.shape # Sz: h | |
1927 | mask = numpy.ones((Sz[0])) |
|
1988 | mask = numpy.ones((Sz[0])) | |
1928 | th=0 |
|
1989 | th=0 | |
1929 | valid=numpy.where(numpy.isfinite(snr)) |
|
1990 | valid=numpy.where(numpy.isfinite(snr)) | |
1930 | cvalid = len(valid[0]) |
|
1991 | cvalid = len(valid[0]) | |
1931 | if cvalid >= 1: |
|
1992 | if cvalid >= 1: | |
1932 | # CΓ‘lculo del ruido promedio de snr para el i-Γ©simo grupo de alturas |
|
1993 | # CΓ‘lculo del ruido promedio de snr para el i-Γ©simo grupo de alturas | |
1933 | nbins = int(numpy.max(snr)-numpy.min(snr))+1 # bin size = 1, similar to IDL |
|
1994 | nbins = int(numpy.max(snr)-numpy.min(snr))+1 # bin size = 1, similar to IDL | |
1934 | h = numpy.histogram(snr,bins=nbins) |
|
1995 | h = numpy.histogram(snr,bins=nbins) | |
1935 | hist = h[0] |
|
1996 | hist = h[0] | |
1936 | values = numpy.round_(h[1]) |
|
1997 | values = numpy.round_(h[1]) | |
1937 | moda = values[numpy.where(hist == numpy.max(hist))] |
|
1998 | moda = values[numpy.where(hist == numpy.max(hist))] | |
1938 | indNoise = numpy.where(numpy.abs(snr - numpy.min(moda)) < 3)[0] |
|
1999 | indNoise = numpy.where(numpy.abs(snr - numpy.min(moda)) < 3)[0] | |
1939 |
|
2000 | |||
1940 | noise = snr[indNoise] |
|
2001 | noise = snr[indNoise] | |
1941 | noise_mean = numpy.sum(noise)/len(noise) |
|
2002 | noise_mean = numpy.sum(noise)/len(noise) | |
1942 | # CΓ‘lculo de media de snr |
|
2003 | # CΓ‘lculo de media de snr | |
1943 | med = numpy.median(snr) |
|
2004 | med = numpy.median(snr) | |
1944 | # Establece el umbral de snr |
|
2005 | # Establece el umbral de snr | |
1945 | if noise_mean > med + 3: |
|
2006 | if noise_mean > med + 3: | |
1946 | th = med |
|
2007 | th = med | |
1947 | else: |
|
2008 | else: | |
1948 | th = noise_mean + 3 |
|
2009 | th = noise_mean + 3 | |
1949 | # Establece mΓ‘scara |
|
2010 | # Establece mΓ‘scara | |
1950 | novalid = numpy.where(snr <= th)[0] |
|
2011 | novalid = numpy.where(snr <= th)[0] | |
1951 | mask[novalid] = numpy.nan |
|
2012 | mask[novalid] = numpy.nan | |
1952 | # Elimina datos que no sobrepasen el umbral: PARAMETRO |
|
2013 | # Elimina datos que no sobrepasen el umbral: PARAMETRO | |
1953 | novalid = numpy.where(snr <= snrth) |
|
2014 | novalid = numpy.where(snr <= snrth) | |
1954 | cnovalid = len(novalid[0]) |
|
2015 | cnovalid = len(novalid[0]) | |
1955 | if cnovalid > 0: |
|
2016 | if cnovalid > 0: | |
1956 | mask[novalid] = numpy.nan |
|
2017 | mask[novalid] = numpy.nan | |
1957 | novalid = numpy.where(numpy.isnan(snr)) |
|
2018 | novalid = numpy.where(numpy.isnan(snr)) | |
1958 | cnovalid = len(novalid[0]) |
|
2019 | cnovalid = len(novalid[0]) | |
1959 | if cnovalid > 0: |
|
2020 | if cnovalid > 0: | |
1960 | mask[novalid] = numpy.nan |
|
2021 | mask[novalid] = numpy.nan | |
|
2022 | ||||
1961 | new_parm = numpy.zeros((Sz0[0],Sz0[1])) |
|
2023 | new_parm = numpy.zeros((Sz0[0],Sz0[1])) | |
1962 |
for |
|
2024 | for i in range(Sz0[1]): | |
1963 | for p in range(Sz0[1]): |
|
2025 | new_parm[:,i] = parm[:,i] * mask | |
1964 | if numpy.isnan(mask[h]): |
|
|||
1965 | new_parm[h,p]=numpy.nan |
|
|||
1966 | else: |
|
|||
1967 | new_parm[h,p]=parm[h,p] |
|
|||
1968 |
|
2026 | |||
1969 | return new_parm, th |
|
2027 | return new_parm, th | |
1970 |
|
2028 | |||
1971 | def statistics150km(self, veloc , sigma , threshold , currTime=None, \ |
|
|||
1972 | amountdata=2, clearAll = None, timeFactor=None): |
|
|||
1973 |
|
2029 | |||
1974 | step = threshold/2 |
|
2030 | def statistics150km(self, veloc , sigma , threshold , old_veloc=None, count=0, \ | |
|
2031 | currTime=None, oldTime=None, amountdata=2, clearAll = None, timeFactor=1800, debug = False): | |||
|
2032 | ||||
|
2033 | if oldTime == None: | |||
|
2034 | oldTime = currTime | |||
|
2035 | ||||
|
2036 | step = (threshold/2)*(numpy.abs(currTime - oldTime)//timeFactor + 1) | |||
1975 | factor = 2 |
|
2037 | factor = 2 | |
1976 | avg_threshold = 100 |
|
2038 | avg_threshold = 100 | |
1977 |
|
||||
1978 | # Calcula la mediana en todas las alturas por tiempo |
|
2039 | # Calcula la mediana en todas las alturas por tiempo | |
1979 | val1=numpy.nanmedian(veloc) |
|
2040 | val1=numpy.nanmedian(veloc) | |
1980 |
|
2041 | |||
1981 | # Calcula la media ponderada en todas las alturas por tiempo |
|
2042 | # Calcula la media ponderada en todas las alturas por tiempo | |
1982 | val2 = self.newtotal(veloc/numpy.power(sigma,2))/self.newtotal(1/numpy.power(sigma,2)) |
|
2043 | val2 = self.newtotal(veloc/numpy.power(sigma,2))/self.newtotal(1/numpy.power(sigma,2)) | |
1983 |
|
||||
1984 |
|
2044 | |||
1985 | # Verifica la cercanΓa de los valores calculados de mediana y media, si son cercanos escoge la media ponderada |
|
2045 | # Verifica la cercanΓa de los valores calculados de mediana y media, si son cercanos escoge la media ponderada | |
1986 | op1=numpy.abs(val2-val1) |
|
2046 | op1=numpy.abs(val2-val1) | |
1987 | op2=threshold/factor |
|
2047 | op2=threshold/factor | |
1988 | cond = op1 < op2 |
|
2048 | cond = op1 < op2 | |
1989 |
|
2049 | |||
1990 | veloc_prof = val2 if cond else val1 |
|
2050 | veloc_prof = val2 if cond else val1 | |
1991 | sigma_prof = numpy.nan |
|
2051 | sigma_prof = numpy.nan | |
1992 | sets=numpy.array([-1]) |
|
2052 | sets=numpy.array([-1]) | |
1993 |
|
2053 | |||
1994 | if op1 > avg_threshold: #Si son muy lejanos no toma en cuenta estos datos |
|
2054 | if op1 > avg_threshold: #Si son muy lejanos no toma en cuenta estos datos | |
1995 | veloc_prof = numpy.nan |
|
2055 | veloc_prof = numpy.nan | |
1996 |
|
2056 | |||
1997 | # Se calcula nuevamente media ponderada, en base a estimado inicial de la media |
|
2057 | # Se calcula nuevamente media ponderada, en base a estimado inicial de la media | |
1998 | # a fin de eliminar valores que estΓ‘n muy lejanos a dicho valor |
|
2058 | # a fin de eliminar valores que estΓ‘n muy lejanos a dicho valor | |
1999 | junk = numpy.where(numpy.abs(veloc-veloc_prof) < threshold/factor)[0] |
|
|||
2000 |
|
2059 | |||
2001 | return junk |
|
2060 | if debug: | |
|
2061 | print('veloc_prof:', veloc_prof) | |||
|
2062 | print('veloc:',veloc) | |||
|
2063 | print('threshold:',threshold) | |||
|
2064 | print('factor:',factor) | |||
|
2065 | print('threshold/factor:',threshold/factor) | |||
|
2066 | print('numpy.abs(veloc-veloc_prof):', numpy.abs(veloc-veloc_prof)) | |||
|
2067 | print('numpy.where(numpy.abs(veloc-veloc_prof) < threshold/factor)[0]:', numpy.where(numpy.abs(veloc-veloc_prof) < threshold/factor)[0]) | |||
|
2068 | ||||
|
2069 | junk = numpy.where(numpy.abs(veloc-veloc_prof) < threshold/factor)[0] | |||
|
2070 | if junk.size > 2: | |||
|
2071 | veloc_prof = self.newtotal(veloc[junk]/numpy.power(sigma[junk],2))/self.newtotal(1/numpy.power(sigma[junk],2)) | |||
|
2072 | sigma_prof1 = numpy.sqrt(1/self.newtotal(1/numpy.power(sigma[junk],2))) | |||
|
2073 | sigma_prof2 = numpy.sqrt(self.newtotal(numpy.power(veloc[junk]-veloc_prof,2)/numpy.power(sigma[junk],2)))*sigma_prof1 | |||
|
2074 | sigma_prof = numpy.sqrt(numpy.power(sigma_prof1,2)+numpy.power(sigma_prof2,2)) | |||
|
2075 | sets = junk | |||
|
2076 | ||||
|
2077 | # Compara con valor anterior para evitar presencia de "outliers" | |||
|
2078 | if debug: | |||
|
2079 | print('old_veloc:',old_veloc) | |||
|
2080 | print('step:', step) | |||
|
2081 | ||||
|
2082 | if old_veloc == None: | |||
|
2083 | valid=numpy.isfinite(veloc_prof) | |||
|
2084 | else: | |||
|
2085 | valid=numpy.abs(veloc_prof-old_veloc) < step | |||
|
2086 | ||||
|
2087 | if debug: | |||
|
2088 | print('valid:', valid) | |||
|
2089 | ||||
|
2090 | if not valid: | |||
|
2091 | aver_veloc=numpy.nan | |||
|
2092 | aver_sigma=numpy.nan | |||
|
2093 | sets=numpy.array([-1]) | |||
|
2094 | else: | |||
|
2095 | aver_veloc=veloc_prof | |||
|
2096 | aver_sigma=sigma_prof | |||
|
2097 | clearAll=0 | |||
|
2098 | if old_veloc != None and count < 5: | |||
|
2099 | if numpy.abs(veloc_prof-old_veloc) > step: | |||
|
2100 | clearAll=1 | |||
|
2101 | count=0 | |||
|
2102 | old_veloc=None | |||
|
2103 | if numpy.isfinite(aver_veloc): | |||
|
2104 | ||||
|
2105 | count+=1 | |||
|
2106 | if old_veloc != None: | |||
|
2107 | old_veloc = (old_veloc + aver_veloc) * 0.5 | |||
|
2108 | else: | |||
|
2109 | old_veloc=aver_veloc | |||
|
2110 | oldTime=currTime | |||
|
2111 | if debug: | |||
|
2112 | print('count:',count) | |||
|
2113 | print('sets:',sets) | |||
|
2114 | return sets, old_veloc, count, oldTime, aver_veloc, aver_sigma, clearAll | |||
2002 |
|
2115 | |||
2003 | def run(self, dataOut, zenith, zenithCorrection,heights=None, otype=0, nchan=2, chan=0): |
|
|||
2004 |
|
2116 | |||
|
2117 | def run(self, dataOut, zenith, zenithCorrection=0.0, heights=[125, 185], nchan=2, chan=0, clean=False, driftstdv_th=100, zonalstdv_th=200): | |||
2005 |
|
2118 | |||
2006 | dataOut.lat=-11.95 |
|
2119 | dataOut.lat=-11.95 | |
2007 | dataOut.lon=-76.87 |
|
2120 | dataOut.lon=-76.87 | |
2008 |
|
2121 | |||
2009 | nCh=dataOut.spcpar.shape[0] |
|
2122 | nCh=dataOut.spcpar.shape[0] | |
2010 | nHei=dataOut.spcpar.shape[1] |
|
2123 | nHei=dataOut.spcpar.shape[1] | |
2011 | nParam=dataOut.spcpar.shape[2] |
|
2124 | nParam=dataOut.spcpar.shape[2] | |
2012 | # SelecciΓ³n de alturas |
|
|||
2013 |
|
2125 | |||
2014 | if not heights: |
|
2126 | # SelecciΓ³n de alturas | |
2015 | parm = numpy.zeros((nCh,nHei,nParam)) |
|
2127 | hei=dataOut.heightList | |
2016 | parm[:] = dataOut.spcpar[:] |
|
2128 | hvalid=numpy.where([hei >= heights[0]][0] & [hei <= heights[1]][0])[0] | |
2017 | else: |
|
2129 | nhvalid=len(hvalid) | |
2018 |
|
|
2130 | dataOut.heightList = hei[hvalid] | |
2019 | hvalid=numpy.where([hei >= heights[0]][0] & [hei <= heights[1]][0])[0] |
|
2131 | parm=numpy.empty((nCh,nhvalid,nParam)); parm[:]=numpy.nan | |
2020 | nhvalid=len(hvalid) |
|
2132 | parm[:] = dataOut.spcpar[:,hvalid,:] | |
2021 | dataOut.heightList = hei[hvalid] |
|
|||
2022 | parm = numpy.zeros((nCh,nhvalid,nParam)) |
|
|||
2023 | parm[:] = dataOut.spcpar[:,hvalid,:] |
|
|||
2024 | print('parm:',parm.shape) |
|
|||
2025 |
|
||||
2026 |
|
||||
2027 | # Primer filtrado: Umbral de SNR |
|
2133 | # Primer filtrado: Umbral de SNR | |
2028 | for i in range(nCh): |
|
2134 | for i in range(nCh): | |
2029 | parm[i,:,:] = self.data_filter(parm[i,:,:])[0] |
|
2135 | parm[i,:,:] = self.data_filter(parm[i,:,:])[0] | |
2030 |
|
2136 | |||
2031 | zenith = numpy.array(zenith) |
|
2137 | zenith = numpy.array(zenith) | |
2032 | zenith -= zenithCorrection |
|
2138 | zenith -= zenithCorrection | |
2033 | zenith *= numpy.pi/180 |
|
2139 | zenith *= numpy.pi/180 | |
2034 | alpha = zenith[0] |
|
2140 | alpha = zenith[0] | |
2035 | beta = zenith[1] |
|
2141 | beta = zenith[1] | |
2036 | dopplerCH0 = parm[0,:,0] |
|
2142 | dopplerCH0 = parm[0,:,0] | |
2037 | dopplerCH1 = parm[1,:,0] |
|
2143 | dopplerCH1 = parm[1,:,0] | |
2038 | swCH0 = parm[0,:,1] |
|
2144 | swCH0 = parm[0,:,1] | |
2039 | swCH1 = parm[1,:,1] |
|
2145 | swCH1 = parm[1,:,1] | |
2040 | snrCH0 = 10*numpy.log10(parm[0,:,2]) |
|
2146 | snrCH0 = 10*numpy.log10(parm[0,:,2]) | |
2041 | snrCH1 = 10*numpy.log10(parm[1,:,2]) |
|
2147 | snrCH1 = 10*numpy.log10(parm[1,:,2]) | |
2042 | noiseCH0 = parm[0,:,3] |
|
2148 | noiseCH0 = parm[0,:,3] | |
2043 | noiseCH1 = parm[1,:,3] |
|
2149 | noiseCH1 = parm[1,:,3] | |
2044 | wErrCH0 = parm[0,:,5] |
|
2150 | wErrCH0 = parm[0,:,5] | |
2045 | wErrCH1 = parm[1,:,5] |
|
2151 | wErrCH1 = parm[1,:,5] | |
2046 |
|
2152 | |||
2047 | # Vertical and zonal calculation: nchan=2 by default |
|
2153 | # Vertical and zonal calculation: nchan=2 by default | |
2048 | # Only vertical calculation, for offline processing with only one channel with good signal |
|
2154 | # Only vertical calculation, for offline processing with only one channel with good signal | |
2049 | if nchan == 1: |
|
2155 | if nchan == 1: | |
2050 | if chan == 1: |
|
2156 | if chan == 1: | |
2051 | drift = - dopplerCH1 |
|
2157 | drift = - dopplerCH1 | |
2052 | snr = snrCH1 |
|
2158 | snr = snrCH1 | |
2053 | noise = noiseCH1 |
|
2159 | noise = noiseCH1 | |
2054 | sw = swCH1 |
|
2160 | sw = swCH1 | |
2055 | w_w_err = wErrCH1 |
|
2161 | w_w_err = wErrCH1 | |
2056 | elif chan == 0: |
|
2162 | elif chan == 0: | |
2057 | drift = - dopplerCH0 |
|
2163 | drift = - dopplerCH0 | |
2058 | snr = snrCH0 |
|
2164 | snr = snrCH0 | |
2059 | noise = noiseCH0 |
|
2165 | noise = noiseCH0 | |
2060 | sw = swCH0 |
|
2166 | sw = swCH0 | |
2061 | w_w_err = wErrCH0 |
|
2167 | w_w_err = wErrCH0 | |
2062 |
|
2168 | |||
2063 | elif nchan == 2: |
|
2169 | elif nchan == 2: | |
2064 | sinB_A = numpy.sin(beta)*numpy.cos(alpha) - numpy.sin(alpha)* numpy.cos(beta) |
|
2170 | sinB_A = numpy.sin(beta)*numpy.cos(alpha) - numpy.sin(alpha)* numpy.cos(beta) | |
2065 | drift = -(dopplerCH0 * numpy.sin(beta) - dopplerCH1 * numpy.sin(alpha))/ sinB_A |
|
2171 | drift = -(dopplerCH0 * numpy.sin(beta) - dopplerCH1 * numpy.sin(alpha))/ sinB_A | |
2066 | zonal = (dopplerCH0 * numpy.cos(beta) - dopplerCH1 * numpy.cos(alpha))/ sinB_A |
|
2172 | zonal = (dopplerCH0 * numpy.cos(beta) - dopplerCH1 * numpy.cos(alpha))/ sinB_A | |
2067 | snr = (snrCH0 + snrCH1)/2 |
|
2173 | snr = (snrCH0 + snrCH1)/2 | |
2068 | noise = (noiseCH0 + noiseCH1)/2 |
|
2174 | noise = (noiseCH0 + noiseCH1)/2 | |
2069 | sw = (swCH0 + swCH1)/2 |
|
2175 | sw = (swCH0 + swCH1)/2 | |
2070 | w_w_err= numpy.sqrt(numpy.power(wErrCH0 * numpy.sin(beta)/numpy.abs(sinB_A),2) + numpy.power(wErrCH1 * numpy.sin(alpha)/numpy.abs(sinB_A),2)) |
|
2176 | w_w_err= numpy.sqrt(numpy.power(wErrCH0 * numpy.sin(beta)/numpy.abs(sinB_A),2) + numpy.power(wErrCH1 * numpy.sin(alpha)/numpy.abs(sinB_A),2)) | |
2071 | w_e_err= numpy.sqrt(numpy.power(wErrCH0 * numpy.cos(beta)/numpy.abs(-1*sinB_A),2) + numpy.power(wErrCH1 * numpy.cos(alpha)/numpy.abs(-1*sinB_A),2)) |
|
2177 | w_e_err= numpy.sqrt(numpy.power(wErrCH0 * numpy.cos(beta)/numpy.abs(-1*sinB_A),2) + numpy.power(wErrCH1 * numpy.cos(alpha)/numpy.abs(-1*sinB_A),2)) | |
2072 |
|
2178 | |||
2073 | # 150Km statistics to clean data |
|
2179 | # 150Km statistics to clean data | |
2074 |
|
||||
2075 | clean_drift = drift.copy() |
|
2180 | clean_drift = drift.copy() | |
2076 |
|
||||
2077 | clean_drift[:] = numpy.nan |
|
2181 | clean_drift[:] = numpy.nan | |
2078 | if nchan == 2: |
|
2182 | if nchan == 2: | |
2079 | clean_zonal = zonal.copy() |
|
2183 | clean_zonal = zonal.copy() | |
2080 | clean_zonal[:] = numpy.nan |
|
2184 | clean_zonal[:] = numpy.nan | |
2081 |
|
2185 | |||
2082 |
# |
|
2186 | # Vertical | |
2083 | driftstdv_th = 20*2 |
|
2187 | sets1, self.old_drift, self.count_drift, self.oldTime_drift, aver_veloc, aver_sigma, clearAll = self.statistics150km(drift, w_w_err, driftstdv_th, \ | |
2084 |
|
2188 | old_veloc=self.old_drift, count=self.count_drift, currTime=dataOut.utctime, \ | ||
2085 | sets1 = self.statistics150km(drift, w_w_err, driftstdv_th) |
|
2189 | oldTime=self.oldTime_drift, timeFactor=120) | |
2086 |
|
2190 | if clearAll == 1: | ||
|
2191 | mean_zonal = numpy.nan | |||
|
2192 | sigma_zonal = numpy.nan | |||
|
2193 | mean_drift = aver_veloc | |||
|
2194 | sigma_drift = aver_sigma | |||
|
2195 | ||||
2087 | if sets1.size != 1: |
|
2196 | if sets1.size != 1: | |
2088 | clean_drift[sets1] = drift[sets1] |
|
2197 | clean_drift[sets1] = drift[sets1] | |
2089 |
|
2198 | |||
2090 | novalid=numpy.where(numpy.isnan(clean_drift))[0]; cnovalid=novalid.size |
|
2199 | novalid=numpy.where(numpy.isnan(clean_drift))[0]; cnovalid=novalid.size | |
2091 | if cnovalid > 0: drift[novalid] = numpy.nan |
|
2200 | if cnovalid > 0: drift[novalid] = numpy.nan | |
2092 | if cnovalid > 0: snr[novalid] = numpy.nan |
|
2201 | if cnovalid > 0: snr[novalid] = numpy.nan | |
2093 |
|
2202 | |||
2094 | # Zonal |
|
2203 | # Zonal | |
2095 | if nchan == 2: |
|
2204 | if nchan == 2: | |
2096 | zonalstdv_th = 30*2 |
|
2205 | sets2, self.old_zonal, self.count_zonal, self.oldTime_zonal, aver_veloc, aver_sigma, clearAll = self.statistics150km(zonal, w_e_err, zonalstdv_th, \ | |
2097 | sets2 = self.statistics150km(zonal, w_e_err, zonalstdv_th) |
|
2206 | old_veloc=self.old_zonal, count=self.count_zonal, currTime=dataOut.utctime, \ | |
2098 |
|
2207 | oldTime=self.oldTime_zonal, timeFactor=600) | ||
|
2208 | if clearAll == 1: | |||
|
2209 | mean_zonal = numpy.nan | |||
|
2210 | sigma_zonal = numpy.nan | |||
|
2211 | mean_zonal = aver_veloc | |||
|
2212 | sigma_zonal = aver_sigma | |||
2099 | if sets2.size != 1: |
|
2213 | if sets2.size != 1: | |
2100 | clean_zonal[sets2] = zonal[sets2] |
|
2214 | clean_zonal[sets2] = zonal[sets2] | |
2101 |
|
2215 | |||
2102 | novalid=numpy.where(numpy.isnan(clean_zonal))[0]; cnovalid=novalid.size |
|
2216 | novalid=numpy.where(numpy.isnan(clean_zonal))[0]; cnovalid=novalid.size | |
2103 | if cnovalid > 0: zonal[novalid] = numpy.nan |
|
2217 | if cnovalid > 0: zonal[novalid] = numpy.nan | |
2104 | if cnovalid > 0: snr[novalid] = numpy.nan |
|
2218 | if cnovalid > 0: snr[novalid] = numpy.nan | |
|
2219 | ||||
|
2220 | n_avg_par=4 | |||
|
2221 | avg_par=numpy.empty((n_avg_par,)); avg_par[:] = numpy.nan | |||
|
2222 | avg_par[0,]=mean_drift | |||
|
2223 | avg_par[1,]=mean_zonal | |||
|
2224 | avg_par[2,]=sigma_drift | |||
|
2225 | avg_par[3,]=sigma_zonal | |||
|
2226 | ||||
|
2227 | set1 = 1.0 | |||
|
2228 | navg = set1 | |||
|
2229 | nci = dataOut.nCohInt | |||
|
2230 | # ---------------------------------- | |||
|
2231 | ipp = 252.0 | |||
|
2232 | nincoh = dataOut.nIncohInt | |||
|
2233 | nptsfft = dataOut.nProfiles | |||
|
2234 | hardcoded=False # if True, similar to IDL processing | |||
|
2235 | if hardcoded: | |||
|
2236 | ipp=200.1 | |||
|
2237 | nincoh=22 | |||
|
2238 | nptsfft=128 | |||
|
2239 | # ---------------------------------- | |||
|
2240 | nipp = ipp * nci | |||
|
2241 | height = dataOut.heightList | |||
|
2242 | nHei = len(height) | |||
|
2243 | kd = 213.6 | |||
|
2244 | nint = nptsfft * nincoh | |||
|
2245 | drift1D = drift.copy() | |||
|
2246 | if nchan == 2: | |||
|
2247 | zonal1D=zonal.copy() | |||
|
2248 | snr1D = snr.copy() | |||
|
2249 | snr1D = 10*numpy.power(10, 0.1*snr1D) | |||
|
2250 | noise1D = noise.copy() | |||
|
2251 | noise0 = numpy.nanmedian(noise1D) | |||
|
2252 | noise = noise0 + noise0 | |||
|
2253 | sw1D = sw.copy() | |||
|
2254 | pow0 = snr1D * noise0 + noise0 | |||
|
2255 | acf0 = snr1D * noise0 * numpy.exp((-drift1D*nipp*numpy.pi/(1.5e5*1.5))*1j) * (1-0.5*numpy.power(sw1D*nipp*numpy.pi/(1.5e5*1.5),2)) | |||
|
2256 | acf0 /= pow0 | |||
|
2257 | acf1 = acf0 | |||
|
2258 | dt= nint * nipp /1.5e5 | |||
|
2259 | ||||
|
2260 | if nchan == 2: | |||
|
2261 | dccf = pow0 * pow0 * numpy.exp((zonal1D*kd*dt/(height*1e3))*(1j)) | |||
|
2262 | else: | |||
|
2263 | dccf = numpy.empty(nHei); dccf[:]=numpy.nan # complex? | |||
|
2264 | dccf /= pow0 * pow0 | |||
|
2265 | sno=(pow0+pow0-noise)/noise | |||
|
2266 | ||||
|
2267 | # First parameter: Signal to noise ratio and its error | |||
|
2268 | sno = numpy.log10(sno) | |||
|
2269 | sno10 = 10 * sno | |||
|
2270 | dsno = 1.0/numpy.sqrt(nint*navg)*(1+1/sno10) | |||
|
2271 | ||||
|
2272 | # Second parameter: Vertical Drifts | |||
|
2273 | s=numpy.sqrt(numpy.abs(acf0)*numpy.abs(acf1)) | |||
|
2274 | sp = s*(1.0 + 1.0/sno10) | |||
|
2275 | vzo = -numpy.arctan2(numpy.imag(acf0+acf1),numpy.real(acf0+acf1))* \ | |||
|
2276 | 1.5e5*1.5/(nipp*numpy.pi) | |||
|
2277 | dvzo = numpy.sqrt(1-sp*sp)*0.338*1.5e5/(numpy.sqrt(nint*navg)*sp*nipp) | |||
|
2278 | ||||
|
2279 | # Third parameter: Zonal Drifts | |||
|
2280 | dt = nint*nipp/1.5e5 | |||
|
2281 | ss = numpy.sqrt(numpy.abs(dccf)) | |||
|
2282 | vxo = numpy.arctan2(numpy.imag(dccf),numpy.real(dccf))*height*1e3/(kd*dt) | |||
|
2283 | dvxo = numpy.sqrt(1.0-ss*ss)*height*1e3/(numpy.sqrt(nint*navg)*ss*kd*dt) | |||
2105 |
|
2284 | |||
|
2285 | npar = 5 | |||
|
2286 | par = numpy.empty((npar, nHei)); par[:] = numpy.nan | |||
2106 |
|
2287 | |||
2107 | if otype == 0: |
|
2288 | par[0,:] = sno | |
2108 | winds = numpy.vstack((snr, drift, zonal, noise, sw, w_w_err, w_e_err)) # to process statistics drifts |
|
2289 | par[1,:] = vzo | |
2109 | elif otype == 2: |
|
2290 | par[2,:] = vxo | |
2110 | winds = numpy.vstack((snr, drift)) # one channel good signal: 2 RTI's |
|
2291 | par[3,:] = dvzo | |
2111 | elif otype == 3: |
|
2292 | par[4,:] = dvxo | |
2112 | winds = numpy.vstack((snr, drift, zonal)) # to generic plot: 3 RTI's |
|
2293 | ||
2113 | elif otype == 4: |
|
2294 | # Segundo filtrado: | |
2114 | winds = numpy.vstack((snrCH0, drift, snrCH1, zonal)) # to generic plot: 4 RTI's |
|
2295 | # RemociΓ³n por altura: Menos de dos datos finitos no son considerados como eco 150Km. | |
2115 |
|
2296 | clean_par=numpy.empty((npar,nHei)); clean_par[:]=numpy.nan | ||
2116 | snr1 = numpy.vstack((snrCH0, snrCH1)) |
|
2297 | if clean: | |
2117 | print('winds:',winds.shape) |
|
2298 | ||
2118 | print('snrCH0:',snrCH0.shape) |
|
2299 | for p in range(npar): | |
2119 | dataOut.data_output = winds |
|
2300 | ih=0 | |
2120 | dataOut.data_snr = snr1 |
|
2301 | while ih < nHei-1: | |
|
2302 | j=ih | |||
|
2303 | if numpy.isfinite(snr1D[ih]): | |||
|
2304 | while numpy.isfinite(snr1D[j]): | |||
|
2305 | j+=1 | |||
|
2306 | if j >= nHei: | |||
|
2307 | break | |||
|
2308 | if j > ih + 1: | |||
|
2309 | for k in range(ih,j): | |||
|
2310 | clean_par[p][k] = par[p][k] | |||
|
2311 | ih = j - 1 | |||
|
2312 | ih+=1 | |||
|
2313 | else: | |||
|
2314 | clean_par[:] = par[:] | |||
2121 |
|
2315 | |||
|
2316 | winds = numpy.vstack((clean_par[0,:], clean_par[1,:], clean_par[2,:], clean_par[3,:], clean_par[4,:])) | |||
|
2317 | dataOut.data_output = winds | |||
|
2318 | dataOut.avg_output = avg_par | |||
2122 | dataOut.utctimeInit = dataOut.utctime |
|
2319 | dataOut.utctimeInit = dataOut.utctime | |
2123 | dataOut.outputInterval = dataOut.timeInterval |
|
2320 | dataOut.outputInterval = dataOut.timeInterval | |
2124 |
|
2321 | |||
2125 | dataOut.flagNoData = numpy.all(numpy.isnan(dataOut.data_output[0])) # NAN vectors are not written |
|
2322 | dataOut.flagNoData = numpy.all(numpy.isnan(dataOut.data_output[0])) # NAN vectors are not written | |
2126 |
|
2323 | |||
2127 | return dataOut |
|
2324 | return dataOut | |
|
2325 | ||||
|
2326 | ||||
|
2327 | class JULIA_NightVelocities(Operation): | |||
|
2328 | ''' | |||
|
2329 | Function SpreadFVelocities() | |||
|
2330 | ||||
|
2331 | Calculates SNL and drifts | |||
|
2332 | ||||
|
2333 | Type of dataIn: Parameters | |||
|
2334 | ||||
|
2335 | Configuration Parameters: | |||
|
2336 | ||||
|
2337 | mymode : (0) Interferometry, | |||
|
2338 | (1) Doppler beam swinging. | |||
|
2339 | myproc : (0) JULIA_V, | |||
|
2340 | (1) JULIA_EW. | |||
|
2341 | myantenna : (0) 1/4 antenna, | |||
|
2342 | (1) 1/2 antenna. | |||
|
2343 | jset : Number of Incoherent integrations. | |||
|
2344 | ||||
|
2345 | ||||
|
2346 | Input: | |||
|
2347 | channelList : simple channel list to select e.g. [2,3,7] | |||
|
2348 | self.dataOut.data_pre : Spectral data | |||
|
2349 | self.dataOut.abscissaList : List of frequencies | |||
|
2350 | self.dataOut.noise : Noise level per channel | |||
|
2351 | ||||
|
2352 | Affected: | |||
|
2353 | self.dataOut.moments : Parameters per channel | |||
|
2354 | self.dataOut.data_snr : SNR per channel | |||
|
2355 | ||||
|
2356 | ''' | |||
|
2357 | def __init__(self): | |||
|
2358 | Operation.__init__(self) | |||
|
2359 | ||||
|
2360 | def newtotal(self, data): | |||
|
2361 | return numpy.nansum(data) | |||
|
2362 | ||||
|
2363 | def data_filter(self, parm, snrth=-17, swth=20, dopth=500.0, debug=False): | |||
|
2364 | ||||
|
2365 | Sz0 = parm.shape # Sz0: h,p | |||
|
2366 | drift = parm[:,0] | |||
|
2367 | sw = 2*parm[:,1] | |||
|
2368 | snr = 10*numpy.log10(parm[:,2]) | |||
|
2369 | Sz = drift.shape # Sz: h | |||
|
2370 | mask = numpy.ones((Sz[0])) | |||
|
2371 | th=0 | |||
|
2372 | valid=numpy.where(numpy.isfinite(snr)) | |||
|
2373 | cvalid = len(valid[0]) | |||
|
2374 | if cvalid >= 1: | |||
|
2375 | # CΓ‘lculo del ruido promedio de snr para el i-Γ©simo grupo de alturas | |||
|
2376 | nbins = int(numpy.max(snr)-numpy.min(snr))+1 # bin size = 1, similar to IDL | |||
|
2377 | h = numpy.histogram(snr,bins=nbins) | |||
|
2378 | hist = h[0] | |||
|
2379 | values = numpy.round_(h[1]) | |||
|
2380 | moda = values[numpy.where(hist == numpy.max(hist))] | |||
|
2381 | indNoise = numpy.where(numpy.abs(snr - numpy.min(moda)) < 3)[0] | |||
|
2382 | ||||
|
2383 | noise = snr[indNoise] | |||
|
2384 | noise_mean = numpy.sum(noise)/len(noise) | |||
|
2385 | # CΓ‘lculo de media de snr | |||
|
2386 | med = numpy.median(snr) | |||
|
2387 | # Establece el umbral de snr | |||
|
2388 | if noise_mean > med + 3: | |||
|
2389 | th = med | |||
|
2390 | else: | |||
|
2391 | th = noise_mean + 3 | |||
|
2392 | # Establece mΓ‘scara | |||
|
2393 | novalid = numpy.where(snr <= th)[0] | |||
|
2394 | mask[novalid] = numpy.nan | |||
|
2395 | # Elimina datos que no sobrepasen el umbral: PARAMETRO | |||
|
2396 | novalid = numpy.where(snr <= snrth) | |||
|
2397 | cnovalid = len(novalid[0]) | |||
|
2398 | if cnovalid > 0: | |||
|
2399 | mask[novalid] = numpy.nan | |||
|
2400 | novalid = numpy.where(numpy.isnan(snr)) | |||
|
2401 | cnovalid = len(novalid[0]) | |||
|
2402 | if cnovalid > 0: | |||
|
2403 | mask[novalid] = numpy.nan | |||
|
2404 | # umbral de velocidad | |||
|
2405 | if dopth != None: | |||
|
2406 | novalid = numpy.where(numpy.logical_or(drift< dopth*(-1), drift > dopth)) | |||
|
2407 | cnovalid = len(novalid[0]) | |||
|
2408 | if cnovalid > 0: | |||
|
2409 | mask[novalid] = numpy.nan | |||
|
2410 | if debug: | |||
|
2411 | print('Descartados:%i de %i:' %(cnovalid, len(drift))) | |||
|
2412 | print('Porcentaje:%3.1f' %(100.0*cnovalid/len(drift))) | |||
|
2413 | ||||
|
2414 | new_parm = numpy.zeros((Sz0[0],Sz0[1])) | |||
|
2415 | for i in range(Sz0[1]): | |||
|
2416 | new_parm[:,i] = parm[:,i] * mask | |||
|
2417 | ||||
|
2418 | return new_parm, mask | |||
|
2419 | ||||
|
2420 | ||||
|
2421 | def run(self, dataOut, zenith, zenithCorrection, mymode=1, dbs_sel=0, myproc=0, myantenna=0, jset=None, clean=False): | |||
|
2422 | ||||
|
2423 | ||||
|
2424 | dataOut.lat=-11.95 | |||
|
2425 | dataOut.lon=-76.87 | |||
|
2426 | mode=mymode | |||
|
2427 | proc=myproc | |||
|
2428 | antenna=myantenna | |||
|
2429 | nci=dataOut.nCohInt | |||
|
2430 | nptsfft=dataOut.nProfiles | |||
|
2431 | navg= 3 if jset is None else jset | |||
|
2432 | nint=dataOut.nIncohInt//navg | |||
|
2433 | navg1=dataOut.nProfiles * nint * navg | |||
|
2434 | tau1=dataOut.ippSeconds | |||
|
2435 | nipp=dataOut.radarControllerHeaderObj.ipp | |||
|
2436 | jlambda=6 | |||
|
2437 | kd=213.6 | |||
|
2438 | hei=dataOut.heightList.copy() | |||
2128 |
|
2439 | |||
|
2440 | nCh=dataOut.spcpar.shape[0] | |||
|
2441 | nHei=dataOut.spcpar.shape[1] | |||
|
2442 | nParam=dataOut.spcpar.shape[2] | |||
|
2443 | ||||
|
2444 | parm = numpy.zeros((nCh,nHei,nParam)) | |||
|
2445 | parm[:] = dataOut.spcpar[:] | |||
|
2446 | mask=numpy.ones(nHei) | |||
|
2447 | mask0=mask.copy() | |||
|
2448 | # Primer filtrado: Umbral de SNR | |||
|
2449 | for i in range(nCh): | |||
|
2450 | parm[i,:,:], mask = self.data_filter(parm[i,:,:], snrth = 0.1) # umbral 0.1 filtra seΓ±al que no corresponde a ESF, para interferometrΓa usar -17dB | |||
|
2451 | mask0 *= mask | |||
|
2452 | ||||
|
2453 | ccf_results=numpy.transpose(dataOut.ccfpar,(2,1,0)) | |||
|
2454 | ||||
|
2455 | for i in range(3): | |||
|
2456 | ccf_results[i,:,0] *= mask0 | |||
|
2457 | ||||
|
2458 | zenith = numpy.array(zenith) | |||
|
2459 | zenith -= zenithCorrection | |||
|
2460 | zenith *= numpy.pi/180 | |||
|
2461 | alpha = zenith[0] | |||
|
2462 | beta = zenith[1] | |||
|
2463 | ||||
|
2464 | w_w = parm[0,:,0] | |||
|
2465 | w_e = parm[1,:,0] | |||
|
2466 | ||||
|
2467 | if mode==1: | |||
|
2468 | # Vertical and zonal calculation | |||
|
2469 | sinB_A = numpy.sin(beta)*numpy.cos(alpha) - numpy.sin(alpha)* numpy.cos(beta) | |||
|
2470 | w = -(w_w * numpy.sin(beta) - w_e * numpy.sin(alpha))/ sinB_A | |||
|
2471 | u = (w_w * numpy.cos(beta) - w_e * numpy.cos(alpha))/ sinB_A | |||
|
2472 | ||||
|
2473 | #Noise | |||
|
2474 | n0 = parm[0,:,3] | |||
|
2475 | n1 = parm[1,:,3] | |||
|
2476 | jn0_1 = numpy.nanmedian(n0) | |||
|
2477 | jn0_2 = numpy.nanmean(n0) | |||
|
2478 | jn1_1 = numpy.nanmedian(n1) | |||
|
2479 | jn1_2 = numpy.nanmean(n1) | |||
|
2480 | noise0 = jn0_2 if numpy.abs(jn0_1-jn0_2)/(jn0_1+jn0_2) <= 0.1 else jn0_1 | |||
|
2481 | noise1 = jn1_2 if numpy.abs(jn1_1-jn1_2)/(jn1_1+jn1_2) <= 0.1 else jn1_1 | |||
|
2482 | ||||
|
2483 | noise = noise0 + noise0 if mode == 1 else noise0 + noise1 | |||
|
2484 | ||||
|
2485 | #Power | |||
|
2486 | apow1 = (parm[0,:,2]/numpy.sqrt(nint))*noise0 + n0 | |||
|
2487 | apow2 = (parm[1,:,2]/numpy.sqrt(nint))*noise1 + n1 | |||
|
2488 | ||||
|
2489 | #SNR SNR=Detectability/ SQRT(nint) or (Pow-Noise)/Noise | |||
|
2490 | s_n0 = (apow1 - noise0)/noise0 | |||
|
2491 | s_n1 = (apow2 - noise1)/noise1 | |||
|
2492 | ||||
|
2493 | swCH0 = parm[0,:,1] | |||
|
2494 | swCH1 = parm[1,:,1] | |||
|
2495 | ||||
|
2496 | if mode == 1: | |||
|
2497 | aacf1=(1-numpy.square(tau1)*numpy.square(4*numpy.pi/jlambda*swCH0)/2)* \ | |||
|
2498 | numpy.exp(-4*numpy.pi/jlambda*w*tau1*1j)* \ | |||
|
2499 | apow1 | |||
|
2500 | aacf2=(1-numpy.square(tau1)*numpy.square(4*numpy.pi/jlambda*swCH1)/2)* \ | |||
|
2501 | numpy.exp(-4*numpy.pi/jlambda*w*tau1*1j)* \ | |||
|
2502 | apow2 | |||
|
2503 | dccf_0=numpy.zeros(nHei, dtype=complex) | |||
|
2504 | ||||
|
2505 | else: | |||
|
2506 | aacf1=(1-numpy.square(tau1)*numpy.square(4*numpy.pi/jlambda*swCH0)/2)* \ | |||
|
2507 | numpy.exp(4*numpy.pi/jlambda*w_w*tau1*1j)* \ | |||
|
2508 | apow1 | |||
|
2509 | aacf2=(1-numpy.square(tau1)*numpy.square(4*numpy.pi/jlambda*swCH1)/2)* \ | |||
|
2510 | numpy.exp(4*numpy.pi/jlambda*w_e*tau1*1j)* \ | |||
|
2511 | apow2 | |||
|
2512 | dccf_0=numpy.power(ccf_results[0,:,0],2)*apow1*apow2* \ | |||
|
2513 | numpy.exp( \ | |||
|
2514 | ( \ | |||
|
2515 | (1+1*(antenna==1))* \ | |||
|
2516 | (-1+2*(proc == 1))* \ | |||
|
2517 | ccf_results[2,:,0] \ | |||
|
2518 | )*1j) | |||
|
2519 | ||||
|
2520 | nsamp=len(hei) | |||
|
2521 | pow0 = numpy.empty(nsamp); pow0[:] = numpy.nan | |||
|
2522 | pow1 = numpy.empty(nsamp); pow1[:] = numpy.nan | |||
|
2523 | acf0 = numpy.empty(nsamp, dtype=complex); acf0[:] = numpy.nan | |||
|
2524 | acf1 = numpy.empty(nsamp, dtype=complex); acf1[:] = numpy.nan | |||
|
2525 | dccf = numpy.empty(nsamp, dtype=complex); dccf[:] = numpy.nan | |||
|
2526 | dop0 = numpy.empty(nsamp); dop0[:] = numpy.nan | |||
|
2527 | dop1 = numpy.empty(nsamp); dop1[:] = numpy.nan | |||
|
2528 | p_w = numpy.empty(nsamp); p_w[:] = numpy.nan | |||
|
2529 | p_u = numpy.empty(nsamp); p_u[:] = numpy.nan | |||
|
2530 | ||||
|
2531 | if mode == 0 or (mode == 1 and dbs_sel == 0): | |||
|
2532 | ih=0 | |||
|
2533 | while ih < nsamp-10: | |||
|
2534 | j=ih | |||
|
2535 | if numpy.isfinite(s_n0[ih]) and numpy.isfinite(s_n1[ih]): | |||
|
2536 | while numpy.isfinite(s_n0[j]) and numpy.isfinite(s_n1[j]): | |||
|
2537 | j+=1 | |||
|
2538 | if j > ih + 2: | |||
|
2539 | for k in range(ih,j): | |||
|
2540 | pow0[k] = apow1[k] | |||
|
2541 | pow1[k] = apow2[k] | |||
|
2542 | acf0[k] = aacf1[k] | |||
|
2543 | acf1[k] = aacf2[k] | |||
|
2544 | dccf[k] = dccf_0[k] | |||
|
2545 | ih = j - 1 | |||
|
2546 | ih+=1 | |||
|
2547 | else: | |||
|
2548 | ih=0 | |||
|
2549 | while ih < nsamp-10: | |||
|
2550 | j=ih | |||
|
2551 | if numpy.isfinite(s_n0[ih]): | |||
|
2552 | while numpy.isfinite(s_n0[j]) and j < nsamp-10: | |||
|
2553 | j+=1 | |||
|
2554 | #if j > ih + 6: | |||
|
2555 | if j > ih + 2: | |||
|
2556 | #if j > ih + 3: | |||
|
2557 | for k in range(ih,j): | |||
|
2558 | pow0[k] = apow1[k] | |||
|
2559 | #acf0[k] = aacf1[k] | |||
|
2560 | #dccf[k] = dccf_0[k] | |||
|
2561 | p_w[k] = w[k] | |||
|
2562 | dop0[k] = w_w[k] | |||
|
2563 | ih = j - 1 | |||
|
2564 | ih+=1 | |||
|
2565 | ih=0 | |||
|
2566 | while ih < nsamp-10: | |||
|
2567 | j=ih | |||
|
2568 | if numpy.isfinite(s_n1[ih]): | |||
|
2569 | while numpy.isfinite(s_n1[j]) and j < nsamp-10: | |||
|
2570 | j+=1 | |||
|
2571 | #if j > ih + 6: | |||
|
2572 | if j > ih + 2: | |||
|
2573 | #if j > ih + 3: | |||
|
2574 | for k in range(ih,j): | |||
|
2575 | pow1[k] = apow2[k] | |||
|
2576 | #acf1[k] = aacf2[k] | |||
|
2577 | p_u[k] = u[k] | |||
|
2578 | dop1[k] = w_e[k] | |||
|
2579 | ih = j - 1 | |||
|
2580 | ih+=1 | |||
|
2581 | ||||
|
2582 | acf0 = numpy.zeros(nsamp, dtype=complex) | |||
|
2583 | acf1 = numpy.zeros(nsamp, dtype=complex) | |||
|
2584 | dccf = numpy.zeros(nsamp, dtype=complex) | |||
|
2585 | ||||
|
2586 | acf0 /= pow0 | |||
|
2587 | acf1 /= pow1 | |||
|
2588 | dccf /= pow0 * pow1 | |||
|
2589 | ||||
|
2590 | if mode == 0 or (mode == 1 and dbs_sel == 0): | |||
|
2591 | sno=(pow0+pow1-noise)/noise | |||
|
2592 | # First parameter: Signal to noise ratio and its error | |||
|
2593 | sno=numpy.log10(sno) | |||
|
2594 | dsno=1.0/numpy.sqrt(nint*navg)*(1+1/sno) | |||
|
2595 | # Second parameter: Vertical Drifts | |||
|
2596 | s=numpy.sqrt(numpy.abs(acf0)*numpy.abs(acf1)) | |||
|
2597 | ind=numpy.where(numpy.abs(s)>=1.0) | |||
|
2598 | if numpy.size(ind)>0: | |||
|
2599 | s[ind]=numpy.sqrt(0.9999) | |||
|
2600 | sp=s*(1.0 + 1.0/sno) | |||
|
2601 | vzo=-numpy.arctan2(numpy.imag(acf0+acf1),numpy.real(acf0+acf1))* \ | |||
|
2602 | 1.5e5*1.5/(nipp*numpy.pi) | |||
|
2603 | dvzo=numpy.sqrt(1-sp*sp)*0.338*1.5e5/(numpy.sqrt(nint*navg)*sp*nipp) | |||
|
2604 | ind=numpy.where(dvzo<=0.1) | |||
|
2605 | if numpy.size(ind)>0: | |||
|
2606 | dvzo[ind]=0.1 | |||
|
2607 | # Third parameter: Zonal Drifts | |||
|
2608 | dt=nint*nipp/1.5e5 | |||
|
2609 | ss=numpy.sqrt(numpy.abs(dccf)) | |||
|
2610 | ind=numpy.where(ss>=1.0) | |||
|
2611 | if numpy.size(ind)>0: | |||
|
2612 | ss[ind]=numpy.sqrt(0.99999) | |||
|
2613 | ind=numpy.where(ss<=0.1) | |||
|
2614 | if numpy.size(ind)>0: | |||
|
2615 | ss[ind]=numpy.sqrt(0.1) | |||
|
2616 | vxo=numpy.arctan2(numpy.imag(dccf),numpy.real(dccf))*hei*1e3/(kd*dt) | |||
|
2617 | dvxo=numpy.sqrt(1.0-ss*ss)*hei*1e3/(numpy.sqrt(nint*navg)*ss*kd*dt) | |||
|
2618 | ind=numpy.where(dvxo<=0.1) | |||
|
2619 | if numpy.size(ind)>0: | |||
|
2620 | dvxo[ind]=0.1 | |||
|
2621 | else: | |||
|
2622 | sno0=(pow0-noise0)/noise0 | |||
|
2623 | sno1=(pow1-noise1)/noise1 | |||
|
2624 | ||||
|
2625 | # First parameter: Signal to noise ratio and its error | |||
|
2626 | sno0=numpy.log10(sno0) | |||
|
2627 | dsno0=1.0/numpy.sqrt(nint*navg)*(1+1/sno0) | |||
|
2628 | sno1=numpy.log10(sno1) | |||
|
2629 | dsno1=1.0/numpy.sqrt(nint*navg)*(1+1/sno1) | |||
|
2630 | ||||
|
2631 | npar=6 | |||
|
2632 | par = numpy.empty((npar, nHei)); par[:] = numpy.nan | |||
|
2633 | ||||
|
2634 | if mode == 0: | |||
|
2635 | par[0,:] = sno | |||
|
2636 | par[1,:] = vxo | |||
|
2637 | par[2,:] = dvxo | |||
|
2638 | par[3,:] = vzo | |||
|
2639 | par[4,:] = dvzo | |||
|
2640 | ||||
|
2641 | elif mode == 1 and dbs_sel == 0: | |||
|
2642 | par[0,:] = sno | |||
|
2643 | par[1,:] = vzo | |||
|
2644 | else: | |||
|
2645 | par[0,:] = sno0 | |||
|
2646 | par[1,:] = sno1 | |||
|
2647 | par[2,:] = dop0 | |||
|
2648 | par[3,:] = dop1 | |||
|
2649 | #par[4,:] = p_w | |||
|
2650 | #par[5,:] = p_u | |||
|
2651 | ||||
|
2652 | if mode == 0: | |||
|
2653 | winds = numpy.vstack((par[0,:], par[1,:], par[2,:], par[3,:], par[4,:])) | |||
|
2654 | elif mode == 1 and dbs_sel == 0: | |||
|
2655 | winds = numpy.vstack((par[0,:], par[1,:])) | |||
|
2656 | else: | |||
|
2657 | winds = numpy.vstack((par[0,:], par[1,:], par[2,:], par[3,:])) | |||
|
2658 | ||||
|
2659 | dataOut.data_output = winds | |||
|
2660 | dataOut.data_snr = par[0,:] | |||
|
2661 | ||||
|
2662 | dataOut.utctimeInit = dataOut.utctime | |||
|
2663 | dataOut.outputInterval = dataOut.timeInterval | |||
|
2664 | ||||
|
2665 | aux1= numpy.all(numpy.isnan(dataOut.data_output[0])) # NAN vectors are not written | |||
|
2666 | aux2= numpy.all(numpy.isnan(dataOut.data_output[1])) # NAN vectors are not written | |||
|
2667 | dataOut.flagNoData = aux1 or aux2 | |||
|
2668 | ||||
|
2669 | return dataOut | |||
|
2670 | ||||
2129 | class SALags(Operation): |
|
2671 | class SALags(Operation): | |
2130 | ''' |
|
2672 | ''' | |
2131 | Function GetMoments() |
|
2673 | Function GetMoments() | |
2132 |
|
2674 | |||
2133 | Input: |
|
2675 | Input: | |
2134 | self.dataOut.data_pre |
|
2676 | self.dataOut.data_pre | |
2135 | self.dataOut.abscissaList |
|
2677 | self.dataOut.abscissaList | |
2136 | self.dataOut.noise |
|
2678 | self.dataOut.noise | |
2137 | self.dataOut.normFactor |
|
2679 | self.dataOut.normFactor | |
2138 | self.dataOut.data_snr |
|
2680 | self.dataOut.data_snr | |
2139 | self.dataOut.groupList |
|
2681 | self.dataOut.groupList | |
2140 | self.dataOut.nChannels |
|
2682 | self.dataOut.nChannels | |
2141 |
|
2683 | |||
2142 | Affected: |
|
2684 | Affected: | |
2143 | self.dataOut.data_param |
|
2685 | self.dataOut.data_param | |
2144 |
|
2686 | |||
2145 | ''' |
|
2687 | ''' | |
2146 | def run(self, dataOut): |
|
2688 | def run(self, dataOut): | |
2147 | data_acf = dataOut.data_pre[0] |
|
2689 | data_acf = dataOut.data_pre[0] | |
2148 | data_ccf = dataOut.data_pre[1] |
|
2690 | data_ccf = dataOut.data_pre[1] | |
2149 | normFactor_acf = dataOut.normFactor[0] |
|
2691 | normFactor_acf = dataOut.normFactor[0] | |
2150 | normFactor_ccf = dataOut.normFactor[1] |
|
2692 | normFactor_ccf = dataOut.normFactor[1] | |
2151 | pairs_acf = dataOut.groupList[0] |
|
2693 | pairs_acf = dataOut.groupList[0] | |
2152 | pairs_ccf = dataOut.groupList[1] |
|
2694 | pairs_ccf = dataOut.groupList[1] | |
2153 |
|
2695 | |||
2154 | nHeights = dataOut.nHeights |
|
2696 | nHeights = dataOut.nHeights | |
2155 | absc = dataOut.abscissaList |
|
2697 | absc = dataOut.abscissaList | |
2156 | noise = dataOut.noise |
|
2698 | noise = dataOut.noise | |
2157 | SNR = dataOut.data_snr |
|
2699 | SNR = dataOut.data_snr | |
2158 | nChannels = dataOut.nChannels |
|
2700 | nChannels = dataOut.nChannels | |
2159 | # pairsList = dataOut.groupList |
|
2701 | # pairsList = dataOut.groupList | |
2160 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
2702 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
2161 |
|
2703 | |||
2162 | for l in range(len(pairs_acf)): |
|
2704 | for l in range(len(pairs_acf)): | |
2163 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
2705 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
2164 |
|
2706 | |||
2165 | for l in range(len(pairs_ccf)): |
|
2707 | for l in range(len(pairs_ccf)): | |
2166 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
2708 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
2167 |
|
2709 | |||
2168 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
2710 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
2169 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
2711 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
2170 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
2712 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
2171 | return |
|
2713 | return | |
2172 |
|
2714 | |||
2173 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
2715 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
2174 | # |
|
2716 | # | |
2175 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
2717 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
2176 | # |
|
2718 | # | |
2177 | # for l in range(len(pairsList)): |
|
2719 | # for l in range(len(pairsList)): | |
2178 | # firstChannel = pairsList[l][0] |
|
2720 | # firstChannel = pairsList[l][0] | |
2179 | # secondChannel = pairsList[l][1] |
|
2721 | # secondChannel = pairsList[l][1] | |
2180 | # |
|
2722 | # | |
2181 | # #Obteniendo pares de Autocorrelacion |
|
2723 | # #Obteniendo pares de Autocorrelacion | |
2182 | # if firstChannel == secondChannel: |
|
2724 | # if firstChannel == secondChannel: | |
2183 | # pairsAutoCorr[firstChannel] = int(l) |
|
2725 | # pairsAutoCorr[firstChannel] = int(l) | |
2184 | # |
|
2726 | # | |
2185 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
2727 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
2186 | # |
|
2728 | # | |
2187 | # pairsCrossCorr = range(len(pairsList)) |
|
2729 | # pairsCrossCorr = range(len(pairsList)) | |
2188 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
2730 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
2189 | # |
|
2731 | # | |
2190 | # return pairsAutoCorr, pairsCrossCorr |
|
2732 | # return pairsAutoCorr, pairsCrossCorr | |
2191 |
|
2733 | |||
2192 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
2734 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
2193 |
|
2735 | |||
2194 | lag0 = data_acf.shape[1]/2 |
|
2736 | lag0 = data_acf.shape[1]/2 | |
2195 | #Funcion de Autocorrelacion |
|
2737 | #Funcion de Autocorrelacion | |
2196 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
2738 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
2197 |
|
2739 | |||
2198 | #Obtencion Indice de TauCross |
|
2740 | #Obtencion Indice de TauCross | |
2199 | ind_ccf = data_ccf.argmax(axis = 1) |
|
2741 | ind_ccf = data_ccf.argmax(axis = 1) | |
2200 | #Obtencion Indice de TauAuto |
|
2742 | #Obtencion Indice de TauAuto | |
2201 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
2743 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
2202 | ccf_lag0 = data_ccf[:,lag0,:] |
|
2744 | ccf_lag0 = data_ccf[:,lag0,:] | |
2203 |
|
2745 | |||
2204 | for i in range(ccf_lag0.shape[0]): |
|
2746 | for i in range(ccf_lag0.shape[0]): | |
2205 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
2747 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
2206 |
|
2748 | |||
2207 | #Obtencion de TauCross y TauAuto |
|
2749 | #Obtencion de TauCross y TauAuto | |
2208 | tau_ccf = lagRange[ind_ccf] |
|
2750 | tau_ccf = lagRange[ind_ccf] | |
2209 | tau_acf = lagRange[ind_acf] |
|
2751 | tau_acf = lagRange[ind_acf] | |
2210 |
|
2752 | |||
2211 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
2753 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
2212 |
|
2754 | |||
2213 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
2755 | tau_ccf[Nan1,Nan2] = numpy.nan | |
2214 | tau_acf[Nan1,Nan2] = numpy.nan |
|
2756 | tau_acf[Nan1,Nan2] = numpy.nan | |
2215 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
2757 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
2216 |
|
2758 | |||
2217 | return tau |
|
2759 | return tau | |
2218 |
|
2760 | |||
2219 | def __calculateLag1Phase(self, data, lagTRange): |
|
2761 | def __calculateLag1Phase(self, data, lagTRange): | |
2220 | data1 = stats.nanmean(data, axis = 0) |
|
2762 | data1 = stats.nanmean(data, axis = 0) | |
2221 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
2763 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
2222 |
|
2764 | |||
2223 | phase = numpy.angle(data1[lag1,:]) |
|
2765 | phase = numpy.angle(data1[lag1,:]) | |
2224 |
|
2766 | |||
2225 | return phase |
|
2767 | return phase | |
2226 |
|
2768 | |||
2227 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
2769 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
2228 | z = (x - a1) / a2 |
|
2770 | z = (x - a1) / a2 | |
2229 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
2771 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
2230 | return y |
|
2772 | return y | |
2231 |
|
2773 | |||
2232 |
|
2774 | |||
2233 | class SpectralFitting(Operation): |
|
2775 | class SpectralFitting(Operation): | |
2234 | ''' |
|
2776 | ''' | |
2235 | Function GetMoments() |
|
2777 | Function GetMoments() | |
2236 |
|
2778 | |||
2237 | Input: |
|
2779 | Input: | |
2238 | Output: |
|
2780 | Output: | |
2239 | Variables modified: |
|
2781 | Variables modified: | |
2240 | ''' |
|
2782 | ''' | |
2241 | def __calculateMoments(self,oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
2783 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
2242 |
|
2784 | |||
2243 | if (nicoh is None): nicoh = 1 |
|
2785 | if (nicoh is None): nicoh = 1 | |
2244 | if (graph is None): graph = 0 |
|
2786 | if (graph is None): graph = 0 | |
2245 | if (smooth is None): smooth = 0 |
|
2787 | if (smooth is None): smooth = 0 | |
2246 | elif (self.smooth < 3): smooth = 0 |
|
2788 | elif (self.smooth < 3): smooth = 0 | |
2247 |
|
2789 | |||
2248 | if (type1 is None): type1 = 0 |
|
2790 | if (type1 is None): type1 = 0 | |
2249 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
2791 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
2250 | if (snrth is None): snrth = -3 |
|
2792 | if (snrth is None): snrth = -3 | |
2251 | if (dc is None): dc = 0 |
|
2793 | if (dc is None): dc = 0 | |
2252 | if (aliasing is None): aliasing = 0 |
|
2794 | if (aliasing is None): aliasing = 0 | |
2253 | if (oldfd is None): oldfd = 0 |
|
2795 | if (oldfd is None): oldfd = 0 | |
2254 | if (wwauto is None): wwauto = 0 |
|
2796 | if (wwauto is None): wwauto = 0 | |
2255 |
|
2797 | |||
2256 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
2798 | if (n0 < 1.e-20): n0 = 1.e-20 | |
2257 |
|
2799 | |||
2258 | freq = oldfreq |
|
2800 | freq = oldfreq | |
2259 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
2801 | vec_power = numpy.zeros(oldspec.shape[1]) | |
2260 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
2802 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
2261 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
2803 | vec_w = numpy.zeros(oldspec.shape[1]) | |
2262 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
2804 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
2263 |
|
2805 | |||
2264 | oldspec = numpy.ma.masked_invalid(oldspec) |
|
2806 | oldspec = numpy.ma.masked_invalid(oldspec) | |
2265 |
|
2807 | |||
2266 | for ind in range(oldspec.shape[1]): |
|
2808 | for ind in range(oldspec.shape[1]): | |
2267 |
|
2809 | |||
2268 | spec = oldspec[:,ind] |
|
2810 | spec = oldspec[:,ind] | |
2269 | aux = spec*fwindow |
|
2811 | aux = spec*fwindow | |
2270 | max_spec = aux.max() |
|
2812 | max_spec = aux.max() | |
2271 | m = list(aux).index(max_spec) |
|
2813 | m = list(aux).index(max_spec) | |
2272 |
|
2814 | |||
2273 | #Smooth |
|
2815 | #Smooth | |
2274 | if (smooth == 0): spec2 = spec |
|
2816 | if (smooth == 0): spec2 = spec | |
2275 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
2817 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
2276 |
|
2818 | |||
2277 | # Calculo de Momentos |
|
2819 | # Calculo de Momentos | |
2278 | bb = spec2[list(range(m,spec2.size))] |
|
2820 | bb = spec2[list(range(m,spec2.size))] | |
2279 | bb = (bb<n0).nonzero() |
|
2821 | bb = (bb<n0).nonzero() | |
2280 | bb = bb[0] |
|
2822 | bb = bb[0] | |
2281 |
|
2823 | |||
2282 | ss = spec2[list(range(0,m + 1))] |
|
2824 | ss = spec2[list(range(0,m + 1))] | |
2283 | ss = (ss<n0).nonzero() |
|
2825 | ss = (ss<n0).nonzero() | |
2284 | ss = ss[0] |
|
2826 | ss = ss[0] | |
2285 |
|
2827 | |||
2286 | if (bb.size == 0): |
|
2828 | if (bb.size == 0): | |
2287 | bb0 = spec.size - 1 - m |
|
2829 | bb0 = spec.size - 1 - m | |
2288 | else: |
|
2830 | else: | |
2289 | bb0 = bb[0] - 1 |
|
2831 | bb0 = bb[0] - 1 | |
2290 | if (bb0 < 0): |
|
2832 | if (bb0 < 0): | |
2291 | bb0 = 0 |
|
2833 | bb0 = 0 | |
2292 |
|
2834 | |||
2293 | if (ss.size == 0): ss1 = 1 |
|
2835 | if (ss.size == 0): ss1 = 1 | |
2294 | else: ss1 = max(ss) + 1 |
|
2836 | else: ss1 = max(ss) + 1 | |
2295 |
|
2837 | |||
2296 | if (ss1 > m): ss1 = m |
|
2838 | if (ss1 > m): ss1 = m | |
2297 |
|
2839 | |||
2298 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 |
|
2840 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 | |
2299 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
2841 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
2300 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
2842 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
2301 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
2843 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
2302 | snr = (spec2.mean()-n0)/n0 |
|
2844 | snr = (spec2.mean()-n0)/n0 | |
2303 |
|
2845 | |||
2304 | if (snr < 1.e-20) : |
|
2846 | if (snr < 1.e-20) : | |
2305 | snr = 1.e-20 |
|
2847 | snr = 1.e-20 | |
2306 |
|
2848 | |||
2307 | vec_power[ind] = power |
|
2849 | vec_power[ind] = power | |
2308 | vec_fd[ind] = fd |
|
2850 | vec_fd[ind] = fd | |
2309 | vec_w[ind] = w |
|
2851 | vec_w[ind] = w | |
2310 | vec_snr[ind] = snr |
|
2852 | vec_snr[ind] = snr | |
2311 |
|
2853 | |||
2312 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
2854 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
2313 | return moments |
|
2855 | return moments | |
2314 |
|
2856 | |||
2315 | #def __DiffCoherent(self,snrth, spectra, cspectra, nProf, heights,nChan, nHei, nPairs, channels, noise, crosspairs): |
|
2857 | #def __DiffCoherent(self,snrth, spectra, cspectra, nProf, heights,nChan, nHei, nPairs, channels, noise, crosspairs): | |
2316 | def __DiffCoherent(self, spectra, cspectra, dataOut, noise, snrth, coh_th, hei_th): |
|
2858 | def __DiffCoherent(self, spectra, cspectra, dataOut, noise, snrth, coh_th, hei_th): | |
2317 |
|
2859 | |||
2318 | import matplotlib.pyplot as plt |
|
2860 | import matplotlib.pyplot as plt | |
2319 | nProf = dataOut.nProfiles |
|
2861 | nProf = dataOut.nProfiles | |
2320 | heights = dataOut.heightList |
|
2862 | heights = dataOut.heightList | |
2321 | nHei = len(heights) |
|
2863 | nHei = len(heights) | |
2322 | channels = dataOut.channelList |
|
2864 | channels = dataOut.channelList | |
2323 | nChan = len(channels) |
|
2865 | nChan = len(channels) | |
2324 | crosspairs = dataOut.groupList |
|
2866 | crosspairs = dataOut.groupList | |
2325 | nPairs = len(crosspairs) |
|
2867 | nPairs = len(crosspairs) | |
2326 | #Separar espectros incoherentes de coherentes snr > 20 dB' |
|
2868 | #Separar espectros incoherentes de coherentes snr > 20 dB' | |
2327 | snr_th = 10**(snrth/10.0) |
|
2869 | snr_th = 10**(snrth/10.0) | |
2328 | my_incoh_spectra = numpy.zeros([nChan, nProf,nHei], dtype='float') |
|
2870 | my_incoh_spectra = numpy.zeros([nChan, nProf,nHei], dtype='float') | |
2329 | my_incoh_cspectra = numpy.zeros([nPairs,nProf, nHei], dtype='complex') |
|
2871 | my_incoh_cspectra = numpy.zeros([nPairs,nProf, nHei], dtype='complex') | |
2330 | my_incoh_aver = numpy.zeros([nChan, nHei]) |
|
2872 | my_incoh_aver = numpy.zeros([nChan, nHei]) | |
2331 | my_coh_aver = numpy.zeros([nChan, nHei]) |
|
2873 | my_coh_aver = numpy.zeros([nChan, nHei]) | |
2332 |
|
2874 | |||
2333 | coh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') |
|
2875 | coh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |
2334 | coh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') |
|
2876 | coh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |
2335 | coh_aver = numpy.zeros([nChan, nHei]) |
|
2877 | coh_aver = numpy.zeros([nChan, nHei]) | |
2336 |
|
2878 | |||
2337 | incoh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') |
|
2879 | incoh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |
2338 | incoh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') |
|
2880 | incoh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |
2339 | incoh_aver = numpy.zeros([nChan, nHei]) |
|
2881 | incoh_aver = numpy.zeros([nChan, nHei]) | |
2340 | power = numpy.sum(spectra, axis=1) |
|
2882 | power = numpy.sum(spectra, axis=1) | |
2341 |
|
2883 | |||
2342 | if coh_th == None : coh_th = numpy.array([0.75,0.65,0.15]) # 0.65 |
|
2884 | if coh_th == None : coh_th = numpy.array([0.75,0.65,0.15]) # 0.65 | |
2343 | if hei_th == None : hei_th = numpy.array([60,300,650]) |
|
2885 | if hei_th == None : hei_th = numpy.array([60,300,650]) | |
2344 | for ic in range(2): |
|
2886 | for ic in range(2): | |
2345 | pair = crosspairs[ic] |
|
2887 | pair = crosspairs[ic] | |
2346 | #si el SNR es mayor que el SNR threshold los datos se toman coherentes |
|
2888 | #si el SNR es mayor que el SNR threshold los datos se toman coherentes | |
2347 | s_n0 = power[pair[0],:]/noise[pair[0]] |
|
2889 | s_n0 = power[pair[0],:]/noise[pair[0]] | |
2348 | s_n1 = power[pair[1],:]/noise[pair[1]] |
|
2890 | s_n1 = power[pair[1],:]/noise[pair[1]] | |
2349 |
|
2891 | |||
2350 | valid1 =(s_n0>=snr_th).nonzero() |
|
2892 | valid1 =(s_n0>=snr_th).nonzero() | |
2351 | valid2 = (s_n1>=snr_th).nonzero() |
|
2893 | valid2 = (s_n1>=snr_th).nonzero() | |
2352 | #valid = valid2 + valid1 #numpy.concatenate((valid1,valid2), axis=None) |
|
2894 | #valid = valid2 + valid1 #numpy.concatenate((valid1,valid2), axis=None) | |
2353 | valid1 = numpy.array(valid1[0]) |
|
2895 | valid1 = numpy.array(valid1[0]) | |
2354 | valid2 = numpy.array(valid2[0]) |
|
2896 | valid2 = numpy.array(valid2[0]) | |
2355 | valid = valid1 |
|
2897 | valid = valid1 | |
2356 | for iv in range(len(valid2)): |
|
2898 | for iv in range(len(valid2)): | |
2357 | #for ivv in range(len(valid1)) : |
|
2899 | #for ivv in range(len(valid1)) : | |
2358 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) |
|
2900 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |
2359 | if len(indv[0]) == 0 : |
|
2901 | if len(indv[0]) == 0 : | |
2360 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) |
|
2902 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |
2361 | if len(valid)>0: |
|
2903 | if len(valid)>0: | |
2362 | my_coh_aver[pair[0],valid]=1 |
|
2904 | my_coh_aver[pair[0],valid]=1 | |
2363 | my_coh_aver[pair[1],valid]=1 |
|
2905 | my_coh_aver[pair[1],valid]=1 | |
2364 | # si la coherencia es mayor a la coherencia threshold los datos se toman |
|
2906 | # si la coherencia es mayor a la coherencia threshold los datos se toman | |
2365 | #print my_coh_aver[0,:] |
|
2907 | #print my_coh_aver[0,:] | |
2366 | coh = numpy.squeeze(numpy.nansum(cspectra[ic,:,:], axis=0)/numpy.sqrt(numpy.nansum(spectra[pair[0],:,:], axis=0)*numpy.nansum(spectra[pair[1],:,:], axis=0))) |
|
2908 | coh = numpy.squeeze(numpy.nansum(cspectra[ic,:,:], axis=0)/numpy.sqrt(numpy.nansum(spectra[pair[0],:,:], axis=0)*numpy.nansum(spectra[pair[1],:,:], axis=0))) | |
2367 | #print('coh',numpy.absolute(coh)) |
|
2909 | #print('coh',numpy.absolute(coh)) | |
2368 | for ih in range(len(hei_th)): |
|
2910 | for ih in range(len(hei_th)): | |
2369 | hvalid = (heights>hei_th[ih]).nonzero() |
|
2911 | hvalid = (heights>hei_th[ih]).nonzero() | |
2370 | hvalid = hvalid[0] |
|
2912 | hvalid = hvalid[0] | |
2371 | if len(hvalid)>0: |
|
2913 | if len(hvalid)>0: | |
2372 | valid = (numpy.absolute(coh[hvalid])>coh_th[ih]).nonzero() |
|
2914 | valid = (numpy.absolute(coh[hvalid])>coh_th[ih]).nonzero() | |
2373 | valid = valid[0] |
|
2915 | valid = valid[0] | |
2374 | #print('hvalid:',hvalid) |
|
2916 | #print('hvalid:',hvalid) | |
2375 | #print('valid', valid) |
|
2917 | #print('valid', valid) | |
2376 | if len(valid)>0: |
|
2918 | if len(valid)>0: | |
2377 | my_coh_aver[pair[0],hvalid[valid]] =1 |
|
2919 | my_coh_aver[pair[0],hvalid[valid]] =1 | |
2378 | my_coh_aver[pair[1],hvalid[valid]] =1 |
|
2920 | my_coh_aver[pair[1],hvalid[valid]] =1 | |
2379 |
|
2921 | |||
2380 | coh_echoes = (my_coh_aver[pair[0],:] == 1).nonzero() |
|
2922 | coh_echoes = (my_coh_aver[pair[0],:] == 1).nonzero() | |
2381 | incoh_echoes = (my_coh_aver[pair[0],:] != 1).nonzero() |
|
2923 | incoh_echoes = (my_coh_aver[pair[0],:] != 1).nonzero() | |
2382 | incoh_echoes = incoh_echoes[0] |
|
2924 | incoh_echoes = incoh_echoes[0] | |
2383 | if len(incoh_echoes) > 0: |
|
2925 | if len(incoh_echoes) > 0: | |
2384 | my_incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] |
|
2926 | my_incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |
2385 | my_incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] |
|
2927 | my_incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |
2386 | my_incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] |
|
2928 | my_incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |
2387 | my_incoh_aver[pair[0],incoh_echoes] = 1 |
|
2929 | my_incoh_aver[pair[0],incoh_echoes] = 1 | |
2388 | my_incoh_aver[pair[1],incoh_echoes] = 1 |
|
2930 | my_incoh_aver[pair[1],incoh_echoes] = 1 | |
2389 |
|
2931 | |||
2390 |
|
2932 | |||
2391 | for ic in range(2): |
|
2933 | for ic in range(2): | |
2392 | pair = crosspairs[ic] |
|
2934 | pair = crosspairs[ic] | |
2393 |
|
2935 | |||
2394 | valid1 =(my_coh_aver[pair[0],:]==1 ).nonzero() |
|
2936 | valid1 =(my_coh_aver[pair[0],:]==1 ).nonzero() | |
2395 | valid2 = (my_coh_aver[pair[1],:]==1).nonzero() |
|
2937 | valid2 = (my_coh_aver[pair[1],:]==1).nonzero() | |
2396 | valid1 = numpy.array(valid1[0]) |
|
2938 | valid1 = numpy.array(valid1[0]) | |
2397 | valid2 = numpy.array(valid2[0]) |
|
2939 | valid2 = numpy.array(valid2[0]) | |
2398 | valid = valid1 |
|
2940 | valid = valid1 | |
2399 | #print valid1 , valid2 |
|
2941 | #print valid1 , valid2 | |
2400 | for iv in range(len(valid2)): |
|
2942 | for iv in range(len(valid2)): | |
2401 | #for ivv in range(len(valid1)) : |
|
2943 | #for ivv in range(len(valid1)) : | |
2402 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) |
|
2944 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |
2403 | if len(indv[0]) == 0 : |
|
2945 | if len(indv[0]) == 0 : | |
2404 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) |
|
2946 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |
2405 | #print valid |
|
2947 | #print valid | |
2406 | #valid = numpy.concatenate((valid1,valid2), axis=None) |
|
2948 | #valid = numpy.concatenate((valid1,valid2), axis=None) | |
2407 | valid1 =(my_coh_aver[pair[0],:] !=1 ).nonzero() |
|
2949 | valid1 =(my_coh_aver[pair[0],:] !=1 ).nonzero() | |
2408 | valid2 = (my_coh_aver[pair[1],:] !=1).nonzero() |
|
2950 | valid2 = (my_coh_aver[pair[1],:] !=1).nonzero() | |
2409 | valid1 = numpy.array(valid1[0]) |
|
2951 | valid1 = numpy.array(valid1[0]) | |
2410 | valid2 = numpy.array(valid2[0]) |
|
2952 | valid2 = numpy.array(valid2[0]) | |
2411 | incoh_echoes = valid1 |
|
2953 | incoh_echoes = valid1 | |
2412 | #print valid1, valid2 |
|
2954 | #print valid1, valid2 | |
2413 | #incoh_echoes= numpy.concatenate((valid1,valid2), axis=None) |
|
2955 | #incoh_echoes= numpy.concatenate((valid1,valid2), axis=None) | |
2414 | for iv in range(len(valid2)): |
|
2956 | for iv in range(len(valid2)): | |
2415 | #for ivv in range(len(valid1)) : |
|
2957 | #for ivv in range(len(valid1)) : | |
2416 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) |
|
2958 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |
2417 | if len(indv[0]) == 0 : |
|
2959 | if len(indv[0]) == 0 : | |
2418 | incoh_echoes = numpy.concatenate(( incoh_echoes,valid2[iv]), axis=None) |
|
2960 | incoh_echoes = numpy.concatenate(( incoh_echoes,valid2[iv]), axis=None) | |
2419 | #print incoh_echoes |
|
2961 | #print incoh_echoes | |
2420 | if len(valid)>0: |
|
2962 | if len(valid)>0: | |
2421 | #print pair |
|
2963 | #print pair | |
2422 | coh_spectra[pair[0],:,valid] = spectra[pair[0],:,valid] |
|
2964 | coh_spectra[pair[0],:,valid] = spectra[pair[0],:,valid] | |
2423 | coh_spectra[pair[1],:,valid] = spectra[pair[1],:,valid] |
|
2965 | coh_spectra[pair[1],:,valid] = spectra[pair[1],:,valid] | |
2424 | coh_cspectra[ic,:,valid] = cspectra[ic,:,valid] |
|
2966 | coh_cspectra[ic,:,valid] = cspectra[ic,:,valid] | |
2425 | coh_aver[pair[0],valid]=1 |
|
2967 | coh_aver[pair[0],valid]=1 | |
2426 | coh_aver[pair[1],valid]=1 |
|
2968 | coh_aver[pair[1],valid]=1 | |
2427 | if len(incoh_echoes)>0: |
|
2969 | if len(incoh_echoes)>0: | |
2428 | incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] |
|
2970 | incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |
2429 | incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] |
|
2971 | incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |
2430 | incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] |
|
2972 | incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |
2431 | incoh_aver[pair[0],incoh_echoes]=1 |
|
2973 | incoh_aver[pair[0],incoh_echoes]=1 | |
2432 | incoh_aver[pair[1],incoh_echoes]=1 |
|
2974 | incoh_aver[pair[1],incoh_echoes]=1 | |
2433 | #plt.imshow(spectra[0,:,:],vmin=20000000) |
|
2975 | #plt.imshow(spectra[0,:,:],vmin=20000000) | |
2434 | #plt.show() |
|
2976 | #plt.show() | |
2435 | #my_incoh_aver = my_incoh_aver+1 |
|
2977 | #my_incoh_aver = my_incoh_aver+1 | |
2436 |
|
2978 | |||
2437 | #spec = my_incoh_spectra.copy() |
|
2979 | #spec = my_incoh_spectra.copy() | |
2438 | #cspec = my_incoh_cspectra.copy() |
|
2980 | #cspec = my_incoh_cspectra.copy() | |
2439 | #print('######################', spec) |
|
2981 | #print('######################', spec) | |
2440 | #print(self.numpy) |
|
2982 | #print(self.numpy) | |
2441 | #return spec, cspec,coh_aver |
|
2983 | #return spec, cspec,coh_aver | |
2442 | return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver |
|
2984 | return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver | |
2443 |
|
2985 | |||
2444 | def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index): |
|
2986 | def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index): | |
2445 |
|
2987 | |||
2446 | import matplotlib.pyplot as plt |
|
2988 | import matplotlib.pyplot as plt | |
2447 | nProf = dataOut.nProfiles |
|
2989 | nProf = dataOut.nProfiles | |
2448 | heights = dataOut.heightList |
|
2990 | heights = dataOut.heightList | |
2449 | nHei = len(heights) |
|
2991 | nHei = len(heights) | |
2450 | channels = dataOut.channelList |
|
2992 | channels = dataOut.channelList | |
2451 | nChan = len(channels) |
|
2993 | nChan = len(channels) | |
2452 | crosspairs = dataOut.groupList |
|
2994 | crosspairs = dataOut.groupList | |
2453 | nPairs = len(crosspairs) |
|
2995 | nPairs = len(crosspairs) | |
2454 |
|
2996 | |||
2455 | #data = dataOut.data_pre[0] |
|
2997 | #data = dataOut.data_pre[0] | |
2456 | absc = dataOut.abscissaList[:-1] |
|
2998 | absc = dataOut.abscissaList[:-1] | |
2457 | #noise = dataOut.noise |
|
2999 | #noise = dataOut.noise | |
2458 | #nChannel = data.shape[0] |
|
3000 | #nChannel = data.shape[0] | |
2459 | data_param = numpy.zeros((nChan, 4, spectra.shape[2])) |
|
3001 | data_param = numpy.zeros((nChan, 4, spectra.shape[2])) | |
2460 |
|
3002 | |||
2461 |
|
3003 | |||
2462 | #plt.plot(absc) |
|
3004 | #plt.plot(absc) | |
2463 | #plt.show() |
|
3005 | #plt.show() | |
2464 | clean_coh_spectra = spectra.copy() |
|
3006 | clean_coh_spectra = spectra.copy() | |
2465 | clean_coh_cspectra = cspectra.copy() |
|
3007 | clean_coh_cspectra = cspectra.copy() | |
2466 | clean_coh_aver = coh_aver.copy() |
|
3008 | clean_coh_aver = coh_aver.copy() | |
2467 |
|
3009 | |||
2468 | spwd_th=[10,6] #spwd_th[0] --> For satellites ; spwd_th[1] --> For special events like SUN. |
|
3010 | spwd_th=[10,6] #spwd_th[0] --> For satellites ; spwd_th[1] --> For special events like SUN. | |
2469 | coh_th = 0.75 |
|
3011 | coh_th = 0.75 | |
2470 |
|
3012 | |||
2471 | rtime0 = [6,18] # periodo sin ESF |
|
3013 | rtime0 = [6,18] # periodo sin ESF | |
2472 | rtime1 = [10.5,13.5] # periodo con alta coherencia y alto ancho espectral (esperado): SOL. |
|
3014 | rtime1 = [10.5,13.5] # periodo con alta coherencia y alto ancho espectral (esperado): SOL. | |
2473 |
|
3015 | |||
2474 | time = index*5./60 |
|
3016 | time = index*5./60 | |
2475 | if clean_coh_echoes == 1 : |
|
3017 | if clean_coh_echoes == 1 : | |
2476 | for ind in range(nChan): |
|
3018 | for ind in range(nChan): | |
2477 | data_param[ind,:,:] = self.__calculateMoments( spectra[ind,:,:] , absc , noise[ind] ) |
|
3019 | data_param[ind,:,:] = self.__calculateMoments( spectra[ind,:,:] , absc , noise[ind] ) | |
2478 | #print data_param[:,3] |
|
3020 | #print data_param[:,3] | |
2479 | spwd = data_param[:,3] |
|
3021 | spwd = data_param[:,3] | |
2480 | #print spwd.shape |
|
3022 | #print spwd.shape | |
2481 | # SPECB_JULIA,header=anal_header,jspectra=spectra,vel=velocities,hei=heights, num_aver=1, mode_fit=0,smoothing=smoothing,jvelr=velr,jspwd=spwd,jsnr=snr,jnoise=noise,jstdvnoise=stdvnoise |
|
3023 | # SPECB_JULIA,header=anal_header,jspectra=spectra,vel=velocities,hei=heights, num_aver=1, mode_fit=0,smoothing=smoothing,jvelr=velr,jspwd=spwd,jsnr=snr,jnoise=noise,jstdvnoise=stdvnoise | |
2482 | #spwd1=[ 1.65607, 1.43416, 0.500373, 0.208361, 0.000000, 26.7767, 22.5936, 26.7530, 20.6962, 29.1098, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 28.0300, 27.0511, 27.8810, 26.3126, 27.8445, 24.6181, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] |
|
3024 | #spwd1=[ 1.65607, 1.43416, 0.500373, 0.208361, 0.000000, 26.7767, 22.5936, 26.7530, 20.6962, 29.1098, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 28.0300, 27.0511, 27.8810, 26.3126, 27.8445, 24.6181, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] | |
2483 | #spwd=numpy.array([spwd1,spwd1,spwd1,spwd1]) |
|
3025 | #spwd=numpy.array([spwd1,spwd1,spwd1,spwd1]) | |
2484 | #print spwd.shape, heights.shape,coh_aver.shape |
|
3026 | #print spwd.shape, heights.shape,coh_aver.shape | |
2485 | # para obtener spwd |
|
3027 | # para obtener spwd | |
2486 | for ic in range(nPairs): |
|
3028 | for ic in range(nPairs): | |
2487 | pair = crosspairs[ic] |
|
3029 | pair = crosspairs[ic] | |
2488 | coh = numpy.squeeze(numpy.sum(cspectra[ic,:,:], axis=1)/numpy.sqrt(numpy.sum(spectra[pair[0],:,:], axis=1)*numpy.sum(spectra[pair[1],:,:], axis=1))) |
|
3030 | coh = numpy.squeeze(numpy.sum(cspectra[ic,:,:], axis=1)/numpy.sqrt(numpy.sum(spectra[pair[0],:,:], axis=1)*numpy.sum(spectra[pair[1],:,:], axis=1))) | |
2489 | for ih in range(nHei) : |
|
3031 | for ih in range(nHei) : | |
2490 | # Considering heights higher than 200km in order to avoid removing phenomena like EEJ. |
|
3032 | # Considering heights higher than 200km in order to avoid removing phenomena like EEJ. | |
2491 | if heights[ih] >= 200 and coh_aver[pair[0],ih] == 1 and coh_aver[pair[1],ih] == 1 : |
|
3033 | if heights[ih] >= 200 and coh_aver[pair[0],ih] == 1 and coh_aver[pair[1],ih] == 1 : | |
2492 | # Checking coherence |
|
3034 | # Checking coherence | |
2493 | if (numpy.abs(coh[ih]) <= coh_th) or (time >= rtime0[0] and time <= rtime0[1]) : |
|
3035 | if (numpy.abs(coh[ih]) <= coh_th) or (time >= rtime0[0] and time <= rtime0[1]) : | |
2494 | # Checking spectral widths |
|
3036 | # Checking spectral widths | |
2495 | if (spwd[pair[0],ih] > spwd_th[0]) or (spwd[pair[1],ih] > spwd_th[0]) : |
|
3037 | if (spwd[pair[0],ih] > spwd_th[0]) or (spwd[pair[1],ih] > spwd_th[0]) : | |
2496 | # satelite |
|
3038 | # satelite | |
2497 | clean_coh_spectra[pair,ih,:] = 0.0 |
|
3039 | clean_coh_spectra[pair,ih,:] = 0.0 | |
2498 | clean_coh_cspectra[ic,ih,:] = 0.0 |
|
3040 | clean_coh_cspectra[ic,ih,:] = 0.0 | |
2499 | clean_coh_aver[pair,ih] = 0 |
|
3041 | clean_coh_aver[pair,ih] = 0 | |
2500 | else : |
|
3042 | else : | |
2501 | if ((spwd[pair[0],ih] < spwd_th[1]) or (spwd[pair[1],ih] < spwd_th[1])) : |
|
3043 | if ((spwd[pair[0],ih] < spwd_th[1]) or (spwd[pair[1],ih] < spwd_th[1])) : | |
2502 | # Especial event like sun. |
|
3044 | # Especial event like sun. | |
2503 | clean_coh_spectra[pair,ih,:] = 0.0 |
|
3045 | clean_coh_spectra[pair,ih,:] = 0.0 | |
2504 | clean_coh_cspectra[ic,ih,:] = 0.0 |
|
3046 | clean_coh_cspectra[ic,ih,:] = 0.0 | |
2505 | clean_coh_aver[pair,ih] = 0 |
|
3047 | clean_coh_aver[pair,ih] = 0 | |
2506 |
|
3048 | |||
2507 | return clean_coh_spectra, clean_coh_cspectra, clean_coh_aver |
|
3049 | return clean_coh_spectra, clean_coh_cspectra, clean_coh_aver | |
2508 |
|
3050 | |||
2509 | isConfig = False |
|
3051 | isConfig = False | |
2510 | __dataReady = False |
|
3052 | __dataReady = False | |
2511 | bloques = None |
|
3053 | bloques = None | |
2512 | bloque0 = None |
|
3054 | bloque0 = None | |
2513 |
|
3055 | |||
2514 | def __init__(self): |
|
3056 | def __init__(self): | |
2515 | Operation.__init__(self) |
|
3057 | Operation.__init__(self) | |
2516 | self.i=0 |
|
3058 | self.i=0 | |
2517 | self.isConfig = False |
|
3059 | self.isConfig = False | |
2518 |
|
3060 | |||
2519 |
|
3061 | |||
2520 | def setup(self,nChan,nProf,nHei,nBlocks): |
|
3062 | def setup(self,nChan,nProf,nHei,nBlocks): | |
2521 | self.__dataReady = False |
|
3063 | self.__dataReady = False | |
2522 | self.bloques = numpy.zeros([2, nProf, nHei,nBlocks], dtype= complex) |
|
3064 | self.bloques = numpy.zeros([2, nProf, nHei,nBlocks], dtype= complex) | |
2523 | self.bloque0 = numpy.zeros([nChan, nProf, nHei, nBlocks]) |
|
3065 | self.bloque0 = numpy.zeros([nChan, nProf, nHei, nBlocks]) | |
2524 |
|
3066 | |||
2525 | #def CleanRayleigh(self,dataOut,spectra,cspectra,out_spectra,out_cspectra,sat_spectra,sat_cspectra,crosspairs,heights, channels, nProf,nHei,nChan,nPairs,nIncohInt,nBlocks): |
|
3067 | #def CleanRayleigh(self,dataOut,spectra,cspectra,out_spectra,out_cspectra,sat_spectra,sat_cspectra,crosspairs,heights, channels, nProf,nHei,nChan,nPairs,nIncohInt,nBlocks): | |
2526 | def CleanRayleigh(self,dataOut,spectra,cspectra,save_drifts): |
|
3068 | def CleanRayleigh(self,dataOut,spectra,cspectra,save_drifts): | |
2527 | #import matplotlib.pyplot as plt |
|
3069 | #import matplotlib.pyplot as plt | |
2528 | #for k in range(149): |
|
3070 | #for k in range(149): | |
2529 |
|
3071 | |||
2530 | # self.bloque0[:,:,:,k] = spectra[:,:,0:nHei] |
|
3072 | # self.bloque0[:,:,:,k] = spectra[:,:,0:nHei] | |
2531 | # self.bloques[:,:,:,k] = cspectra[:,:,0:nHei] |
|
3073 | # self.bloques[:,:,:,k] = cspectra[:,:,0:nHei] | |
2532 | #if self.i==nBlocks: |
|
3074 | #if self.i==nBlocks: | |
2533 | # self.i==0 |
|
3075 | # self.i==0 | |
2534 | rfunc = cspectra.copy() #self.bloques |
|
3076 | rfunc = cspectra.copy() #self.bloques | |
2535 | n_funct = len(rfunc[0,:,0,0]) |
|
3077 | n_funct = len(rfunc[0,:,0,0]) | |
2536 | val_spc = spectra*0.0 #self.bloque0*0.0 |
|
3078 | val_spc = spectra*0.0 #self.bloque0*0.0 | |
2537 | val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
3079 | val_cspc = cspectra*0.0 #self.bloques*0.0 | |
2538 | in_sat_spectra = spectra.copy() #self.bloque0 |
|
3080 | in_sat_spectra = spectra.copy() #self.bloque0 | |
2539 | in_sat_cspectra = cspectra.copy() #self.bloques |
|
3081 | in_sat_cspectra = cspectra.copy() #self.bloques | |
2540 |
|
3082 | |||
2541 | #print( rfunc.shape) |
|
3083 | #print( rfunc.shape) | |
2542 | min_hei = 200 |
|
3084 | min_hei = 200 | |
2543 | nProf = dataOut.nProfiles |
|
3085 | nProf = dataOut.nProfiles | |
2544 | heights = dataOut.heightList |
|
3086 | heights = dataOut.heightList | |
2545 | nHei = len(heights) |
|
3087 | nHei = len(heights) | |
2546 | channels = dataOut.channelList |
|
3088 | channels = dataOut.channelList | |
2547 | nChan = len(channels) |
|
3089 | nChan = len(channels) | |
2548 | crosspairs = dataOut.groupList |
|
3090 | crosspairs = dataOut.groupList | |
2549 | nPairs = len(crosspairs) |
|
3091 | nPairs = len(crosspairs) | |
2550 | hval=(heights >= min_hei).nonzero() |
|
3092 | hval=(heights >= min_hei).nonzero() | |
2551 | ih=hval[0] |
|
3093 | ih=hval[0] | |
2552 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
3094 | #print numpy.absolute(rfunc[:,0,0,14]) | |
2553 | for ih in range(hval[0][0],nHei): |
|
3095 | for ih in range(hval[0][0],nHei): | |
2554 | for ifreq in range(nProf): |
|
3096 | for ifreq in range(nProf): | |
2555 | for ii in range(n_funct): |
|
3097 | for ii in range(n_funct): | |
2556 |
|
3098 | |||
2557 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) |
|
3099 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) | |
2558 | #print numpy.amin(func2clean) |
|
3100 | #print numpy.amin(func2clean) | |
2559 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
3101 | val = (numpy.isfinite(func2clean)==True).nonzero() | |
2560 | if len(val)>0: |
|
3102 | if len(val)>0: | |
2561 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
3103 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
2562 | if min_val <= -40 : min_val = -40 |
|
3104 | if min_val <= -40 : min_val = -40 | |
2563 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
3105 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
2564 | if max_val >= 200 : max_val = 200 |
|
3106 | if max_val >= 200 : max_val = 200 | |
2565 | #print min_val, max_val |
|
3107 | #print min_val, max_val | |
2566 | step = 1 |
|
3108 | step = 1 | |
2567 | #Getting bins and the histogram |
|
3109 | #Getting bins and the histogram | |
2568 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
3110 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
2569 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
3111 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
2570 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
3112 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
2571 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
3113 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
2572 | parg = [numpy.amax(y_dist),mean,sigma] |
|
3114 | parg = [numpy.amax(y_dist),mean,sigma] | |
2573 | try : |
|
3115 | try : | |
2574 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
3116 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
2575 | mode = gauss_fit[1] |
|
3117 | mode = gauss_fit[1] | |
2576 | stdv = gauss_fit[2] |
|
3118 | stdv = gauss_fit[2] | |
2577 | except: |
|
3119 | except: | |
2578 | mode = mean |
|
3120 | mode = mean | |
2579 | stdv = sigma |
|
3121 | stdv = sigma | |
2580 | # if ih == 14 and ii == 0 and ifreq ==0 : |
|
3122 | # if ih == 14 and ii == 0 and ifreq ==0 : | |
2581 | # print x_dist.shape, y_dist.shape |
|
3123 | # print x_dist.shape, y_dist.shape | |
2582 | # print x_dist, y_dist |
|
3124 | # print x_dist, y_dist | |
2583 | # print min_val, max_val, binstep |
|
3125 | # print min_val, max_val, binstep | |
2584 | # print func2clean |
|
3126 | # print func2clean | |
2585 | # print mean,sigma |
|
3127 | # print mean,sigma | |
2586 | # mean1,std = norm.fit(y_dist) |
|
3128 | # mean1,std = norm.fit(y_dist) | |
2587 | # print mean1, std, gauss_fit |
|
3129 | # print mean1, std, gauss_fit | |
2588 | # print fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
3130 | # print fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
2589 | # 7.84616 53.9307 3.61863 |
|
3131 | # 7.84616 53.9307 3.61863 | |
2590 | #stdv = 3.61863 # 2.99089 |
|
3132 | #stdv = 3.61863 # 2.99089 | |
2591 | #mode = 53.9307 #7.79008 |
|
3133 | #mode = 53.9307 #7.79008 | |
2592 |
|
3134 | |||
2593 | #Removing echoes greater than mode + 3*stdv |
|
3135 | #Removing echoes greater than mode + 3*stdv | |
2594 | factor_stdv = 2.5 |
|
3136 | factor_stdv = 2.5 | |
2595 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
3137 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
2596 |
|
3138 | |||
2597 | if len(noval[0]) > 0: |
|
3139 | if len(noval[0]) > 0: | |
2598 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
3140 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
2599 | cross_pairs = crosspairs[ii] |
|
3141 | cross_pairs = crosspairs[ii] | |
2600 | #Getting coherent echoes which are removed. |
|
3142 | #Getting coherent echoes which are removed. | |
2601 | if len(novall[0]) > 0: |
|
3143 | if len(novall[0]) > 0: | |
2602 | #val_spc[(0,1),novall[a],ih] = 1 |
|
3144 | #val_spc[(0,1),novall[a],ih] = 1 | |
2603 | #val_spc[,(2,3),novall[a],ih] = 1 |
|
3145 | #val_spc[,(2,3),novall[a],ih] = 1 | |
2604 | val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
3146 | val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
2605 | val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
3147 | val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
2606 | val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
3148 | val_cspc[novall[0],ii,ifreq,ih] = 1 | |
2607 | #print("OUT NOVALL 1") |
|
3149 | #print("OUT NOVALL 1") | |
2608 | #Removing coherent from ISR data |
|
3150 | #Removing coherent from ISR data | |
2609 | # if ih == 17 and ii == 0 and ifreq ==0 : |
|
3151 | # if ih == 17 and ii == 0 and ifreq ==0 : | |
2610 | # print spectra[:,cross_pairs[0],ifreq,ih] |
|
3152 | # print spectra[:,cross_pairs[0],ifreq,ih] | |
2611 | spectra[noval,cross_pairs[0],ifreq,ih] = numpy.nan |
|
3153 | spectra[noval,cross_pairs[0],ifreq,ih] = numpy.nan | |
2612 | spectra[noval,cross_pairs[1],ifreq,ih] = numpy.nan |
|
3154 | spectra[noval,cross_pairs[1],ifreq,ih] = numpy.nan | |
2613 | cspectra[noval,ii,ifreq,ih] = numpy.nan |
|
3155 | cspectra[noval,ii,ifreq,ih] = numpy.nan | |
2614 | # if ih == 17 and ii == 0 and ifreq ==0 : |
|
3156 | # if ih == 17 and ii == 0 and ifreq ==0 : | |
2615 | # print spectra[:,cross_pairs[0],ifreq,ih] |
|
3157 | # print spectra[:,cross_pairs[0],ifreq,ih] | |
2616 | # print noval, len(noval[0]) |
|
3158 | # print noval, len(noval[0]) | |
2617 | # print novall, len(novall[0]) |
|
3159 | # print novall, len(novall[0]) | |
2618 | # print factor_stdv*stdv |
|
3160 | # print factor_stdv*stdv | |
2619 | # print func2clean-mode |
|
3161 | # print func2clean-mode | |
2620 | # print val_spc[:,cross_pairs[0],ifreq,ih] |
|
3162 | # print val_spc[:,cross_pairs[0],ifreq,ih] | |
2621 | # print spectra[:,cross_pairs[0],ifreq,ih] |
|
3163 | # print spectra[:,cross_pairs[0],ifreq,ih] | |
2622 | #no sale es para savedrifts >2 |
|
3164 | #no sale es para savedrifts >2 | |
2623 | ''' channels = channels |
|
3165 | ''' channels = channels | |
2624 | cross_pairs = cross_pairs |
|
3166 | cross_pairs = cross_pairs | |
2625 | #print("OUT NOVALL 2") |
|
3167 | #print("OUT NOVALL 2") | |
2626 |
|
3168 | |||
2627 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() |
|
3169 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() | |
2628 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() |
|
3170 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() | |
2629 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) |
|
3171 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) | |
2630 | #print('vcros =', vcross) |
|
3172 | #print('vcros =', vcross) | |
2631 |
|
3173 | |||
2632 | #Getting coherent echoes which are removed. |
|
3174 | #Getting coherent echoes which are removed. | |
2633 | if len(novall) > 0: |
|
3175 | if len(novall) > 0: | |
2634 | #val_spc[novall,ii,ifreq,ih] = 1 |
|
3176 | #val_spc[novall,ii,ifreq,ih] = 1 | |
2635 | val_spc[ii,ifreq,ih,novall] = 1 |
|
3177 | val_spc[ii,ifreq,ih,novall] = 1 | |
2636 | if len(vcross) > 0: |
|
3178 | if len(vcross) > 0: | |
2637 | val_cspc[vcross,ifreq,ih,novall] = 1 |
|
3179 | val_cspc[vcross,ifreq,ih,novall] = 1 | |
2638 |
|
3180 | |||
2639 | #Removing coherent from ISR data. |
|
3181 | #Removing coherent from ISR data. | |
2640 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan |
|
3182 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan | |
2641 | if len(vcross) > 0: |
|
3183 | if len(vcross) > 0: | |
2642 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan |
|
3184 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan | |
2643 | ''' |
|
3185 | ''' | |
2644 | #Getting average of the spectra and cross-spectra from incoherent echoes. |
|
3186 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |
2645 | out_spectra = numpy.zeros([nChan,nProf,nHei], dtype=float) #+numpy.nan |
|
3187 | out_spectra = numpy.zeros([nChan,nProf,nHei], dtype=float) #+numpy.nan | |
2646 | out_cspectra = numpy.zeros([nPairs,nProf,nHei], dtype=complex) #+numpy.nan |
|
3188 | out_cspectra = numpy.zeros([nPairs,nProf,nHei], dtype=complex) #+numpy.nan | |
2647 | for ih in range(nHei): |
|
3189 | for ih in range(nHei): | |
2648 | for ifreq in range(nProf): |
|
3190 | for ifreq in range(nProf): | |
2649 | for ich in range(nChan): |
|
3191 | for ich in range(nChan): | |
2650 | tmp = spectra[:,ich,ifreq,ih] |
|
3192 | tmp = spectra[:,ich,ifreq,ih] | |
2651 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
3193 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
2652 | # if ich == 0 and ifreq == 0 and ih == 17 : |
|
3194 | # if ich == 0 and ifreq == 0 and ih == 17 : | |
2653 | # print tmp |
|
3195 | # print tmp | |
2654 | # print valid |
|
3196 | # print valid | |
2655 | # print len(valid[0]) |
|
3197 | # print len(valid[0]) | |
2656 | #print('TMP',tmp) |
|
3198 | #print('TMP',tmp) | |
2657 | if len(valid[0]) >0 : |
|
3199 | if len(valid[0]) >0 : | |
2658 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
3200 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
2659 | #for icr in range(nPairs): |
|
3201 | #for icr in range(nPairs): | |
2660 | for icr in range(nPairs): |
|
3202 | for icr in range(nPairs): | |
2661 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
3203 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
2662 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
3204 | valid = (numpy.isfinite(tmp)==True).nonzero() | |
2663 | if len(valid[0]) > 0: |
|
3205 | if len(valid[0]) > 0: | |
2664 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
3206 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
2665 | # print('##########################################################') |
|
3207 | # print('##########################################################') | |
2666 | #Removing fake coherent echoes (at least 4 points around the point) |
|
3208 | #Removing fake coherent echoes (at least 4 points around the point) | |
2667 |
|
3209 | |||
2668 | val_spectra = numpy.sum(val_spc,0) |
|
3210 | val_spectra = numpy.sum(val_spc,0) | |
2669 | val_cspectra = numpy.sum(val_cspc,0) |
|
3211 | val_cspectra = numpy.sum(val_cspc,0) | |
2670 |
|
3212 | |||
2671 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) |
|
3213 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) | |
2672 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) |
|
3214 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) | |
2673 |
|
3215 | |||
2674 | for i in range(nChan): |
|
3216 | for i in range(nChan): | |
2675 | for j in range(nProf): |
|
3217 | for j in range(nProf): | |
2676 | for k in range(nHei): |
|
3218 | for k in range(nHei): | |
2677 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : |
|
3219 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : | |
2678 | val_spc[:,i,j,k] = 0.0 |
|
3220 | val_spc[:,i,j,k] = 0.0 | |
2679 | for i in range(nPairs): |
|
3221 | for i in range(nPairs): | |
2680 | for j in range(nProf): |
|
3222 | for j in range(nProf): | |
2681 | for k in range(nHei): |
|
3223 | for k in range(nHei): | |
2682 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : |
|
3224 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : | |
2683 | val_cspc[:,i,j,k] = 0.0 |
|
3225 | val_cspc[:,i,j,k] = 0.0 | |
2684 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHei*nChan)) |
|
3226 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHei*nChan)) | |
2685 | # if numpy.isfinite(val_spectra)==str(True): |
|
3227 | # if numpy.isfinite(val_spectra)==str(True): | |
2686 | # noval = (val_spectra<1).nonzero() |
|
3228 | # noval = (val_spectra<1).nonzero() | |
2687 | # if len(noval) > 0: |
|
3229 | # if len(noval) > 0: | |
2688 | # val_spc[:,noval] = 0.0 |
|
3230 | # val_spc[:,noval] = 0.0 | |
2689 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHei)) |
|
3231 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHei)) | |
2690 |
|
3232 | |||
2691 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHei*nProf)) |
|
3233 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHei*nProf)) | |
2692 | #if numpy.isfinite(val_cspectra)==str(True): |
|
3234 | #if numpy.isfinite(val_cspectra)==str(True): | |
2693 | # noval = (val_cspectra<1).nonzero() |
|
3235 | # noval = (val_cspectra<1).nonzero() | |
2694 | # if len(noval) > 0: |
|
3236 | # if len(noval) > 0: | |
2695 | # val_cspc[:,noval] = 0.0 |
|
3237 | # val_cspc[:,noval] = 0.0 | |
2696 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHei)) |
|
3238 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHei)) | |
2697 |
|
3239 | |||
2698 | tmp_sat_spectra = spectra.copy() |
|
3240 | tmp_sat_spectra = spectra.copy() | |
2699 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan |
|
3241 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan | |
2700 | tmp_sat_cspectra = cspectra.copy() |
|
3242 | tmp_sat_cspectra = cspectra.copy() | |
2701 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan |
|
3243 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan | |
2702 |
|
3244 | |||
2703 | # fig = plt.figure(figsize=(6,5)) |
|
3245 | # fig = plt.figure(figsize=(6,5)) | |
2704 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
3246 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
2705 | # ax = fig.add_axes([left, bottom, width, height]) |
|
3247 | # ax = fig.add_axes([left, bottom, width, height]) | |
2706 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) |
|
3248 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) | |
2707 | # ax.clabel(cp, inline=True,fontsize=10) |
|
3249 | # ax.clabel(cp, inline=True,fontsize=10) | |
2708 | # plt.show() |
|
3250 | # plt.show() | |
2709 |
|
3251 | |||
2710 | val = (val_spc > 0).nonzero() |
|
3252 | val = (val_spc > 0).nonzero() | |
2711 | if len(val[0]) > 0: |
|
3253 | if len(val[0]) > 0: | |
2712 | tmp_sat_spectra[val] = in_sat_spectra[val] |
|
3254 | tmp_sat_spectra[val] = in_sat_spectra[val] | |
2713 |
|
3255 | |||
2714 | val = (val_cspc > 0).nonzero() |
|
3256 | val = (val_cspc > 0).nonzero() | |
2715 | if len(val[0]) > 0: |
|
3257 | if len(val[0]) > 0: | |
2716 | tmp_sat_cspectra[val] = in_sat_cspectra[val] |
|
3258 | tmp_sat_cspectra[val] = in_sat_cspectra[val] | |
2717 |
|
3259 | |||
2718 | #Getting average of the spectra and cross-spectra from incoherent echoes. |
|
3260 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |
2719 | sat_spectra = numpy.zeros((nChan,nProf,nHei), dtype=float) |
|
3261 | sat_spectra = numpy.zeros((nChan,nProf,nHei), dtype=float) | |
2720 | sat_cspectra = numpy.zeros((nPairs,nProf,nHei), dtype=complex) |
|
3262 | sat_cspectra = numpy.zeros((nPairs,nProf,nHei), dtype=complex) | |
2721 | for ih in range(nHei): |
|
3263 | for ih in range(nHei): | |
2722 | for ifreq in range(nProf): |
|
3264 | for ifreq in range(nProf): | |
2723 | for ich in range(nChan): |
|
3265 | for ich in range(nChan): | |
2724 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) |
|
3266 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) | |
2725 | valid = (numpy.isfinite(tmp)).nonzero() |
|
3267 | valid = (numpy.isfinite(tmp)).nonzero() | |
2726 | if len(valid[0]) > 0: |
|
3268 | if len(valid[0]) > 0: | |
2727 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
3269 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
2728 |
|
3270 | |||
2729 | for icr in range(nPairs): |
|
3271 | for icr in range(nPairs): | |
2730 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) |
|
3272 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) | |
2731 | valid = (numpy.isfinite(tmp)).nonzero() |
|
3273 | valid = (numpy.isfinite(tmp)).nonzero() | |
2732 | if len(valid[0]) > 0: |
|
3274 | if len(valid[0]) > 0: | |
2733 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
3275 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
2734 | #self.__dataReady= True |
|
3276 | #self.__dataReady= True | |
2735 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra |
|
3277 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra | |
2736 | #if not self.__dataReady: |
|
3278 | #if not self.__dataReady: | |
2737 | #return None, None |
|
3279 | #return None, None | |
2738 | return out_spectra, out_cspectra,sat_spectra,sat_cspectra |
|
3280 | return out_spectra, out_cspectra,sat_spectra,sat_cspectra | |
2739 | def REM_ISOLATED_POINTS(self,array,rth): |
|
3281 | def REM_ISOLATED_POINTS(self,array,rth): | |
2740 | # import matplotlib.pyplot as plt |
|
3282 | # import matplotlib.pyplot as plt | |
2741 | if rth == None : rth = 4 |
|
3283 | if rth == None : rth = 4 | |
2742 |
|
3284 | |||
2743 | num_prof = len(array[0,:,0]) |
|
3285 | num_prof = len(array[0,:,0]) | |
2744 | num_hei = len(array[0,0,:]) |
|
3286 | num_hei = len(array[0,0,:]) | |
2745 | n2d = len(array[:,0,0]) |
|
3287 | n2d = len(array[:,0,0]) | |
2746 |
|
3288 | |||
2747 | for ii in range(n2d) : |
|
3289 | for ii in range(n2d) : | |
2748 | #print ii,n2d |
|
3290 | #print ii,n2d | |
2749 | tmp = array[ii,:,:] |
|
3291 | tmp = array[ii,:,:] | |
2750 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
3292 | #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
2751 |
|
3293 | |||
2752 | # fig = plt.figure(figsize=(6,5)) |
|
3294 | # fig = plt.figure(figsize=(6,5)) | |
2753 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
3295 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
2754 | # ax = fig.add_axes([left, bottom, width, height]) |
|
3296 | # ax = fig.add_axes([left, bottom, width, height]) | |
2755 | # x = range(num_prof) |
|
3297 | # x = range(num_prof) | |
2756 | # y = range(num_hei) |
|
3298 | # y = range(num_hei) | |
2757 | # cp = ax.contour(y,x,tmp) |
|
3299 | # cp = ax.contour(y,x,tmp) | |
2758 | # ax.clabel(cp, inline=True,fontsize=10) |
|
3300 | # ax.clabel(cp, inline=True,fontsize=10) | |
2759 | # plt.show() |
|
3301 | # plt.show() | |
2760 |
|
3302 | |||
2761 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
3303 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
2762 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
3304 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |
2763 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
3305 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
2764 | indxs2 = (tmp > 0).nonzero() |
|
3306 | indxs2 = (tmp > 0).nonzero() | |
2765 |
|
3307 | |||
2766 | indxs1 = (indxs1[0]) |
|
3308 | indxs1 = (indxs1[0]) | |
2767 | indxs2 = indxs2[0] |
|
3309 | indxs2 = indxs2[0] | |
2768 | #indxs1 = numpy.array(indxs1[0]) |
|
3310 | #indxs1 = numpy.array(indxs1[0]) | |
2769 | #indxs2 = numpy.array(indxs2[0]) |
|
3311 | #indxs2 = numpy.array(indxs2[0]) | |
2770 | indxs = None |
|
3312 | indxs = None | |
2771 | #print indxs1 , indxs2 |
|
3313 | #print indxs1 , indxs2 | |
2772 | for iv in range(len(indxs2)): |
|
3314 | for iv in range(len(indxs2)): | |
2773 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
3315 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
2774 | #print len(indxs2), indv |
|
3316 | #print len(indxs2), indv | |
2775 | if len(indv[0]) > 0 : |
|
3317 | if len(indv[0]) > 0 : | |
2776 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
3318 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
2777 | # print indxs |
|
3319 | # print indxs | |
2778 | indxs = indxs[1:] |
|
3320 | indxs = indxs[1:] | |
2779 | #print indxs, len(indxs) |
|
3321 | #print indxs, len(indxs) | |
2780 | if len(indxs) < 4 : |
|
3322 | if len(indxs) < 4 : | |
2781 | array[ii,:,:] = 0. |
|
3323 | array[ii,:,:] = 0. | |
2782 | return |
|
3324 | return | |
2783 |
|
3325 | |||
2784 | xpos = numpy.mod(indxs ,num_hei) |
|
3326 | xpos = numpy.mod(indxs ,num_hei) | |
2785 | ypos = (indxs / num_hei) |
|
3327 | ypos = (indxs / num_hei) | |
2786 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
3328 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
2787 | #print sx |
|
3329 | #print sx | |
2788 | xpos = xpos[sx] |
|
3330 | xpos = xpos[sx] | |
2789 | ypos = ypos[sx] |
|
3331 | ypos = ypos[sx] | |
2790 |
|
3332 | |||
2791 | # *********************************** Cleaning isolated points ********************************** |
|
3333 | # *********************************** Cleaning isolated points ********************************** | |
2792 | ic = 0 |
|
3334 | ic = 0 | |
2793 | while True : |
|
3335 | while True : | |
2794 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
3336 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
2795 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
3337 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
2796 | #plt.plot(r) |
|
3338 | #plt.plot(r) | |
2797 | #plt.show() |
|
3339 | #plt.show() | |
2798 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
3340 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
2799 | no_coh2 = (r <= rth).nonzero() |
|
3341 | no_coh2 = (r <= rth).nonzero() | |
2800 | #print r, no_coh1, no_coh2 |
|
3342 | #print r, no_coh1, no_coh2 | |
2801 | no_coh1 = numpy.array(no_coh1[0]) |
|
3343 | no_coh1 = numpy.array(no_coh1[0]) | |
2802 | no_coh2 = numpy.array(no_coh2[0]) |
|
3344 | no_coh2 = numpy.array(no_coh2[0]) | |
2803 | no_coh = None |
|
3345 | no_coh = None | |
2804 | #print valid1 , valid2 |
|
3346 | #print valid1 , valid2 | |
2805 | for iv in range(len(no_coh2)): |
|
3347 | for iv in range(len(no_coh2)): | |
2806 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
3348 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
2807 | if len(indv[0]) > 0 : |
|
3349 | if len(indv[0]) > 0 : | |
2808 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
3350 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
2809 | no_coh = no_coh[1:] |
|
3351 | no_coh = no_coh[1:] | |
2810 | #print len(no_coh), no_coh |
|
3352 | #print len(no_coh), no_coh | |
2811 | if len(no_coh) < 4 : |
|
3353 | if len(no_coh) < 4 : | |
2812 | #print xpos[ic], ypos[ic], ic |
|
3354 | #print xpos[ic], ypos[ic], ic | |
2813 | # plt.plot(r) |
|
3355 | # plt.plot(r) | |
2814 | # plt.show() |
|
3356 | # plt.show() | |
2815 | xpos[ic] = numpy.nan |
|
3357 | xpos[ic] = numpy.nan | |
2816 | ypos[ic] = numpy.nan |
|
3358 | ypos[ic] = numpy.nan | |
2817 |
|
3359 | |||
2818 | ic = ic + 1 |
|
3360 | ic = ic + 1 | |
2819 | if (ic == len(indxs)) : |
|
3361 | if (ic == len(indxs)) : | |
2820 | break |
|
3362 | break | |
2821 | #print( xpos, ypos) |
|
3363 | #print( xpos, ypos) | |
2822 |
|
3364 | |||
2823 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
3365 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
2824 | #print indxs[0] |
|
3366 | #print indxs[0] | |
2825 | if len(indxs[0]) < 4 : |
|
3367 | if len(indxs[0]) < 4 : | |
2826 | array[ii,:,:] = 0. |
|
3368 | array[ii,:,:] = 0. | |
2827 | return |
|
3369 | return | |
2828 |
|
3370 | |||
2829 | xpos = xpos[indxs[0]] |
|
3371 | xpos = xpos[indxs[0]] | |
2830 | ypos = ypos[indxs[0]] |
|
3372 | ypos = ypos[indxs[0]] | |
2831 | for i in range(0,len(ypos)): |
|
3373 | for i in range(0,len(ypos)): | |
2832 | ypos[i]=int(ypos[i]) |
|
3374 | ypos[i]=int(ypos[i]) | |
2833 | junk = tmp |
|
3375 | junk = tmp | |
2834 | tmp = junk*0.0 |
|
3376 | tmp = junk*0.0 | |
2835 |
|
3377 | |||
2836 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
3378 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
2837 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
3379 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
2838 |
|
3380 | |||
2839 | #print array.shape |
|
3381 | #print array.shape | |
2840 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
3382 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
2841 | #print tmp.shape |
|
3383 | #print tmp.shape | |
2842 |
|
3384 | |||
2843 | # fig = plt.figure(figsize=(6,5)) |
|
3385 | # fig = plt.figure(figsize=(6,5)) | |
2844 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
3386 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
2845 | # ax = fig.add_axes([left, bottom, width, height]) |
|
3387 | # ax = fig.add_axes([left, bottom, width, height]) | |
2846 | # x = range(num_prof) |
|
3388 | # x = range(num_prof) | |
2847 | # y = range(num_hei) |
|
3389 | # y = range(num_hei) | |
2848 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
3390 | # cp = ax.contour(y,x,array[ii,:,:]) | |
2849 | # ax.clabel(cp, inline=True,fontsize=10) |
|
3391 | # ax.clabel(cp, inline=True,fontsize=10) | |
2850 | # plt.show() |
|
3392 | # plt.show() | |
2851 | return array |
|
3393 | return array | |
2852 | def moments(self,doppler,yarray,npoints): |
|
3394 | def moments(self,doppler,yarray,npoints): | |
2853 | ytemp = yarray |
|
3395 | ytemp = yarray | |
2854 | #val = WHERE(ytemp GT 0,cval) |
|
3396 | #val = WHERE(ytemp GT 0,cval) | |
2855 | #if cval == 0 : val = range(npoints-1) |
|
3397 | #if cval == 0 : val = range(npoints-1) | |
2856 | val = (ytemp > 0).nonzero() |
|
3398 | val = (ytemp > 0).nonzero() | |
2857 | val = val[0] |
|
3399 | val = val[0] | |
2858 | #print('hvalid:',hvalid) |
|
3400 | #print('hvalid:',hvalid) | |
2859 | #print('valid', valid) |
|
3401 | #print('valid', valid) | |
2860 | if len(val) == 0 : val = range(npoints-1) |
|
3402 | if len(val) == 0 : val = range(npoints-1) | |
2861 |
|
3403 | |||
2862 | ynew = 0.5*(ytemp[val[0]]+ytemp[val[len(val)-1]]) |
|
3404 | ynew = 0.5*(ytemp[val[0]]+ytemp[val[len(val)-1]]) | |
2863 | ytemp[len(ytemp):] = [ynew] |
|
3405 | ytemp[len(ytemp):] = [ynew] | |
2864 |
|
3406 | |||
2865 | index = 0 |
|
3407 | index = 0 | |
2866 | index = numpy.argmax(ytemp) |
|
3408 | index = numpy.argmax(ytemp) | |
2867 | ytemp = numpy.roll(ytemp,int(npoints/2)-1-index) |
|
3409 | ytemp = numpy.roll(ytemp,int(npoints/2)-1-index) | |
2868 | ytemp = ytemp[0:npoints-1] |
|
3410 | ytemp = ytemp[0:npoints-1] | |
2869 |
|
3411 | |||
2870 | fmom = numpy.sum(doppler*ytemp)/numpy.sum(ytemp)+(index-(npoints/2-1))*numpy.abs(doppler[1]-doppler[0]) |
|
3412 | fmom = numpy.sum(doppler*ytemp)/numpy.sum(ytemp)+(index-(npoints/2-1))*numpy.abs(doppler[1]-doppler[0]) | |
2871 | smom = numpy.sum(doppler*doppler*ytemp)/numpy.sum(ytemp) |
|
3413 | smom = numpy.sum(doppler*doppler*ytemp)/numpy.sum(ytemp) | |
2872 | return [fmom,numpy.sqrt(smom)] |
|
3414 | return [fmom,numpy.sqrt(smom)] | |
2873 | # ********************************************************************************************** |
|
3415 | # ********************************************************************************************** | |
2874 | index = 0 |
|
3416 | index = 0 | |
2875 | fint = 0 |
|
3417 | fint = 0 | |
2876 | buffer = 0 |
|
3418 | buffer = 0 | |
2877 | buffer2 = 0 |
|
3419 | buffer2 = 0 | |
2878 | buffer3 = 0 |
|
3420 | buffer3 = 0 | |
2879 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
3421 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
2880 | nChannels = dataOut.nChannels |
|
3422 | nChannels = dataOut.nChannels | |
2881 | nHeights= dataOut.heightList.size |
|
3423 | nHeights= dataOut.heightList.size | |
2882 | nProf = dataOut.nProfiles |
|
3424 | nProf = dataOut.nProfiles | |
2883 | tini=time.localtime(dataOut.utctime) |
|
3425 | tini=time.localtime(dataOut.utctime) | |
2884 | if (tini.tm_min % 5) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
3426 | if (tini.tm_min % 5) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
2885 | # print tini.tm_min |
|
3427 | # print tini.tm_min | |
2886 | self.index = 0 |
|
3428 | self.index = 0 | |
2887 | jspc = self.buffer |
|
3429 | jspc = self.buffer | |
2888 | jcspc = self.buffer2 |
|
3430 | jcspc = self.buffer2 | |
2889 | jnoise = self.buffer3 |
|
3431 | jnoise = self.buffer3 | |
2890 | self.buffer = dataOut.data_spc |
|
3432 | self.buffer = dataOut.data_spc | |
2891 | self.buffer2 = dataOut.data_cspc |
|
3433 | self.buffer2 = dataOut.data_cspc | |
2892 | self.buffer3 = dataOut.noise |
|
3434 | self.buffer3 = dataOut.noise | |
2893 | self.fint = 1 |
|
3435 | self.fint = 1 | |
2894 | if numpy.any(jspc) : |
|
3436 | if numpy.any(jspc) : | |
2895 | jspc= numpy.reshape(jspc,(int(len(jspc)/4),nChannels,nProf,nHeights)) |
|
3437 | jspc= numpy.reshape(jspc,(int(len(jspc)/4),nChannels,nProf,nHeights)) | |
2896 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/2),2,nProf,nHeights)) |
|
3438 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/2),2,nProf,nHeights)) | |
2897 | jnoise= numpy.reshape(jnoise,(int(len(jnoise)/4),nChannels)) |
|
3439 | jnoise= numpy.reshape(jnoise,(int(len(jnoise)/4),nChannels)) | |
2898 | else: |
|
3440 | else: | |
2899 | dataOut.flagNoData = True |
|
3441 | dataOut.flagNoData = True | |
2900 | return dataOut |
|
3442 | return dataOut | |
2901 | else : |
|
3443 | else : | |
2902 | if (tini.tm_min % 5) == 0 : self.fint = 1 |
|
3444 | if (tini.tm_min % 5) == 0 : self.fint = 1 | |
2903 | else : self.fint = 0 |
|
3445 | else : self.fint = 0 | |
2904 | self.index += 1 |
|
3446 | self.index += 1 | |
2905 | if numpy.any(self.buffer): |
|
3447 | if numpy.any(self.buffer): | |
2906 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
3448 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
2907 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
3449 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
2908 | self.buffer3 = numpy.concatenate((self.buffer3,dataOut.noise), axis=0) |
|
3450 | self.buffer3 = numpy.concatenate((self.buffer3,dataOut.noise), axis=0) | |
2909 | else: |
|
3451 | else: | |
2910 | self.buffer = dataOut.data_spc |
|
3452 | self.buffer = dataOut.data_spc | |
2911 | self.buffer2 = dataOut.data_cspc |
|
3453 | self.buffer2 = dataOut.data_cspc | |
2912 | self.buffer3 = dataOut.noise |
|
3454 | self.buffer3 = dataOut.noise | |
2913 | dataOut.flagNoData = True |
|
3455 | dataOut.flagNoData = True | |
2914 | return dataOut |
|
3456 | return dataOut | |
2915 | if path != None: |
|
3457 | if path != None: | |
2916 | sys.path.append(path) |
|
3458 | sys.path.append(path) | |
2917 | self.library = importlib.import_module(file) |
|
3459 | self.library = importlib.import_module(file) | |
2918 |
|
3460 | |||
2919 | #To be inserted as a parameter |
|
3461 | #To be inserted as a parameter | |
2920 | groupArray = numpy.array(groupList) |
|
3462 | groupArray = numpy.array(groupList) | |
2921 | #groupArray = numpy.array([[0,1],[2,3]]) |
|
3463 | #groupArray = numpy.array([[0,1],[2,3]]) | |
2922 | dataOut.groupList = groupArray |
|
3464 | dataOut.groupList = groupArray | |
2923 |
|
3465 | |||
2924 | nGroups = groupArray.shape[0] |
|
3466 | nGroups = groupArray.shape[0] | |
2925 | nChannels = dataOut.nChannels |
|
3467 | nChannels = dataOut.nChannels | |
2926 | nHeights = dataOut.heightList.size |
|
3468 | nHeights = dataOut.heightList.size | |
2927 |
|
3469 | |||
2928 | #Parameters Array |
|
3470 | #Parameters Array | |
2929 | dataOut.data_param = None |
|
3471 | dataOut.data_param = None | |
2930 | dataOut.data_paramC = None |
|
3472 | dataOut.data_paramC = None | |
2931 |
|
3473 | |||
2932 | #Set constants |
|
3474 | #Set constants | |
2933 | constants = self.library.setConstants(dataOut) |
|
3475 | constants = self.library.setConstants(dataOut) | |
2934 | dataOut.constants = constants |
|
3476 | dataOut.constants = constants | |
2935 | M = dataOut.normFactor |
|
3477 | M = dataOut.normFactor | |
2936 | N = dataOut.nFFTPoints |
|
3478 | N = dataOut.nFFTPoints | |
2937 | ippSeconds = dataOut.ippSeconds |
|
3479 | ippSeconds = dataOut.ippSeconds | |
2938 | K = dataOut.nIncohInt |
|
3480 | K = dataOut.nIncohInt | |
2939 | pairsArray = numpy.array(dataOut.pairsList) |
|
3481 | pairsArray = numpy.array(dataOut.pairsList) | |
2940 |
|
3482 | |||
2941 | snrth= 20 |
|
3483 | snrth= 20 | |
2942 | spectra = dataOut.data_spc |
|
3484 | spectra = dataOut.data_spc | |
2943 | cspectra = dataOut.data_cspc |
|
3485 | cspectra = dataOut.data_cspc | |
2944 | nProf = dataOut.nProfiles |
|
3486 | nProf = dataOut.nProfiles | |
2945 | heights = dataOut.heightList |
|
3487 | heights = dataOut.heightList | |
2946 | nHei = len(heights) |
|
3488 | nHei = len(heights) | |
2947 | channels = dataOut.channelList |
|
3489 | channels = dataOut.channelList | |
2948 | nChan = len(channels) |
|
3490 | nChan = len(channels) | |
2949 | nIncohInt = dataOut.nIncohInt |
|
3491 | nIncohInt = dataOut.nIncohInt | |
2950 | crosspairs = dataOut.groupList |
|
3492 | crosspairs = dataOut.groupList | |
2951 | noise = dataOut.noise |
|
3493 | noise = dataOut.noise | |
2952 | jnoise = jnoise/N |
|
3494 | jnoise = jnoise/N | |
2953 | noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) |
|
3495 | noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) | |
2954 | power = numpy.sum(spectra, axis=1) |
|
3496 | power = numpy.sum(spectra, axis=1) | |
2955 | nPairs = len(crosspairs) |
|
3497 | nPairs = len(crosspairs) | |
2956 | absc = dataOut.abscissaList[:-1] |
|
3498 | absc = dataOut.abscissaList[:-1] | |
2957 |
|
3499 | |||
2958 | if not self.isConfig: |
|
3500 | if not self.isConfig: | |
2959 | self.isConfig = True |
|
3501 | self.isConfig = True | |
2960 |
|
3502 | |||
2961 | index = tini.tm_hour*12+tini.tm_min/5 |
|
3503 | index = tini.tm_hour*12+tini.tm_min/5 | |
2962 | jspc = jspc/N/N |
|
3504 | jspc = jspc/N/N | |
2963 | jcspc = jcspc/N/N |
|
3505 | jcspc = jcspc/N/N | |
2964 | tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.CleanRayleigh(dataOut,jspc,jcspc,2) |
|
3506 | tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.CleanRayleigh(dataOut,jspc,jcspc,2) | |
2965 | jspectra = tmp_spectra*len(jspc[:,0,0,0]) |
|
3507 | jspectra = tmp_spectra*len(jspc[:,0,0,0]) | |
2966 | jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) |
|
3508 | jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) | |
2967 | my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver = self.__DiffCoherent(jspectra, jcspectra, dataOut, noise, snrth, None, None) |
|
3509 | my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver = self.__DiffCoherent(jspectra, jcspectra, dataOut, noise, snrth, None, None) | |
2968 | clean_coh_spectra, clean_coh_cspectra, clean_coh_aver = self.__CleanCoherent(snrth, coh_spectra, coh_cspectra, coh_aver, dataOut, noise,1,index) |
|
3510 | clean_coh_spectra, clean_coh_cspectra, clean_coh_aver = self.__CleanCoherent(snrth, coh_spectra, coh_cspectra, coh_aver, dataOut, noise,1,index) | |
2969 | dataOut.data_spc = incoh_spectra |
|
3511 | dataOut.data_spc = incoh_spectra | |
2970 | dataOut.data_cspc = incoh_cspectra |
|
3512 | dataOut.data_cspc = incoh_cspectra | |
2971 |
|
3513 | |||
2972 | clean_num_aver = incoh_aver*len(jspc[:,0,0,0]) |
|
3514 | clean_num_aver = incoh_aver*len(jspc[:,0,0,0]) | |
2973 | coh_num_aver = clean_coh_aver*len(jspc[:,0,0,0]) |
|
3515 | coh_num_aver = clean_coh_aver*len(jspc[:,0,0,0]) | |
2974 | #List of possible combinations |
|
3516 | #List of possible combinations | |
2975 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
3517 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
2976 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
3518 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
2977 |
|
3519 | |||
2978 | if getSNR: |
|
3520 | if getSNR: | |
2979 | listChannels = groupArray.reshape((groupArray.size)) |
|
3521 | listChannels = groupArray.reshape((groupArray.size)) | |
2980 | listChannels.sort() |
|
3522 | listChannels.sort() | |
2981 | dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels]) |
|
3523 | dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels]) | |
2982 | if dataOut.data_paramC is None: |
|
3524 | if dataOut.data_paramC is None: | |
2983 | dataOut.data_paramC = numpy.zeros((nGroups*4, nHeights,2))*numpy.nan |
|
3525 | dataOut.data_paramC = numpy.zeros((nGroups*4, nHeights,2))*numpy.nan | |
2984 | for i in range(nGroups): |
|
3526 | for i in range(nGroups): | |
2985 | coord = groupArray[i,:] |
|
3527 | coord = groupArray[i,:] | |
2986 | #Input data array |
|
3528 | #Input data array | |
2987 | data = dataOut.data_spc[coord,:,:]/(M*N) |
|
3529 | data = dataOut.data_spc[coord,:,:]/(M*N) | |
2988 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
3530 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
2989 |
|
3531 | |||
2990 | #Cross Spectra data array for Covariance Matrixes |
|
3532 | #Cross Spectra data array for Covariance Matrixes | |
2991 | ind = 0 |
|
3533 | ind = 0 | |
2992 | for pairs in listComb: |
|
3534 | for pairs in listComb: | |
2993 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
3535 | pairsSel = numpy.array([coord[x],coord[y]]) | |
2994 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
3536 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
2995 | ind += 1 |
|
3537 | ind += 1 | |
2996 | dataCross = dataOut.data_cspc[indCross,:,:]/(M*N) |
|
3538 | dataCross = dataOut.data_cspc[indCross,:,:]/(M*N) | |
2997 | dataCross = dataCross**2 |
|
3539 | dataCross = dataCross**2 | |
2998 | nhei = nHeights |
|
3540 | nhei = nHeights | |
2999 | poweri = numpy.sum(dataOut.data_spc[:,1:nProf-0,:],axis=1)/clean_num_aver[:,:] |
|
3541 | poweri = numpy.sum(dataOut.data_spc[:,1:nProf-0,:],axis=1)/clean_num_aver[:,:] | |
3000 | if i == 0 : my_noises = numpy.zeros(4,dtype=float) #FLTARR(4) |
|
3542 | if i == 0 : my_noises = numpy.zeros(4,dtype=float) #FLTARR(4) | |
3001 | n0i = numpy.nanmin(poweri[0+i*2,0:nhei-0])/(nProf-1) |
|
3543 | n0i = numpy.nanmin(poweri[0+i*2,0:nhei-0])/(nProf-1) | |
3002 | n1i = numpy.nanmin(poweri[1+i*2,0:nhei-0])/(nProf-1) |
|
3544 | n1i = numpy.nanmin(poweri[1+i*2,0:nhei-0])/(nProf-1) | |
3003 | n0 = n0i |
|
3545 | n0 = n0i | |
3004 | n1= n1i |
|
3546 | n1= n1i | |
3005 | my_noises[2*i+0] = n0 |
|
3547 | my_noises[2*i+0] = n0 | |
3006 | my_noises[2*i+1] = n1 |
|
3548 | my_noises[2*i+1] = n1 | |
3007 | snrth = -16.0 |
|
3549 | snrth = -16.0 | |
3008 | snrth = 10**(snrth/10.0) |
|
3550 | snrth = 10**(snrth/10.0) | |
3009 |
|
3551 | |||
3010 | for h in range(nHeights): |
|
3552 | for h in range(nHeights): | |
3011 | d = data[:,h] |
|
3553 | d = data[:,h] | |
3012 | smooth = clean_num_aver[i+1,h] #dataOut.data_spc[:,1:nProf-0,:] |
|
3554 | smooth = clean_num_aver[i+1,h] #dataOut.data_spc[:,1:nProf-0,:] | |
3013 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth |
|
3555 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth | |
3014 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth |
|
3556 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth | |
3015 | signal0 = signalpn0-n0 |
|
3557 | signal0 = signalpn0-n0 | |
3016 | signal1 = signalpn1-n1 |
|
3558 | signal1 = signalpn1-n1 | |
3017 | snr0 = numpy.sum(signal0/n0)/(nProf-1) |
|
3559 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |
3018 | snr1 = numpy.sum(signal1/n1)/(nProf-1) |
|
3560 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |
3019 | if snr0 > snrth and snr1 > snrth and clean_num_aver[i+1,h] > 0 : |
|
3561 | if snr0 > snrth and snr1 > snrth and clean_num_aver[i+1,h] > 0 : | |
3020 | #Covariance Matrix |
|
3562 | #Covariance Matrix | |
3021 | D = numpy.diag(d**2) |
|
3563 | D = numpy.diag(d**2) | |
3022 | ind = 0 |
|
3564 | ind = 0 | |
3023 | for pairs in listComb: |
|
3565 | for pairs in listComb: | |
3024 | #Coordinates in Covariance Matrix |
|
3566 | #Coordinates in Covariance Matrix | |
3025 | x = pairs[0] |
|
3567 | x = pairs[0] | |
3026 | y = pairs[1] |
|
3568 | y = pairs[1] | |
3027 | #Channel Index |
|
3569 | #Channel Index | |
3028 | S12 = dataCross[ind,:,h] |
|
3570 | S12 = dataCross[ind,:,h] | |
3029 | D12 = numpy.diag(S12) |
|
3571 | D12 = numpy.diag(S12) | |
3030 | #Completing Covariance Matrix with Cross Spectras |
|
3572 | #Completing Covariance Matrix with Cross Spectras | |
3031 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
3573 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
3032 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
3574 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
3033 | ind += 1 |
|
3575 | ind += 1 | |
3034 | diagD = numpy.zeros(256) |
|
3576 | diagD = numpy.zeros(256) | |
3035 | if h == 17 : |
|
3577 | if h == 17 : | |
3036 | for ii in range(256): diagD[ii] = D[ii,ii] |
|
3578 | for ii in range(256): diagD[ii] = D[ii,ii] | |
3037 | #Dinv=numpy.linalg.inv(D) |
|
3579 | #Dinv=numpy.linalg.inv(D) | |
3038 | #L=numpy.linalg.cholesky(Dinv) |
|
3580 | #L=numpy.linalg.cholesky(Dinv) | |
3039 | try: |
|
3581 | try: | |
3040 | Dinv=numpy.linalg.inv(D) |
|
3582 | Dinv=numpy.linalg.inv(D) | |
3041 | L=numpy.linalg.cholesky(Dinv) |
|
3583 | L=numpy.linalg.cholesky(Dinv) | |
3042 | except: |
|
3584 | except: | |
3043 | Dinv = D*numpy.nan |
|
3585 | Dinv = D*numpy.nan | |
3044 | L= D*numpy.nan |
|
3586 | L= D*numpy.nan | |
3045 | LT=L.T |
|
3587 | LT=L.T | |
3046 |
|
3588 | |||
3047 | dp = numpy.dot(LT,d) |
|
3589 | dp = numpy.dot(LT,d) | |
3048 |
|
3590 | |||
3049 | #Initial values |
|
3591 | #Initial values | |
3050 | data_spc = dataOut.data_spc[coord,:,h] |
|
3592 | data_spc = dataOut.data_spc[coord,:,h] | |
3051 |
|
3593 | |||
3052 | if (h>0)and(error1[3]<5): |
|
3594 | if (h>0)and(error1[3]<5): | |
3053 | p0 = dataOut.data_param[i,:,h-1] |
|
3595 | p0 = dataOut.data_param[i,:,h-1] | |
3054 | else: |
|
3596 | else: | |
3055 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants))# sin el i(data_spc, constants, i) |
|
3597 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants))# sin el i(data_spc, constants, i) | |
3056 | try: |
|
3598 | try: | |
3057 | #Least Squares |
|
3599 | #Least Squares | |
3058 | #print (dp,LT,constants) |
|
3600 | #print (dp,LT,constants) | |
3059 | #value =self.__residFunction(p0,dp,LT,constants) |
|
3601 | #value =self.__residFunction(p0,dp,LT,constants) | |
3060 | #print ("valueREADY",value.shape, type(value)) |
|
3602 | #print ("valueREADY",value.shape, type(value)) | |
3061 | #optimize.leastsq(value) |
|
3603 | #optimize.leastsq(value) | |
3062 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
3604 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
3063 | #minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
3605 | #minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
3064 | #Chi square error |
|
3606 | #Chi square error | |
3065 | #print(minp,covp.infodict,mesg,ier) |
|
3607 | #print(minp,covp.infodict,mesg,ier) | |
3066 | #print("REALIZA OPTIMIZ") |
|
3608 | #print("REALIZA OPTIMIZ") | |
3067 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
3609 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
3068 | #Error with Jacobian |
|
3610 | #Error with Jacobian | |
3069 | error1 = self.library.errorFunction(minp,constants,LT) |
|
3611 | error1 = self.library.errorFunction(minp,constants,LT) | |
3070 | # print self.__residFunction(p0,dp,LT, constants) |
|
3612 | # print self.__residFunction(p0,dp,LT, constants) | |
3071 | # print infodict['fvec'] |
|
3613 | # print infodict['fvec'] | |
3072 | # print self.__residFunction(minp,dp,LT,constants) |
|
3614 | # print self.__residFunction(minp,dp,LT,constants) | |
3073 |
|
3615 | |||
3074 | except: |
|
3616 | except: | |
3075 | minp = p0*numpy.nan |
|
3617 | minp = p0*numpy.nan | |
3076 | error0 = numpy.nan |
|
3618 | error0 = numpy.nan | |
3077 | error1 = p0*numpy.nan |
|
3619 | error1 = p0*numpy.nan | |
3078 | #print ("EXCEPT 0000000000") |
|
3620 | #print ("EXCEPT 0000000000") | |
3079 | # s_sq = (self.__residFunction(minp,dp,LT,constants)).sum()/(len(dp)-len(p0)) |
|
3621 | # s_sq = (self.__residFunction(minp,dp,LT,constants)).sum()/(len(dp)-len(p0)) | |
3080 | # covp = covp*s_sq |
|
3622 | # covp = covp*s_sq | |
3081 | # #print("TRY___________________________________________1") |
|
3623 | # #print("TRY___________________________________________1") | |
3082 | # error = [] |
|
3624 | # error = [] | |
3083 | # for ip in range(len(minp)): |
|
3625 | # for ip in range(len(minp)): | |
3084 | # try: |
|
3626 | # try: | |
3085 | # error.append(numpy.absolute(covp[ip][ip])**0.5) |
|
3627 | # error.append(numpy.absolute(covp[ip][ip])**0.5) | |
3086 | # except: |
|
3628 | # except: | |
3087 | # error.append( 0.00 ) |
|
3629 | # error.append( 0.00 ) | |
3088 | else : |
|
3630 | else : | |
3089 | data_spc = dataOut.data_spc[coord,:,h] |
|
3631 | data_spc = dataOut.data_spc[coord,:,h] | |
3090 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants)) |
|
3632 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants)) | |
3091 | minp = p0*numpy.nan |
|
3633 | minp = p0*numpy.nan | |
3092 | error0 = numpy.nan |
|
3634 | error0 = numpy.nan | |
3093 | error1 = p0*numpy.nan |
|
3635 | error1 = p0*numpy.nan | |
3094 | #Save |
|
3636 | #Save | |
3095 | if dataOut.data_param is None: |
|
3637 | if dataOut.data_param is None: | |
3096 | dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
3638 | dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
3097 | dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
3639 | dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
3098 |
|
3640 | |||
3099 | dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
3641 | dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
3100 | dataOut.data_param[i,:,h] = minp |
|
3642 | dataOut.data_param[i,:,h] = minp | |
3101 |
|
3643 | |||
3102 | for ht in range(nHeights-1) : |
|
3644 | for ht in range(nHeights-1) : | |
3103 | smooth = coh_num_aver[i+1,ht] #datc[0,ht,0,beam] |
|
3645 | smooth = coh_num_aver[i+1,ht] #datc[0,ht,0,beam] | |
3104 | dataOut.data_paramC[4*i,ht,1] = smooth |
|
3646 | dataOut.data_paramC[4*i,ht,1] = smooth | |
3105 | signalpn0 = (coh_spectra[i*2 ,1:(nProf-0),ht])/smooth #coh_spectra |
|
3647 | signalpn0 = (coh_spectra[i*2 ,1:(nProf-0),ht])/smooth #coh_spectra | |
3106 | signalpn1 = (coh_spectra[i*2+1,1:(nProf-0),ht])/smooth |
|
3648 | signalpn1 = (coh_spectra[i*2+1,1:(nProf-0),ht])/smooth | |
3107 |
|
3649 | |||
3108 | #val0 = WHERE(signalpn0 > 0,cval0) |
|
3650 | #val0 = WHERE(signalpn0 > 0,cval0) | |
3109 | val0 = (signalpn0 > 0).nonzero() |
|
3651 | val0 = (signalpn0 > 0).nonzero() | |
3110 | val0 = val0[0] |
|
3652 | val0 = val0[0] | |
3111 | #print('hvalid:',hvalid) |
|
3653 | #print('hvalid:',hvalid) | |
3112 | #print('valid', valid) |
|
3654 | #print('valid', valid) | |
3113 | if len(val0) == 0 : val0_npoints = nProf |
|
3655 | if len(val0) == 0 : val0_npoints = nProf | |
3114 | else : val0_npoints = len(val0) |
|
3656 | else : val0_npoints = len(val0) | |
3115 |
|
3657 | |||
3116 | #val1 = WHERE(signalpn1 > 0,cval1) |
|
3658 | #val1 = WHERE(signalpn1 > 0,cval1) | |
3117 | val1 = (signalpn1 > 0).nonzero() |
|
3659 | val1 = (signalpn1 > 0).nonzero() | |
3118 | val1 = val1[0] |
|
3660 | val1 = val1[0] | |
3119 | if len(val1) == 0 : val1_npoints = nProf |
|
3661 | if len(val1) == 0 : val1_npoints = nProf | |
3120 | else : val1_npoints = len(val1) |
|
3662 | else : val1_npoints = len(val1) | |
3121 |
|
3663 | |||
3122 | dataOut.data_paramC[0+4*i,ht,0] = numpy.sum((signalpn0/val0_npoints))/n0 |
|
3664 | dataOut.data_paramC[0+4*i,ht,0] = numpy.sum((signalpn0/val0_npoints))/n0 | |
3123 | dataOut.data_paramC[1+4*i,ht,0] = numpy.sum((signalpn1/val1_npoints))/n1 |
|
3665 | dataOut.data_paramC[1+4*i,ht,0] = numpy.sum((signalpn1/val1_npoints))/n1 | |
3124 |
|
3666 | |||
3125 | signal0 = (signalpn0-n0) # > 0 |
|
3667 | signal0 = (signalpn0-n0) # > 0 | |
3126 | vali = (signal0 < 0).nonzero() |
|
3668 | vali = (signal0 < 0).nonzero() | |
3127 | vali = vali[0] |
|
3669 | vali = vali[0] | |
3128 | if len(vali) > 0 : signal0[vali] = 0 |
|
3670 | if len(vali) > 0 : signal0[vali] = 0 | |
3129 | signal1 = (signalpn1-n1) #> 0 |
|
3671 | signal1 = (signalpn1-n1) #> 0 | |
3130 | vali = (signal1 < 0).nonzero() |
|
3672 | vali = (signal1 < 0).nonzero() | |
3131 | vali = vali[0] |
|
3673 | vali = vali[0] | |
3132 | if len(vali) > 0 : signal1[vali] = 0 |
|
3674 | if len(vali) > 0 : signal1[vali] = 0 | |
3133 | snr0 = numpy.sum(signal0/n0)/(nProf-1) |
|
3675 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |
3134 | snr1 = numpy.sum(signal1/n1)/(nProf-1) |
|
3676 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |
3135 | doppler = absc[1:] |
|
3677 | doppler = absc[1:] | |
3136 | if snr0 >= snrth and snr1 >= snrth and smooth : |
|
3678 | if snr0 >= snrth and snr1 >= snrth and smooth : | |
3137 | signalpn0_n0 = signalpn0 |
|
3679 | signalpn0_n0 = signalpn0 | |
3138 | signalpn0_n0[val0] = signalpn0[val0] - n0 |
|
3680 | signalpn0_n0[val0] = signalpn0[val0] - n0 | |
3139 | mom0 = self.moments(doppler,signalpn0-n0,nProf) |
|
3681 | mom0 = self.moments(doppler,signalpn0-n0,nProf) | |
3140 | # sigtmp= numpy.transpose(numpy.tile(signalpn0, [4,1])) |
|
3682 | # sigtmp= numpy.transpose(numpy.tile(signalpn0, [4,1])) | |
3141 | # momt= self.__calculateMoments( sigtmp, doppler , n0 ) |
|
3683 | # momt= self.__calculateMoments( sigtmp, doppler , n0 ) | |
3142 | signalpn1_n1 = signalpn1 |
|
3684 | signalpn1_n1 = signalpn1 | |
3143 | signalpn1_n1[val1] = signalpn1[val1] - n1 |
|
3685 | signalpn1_n1[val1] = signalpn1[val1] - n1 | |
3144 | mom1 = self.moments(doppler,signalpn1_n1,nProf) |
|
3686 | mom1 = self.moments(doppler,signalpn1_n1,nProf) | |
3145 | dataOut.data_paramC[2+4*i,ht,0] = (mom0[0]+mom1[0])/2. |
|
3687 | dataOut.data_paramC[2+4*i,ht,0] = (mom0[0]+mom1[0])/2. | |
3146 | dataOut.data_paramC[3+4*i,ht,0] = (mom0[1]+mom1[1])/2. |
|
3688 | dataOut.data_paramC[3+4*i,ht,0] = (mom0[1]+mom1[1])/2. | |
3147 | # if graph == 1 : |
|
3689 | # if graph == 1 : | |
3148 | # window, 13 |
|
3690 | # window, 13 | |
3149 | # plot,doppler,signalpn0 |
|
3691 | # plot,doppler,signalpn0 | |
3150 | # oplot,doppler,signalpn1,linest=1 |
|
3692 | # oplot,doppler,signalpn1,linest=1 | |
3151 | # oplot,mom0(0)*doppler/doppler,signalpn0 |
|
3693 | # oplot,mom0(0)*doppler/doppler,signalpn0 | |
3152 | # oplot,mom1(0)*doppler/doppler,signalpn1 |
|
3694 | # oplot,mom1(0)*doppler/doppler,signalpn1 | |
3153 | # print,interval/12.,beam,45+ht*15,snr0,snr1,mom0(0),mom1(0),mom0(1),mom1(1) |
|
3695 | # print,interval/12.,beam,45+ht*15,snr0,snr1,mom0(0),mom1(0),mom0(1),mom1(1) | |
3154 | #ENDIF |
|
3696 | #ENDIF | |
3155 | #ENDIF |
|
3697 | #ENDIF | |
3156 | #ENDFOR End height |
|
3698 | #ENDFOR End height | |
3157 |
|
3699 | |||
3158 | dataOut.data_spc = jspectra |
|
3700 | dataOut.data_spc = jspectra | |
3159 | if getSNR: |
|
3701 | if getSNR: | |
3160 | listChannels = groupArray.reshape((groupArray.size)) |
|
3702 | listChannels = groupArray.reshape((groupArray.size)) | |
3161 | listChannels.sort() |
|
3703 | listChannels.sort() | |
3162 |
|
3704 | |||
3163 | dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], my_noises[listChannels]) |
|
3705 | dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], my_noises[listChannels]) | |
3164 | return dataOut |
|
3706 | return dataOut | |
3165 |
|
3707 | |||
3166 | def __residFunction(self, p, dp, LT, constants): |
|
3708 | def __residFunction(self, p, dp, LT, constants): | |
3167 |
|
3709 | |||
3168 | fm = self.library.modelFunction(p, constants) |
|
3710 | fm = self.library.modelFunction(p, constants) | |
3169 | fmp=numpy.dot(LT,fm) |
|
3711 | fmp=numpy.dot(LT,fm) | |
3170 | return dp-fmp |
|
3712 | return dp-fmp | |
3171 |
|
3713 | |||
3172 | def __getSNR(self, z, noise): |
|
3714 | def __getSNR(self, z, noise): | |
3173 |
|
3715 | |||
3174 | avg = numpy.average(z, axis=1) |
|
3716 | avg = numpy.average(z, axis=1) | |
3175 | SNR = (avg.T-noise)/noise |
|
3717 | SNR = (avg.T-noise)/noise | |
3176 | SNR = SNR.T |
|
3718 | SNR = SNR.T | |
3177 | return SNR |
|
3719 | return SNR | |
3178 |
|
3720 | |||
3179 | def __chisq(self, p, chindex, hindex): |
|
3721 | def __chisq(self, p, chindex, hindex): | |
3180 | #similar to Resid but calculates CHI**2 |
|
3722 | #similar to Resid but calculates CHI**2 | |
3181 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
3723 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
3182 | dp=numpy.dot(LT,d) |
|
3724 | dp=numpy.dot(LT,d) | |
3183 | fmp=numpy.dot(LT,fm) |
|
3725 | fmp=numpy.dot(LT,fm) | |
3184 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
3726 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
3185 | return chisq |
|
3727 | return chisq | |
3186 |
|
3728 | |||
3187 | class WindProfiler(Operation): |
|
3729 | class WindProfiler(Operation): | |
3188 |
|
3730 | |||
3189 | __isConfig = False |
|
3731 | __isConfig = False | |
3190 |
|
3732 | |||
3191 | __initime = None |
|
3733 | __initime = None | |
3192 | __lastdatatime = None |
|
3734 | __lastdatatime = None | |
3193 | __integrationtime = None |
|
3735 | __integrationtime = None | |
3194 |
|
3736 | |||
3195 | __buffer = None |
|
3737 | __buffer = None | |
3196 |
|
3738 | |||
3197 | __dataReady = False |
|
3739 | __dataReady = False | |
3198 |
|
3740 | |||
3199 | __firstdata = None |
|
3741 | __firstdata = None | |
3200 |
|
3742 | |||
3201 | n = None |
|
3743 | n = None | |
3202 |
|
3744 | |||
3203 | def __init__(self): |
|
3745 | def __init__(self): | |
3204 | Operation.__init__(self) |
|
3746 | Operation.__init__(self) | |
3205 |
|
3747 | |||
3206 | def __calculateCosDir(self, elev, azim): |
|
3748 | def __calculateCosDir(self, elev, azim): | |
3207 | zen = (90 - elev)*numpy.pi/180 |
|
3749 | zen = (90 - elev)*numpy.pi/180 | |
3208 | azim = azim*numpy.pi/180 |
|
3750 | azim = azim*numpy.pi/180 | |
3209 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
3751 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
3210 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
3752 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
3211 |
|
3753 | |||
3212 | signX = numpy.sign(numpy.cos(azim)) |
|
3754 | signX = numpy.sign(numpy.cos(azim)) | |
3213 | signY = numpy.sign(numpy.sin(azim)) |
|
3755 | signY = numpy.sign(numpy.sin(azim)) | |
3214 |
|
3756 | |||
3215 | cosDirX = numpy.copysign(cosDirX, signX) |
|
3757 | cosDirX = numpy.copysign(cosDirX, signX) | |
3216 | cosDirY = numpy.copysign(cosDirY, signY) |
|
3758 | cosDirY = numpy.copysign(cosDirY, signY) | |
3217 | return cosDirX, cosDirY |
|
3759 | return cosDirX, cosDirY | |
3218 |
|
3760 | |||
3219 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
3761 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
3220 |
|
3762 | |||
3221 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
3763 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
3222 | zenith_arr = numpy.arccos(dir_cosw) |
|
3764 | zenith_arr = numpy.arccos(dir_cosw) | |
3223 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
3765 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
3224 |
|
3766 | |||
3225 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
3767 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
3226 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
3768 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
3227 |
|
3769 | |||
3228 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
3770 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
3229 |
|
3771 | |||
3230 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
3772 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
3231 |
|
3773 | |||
3232 | if horOnly: |
|
3774 | if horOnly: | |
3233 | A = numpy.c_[dir_cosu,dir_cosv] |
|
3775 | A = numpy.c_[dir_cosu,dir_cosv] | |
3234 | else: |
|
3776 | else: | |
3235 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
3777 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
3236 | A = numpy.asmatrix(A) |
|
3778 | A = numpy.asmatrix(A) | |
3237 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
3779 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
3238 |
|
3780 | |||
3239 | return A1 |
|
3781 | return A1 | |
3240 |
|
3782 | |||
3241 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
3783 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
3242 | listPhi = phi.tolist() |
|
3784 | listPhi = phi.tolist() | |
3243 | maxid = listPhi.index(max(listPhi)) |
|
3785 | maxid = listPhi.index(max(listPhi)) | |
3244 | minid = listPhi.index(min(listPhi)) |
|
3786 | minid = listPhi.index(min(listPhi)) | |
3245 |
|
3787 | |||
3246 | rango = list(range(len(phi))) |
|
3788 | rango = list(range(len(phi))) | |
3247 | # rango = numpy.delete(rango,maxid) |
|
3789 | # rango = numpy.delete(rango,maxid) | |
3248 |
|
3790 | |||
3249 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
3791 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
3250 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
3792 | heiRangAux = heiRang*math.cos(phi[minid]) | |
3251 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
3793 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
3252 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
3794 | heiRang1 = numpy.delete(heiRang1,indOut) | |
3253 |
|
3795 | |||
3254 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
3796 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
3255 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
3797 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
3256 |
|
3798 | |||
3257 | for i in rango: |
|
3799 | for i in rango: | |
3258 | x = heiRang*math.cos(phi[i]) |
|
3800 | x = heiRang*math.cos(phi[i]) | |
3259 | y1 = velRadial[i,:] |
|
3801 | y1 = velRadial[i,:] | |
3260 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
3802 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
3261 |
|
3803 | |||
3262 | x1 = heiRang1 |
|
3804 | x1 = heiRang1 | |
3263 | y11 = f1(x1) |
|
3805 | y11 = f1(x1) | |
3264 |
|
3806 | |||
3265 | y2 = SNR[i,:] |
|
3807 | y2 = SNR[i,:] | |
3266 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
3808 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
3267 | y21 = f2(x1) |
|
3809 | y21 = f2(x1) | |
3268 |
|
3810 | |||
3269 | velRadial1[i,:] = y11 |
|
3811 | velRadial1[i,:] = y11 | |
3270 | SNR1[i,:] = y21 |
|
3812 | SNR1[i,:] = y21 | |
3271 |
|
3813 | |||
3272 | return heiRang1, velRadial1, SNR1 |
|
3814 | return heiRang1, velRadial1, SNR1 | |
3273 |
|
3815 | |||
3274 | def __calculateVelUVW(self, A, velRadial): |
|
3816 | def __calculateVelUVW(self, A, velRadial): | |
3275 |
|
3817 | |||
3276 | #Operacion Matricial |
|
3818 | #Operacion Matricial | |
3277 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
3819 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
3278 | # for ind in range(velRadial.shape[1]): |
|
3820 | # for ind in range(velRadial.shape[1]): | |
3279 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
3821 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
3280 | # velUVW = velUVW.transpose() |
|
3822 | # velUVW = velUVW.transpose() | |
3281 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
3823 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
3282 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
3824 | velUVW[:,:] = numpy.dot(A,velRadial) | |
3283 |
|
3825 | |||
3284 |
|
3826 | |||
3285 | return velUVW |
|
3827 | return velUVW | |
3286 |
|
3828 | |||
3287 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
3829 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
3288 |
|
3830 | |||
3289 | def techniqueDBS(self, kwargs): |
|
3831 | def techniqueDBS(self, kwargs): | |
3290 | """ |
|
3832 | """ | |
3291 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
3833 | Function that implements Doppler Beam Swinging (DBS) technique. | |
3292 |
|
3834 | |||
3293 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
3835 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
3294 | Direction correction (if necessary), Ranges and SNR |
|
3836 | Direction correction (if necessary), Ranges and SNR | |
3295 |
|
3837 | |||
3296 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
3838 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
3297 |
|
3839 | |||
3298 | Parameters affected: Winds, height range, SNR |
|
3840 | Parameters affected: Winds, height range, SNR | |
3299 | """ |
|
3841 | """ | |
3300 | velRadial0 = kwargs['velRadial'] |
|
3842 | velRadial0 = kwargs['velRadial'] | |
3301 | heiRang = kwargs['heightList'] |
|
3843 | heiRang = kwargs['heightList'] | |
3302 | SNR0 = kwargs['SNR'] |
|
3844 | SNR0 = kwargs['SNR'] | |
3303 |
|
3845 | |||
3304 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: |
|
3846 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: | |
3305 | theta_x = numpy.array(kwargs['dirCosx']) |
|
3847 | theta_x = numpy.array(kwargs['dirCosx']) | |
3306 | theta_y = numpy.array(kwargs['dirCosy']) |
|
3848 | theta_y = numpy.array(kwargs['dirCosy']) | |
3307 | else: |
|
3849 | else: | |
3308 | elev = numpy.array(kwargs['elevation']) |
|
3850 | elev = numpy.array(kwargs['elevation']) | |
3309 | azim = numpy.array(kwargs['azimuth']) |
|
3851 | azim = numpy.array(kwargs['azimuth']) | |
3310 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
3852 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
3311 | azimuth = kwargs['correctAzimuth'] |
|
3853 | azimuth = kwargs['correctAzimuth'] | |
3312 | if 'horizontalOnly' in kwargs: |
|
3854 | if 'horizontalOnly' in kwargs: | |
3313 | horizontalOnly = kwargs['horizontalOnly'] |
|
3855 | horizontalOnly = kwargs['horizontalOnly'] | |
3314 | else: horizontalOnly = False |
|
3856 | else: horizontalOnly = False | |
3315 | if 'correctFactor' in kwargs: |
|
3857 | if 'correctFactor' in kwargs: | |
3316 | correctFactor = kwargs['correctFactor'] |
|
3858 | correctFactor = kwargs['correctFactor'] | |
3317 | else: correctFactor = 1 |
|
3859 | else: correctFactor = 1 | |
3318 | if 'channelList' in kwargs: |
|
3860 | if 'channelList' in kwargs: | |
3319 | channelList = kwargs['channelList'] |
|
3861 | channelList = kwargs['channelList'] | |
3320 | if len(channelList) == 2: |
|
3862 | if len(channelList) == 2: | |
3321 | horizontalOnly = True |
|
3863 | horizontalOnly = True | |
3322 | arrayChannel = numpy.array(channelList) |
|
3864 | arrayChannel = numpy.array(channelList) | |
3323 | param = param[arrayChannel,:,:] |
|
3865 | param = param[arrayChannel,:,:] | |
3324 | theta_x = theta_x[arrayChannel] |
|
3866 | theta_x = theta_x[arrayChannel] | |
3325 | theta_y = theta_y[arrayChannel] |
|
3867 | theta_y = theta_y[arrayChannel] | |
3326 |
|
3868 | |||
3327 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
3869 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
3328 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
3870 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
3329 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
3871 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
3330 |
|
3872 | |||
3331 | #Calculo de Componentes de la velocidad con DBS |
|
3873 | #Calculo de Componentes de la velocidad con DBS | |
3332 | winds = self.__calculateVelUVW(A,velRadial1) |
|
3874 | winds = self.__calculateVelUVW(A,velRadial1) | |
3333 |
|
3875 | |||
3334 | return winds, heiRang1, SNR1 |
|
3876 | return winds, heiRang1, SNR1 | |
3335 |
|
3877 | |||
3336 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
3878 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
3337 |
|
3879 | |||
3338 | nPairs = len(pairs_ccf) |
|
3880 | nPairs = len(pairs_ccf) | |
3339 | posx = numpy.asarray(posx) |
|
3881 | posx = numpy.asarray(posx) | |
3340 | posy = numpy.asarray(posy) |
|
3882 | posy = numpy.asarray(posy) | |
3341 |
|
3883 | |||
3342 | #Rotacion Inversa para alinear con el azimuth |
|
3884 | #Rotacion Inversa para alinear con el azimuth | |
3343 | if azimuth!= None: |
|
3885 | if azimuth!= None: | |
3344 | azimuth = azimuth*math.pi/180 |
|
3886 | azimuth = azimuth*math.pi/180 | |
3345 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
3887 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
3346 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
3888 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
3347 | else: |
|
3889 | else: | |
3348 | posx1 = posx |
|
3890 | posx1 = posx | |
3349 | posy1 = posy |
|
3891 | posy1 = posy | |
3350 |
|
3892 | |||
3351 | #Calculo de Distancias |
|
3893 | #Calculo de Distancias | |
3352 | distx = numpy.zeros(nPairs) |
|
3894 | distx = numpy.zeros(nPairs) | |
3353 | disty = numpy.zeros(nPairs) |
|
3895 | disty = numpy.zeros(nPairs) | |
3354 | dist = numpy.zeros(nPairs) |
|
3896 | dist = numpy.zeros(nPairs) | |
3355 | ang = numpy.zeros(nPairs) |
|
3897 | ang = numpy.zeros(nPairs) | |
3356 |
|
3898 | |||
3357 | for i in range(nPairs): |
|
3899 | for i in range(nPairs): | |
3358 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
3900 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
3359 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
3901 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
3360 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
3902 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
3361 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
3903 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
3362 |
|
3904 | |||
3363 | return distx, disty, dist, ang |
|
3905 | return distx, disty, dist, ang | |
3364 | #Calculo de Matrices |
|
3906 | #Calculo de Matrices | |
3365 | # nPairs = len(pairs) |
|
3907 | # nPairs = len(pairs) | |
3366 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
3908 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
3367 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
3909 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
3368 | # |
|
3910 | # | |
3369 | # for j in range(nPairs): |
|
3911 | # for j in range(nPairs): | |
3370 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
3912 | # dist1[j,0,0] = dist[pairs[j][0]] | |
3371 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
3913 | # dist1[j,1,0] = dist[pairs[j][1]] | |
3372 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
3914 | # ang1[j,0,0] = ang[pairs[j][0]] | |
3373 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
3915 | # ang1[j,1,0] = ang[pairs[j][1]] | |
3374 | # |
|
3916 | # | |
3375 | # return distx,disty, dist1,ang1 |
|
3917 | # return distx,disty, dist1,ang1 | |
3376 |
|
3918 | |||
3377 |
|
3919 | |||
3378 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
3920 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
3379 |
|
3921 | |||
3380 | Ts = lagTRange[1] - lagTRange[0] |
|
3922 | Ts = lagTRange[1] - lagTRange[0] | |
3381 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
3923 | velW = -_lambda*phase/(4*math.pi*Ts) | |
3382 |
|
3924 | |||
3383 | return velW |
|
3925 | return velW | |
3384 |
|
3926 | |||
3385 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
3927 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
3386 | nPairs = tau1.shape[0] |
|
3928 | nPairs = tau1.shape[0] | |
3387 | nHeights = tau1.shape[1] |
|
3929 | nHeights = tau1.shape[1] | |
3388 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
3930 | vel = numpy.zeros((nPairs,3,nHeights)) | |
3389 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
3931 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
3390 |
|
3932 | |||
3391 | angCos = numpy.cos(ang) |
|
3933 | angCos = numpy.cos(ang) | |
3392 | angSin = numpy.sin(ang) |
|
3934 | angSin = numpy.sin(ang) | |
3393 |
|
3935 | |||
3394 | vel0 = dist1*tau1/(2*tau2**2) |
|
3936 | vel0 = dist1*tau1/(2*tau2**2) | |
3395 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
3937 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
3396 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
3938 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
3397 |
|
3939 | |||
3398 | ind = numpy.where(numpy.isinf(vel)) |
|
3940 | ind = numpy.where(numpy.isinf(vel)) | |
3399 | vel[ind] = numpy.nan |
|
3941 | vel[ind] = numpy.nan | |
3400 |
|
3942 | |||
3401 | return vel |
|
3943 | return vel | |
3402 |
|
3944 | |||
3403 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
3945 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
3404 | # |
|
3946 | # | |
3405 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
3947 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
3406 | # |
|
3948 | # | |
3407 | # for l in range(len(pairsList)): |
|
3949 | # for l in range(len(pairsList)): | |
3408 | # firstChannel = pairsList[l][0] |
|
3950 | # firstChannel = pairsList[l][0] | |
3409 | # secondChannel = pairsList[l][1] |
|
3951 | # secondChannel = pairsList[l][1] | |
3410 | # |
|
3952 | # | |
3411 | # #Obteniendo pares de Autocorrelacion |
|
3953 | # #Obteniendo pares de Autocorrelacion | |
3412 | # if firstChannel == secondChannel: |
|
3954 | # if firstChannel == secondChannel: | |
3413 | # pairsAutoCorr[firstChannel] = int(l) |
|
3955 | # pairsAutoCorr[firstChannel] = int(l) | |
3414 | # |
|
3956 | # | |
3415 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
3957 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
3416 | # |
|
3958 | # | |
3417 | # pairsCrossCorr = range(len(pairsList)) |
|
3959 | # pairsCrossCorr = range(len(pairsList)) | |
3418 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
3960 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
3419 | # |
|
3961 | # | |
3420 | # return pairsAutoCorr, pairsCrossCorr |
|
3962 | # return pairsAutoCorr, pairsCrossCorr | |
3421 |
|
3963 | |||
3422 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
3964 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
3423 | def techniqueSA(self, kwargs): |
|
3965 | def techniqueSA(self, kwargs): | |
3424 |
|
3966 | |||
3425 | """ |
|
3967 | """ | |
3426 | Function that implements Spaced Antenna (SA) technique. |
|
3968 | Function that implements Spaced Antenna (SA) technique. | |
3427 |
|
3969 | |||
3428 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
3970 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
3429 | Direction correction (if necessary), Ranges and SNR |
|
3971 | Direction correction (if necessary), Ranges and SNR | |
3430 |
|
3972 | |||
3431 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
3973 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
3432 |
|
3974 | |||
3433 | Parameters affected: Winds |
|
3975 | Parameters affected: Winds | |
3434 | """ |
|
3976 | """ | |
3435 | position_x = kwargs['positionX'] |
|
3977 | position_x = kwargs['positionX'] | |
3436 | position_y = kwargs['positionY'] |
|
3978 | position_y = kwargs['positionY'] | |
3437 | azimuth = kwargs['azimuth'] |
|
3979 | azimuth = kwargs['azimuth'] | |
3438 |
|
3980 | |||
3439 | if 'correctFactor' in kwargs: |
|
3981 | if 'correctFactor' in kwargs: | |
3440 | correctFactor = kwargs['correctFactor'] |
|
3982 | correctFactor = kwargs['correctFactor'] | |
3441 | else: |
|
3983 | else: | |
3442 | correctFactor = 1 |
|
3984 | correctFactor = 1 | |
3443 |
|
3985 | |||
3444 | groupList = kwargs['groupList'] |
|
3986 | groupList = kwargs['groupList'] | |
3445 | pairs_ccf = groupList[1] |
|
3987 | pairs_ccf = groupList[1] | |
3446 | tau = kwargs['tau'] |
|
3988 | tau = kwargs['tau'] | |
3447 | _lambda = kwargs['_lambda'] |
|
3989 | _lambda = kwargs['_lambda'] | |
3448 |
|
3990 | |||
3449 | #Cross Correlation pairs obtained |
|
3991 | #Cross Correlation pairs obtained | |
3450 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
3992 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
3451 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
3993 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
3452 | # pairsSelArray = numpy.array(pairsSelected) |
|
3994 | # pairsSelArray = numpy.array(pairsSelected) | |
3453 | # pairs = [] |
|
3995 | # pairs = [] | |
3454 | # |
|
3996 | # | |
3455 | # #Wind estimation pairs obtained |
|
3997 | # #Wind estimation pairs obtained | |
3456 | # for i in range(pairsSelArray.shape[0]/2): |
|
3998 | # for i in range(pairsSelArray.shape[0]/2): | |
3457 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
3999 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
3458 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
4000 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
3459 | # pairs.append((ind1,ind2)) |
|
4001 | # pairs.append((ind1,ind2)) | |
3460 |
|
4002 | |||
3461 | indtau = tau.shape[0]/2 |
|
4003 | indtau = tau.shape[0]/2 | |
3462 | tau1 = tau[:indtau,:] |
|
4004 | tau1 = tau[:indtau,:] | |
3463 | tau2 = tau[indtau:-1,:] |
|
4005 | tau2 = tau[indtau:-1,:] | |
3464 | # tau1 = tau1[pairs,:] |
|
4006 | # tau1 = tau1[pairs,:] | |
3465 | # tau2 = tau2[pairs,:] |
|
4007 | # tau2 = tau2[pairs,:] | |
3466 | phase1 = tau[-1,:] |
|
4008 | phase1 = tau[-1,:] | |
3467 |
|
4009 | |||
3468 | #--------------------------------------------------------------------- |
|
4010 | #--------------------------------------------------------------------- | |
3469 | #Metodo Directo |
|
4011 | #Metodo Directo | |
3470 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
4012 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
3471 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
4013 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
3472 | winds = stats.nanmean(winds, axis=0) |
|
4014 | winds = stats.nanmean(winds, axis=0) | |
3473 | #--------------------------------------------------------------------- |
|
4015 | #--------------------------------------------------------------------- | |
3474 | #Metodo General |
|
4016 | #Metodo General | |
3475 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
4017 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
3476 | # #Calculo Coeficientes de Funcion de Correlacion |
|
4018 | # #Calculo Coeficientes de Funcion de Correlacion | |
3477 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
4019 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
3478 | # #Calculo de Velocidades |
|
4020 | # #Calculo de Velocidades | |
3479 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
4021 | # winds = self.calculateVelUV(F,G,A,B,H) | |
3480 |
|
4022 | |||
3481 | #--------------------------------------------------------------------- |
|
4023 | #--------------------------------------------------------------------- | |
3482 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
4024 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
3483 | winds = correctFactor*winds |
|
4025 | winds = correctFactor*winds | |
3484 | return winds |
|
4026 | return winds | |
3485 |
|
4027 | |||
3486 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
4028 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
3487 |
|
4029 | |||
3488 | dataTime = currentTime + paramInterval |
|
4030 | dataTime = currentTime + paramInterval | |
3489 | deltaTime = dataTime - self.__initime |
|
4031 | deltaTime = dataTime - self.__initime | |
3490 |
|
4032 | |||
3491 | if deltaTime >= outputInterval or deltaTime < 0: |
|
4033 | if deltaTime >= outputInterval or deltaTime < 0: | |
3492 | self.__dataReady = True |
|
4034 | self.__dataReady = True | |
3493 | return |
|
4035 | return | |
3494 |
|
4036 | |||
3495 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
4037 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
3496 | ''' |
|
4038 | ''' | |
3497 | Function that implements winds estimation technique with detected meteors. |
|
4039 | Function that implements winds estimation technique with detected meteors. | |
3498 |
|
4040 | |||
3499 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
4041 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
3500 |
|
4042 | |||
3501 | Output: Winds estimation (Zonal and Meridional) |
|
4043 | Output: Winds estimation (Zonal and Meridional) | |
3502 |
|
4044 | |||
3503 | Parameters affected: Winds |
|
4045 | Parameters affected: Winds | |
3504 | ''' |
|
4046 | ''' | |
3505 | #Settings |
|
4047 | #Settings | |
3506 | nInt = (heightMax - heightMin)/2 |
|
4048 | nInt = (heightMax - heightMin)/2 | |
3507 | nInt = int(nInt) |
|
4049 | nInt = int(nInt) | |
3508 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
4050 | winds = numpy.zeros((2,nInt))*numpy.nan | |
3509 |
|
4051 | |||
3510 | #Filter errors |
|
4052 | #Filter errors | |
3511 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
4053 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
3512 | finalMeteor = arrayMeteor[error,:] |
|
4054 | finalMeteor = arrayMeteor[error,:] | |
3513 |
|
4055 | |||
3514 | #Meteor Histogram |
|
4056 | #Meteor Histogram | |
3515 | finalHeights = finalMeteor[:,2] |
|
4057 | finalHeights = finalMeteor[:,2] | |
3516 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
4058 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
3517 | nMeteorsPerI = hist[0] |
|
4059 | nMeteorsPerI = hist[0] | |
3518 | heightPerI = hist[1] |
|
4060 | heightPerI = hist[1] | |
3519 |
|
4061 | |||
3520 | #Sort of meteors |
|
4062 | #Sort of meteors | |
3521 | indSort = finalHeights.argsort() |
|
4063 | indSort = finalHeights.argsort() | |
3522 | finalMeteor2 = finalMeteor[indSort,:] |
|
4064 | finalMeteor2 = finalMeteor[indSort,:] | |
3523 |
|
4065 | |||
3524 | # Calculating winds |
|
4066 | # Calculating winds | |
3525 | ind1 = 0 |
|
4067 | ind1 = 0 | |
3526 | ind2 = 0 |
|
4068 | ind2 = 0 | |
3527 |
|
4069 | |||
3528 | for i in range(nInt): |
|
4070 | for i in range(nInt): | |
3529 | nMet = nMeteorsPerI[i] |
|
4071 | nMet = nMeteorsPerI[i] | |
3530 | ind1 = ind2 |
|
4072 | ind1 = ind2 | |
3531 | ind2 = ind1 + nMet |
|
4073 | ind2 = ind1 + nMet | |
3532 |
|
4074 | |||
3533 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
4075 | meteorAux = finalMeteor2[ind1:ind2,:] | |
3534 |
|
4076 | |||
3535 | if meteorAux.shape[0] >= meteorThresh: |
|
4077 | if meteorAux.shape[0] >= meteorThresh: | |
3536 | vel = meteorAux[:, 6] |
|
4078 | vel = meteorAux[:, 6] | |
3537 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
4079 | zen = meteorAux[:, 4]*numpy.pi/180 | |
3538 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
4080 | azim = meteorAux[:, 3]*numpy.pi/180 | |
3539 |
|
4081 | |||
3540 | n = numpy.cos(zen) |
|
4082 | n = numpy.cos(zen) | |
3541 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
4083 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
3542 | # l = m*numpy.tan(azim) |
|
4084 | # l = m*numpy.tan(azim) | |
3543 | l = numpy.sin(zen)*numpy.sin(azim) |
|
4085 | l = numpy.sin(zen)*numpy.sin(azim) | |
3544 | m = numpy.sin(zen)*numpy.cos(azim) |
|
4086 | m = numpy.sin(zen)*numpy.cos(azim) | |
3545 |
|
4087 | |||
3546 | A = numpy.vstack((l, m)).transpose() |
|
4088 | A = numpy.vstack((l, m)).transpose() | |
3547 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
4089 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
3548 | windsAux = numpy.dot(A1, vel) |
|
4090 | windsAux = numpy.dot(A1, vel) | |
3549 |
|
4091 | |||
3550 | winds[0,i] = windsAux[0] |
|
4092 | winds[0,i] = windsAux[0] | |
3551 | winds[1,i] = windsAux[1] |
|
4093 | winds[1,i] = windsAux[1] | |
3552 |
|
4094 | |||
3553 | return winds, heightPerI[:-1] |
|
4095 | return winds, heightPerI[:-1] | |
3554 |
|
4096 | |||
3555 | def techniqueNSM_SA(self, **kwargs): |
|
4097 | def techniqueNSM_SA(self, **kwargs): | |
3556 | metArray = kwargs['metArray'] |
|
4098 | metArray = kwargs['metArray'] | |
3557 | heightList = kwargs['heightList'] |
|
4099 | heightList = kwargs['heightList'] | |
3558 | timeList = kwargs['timeList'] |
|
4100 | timeList = kwargs['timeList'] | |
3559 |
|
4101 | |||
3560 | rx_location = kwargs['rx_location'] |
|
4102 | rx_location = kwargs['rx_location'] | |
3561 | groupList = kwargs['groupList'] |
|
4103 | groupList = kwargs['groupList'] | |
3562 | azimuth = kwargs['azimuth'] |
|
4104 | azimuth = kwargs['azimuth'] | |
3563 | dfactor = kwargs['dfactor'] |
|
4105 | dfactor = kwargs['dfactor'] | |
3564 | k = kwargs['k'] |
|
4106 | k = kwargs['k'] | |
3565 |
|
4107 | |||
3566 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
4108 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
3567 | d = dist*dfactor |
|
4109 | d = dist*dfactor | |
3568 | #Phase calculation |
|
4110 | #Phase calculation | |
3569 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
4111 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
3570 |
|
4112 | |||
3571 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
4113 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
3572 |
|
4114 | |||
3573 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
4115 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
3574 | azimuth1 = azimuth1*numpy.pi/180 |
|
4116 | azimuth1 = azimuth1*numpy.pi/180 | |
3575 |
|
4117 | |||
3576 | for i in range(heightList.size): |
|
4118 | for i in range(heightList.size): | |
3577 | h = heightList[i] |
|
4119 | h = heightList[i] | |
3578 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
4120 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
3579 | metHeight = metArray1[indH,:] |
|
4121 | metHeight = metArray1[indH,:] | |
3580 | if metHeight.shape[0] >= 2: |
|
4122 | if metHeight.shape[0] >= 2: | |
3581 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
4123 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
3582 | iazim = metHeight[:,1].astype(int) |
|
4124 | iazim = metHeight[:,1].astype(int) | |
3583 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
4125 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
3584 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
4126 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
3585 | A = numpy.asmatrix(A) |
|
4127 | A = numpy.asmatrix(A) | |
3586 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
4128 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
3587 | velHor = numpy.dot(A1,velAux) |
|
4129 | velHor = numpy.dot(A1,velAux) | |
3588 |
|
4130 | |||
3589 | velEst[i,:] = numpy.squeeze(velHor) |
|
4131 | velEst[i,:] = numpy.squeeze(velHor) | |
3590 | return velEst |
|
4132 | return velEst | |
3591 |
|
4133 | |||
3592 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
4134 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
3593 | meteorList = [] |
|
4135 | meteorList = [] | |
3594 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
4136 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
3595 | #Putting back together the meteor matrix |
|
4137 | #Putting back together the meteor matrix | |
3596 | utctime = metArray[:,0] |
|
4138 | utctime = metArray[:,0] | |
3597 | uniqueTime = numpy.unique(utctime) |
|
4139 | uniqueTime = numpy.unique(utctime) | |
3598 |
|
4140 | |||
3599 | phaseDerThresh = 0.5 |
|
4141 | phaseDerThresh = 0.5 | |
3600 | ippSeconds = timeList[1] - timeList[0] |
|
4142 | ippSeconds = timeList[1] - timeList[0] | |
3601 | sec = numpy.where(timeList>1)[0][0] |
|
4143 | sec = numpy.where(timeList>1)[0][0] | |
3602 | nPairs = metArray.shape[1] - 6 |
|
4144 | nPairs = metArray.shape[1] - 6 | |
3603 | nHeights = len(heightList) |
|
4145 | nHeights = len(heightList) | |
3604 |
|
4146 | |||
3605 | for t in uniqueTime: |
|
4147 | for t in uniqueTime: | |
3606 | metArray1 = metArray[utctime==t,:] |
|
4148 | metArray1 = metArray[utctime==t,:] | |
3607 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
4149 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
3608 | tmet = metArray1[:,1].astype(int) |
|
4150 | tmet = metArray1[:,1].astype(int) | |
3609 | hmet = metArray1[:,2].astype(int) |
|
4151 | hmet = metArray1[:,2].astype(int) | |
3610 |
|
4152 | |||
3611 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
4153 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
3612 | metPhase[:,:] = numpy.nan |
|
4154 | metPhase[:,:] = numpy.nan | |
3613 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
4155 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
3614 |
|
4156 | |||
3615 | #Delete short trails |
|
4157 | #Delete short trails | |
3616 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
4158 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
3617 | heightVect = numpy.sum(metBool, axis = 1) |
|
4159 | heightVect = numpy.sum(metBool, axis = 1) | |
3618 | metBool[heightVect<sec,:] = False |
|
4160 | metBool[heightVect<sec,:] = False | |
3619 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
4161 | metPhase[:,heightVect<sec,:] = numpy.nan | |
3620 |
|
4162 | |||
3621 | #Derivative |
|
4163 | #Derivative | |
3622 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
4164 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
3623 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
4165 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
3624 | metPhase[phDerAux] = numpy.nan |
|
4166 | metPhase[phDerAux] = numpy.nan | |
3625 |
|
4167 | |||
3626 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
4168 | #--------------------------METEOR DETECTION ----------------------------------------- | |
3627 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
4169 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
3628 |
|
4170 | |||
3629 | for p in numpy.arange(nPairs): |
|
4171 | for p in numpy.arange(nPairs): | |
3630 | phase = metPhase[p,:,:] |
|
4172 | phase = metPhase[p,:,:] | |
3631 | phDer = metDer[p,:,:] |
|
4173 | phDer = metDer[p,:,:] | |
3632 |
|
4174 | |||
3633 | for h in indMet: |
|
4175 | for h in indMet: | |
3634 | height = heightList[h] |
|
4176 | height = heightList[h] | |
3635 | phase1 = phase[h,:] #82 |
|
4177 | phase1 = phase[h,:] #82 | |
3636 | phDer1 = phDer[h,:] |
|
4178 | phDer1 = phDer[h,:] | |
3637 |
|
4179 | |||
3638 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
4180 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
3639 |
|
4181 | |||
3640 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
4182 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
3641 | initMet = indValid[0] |
|
4183 | initMet = indValid[0] | |
3642 | endMet = 0 |
|
4184 | endMet = 0 | |
3643 |
|
4185 | |||
3644 | for i in range(len(indValid)-1): |
|
4186 | for i in range(len(indValid)-1): | |
3645 |
|
4187 | |||
3646 | #Time difference |
|
4188 | #Time difference | |
3647 | inow = indValid[i] |
|
4189 | inow = indValid[i] | |
3648 | inext = indValid[i+1] |
|
4190 | inext = indValid[i+1] | |
3649 | idiff = inext - inow |
|
4191 | idiff = inext - inow | |
3650 | #Phase difference |
|
4192 | #Phase difference | |
3651 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
4193 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
3652 |
|
4194 | |||
3653 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
4195 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
3654 | sizeTrail = inow - initMet + 1 |
|
4196 | sizeTrail = inow - initMet + 1 | |
3655 | if sizeTrail>3*sec: #Too short meteors |
|
4197 | if sizeTrail>3*sec: #Too short meteors | |
3656 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
4198 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
3657 | y = phase1[initMet:inow+1] |
|
4199 | y = phase1[initMet:inow+1] | |
3658 | ynnan = ~numpy.isnan(y) |
|
4200 | ynnan = ~numpy.isnan(y) | |
3659 | x = x[ynnan] |
|
4201 | x = x[ynnan] | |
3660 | y = y[ynnan] |
|
4202 | y = y[ynnan] | |
3661 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
4203 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
3662 | ylin = x*slope + intercept |
|
4204 | ylin = x*slope + intercept | |
3663 | rsq = r_value**2 |
|
4205 | rsq = r_value**2 | |
3664 | if rsq > 0.5: |
|
4206 | if rsq > 0.5: | |
3665 | vel = slope#*height*1000/(k*d) |
|
4207 | vel = slope#*height*1000/(k*d) | |
3666 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
4208 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
3667 | meteorList.append(estAux) |
|
4209 | meteorList.append(estAux) | |
3668 | initMet = inext |
|
4210 | initMet = inext | |
3669 | metArray2 = numpy.array(meteorList) |
|
4211 | metArray2 = numpy.array(meteorList) | |
3670 |
|
4212 | |||
3671 | return metArray2 |
|
4213 | return metArray2 | |
3672 |
|
4214 | |||
3673 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
4215 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
3674 |
|
4216 | |||
3675 | azimuth1 = numpy.zeros(len(pairslist)) |
|
4217 | azimuth1 = numpy.zeros(len(pairslist)) | |
3676 | dist = numpy.zeros(len(pairslist)) |
|
4218 | dist = numpy.zeros(len(pairslist)) | |
3677 |
|
4219 | |||
3678 | for i in range(len(rx_location)): |
|
4220 | for i in range(len(rx_location)): | |
3679 | ch0 = pairslist[i][0] |
|
4221 | ch0 = pairslist[i][0] | |
3680 | ch1 = pairslist[i][1] |
|
4222 | ch1 = pairslist[i][1] | |
3681 |
|
4223 | |||
3682 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
4224 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
3683 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
4225 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
3684 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
4226 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
3685 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
4227 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
3686 |
|
4228 | |||
3687 | azimuth1 -= azimuth0 |
|
4229 | azimuth1 -= azimuth0 | |
3688 | return azimuth1, dist |
|
4230 | return azimuth1, dist | |
3689 |
|
4231 | |||
3690 | def techniqueNSM_DBS(self, **kwargs): |
|
4232 | def techniqueNSM_DBS(self, **kwargs): | |
3691 | metArray = kwargs['metArray'] |
|
4233 | metArray = kwargs['metArray'] | |
3692 | heightList = kwargs['heightList'] |
|
4234 | heightList = kwargs['heightList'] | |
3693 | timeList = kwargs['timeList'] |
|
4235 | timeList = kwargs['timeList'] | |
3694 | azimuth = kwargs['azimuth'] |
|
4236 | azimuth = kwargs['azimuth'] | |
3695 | theta_x = numpy.array(kwargs['theta_x']) |
|
4237 | theta_x = numpy.array(kwargs['theta_x']) | |
3696 | theta_y = numpy.array(kwargs['theta_y']) |
|
4238 | theta_y = numpy.array(kwargs['theta_y']) | |
3697 |
|
4239 | |||
3698 | utctime = metArray[:,0] |
|
4240 | utctime = metArray[:,0] | |
3699 | cmet = metArray[:,1].astype(int) |
|
4241 | cmet = metArray[:,1].astype(int) | |
3700 | hmet = metArray[:,3].astype(int) |
|
4242 | hmet = metArray[:,3].astype(int) | |
3701 | SNRmet = metArray[:,4] |
|
4243 | SNRmet = metArray[:,4] | |
3702 | vmet = metArray[:,5] |
|
4244 | vmet = metArray[:,5] | |
3703 | spcmet = metArray[:,6] |
|
4245 | spcmet = metArray[:,6] | |
3704 |
|
4246 | |||
3705 | nChan = numpy.max(cmet) + 1 |
|
4247 | nChan = numpy.max(cmet) + 1 | |
3706 | nHeights = len(heightList) |
|
4248 | nHeights = len(heightList) | |
3707 |
|
4249 | |||
3708 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
4250 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
3709 | hmet = heightList[hmet] |
|
4251 | hmet = heightList[hmet] | |
3710 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights |
|
4252 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights | |
3711 |
|
4253 | |||
3712 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
4254 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
3713 |
|
4255 | |||
3714 | for i in range(nHeights - 1): |
|
4256 | for i in range(nHeights - 1): | |
3715 | hmin = heightList[i] |
|
4257 | hmin = heightList[i] | |
3716 | hmax = heightList[i + 1] |
|
4258 | hmax = heightList[i + 1] | |
3717 |
|
4259 | |||
3718 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) |
|
4260 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |
3719 | indthisH = numpy.where(thisH) |
|
4261 | indthisH = numpy.where(thisH) | |
3720 |
|
4262 | |||
3721 | if numpy.size(indthisH) > 3: |
|
4263 | if numpy.size(indthisH) > 3: | |
3722 |
|
4264 | |||
3723 | vel_aux = vmet[thisH] |
|
4265 | vel_aux = vmet[thisH] | |
3724 | chan_aux = cmet[thisH] |
|
4266 | chan_aux = cmet[thisH] | |
3725 | cosu_aux = dir_cosu[chan_aux] |
|
4267 | cosu_aux = dir_cosu[chan_aux] | |
3726 | cosv_aux = dir_cosv[chan_aux] |
|
4268 | cosv_aux = dir_cosv[chan_aux] | |
3727 | cosw_aux = dir_cosw[chan_aux] |
|
4269 | cosw_aux = dir_cosw[chan_aux] | |
3728 |
|
4270 | |||
3729 | nch = numpy.size(numpy.unique(chan_aux)) |
|
4271 | nch = numpy.size(numpy.unique(chan_aux)) | |
3730 | if nch > 1: |
|
4272 | if nch > 1: | |
3731 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) |
|
4273 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |
3732 | velEst[i,:] = numpy.dot(A,vel_aux) |
|
4274 | velEst[i,:] = numpy.dot(A,vel_aux) | |
3733 |
|
4275 | |||
3734 | return velEst |
|
4276 | return velEst | |
3735 |
|
4277 | |||
3736 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): |
|
4278 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |
3737 |
|
4279 | |||
3738 | param = dataOut.data_param |
|
4280 | param = dataOut.data_param | |
3739 | if dataOut.abscissaList != None: |
|
4281 | if dataOut.abscissaList != None: | |
3740 | absc = dataOut.abscissaList[:-1] |
|
4282 | absc = dataOut.abscissaList[:-1] | |
3741 | # noise = dataOut.noise |
|
4283 | # noise = dataOut.noise | |
3742 | heightList = dataOut.heightList |
|
4284 | heightList = dataOut.heightList | |
3743 | SNR = dataOut.data_snr |
|
4285 | SNR = dataOut.data_snr | |
3744 |
|
4286 | |||
3745 | if technique == 'DBS': |
|
4287 | if technique == 'DBS': | |
3746 |
|
4288 | |||
3747 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
4289 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
3748 | kwargs['heightList'] = heightList |
|
4290 | kwargs['heightList'] = heightList | |
3749 | kwargs['SNR'] = SNR |
|
4291 | kwargs['SNR'] = SNR | |
3750 |
|
4292 | |||
3751 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function |
|
4293 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function | |
3752 | dataOut.utctimeInit = dataOut.utctime |
|
4294 | dataOut.utctimeInit = dataOut.utctime | |
3753 | dataOut.outputInterval = dataOut.paramInterval |
|
4295 | dataOut.outputInterval = dataOut.paramInterval | |
3754 |
|
4296 | |||
3755 | elif technique == 'SA': |
|
4297 | elif technique == 'SA': | |
3756 |
|
4298 | |||
3757 | #Parameters |
|
4299 | #Parameters | |
3758 | # position_x = kwargs['positionX'] |
|
4300 | # position_x = kwargs['positionX'] | |
3759 | # position_y = kwargs['positionY'] |
|
4301 | # position_y = kwargs['positionY'] | |
3760 | # azimuth = kwargs['azimuth'] |
|
4302 | # azimuth = kwargs['azimuth'] | |
3761 | # |
|
4303 | # | |
3762 | # if kwargs.has_key('crosspairsList'): |
|
4304 | # if kwargs.has_key('crosspairsList'): | |
3763 | # pairs = kwargs['crosspairsList'] |
|
4305 | # pairs = kwargs['crosspairsList'] | |
3764 | # else: |
|
4306 | # else: | |
3765 | # pairs = None |
|
4307 | # pairs = None | |
3766 | # |
|
4308 | # | |
3767 | # if kwargs.has_key('correctFactor'): |
|
4309 | # if kwargs.has_key('correctFactor'): | |
3768 | # correctFactor = kwargs['correctFactor'] |
|
4310 | # correctFactor = kwargs['correctFactor'] | |
3769 | # else: |
|
4311 | # else: | |
3770 | # correctFactor = 1 |
|
4312 | # correctFactor = 1 | |
3771 |
|
4313 | |||
3772 | # tau = dataOut.data_param |
|
4314 | # tau = dataOut.data_param | |
3773 | # _lambda = dataOut.C/dataOut.frequency |
|
4315 | # _lambda = dataOut.C/dataOut.frequency | |
3774 | # pairsList = dataOut.groupList |
|
4316 | # pairsList = dataOut.groupList | |
3775 | # nChannels = dataOut.nChannels |
|
4317 | # nChannels = dataOut.nChannels | |
3776 |
|
4318 | |||
3777 | kwargs['groupList'] = dataOut.groupList |
|
4319 | kwargs['groupList'] = dataOut.groupList | |
3778 | kwargs['tau'] = dataOut.data_param |
|
4320 | kwargs['tau'] = dataOut.data_param | |
3779 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
4321 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
3780 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
4322 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
3781 | dataOut.data_output = self.techniqueSA(kwargs) |
|
4323 | dataOut.data_output = self.techniqueSA(kwargs) | |
3782 | dataOut.utctimeInit = dataOut.utctime |
|
4324 | dataOut.utctimeInit = dataOut.utctime | |
3783 | dataOut.outputInterval = dataOut.timeInterval |
|
4325 | dataOut.outputInterval = dataOut.timeInterval | |
3784 |
|
4326 | |||
3785 | elif technique == 'Meteors': |
|
4327 | elif technique == 'Meteors': | |
3786 | dataOut.flagNoData = True |
|
4328 | dataOut.flagNoData = True | |
3787 | self.__dataReady = False |
|
4329 | self.__dataReady = False | |
3788 |
|
4330 | |||
3789 | if 'nHours' in kwargs: |
|
4331 | if 'nHours' in kwargs: | |
3790 | nHours = kwargs['nHours'] |
|
4332 | nHours = kwargs['nHours'] | |
3791 | else: |
|
4333 | else: | |
3792 | nHours = 1 |
|
4334 | nHours = 1 | |
3793 |
|
4335 | |||
3794 | if 'meteorsPerBin' in kwargs: |
|
4336 | if 'meteorsPerBin' in kwargs: | |
3795 | meteorThresh = kwargs['meteorsPerBin'] |
|
4337 | meteorThresh = kwargs['meteorsPerBin'] | |
3796 | else: |
|
4338 | else: | |
3797 | meteorThresh = 6 |
|
4339 | meteorThresh = 6 | |
3798 |
|
4340 | |||
3799 | if 'hmin' in kwargs: |
|
4341 | if 'hmin' in kwargs: | |
3800 | hmin = kwargs['hmin'] |
|
4342 | hmin = kwargs['hmin'] | |
3801 | else: hmin = 70 |
|
4343 | else: hmin = 70 | |
3802 | if 'hmax' in kwargs: |
|
4344 | if 'hmax' in kwargs: | |
3803 | hmax = kwargs['hmax'] |
|
4345 | hmax = kwargs['hmax'] | |
3804 | else: hmax = 110 |
|
4346 | else: hmax = 110 | |
3805 |
|
4347 | |||
3806 | dataOut.outputInterval = nHours*3600 |
|
4348 | dataOut.outputInterval = nHours*3600 | |
3807 |
|
4349 | |||
3808 | if self.__isConfig == False: |
|
4350 | if self.__isConfig == False: | |
3809 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
4351 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3810 | #Get Initial LTC time |
|
4352 | #Get Initial LTC time | |
3811 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
4353 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3812 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
4354 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3813 |
|
4355 | |||
3814 | self.__isConfig = True |
|
4356 | self.__isConfig = True | |
3815 |
|
4357 | |||
3816 | if self.__buffer is None: |
|
4358 | if self.__buffer is None: | |
3817 | self.__buffer = dataOut.data_param |
|
4359 | self.__buffer = dataOut.data_param | |
3818 | self.__firstdata = copy.copy(dataOut) |
|
4360 | self.__firstdata = copy.copy(dataOut) | |
3819 |
|
4361 | |||
3820 | else: |
|
4362 | else: | |
3821 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
4363 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3822 |
|
4364 | |||
3823 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
4365 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3824 |
|
4366 | |||
3825 | if self.__dataReady: |
|
4367 | if self.__dataReady: | |
3826 | dataOut.utctimeInit = self.__initime |
|
4368 | dataOut.utctimeInit = self.__initime | |
3827 |
|
4369 | |||
3828 | self.__initime += dataOut.outputInterval #to erase time offset |
|
4370 | self.__initime += dataOut.outputInterval #to erase time offset | |
3829 |
|
4371 | |||
3830 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
4372 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
3831 | dataOut.flagNoData = False |
|
4373 | dataOut.flagNoData = False | |
3832 | self.__buffer = None |
|
4374 | self.__buffer = None | |
3833 |
|
4375 | |||
3834 | elif technique == 'Meteors1': |
|
4376 | elif technique == 'Meteors1': | |
3835 | dataOut.flagNoData = True |
|
4377 | dataOut.flagNoData = True | |
3836 | self.__dataReady = False |
|
4378 | self.__dataReady = False | |
3837 |
|
4379 | |||
3838 | if 'nMins' in kwargs: |
|
4380 | if 'nMins' in kwargs: | |
3839 | nMins = kwargs['nMins'] |
|
4381 | nMins = kwargs['nMins'] | |
3840 | else: nMins = 20 |
|
4382 | else: nMins = 20 | |
3841 | if 'rx_location' in kwargs: |
|
4383 | if 'rx_location' in kwargs: | |
3842 | rx_location = kwargs['rx_location'] |
|
4384 | rx_location = kwargs['rx_location'] | |
3843 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
4385 | else: rx_location = [(0,1),(1,1),(1,0)] | |
3844 | if 'azimuth' in kwargs: |
|
4386 | if 'azimuth' in kwargs: | |
3845 | azimuth = kwargs['azimuth'] |
|
4387 | azimuth = kwargs['azimuth'] | |
3846 | else: azimuth = 51.06 |
|
4388 | else: azimuth = 51.06 | |
3847 | if 'dfactor' in kwargs: |
|
4389 | if 'dfactor' in kwargs: | |
3848 | dfactor = kwargs['dfactor'] |
|
4390 | dfactor = kwargs['dfactor'] | |
3849 | if 'mode' in kwargs: |
|
4391 | if 'mode' in kwargs: | |
3850 | mode = kwargs['mode'] |
|
4392 | mode = kwargs['mode'] | |
3851 | if 'theta_x' in kwargs: |
|
4393 | if 'theta_x' in kwargs: | |
3852 | theta_x = kwargs['theta_x'] |
|
4394 | theta_x = kwargs['theta_x'] | |
3853 | if 'theta_y' in kwargs: |
|
4395 | if 'theta_y' in kwargs: | |
3854 | theta_y = kwargs['theta_y'] |
|
4396 | theta_y = kwargs['theta_y'] | |
3855 | else: mode = 'SA' |
|
4397 | else: mode = 'SA' | |
3856 |
|
4398 | |||
3857 | #Borrar luego esto |
|
4399 | #Borrar luego esto | |
3858 | if dataOut.groupList is None: |
|
4400 | if dataOut.groupList is None: | |
3859 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
4401 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
3860 | groupList = dataOut.groupList |
|
4402 | groupList = dataOut.groupList | |
3861 | C = 3e8 |
|
4403 | C = 3e8 | |
3862 | freq = 50e6 |
|
4404 | freq = 50e6 | |
3863 | lamb = C/freq |
|
4405 | lamb = C/freq | |
3864 | k = 2*numpy.pi/lamb |
|
4406 | k = 2*numpy.pi/lamb | |
3865 |
|
4407 | |||
3866 | timeList = dataOut.abscissaList |
|
4408 | timeList = dataOut.abscissaList | |
3867 | heightList = dataOut.heightList |
|
4409 | heightList = dataOut.heightList | |
3868 |
|
4410 | |||
3869 | if self.__isConfig == False: |
|
4411 | if self.__isConfig == False: | |
3870 | dataOut.outputInterval = nMins*60 |
|
4412 | dataOut.outputInterval = nMins*60 | |
3871 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
4413 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3872 | #Get Initial LTC time |
|
4414 | #Get Initial LTC time | |
3873 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
4415 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3874 | minuteAux = initime.minute |
|
4416 | minuteAux = initime.minute | |
3875 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
4417 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
3876 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
4418 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3877 |
|
4419 | |||
3878 | self.__isConfig = True |
|
4420 | self.__isConfig = True | |
3879 |
|
4421 | |||
3880 | if self.__buffer is None: |
|
4422 | if self.__buffer is None: | |
3881 | self.__buffer = dataOut.data_param |
|
4423 | self.__buffer = dataOut.data_param | |
3882 | self.__firstdata = copy.copy(dataOut) |
|
4424 | self.__firstdata = copy.copy(dataOut) | |
3883 |
|
4425 | |||
3884 | else: |
|
4426 | else: | |
3885 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
4427 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3886 |
|
4428 | |||
3887 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
4429 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3888 |
|
4430 | |||
3889 | if self.__dataReady: |
|
4431 | if self.__dataReady: | |
3890 | dataOut.utctimeInit = self.__initime |
|
4432 | dataOut.utctimeInit = self.__initime | |
3891 | self.__initime += dataOut.outputInterval #to erase time offset |
|
4433 | self.__initime += dataOut.outputInterval #to erase time offset | |
3892 |
|
4434 | |||
3893 | metArray = self.__buffer |
|
4435 | metArray = self.__buffer | |
3894 | if mode == 'SA': |
|
4436 | if mode == 'SA': | |
3895 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
4437 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
3896 | elif mode == 'DBS': |
|
4438 | elif mode == 'DBS': | |
3897 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) |
|
4439 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) | |
3898 | dataOut.data_output = dataOut.data_output.T |
|
4440 | dataOut.data_output = dataOut.data_output.T | |
3899 | dataOut.flagNoData = False |
|
4441 | dataOut.flagNoData = False | |
3900 | self.__buffer = None |
|
4442 | self.__buffer = None | |
3901 |
|
4443 | |||
3902 | return |
|
4444 | return | |
3903 |
|
4445 | |||
3904 | class EWDriftsEstimation(Operation): |
|
4446 | class EWDriftsEstimation(Operation): | |
3905 |
|
4447 | |||
3906 | def __init__(self): |
|
4448 | def __init__(self): | |
3907 | Operation.__init__(self) |
|
4449 | Operation.__init__(self) | |
3908 |
|
4450 | |||
3909 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
4451 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
3910 | listPhi = phi.tolist() |
|
4452 | listPhi = phi.tolist() | |
3911 | maxid = listPhi.index(max(listPhi)) |
|
4453 | maxid = listPhi.index(max(listPhi)) | |
3912 | minid = listPhi.index(min(listPhi)) |
|
4454 | minid = listPhi.index(min(listPhi)) | |
3913 |
|
4455 | |||
3914 | rango = list(range(len(phi))) |
|
4456 | rango = list(range(len(phi))) | |
3915 | # rango = numpy.delete(rango,maxid) |
|
4457 | # rango = numpy.delete(rango,maxid) | |
3916 |
|
4458 | |||
3917 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
4459 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
3918 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
4460 | heiRangAux = heiRang*math.cos(phi[minid]) | |
3919 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
4461 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
3920 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
4462 | heiRang1 = numpy.delete(heiRang1,indOut) | |
3921 |
|
4463 | |||
3922 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
4464 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
3923 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
4465 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
3924 |
|
4466 | |||
3925 | for i in rango: |
|
4467 | for i in rango: | |
3926 | x = heiRang*math.cos(phi[i]) |
|
4468 | x = heiRang*math.cos(phi[i]) | |
3927 | y1 = velRadial[i,:] |
|
4469 | y1 = velRadial[i,:] | |
3928 | vali= (numpy.isfinite(y1)==True).nonzero() |
|
4470 | vali= (numpy.isfinite(y1)==True).nonzero() | |
3929 | y1=y1[vali] |
|
4471 | y1=y1[vali] | |
3930 | x = x[vali] |
|
4472 | x = x[vali] | |
3931 | f1 = interpolate.interp1d(x,y1,kind = 'cubic',bounds_error=False) |
|
4473 | f1 = interpolate.interp1d(x,y1,kind = 'cubic',bounds_error=False) | |
3932 |
|
4474 | |||
3933 | #heiRang1 = x*math.cos(phi[maxid]) |
|
4475 | #heiRang1 = x*math.cos(phi[maxid]) | |
3934 | x1 = heiRang1 |
|
4476 | x1 = heiRang1 | |
3935 | y11 = f1(x1) |
|
4477 | y11 = f1(x1) | |
3936 |
|
4478 | |||
3937 | y2 = SNR[i,:] |
|
4479 | y2 = SNR[i,:] | |
3938 | #print 'snr ', y2 |
|
4480 | #print 'snr ', y2 | |
3939 | x = heiRang*math.cos(phi[i]) |
|
4481 | x = heiRang*math.cos(phi[i]) | |
3940 | vali= (y2 != -1).nonzero() |
|
4482 | vali= (y2 != -1).nonzero() | |
3941 | y2 = y2[vali] |
|
4483 | y2 = y2[vali] | |
3942 | x = x[vali] |
|
4484 | x = x[vali] | |
3943 | #print 'snr ',y2 |
|
4485 | #print 'snr ',y2 | |
3944 | f2 = interpolate.interp1d(x,y2,kind = 'cubic',bounds_error=False) |
|
4486 | f2 = interpolate.interp1d(x,y2,kind = 'cubic',bounds_error=False) | |
3945 | y21 = f2(x1) |
|
4487 | y21 = f2(x1) | |
3946 |
|
4488 | |||
3947 | velRadial1[i,:] = y11 |
|
4489 | velRadial1[i,:] = y11 | |
3948 | SNR1[i,:] = y21 |
|
4490 | SNR1[i,:] = y21 | |
3949 |
|
4491 | |||
3950 | return heiRang1, velRadial1, SNR1 |
|
4492 | return heiRang1, velRadial1, SNR1 | |
3951 |
|
4493 | |||
3952 |
|
4494 | |||
3953 |
|
4495 | |||
3954 | def run(self, dataOut, zenith, zenithCorrection): |
|
4496 | def run(self, dataOut, zenith, zenithCorrection): | |
3955 |
|
4497 | |||
3956 | heiRang = dataOut.heightList |
|
4498 | heiRang = dataOut.heightList | |
3957 | velRadial = dataOut.data_param[:,3,:] |
|
4499 | velRadial = dataOut.data_param[:,3,:] | |
3958 | velRadialm = dataOut.data_param[:,2:4,:]*-1 |
|
4500 | velRadialm = dataOut.data_param[:,2:4,:]*-1 | |
3959 |
|
4501 | |||
3960 | rbufc=dataOut.data_paramC[:,:,0] |
|
4502 | rbufc=dataOut.data_paramC[:,:,0] | |
3961 | ebufc=dataOut.data_paramC[:,:,1] |
|
4503 | ebufc=dataOut.data_paramC[:,:,1] | |
3962 | SNR = dataOut.data_snr |
|
4504 | SNR = dataOut.data_snr | |
3963 | velRerr = dataOut.data_error[:,4,:] |
|
4505 | velRerr = dataOut.data_error[:,4,:] | |
3964 | moments=numpy.vstack(([velRadialm[0,:]],[velRadialm[0,:]],[velRadialm[1,:]],[velRadialm[1,:]])) |
|
4506 | moments=numpy.vstack(([velRadialm[0,:]],[velRadialm[0,:]],[velRadialm[1,:]],[velRadialm[1,:]])) | |
3965 | dataOut.moments=moments |
|
4507 | dataOut.moments=moments | |
3966 | # Coherent |
|
4508 | # Coherent | |
3967 | smooth_wC = ebufc[0,:] |
|
4509 | smooth_wC = ebufc[0,:] | |
3968 | p_w0C = rbufc[0,:] |
|
4510 | p_w0C = rbufc[0,:] | |
3969 | p_w1C = rbufc[1,:] |
|
4511 | p_w1C = rbufc[1,:] | |
3970 | w_wC = rbufc[2,:]*-1 #*radial_sign(radial EQ 1) |
|
4512 | w_wC = rbufc[2,:]*-1 #*radial_sign(radial EQ 1) | |
3971 | t_wC = rbufc[3,:] |
|
4513 | t_wC = rbufc[3,:] | |
3972 | my_nbeams = 2 |
|
4514 | my_nbeams = 2 | |
3973 |
|
4515 | |||
3974 | zenith = numpy.array(zenith) |
|
4516 | zenith = numpy.array(zenith) | |
3975 | zenith -= zenithCorrection |
|
4517 | zenith -= zenithCorrection | |
3976 | zenith *= numpy.pi/180 |
|
4518 | zenith *= numpy.pi/180 | |
3977 | if zenithCorrection != 0 : |
|
4519 | if zenithCorrection != 0 : | |
3978 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
4520 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
3979 | else : |
|
4521 | else : | |
3980 | heiRang1 = heiRang |
|
4522 | heiRang1 = heiRang | |
3981 | velRadial1 = velRadial |
|
4523 | velRadial1 = velRadial | |
3982 | SNR1 = SNR |
|
4524 | SNR1 = SNR | |
3983 |
|
4525 | |||
3984 | alp = zenith[0] |
|
4526 | alp = zenith[0] | |
3985 | bet = zenith[1] |
|
4527 | bet = zenith[1] | |
3986 |
|
4528 | |||
3987 | w_w = velRadial1[0,:] |
|
4529 | w_w = velRadial1[0,:] | |
3988 | w_e = velRadial1[1,:] |
|
4530 | w_e = velRadial1[1,:] | |
3989 | w_w_err = velRerr[0,:] |
|
4531 | w_w_err = velRerr[0,:] | |
3990 | w_e_err = velRerr[1,:] |
|
4532 | w_e_err = velRerr[1,:] | |
3991 |
|
4533 | |||
3992 | val = (numpy.isfinite(w_w)==False).nonzero() |
|
4534 | val = (numpy.isfinite(w_w)==False).nonzero() | |
3993 | val = val[0] |
|
4535 | val = val[0] | |
3994 | bad = val |
|
4536 | bad = val | |
3995 | if len(bad) > 0 : |
|
4537 | if len(bad) > 0 : | |
3996 | w_w[bad] = w_wC[bad] |
|
4538 | w_w[bad] = w_wC[bad] | |
3997 | w_w_err[bad]= numpy.nan |
|
4539 | w_w_err[bad]= numpy.nan | |
3998 | if my_nbeams == 2: |
|
4540 | if my_nbeams == 2: | |
3999 | smooth_eC=ebufc[4,:] |
|
4541 | smooth_eC=ebufc[4,:] | |
4000 | p_e0C = rbufc[4,:] |
|
4542 | p_e0C = rbufc[4,:] | |
4001 | p_e1C = rbufc[5,:] |
|
4543 | p_e1C = rbufc[5,:] | |
4002 | w_eC = rbufc[6,:]*-1 |
|
4544 | w_eC = rbufc[6,:]*-1 | |
4003 | t_eC = rbufc[7,:] |
|
4545 | t_eC = rbufc[7,:] | |
4004 | val = (numpy.isfinite(w_e)==False).nonzero() |
|
4546 | val = (numpy.isfinite(w_e)==False).nonzero() | |
4005 | val = val[0] |
|
4547 | val = val[0] | |
4006 | bad = val |
|
4548 | bad = val | |
4007 | if len(bad) > 0 : |
|
4549 | if len(bad) > 0 : | |
4008 | w_e[bad] = w_eC[bad] |
|
4550 | w_e[bad] = w_eC[bad] | |
4009 | w_e_err[bad]= numpy.nan |
|
4551 | w_e_err[bad]= numpy.nan | |
4010 |
|
4552 | |||
4011 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
4553 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
4012 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
4554 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
4013 |
|
4555 | |||
4014 | w_err = numpy.sqrt((w_w_err*numpy.sin(bet))**2.+(w_e_err*numpy.sin(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) |
|
4556 | w_err = numpy.sqrt((w_w_err*numpy.sin(bet))**2.+(w_e_err*numpy.sin(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) | |
4015 | u_err = numpy.sqrt((w_w_err*numpy.cos(bet))**2.+(w_e_err*numpy.cos(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) |
|
4557 | u_err = numpy.sqrt((w_w_err*numpy.cos(bet))**2.+(w_e_err*numpy.cos(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) | |
4016 |
|
4558 | |||
4017 | winds = numpy.vstack((w,u)) |
|
4559 | winds = numpy.vstack((w,u)) | |
4018 |
|
4560 | |||
4019 | dataOut.heightList = heiRang1 |
|
4561 | dataOut.heightList = heiRang1 | |
4020 | dataOut.data_output = winds |
|
4562 | dataOut.data_output = winds | |
4021 |
|
4563 | |||
4022 | snr1 = 10*numpy.log10(SNR1[0]) |
|
4564 | snr1 = 10*numpy.log10(SNR1[0]) | |
4023 | dataOut.data_snr1 = numpy.reshape(snr1,(1,snr1.shape[0])) |
|
4565 | dataOut.data_snr1 = numpy.reshape(snr1,(1,snr1.shape[0])) | |
4024 | dataOut.utctimeInit = dataOut.utctime |
|
4566 | dataOut.utctimeInit = dataOut.utctime | |
4025 | dataOut.outputInterval = dataOut.timeInterval |
|
4567 | dataOut.outputInterval = dataOut.timeInterval | |
4026 |
|
4568 | |||
4027 | hei_aver0 = 218 |
|
4569 | hei_aver0 = 218 | |
4028 | jrange = 450 #900 para HA drifts |
|
4570 | jrange = 450 #900 para HA drifts | |
4029 | deltah = 15.0 #dataOut.spacing(0) |
|
4571 | deltah = 15.0 #dataOut.spacing(0) | |
4030 | h0 = 0.0 #dataOut.first_height(0) |
|
4572 | h0 = 0.0 #dataOut.first_height(0) | |
4031 | heights = dataOut.heightList |
|
4573 | heights = dataOut.heightList | |
4032 | nhei = len(heights) |
|
4574 | nhei = len(heights) | |
4033 |
|
4575 | |||
4034 | range1 = numpy.arange(nhei) * deltah + h0 |
|
4576 | range1 = numpy.arange(nhei) * deltah + h0 | |
4035 |
|
4577 | |||
4036 | #jhei = WHERE(range1 GE hei_aver0 , jcount) |
|
4578 | #jhei = WHERE(range1 GE hei_aver0 , jcount) | |
4037 | jhei = (range1 >= hei_aver0).nonzero() |
|
4579 | jhei = (range1 >= hei_aver0).nonzero() | |
4038 | if len(jhei[0]) > 0 : |
|
4580 | if len(jhei[0]) > 0 : | |
4039 | h0_index = jhei[0][0] # Initial height for getting averages 218km |
|
4581 | h0_index = jhei[0][0] # Initial height for getting averages 218km | |
4040 |
|
4582 | |||
4041 | mynhei = 7 |
|
4583 | mynhei = 7 | |
4042 | nhei_avg = int(jrange/deltah) |
|
4584 | nhei_avg = int(jrange/deltah) | |
4043 | h_avgs = int(nhei_avg/mynhei) |
|
4585 | h_avgs = int(nhei_avg/mynhei) | |
4044 | nhei_avg = h_avgs*(mynhei-1)+mynhei |
|
4586 | nhei_avg = h_avgs*(mynhei-1)+mynhei | |
4045 |
|
4587 | |||
4046 | navgs = numpy.zeros(mynhei,dtype='float') |
|
4588 | navgs = numpy.zeros(mynhei,dtype='float') | |
4047 | delta_h = numpy.zeros(mynhei,dtype='float') |
|
4589 | delta_h = numpy.zeros(mynhei,dtype='float') | |
4048 | range_aver = numpy.zeros(mynhei,dtype='float') |
|
4590 | range_aver = numpy.zeros(mynhei,dtype='float') | |
4049 | for ih in range( mynhei-1 ): |
|
4591 | for ih in range( mynhei-1 ): | |
4050 | range_aver[ih] = numpy.sum(range1[h0_index+h_avgs*ih:h0_index+h_avgs*(ih+1)-0])/h_avgs |
|
4592 | range_aver[ih] = numpy.sum(range1[h0_index+h_avgs*ih:h0_index+h_avgs*(ih+1)-0])/h_avgs | |
4051 | navgs[ih] = h_avgs |
|
4593 | navgs[ih] = h_avgs | |
4052 | delta_h[ih] = deltah*h_avgs |
|
4594 | delta_h[ih] = deltah*h_avgs | |
4053 |
|
4595 | |||
4054 | range_aver[mynhei-1] = numpy.sum(range1[h0_index:h0_index+6*h_avgs-0])/(6*h_avgs) |
|
4596 | range_aver[mynhei-1] = numpy.sum(range1[h0_index:h0_index+6*h_avgs-0])/(6*h_avgs) | |
4055 | navgs[mynhei-1] = 6*h_avgs |
|
4597 | navgs[mynhei-1] = 6*h_avgs | |
4056 | delta_h[mynhei-1] = deltah*6*h_avgs |
|
4598 | delta_h[mynhei-1] = deltah*6*h_avgs | |
4057 |
|
4599 | |||
4058 | wA = w[h0_index:h0_index+nhei_avg-0] |
|
4600 | wA = w[h0_index:h0_index+nhei_avg-0] | |
4059 | wA_err = w_err[h0_index:h0_index+nhei_avg-0] |
|
4601 | wA_err = w_err[h0_index:h0_index+nhei_avg-0] | |
4060 |
|
4602 | |||
4061 | for i in range(5) : |
|
4603 | for i in range(5) : | |
4062 | vals = wA[i*h_avgs:(i+1)*h_avgs-0] |
|
4604 | vals = wA[i*h_avgs:(i+1)*h_avgs-0] | |
4063 | errs = wA_err[i*h_avgs:(i+1)*h_avgs-0] |
|
4605 | errs = wA_err[i*h_avgs:(i+1)*h_avgs-0] | |
4064 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) |
|
4606 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |
4065 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) |
|
4607 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |
4066 | wA[6*h_avgs+i] = avg |
|
4608 | wA[6*h_avgs+i] = avg | |
4067 | wA_err[6*h_avgs+i] = sigma |
|
4609 | wA_err[6*h_avgs+i] = sigma | |
4068 |
|
4610 | |||
4069 |
|
4611 | |||
4070 | vals = wA[0:6*h_avgs-0] |
|
4612 | vals = wA[0:6*h_avgs-0] | |
4071 | errs=wA_err[0:6*h_avgs-0] |
|
4613 | errs=wA_err[0:6*h_avgs-0] | |
4072 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2) |
|
4614 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2) | |
4073 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) |
|
4615 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |
4074 | wA[nhei_avg-1] = avg |
|
4616 | wA[nhei_avg-1] = avg | |
4075 | wA_err[nhei_avg-1] = sigma |
|
4617 | wA_err[nhei_avg-1] = sigma | |
4076 |
|
4618 | |||
4077 | wA = wA[6*h_avgs:nhei_avg-0] |
|
4619 | wA = wA[6*h_avgs:nhei_avg-0] | |
4078 | wA_err=wA_err[6*h_avgs:nhei_avg-0] |
|
4620 | wA_err=wA_err[6*h_avgs:nhei_avg-0] | |
4079 | if my_nbeams == 2 : |
|
4621 | if my_nbeams == 2 : | |
4080 |
|
4622 | |||
4081 | uA = u[h0_index:h0_index+nhei_avg] |
|
4623 | uA = u[h0_index:h0_index+nhei_avg] | |
4082 | uA_err=u_err[h0_index:h0_index+nhei_avg] |
|
4624 | uA_err=u_err[h0_index:h0_index+nhei_avg] | |
4083 |
|
4625 | |||
4084 | for i in range(5) : |
|
4626 | for i in range(5) : | |
4085 | vals = uA[i*h_avgs:(i+1)*h_avgs-0] |
|
4627 | vals = uA[i*h_avgs:(i+1)*h_avgs-0] | |
4086 | errs=uA_err[i*h_avgs:(i+1)*h_avgs-0] |
|
4628 | errs=uA_err[i*h_avgs:(i+1)*h_avgs-0] | |
4087 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) |
|
4629 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |
4088 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) |
|
4630 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |
4089 | uA[6*h_avgs+i] = avg |
|
4631 | uA[6*h_avgs+i] = avg | |
4090 | uA_err[6*h_avgs+i]=sigma |
|
4632 | uA_err[6*h_avgs+i]=sigma | |
4091 |
|
4633 | |||
4092 | vals = uA[0:6*h_avgs-0] |
|
4634 | vals = uA[0:6*h_avgs-0] | |
4093 | errs = uA_err[0:6*h_avgs-0] |
|
4635 | errs = uA_err[0:6*h_avgs-0] | |
4094 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) |
|
4636 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |
4095 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) |
|
4637 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |
4096 | uA[nhei_avg-1] = avg |
|
4638 | uA[nhei_avg-1] = avg | |
4097 | uA_err[nhei_avg-1] = sigma |
|
4639 | uA_err[nhei_avg-1] = sigma | |
4098 | uA = uA[6*h_avgs:nhei_avg-0] |
|
4640 | uA = uA[6*h_avgs:nhei_avg-0] | |
4099 | uA_err = uA_err[6*h_avgs:nhei_avg-0] |
|
4641 | uA_err = uA_err[6*h_avgs:nhei_avg-0] | |
4100 |
|
4642 | |||
4101 | dataOut.drifts_avg = numpy.vstack((wA,uA)) |
|
4643 | dataOut.drifts_avg = numpy.vstack((wA,uA)) | |
4102 |
|
4644 | |||
4103 | tini=time.localtime(dataOut.utctime) |
|
4645 | tini=time.localtime(dataOut.utctime) | |
4104 | datefile= str(tini[0]).zfill(4)+str(tini[1]).zfill(2)+str(tini[2]).zfill(2) |
|
4646 | datefile= str(tini[0]).zfill(4)+str(tini[1]).zfill(2)+str(tini[2]).zfill(2) | |
4105 | nfile = '/home/pcondor/Database/ewdriftsschain2019/jro'+datefile+'drifts_sch3.txt' |
|
4647 | nfile = '/home/pcondor/Database/ewdriftsschain2019/jro'+datefile+'drifts_sch3.txt' | |
4106 |
|
4648 | |||
4107 | f1 = open(nfile,'a') |
|
4649 | f1 = open(nfile,'a') | |
4108 |
|
4650 | |||
4109 | datedriftavg=str(tini[0])+' '+str(tini[1])+' '+str(tini[2])+' '+str(tini[3])+' '+str(tini[4]) |
|
4651 | datedriftavg=str(tini[0])+' '+str(tini[1])+' '+str(tini[2])+' '+str(tini[3])+' '+str(tini[4]) | |
4110 | driftavgstr=str(dataOut.drifts_avg) |
|
4652 | driftavgstr=str(dataOut.drifts_avg) | |
4111 |
|
4653 | |||
4112 | numpy.savetxt(f1,numpy.column_stack([tini[0],tini[1],tini[2],tini[3],tini[4]]),fmt='%4i') |
|
4654 | numpy.savetxt(f1,numpy.column_stack([tini[0],tini[1],tini[2],tini[3],tini[4]]),fmt='%4i') | |
4113 | numpy.savetxt(f1,dataOut.drifts_avg,fmt='%10.2f') |
|
4655 | numpy.savetxt(f1,dataOut.drifts_avg,fmt='%10.2f') | |
4114 | f1.close() |
|
4656 | f1.close() | |
4115 |
|
4657 | |||
4116 | return dataOut |
|
4658 | return dataOut | |
4117 |
|
4659 | |||
4118 | #--------------- Non Specular Meteor ---------------- |
|
4660 | #--------------- Non Specular Meteor ---------------- | |
4119 |
|
4661 | |||
4120 | class NonSpecularMeteorDetection(Operation): |
|
4662 | class NonSpecularMeteorDetection(Operation): | |
4121 |
|
4663 | |||
4122 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
4664 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
4123 | data_acf = dataOut.data_pre[0] |
|
4665 | data_acf = dataOut.data_pre[0] | |
4124 | data_ccf = dataOut.data_pre[1] |
|
4666 | data_ccf = dataOut.data_pre[1] | |
4125 | pairsList = dataOut.groupList[1] |
|
4667 | pairsList = dataOut.groupList[1] | |
4126 |
|
4668 | |||
4127 | lamb = dataOut.C/dataOut.frequency |
|
4669 | lamb = dataOut.C/dataOut.frequency | |
4128 | tSamp = dataOut.ippSeconds*dataOut.nCohInt |
|
4670 | tSamp = dataOut.ippSeconds*dataOut.nCohInt | |
4129 | paramInterval = dataOut.paramInterval |
|
4671 | paramInterval = dataOut.paramInterval | |
4130 |
|
4672 | |||
4131 | nChannels = data_acf.shape[0] |
|
4673 | nChannels = data_acf.shape[0] | |
4132 | nLags = data_acf.shape[1] |
|
4674 | nLags = data_acf.shape[1] | |
4133 | nProfiles = data_acf.shape[2] |
|
4675 | nProfiles = data_acf.shape[2] | |
4134 | nHeights = dataOut.nHeights |
|
4676 | nHeights = dataOut.nHeights | |
4135 | nCohInt = dataOut.nCohInt |
|
4677 | nCohInt = dataOut.nCohInt | |
4136 | sec = numpy.round(nProfiles/dataOut.paramInterval) |
|
4678 | sec = numpy.round(nProfiles/dataOut.paramInterval) | |
4137 | heightList = dataOut.heightList |
|
4679 | heightList = dataOut.heightList | |
4138 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg |
|
4680 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg | |
4139 | utctime = dataOut.utctime |
|
4681 | utctime = dataOut.utctime | |
4140 |
|
4682 | |||
4141 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
4683 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
4142 |
|
4684 | |||
4143 | #------------------------ SNR -------------------------------------- |
|
4685 | #------------------------ SNR -------------------------------------- | |
4144 | power = data_acf[:,0,:,:].real |
|
4686 | power = data_acf[:,0,:,:].real | |
4145 | noise = numpy.zeros(nChannels) |
|
4687 | noise = numpy.zeros(nChannels) | |
4146 | SNR = numpy.zeros(power.shape) |
|
4688 | SNR = numpy.zeros(power.shape) | |
4147 | for i in range(nChannels): |
|
4689 | for i in range(nChannels): | |
4148 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
4690 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
4149 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
4691 | SNR[i] = (power[i]-noise[i])/noise[i] | |
4150 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
4692 | SNRm = numpy.nanmean(SNR, axis = 0) | |
4151 | SNRdB = 10*numpy.log10(SNR) |
|
4693 | SNRdB = 10*numpy.log10(SNR) | |
4152 |
|
4694 | |||
4153 | if mode == 'SA': |
|
4695 | if mode == 'SA': | |
4154 | dataOut.groupList = dataOut.groupList[1] |
|
4696 | dataOut.groupList = dataOut.groupList[1] | |
4155 | nPairs = data_ccf.shape[0] |
|
4697 | nPairs = data_ccf.shape[0] | |
4156 | #---------------------- Coherence and Phase -------------------------- |
|
4698 | #---------------------- Coherence and Phase -------------------------- | |
4157 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
4699 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
4158 | # phase1 = numpy.copy(phase) |
|
4700 | # phase1 = numpy.copy(phase) | |
4159 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
4701 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
4160 |
|
4702 | |||
4161 | for p in range(nPairs): |
|
4703 | for p in range(nPairs): | |
4162 | ch0 = pairsList[p][0] |
|
4704 | ch0 = pairsList[p][0] | |
4163 | ch1 = pairsList[p][1] |
|
4705 | ch1 = pairsList[p][1] | |
4164 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
4706 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
4165 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
4707 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
4166 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
4708 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
4167 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
4709 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
4168 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
4710 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
4169 | coh = numpy.nanmax(coh1, axis = 0) |
|
4711 | coh = numpy.nanmax(coh1, axis = 0) | |
4170 | # struc = numpy.ones((5,1)) |
|
4712 | # struc = numpy.ones((5,1)) | |
4171 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
4713 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
4172 | #---------------------- Radial Velocity ---------------------------- |
|
4714 | #---------------------- Radial Velocity ---------------------------- | |
4173 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
4715 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
4174 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
4716 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
4175 |
|
4717 | |||
4176 | if allData: |
|
4718 | if allData: | |
4177 | boolMetFin = ~numpy.isnan(SNRm) |
|
4719 | boolMetFin = ~numpy.isnan(SNRm) | |
4178 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
4720 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
4179 | else: |
|
4721 | else: | |
4180 | #------------------------ Meteor mask --------------------------------- |
|
4722 | #------------------------ Meteor mask --------------------------------- | |
4181 | # #SNR mask |
|
4723 | # #SNR mask | |
4182 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
4724 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
4183 | # |
|
4725 | # | |
4184 | # #Erase small objects |
|
4726 | # #Erase small objects | |
4185 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
4727 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
4186 | # |
|
4728 | # | |
4187 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
4729 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
4188 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
4730 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
4189 | # indEEJ = numpy.where(indOver)[0] |
|
4731 | # indEEJ = numpy.where(indOver)[0] | |
4190 | # indNEEJ = numpy.where(~indOver)[0] |
|
4732 | # indNEEJ = numpy.where(~indOver)[0] | |
4191 | # |
|
4733 | # | |
4192 | # boolMetFin = boolMet1 |
|
4734 | # boolMetFin = boolMet1 | |
4193 | # |
|
4735 | # | |
4194 | # if indEEJ.size > 0: |
|
4736 | # if indEEJ.size > 0: | |
4195 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
4737 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
4196 | # |
|
4738 | # | |
4197 | # boolMet2 = coh > cohThresh |
|
4739 | # boolMet2 = coh > cohThresh | |
4198 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
4740 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
4199 | # |
|
4741 | # | |
4200 | # #Final Meteor mask |
|
4742 | # #Final Meteor mask | |
4201 | # boolMetFin = boolMet1|boolMet2 |
|
4743 | # boolMetFin = boolMet1|boolMet2 | |
4202 |
|
4744 | |||
4203 | #Coherence mask |
|
4745 | #Coherence mask | |
4204 | boolMet1 = coh > 0.75 |
|
4746 | boolMet1 = coh > 0.75 | |
4205 | struc = numpy.ones((30,1)) |
|
4747 | struc = numpy.ones((30,1)) | |
4206 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
4748 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
4207 |
|
4749 | |||
4208 | #Derivative mask |
|
4750 | #Derivative mask | |
4209 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
4751 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
4210 | boolMet2 = derPhase < 0.2 |
|
4752 | boolMet2 = derPhase < 0.2 | |
4211 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
4753 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
4212 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
4754 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
4213 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
4755 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
4214 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
4756 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
4215 | # #Final mask |
|
4757 | # #Final mask | |
4216 | # boolMetFin = boolMet2 |
|
4758 | # boolMetFin = boolMet2 | |
4217 | boolMetFin = boolMet1&boolMet2 |
|
4759 | boolMetFin = boolMet1&boolMet2 | |
4218 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
4760 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
4219 | #Creating data_param |
|
4761 | #Creating data_param | |
4220 | coordMet = numpy.where(boolMetFin) |
|
4762 | coordMet = numpy.where(boolMetFin) | |
4221 |
|
4763 | |||
4222 | tmet = coordMet[0] |
|
4764 | tmet = coordMet[0] | |
4223 | hmet = coordMet[1] |
|
4765 | hmet = coordMet[1] | |
4224 |
|
4766 | |||
4225 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
4767 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
4226 | data_param[:,0] = utctime |
|
4768 | data_param[:,0] = utctime | |
4227 | data_param[:,1] = tmet |
|
4769 | data_param[:,1] = tmet | |
4228 | data_param[:,2] = hmet |
|
4770 | data_param[:,2] = hmet | |
4229 | data_param[:,3] = SNRm[tmet,hmet] |
|
4771 | data_param[:,3] = SNRm[tmet,hmet] | |
4230 | data_param[:,4] = velRad[tmet,hmet] |
|
4772 | data_param[:,4] = velRad[tmet,hmet] | |
4231 | data_param[:,5] = coh[tmet,hmet] |
|
4773 | data_param[:,5] = coh[tmet,hmet] | |
4232 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
4774 | data_param[:,6:] = phase[:,tmet,hmet].T | |
4233 |
|
4775 | |||
4234 | elif mode == 'DBS': |
|
4776 | elif mode == 'DBS': | |
4235 | dataOut.groupList = numpy.arange(nChannels) |
|
4777 | dataOut.groupList = numpy.arange(nChannels) | |
4236 |
|
4778 | |||
4237 | #Radial Velocities |
|
4779 | #Radial Velocities | |
4238 | phase = numpy.angle(data_acf[:,1,:,:]) |
|
4780 | phase = numpy.angle(data_acf[:,1,:,:]) | |
4239 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
4781 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
4240 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
4782 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
4241 |
|
4783 | |||
4242 | #Spectral width |
|
4784 | #Spectral width | |
4243 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
4785 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
4244 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
4786 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
4245 | acf1 = data_acf[:,1,:,:] |
|
4787 | acf1 = data_acf[:,1,:,:] | |
4246 | acf2 = data_acf[:,2,:,:] |
|
4788 | acf2 = data_acf[:,2,:,:] | |
4247 |
|
4789 | |||
4248 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
4790 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
4249 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
4791 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
4250 | if allData: |
|
4792 | if allData: | |
4251 | boolMetFin = ~numpy.isnan(SNRdB) |
|
4793 | boolMetFin = ~numpy.isnan(SNRdB) | |
4252 | else: |
|
4794 | else: | |
4253 | #SNR |
|
4795 | #SNR | |
4254 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
4796 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
4255 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
4797 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
4256 |
|
4798 | |||
4257 | #Radial velocity |
|
4799 | #Radial velocity | |
4258 | boolMet2 = numpy.abs(velRad) < 20 |
|
4800 | boolMet2 = numpy.abs(velRad) < 20 | |
4259 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
4801 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
4260 |
|
4802 | |||
4261 | #Spectral Width |
|
4803 | #Spectral Width | |
4262 | boolMet3 = spcWidth < 30 |
|
4804 | boolMet3 = spcWidth < 30 | |
4263 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
4805 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
4264 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
4806 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
4265 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
4807 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
4266 |
|
4808 | |||
4267 | #Creating data_param |
|
4809 | #Creating data_param | |
4268 | coordMet = numpy.where(boolMetFin) |
|
4810 | coordMet = numpy.where(boolMetFin) | |
4269 |
|
4811 | |||
4270 | cmet = coordMet[0] |
|
4812 | cmet = coordMet[0] | |
4271 | tmet = coordMet[1] |
|
4813 | tmet = coordMet[1] | |
4272 | hmet = coordMet[2] |
|
4814 | hmet = coordMet[2] | |
4273 |
|
4815 | |||
4274 | data_param = numpy.zeros((tmet.size, 7)) |
|
4816 | data_param = numpy.zeros((tmet.size, 7)) | |
4275 | data_param[:,0] = utctime |
|
4817 | data_param[:,0] = utctime | |
4276 | data_param[:,1] = cmet |
|
4818 | data_param[:,1] = cmet | |
4277 | data_param[:,2] = tmet |
|
4819 | data_param[:,2] = tmet | |
4278 | data_param[:,3] = hmet |
|
4820 | data_param[:,3] = hmet | |
4279 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
4821 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
4280 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
4822 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
4281 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
4823 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
4282 |
|
4824 | |||
4283 | # self.dataOut.data_param = data_int |
|
4825 | # self.dataOut.data_param = data_int | |
4284 | if len(data_param) == 0: |
|
4826 | if len(data_param) == 0: | |
4285 | dataOut.flagNoData = True |
|
4827 | dataOut.flagNoData = True | |
4286 | else: |
|
4828 | else: | |
4287 | dataOut.data_param = data_param |
|
4829 | dataOut.data_param = data_param | |
4288 |
|
4830 | |||
4289 | def __erase_small(self, binArray, threshX, threshY): |
|
4831 | def __erase_small(self, binArray, threshX, threshY): | |
4290 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
4832 | labarray, numfeat = ndimage.measurements.label(binArray) | |
4291 | binArray1 = numpy.copy(binArray) |
|
4833 | binArray1 = numpy.copy(binArray) | |
4292 |
|
4834 | |||
4293 | for i in range(1,numfeat + 1): |
|
4835 | for i in range(1,numfeat + 1): | |
4294 | auxBin = (labarray==i) |
|
4836 | auxBin = (labarray==i) | |
4295 | auxSize = auxBin.sum() |
|
4837 | auxSize = auxBin.sum() | |
4296 |
|
4838 | |||
4297 | x,y = numpy.where(auxBin) |
|
4839 | x,y = numpy.where(auxBin) | |
4298 | widthX = x.max() - x.min() |
|
4840 | widthX = x.max() - x.min() | |
4299 | widthY = y.max() - y.min() |
|
4841 | widthY = y.max() - y.min() | |
4300 |
|
4842 | |||
4301 | #width X: 3 seg -> 12.5*3 |
|
4843 | #width X: 3 seg -> 12.5*3 | |
4302 | #width Y: |
|
4844 | #width Y: | |
4303 |
|
4845 | |||
4304 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
4846 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
4305 | binArray1[auxBin] = False |
|
4847 | binArray1[auxBin] = False | |
4306 |
|
4848 | |||
4307 | return binArray1 |
|
4849 | return binArray1 | |
4308 |
|
4850 | |||
4309 | #--------------- Specular Meteor ---------------- |
|
4851 | #--------------- Specular Meteor ---------------- | |
4310 |
|
4852 | |||
4311 | class SMDetection(Operation): |
|
4853 | class SMDetection(Operation): | |
4312 | ''' |
|
4854 | ''' | |
4313 | Function DetectMeteors() |
|
4855 | Function DetectMeteors() | |
4314 | Project developed with paper: |
|
4856 | Project developed with paper: | |
4315 | HOLDSWORTH ET AL. 2004 |
|
4857 | HOLDSWORTH ET AL. 2004 | |
4316 |
|
4858 | |||
4317 | Input: |
|
4859 | Input: | |
4318 | self.dataOut.data_pre |
|
4860 | self.dataOut.data_pre | |
4319 |
|
4861 | |||
4320 | centerReceiverIndex: From the channels, which is the center receiver |
|
4862 | centerReceiverIndex: From the channels, which is the center receiver | |
4321 |
|
4863 | |||
4322 | hei_ref: Height reference for the Beacon signal extraction |
|
4864 | hei_ref: Height reference for the Beacon signal extraction | |
4323 | tauindex: |
|
4865 | tauindex: | |
4324 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
4866 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
4325 |
|
4867 | |||
4326 | cohDetection: Whether to user Coherent detection or not |
|
4868 | cohDetection: Whether to user Coherent detection or not | |
4327 | cohDet_timeStep: Coherent Detection calculation time step |
|
4869 | cohDet_timeStep: Coherent Detection calculation time step | |
4328 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
4870 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
4329 |
|
4871 | |||
4330 | noise_timeStep: Noise calculation time step |
|
4872 | noise_timeStep: Noise calculation time step | |
4331 | noise_multiple: Noise multiple to define signal threshold |
|
4873 | noise_multiple: Noise multiple to define signal threshold | |
4332 |
|
4874 | |||
4333 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
4875 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
4334 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
4876 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
4335 |
|
4877 | |||
4336 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
4878 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
4337 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
4879 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
4338 |
|
4880 | |||
4339 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
4881 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
4340 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
4882 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
4341 | azimuth: Azimuth angle correction |
|
4883 | azimuth: Azimuth angle correction | |
4342 |
|
4884 | |||
4343 | Affected: |
|
4885 | Affected: | |
4344 | self.dataOut.data_param |
|
4886 | self.dataOut.data_param | |
4345 |
|
4887 | |||
4346 | Rejection Criteria (Errors): |
|
4888 | Rejection Criteria (Errors): | |
4347 | 0: No error; analysis OK |
|
4889 | 0: No error; analysis OK | |
4348 | 1: SNR < SNR threshold |
|
4890 | 1: SNR < SNR threshold | |
4349 | 2: angle of arrival (AOA) ambiguously determined |
|
4891 | 2: angle of arrival (AOA) ambiguously determined | |
4350 | 3: AOA estimate not feasible |
|
4892 | 3: AOA estimate not feasible | |
4351 | 4: Large difference in AOAs obtained from different antenna baselines |
|
4893 | 4: Large difference in AOAs obtained from different antenna baselines | |
4352 | 5: echo at start or end of time series |
|
4894 | 5: echo at start or end of time series | |
4353 | 6: echo less than 5 examples long; too short for analysis |
|
4895 | 6: echo less than 5 examples long; too short for analysis | |
4354 | 7: echo rise exceeds 0.3s |
|
4896 | 7: echo rise exceeds 0.3s | |
4355 | 8: echo decay time less than twice rise time |
|
4897 | 8: echo decay time less than twice rise time | |
4356 | 9: large power level before echo |
|
4898 | 9: large power level before echo | |
4357 | 10: large power level after echo |
|
4899 | 10: large power level after echo | |
4358 | 11: poor fit to amplitude for estimation of decay time |
|
4900 | 11: poor fit to amplitude for estimation of decay time | |
4359 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
4901 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
4360 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
4902 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
4361 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
4903 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
4362 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
4904 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
4363 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
4905 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
4364 |
|
4906 | |||
4365 | 17: phase difference in meteor Reestimation |
|
4907 | 17: phase difference in meteor Reestimation | |
4366 |
|
4908 | |||
4367 | Data Storage: |
|
4909 | Data Storage: | |
4368 | Meteors for Wind Estimation (8): |
|
4910 | Meteors for Wind Estimation (8): | |
4369 | Utc Time | Range Height |
|
4911 | Utc Time | Range Height | |
4370 | Azimuth Zenith errorCosDir |
|
4912 | Azimuth Zenith errorCosDir | |
4371 | VelRad errorVelRad |
|
4913 | VelRad errorVelRad | |
4372 | Phase0 Phase1 Phase2 Phase3 |
|
4914 | Phase0 Phase1 Phase2 Phase3 | |
4373 | TypeError |
|
4915 | TypeError | |
4374 |
|
4916 | |||
4375 | ''' |
|
4917 | ''' | |
4376 |
|
4918 | |||
4377 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
4919 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
4378 | phaseOffsets = None, |
|
4920 | phaseOffsets = None, | |
4379 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
4921 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
4380 | noise_timeStep = 4, noise_multiple = 4, |
|
4922 | noise_timeStep = 4, noise_multiple = 4, | |
4381 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
4923 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
4382 | phaseThresh = 20, SNRThresh = 5, |
|
4924 | phaseThresh = 20, SNRThresh = 5, | |
4383 | hmin = 50, hmax=150, azimuth = 0, |
|
4925 | hmin = 50, hmax=150, azimuth = 0, | |
4384 | channelPositions = None) : |
|
4926 | channelPositions = None) : | |
4385 |
|
4927 | |||
4386 |
|
4928 | |||
4387 | #Getting Pairslist |
|
4929 | #Getting Pairslist | |
4388 | if channelPositions is None: |
|
4930 | if channelPositions is None: | |
4389 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
4931 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
4390 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
4932 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
4391 | meteorOps = SMOperations() |
|
4933 | meteorOps = SMOperations() | |
4392 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
4934 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
4393 | heiRang = dataOut.heightList |
|
4935 | heiRang = dataOut.heightList | |
4394 | #Get Beacon signal - No Beacon signal anymore |
|
4936 | #Get Beacon signal - No Beacon signal anymore | |
4395 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
4937 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
4396 | # |
|
4938 | # | |
4397 | # if hei_ref != None: |
|
4939 | # if hei_ref != None: | |
4398 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
4940 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
4399 | # |
|
4941 | # | |
4400 |
|
4942 | |||
4401 |
|
4943 | |||
4402 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
4944 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
4403 | # see if the user put in pre defined phase shifts |
|
4945 | # see if the user put in pre defined phase shifts | |
4404 | voltsPShift = dataOut.data_pre.copy() |
|
4946 | voltsPShift = dataOut.data_pre.copy() | |
4405 |
|
4947 | |||
4406 | # if predefinedPhaseShifts != None: |
|
4948 | # if predefinedPhaseShifts != None: | |
4407 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
4949 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
4408 | # |
|
4950 | # | |
4409 | # # elif beaconPhaseShifts: |
|
4951 | # # elif beaconPhaseShifts: | |
4410 | # # #get hardware phase shifts using beacon signal |
|
4952 | # # #get hardware phase shifts using beacon signal | |
4411 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
4953 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
4412 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
4954 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
4413 | # |
|
4955 | # | |
4414 | # else: |
|
4956 | # else: | |
4415 | # hardwarePhaseShifts = numpy.zeros(5) |
|
4957 | # hardwarePhaseShifts = numpy.zeros(5) | |
4416 | # |
|
4958 | # | |
4417 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
4959 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
4418 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
4960 | # for i in range(self.dataOut.data_pre.shape[0]): | |
4419 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
4961 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
4420 |
|
4962 | |||
4421 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
4963 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
4422 |
|
4964 | |||
4423 | #Remove DC |
|
4965 | #Remove DC | |
4424 | voltsDC = numpy.mean(voltsPShift,1) |
|
4966 | voltsDC = numpy.mean(voltsPShift,1) | |
4425 | voltsDC = numpy.mean(voltsDC,1) |
|
4967 | voltsDC = numpy.mean(voltsDC,1) | |
4426 | for i in range(voltsDC.shape[0]): |
|
4968 | for i in range(voltsDC.shape[0]): | |
4427 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
4969 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
4428 |
|
4970 | |||
4429 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
4971 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
4430 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
4972 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
4431 |
|
4973 | |||
4432 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
4974 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
4433 | #Coherent Detection |
|
4975 | #Coherent Detection | |
4434 | if cohDetection: |
|
4976 | if cohDetection: | |
4435 | #use coherent detection to get the net power |
|
4977 | #use coherent detection to get the net power | |
4436 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
4978 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
4437 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
4979 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
4438 |
|
4980 | |||
4439 | #Non-coherent detection! |
|
4981 | #Non-coherent detection! | |
4440 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
4982 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
4441 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
4983 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
4442 |
|
4984 | |||
4443 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
4985 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
4444 | #Get noise |
|
4986 | #Get noise | |
4445 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
4987 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
4446 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
4988 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
4447 | #Get signal threshold |
|
4989 | #Get signal threshold | |
4448 | signalThresh = noise_multiple*noise |
|
4990 | signalThresh = noise_multiple*noise | |
4449 | #Meteor echoes detection |
|
4991 | #Meteor echoes detection | |
4450 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
4992 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
4451 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
4993 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
4452 |
|
4994 | |||
4453 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
4995 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
4454 | #Parameters |
|
4996 | #Parameters | |
4455 | heiRange = dataOut.heightList |
|
4997 | heiRange = dataOut.heightList | |
4456 | rangeInterval = heiRange[1] - heiRange[0] |
|
4998 | rangeInterval = heiRange[1] - heiRange[0] | |
4457 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
4999 | rangeLimit = multDet_rangeLimit/rangeInterval | |
4458 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
5000 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
4459 | #Multiple detection removals |
|
5001 | #Multiple detection removals | |
4460 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
5002 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
4461 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
5003 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
4462 |
|
5004 | |||
4463 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
5005 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
4464 | #Parameters |
|
5006 | #Parameters | |
4465 | phaseThresh = phaseThresh*numpy.pi/180 |
|
5007 | phaseThresh = phaseThresh*numpy.pi/180 | |
4466 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
5008 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
4467 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
5009 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
4468 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
5010 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
4469 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
5011 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
4470 | #Estimation of decay times (Errors N 7, 8, 11) |
|
5012 | #Estimation of decay times (Errors N 7, 8, 11) | |
4471 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
5013 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
4472 | #******************* END OF METEOR REESTIMATION ******************* |
|
5014 | #******************* END OF METEOR REESTIMATION ******************* | |
4473 |
|
5015 | |||
4474 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
5016 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
4475 | #Calculating Radial Velocity (Error N 15) |
|
5017 | #Calculating Radial Velocity (Error N 15) | |
4476 | radialStdThresh = 10 |
|
5018 | radialStdThresh = 10 | |
4477 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
5019 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
4478 |
|
5020 | |||
4479 | if len(listMeteors4) > 0: |
|
5021 | if len(listMeteors4) > 0: | |
4480 | #Setting New Array |
|
5022 | #Setting New Array | |
4481 | date = dataOut.utctime |
|
5023 | date = dataOut.utctime | |
4482 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
5024 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
4483 |
|
5025 | |||
4484 | #Correcting phase offset |
|
5026 | #Correcting phase offset | |
4485 | if phaseOffsets != None: |
|
5027 | if phaseOffsets != None: | |
4486 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
5028 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
4487 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
5029 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
4488 |
|
5030 | |||
4489 | #Second Pairslist |
|
5031 | #Second Pairslist | |
4490 | pairsList = [] |
|
5032 | pairsList = [] | |
4491 | pairx = (0,1) |
|
5033 | pairx = (0,1) | |
4492 | pairy = (2,3) |
|
5034 | pairy = (2,3) | |
4493 | pairsList.append(pairx) |
|
5035 | pairsList.append(pairx) | |
4494 | pairsList.append(pairy) |
|
5036 | pairsList.append(pairy) | |
4495 |
|
5037 | |||
4496 | jph = numpy.array([0,0,0,0]) |
|
5038 | jph = numpy.array([0,0,0,0]) | |
4497 | h = (hmin,hmax) |
|
5039 | h = (hmin,hmax) | |
4498 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
5040 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
4499 |
|
5041 | |||
4500 | # #Calculate AOA (Error N 3, 4) |
|
5042 | # #Calculate AOA (Error N 3, 4) | |
4501 | # #JONES ET AL. 1998 |
|
5043 | # #JONES ET AL. 1998 | |
4502 | # error = arrayParameters[:,-1] |
|
5044 | # error = arrayParameters[:,-1] | |
4503 | # AOAthresh = numpy.pi/8 |
|
5045 | # AOAthresh = numpy.pi/8 | |
4504 | # phases = -arrayParameters[:,9:13] |
|
5046 | # phases = -arrayParameters[:,9:13] | |
4505 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
5047 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
4506 | # |
|
5048 | # | |
4507 | # #Calculate Heights (Error N 13 and 14) |
|
5049 | # #Calculate Heights (Error N 13 and 14) | |
4508 | # error = arrayParameters[:,-1] |
|
5050 | # error = arrayParameters[:,-1] | |
4509 | # Ranges = arrayParameters[:,2] |
|
5051 | # Ranges = arrayParameters[:,2] | |
4510 | # zenith = arrayParameters[:,5] |
|
5052 | # zenith = arrayParameters[:,5] | |
4511 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
5053 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
4512 | # error = arrayParameters[:,-1] |
|
5054 | # error = arrayParameters[:,-1] | |
4513 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
5055 | #********************* END OF PARAMETERS CALCULATION ************************** | |
4514 |
|
5056 | |||
4515 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
5057 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
4516 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
5058 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
4517 | dataOut.data_param = arrayParameters |
|
5059 | dataOut.data_param = arrayParameters | |
4518 |
|
5060 | |||
4519 | if arrayParameters is None: |
|
5061 | if arrayParameters is None: | |
4520 | dataOut.flagNoData = True |
|
5062 | dataOut.flagNoData = True | |
4521 | else: |
|
5063 | else: | |
4522 | dataOut.flagNoData = True |
|
5064 | dataOut.flagNoData = True | |
4523 |
|
5065 | |||
4524 | return |
|
5066 | return | |
4525 |
|
5067 | |||
4526 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
5068 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
4527 |
|
5069 | |||
4528 | minIndex = min(newheis[0]) |
|
5070 | minIndex = min(newheis[0]) | |
4529 | maxIndex = max(newheis[0]) |
|
5071 | maxIndex = max(newheis[0]) | |
4530 |
|
5072 | |||
4531 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
5073 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
4532 | nLength = voltage.shape[1]/n |
|
5074 | nLength = voltage.shape[1]/n | |
4533 | nMin = 0 |
|
5075 | nMin = 0 | |
4534 | nMax = 0 |
|
5076 | nMax = 0 | |
4535 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
5077 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
4536 |
|
5078 | |||
4537 | for i in range(n): |
|
5079 | for i in range(n): | |
4538 | nMax += nLength |
|
5080 | nMax += nLength | |
4539 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
5081 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
4540 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
5082 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
4541 | phaseOffset[:,i] = phaseCCF.transpose() |
|
5083 | phaseOffset[:,i] = phaseCCF.transpose() | |
4542 | nMin = nMax |
|
5084 | nMin = nMax | |
4543 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
5085 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
4544 |
|
5086 | |||
4545 | #Remove Outliers |
|
5087 | #Remove Outliers | |
4546 | factor = 2 |
|
5088 | factor = 2 | |
4547 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
5089 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
4548 | dw = numpy.std(wt,axis = 1) |
|
5090 | dw = numpy.std(wt,axis = 1) | |
4549 | dw = dw.reshape((dw.size,1)) |
|
5091 | dw = dw.reshape((dw.size,1)) | |
4550 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
5092 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
4551 | phaseOffset[ind] = numpy.nan |
|
5093 | phaseOffset[ind] = numpy.nan | |
4552 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
5094 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
4553 |
|
5095 | |||
4554 | return phaseOffset |
|
5096 | return phaseOffset | |
4555 |
|
5097 | |||
4556 | def __shiftPhase(self, data, phaseShift): |
|
5098 | def __shiftPhase(self, data, phaseShift): | |
4557 | #this will shift the phase of a complex number |
|
5099 | #this will shift the phase of a complex number | |
4558 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
5100 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
4559 | return dataShifted |
|
5101 | return dataShifted | |
4560 |
|
5102 | |||
4561 | def __estimatePhaseDifference(self, array, pairslist): |
|
5103 | def __estimatePhaseDifference(self, array, pairslist): | |
4562 | nChannel = array.shape[0] |
|
5104 | nChannel = array.shape[0] | |
4563 | nHeights = array.shape[2] |
|
5105 | nHeights = array.shape[2] | |
4564 | numPairs = len(pairslist) |
|
5106 | numPairs = len(pairslist) | |
4565 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
5107 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
4566 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
5108 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
4567 |
|
5109 | |||
4568 | #Correct phases |
|
5110 | #Correct phases | |
4569 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
5111 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
4570 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
5112 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
4571 |
|
5113 | |||
4572 | if indDer[0].shape[0] > 0: |
|
5114 | if indDer[0].shape[0] > 0: | |
4573 | for i in range(indDer[0].shape[0]): |
|
5115 | for i in range(indDer[0].shape[0]): | |
4574 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
5116 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
4575 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
5117 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
4576 |
|
5118 | |||
4577 | # for j in range(numSides): |
|
5119 | # for j in range(numSides): | |
4578 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
5120 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
4579 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
5121 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
4580 | # |
|
5122 | # | |
4581 | #Linear |
|
5123 | #Linear | |
4582 | phaseInt = numpy.zeros((numPairs,1)) |
|
5124 | phaseInt = numpy.zeros((numPairs,1)) | |
4583 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
5125 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
4584 | for j in range(numPairs): |
|
5126 | for j in range(numPairs): | |
4585 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
5127 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
4586 | phaseInt[j] = fit[1] |
|
5128 | phaseInt[j] = fit[1] | |
4587 | #Phase Differences |
|
5129 | #Phase Differences | |
4588 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
5130 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
4589 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
5131 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
4590 |
|
5132 | |||
4591 | #Dealias |
|
5133 | #Dealias | |
4592 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
5134 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
4593 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
5135 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
4594 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
5136 | # phaseArrival[indAlias] -= 2*numpy.pi | |
4595 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
5137 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
4596 | # phaseArrival[indAlias] += 2*numpy.pi |
|
5138 | # phaseArrival[indAlias] += 2*numpy.pi | |
4597 |
|
5139 | |||
4598 | return phaseDiff, phaseArrival |
|
5140 | return phaseDiff, phaseArrival | |
4599 |
|
5141 | |||
4600 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
5142 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
4601 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
5143 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
4602 | #find the phase shifts of each channel over 1 second intervals |
|
5144 | #find the phase shifts of each channel over 1 second intervals | |
4603 | #only look at ranges below the beacon signal |
|
5145 | #only look at ranges below the beacon signal | |
4604 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
5146 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
4605 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
5147 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
4606 | numHeights = volts.shape[2] |
|
5148 | numHeights = volts.shape[2] | |
4607 | nChannel = volts.shape[0] |
|
5149 | nChannel = volts.shape[0] | |
4608 | voltsCohDet = volts.copy() |
|
5150 | voltsCohDet = volts.copy() | |
4609 |
|
5151 | |||
4610 | pairsarray = numpy.array(pairslist) |
|
5152 | pairsarray = numpy.array(pairslist) | |
4611 | indSides = pairsarray[:,1] |
|
5153 | indSides = pairsarray[:,1] | |
4612 | # indSides = numpy.array(range(nChannel)) |
|
5154 | # indSides = numpy.array(range(nChannel)) | |
4613 | # indSides = numpy.delete(indSides, indCenter) |
|
5155 | # indSides = numpy.delete(indSides, indCenter) | |
4614 | # |
|
5156 | # | |
4615 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
5157 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
4616 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
5158 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
4617 |
|
5159 | |||
4618 | startInd = 0 |
|
5160 | startInd = 0 | |
4619 | endInd = 0 |
|
5161 | endInd = 0 | |
4620 |
|
5162 | |||
4621 | for i in range(numBlocks): |
|
5163 | for i in range(numBlocks): | |
4622 | startInd = endInd |
|
5164 | startInd = endInd | |
4623 | endInd = endInd + listBlocks[i].shape[1] |
|
5165 | endInd = endInd + listBlocks[i].shape[1] | |
4624 |
|
5166 | |||
4625 | arrayBlock = listBlocks[i] |
|
5167 | arrayBlock = listBlocks[i] | |
4626 | # arrayBlockCenter = listCenter[i] |
|
5168 | # arrayBlockCenter = listCenter[i] | |
4627 |
|
5169 | |||
4628 | #Estimate the Phase Difference |
|
5170 | #Estimate the Phase Difference | |
4629 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
5171 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
4630 | #Phase Difference RMS |
|
5172 | #Phase Difference RMS | |
4631 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
5173 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
4632 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
5174 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
4633 | indPhase = numpy.where(phaseRMSaux==4) |
|
5175 | indPhase = numpy.where(phaseRMSaux==4) | |
4634 | #Shifting |
|
5176 | #Shifting | |
4635 | if indPhase[0].shape[0] > 0: |
|
5177 | if indPhase[0].shape[0] > 0: | |
4636 | for j in range(indSides.size): |
|
5178 | for j in range(indSides.size): | |
4637 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
5179 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
4638 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
5180 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
4639 |
|
5181 | |||
4640 | return voltsCohDet |
|
5182 | return voltsCohDet | |
4641 |
|
5183 | |||
4642 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
5184 | def __calculateCCF(self, volts, pairslist ,laglist): | |
4643 |
|
5185 | |||
4644 | nHeights = volts.shape[2] |
|
5186 | nHeights = volts.shape[2] | |
4645 | nPoints = volts.shape[1] |
|
5187 | nPoints = volts.shape[1] | |
4646 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
5188 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
4647 |
|
5189 | |||
4648 | for i in range(len(pairslist)): |
|
5190 | for i in range(len(pairslist)): | |
4649 | volts1 = volts[pairslist[i][0]] |
|
5191 | volts1 = volts[pairslist[i][0]] | |
4650 | volts2 = volts[pairslist[i][1]] |
|
5192 | volts2 = volts[pairslist[i][1]] | |
4651 |
|
5193 | |||
4652 | for t in range(len(laglist)): |
|
5194 | for t in range(len(laglist)): | |
4653 | idxT = laglist[t] |
|
5195 | idxT = laglist[t] | |
4654 | if idxT >= 0: |
|
5196 | if idxT >= 0: | |
4655 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
5197 | vStacked = numpy.vstack((volts2[idxT:,:], | |
4656 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
5198 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
4657 | else: |
|
5199 | else: | |
4658 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
5200 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
4659 | volts2[:(nPoints + idxT),:])) |
|
5201 | volts2[:(nPoints + idxT),:])) | |
4660 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
5202 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
4661 |
|
5203 | |||
4662 | vStacked = None |
|
5204 | vStacked = None | |
4663 | return voltsCCF |
|
5205 | return voltsCCF | |
4664 |
|
5206 | |||
4665 | def __getNoise(self, power, timeSegment, timeInterval): |
|
5207 | def __getNoise(self, power, timeSegment, timeInterval): | |
4666 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
5208 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
4667 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
5209 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
4668 | numHeights = power.shape[1] |
|
5210 | numHeights = power.shape[1] | |
4669 |
|
5211 | |||
4670 | listPower = numpy.array_split(power, numBlocks, 0) |
|
5212 | listPower = numpy.array_split(power, numBlocks, 0) | |
4671 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
5213 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
4672 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
5214 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
4673 |
|
5215 | |||
4674 | startInd = 0 |
|
5216 | startInd = 0 | |
4675 | endInd = 0 |
|
5217 | endInd = 0 | |
4676 |
|
5218 | |||
4677 | for i in range(numBlocks): #split por canal |
|
5219 | for i in range(numBlocks): #split por canal | |
4678 | startInd = endInd |
|
5220 | startInd = endInd | |
4679 | endInd = endInd + listPower[i].shape[0] |
|
5221 | endInd = endInd + listPower[i].shape[0] | |
4680 |
|
5222 | |||
4681 | arrayBlock = listPower[i] |
|
5223 | arrayBlock = listPower[i] | |
4682 | noiseAux = numpy.mean(arrayBlock, 0) |
|
5224 | noiseAux = numpy.mean(arrayBlock, 0) | |
4683 | # noiseAux = numpy.median(noiseAux) |
|
5225 | # noiseAux = numpy.median(noiseAux) | |
4684 | # noiseAux = numpy.mean(arrayBlock) |
|
5226 | # noiseAux = numpy.mean(arrayBlock) | |
4685 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
5227 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
4686 |
|
5228 | |||
4687 | noiseAux1 = numpy.mean(arrayBlock) |
|
5229 | noiseAux1 = numpy.mean(arrayBlock) | |
4688 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
5230 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
4689 |
|
5231 | |||
4690 | return noise, noise1 |
|
5232 | return noise, noise1 | |
4691 |
|
5233 | |||
4692 | def __findMeteors(self, power, thresh): |
|
5234 | def __findMeteors(self, power, thresh): | |
4693 | nProf = power.shape[0] |
|
5235 | nProf = power.shape[0] | |
4694 | nHeights = power.shape[1] |
|
5236 | nHeights = power.shape[1] | |
4695 | listMeteors = [] |
|
5237 | listMeteors = [] | |
4696 |
|
5238 | |||
4697 | for i in range(nHeights): |
|
5239 | for i in range(nHeights): | |
4698 | powerAux = power[:,i] |
|
5240 | powerAux = power[:,i] | |
4699 | threshAux = thresh[:,i] |
|
5241 | threshAux = thresh[:,i] | |
4700 |
|
5242 | |||
4701 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
5243 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
4702 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
5244 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
4703 |
|
5245 | |||
4704 | j = 0 |
|
5246 | j = 0 | |
4705 |
|
5247 | |||
4706 | while (j < indUPthresh.size - 2): |
|
5248 | while (j < indUPthresh.size - 2): | |
4707 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
5249 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
4708 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
5250 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
4709 | indDNthresh = indDNthresh[indDNAux] |
|
5251 | indDNthresh = indDNthresh[indDNAux] | |
4710 |
|
5252 | |||
4711 | if (indDNthresh.size > 0): |
|
5253 | if (indDNthresh.size > 0): | |
4712 | indEnd = indDNthresh[0] - 1 |
|
5254 | indEnd = indDNthresh[0] - 1 | |
4713 | indInit = indUPthresh[j] |
|
5255 | indInit = indUPthresh[j] | |
4714 |
|
5256 | |||
4715 | meteor = powerAux[indInit:indEnd + 1] |
|
5257 | meteor = powerAux[indInit:indEnd + 1] | |
4716 | indPeak = meteor.argmax() + indInit |
|
5258 | indPeak = meteor.argmax() + indInit | |
4717 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
5259 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
4718 |
|
5260 | |||
4719 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
5261 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
4720 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
5262 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
4721 | else: j+=1 |
|
5263 | else: j+=1 | |
4722 | else: j+=1 |
|
5264 | else: j+=1 | |
4723 |
|
5265 | |||
4724 | return listMeteors |
|
5266 | return listMeteors | |
4725 |
|
5267 | |||
4726 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
5268 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
4727 |
|
5269 | |||
4728 | arrayMeteors = numpy.asarray(listMeteors) |
|
5270 | arrayMeteors = numpy.asarray(listMeteors) | |
4729 | listMeteors1 = [] |
|
5271 | listMeteors1 = [] | |
4730 |
|
5272 | |||
4731 | while arrayMeteors.shape[0] > 0: |
|
5273 | while arrayMeteors.shape[0] > 0: | |
4732 | FLAs = arrayMeteors[:,4] |
|
5274 | FLAs = arrayMeteors[:,4] | |
4733 | maxFLA = FLAs.argmax() |
|
5275 | maxFLA = FLAs.argmax() | |
4734 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
5276 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
4735 |
|
5277 | |||
4736 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
5278 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
4737 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
5279 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
4738 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
5280 | MeteorHeight = arrayMeteors[maxFLA,0] | |
4739 |
|
5281 | |||
4740 | #Check neighborhood |
|
5282 | #Check neighborhood | |
4741 | maxHeightIndex = MeteorHeight + rangeLimit |
|
5283 | maxHeightIndex = MeteorHeight + rangeLimit | |
4742 | minHeightIndex = MeteorHeight - rangeLimit |
|
5284 | minHeightIndex = MeteorHeight - rangeLimit | |
4743 | minTimeIndex = MeteorInitTime - timeLimit |
|
5285 | minTimeIndex = MeteorInitTime - timeLimit | |
4744 | maxTimeIndex = MeteorEndTime + timeLimit |
|
5286 | maxTimeIndex = MeteorEndTime + timeLimit | |
4745 |
|
5287 | |||
4746 | #Check Heights |
|
5288 | #Check Heights | |
4747 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
5289 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
4748 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
5290 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
4749 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
5291 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
4750 |
|
5292 | |||
4751 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
5293 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
4752 |
|
5294 | |||
4753 | return listMeteors1 |
|
5295 | return listMeteors1 | |
4754 |
|
5296 | |||
4755 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
5297 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
4756 | numHeights = volts.shape[2] |
|
5298 | numHeights = volts.shape[2] | |
4757 | nChannel = volts.shape[0] |
|
5299 | nChannel = volts.shape[0] | |
4758 |
|
5300 | |||
4759 | thresholdPhase = thresh[0] |
|
5301 | thresholdPhase = thresh[0] | |
4760 | thresholdNoise = thresh[1] |
|
5302 | thresholdNoise = thresh[1] | |
4761 | thresholdDB = float(thresh[2]) |
|
5303 | thresholdDB = float(thresh[2]) | |
4762 |
|
5304 | |||
4763 | thresholdDB1 = 10**(thresholdDB/10) |
|
5305 | thresholdDB1 = 10**(thresholdDB/10) | |
4764 | pairsarray = numpy.array(pairslist) |
|
5306 | pairsarray = numpy.array(pairslist) | |
4765 | indSides = pairsarray[:,1] |
|
5307 | indSides = pairsarray[:,1] | |
4766 |
|
5308 | |||
4767 | pairslist1 = list(pairslist) |
|
5309 | pairslist1 = list(pairslist) | |
4768 | pairslist1.append((0,1)) |
|
5310 | pairslist1.append((0,1)) | |
4769 | pairslist1.append((3,4)) |
|
5311 | pairslist1.append((3,4)) | |
4770 |
|
5312 | |||
4771 | listMeteors1 = [] |
|
5313 | listMeteors1 = [] | |
4772 | listPowerSeries = [] |
|
5314 | listPowerSeries = [] | |
4773 | listVoltageSeries = [] |
|
5315 | listVoltageSeries = [] | |
4774 | #volts has the war data |
|
5316 | #volts has the war data | |
4775 |
|
5317 | |||
4776 | if frequency == 30e6: |
|
5318 | if frequency == 30e6: | |
4777 | timeLag = 45*10**-3 |
|
5319 | timeLag = 45*10**-3 | |
4778 | else: |
|
5320 | else: | |
4779 | timeLag = 15*10**-3 |
|
5321 | timeLag = 15*10**-3 | |
4780 | lag = numpy.ceil(timeLag/timeInterval) |
|
5322 | lag = numpy.ceil(timeLag/timeInterval) | |
4781 |
|
5323 | |||
4782 | for i in range(len(listMeteors)): |
|
5324 | for i in range(len(listMeteors)): | |
4783 |
|
5325 | |||
4784 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
5326 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
4785 | meteorAux = numpy.zeros(16) |
|
5327 | meteorAux = numpy.zeros(16) | |
4786 |
|
5328 | |||
4787 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
5329 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
4788 | mHeight = listMeteors[i][0] |
|
5330 | mHeight = listMeteors[i][0] | |
4789 | mStart = listMeteors[i][1] |
|
5331 | mStart = listMeteors[i][1] | |
4790 | mPeak = listMeteors[i][2] |
|
5332 | mPeak = listMeteors[i][2] | |
4791 | mEnd = listMeteors[i][3] |
|
5333 | mEnd = listMeteors[i][3] | |
4792 |
|
5334 | |||
4793 | #get the volt data between the start and end times of the meteor |
|
5335 | #get the volt data between the start and end times of the meteor | |
4794 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
5336 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
4795 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
5337 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
4796 |
|
5338 | |||
4797 | #3.6. Phase Difference estimation |
|
5339 | #3.6. Phase Difference estimation | |
4798 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
5340 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
4799 |
|
5341 | |||
4800 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
5342 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
4801 | #meteorVolts0.- all Channels, all Profiles |
|
5343 | #meteorVolts0.- all Channels, all Profiles | |
4802 | meteorVolts0 = volts[:,:,mHeight] |
|
5344 | meteorVolts0 = volts[:,:,mHeight] | |
4803 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
5345 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
4804 | meteorNoise = noise[:,mHeight] |
|
5346 | meteorNoise = noise[:,mHeight] | |
4805 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
5347 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
4806 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
5348 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
4807 |
|
5349 | |||
4808 | #Times reestimation |
|
5350 | #Times reestimation | |
4809 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
5351 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
4810 | if mStart1.size > 0: |
|
5352 | if mStart1.size > 0: | |
4811 | mStart1 = mStart1[-1] + 1 |
|
5353 | mStart1 = mStart1[-1] + 1 | |
4812 |
|
5354 | |||
4813 | else: |
|
5355 | else: | |
4814 | mStart1 = mPeak |
|
5356 | mStart1 = mPeak | |
4815 |
|
5357 | |||
4816 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
5358 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
4817 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
5359 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
4818 | if mEndDecayTime1.size == 0: |
|
5360 | if mEndDecayTime1.size == 0: | |
4819 | mEndDecayTime1 = powerNet0.size |
|
5361 | mEndDecayTime1 = powerNet0.size | |
4820 | else: |
|
5362 | else: | |
4821 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
5363 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
4822 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
5364 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
4823 |
|
5365 | |||
4824 | #meteorVolts1.- all Channels, from start to end |
|
5366 | #meteorVolts1.- all Channels, from start to end | |
4825 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
5367 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
4826 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
5368 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
4827 | if meteorVolts2.shape[1] == 0: |
|
5369 | if meteorVolts2.shape[1] == 0: | |
4828 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
5370 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
4829 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
5371 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
4830 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
5372 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
4831 | ##################### END PARAMETERS REESTIMATION ######################### |
|
5373 | ##################### END PARAMETERS REESTIMATION ######################### | |
4832 |
|
5374 | |||
4833 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
5375 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
4834 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
5376 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
4835 | if meteorVolts2.shape[1] > 0: |
|
5377 | if meteorVolts2.shape[1] > 0: | |
4836 | #Phase Difference re-estimation |
|
5378 | #Phase Difference re-estimation | |
4837 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
5379 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
4838 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
5380 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
4839 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
5381 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
4840 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
5382 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
4841 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
5383 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
4842 |
|
5384 | |||
4843 | #Phase Difference RMS |
|
5385 | #Phase Difference RMS | |
4844 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
5386 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
4845 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
5387 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
4846 | #Data from Meteor |
|
5388 | #Data from Meteor | |
4847 | mPeak1 = powerNet1.argmax() + mStart1 |
|
5389 | mPeak1 = powerNet1.argmax() + mStart1 | |
4848 | mPeakPower1 = powerNet1.max() |
|
5390 | mPeakPower1 = powerNet1.max() | |
4849 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
5391 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
4850 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
5392 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
4851 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
5393 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
4852 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
5394 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
4853 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
5395 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
4854 | #Vectorize |
|
5396 | #Vectorize | |
4855 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
5397 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
4856 | meteorAux[7:11] = phaseDiffint[0:4] |
|
5398 | meteorAux[7:11] = phaseDiffint[0:4] | |
4857 |
|
5399 | |||
4858 | #Rejection Criterions |
|
5400 | #Rejection Criterions | |
4859 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
5401 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
4860 | meteorAux[-1] = 17 |
|
5402 | meteorAux[-1] = 17 | |
4861 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
5403 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
4862 | meteorAux[-1] = 1 |
|
5404 | meteorAux[-1] = 1 | |
4863 |
|
5405 | |||
4864 |
|
5406 | |||
4865 | else: |
|
5407 | else: | |
4866 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
5408 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
4867 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
5409 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
4868 | PowerSeries = 0 |
|
5410 | PowerSeries = 0 | |
4869 |
|
5411 | |||
4870 | listMeteors1.append(meteorAux) |
|
5412 | listMeteors1.append(meteorAux) | |
4871 | listPowerSeries.append(PowerSeries) |
|
5413 | listPowerSeries.append(PowerSeries) | |
4872 | listVoltageSeries.append(meteorVolts1) |
|
5414 | listVoltageSeries.append(meteorVolts1) | |
4873 |
|
5415 | |||
4874 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
5416 | return listMeteors1, listPowerSeries, listVoltageSeries | |
4875 |
|
5417 | |||
4876 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
5418 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
4877 |
|
5419 | |||
4878 | threshError = 10 |
|
5420 | threshError = 10 | |
4879 | #Depending if it is 30 or 50 MHz |
|
5421 | #Depending if it is 30 or 50 MHz | |
4880 | if frequency == 30e6: |
|
5422 | if frequency == 30e6: | |
4881 | timeLag = 45*10**-3 |
|
5423 | timeLag = 45*10**-3 | |
4882 | else: |
|
5424 | else: | |
4883 | timeLag = 15*10**-3 |
|
5425 | timeLag = 15*10**-3 | |
4884 | lag = numpy.ceil(timeLag/timeInterval) |
|
5426 | lag = numpy.ceil(timeLag/timeInterval) | |
4885 |
|
5427 | |||
4886 | listMeteors1 = [] |
|
5428 | listMeteors1 = [] | |
4887 |
|
5429 | |||
4888 | for i in range(len(listMeteors)): |
|
5430 | for i in range(len(listMeteors)): | |
4889 | meteorPower = listPower[i] |
|
5431 | meteorPower = listPower[i] | |
4890 | meteorAux = listMeteors[i] |
|
5432 | meteorAux = listMeteors[i] | |
4891 |
|
5433 | |||
4892 | if meteorAux[-1] == 0: |
|
5434 | if meteorAux[-1] == 0: | |
4893 |
|
5435 | |||
4894 | try: |
|
5436 | try: | |
4895 | indmax = meteorPower.argmax() |
|
5437 | indmax = meteorPower.argmax() | |
4896 | indlag = indmax + lag |
|
5438 | indlag = indmax + lag | |
4897 |
|
5439 | |||
4898 | y = meteorPower[indlag:] |
|
5440 | y = meteorPower[indlag:] | |
4899 | x = numpy.arange(0, y.size)*timeLag |
|
5441 | x = numpy.arange(0, y.size)*timeLag | |
4900 |
|
5442 | |||
4901 | #first guess |
|
5443 | #first guess | |
4902 | a = y[0] |
|
5444 | a = y[0] | |
4903 | tau = timeLag |
|
5445 | tau = timeLag | |
4904 | #exponential fit |
|
5446 | #exponential fit | |
4905 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
5447 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
4906 | y1 = self.__exponential_function(x, *popt) |
|
5448 | y1 = self.__exponential_function(x, *popt) | |
4907 | #error estimation |
|
5449 | #error estimation | |
4908 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
5450 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
4909 |
|
5451 | |||
4910 | decayTime = popt[1] |
|
5452 | decayTime = popt[1] | |
4911 | riseTime = indmax*timeInterval |
|
5453 | riseTime = indmax*timeInterval | |
4912 | meteorAux[11:13] = [decayTime, error] |
|
5454 | meteorAux[11:13] = [decayTime, error] | |
4913 |
|
5455 | |||
4914 | #Table items 7, 8 and 11 |
|
5456 | #Table items 7, 8 and 11 | |
4915 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
5457 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
4916 | meteorAux[-1] = 7 |
|
5458 | meteorAux[-1] = 7 | |
4917 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
5459 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
4918 | meteorAux[-1] = 8 |
|
5460 | meteorAux[-1] = 8 | |
4919 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
5461 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
4920 | meteorAux[-1] = 11 |
|
5462 | meteorAux[-1] = 11 | |
4921 |
|
5463 | |||
4922 |
|
5464 | |||
4923 | except: |
|
5465 | except: | |
4924 | meteorAux[-1] = 11 |
|
5466 | meteorAux[-1] = 11 | |
4925 |
|
5467 | |||
4926 |
|
5468 | |||
4927 | listMeteors1.append(meteorAux) |
|
5469 | listMeteors1.append(meteorAux) | |
4928 |
|
5470 | |||
4929 | return listMeteors1 |
|
5471 | return listMeteors1 | |
4930 |
|
5472 | |||
4931 | #Exponential Function |
|
5473 | #Exponential Function | |
4932 |
|
5474 | |||
4933 | def __exponential_function(self, x, a, tau): |
|
5475 | def __exponential_function(self, x, a, tau): | |
4934 | y = a*numpy.exp(-x/tau) |
|
5476 | y = a*numpy.exp(-x/tau) | |
4935 | return y |
|
5477 | return y | |
4936 |
|
5478 | |||
4937 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
5479 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
4938 |
|
5480 | |||
4939 | pairslist1 = list(pairslist) |
|
5481 | pairslist1 = list(pairslist) | |
4940 | pairslist1.append((0,1)) |
|
5482 | pairslist1.append((0,1)) | |
4941 | pairslist1.append((3,4)) |
|
5483 | pairslist1.append((3,4)) | |
4942 | numPairs = len(pairslist1) |
|
5484 | numPairs = len(pairslist1) | |
4943 | #Time Lag |
|
5485 | #Time Lag | |
4944 | timeLag = 45*10**-3 |
|
5486 | timeLag = 45*10**-3 | |
4945 | c = 3e8 |
|
5487 | c = 3e8 | |
4946 | lag = numpy.ceil(timeLag/timeInterval) |
|
5488 | lag = numpy.ceil(timeLag/timeInterval) | |
4947 | freq = 30e6 |
|
5489 | freq = 30e6 | |
4948 |
|
5490 | |||
4949 | listMeteors1 = [] |
|
5491 | listMeteors1 = [] | |
4950 |
|
5492 | |||
4951 | for i in range(len(listMeteors)): |
|
5493 | for i in range(len(listMeteors)): | |
4952 | meteorAux = listMeteors[i] |
|
5494 | meteorAux = listMeteors[i] | |
4953 | if meteorAux[-1] == 0: |
|
5495 | if meteorAux[-1] == 0: | |
4954 | mStart = listMeteors[i][1] |
|
5496 | mStart = listMeteors[i][1] | |
4955 | mPeak = listMeteors[i][2] |
|
5497 | mPeak = listMeteors[i][2] | |
4956 | mLag = mPeak - mStart + lag |
|
5498 | mLag = mPeak - mStart + lag | |
4957 |
|
5499 | |||
4958 | #get the volt data between the start and end times of the meteor |
|
5500 | #get the volt data between the start and end times of the meteor | |
4959 | meteorVolts = listVolts[i] |
|
5501 | meteorVolts = listVolts[i] | |
4960 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
5502 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
4961 |
|
5503 | |||
4962 | #Get CCF |
|
5504 | #Get CCF | |
4963 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
5505 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
4964 |
|
5506 | |||
4965 | #Method 2 |
|
5507 | #Method 2 | |
4966 | slopes = numpy.zeros(numPairs) |
|
5508 | slopes = numpy.zeros(numPairs) | |
4967 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
5509 | time = numpy.array([-2,-1,1,2])*timeInterval | |
4968 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
5510 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
4969 |
|
5511 | |||
4970 | #Correct phases |
|
5512 | #Correct phases | |
4971 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
5513 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
4972 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
5514 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
4973 |
|
5515 | |||
4974 | if indDer[0].shape[0] > 0: |
|
5516 | if indDer[0].shape[0] > 0: | |
4975 | for i in range(indDer[0].shape[0]): |
|
5517 | for i in range(indDer[0].shape[0]): | |
4976 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
5518 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
4977 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
5519 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
4978 |
|
5520 | |||
4979 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
5521 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
4980 | for j in range(numPairs): |
|
5522 | for j in range(numPairs): | |
4981 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
5523 | fit = stats.linregress(time, angAllCCF[j,:]) | |
4982 | slopes[j] = fit[0] |
|
5524 | slopes[j] = fit[0] | |
4983 |
|
5525 | |||
4984 | #Remove Outlier |
|
5526 | #Remove Outlier | |
4985 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
5527 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
4986 | # slopes = numpy.delete(slopes,indOut) |
|
5528 | # slopes = numpy.delete(slopes,indOut) | |
4987 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
5529 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
4988 | # slopes = numpy.delete(slopes,indOut) |
|
5530 | # slopes = numpy.delete(slopes,indOut) | |
4989 |
|
5531 | |||
4990 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
5532 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
4991 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
5533 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
4992 | meteorAux[-2] = radialError |
|
5534 | meteorAux[-2] = radialError | |
4993 | meteorAux[-3] = radialVelocity |
|
5535 | meteorAux[-3] = radialVelocity | |
4994 |
|
5536 | |||
4995 | #Setting Error |
|
5537 | #Setting Error | |
4996 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
5538 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
4997 | if numpy.abs(radialVelocity) > 200: |
|
5539 | if numpy.abs(radialVelocity) > 200: | |
4998 | meteorAux[-1] = 15 |
|
5540 | meteorAux[-1] = 15 | |
4999 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
5541 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
5000 | elif radialError > radialStdThresh: |
|
5542 | elif radialError > radialStdThresh: | |
5001 | meteorAux[-1] = 12 |
|
5543 | meteorAux[-1] = 12 | |
5002 |
|
5544 | |||
5003 | listMeteors1.append(meteorAux) |
|
5545 | listMeteors1.append(meteorAux) | |
5004 | return listMeteors1 |
|
5546 | return listMeteors1 | |
5005 |
|
5547 | |||
5006 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
5548 | def __setNewArrays(self, listMeteors, date, heiRang): | |
5007 |
|
5549 | |||
5008 | #New arrays |
|
5550 | #New arrays | |
5009 | arrayMeteors = numpy.array(listMeteors) |
|
5551 | arrayMeteors = numpy.array(listMeteors) | |
5010 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
5552 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
5011 |
|
5553 | |||
5012 | #Date inclusion |
|
5554 | #Date inclusion | |
5013 | # date = re.findall(r'\((.*?)\)', date) |
|
5555 | # date = re.findall(r'\((.*?)\)', date) | |
5014 | # date = date[0].split(',') |
|
5556 | # date = date[0].split(',') | |
5015 | # date = map(int, date) |
|
5557 | # date = map(int, date) | |
5016 | # |
|
5558 | # | |
5017 | # if len(date)<6: |
|
5559 | # if len(date)<6: | |
5018 | # date.append(0) |
|
5560 | # date.append(0) | |
5019 | # |
|
5561 | # | |
5020 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
5562 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
5021 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
5563 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
5022 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
5564 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
5023 |
|
5565 | |||
5024 | #Meteor array |
|
5566 | #Meteor array | |
5025 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
5567 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
5026 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
5568 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
5027 |
|
5569 | |||
5028 | #Parameters Array |
|
5570 | #Parameters Array | |
5029 | arrayParameters[:,0] = arrayDate #Date |
|
5571 | arrayParameters[:,0] = arrayDate #Date | |
5030 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
5572 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
5031 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
5573 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
5032 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
5574 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
5033 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
5575 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
5034 |
|
5576 | |||
5035 |
|
5577 | |||
5036 | return arrayParameters |
|
5578 | return arrayParameters | |
5037 |
|
5579 | |||
5038 | class CorrectSMPhases(Operation): |
|
5580 | class CorrectSMPhases(Operation): | |
5039 |
|
5581 | |||
5040 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
5582 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
5041 |
|
5583 | |||
5042 | arrayParameters = dataOut.data_param |
|
5584 | arrayParameters = dataOut.data_param | |
5043 | pairsList = [] |
|
5585 | pairsList = [] | |
5044 | pairx = (0,1) |
|
5586 | pairx = (0,1) | |
5045 | pairy = (2,3) |
|
5587 | pairy = (2,3) | |
5046 | pairsList.append(pairx) |
|
5588 | pairsList.append(pairx) | |
5047 | pairsList.append(pairy) |
|
5589 | pairsList.append(pairy) | |
5048 | jph = numpy.zeros(4) |
|
5590 | jph = numpy.zeros(4) | |
5049 |
|
5591 | |||
5050 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
5592 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
5051 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
5593 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
5052 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
5594 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
5053 |
|
5595 | |||
5054 | meteorOps = SMOperations() |
|
5596 | meteorOps = SMOperations() | |
5055 | if channelPositions is None: |
|
5597 | if channelPositions is None: | |
5056 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
5598 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
5057 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
5599 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
5058 |
|
5600 | |||
5059 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
5601 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
5060 | h = (hmin,hmax) |
|
5602 | h = (hmin,hmax) | |
5061 |
|
5603 | |||
5062 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
5604 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
5063 |
|
5605 | |||
5064 | dataOut.data_param = arrayParameters |
|
5606 | dataOut.data_param = arrayParameters | |
5065 | return |
|
5607 | return | |
5066 |
|
5608 | |||
5067 | class SMPhaseCalibration(Operation): |
|
5609 | class SMPhaseCalibration(Operation): | |
5068 |
|
5610 | |||
5069 | __buffer = None |
|
5611 | __buffer = None | |
5070 |
|
5612 | |||
5071 | __initime = None |
|
5613 | __initime = None | |
5072 |
|
5614 | |||
5073 | __dataReady = False |
|
5615 | __dataReady = False | |
5074 |
|
5616 | |||
5075 | __isConfig = False |
|
5617 | __isConfig = False | |
5076 |
|
5618 | |||
5077 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
5619 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
5078 |
|
5620 | |||
5079 | dataTime = currentTime + paramInterval |
|
5621 | dataTime = currentTime + paramInterval | |
5080 | deltaTime = dataTime - initTime |
|
5622 | deltaTime = dataTime - initTime | |
5081 |
|
5623 | |||
5082 | if deltaTime >= outputInterval or deltaTime < 0: |
|
5624 | if deltaTime >= outputInterval or deltaTime < 0: | |
5083 | return True |
|
5625 | return True | |
5084 |
|
5626 | |||
5085 | return False |
|
5627 | return False | |
5086 |
|
5628 | |||
5087 | def __getGammas(self, pairs, d, phases): |
|
5629 | def __getGammas(self, pairs, d, phases): | |
5088 | gammas = numpy.zeros(2) |
|
5630 | gammas = numpy.zeros(2) | |
5089 |
|
5631 | |||
5090 | for i in range(len(pairs)): |
|
5632 | for i in range(len(pairs)): | |
5091 |
|
5633 | |||
5092 | pairi = pairs[i] |
|
5634 | pairi = pairs[i] | |
5093 |
|
5635 | |||
5094 | phip3 = phases[:,pairi[0]] |
|
5636 | phip3 = phases[:,pairi[0]] | |
5095 | d3 = d[pairi[0]] |
|
5637 | d3 = d[pairi[0]] | |
5096 | phip2 = phases[:,pairi[1]] |
|
5638 | phip2 = phases[:,pairi[1]] | |
5097 | d2 = d[pairi[1]] |
|
5639 | d2 = d[pairi[1]] | |
5098 | #Calculating gamma |
|
5640 | #Calculating gamma | |
5099 | # jdcos = alp1/(k*d1) |
|
5641 | # jdcos = alp1/(k*d1) | |
5100 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
5642 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
5101 | jgamma = -phip2*d3/d2 - phip3 |
|
5643 | jgamma = -phip2*d3/d2 - phip3 | |
5102 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
5644 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
5103 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
5645 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
5104 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
5646 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
5105 |
|
5647 | |||
5106 | #Revised distribution |
|
5648 | #Revised distribution | |
5107 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
5649 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
5108 |
|
5650 | |||
5109 | #Histogram |
|
5651 | #Histogram | |
5110 | nBins = 64 |
|
5652 | nBins = 64 | |
5111 | rmin = -0.5*numpy.pi |
|
5653 | rmin = -0.5*numpy.pi | |
5112 | rmax = 0.5*numpy.pi |
|
5654 | rmax = 0.5*numpy.pi | |
5113 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
5655 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
5114 |
|
5656 | |||
5115 | meteorsY = phaseHisto[0] |
|
5657 | meteorsY = phaseHisto[0] | |
5116 | phasesX = phaseHisto[1][:-1] |
|
5658 | phasesX = phaseHisto[1][:-1] | |
5117 | width = phasesX[1] - phasesX[0] |
|
5659 | width = phasesX[1] - phasesX[0] | |
5118 | phasesX += width/2 |
|
5660 | phasesX += width/2 | |
5119 |
|
5661 | |||
5120 | #Gaussian aproximation |
|
5662 | #Gaussian aproximation | |
5121 | bpeak = meteorsY.argmax() |
|
5663 | bpeak = meteorsY.argmax() | |
5122 | peak = meteorsY.max() |
|
5664 | peak = meteorsY.max() | |
5123 | jmin = bpeak - 5 |
|
5665 | jmin = bpeak - 5 | |
5124 | jmax = bpeak + 5 + 1 |
|
5666 | jmax = bpeak + 5 + 1 | |
5125 |
|
5667 | |||
5126 | if jmin<0: |
|
5668 | if jmin<0: | |
5127 | jmin = 0 |
|
5669 | jmin = 0 | |
5128 | jmax = 6 |
|
5670 | jmax = 6 | |
5129 | elif jmax > meteorsY.size: |
|
5671 | elif jmax > meteorsY.size: | |
5130 | jmin = meteorsY.size - 6 |
|
5672 | jmin = meteorsY.size - 6 | |
5131 | jmax = meteorsY.size |
|
5673 | jmax = meteorsY.size | |
5132 |
|
5674 | |||
5133 | x0 = numpy.array([peak,bpeak,50]) |
|
5675 | x0 = numpy.array([peak,bpeak,50]) | |
5134 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
5676 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
5135 |
|
5677 | |||
5136 | #Gammas |
|
5678 | #Gammas | |
5137 | gammas[i] = coeff[0][1] |
|
5679 | gammas[i] = coeff[0][1] | |
5138 |
|
5680 | |||
5139 | return gammas |
|
5681 | return gammas | |
5140 |
|
5682 | |||
5141 | def __residualFunction(self, coeffs, y, t): |
|
5683 | def __residualFunction(self, coeffs, y, t): | |
5142 |
|
5684 | |||
5143 | return y - self.__gauss_function(t, coeffs) |
|
5685 | return y - self.__gauss_function(t, coeffs) | |
5144 |
|
5686 | |||
5145 | def __gauss_function(self, t, coeffs): |
|
5687 | def __gauss_function(self, t, coeffs): | |
5146 |
|
5688 | |||
5147 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
5689 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
5148 |
|
5690 | |||
5149 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
5691 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
5150 | meteorOps = SMOperations() |
|
5692 | meteorOps = SMOperations() | |
5151 | nchan = 4 |
|
5693 | nchan = 4 | |
5152 | pairx = pairsList[0] #x es 0 |
|
5694 | pairx = pairsList[0] #x es 0 | |
5153 | pairy = pairsList[1] #y es 1 |
|
5695 | pairy = pairsList[1] #y es 1 | |
5154 | center_xangle = 0 |
|
5696 | center_xangle = 0 | |
5155 | center_yangle = 0 |
|
5697 | center_yangle = 0 | |
5156 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
5698 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
5157 | ntimes = len(range_angle) |
|
5699 | ntimes = len(range_angle) | |
5158 |
|
5700 | |||
5159 | nstepsx = 20 |
|
5701 | nstepsx = 20 | |
5160 | nstepsy = 20 |
|
5702 | nstepsy = 20 | |
5161 |
|
5703 | |||
5162 | for iz in range(ntimes): |
|
5704 | for iz in range(ntimes): | |
5163 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
5705 | min_xangle = -range_angle[iz]/2 + center_xangle | |
5164 | max_xangle = range_angle[iz]/2 + center_xangle |
|
5706 | max_xangle = range_angle[iz]/2 + center_xangle | |
5165 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
5707 | min_yangle = -range_angle[iz]/2 + center_yangle | |
5166 | max_yangle = range_angle[iz]/2 + center_yangle |
|
5708 | max_yangle = range_angle[iz]/2 + center_yangle | |
5167 |
|
5709 | |||
5168 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
5710 | inc_x = (max_xangle-min_xangle)/nstepsx | |
5169 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
5711 | inc_y = (max_yangle-min_yangle)/nstepsy | |
5170 |
|
5712 | |||
5171 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
5713 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
5172 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
5714 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
5173 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
5715 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
5174 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
5716 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
5175 | jph = numpy.zeros(nchan) |
|
5717 | jph = numpy.zeros(nchan) | |
5176 |
|
5718 | |||
5177 | # Iterations looking for the offset |
|
5719 | # Iterations looking for the offset | |
5178 | for iy in range(int(nstepsy)): |
|
5720 | for iy in range(int(nstepsy)): | |
5179 | for ix in range(int(nstepsx)): |
|
5721 | for ix in range(int(nstepsx)): | |
5180 | d3 = d[pairsList[1][0]] |
|
5722 | d3 = d[pairsList[1][0]] | |
5181 | d2 = d[pairsList[1][1]] |
|
5723 | d2 = d[pairsList[1][1]] | |
5182 | d5 = d[pairsList[0][0]] |
|
5724 | d5 = d[pairsList[0][0]] | |
5183 | d4 = d[pairsList[0][1]] |
|
5725 | d4 = d[pairsList[0][1]] | |
5184 |
|
5726 | |||
5185 | alp2 = alpha_y[iy] #gamma 1 |
|
5727 | alp2 = alpha_y[iy] #gamma 1 | |
5186 | alp4 = alpha_x[ix] #gamma 0 |
|
5728 | alp4 = alpha_x[ix] #gamma 0 | |
5187 |
|
5729 | |||
5188 | alp3 = -alp2*d3/d2 - gammas[1] |
|
5730 | alp3 = -alp2*d3/d2 - gammas[1] | |
5189 | alp5 = -alp4*d5/d4 - gammas[0] |
|
5731 | alp5 = -alp4*d5/d4 - gammas[0] | |
5190 | # jph[pairy[1]] = alpha_y[iy] |
|
5732 | # jph[pairy[1]] = alpha_y[iy] | |
5191 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
5733 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
5192 |
|
5734 | |||
5193 | # jph[pairx[1]] = alpha_x[ix] |
|
5735 | # jph[pairx[1]] = alpha_x[ix] | |
5194 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
5736 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
5195 | jph[pairsList[0][1]] = alp4 |
|
5737 | jph[pairsList[0][1]] = alp4 | |
5196 | jph[pairsList[0][0]] = alp5 |
|
5738 | jph[pairsList[0][0]] = alp5 | |
5197 | jph[pairsList[1][0]] = alp3 |
|
5739 | jph[pairsList[1][0]] = alp3 | |
5198 | jph[pairsList[1][1]] = alp2 |
|
5740 | jph[pairsList[1][1]] = alp2 | |
5199 | jph_array[:,ix,iy] = jph |
|
5741 | jph_array[:,ix,iy] = jph | |
5200 | # d = [2.0,2.5,2.5,2.0] |
|
5742 | # d = [2.0,2.5,2.5,2.0] | |
5201 | #falta chequear si va a leer bien los meteoros |
|
5743 | #falta chequear si va a leer bien los meteoros | |
5202 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
5744 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
5203 | error = meteorsArray1[:,-1] |
|
5745 | error = meteorsArray1[:,-1] | |
5204 | ind1 = numpy.where(error==0)[0] |
|
5746 | ind1 = numpy.where(error==0)[0] | |
5205 | penalty[ix,iy] = ind1.size |
|
5747 | penalty[ix,iy] = ind1.size | |
5206 |
|
5748 | |||
5207 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
5749 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
5208 | phOffset = jph_array[:,i,j] |
|
5750 | phOffset = jph_array[:,i,j] | |
5209 |
|
5751 | |||
5210 | center_xangle = phOffset[pairx[1]] |
|
5752 | center_xangle = phOffset[pairx[1]] | |
5211 | center_yangle = phOffset[pairy[1]] |
|
5753 | center_yangle = phOffset[pairy[1]] | |
5212 |
|
5754 | |||
5213 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
5755 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
5214 | phOffset = phOffset*180/numpy.pi |
|
5756 | phOffset = phOffset*180/numpy.pi | |
5215 | return phOffset |
|
5757 | return phOffset | |
5216 |
|
5758 | |||
5217 |
|
5759 | |||
5218 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
5760 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
5219 |
|
5761 | |||
5220 | dataOut.flagNoData = True |
|
5762 | dataOut.flagNoData = True | |
5221 | self.__dataReady = False |
|
5763 | self.__dataReady = False | |
5222 | dataOut.outputInterval = nHours*3600 |
|
5764 | dataOut.outputInterval = nHours*3600 | |
5223 |
|
5765 | |||
5224 | if self.__isConfig == False: |
|
5766 | if self.__isConfig == False: | |
5225 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
5767 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
5226 | #Get Initial LTC time |
|
5768 | #Get Initial LTC time | |
5227 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
5769 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
5228 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
5770 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
5229 |
|
5771 | |||
5230 | self.__isConfig = True |
|
5772 | self.__isConfig = True | |
5231 |
|
5773 | |||
5232 | if self.__buffer is None: |
|
5774 | if self.__buffer is None: | |
5233 | self.__buffer = dataOut.data_param.copy() |
|
5775 | self.__buffer = dataOut.data_param.copy() | |
5234 |
|
5776 | |||
5235 | else: |
|
5777 | else: | |
5236 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
5778 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
5237 |
|
5779 | |||
5238 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
5780 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
5239 |
|
5781 | |||
5240 | if self.__dataReady: |
|
5782 | if self.__dataReady: | |
5241 | dataOut.utctimeInit = self.__initime |
|
5783 | dataOut.utctimeInit = self.__initime | |
5242 | self.__initime += dataOut.outputInterval #to erase time offset |
|
5784 | self.__initime += dataOut.outputInterval #to erase time offset | |
5243 |
|
5785 | |||
5244 | freq = dataOut.frequency |
|
5786 | freq = dataOut.frequency | |
5245 | c = dataOut.C #m/s |
|
5787 | c = dataOut.C #m/s | |
5246 | lamb = c/freq |
|
5788 | lamb = c/freq | |
5247 | k = 2*numpy.pi/lamb |
|
5789 | k = 2*numpy.pi/lamb | |
5248 | azimuth = 0 |
|
5790 | azimuth = 0 | |
5249 | h = (hmin, hmax) |
|
5791 | h = (hmin, hmax) | |
5250 | # pairs = ((0,1),(2,3)) #Estrella |
|
5792 | # pairs = ((0,1),(2,3)) #Estrella | |
5251 | # pairs = ((1,0),(2,3)) #T |
|
5793 | # pairs = ((1,0),(2,3)) #T | |
5252 |
|
5794 | |||
5253 | if channelPositions is None: |
|
5795 | if channelPositions is None: | |
5254 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
5796 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
5255 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
5797 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
5256 | meteorOps = SMOperations() |
|
5798 | meteorOps = SMOperations() | |
5257 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
5799 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
5258 |
|
5800 | |||
5259 | #Checking correct order of pairs |
|
5801 | #Checking correct order of pairs | |
5260 | pairs = [] |
|
5802 | pairs = [] | |
5261 | if distances[1] > distances[0]: |
|
5803 | if distances[1] > distances[0]: | |
5262 | pairs.append((1,0)) |
|
5804 | pairs.append((1,0)) | |
5263 | else: |
|
5805 | else: | |
5264 | pairs.append((0,1)) |
|
5806 | pairs.append((0,1)) | |
5265 |
|
5807 | |||
5266 | if distances[3] > distances[2]: |
|
5808 | if distances[3] > distances[2]: | |
5267 | pairs.append((3,2)) |
|
5809 | pairs.append((3,2)) | |
5268 | else: |
|
5810 | else: | |
5269 | pairs.append((2,3)) |
|
5811 | pairs.append((2,3)) | |
5270 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
5812 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
5271 |
|
5813 | |||
5272 | meteorsArray = self.__buffer |
|
5814 | meteorsArray = self.__buffer | |
5273 | error = meteorsArray[:,-1] |
|
5815 | error = meteorsArray[:,-1] | |
5274 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
5816 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
5275 | ind1 = numpy.where(boolError)[0] |
|
5817 | ind1 = numpy.where(boolError)[0] | |
5276 | meteorsArray = meteorsArray[ind1,:] |
|
5818 | meteorsArray = meteorsArray[ind1,:] | |
5277 | meteorsArray[:,-1] = 0 |
|
5819 | meteorsArray[:,-1] = 0 | |
5278 | phases = meteorsArray[:,8:12] |
|
5820 | phases = meteorsArray[:,8:12] | |
5279 |
|
5821 | |||
5280 | #Calculate Gammas |
|
5822 | #Calculate Gammas | |
5281 | gammas = self.__getGammas(pairs, distances, phases) |
|
5823 | gammas = self.__getGammas(pairs, distances, phases) | |
5282 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
5824 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
5283 | #Calculate Phases |
|
5825 | #Calculate Phases | |
5284 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
5826 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
5285 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
5827 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
5286 | dataOut.data_output = -phasesOff |
|
5828 | dataOut.data_output = -phasesOff | |
5287 | dataOut.flagNoData = False |
|
5829 | dataOut.flagNoData = False | |
5288 | self.__buffer = None |
|
5830 | self.__buffer = None | |
5289 |
|
5831 | |||
5290 |
|
5832 | |||
5291 | return |
|
5833 | return | |
5292 |
|
5834 | |||
5293 | class SMOperations(): |
|
5835 | class SMOperations(): | |
5294 |
|
5836 | |||
5295 | def __init__(self): |
|
5837 | def __init__(self): | |
5296 |
|
5838 | |||
5297 | return |
|
5839 | return | |
5298 |
|
5840 | |||
5299 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
5841 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
5300 |
|
5842 | |||
5301 | arrayParameters = arrayParameters0.copy() |
|
5843 | arrayParameters = arrayParameters0.copy() | |
5302 | hmin = h[0] |
|
5844 | hmin = h[0] | |
5303 | hmax = h[1] |
|
5845 | hmax = h[1] | |
5304 |
|
5846 | |||
5305 | #Calculate AOA (Error N 3, 4) |
|
5847 | #Calculate AOA (Error N 3, 4) | |
5306 | #JONES ET AL. 1998 |
|
5848 | #JONES ET AL. 1998 | |
5307 | AOAthresh = numpy.pi/8 |
|
5849 | AOAthresh = numpy.pi/8 | |
5308 | error = arrayParameters[:,-1] |
|
5850 | error = arrayParameters[:,-1] | |
5309 | phases = -arrayParameters[:,8:12] + jph |
|
5851 | phases = -arrayParameters[:,8:12] + jph | |
5310 | # phases = numpy.unwrap(phases) |
|
5852 | # phases = numpy.unwrap(phases) | |
5311 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
5853 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
5312 |
|
5854 | |||
5313 | #Calculate Heights (Error N 13 and 14) |
|
5855 | #Calculate Heights (Error N 13 and 14) | |
5314 | error = arrayParameters[:,-1] |
|
5856 | error = arrayParameters[:,-1] | |
5315 | Ranges = arrayParameters[:,1] |
|
5857 | Ranges = arrayParameters[:,1] | |
5316 | zenith = arrayParameters[:,4] |
|
5858 | zenith = arrayParameters[:,4] | |
5317 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
5859 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
5318 |
|
5860 | |||
5319 | #----------------------- Get Final data ------------------------------------ |
|
5861 | #----------------------- Get Final data ------------------------------------ | |
5320 | # error = arrayParameters[:,-1] |
|
5862 | # error = arrayParameters[:,-1] | |
5321 | # ind1 = numpy.where(error==0)[0] |
|
5863 | # ind1 = numpy.where(error==0)[0] | |
5322 | # arrayParameters = arrayParameters[ind1,:] |
|
5864 | # arrayParameters = arrayParameters[ind1,:] | |
5323 |
|
5865 | |||
5324 | return arrayParameters |
|
5866 | return arrayParameters | |
5325 |
|
5867 | |||
5326 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
5868 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
5327 |
|
5869 | |||
5328 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
5870 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
5329 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
5871 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
5330 |
|
5872 | |||
5331 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
5873 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
5332 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
5874 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
5333 | arrayAOA[:,2] = cosDirError |
|
5875 | arrayAOA[:,2] = cosDirError | |
5334 |
|
5876 | |||
5335 | azimuthAngle = arrayAOA[:,0] |
|
5877 | azimuthAngle = arrayAOA[:,0] | |
5336 | zenithAngle = arrayAOA[:,1] |
|
5878 | zenithAngle = arrayAOA[:,1] | |
5337 |
|
5879 | |||
5338 | #Setting Error |
|
5880 | #Setting Error | |
5339 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
5881 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
5340 | error[indError] = 0 |
|
5882 | error[indError] = 0 | |
5341 | #Number 3: AOA not fesible |
|
5883 | #Number 3: AOA not fesible | |
5342 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
5884 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
5343 | error[indInvalid] = 3 |
|
5885 | error[indInvalid] = 3 | |
5344 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
5886 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
5345 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
5887 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
5346 | error[indInvalid] = 4 |
|
5888 | error[indInvalid] = 4 | |
5347 | return arrayAOA, error |
|
5889 | return arrayAOA, error | |
5348 |
|
5890 | |||
5349 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
5891 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
5350 |
|
5892 | |||
5351 | #Initializing some variables |
|
5893 | #Initializing some variables | |
5352 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
5894 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
5353 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
5895 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
5354 |
|
5896 | |||
5355 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
5897 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
5356 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
5898 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
5357 |
|
5899 | |||
5358 |
|
5900 | |||
5359 | for i in range(2): |
|
5901 | for i in range(2): | |
5360 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
5902 | ph0 = arrayPhase[:,pairsList[i][0]] | |
5361 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
5903 | ph1 = arrayPhase[:,pairsList[i][1]] | |
5362 | d0 = distances[pairsList[i][0]] |
|
5904 | d0 = distances[pairsList[i][0]] | |
5363 | d1 = distances[pairsList[i][1]] |
|
5905 | d1 = distances[pairsList[i][1]] | |
5364 |
|
5906 | |||
5365 | ph0_aux = ph0 + ph1 |
|
5907 | ph0_aux = ph0 + ph1 | |
5366 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
5908 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
5367 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
5909 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
5368 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
5910 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
5369 | #First Estimation |
|
5911 | #First Estimation | |
5370 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
5912 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
5371 |
|
5913 | |||
5372 | #Most-Accurate Second Estimation |
|
5914 | #Most-Accurate Second Estimation | |
5373 | phi1_aux = ph0 - ph1 |
|
5915 | phi1_aux = ph0 - ph1 | |
5374 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
5916 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
5375 | #Direction Cosine 1 |
|
5917 | #Direction Cosine 1 | |
5376 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
5918 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
5377 |
|
5919 | |||
5378 | #Searching the correct Direction Cosine |
|
5920 | #Searching the correct Direction Cosine | |
5379 | cosdir0_aux = cosdir0[:,i] |
|
5921 | cosdir0_aux = cosdir0[:,i] | |
5380 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
5922 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
5381 | #Minimum Distance |
|
5923 | #Minimum Distance | |
5382 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
5924 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
5383 | indcos = cosDiff.argmin(axis = 1) |
|
5925 | indcos = cosDiff.argmin(axis = 1) | |
5384 | #Saving Value obtained |
|
5926 | #Saving Value obtained | |
5385 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
5927 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
5386 |
|
5928 | |||
5387 | return cosdir0, cosdir |
|
5929 | return cosdir0, cosdir | |
5388 |
|
5930 | |||
5389 | def __calculateAOA(self, cosdir, azimuth): |
|
5931 | def __calculateAOA(self, cosdir, azimuth): | |
5390 | cosdirX = cosdir[:,0] |
|
5932 | cosdirX = cosdir[:,0] | |
5391 | cosdirY = cosdir[:,1] |
|
5933 | cosdirY = cosdir[:,1] | |
5392 |
|
5934 | |||
5393 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
5935 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
5394 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
5936 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
5395 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
5937 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
5396 |
|
5938 | |||
5397 | return angles |
|
5939 | return angles | |
5398 |
|
5940 | |||
5399 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
5941 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
5400 |
|
5942 | |||
5401 | Ramb = 375 #Ramb = c/(2*PRF) |
|
5943 | Ramb = 375 #Ramb = c/(2*PRF) | |
5402 | Re = 6371 #Earth Radius |
|
5944 | Re = 6371 #Earth Radius | |
5403 | heights = numpy.zeros(Ranges.shape) |
|
5945 | heights = numpy.zeros(Ranges.shape) | |
5404 |
|
5946 | |||
5405 | R_aux = numpy.array([0,1,2])*Ramb |
|
5947 | R_aux = numpy.array([0,1,2])*Ramb | |
5406 | R_aux = R_aux.reshape(1,R_aux.size) |
|
5948 | R_aux = R_aux.reshape(1,R_aux.size) | |
5407 |
|
5949 | |||
5408 | Ranges = Ranges.reshape(Ranges.size,1) |
|
5950 | Ranges = Ranges.reshape(Ranges.size,1) | |
5409 |
|
5951 | |||
5410 | Ri = Ranges + R_aux |
|
5952 | Ri = Ranges + R_aux | |
5411 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
5953 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
5412 |
|
5954 | |||
5413 | #Check if there is a height between 70 and 110 km |
|
5955 | #Check if there is a height between 70 and 110 km | |
5414 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
5956 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
5415 | ind_h = numpy.where(h_bool == 1)[0] |
|
5957 | ind_h = numpy.where(h_bool == 1)[0] | |
5416 |
|
5958 | |||
5417 | hCorr = hi[ind_h, :] |
|
5959 | hCorr = hi[ind_h, :] | |
5418 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
5960 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
5419 |
|
5961 | |||
5420 | hCorr = hi[ind_hCorr][:len(ind_h)] |
|
5962 | hCorr = hi[ind_hCorr][:len(ind_h)] | |
5421 | heights[ind_h] = hCorr |
|
5963 | heights[ind_h] = hCorr | |
5422 |
|
5964 | |||
5423 | #Setting Error |
|
5965 | #Setting Error | |
5424 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
5966 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
5425 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
5967 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
5426 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
5968 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
5427 | error[indError] = 0 |
|
5969 | error[indError] = 0 | |
5428 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
5970 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
5429 | error[indInvalid2] = 14 |
|
5971 | error[indInvalid2] = 14 | |
5430 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
5972 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
5431 | error[indInvalid1] = 13 |
|
5973 | error[indInvalid1] = 13 | |
5432 |
|
5974 | |||
5433 | return heights, error |
|
5975 | return heights, error | |
5434 |
|
5976 | |||
5435 | def getPhasePairs(self, channelPositions): |
|
5977 | def getPhasePairs(self, channelPositions): | |
5436 | chanPos = numpy.array(channelPositions) |
|
5978 | chanPos = numpy.array(channelPositions) | |
5437 | listOper = list(itertools.combinations(list(range(5)),2)) |
|
5979 | listOper = list(itertools.combinations(list(range(5)),2)) | |
5438 |
|
5980 | |||
5439 | distances = numpy.zeros(4) |
|
5981 | distances = numpy.zeros(4) | |
5440 | axisX = [] |
|
5982 | axisX = [] | |
5441 | axisY = [] |
|
5983 | axisY = [] | |
5442 | distX = numpy.zeros(3) |
|
5984 | distX = numpy.zeros(3) | |
5443 | distY = numpy.zeros(3) |
|
5985 | distY = numpy.zeros(3) | |
5444 | ix = 0 |
|
5986 | ix = 0 | |
5445 | iy = 0 |
|
5987 | iy = 0 | |
5446 |
|
5988 | |||
5447 | pairX = numpy.zeros((2,2)) |
|
5989 | pairX = numpy.zeros((2,2)) | |
5448 | pairY = numpy.zeros((2,2)) |
|
5990 | pairY = numpy.zeros((2,2)) | |
5449 |
|
5991 | |||
5450 | for i in range(len(listOper)): |
|
5992 | for i in range(len(listOper)): | |
5451 | pairi = listOper[i] |
|
5993 | pairi = listOper[i] | |
5452 |
|
5994 | |||
5453 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
5995 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
5454 |
|
5996 | |||
5455 | if posDif[0] == 0: |
|
5997 | if posDif[0] == 0: | |
5456 | axisY.append(pairi) |
|
5998 | axisY.append(pairi) | |
5457 | distY[iy] = posDif[1] |
|
5999 | distY[iy] = posDif[1] | |
5458 | iy += 1 |
|
6000 | iy += 1 | |
5459 | elif posDif[1] == 0: |
|
6001 | elif posDif[1] == 0: | |
5460 | axisX.append(pairi) |
|
6002 | axisX.append(pairi) | |
5461 | distX[ix] = posDif[0] |
|
6003 | distX[ix] = posDif[0] | |
5462 | ix += 1 |
|
6004 | ix += 1 | |
5463 |
|
6005 | |||
5464 | for i in range(2): |
|
6006 | for i in range(2): | |
5465 | if i==0: |
|
6007 | if i==0: | |
5466 | dist0 = distX |
|
6008 | dist0 = distX | |
5467 | axis0 = axisX |
|
6009 | axis0 = axisX | |
5468 | else: |
|
6010 | else: | |
5469 | dist0 = distY |
|
6011 | dist0 = distY | |
5470 | axis0 = axisY |
|
6012 | axis0 = axisY | |
5471 |
|
6013 | |||
5472 | side = numpy.argsort(dist0)[:-1] |
|
6014 | side = numpy.argsort(dist0)[:-1] | |
5473 | axis0 = numpy.array(axis0)[side,:] |
|
6015 | axis0 = numpy.array(axis0)[side,:] | |
5474 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
6016 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
5475 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
6017 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
5476 | side = axis1[axis1 != chanC] |
|
6018 | side = axis1[axis1 != chanC] | |
5477 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
6019 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
5478 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
6020 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
5479 | if diff1<0: |
|
6021 | if diff1<0: | |
5480 | chan2 = side[0] |
|
6022 | chan2 = side[0] | |
5481 | d2 = numpy.abs(diff1) |
|
6023 | d2 = numpy.abs(diff1) | |
5482 | chan1 = side[1] |
|
6024 | chan1 = side[1] | |
5483 | d1 = numpy.abs(diff2) |
|
6025 | d1 = numpy.abs(diff2) | |
5484 | else: |
|
6026 | else: | |
5485 | chan2 = side[1] |
|
6027 | chan2 = side[1] | |
5486 | d2 = numpy.abs(diff2) |
|
6028 | d2 = numpy.abs(diff2) | |
5487 | chan1 = side[0] |
|
6029 | chan1 = side[0] | |
5488 | d1 = numpy.abs(diff1) |
|
6030 | d1 = numpy.abs(diff1) | |
5489 |
|
6031 | |||
5490 | if i==0: |
|
6032 | if i==0: | |
5491 | chanCX = chanC |
|
6033 | chanCX = chanC | |
5492 | chan1X = chan1 |
|
6034 | chan1X = chan1 | |
5493 | chan2X = chan2 |
|
6035 | chan2X = chan2 | |
5494 | distances[0:2] = numpy.array([d1,d2]) |
|
6036 | distances[0:2] = numpy.array([d1,d2]) | |
5495 | else: |
|
6037 | else: | |
5496 | chanCY = chanC |
|
6038 | chanCY = chanC | |
5497 | chan1Y = chan1 |
|
6039 | chan1Y = chan1 | |
5498 | chan2Y = chan2 |
|
6040 | chan2Y = chan2 | |
5499 | distances[2:4] = numpy.array([d1,d2]) |
|
6041 | distances[2:4] = numpy.array([d1,d2]) | |
5500 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
6042 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
5501 | # |
|
6043 | # | |
5502 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
6044 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
5503 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
6045 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
5504 | # |
|
6046 | # | |
5505 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
6047 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
5506 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
6048 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
5507 | # channel25X = int(pairX[0,ind25X]) |
|
6049 | # channel25X = int(pairX[0,ind25X]) | |
5508 | # channel20X = int(pairX[1,ind20X]) |
|
6050 | # channel20X = int(pairX[1,ind20X]) | |
5509 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
6051 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
5510 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
6052 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
5511 | # channel25Y = int(pairY[0,ind25Y]) |
|
6053 | # channel25Y = int(pairY[0,ind25Y]) | |
5512 | # channel20Y = int(pairY[1,ind20Y]) |
|
6054 | # channel20Y = int(pairY[1,ind20Y]) | |
5513 |
|
6055 | |||
5514 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
6056 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
5515 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
6057 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
5516 |
|
6058 | |||
5517 | return pairslist, distances |
|
6059 | return pairslist, distances | |
5518 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
6060 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
5519 | # |
|
6061 | # | |
5520 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
6062 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
5521 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
6063 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
5522 | # |
|
6064 | # | |
5523 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
6065 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
5524 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
6066 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
5525 | # arrayAOA[:,2] = cosDirError |
|
6067 | # arrayAOA[:,2] = cosDirError | |
5526 | # |
|
6068 | # | |
5527 | # azimuthAngle = arrayAOA[:,0] |
|
6069 | # azimuthAngle = arrayAOA[:,0] | |
5528 | # zenithAngle = arrayAOA[:,1] |
|
6070 | # zenithAngle = arrayAOA[:,1] | |
5529 | # |
|
6071 | # | |
5530 | # #Setting Error |
|
6072 | # #Setting Error | |
5531 | # #Number 3: AOA not fesible |
|
6073 | # #Number 3: AOA not fesible | |
5532 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
6074 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
5533 | # error[indInvalid] = 3 |
|
6075 | # error[indInvalid] = 3 | |
5534 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
6076 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
5535 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
6077 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
5536 | # error[indInvalid] = 4 |
|
6078 | # error[indInvalid] = 4 | |
5537 | # return arrayAOA, error |
|
6079 | # return arrayAOA, error | |
5538 | # |
|
6080 | # | |
5539 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
6081 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
5540 | # |
|
6082 | # | |
5541 | # #Initializing some variables |
|
6083 | # #Initializing some variables | |
5542 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
6084 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
5543 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
6085 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
5544 | # |
|
6086 | # | |
5545 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
6087 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
5546 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
6088 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
5547 | # |
|
6089 | # | |
5548 | # |
|
6090 | # | |
5549 | # for i in range(2): |
|
6091 | # for i in range(2): | |
5550 | # #First Estimation |
|
6092 | # #First Estimation | |
5551 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
6093 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
5552 | # #Dealias |
|
6094 | # #Dealias | |
5553 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
6095 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
5554 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
6096 | # phi0_aux[indcsi] -= 2*numpy.pi | |
5555 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
6097 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
5556 | # phi0_aux[indcsi] += 2*numpy.pi |
|
6098 | # phi0_aux[indcsi] += 2*numpy.pi | |
5557 | # #Direction Cosine 0 |
|
6099 | # #Direction Cosine 0 | |
5558 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
6100 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
5559 | # |
|
6101 | # | |
5560 | # #Most-Accurate Second Estimation |
|
6102 | # #Most-Accurate Second Estimation | |
5561 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
6103 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
5562 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
6104 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
5563 | # #Direction Cosine 1 |
|
6105 | # #Direction Cosine 1 | |
5564 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
6106 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
5565 | # |
|
6107 | # | |
5566 | # #Searching the correct Direction Cosine |
|
6108 | # #Searching the correct Direction Cosine | |
5567 | # cosdir0_aux = cosdir0[:,i] |
|
6109 | # cosdir0_aux = cosdir0[:,i] | |
5568 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
6110 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
5569 | # #Minimum Distance |
|
6111 | # #Minimum Distance | |
5570 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
6112 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
5571 | # indcos = cosDiff.argmin(axis = 1) |
|
6113 | # indcos = cosDiff.argmin(axis = 1) | |
5572 | # #Saving Value obtained |
|
6114 | # #Saving Value obtained | |
5573 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
6115 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
5574 | # |
|
6116 | # | |
5575 | # return cosdir0, cosdir |
|
6117 | # return cosdir0, cosdir | |
5576 | # |
|
6118 | # | |
5577 | # def __calculateAOA(self, cosdir, azimuth): |
|
6119 | # def __calculateAOA(self, cosdir, azimuth): | |
5578 | # cosdirX = cosdir[:,0] |
|
6120 | # cosdirX = cosdir[:,0] | |
5579 | # cosdirY = cosdir[:,1] |
|
6121 | # cosdirY = cosdir[:,1] | |
5580 | # |
|
6122 | # | |
5581 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
6123 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
5582 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
6124 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
5583 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
6125 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
5584 | # |
|
6126 | # | |
5585 | # return angles |
|
6127 | # return angles | |
5586 | # |
|
6128 | # | |
5587 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
6129 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
5588 | # |
|
6130 | # | |
5589 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
6131 | # Ramb = 375 #Ramb = c/(2*PRF) | |
5590 | # Re = 6371 #Earth Radius |
|
6132 | # Re = 6371 #Earth Radius | |
5591 | # heights = numpy.zeros(Ranges.shape) |
|
6133 | # heights = numpy.zeros(Ranges.shape) | |
5592 | # |
|
6134 | # | |
5593 | # R_aux = numpy.array([0,1,2])*Ramb |
|
6135 | # R_aux = numpy.array([0,1,2])*Ramb | |
5594 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
6136 | # R_aux = R_aux.reshape(1,R_aux.size) | |
5595 | # |
|
6137 | # | |
5596 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
6138 | # Ranges = Ranges.reshape(Ranges.size,1) | |
5597 | # |
|
6139 | # | |
5598 | # Ri = Ranges + R_aux |
|
6140 | # Ri = Ranges + R_aux | |
5599 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
6141 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
5600 | # |
|
6142 | # | |
5601 | # #Check if there is a height between 70 and 110 km |
|
6143 | # #Check if there is a height between 70 and 110 km | |
5602 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
6144 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
5603 | # ind_h = numpy.where(h_bool == 1)[0] |
|
6145 | # ind_h = numpy.where(h_bool == 1)[0] | |
5604 | # |
|
6146 | # | |
5605 | # hCorr = hi[ind_h, :] |
|
6147 | # hCorr = hi[ind_h, :] | |
5606 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
6148 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
5607 | # |
|
6149 | # | |
5608 | # hCorr = hi[ind_hCorr] |
|
6150 | # hCorr = hi[ind_hCorr] | |
5609 | # heights[ind_h] = hCorr |
|
6151 | # heights[ind_h] = hCorr | |
5610 | # |
|
6152 | # | |
5611 | # #Setting Error |
|
6153 | # #Setting Error | |
5612 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
6154 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
5613 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
6155 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
5614 | # |
|
6156 | # | |
5615 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
6157 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
5616 | # error[indInvalid2] = 14 |
|
6158 | # error[indInvalid2] = 14 | |
5617 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
6159 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
5618 | # error[indInvalid1] = 13 |
|
6160 | # error[indInvalid1] = 13 | |
5619 | # |
|
6161 | # | |
5620 | # return heights, error |
|
6162 | # return heights, error | |
5621 |
|
6163 | |||
5622 |
|
6164 | |||
5623 |
|
6165 | |||
5624 | class IGRFModel(Operation): |
|
6166 | class IGRFModel(Operation): | |
5625 | """Operation to calculate Geomagnetic parameters. |
|
6167 | """Operation to calculate Geomagnetic parameters. | |
5626 |
|
6168 | |||
5627 | Parameters: |
|
6169 | Parameters: | |
5628 | ----------- |
|
6170 | ----------- | |
5629 | None |
|
6171 | None | |
5630 |
|
6172 | |||
5631 | Example |
|
6173 | Example | |
5632 | -------- |
|
6174 | -------- | |
5633 |
|
6175 | |||
5634 | op = proc_unit.addOperation(name='IGRFModel', optype='other') |
|
6176 | op = proc_unit.addOperation(name='IGRFModel', optype='other') | |
5635 |
|
6177 | |||
5636 | """ |
|
6178 | """ | |
5637 |
|
6179 | |||
5638 | def __init__(self, **kwargs): |
|
6180 | def __init__(self, **kwargs): | |
5639 |
|
6181 | |||
5640 | Operation.__init__(self, **kwargs) |
|
6182 | Operation.__init__(self, **kwargs) | |
5641 |
|
6183 | |||
5642 | self.aux=1 |
|
6184 | self.aux=1 | |
5643 |
|
6185 | |||
5644 | def run(self,dataOut): |
|
6186 | def run(self,dataOut): | |
5645 |
|
6187 | |||
5646 | try: |
|
6188 | try: | |
5647 | from schainpy.model.proc import mkfact_short_2020 |
|
6189 | from schainpy.model.proc import mkfact_short_2020 | |
5648 | except: |
|
6190 | except: | |
5649 | log.warning('You should install "mkfact_short_2020" module to process IGRF Model') |
|
6191 | log.warning('You should install "mkfact_short_2020" module to process IGRF Model') | |
5650 |
|
6192 | |||
5651 | if self.aux==1: |
|
6193 | if self.aux==1: | |
5652 |
|
6194 | |||
5653 | #dataOut.TimeBlockSeconds_First_Time=time.mktime(time.strptime(dataOut.TimeBlockDate)) |
|
6195 | #dataOut.TimeBlockSeconds_First_Time=time.mktime(time.strptime(dataOut.TimeBlockDate)) | |
5654 | #### we do not use dataOut.datatime.ctime() because it's the time of the second (next) block |
|
6196 | #### we do not use dataOut.datatime.ctime() because it's the time of the second (next) block | |
5655 | dataOut.TimeBlockSeconds_First_Time=dataOut.TimeBlockSeconds |
|
6197 | dataOut.TimeBlockSeconds_First_Time=dataOut.TimeBlockSeconds | |
5656 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_First_Time) |
|
6198 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_First_Time) | |
5657 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 |
|
6199 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 | |
5658 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 |
|
6200 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 | |
5659 |
|
6201 | |||
5660 | self.aux=0 |
|
6202 | self.aux=0 | |
5661 |
|
6203 | |||
5662 | dataOut.h=numpy.arange(0.0,15.0*dataOut.MAXNRANGENDT,15.0,dtype='float32') |
|
6204 | dataOut.h=numpy.arange(0.0,15.0*dataOut.MAXNRANGENDT,15.0,dtype='float32') | |
5663 | dataOut.bfm=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') |
|
6205 | dataOut.bfm=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |
5664 | dataOut.bfm=numpy.array(dataOut.bfm,order='F') |
|
6206 | dataOut.bfm=numpy.array(dataOut.bfm,order='F') | |
5665 | dataOut.thb=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') |
|
6207 | dataOut.thb=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |
5666 | dataOut.thb=numpy.array(dataOut.thb,order='F') |
|
6208 | dataOut.thb=numpy.array(dataOut.thb,order='F') | |
5667 | dataOut.bki=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') |
|
6209 | dataOut.bki=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |
5668 | dataOut.bki=numpy.array(dataOut.bki,order='F') |
|
6210 | dataOut.bki=numpy.array(dataOut.bki,order='F') | |
5669 |
|
6211 | |||
5670 | mkfact_short_2020.mkfact(dataOut.year,dataOut.h,dataOut.bfm,dataOut.thb,dataOut.bki,dataOut.MAXNRANGENDT) |
|
6212 | mkfact_short_2020.mkfact(dataOut.year,dataOut.h,dataOut.bfm,dataOut.thb,dataOut.bki,dataOut.MAXNRANGENDT) | |
5671 |
|
6213 | |||
5672 | return dataOut |
|
6214 | return dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now