##// END OF EJS Templates
jrodata se cambio los atrituos de pulsepair,jroplot_voltage se cambio el ploteo de la potencial y la senal, jroIO_simulator se anadio la modificacion de bloquesporarchivo y perfilesporbloque,jro_proc_voltage se corrigio el calculo de noise con remocion DC y se asignaron nuevos nombres al dataOut, jroproc_parameters se anadio los nuevos atributos del dataOut jroproc_voltage pulsepair,test_sim0009.py es el nuevo test de escritura
avaldez -
r1311:816ce18b0db1 v3-devel-julio
parent child
Show More
@@ -359,10 +359,12 class JROData(GenericData):
359 359 class Voltage(JROData):
360 360
361 361 # data es un numpy array de 2 dmensiones (canales, alturas)
362 data = None
363 data_intensity = None
364 data_velocity = None
365 data_specwidth = None
362 data = None
363 dataPP_POW = None
364 dataPP_DOP = None
365 dataPP_WIDTH = None
366 dataPP_SNR = None
367
366 368 def __init__(self):
367 369 '''
368 370 Constructor
@@ -421,6 +423,35 class Voltage(JROData):
421 423
422 424 return noise
423 425
426 def getNoisebyHildebrandDC(self, channel=None,DC=0):
427 """
428 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
429
430 Return:
431 noiselevel
432 """
433
434 if channel != None:
435 data = self.data[channel]-DC
436 nChannels = 1
437 else:
438 data = self.data
439 nChannels = self.nChannels
440
441 noise = numpy.zeros(nChannels)
442 power = data * numpy.conjugate(data)
443
444 for thisChannel in range(nChannels):
445 if nChannels == 1:
446 daux = power[:].real
447 else:
448 daux = power[thisChannel, :].real
449 noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
450
451 return noise
452
453
454
424 455 def getNoise(self, type=1, channel=None):
425 456
426 457 if type == 1:
@@ -1262,15 +1293,19 class PlotterData(object):
1262 1293 self.flagDataAsBlock = dataOut.flagDataAsBlock
1263 1294 self.nProfiles = dataOut.nProfiles
1264 1295 if plot == 'pp_power':
1265 buffer = dataOut.data_intensity
1296 buffer = dataOut.dataPP_POWER
1297 self.flagDataAsBlock = dataOut.flagDataAsBlock
1298 self.nProfiles = dataOut.nProfiles
1299 if plot == 'pp_signal':
1300 buffer = dataOut.dataPP_POW
1266 1301 self.flagDataAsBlock = dataOut.flagDataAsBlock
1267 1302 self.nProfiles = dataOut.nProfiles
1268 1303 if plot == 'pp_velocity':
1269 buffer = dataOut.data_velocity
1304 buffer = dataOut.dataPP_DOP
1270 1305 self.flagDataAsBlock = dataOut.flagDataAsBlock
1271 1306 self.nProfiles = dataOut.nProfiles
1272 1307 if plot == 'pp_specwidth':
1273 buffer = dataOut.data_specwidth
1308 buffer = dataOut.dataPP_WIDTH
1274 1309 self.flagDataAsBlock = dataOut.flagDataAsBlock
1275 1310 self.nProfiles = dataOut.nProfiles
1276 1311
@@ -156,6 +156,8 class ScopePlot(Plot):
156 156 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
157 157 if self.CODE == "pp_power":
158 158 scope = self.data['pp_power']
159 elif self.CODE == "pp_signal":
160 scope = self.data["pp_signal"]
159 161 elif self.CODE == "pp_velocity":
160 162 scope = self.data["pp_velocity"]
161 163 elif self.CODE == "pp_specwidth":
@@ -191,6 +193,13 class ScopePlot(Plot):
191 193 thisDatetime,
192 194 wintitle
193 195 )
196 if self.CODE=="pp_signal":
197 self.plot_weatherpower(self.data.heights,
198 scope[:,i,:],
199 channels,
200 thisDatetime,
201 wintitle
202 )
194 203 if self.CODE=="pp_velocity":
195 204 self.plot_weathervelocity(scope[:,i,:],
196 205 self.data.heights,
@@ -230,6 +239,13 class ScopePlot(Plot):
230 239 thisDatetime,
231 240 wintitle
232 241 )
242 if self.CODE=="pp_signal":
243 self.plot_weatherpower(self.data.heights,
244 scope,
245 channels,
246 thisDatetime,
247 wintitle
248 )
233 249 if self.CODE=="pp_velocity":
234 250 self.plot_weathervelocity(scope,
235 251 self.data.heights,
@@ -249,7 +265,7 class ScopePlot(Plot):
249 265
250 266 class PulsepairPowerPlot(ScopePlot):
251 267 '''
252 Plot for
268 Plot for P= S+N
253 269 '''
254 270
255 271 CODE = 'pp_power'
@@ -259,7 +275,7 class PulsepairPowerPlot(ScopePlot):
259 275
260 276 class PulsepairVelocityPlot(ScopePlot):
261 277 '''
262 Plot for
278 Plot for VELOCITY
263 279 '''
264 280 CODE = 'pp_velocity'
265 281 plot_name = 'PulsepairVelocity'
@@ -268,9 +284,19 class PulsepairVelocityPlot(ScopePlot):
268 284
269 285 class PulsepairSpecwidthPlot(ScopePlot):
270 286 '''
271 Plot for
287 Plot for WIDTH
272 288 '''
273 289 CODE = 'pp_specwidth'
274 290 plot_name = 'PulsepairSpecwidth'
275 291 plot_type = 'scatter'
276 292 buffering = False
293
294 class PulsepairSignalPlot(ScopePlot):
295 '''
296 Plot for S
297 '''
298
299 CODE = 'pp_signal'
300 plot_name = 'PulsepairSignal'
301 plot_type = 'scatter'
302 buffering = False
@@ -360,21 +360,27 class SimulatorReader(JRODataReader, ProcessingUnit):
360 360 fd = Fdoppler #+(600.0/120)*self.nReadBlocks
361 361 d_signal = Adoppler*numpy.array(numpy.exp(1.0j*2.0*math.pi*fd*time_vec),dtype=numpy.complex64)
362 362 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·SeΓ±al con ancho espectralΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
363 #specw_sig = numpy.linspace(-149,150,300)
364 #w = 8
365 #A = 20
366 #specw_sig = specw_sig/w
367 #specw_sig = numpy.sinc(specw_sig)
368 #specw_sig = A*numpy.array(specw_sig,dtype=numpy.complex64)
363 if prof_gen%2==0:
364 min = int(prof_gen/2.0-1.0)
365 max = int(prof_gen/2.0)
366 else:
367 min = int(prof_gen/2.0)
368 max = int(prof_gen/2.0)
369 specw_sig = numpy.linspace(-min,max,prof_gen)
370 w = 4
371 A = 20
372 specw_sig = specw_sig/w
373 specw_sig = numpy.sinc(specw_sig)
374 specw_sig = A*numpy.array(specw_sig,dtype=numpy.complex64)
369 375 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLERΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
370 376 HD=int(Hdoppler/self.AcqDH_0)
371 377 for i in range(12):
372 378 self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ d_signal# RESULT
373 379 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLER*Sinc(x)Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
374 #HD=int(Hdoppler/self.AcqDH_0)
375 #HD=int(HD/2)
376 #for i in range(12):
377 # self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ specw_sig*d_signal# RESULT
380 HD=int(Hdoppler/self.AcqDH_0)
381 HD=int(HD/2)
382 for i in range(12):
383 self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ specw_sig*d_signal# RESULT
378 384
379 385 def readBlock(self):
380 386
@@ -421,7 +427,8 class SimulatorReader(JRODataReader, ProcessingUnit):
421 427 FixPP_CohInt= 1,Tau_0= 250,AcqH0_0 = 70 ,AcqDH_0=1.25, Bauds= 32,
422 428 FixRCP_TXA = 40, FixRCP_TXB = 50, fAngle = 2.0*math.pi*(1/16),DC_level= 50,
423 429 stdev= 8,Num_Codes = 1 , Dyn_snCode = None, samples=200,
424 channels=2,Fdoppler=20,Hdoppler=36,Adoppler=500,nTotalReadFiles=10000,
430 channels=2,Fdoppler=20,Hdoppler=36,Adoppler=500,
431 profilesPerBlock=300,dataBlocksPerFile=120,nTotalReadFiles=10000,
425 432 **kwargs):
426 433
427 434 self.set_kwargs(**kwargs)
@@ -447,14 +454,14 class SimulatorReader(JRODataReader, ProcessingUnit):
447 454 codeType=0, nCode=Num_Codes, nBaud=32, code=Dyn_snCode,
448 455 flip1=0, flip2=0,Taus=Tau_0)
449 456
450 self.set_PH(dtype=0, blockSize=0, profilesPerBlock=300,
451 dataBlocksPerFile=120, nWindows=1, processFlags=numpy.array([1024]), nCohInt=1,
457 self.set_PH(dtype=0, blockSize=0, profilesPerBlock=profilesPerBlock,
458 dataBlocksPerFile=dataBlocksPerFile, nWindows=1, processFlags=numpy.array([1024]), nCohInt=1,
452 459 nIncohInt=1, totalSpectra=0, nHeights=samples, firstHeight=AcqH0_0,
453 460 deltaHeight=AcqDH_0, samplesWin=samples, spectraComb=0, nCode=0,
454 461 code=0, nBaud=None, shif_fft=False, flag_dc=False,
455 462 flag_cspc=False, flag_decode=False, flag_deflip=False)
456 463
457 self.set_SH(nSamples=samples, nProfiles=300, nChannels=channels)
464 self.set_SH(nSamples=samples, nProfiles=profilesPerBlock, nChannels=channels)
458 465
459 466 self.readFirstHeader()
460 467
This diff has been collapsed as it changes many lines, (2143 lines changed) Show them Hide them
@@ -8,12 +8,12 import copy
8 8 import sys
9 9 import importlib
10 10 import itertools
11 from multiprocessing import Pool, TimeoutError
11 from multiprocessing import Pool, TimeoutError
12 12 from multiprocessing.pool import ThreadPool
13 13 import time
14 14
15 15 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
17 17 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
18 18 from scipy import asarray as ar,exp
19 19 from scipy.optimize import curve_fit
@@ -48,13 +48,13 def _unpickle_method(func_name, obj, cls):
48 48
49 49
50 50 class ParametersProc(ProcessingUnit):
51
51
52 52 METHODS = {}
53 53 nSeconds = None
54 54
55 55 def __init__(self):
56 56 ProcessingUnit.__init__(self)
57
57
58 58 # self.objectDict = {}
59 59 self.buffer = None
60 60 self.firstdatatime = None
@@ -63,14 +63,14 class ParametersProc(ProcessingUnit):
63 63 self.setupReq = False #Agregar a todas las unidades de proc
64 64
65 65 def __updateObjFromInput(self):
66
66
67 67 self.dataOut.inputUnit = self.dataIn.type
68
68
69 69 self.dataOut.timeZone = self.dataIn.timeZone
70 70 self.dataOut.dstFlag = self.dataIn.dstFlag
71 71 self.dataOut.errorCount = self.dataIn.errorCount
72 72 self.dataOut.useLocalTime = self.dataIn.useLocalTime
73
73
74 74 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
75 75 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
76 76 self.dataOut.channelList = self.dataIn.channelList
@@ -92,27 +92,43 class ParametersProc(ProcessingUnit):
92 92 self.dataOut.ippSeconds = self.dataIn.ippSeconds
93 93 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
94 94 self.dataOut.timeInterval1 = self.dataIn.timeInterval
95 self.dataOut.heightList = self.dataIn.getHeiRange()
95 self.dataOut.heightList = self.dataIn.getHeiRange()
96 96 self.dataOut.frequency = self.dataIn.frequency
97 97 # self.dataOut.noise = self.dataIn.noise
98
98
99 99 def run(self):
100 100
101 101
102 102
103 103 #---------------------- Voltage Data ---------------------------
104
104
105 105 if self.dataIn.type == "Voltage":
106 106
107 107 self.__updateObjFromInput()
108 108 self.dataOut.data_pre = self.dataIn.data.copy()
109 109 self.dataOut.flagNoData = False
110 110 self.dataOut.utctimeInit = self.dataIn.utctime
111 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
111
112 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
113 if hasattr(self.dataIn, 'dataPP_POW'):
114 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
115
116 if hasattr(self.dataIn, 'dataPP_POWER'):
117 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
118
119 if hasattr(self.dataIn, 'dataPP_DOP'):
120 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
121
122 if hasattr(self.dataIn, 'dataPP_SNR'):
123 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
124
125 if hasattr(self.dataIn, 'dataPP_WIDTH'):
126 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
127
112 128 return
113
129
114 130 #---------------------- Spectra Data ---------------------------
115
131
116 132 if self.dataIn.type == "Spectra":
117 133
118 134 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
@@ -126,243 +142,243 class ParametersProc(ProcessingUnit):
126 142 self.dataOut.spc_noise = self.dataIn.getNoise()
127 143 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
128 144 # self.dataOut.normFactor = self.dataIn.normFactor
129 self.dataOut.pairsList = self.dataIn.pairsList
145 self.dataOut.pairsList = self.dataIn.pairsList
130 146 self.dataOut.groupList = self.dataIn.pairsList
131 self.dataOut.flagNoData = False
132
147 self.dataOut.flagNoData = False
148
133 149 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
134 150 self.dataOut.ChanDist = self.dataIn.ChanDist
135 else: self.dataOut.ChanDist = None
136
151 else: self.dataOut.ChanDist = None
152
137 153 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
138 154 # self.dataOut.VelRange = self.dataIn.VelRange
139 155 #else: self.dataOut.VelRange = None
140
156
141 157 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
142 158 self.dataOut.RadarConst = self.dataIn.RadarConst
143
159
144 160 if hasattr(self.dataIn, 'NPW'): #NPW
145 161 self.dataOut.NPW = self.dataIn.NPW
146
162
147 163 if hasattr(self.dataIn, 'COFA'): #COFA
148 164 self.dataOut.COFA = self.dataIn.COFA
149
150
151
165
166
167
152 168 #---------------------- Correlation Data ---------------------------
153
169
154 170 if self.dataIn.type == "Correlation":
155 171 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
156
172
157 173 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
158 174 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
159 175 self.dataOut.groupList = (acf_pairs, ccf_pairs)
160
176
161 177 self.dataOut.abscissaList = self.dataIn.lagRange
162 178 self.dataOut.noise = self.dataIn.noise
163 179 self.dataOut.data_SNR = self.dataIn.SNR
164 180 self.dataOut.flagNoData = False
165 181 self.dataOut.nAvg = self.dataIn.nAvg
166
182
167 183 #---------------------- Parameters Data ---------------------------
168
184
169 185 if self.dataIn.type == "Parameters":
170 186 self.dataOut.copy(self.dataIn)
171 187 self.dataOut.flagNoData = False
172
188
173 189 return True
174
190
175 191 self.__updateObjFromInput()
176 192 self.dataOut.utctimeInit = self.dataIn.utctime
177 193 self.dataOut.paramInterval = self.dataIn.timeInterval
178
194
179 195 return
180 196
181 197
182 198 def target(tups):
183
199
184 200 obj, args = tups
185
201
186 202 return obj.FitGau(args)
187
188
203
204
189 205 class SpectralFilters(Operation):
190
206
191 207 '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR
192
208
193 209 LimitR : It is the limit in m/s of Rainfall
194 210 LimitW : It is the limit in m/s for Winds
195
211
196 212 Input:
197
213
198 214 self.dataOut.data_pre : SPC and CSPC
199 215 self.dataOut.spc_range : To select wind and rainfall velocities
200
216
201 217 Affected:
202
218
203 219 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
204 self.dataOut.spcparam_range : Used in SpcParamPlot
220 self.dataOut.spcparam_range : Used in SpcParamPlot
205 221 self.dataOut.SPCparam : Used in PrecipitationProc
206
207
222
223
208 224 '''
209
225
210 226 def __init__(self):
211 227 Operation.__init__(self)
212 228 self.i=0
213
214 def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5):
215
216
217 #Limite de vientos
229
230 def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5):
231
232
233 #Limite de vientos
218 234 LimitR = PositiveLimit
219 235 LimitN = NegativeLimit
220
236
221 237 self.spc = dataOut.data_pre[0].copy()
222 238 self.cspc = dataOut.data_pre[1].copy()
223
239
224 240 self.Num_Hei = self.spc.shape[2]
225 241 self.Num_Bin = self.spc.shape[1]
226 242 self.Num_Chn = self.spc.shape[0]
227
243
228 244 VelRange = dataOut.spc_range[2]
229 245 TimeRange = dataOut.spc_range[1]
230 246 FrecRange = dataOut.spc_range[0]
231
247
232 248 Vmax= 2*numpy.max(dataOut.spc_range[2])
233 249 Tmax= 2*numpy.max(dataOut.spc_range[1])
234 250 Fmax= 2*numpy.max(dataOut.spc_range[0])
235
251
236 252 Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()]
237 253 Breaker1R=numpy.where(VelRange == Breaker1R)
238
239 Delta = self.Num_Bin/2 - Breaker1R[0]
240
241
254
255 Delta = self.Num_Bin/2 - Breaker1R[0]
256
257
242 258 '''Reacomodando SPCrange'''
243 259
244 260 VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0)
245
261
246 262 VelRange[-(int(self.Num_Bin/2)):]+= Vmax
247
263
248 264 FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0)
249
265
250 266 FrecRange[-(int(self.Num_Bin/2)):]+= Fmax
251
267
252 268 TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0)
253
269
254 270 TimeRange[-(int(self.Num_Bin/2)):]+= Tmax
255
271
256 272 ''' ------------------ '''
257
273
258 274 Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()]
259 275 Breaker2R=numpy.where(VelRange == Breaker2R)
260
261
276
277
262 278 SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1)
263
279
264 280 SPCcut = SPCroll.copy()
265 281 for i in range(self.Num_Chn):
266
282
267 283 SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i]
268 284 SPCcut[i,-int(Delta):,:] = dataOut.noise[i]
269
285
270 286 SPCcut[i]=SPCcut[i]- dataOut.noise[i]
271 287 SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20
272
288
273 289 SPCroll[i]=SPCroll[i]-dataOut.noise[i]
274 290 SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20
275
291
276 292 SPC_ch1 = SPCroll
277
293
278 294 SPC_ch2 = SPCcut
279
295
280 296 SPCparam = (SPC_ch1, SPC_ch2, self.spc)
281 dataOut.SPCparam = numpy.asarray(SPCparam)
282
283
297 dataOut.SPCparam = numpy.asarray(SPCparam)
298
299
284 300 dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1])
285
301
286 302 dataOut.spcparam_range[2]=VelRange
287 303 dataOut.spcparam_range[1]=TimeRange
288 304 dataOut.spcparam_range[0]=FrecRange
289 305 return dataOut
290
306
291 307 class GaussianFit(Operation):
292
308
293 309 '''
294 Function that fit of one and two generalized gaussians (gg) based
295 on the PSD shape across an "power band" identified from a cumsum of
310 Function that fit of one and two generalized gaussians (gg) based
311 on the PSD shape across an "power band" identified from a cumsum of
296 312 the measured spectrum - noise.
297
313
298 314 Input:
299 315 self.dataOut.data_pre : SelfSpectra
300
316
301 317 Output:
302 318 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
303
319
304 320 '''
305 321 def __init__(self):
306 322 Operation.__init__(self)
307 323 self.i=0
308
309
324
325
310 326 def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
311 327 """This routine will find a couple of generalized Gaussians to a power spectrum
312 328 input: spc
313 329 output:
314 330 Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise
315 331 """
316
332
317 333 self.spc = dataOut.data_pre[0].copy()
318 334 self.Num_Hei = self.spc.shape[2]
319 335 self.Num_Bin = self.spc.shape[1]
320 336 self.Num_Chn = self.spc.shape[0]
321 337 Vrange = dataOut.abscissaList
322
338
323 339 GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei])
324 340 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
325 341 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
326 342 SPC_ch1[:] = numpy.NaN
327 343 SPC_ch2[:] = numpy.NaN
328 344
329
345
330 346 start_time = time.time()
331
347
332 348 noise_ = dataOut.spc_noise[0].copy()
333
334
335 pool = Pool(processes=self.Num_Chn)
349
350
351 pool = Pool(processes=self.Num_Chn)
336 352 args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)]
337 objs = [self for __ in range(self.Num_Chn)]
338 attrs = list(zip(objs, args))
353 objs = [self for __ in range(self.Num_Chn)]
354 attrs = list(zip(objs, args))
339 355 gauSPC = pool.map(target, attrs)
340 356 dataOut.SPCparam = numpy.asarray(SPCparam)
341
357
342 358 ''' Parameters:
343 359 1. Amplitude
344 360 2. Shift
345 361 3. Width
346 362 4. Power
347 363 '''
348
364
349 365 def FitGau(self, X):
350
366
351 367 Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X
352
368
353 369 SPCparam = []
354 370 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
355 371 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
356 372 SPC_ch1[:] = 0#numpy.NaN
357 373 SPC_ch2[:] = 0#numpy.NaN
358
359
360
374
375
376
361 377 for ht in range(self.Num_Hei):
362
363
378
379
364 380 spc = numpy.asarray(self.spc)[ch,:,ht]
365
381
366 382 #############################################
367 383 # normalizing spc and noise
368 384 # This part differs from gg1
@@ -370,60 +386,60 class GaussianFit(Operation):
370 386 #spc = spc / spc_norm_max
371 387 pnoise = pnoise #/ spc_norm_max
372 388 #############################################
373
389
374 390 fatspectra=1.0
375
391
376 392 wnoise = noise_ #/ spc_norm_max
377 393 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
378 #if wnoise>1.1*pnoise: # to be tested later
394 #if wnoise>1.1*pnoise: # to be tested later
379 395 # wnoise=pnoise
380 noisebl=wnoise*0.9;
396 noisebl=wnoise*0.9;
381 397 noisebh=wnoise*1.1
382 398 spc=spc-wnoise
383
399
384 400 minx=numpy.argmin(spc)
385 #spcs=spc.copy()
401 #spcs=spc.copy()
386 402 spcs=numpy.roll(spc,-minx)
387 403 cum=numpy.cumsum(spcs)
388 404 tot_noise=wnoise * self.Num_Bin #64;
389
405
390 406 snr = sum(spcs)/tot_noise
391 407 snrdB=10.*numpy.log10(snr)
392
408
393 409 if snrdB < SNRlimit :
394 410 snr = numpy.NaN
395 411 SPC_ch1[:,ht] = 0#numpy.NaN
396 412 SPC_ch1[:,ht] = 0#numpy.NaN
397 413 SPCparam = (SPC_ch1,SPC_ch2)
398 414 continue
399
400
415
416
401 417 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
402 418 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
403
404 cummax=max(cum);
419
420 cummax=max(cum);
405 421 epsi=0.08*fatspectra # cumsum to narrow down the energy region
406 cumlo=cummax*epsi;
422 cumlo=cummax*epsi;
407 423 cumhi=cummax*(1-epsi)
408 424 powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
409
410
425
426
411 427 if len(powerindex) < 1:# case for powerindex 0
412 428 continue
413 429 powerlo=powerindex[0]
414 430 powerhi=powerindex[-1]
415 431 powerwidth=powerhi-powerlo
416
432
417 433 firstpeak=powerlo+powerwidth/10.# first gaussian energy location
418 434 secondpeak=powerhi-powerwidth/10.#second gaussian energy location
419 435 midpeak=(firstpeak+secondpeak)/2.
420 436 firstamp=spcs[int(firstpeak)]
421 437 secondamp=spcs[int(secondpeak)]
422 438 midamp=spcs[int(midpeak)]
423
439
424 440 x=numpy.arange( self.Num_Bin )
425 441 y_data=spc+wnoise
426
442
427 443 ''' single Gaussian '''
428 444 shift0=numpy.mod(midpeak+minx, self.Num_Bin )
429 445 width0=powerwidth/4.#Initialization entire power of spectrum divided by 4
@@ -432,10 +448,10 class GaussianFit(Operation):
432 448 state0=[shift0,width0,amplitude0,power0,wnoise]
433 449 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
434 450 lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
435
436 chiSq1=lsq1[1];
437 451
438
452 chiSq1=lsq1[1];
453
454
439 455 if fatspectra<1.0 and powerwidth<4:
440 456 choice=0
441 457 Amplitude0=lsq1[0][2]
@@ -449,31 +465,31 class GaussianFit(Operation):
449 465 noise=lsq1[0][4]
450 466 #return (numpy.array([shift0,width0,Amplitude0,p0]),
451 467 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
452
468
453 469 ''' two gaussians '''
454 470 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
455 shift0=numpy.mod(firstpeak+minx, self.Num_Bin );
471 shift0=numpy.mod(firstpeak+minx, self.Num_Bin );
456 472 shift1=numpy.mod(secondpeak+minx, self.Num_Bin )
457 width0=powerwidth/6.;
473 width0=powerwidth/6.;
458 474 width1=width0
459 power0=2.;
475 power0=2.;
460 476 power1=power0
461 amplitude0=firstamp;
477 amplitude0=firstamp;
462 478 amplitude1=secondamp
463 479 state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
464 480 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
465 481 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
466 482 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
467
483
468 484 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
469
470
471 chiSq2=lsq2[1];
472
473
474
485
486
487 chiSq2=lsq2[1];
488
489
490
475 491 oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
476
492
477 493 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
478 494 if oneG:
479 495 choice=0
@@ -481,10 +497,10 class GaussianFit(Operation):
481 497 w1=lsq2[0][1]; w2=lsq2[0][5]
482 498 a1=lsq2[0][2]; a2=lsq2[0][6]
483 499 p1=lsq2[0][3]; p2=lsq2[0][7]
484 s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1;
500 s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1;
485 501 s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2;
486 502 gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling
487
503
488 504 if gp1>gp2:
489 505 if a1>0.7*a2:
490 506 choice=1
@@ -499,157 +515,157 class GaussianFit(Operation):
499 515 choice=numpy.argmax([a1,a2])+1
500 516 #else:
501 517 #choice=argmin([std2a,std2b])+1
502
518
503 519 else: # with low SNR go to the most energetic peak
504 520 choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
505
506
507 shift0=lsq2[0][0];
521
522
523 shift0=lsq2[0][0];
508 524 vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0])
509 shift1=lsq2[0][4];
525 shift1=lsq2[0][4];
510 526 vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0])
511
527
512 528 max_vel = 1.0
513
529
514 530 #first peak will be 0, second peak will be 1
515 531 if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range
516 532 shift0=lsq2[0][0]
517 533 width0=lsq2[0][1]
518 534 Amplitude0=lsq2[0][2]
519 535 p0=lsq2[0][3]
520
536
521 537 shift1=lsq2[0][4]
522 538 width1=lsq2[0][5]
523 539 Amplitude1=lsq2[0][6]
524 540 p1=lsq2[0][7]
525 noise=lsq2[0][8]
541 noise=lsq2[0][8]
526 542 else:
527 543 shift1=lsq2[0][0]
528 544 width1=lsq2[0][1]
529 545 Amplitude1=lsq2[0][2]
530 546 p1=lsq2[0][3]
531
547
532 548 shift0=lsq2[0][4]
533 549 width0=lsq2[0][5]
534 550 Amplitude0=lsq2[0][6]
535 p0=lsq2[0][7]
536 noise=lsq2[0][8]
537
551 p0=lsq2[0][7]
552 noise=lsq2[0][8]
553
538 554 if Amplitude0<0.05: # in case the peak is noise
539 shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN]
555 shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN]
540 556 if Amplitude1<0.05:
541 shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN]
542
543
557 shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN]
558
559
544 560 SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0
545 561 SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1
546 562 SPCparam = (SPC_ch1,SPC_ch2)
547
548
563
564
549 565 return GauSPC
550
566
551 567 def y_model1(self,x,state):
552 568 shift0,width0,amplitude0,power0,noise=state
553 569 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
554
570
555 571 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
556
572
557 573 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
558 574 return model0+model0u+model0d+noise
559
560 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
575
576 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
561 577 shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state
562 578 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
563
579
564 580 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
565
581
566 582 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
567 583 model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1)
568
584
569 585 model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1)
570
586
571 587 model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1)
572 588 return model0+model0u+model0d+model1+model1u+model1d+noise
573
574 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
589
590 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
575 591
576 592 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
577
593
578 594 def misfit2(self,state,y_data,x,num_intg):
579 595 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
580
581
596
597
582 598
583 599 class PrecipitationProc(Operation):
584
600
585 601 '''
586 602 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
587
588 Input:
603
604 Input:
589 605 self.dataOut.data_pre : SelfSpectra
590
591 Output:
592
593 self.dataOut.data_output : Reflectivity factor, rainfall Rate
594
595
596 Parameters affected:
606
607 Output:
608
609 self.dataOut.data_output : Reflectivity factor, rainfall Rate
610
611
612 Parameters affected:
597 613 '''
598
614
599 615 def __init__(self):
600 616 Operation.__init__(self)
601 617 self.i=0
602
603
618
619
604 620 def gaus(self,xSamples,Amp,Mu,Sigma):
605 621 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
606
607
608
622
623
624
609 625 def Moments(self, ySamples, xSamples):
610 626 Pot = numpy.nansum( ySamples ) # Potencia, momento 0
611 627 yNorm = ySamples / Pot
612
628
613 629 Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento
614 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
630 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
615 631 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
616
617 return numpy.array([Pot, Vr, Desv])
618
619 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
632
633 return numpy.array([Pot, Vr, Desv])
634
635 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
620 636 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350):
621
622
637
638
623 639 Velrange = dataOut.spcparam_range[2]
624 640 FrecRange = dataOut.spcparam_range[0]
625
641
626 642 dV= Velrange[1]-Velrange[0]
627 643 dF= FrecRange[1]-FrecRange[0]
628
644
629 645 if radar == "MIRA35C" :
630
646
631 647 self.spc = dataOut.data_pre[0].copy()
632 648 self.Num_Hei = self.spc.shape[2]
633 649 self.Num_Bin = self.spc.shape[1]
634 650 self.Num_Chn = self.spc.shape[0]
635 651 Ze = self.dBZeMODE2(dataOut)
636
652
637 653 else:
638
654
639 655 self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() #
640
656
641 657 """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX"""
642
643 self.spc[:,:,0:7]= numpy.NaN
644
658
659 self.spc[:,:,0:7]= numpy.NaN
660
645 661 """##########################################"""
646
662
647 663 self.Num_Hei = self.spc.shape[2]
648 664 self.Num_Bin = self.spc.shape[1]
649 665 self.Num_Chn = self.spc.shape[0]
650
666
651 667 ''' Se obtiene la constante del RADAR '''
652
668
653 669 self.Pt = Pt
654 670 self.Gt = Gt
655 671 self.Gr = Gr
@@ -658,30 +674,30 class PrecipitationProc(Operation):
658 674 self.tauW = tauW
659 675 self.ThetaT = ThetaT
660 676 self.ThetaR = ThetaR
661
677
662 678 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
663 679 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
664 680 RadarConstant = 10e-26 * Numerator / Denominator #
665
681
666 682 ''' ============================= '''
667
668 self.spc[0] = (self.spc[0]-dataOut.noise[0])
669 self.spc[1] = (self.spc[1]-dataOut.noise[1])
670 self.spc[2] = (self.spc[2]-dataOut.noise[2])
671
683
684 self.spc[0] = (self.spc[0]-dataOut.noise[0])
685 self.spc[1] = (self.spc[1]-dataOut.noise[1])
686 self.spc[2] = (self.spc[2]-dataOut.noise[2])
687
672 688 self.spc[ numpy.where(self.spc < 0)] = 0
673
674 SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise))
689
690 SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise))
675 691 SPCmean[ numpy.where(SPCmean < 0)] = 0
676
692
677 693 ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei])
678 694 ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei])
679 695 ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei])
680
696
681 697 Pr = SPCmean[:,:]
682
698
683 699 VelMeteoro = numpy.mean(SPCmean,axis=0)
684
700
685 701 D_range = numpy.zeros([self.Num_Bin,self.Num_Hei])
686 702 SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei])
687 703 N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei])
@@ -690,102 +706,102 class PrecipitationProc(Operation):
690 706 Z = numpy.zeros(self.Num_Hei)
691 707 Ze = numpy.zeros(self.Num_Hei)
692 708 RR = numpy.zeros(self.Num_Hei)
693
709
694 710 Range = dataOut.heightList*1000.
695
711
696 712 for R in range(self.Num_Hei):
697
713
698 714 h = Range[R] + Altitude #Range from ground to radar pulse altitude
699 715 del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity
700
716
701 717 D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3
702
718
703 719 '''NOTA: ETA(n) dn = ETA(f) df
704
720
705 721 dn = 1 Diferencial de muestreo
706 722 df = ETA(n) / ETA(f)
707
723
708 724 '''
709
725
710 726 ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA)
711
727
712 728 ETAv[:,R]=ETAn[:,R]/dV
713
729
714 730 ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R])
715
731
716 732 SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma)
717
718 N_dist[:,R] = ETAn[:,R] / SIGMA[:,R]
719
733
734 N_dist[:,R] = ETAn[:,R] / SIGMA[:,R]
735
720 736 DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin])
721
737
722 738 try:
723 739 popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments)
724 except:
740 except:
725 741 popt01=numpy.zeros(3)
726 742 popt01[1]= DMoments[1]
727
743
728 744 if popt01[1]<0 or popt01[1]>20:
729 745 popt01[1]=numpy.NaN
730
731
746
747
732 748 V_mean[R]=popt01[1]
733
749
734 750 Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18
735
751
736 752 RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate
737
753
738 754 Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km)
739
740
741
755
756
757
742 758 RR2 = (Z/200)**(1/1.6)
743 759 dBRR = 10*numpy.log10(RR)
744 760 dBRR2 = 10*numpy.log10(RR2)
745
761
746 762 dBZe = 10*numpy.log10(Ze)
747 763 dBZ = 10*numpy.log10(Z)
748
764
749 765 dataOut.data_output = RR[8]
750 766 dataOut.data_param = numpy.ones([3,self.Num_Hei])
751 767 dataOut.channelList = [0,1,2]
752
768
753 769 dataOut.data_param[0]=dBZ
754 770 dataOut.data_param[1]=V_mean
755 771 dataOut.data_param[2]=RR
756 772
757 773 return dataOut
758
774
759 775 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
760
776
761 777 NPW = dataOut.NPW
762 778 COFA = dataOut.COFA
763
779
764 780 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
765 781 RadarConst = dataOut.RadarConst
766 782 #frequency = 34.85*10**9
767
783
768 784 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
769 785 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
770
786
771 787 ETA = numpy.sum(SNR,1)
772
788
773 789 ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN)
774
790
775 791 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
776
792
777 793 for r in range(self.Num_Hei):
778
794
779 795 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
780 796 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
781
797
782 798 return Ze
783
799
784 800 # def GetRadarConstant(self):
785 #
786 # """
801 #
802 # """
787 803 # Constants:
788 #
804 #
789 805 # Pt: Transmission Power dB 5kW 5000
790 806 # Gt: Transmission Gain dB 24.7 dB 295.1209
791 807 # Gr: Reception Gain dB 18.5 dB 70.7945
@@ -794,55 +810,55 class PrecipitationProc(Operation):
794 810 # tauW: Width of transmission pulse s 4us 4e-6
795 811 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
796 812 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
797 #
813 #
798 814 # """
799 #
815 #
800 816 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
801 817 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
802 818 # RadarConstant = Numerator / Denominator
803 #
819 #
804 820 # return RadarConstant
805
806
807
808 class FullSpectralAnalysis(Operation):
809
821
822
823
824 class FullSpectralAnalysis(Operation):
825
810 826 """
811 827 Function that implements Full Spectral Analysis technique.
812
813 Input:
828
829 Input:
814 830 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
815 831 self.dataOut.groupList : Pairlist of channels
816 832 self.dataOut.ChanDist : Physical distance between receivers
817
818
819 Output:
820
821 self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind
822
823
833
834
835 Output:
836
837 self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind
838
839
824 840 Parameters affected: Winds, height range, SNR
825
841
826 842 """
827 843 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7, minheight=None, maxheight=None):
828
829 self.indice=int(numpy.random.rand()*1000)
830
844
845 self.indice=int(numpy.random.rand()*1000)
846
831 847 spc = dataOut.data_pre[0].copy()
832 848 cspc = dataOut.data_pre[1]
833
849
834 850 """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED"""
835 851
836 852 SNRspc = spc.copy()
837 853 SNRspc[:,:,0:7]= numpy.NaN
838
854
839 855 """##########################################"""
840
841
856
857
842 858 nChannel = spc.shape[0]
843 859 nProfiles = spc.shape[1]
844 860 nHeights = spc.shape[2]
845
861
846 862 # first_height = 0.75 #km (ref: data header 20170822)
847 863 # resolution_height = 0.075 #km
848 864 '''
@@ -866,37 +882,37 class FullSpectralAnalysis(Operation):
866 882 ChanDist = dataOut.ChanDist
867 883 else:
868 884 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
869
885
870 886 FrecRange = dataOut.spc_range[0]
871
887
872 888 data_SNR=numpy.zeros([nProfiles])
873 889 noise = dataOut.noise
874
890
875 891 dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0]
876
892
877 893 dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20
878
879
894
895
880 896 data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN
881
897
882 898 velocityX=[]
883 899 velocityY=[]
884 velocityV=[]
885
900 velocityV=[]
901
886 902 dbSNR = 10*numpy.log10(dataOut.data_SNR)
887 903 dbSNR = numpy.average(dbSNR,0)
888
904
889 905 '''***********************************************WIND ESTIMATION**************************************'''
890
906
891 907 for Height in range(nHeights):
892
893 if Height >= range_min and Height < range_max:
894 # error_code unused, yet maybe useful for future analysis.
908
909 if Height >= range_min and Height < range_max:
910 # error_code unused, yet maybe useful for future analysis.
895 911 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit)
896 912 else:
897 913 Vzon,Vmer,Vver = 0., 0., numpy.NaN
898
899
914
915
900 916 if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.:
901 917 velocityX=numpy.append(velocityX, Vzon)
902 918 velocityY=numpy.append(velocityY, -Vmer)
@@ -904,33 +920,33 class FullSpectralAnalysis(Operation):
904 920 else:
905 921 velocityX=numpy.append(velocityX, numpy.NaN)
906 922 velocityY=numpy.append(velocityY, numpy.NaN)
907
923
908 924 if dbSNR[Height] > SNRlimit:
909 925 velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version)
910 926 else:
911 927 velocityV=numpy.append(velocityV, numpy.NaN)
912
913
928
929
914 930 '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)'''
915 data_output[0] = numpy.array(velocityX)
916 data_output[1] = numpy.array(velocityY)
931 data_output[0] = numpy.array(velocityX)
932 data_output[1] = numpy.array(velocityY)
917 933 data_output[2] = velocityV
918
919
934
935
920 936 dataOut.data_output = data_output
921
937
922 938 return dataOut
923
939
924 940
925 941 def moving_average(self,x, N=2):
926 942 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
927 943 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
928
944
929 945 def gaus(self,xSamples,Amp,Mu,Sigma):
930 946 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
931
947
932 948 def Moments(self, ySamples, xSamples):
933 '''***
949 '''***
934 950 Variables corresponding to moments of distribution.
935 951 Also used as initial coefficients for curve_fit.
936 952 Vr was corrected. Only a velocity when x is velocity, of course.
@@ -939,9 +955,9 class FullSpectralAnalysis(Operation):
939 955 yNorm = ySamples / Pot
940 956 x_range = (numpy.max(xSamples)-numpy.min(xSamples))
941 957 Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento
942 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
958 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
943 959 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
944
960
945 961 return numpy.array([Pot, Vr, Desv])
946 962
947 963 def StopWindEstimation(self, error_code):
@@ -954,7 +970,7 class FullSpectralAnalysis(Operation):
954 970 return Vzon, Vmer, Vver, error_code
955 971
956 972 def AntiAliasing(self, interval, maxstep):
957 """
973 """
958 974 function to prevent errors from aliased values when computing phaseslope
959 975 """
960 976 antialiased = numpy.zeros(len(interval))*0.0
@@ -964,8 +980,8 class FullSpectralAnalysis(Operation):
964 980
965 981 for i in range(1,len(antialiased)):
966 982
967 step = interval[i] - interval[i-1]
968
983 step = interval[i] - interval[i-1]
984
969 985 if step > maxstep:
970 986 copyinterval -= 2*numpy.pi
971 987 antialiased[i] = copyinterval[i]
@@ -973,7 +989,7 class FullSpectralAnalysis(Operation):
973 989 elif step < maxstep*(-1):
974 990 copyinterval += 2*numpy.pi
975 991 antialiased[i] = copyinterval[i]
976
992
977 993 else:
978 994 antialiased[i] = copyinterval[i].copy()
979 995
@@ -1003,27 +1019,27 class FullSpectralAnalysis(Operation):
1003 1019 3 : SNR to low or velocity to high -> prec. e.g.
1004 1020 4 : at least one Gaussian of cspc exceeds widthlimit
1005 1021 5 : zero out of three cspc Gaussian fits converged
1006 6 : phase slope fit could not be found
1022 6 : phase slope fit could not be found
1007 1023 7 : arrays used to fit phase have different length
1008 1024 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1009 1025
1010 1026 """
1011 1027
1012 1028 error_code = 0
1013
1029
1014 1030
1015 1031 SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height
1016 1032 phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels
1017 1033 CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values
1018 1034 PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise
1019 1035 PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise
1020 xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range
1036 xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range
1021 1037 xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range
1022 1038 SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0]
1023
1039
1024 1040 SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3)
1025 1041 CSPCmoments = []
1026
1042
1027 1043
1028 1044 '''Getting Eij and Nij'''
1029 1045
@@ -1038,13 +1054,13 class FullSpectralAnalysis(Operation):
1038 1054 spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below
1039 1055 spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN)
1040 1056
1041 for i in range(spc.shape[0]):
1042
1057 for i in range(spc.shape[0]):
1058
1043 1059 spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version.
1044 1060
1045 1061 Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft
1046 normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm)
1047
1062 normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm)
1063
1048 1064 xSamples = xFrec # the frequency range is taken
1049 1065 SPC_Samples[i] = normalized_spc # Normalized SPC values are taken
1050 1066
@@ -1055,49 +1071,49 class FullSpectralAnalysis(Operation):
1055 1071 only for estimation of width. for normalization of cross spectra, you need initial,
1056 1072 unnormalized self-spectra With noise.
1057 1073
1058 Technically, you don't even need to normalize the self-spectra, as you only need the
1074 Technically, you don't even need to normalize the self-spectra, as you only need the
1059 1075 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1060 1076 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1061 1077 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1062 1078 """
1063 1079
1064 SPCMean = numpy.average(SPC_Samples, axis=0)
1065
1080 SPCMean = numpy.average(SPC_Samples, axis=0)
1081
1066 1082 popt = [1e-10,0,1e-10]
1067 1083 SPCMoments = self.Moments(SPCMean, xSamples)
1068 1084
1069 if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3:
1085 if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3:
1070 1086 try:
1071 1087 popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum.
1072 1088 if popt[2] > widthlimit: # CONDITION
1073 1089 return self.StopWindEstimation(error_code = 1)
1074 1090
1075 1091 FitGauss = self.gaus(xSamples,*popt)
1076
1092
1077 1093 except :#RuntimeError:
1078 1094 return self.StopWindEstimation(error_code = 2)
1079 1095
1080 1096 else:
1081 1097 return self.StopWindEstimation(error_code = 3)
1082
1098
1083 1099
1084 1100
1085 1101 '''***************************** CSPC Normalization *************************
1086 1102 new section:
1087 1103 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1088 influence the norm which is not desired. First, a range is identified where the
1089 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1090 around it gets cut off and values replaced by mean determined by the boundary
1104 influence the norm which is not desired. First, a range is identified where the
1105 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1106 around it gets cut off and values replaced by mean determined by the boundary
1091 1107 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1092 1108
1093 1109 The sums are then added and multiplied by range/datapoints, because you need
1094 1110 an integral and not a sum for normalization.
1095
1096 A norm is found according to Briggs 92.
1111
1112 A norm is found according to Briggs 92.
1097 1113 '''
1098 1114
1099 1115 radarWavelength = 0.6741 # meters
1100 count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa.
1116 count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa.
1101 1117 # count_limit_freq = numpy.max(xFrec)
1102 1118
1103 1119 channel_integrals = numpy.zeros(3)
@@ -1108,11 +1124,11 class FullSpectralAnalysis(Operation):
1108 1124 sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2)
1109 1125 '''
1110 1126 N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:]))
1111 count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point
1127 count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point
1112 1128 sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum.
1113 1129 sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int)
1114 1130 channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq)
1115
1131
1116 1132
1117 1133 cross_integrals_peak = numpy.zeros(3)
1118 1134 # cross_integrals_totalrange = numpy.zeros(3)
@@ -1125,45 +1141,45 class FullSpectralAnalysis(Operation):
1125 1141 chan_index1 = pairsList[i][1]
1126 1142
1127 1143 cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1]
1128 normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i])
1144 normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i])
1129 1145 CSPC_Samples[i] = normalized_cspc
1130 1146
1131 1147 ''' Finding cross integrals without subtracting any peaks:'''
1132 1148 # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:]))
1133 1149 # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:]))
1134 # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1
1135 # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i])
1150 # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1
1151 # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i])
1136 1152 # CSPC_Samples[i] = normalized_cspc
1137
1138
1153
1154
1139 1155 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1140 1156
1141 1157
1142 1158 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples),
1143 1159 self.Moments(numpy.abs(CSPC_Samples[1]), xSamples),
1144 1160 self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)])
1145
1161
1146 1162
1147 1163 '''***Sorting out NaN entries***'''
1148 1164 CSPCMask01 = numpy.abs(CSPC_Samples[0])
1149 1165 CSPCMask02 = numpy.abs(CSPC_Samples[1])
1150 1166 CSPCMask12 = numpy.abs(CSPC_Samples[2])
1151
1167
1152 1168 mask01 = ~numpy.isnan(CSPCMask01)
1153 1169 mask02 = ~numpy.isnan(CSPCMask02)
1154 1170 mask12 = ~numpy.isnan(CSPCMask12)
1155
1171
1156 1172 CSPCMask01 = CSPCMask01[mask01]
1157 1173 CSPCMask02 = CSPCMask02[mask02]
1158 1174 CSPCMask12 = CSPCMask12[mask12]
1159 1175
1160
1161 popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10]
1176
1177 popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10]
1162 1178 FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0
1163
1179
1164 1180 '''*******************************FIT GAUSS CSPC************************************'''
1165 1181
1166 try:
1182 try:
1167 1183 popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0])
1168 1184 if popt01[2] > widthlimit: # CONDITION
1169 1185 return self.StopWindEstimation(error_code = 4)
@@ -1186,53 +1202,53 class FullSpectralAnalysis(Operation):
1186 1202
1187 1203 '''************* Getting Fij ***************'''
1188 1204
1189
1190 #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located
1191 # -> PointGauCenter
1192 GaussCenter = popt[1]
1205
1206 #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located
1207 # -> PointGauCenter
1208 GaussCenter = popt[1]
1193 1209 ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()]
1194 1210 PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0]
1195
1211
1196 1212 #Punto e^-1 hubicado en la Gaussiana -- point where e^-1 is located in the gaussian
1197 1213 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1198 1214 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss"
1199 1215 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1200 1216
1201 1217 Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter])
1202
1218
1203 1219 '''********** Taking frequency ranges from mean SPCs **********'''
1204
1220
1205 1221 #GaussCenter = popt[1] #Primer momento 01
1206 1222 GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2?
1207 1223 Range = numpy.empty(2)
1208 1224 Range[0] = GaussCenter - GauWidth
1209 Range[1] = GaussCenter + GauWidth
1225 Range[1] = GaussCenter + GauWidth
1210 1226 #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) -- Point in x-axis where the bandwidth is located (min:max)
1211 1227 ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()]
1212 1228 ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()]
1213
1229
1214 1230 PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0]
1215 1231 PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0]
1216
1232
1217 1233 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1218
1234
1219 1235 FrecRange = xFrec[ Range[0] : Range[1] ]
1220 1236
1221
1222 '''************************** Getting Phase Slope ***************************'''
1223
1224 for i in range(1,3): # Changed to only compute two
1225
1237
1238 '''************************** Getting Phase Slope ***************************'''
1239
1240 for i in range(1,3): # Changed to only compute two
1241
1226 1242 if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3:
1227 1243 # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3
1228 1244 PhaseRange = phase[i,Range[0]:Range[1]].copy()
1229
1245
1230 1246 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1231
1247
1232 1248
1233 1249 if len(FrecRange) == len(PhaseRange):
1234
1235 try:
1250
1251 try:
1236 1252 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1237 1253 PhaseSlope[i] = slope
1238 1254 PhaseInter[i] = intercept
@@ -1242,49 +1258,49 class FullSpectralAnalysis(Operation):
1242 1258
1243 1259 else:
1244 1260 return self.StopWindEstimation(error_code = 7)
1245
1261
1246 1262 else:
1247 1263 return self.StopWindEstimation(error_code = 8)
1248
1249
1250
1264
1265
1266
1251 1267 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1252 1268
1253 1269 '''Getting constant C'''
1254 1270 cC=(Fij*numpy.pi)**2
1255
1271
1256 1272 '''****** Getting constants F and G ******'''
1257 1273 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1258 1274 MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1259 MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1275 MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1260 1276 MijResults = numpy.array([MijResult0,MijResult1])
1261 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1262
1277 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1278
1263 1279 '''****** Getting constants A, B and H ******'''
1264 W01 = numpy.nanmax( FitGauss01 )
1265 W02 = numpy.nanmax( FitGauss02 )
1266 W12 = numpy.nanmax( FitGauss12 )
1267
1280 W01 = numpy.nanmax( FitGauss01 )
1281 W02 = numpy.nanmax( FitGauss02 )
1282 W12 = numpy.nanmax( FitGauss12 )
1283
1268 1284 WijResult0 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1269 1285 WijResult1 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1270 1286 WijResult2 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1271
1287
1272 1288 WijResults = numpy.array([WijResult0, WijResult1, WijResult2])
1273
1274 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1289
1290 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1275 1291 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1276
1292
1277 1293 VxVy = numpy.array([[cA,cH],[cH,cB]])
1278 1294 VxVyResults = numpy.array([-cF,-cG])
1279 1295 (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
1280
1296
1281 1297 Vzon = Vy
1282 1298 Vmer = Vx
1283
1299
1284 1300 # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused
1285 1301 # Vang=numpy.arctan2(Vmer,Vzon) # unused
1286 1302
1287
1303
1288 1304 ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero
1289 1305 and Vrad equal to Vver. formula taken from Briggs 92, figure 4.
1290 1306 '''
@@ -1295,40 +1311,40 class FullSpectralAnalysis(Operation):
1295 1311
1296 1312 error_code = 0
1297 1313
1298 return Vzon, Vmer, Vver, error_code
1314 return Vzon, Vmer, Vver, error_code
1299 1315
1300 1316
1301 1317 class SpectralMoments(Operation):
1302
1318
1303 1319 '''
1304 1320 Function SpectralMoments()
1305
1321
1306 1322 Calculates moments (power, mean, standard deviation) and SNR of the signal
1307
1323
1308 1324 Type of dataIn: Spectra
1309
1325
1310 1326 Configuration Parameters:
1311
1327
1312 1328 dirCosx : Cosine director in X axis
1313 1329 dirCosy : Cosine director in Y axis
1314
1330
1315 1331 elevation :
1316 1332 azimuth :
1317
1333
1318 1334 Input:
1319 channelList : simple channel list to select e.g. [2,3,7]
1335 channelList : simple channel list to select e.g. [2,3,7]
1320 1336 self.dataOut.data_pre : Spectral data
1321 1337 self.dataOut.abscissaList : List of frequencies
1322 1338 self.dataOut.noise : Noise level per channel
1323
1339
1324 1340 Affected:
1325 1341 self.dataOut.moments : Parameters per channel
1326 1342 self.dataOut.data_SNR : SNR per channel
1327
1343
1328 1344 '''
1329
1345
1330 1346 def run(self, dataOut):
1331
1347
1332 1348 data = dataOut.data_pre[0]
1333 1349 absc = dataOut.abscissaList[:-1]
1334 1350 noise = dataOut.noise
@@ -1337,7 +1353,7 class SpectralMoments(Operation):
1337 1353
1338 1354 for ind in range(nChannel):
1339 1355 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1340
1356
1341 1357 dataOut.moments = data_param[:,1:,:]
1342 1358 dataOut.data_SNR = data_param[:,0]
1343 1359 dataOut.data_POW = data_param[:,1]
@@ -1345,12 +1361,12 class SpectralMoments(Operation):
1345 1361 dataOut.data_WIDTH = data_param[:,3]
1346 1362
1347 1363 return dataOut
1348
1349 def __calculateMoments(self, oldspec, oldfreq, n0,
1364
1365 def __calculateMoments(self, oldspec, oldfreq, n0,
1350 1366 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1351
1367
1352 1368 if (nicoh is None): nicoh = 1
1353 if (graph is None): graph = 0
1369 if (graph is None): graph = 0
1354 1370 if (smooth is None): smooth = 0
1355 1371 elif (self.smooth < 3): smooth = 0
1356 1372
@@ -1361,102 +1377,102 class SpectralMoments(Operation):
1361 1377 if (aliasing is None): aliasing = 0
1362 1378 if (oldfd is None): oldfd = 0
1363 1379 if (wwauto is None): wwauto = 0
1364
1380
1365 1381 if (n0 < 1.e-20): n0 = 1.e-20
1366
1382
1367 1383 freq = oldfreq
1368 1384 vec_power = numpy.zeros(oldspec.shape[1])
1369 1385 vec_fd = numpy.zeros(oldspec.shape[1])
1370 1386 vec_w = numpy.zeros(oldspec.shape[1])
1371 1387 vec_snr = numpy.zeros(oldspec.shape[1])
1372
1388
1373 1389 # oldspec = numpy.ma.masked_invalid(oldspec)
1374
1390
1375 1391 for ind in range(oldspec.shape[1]):
1376
1392
1377 1393 spec = oldspec[:,ind]
1378 1394 aux = spec*fwindow
1379 1395 max_spec = aux.max()
1380 1396 m = aux.tolist().index(max_spec)
1381
1382 #Smooth
1397
1398 #Smooth
1383 1399 if (smooth == 0):
1384 1400 spec2 = spec
1385 1401 else:
1386 1402 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1387
1403
1388 1404 # Calculo de Momentos
1389 1405 bb = spec2[numpy.arange(m,spec2.size)]
1390 1406 bb = (bb<n0).nonzero()
1391 1407 bb = bb[0]
1392
1408
1393 1409 ss = spec2[numpy.arange(0,m + 1)]
1394 1410 ss = (ss<n0).nonzero()
1395 1411 ss = ss[0]
1396
1412
1397 1413 if (bb.size == 0):
1398 1414 bb0 = spec.size - 1 - m
1399 else:
1415 else:
1400 1416 bb0 = bb[0] - 1
1401 1417 if (bb0 < 0):
1402 1418 bb0 = 0
1403
1419
1404 1420 if (ss.size == 0):
1405 1421 ss1 = 1
1406 1422 else:
1407 1423 ss1 = max(ss) + 1
1408
1424
1409 1425 if (ss1 > m):
1410 1426 ss1 = m
1411
1412 valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1413
1427
1428 valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1429
1414 1430 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1415 1431 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1416 1432 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1417 1433 snr = (spec2.mean()-n0)/n0
1418 if (snr < 1.e-20) :
1434 if (snr < 1.e-20) :
1419 1435 snr = 1.e-20
1420
1436
1421 1437 vec_power[ind] = power
1422 1438 vec_fd[ind] = fd
1423 1439 vec_w[ind] = w
1424 1440 vec_snr[ind] = snr
1425 1441
1426 1442 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1427
1443
1428 1444 #------------------ Get SA Parameters --------------------------
1429
1445
1430 1446 def GetSAParameters(self):
1431 1447 #SA en frecuencia
1432 1448 pairslist = self.dataOut.groupList
1433 1449 num_pairs = len(pairslist)
1434
1450
1435 1451 vel = self.dataOut.abscissaList
1436 1452 spectra = self.dataOut.data_pre
1437 1453 cspectra = self.dataIn.data_cspc
1438 delta_v = vel[1] - vel[0]
1439
1454 delta_v = vel[1] - vel[0]
1455
1440 1456 #Calculating the power spectrum
1441 1457 spc_pow = numpy.sum(spectra, 3)*delta_v
1442 1458 #Normalizing Spectra
1443 1459 norm_spectra = spectra/spc_pow
1444 1460 #Calculating the norm_spectra at peak
1445 max_spectra = numpy.max(norm_spectra, 3)
1446
1461 max_spectra = numpy.max(norm_spectra, 3)
1462
1447 1463 #Normalizing Cross Spectra
1448 1464 norm_cspectra = numpy.zeros(cspectra.shape)
1449
1465
1450 1466 for i in range(num_chan):
1451 1467 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1452
1468
1453 1469 max_cspectra = numpy.max(norm_cspectra,2)
1454 1470 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1455
1471
1456 1472 for i in range(num_pairs):
1457 1473 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1458 1474 #------------------- Get Lags ----------------------------------
1459
1475
1460 1476 class SALags(Operation):
1461 1477 '''
1462 1478 Function GetMoments()
@@ -1469,19 +1485,19 class SALags(Operation):
1469 1485 self.dataOut.data_SNR
1470 1486 self.dataOut.groupList
1471 1487 self.dataOut.nChannels
1472
1488
1473 1489 Affected:
1474 1490 self.dataOut.data_param
1475
1491
1476 1492 '''
1477 def run(self, dataOut):
1493 def run(self, dataOut):
1478 1494 data_acf = dataOut.data_pre[0]
1479 1495 data_ccf = dataOut.data_pre[1]
1480 1496 normFactor_acf = dataOut.normFactor[0]
1481 1497 normFactor_ccf = dataOut.normFactor[1]
1482 1498 pairs_acf = dataOut.groupList[0]
1483 1499 pairs_ccf = dataOut.groupList[1]
1484
1500
1485 1501 nHeights = dataOut.nHeights
1486 1502 absc = dataOut.abscissaList
1487 1503 noise = dataOut.noise
@@ -1492,97 +1508,97 class SALags(Operation):
1492 1508
1493 1509 for l in range(len(pairs_acf)):
1494 1510 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1495
1511
1496 1512 for l in range(len(pairs_ccf)):
1497 1513 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1498
1514
1499 1515 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1500 1516 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1501 1517 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1502 1518 return
1503
1519
1504 1520 # def __getPairsAutoCorr(self, pairsList, nChannels):
1505 #
1521 #
1506 1522 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1507 #
1508 # for l in range(len(pairsList)):
1523 #
1524 # for l in range(len(pairsList)):
1509 1525 # firstChannel = pairsList[l][0]
1510 1526 # secondChannel = pairsList[l][1]
1511 #
1512 # #Obteniendo pares de Autocorrelacion
1527 #
1528 # #Obteniendo pares de Autocorrelacion
1513 1529 # if firstChannel == secondChannel:
1514 1530 # pairsAutoCorr[firstChannel] = int(l)
1515 #
1531 #
1516 1532 # pairsAutoCorr = pairsAutoCorr.astype(int)
1517 #
1533 #
1518 1534 # pairsCrossCorr = range(len(pairsList))
1519 1535 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1520 #
1536 #
1521 1537 # return pairsAutoCorr, pairsCrossCorr
1522
1538
1523 1539 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1524
1540
1525 1541 lag0 = data_acf.shape[1]/2
1526 1542 #Funcion de Autocorrelacion
1527 1543 mean_acf = stats.nanmean(data_acf, axis = 0)
1528
1544
1529 1545 #Obtencion Indice de TauCross
1530 1546 ind_ccf = data_ccf.argmax(axis = 1)
1531 1547 #Obtencion Indice de TauAuto
1532 1548 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1533 1549 ccf_lag0 = data_ccf[:,lag0,:]
1534
1550
1535 1551 for i in range(ccf_lag0.shape[0]):
1536 1552 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1537
1553
1538 1554 #Obtencion de TauCross y TauAuto
1539 1555 tau_ccf = lagRange[ind_ccf]
1540 1556 tau_acf = lagRange[ind_acf]
1541
1557
1542 1558 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1543
1559
1544 1560 tau_ccf[Nan1,Nan2] = numpy.nan
1545 1561 tau_acf[Nan1,Nan2] = numpy.nan
1546 1562 tau = numpy.vstack((tau_ccf,tau_acf))
1547
1563
1548 1564 return tau
1549
1565
1550 1566 def __calculateLag1Phase(self, data, lagTRange):
1551 1567 data1 = stats.nanmean(data, axis = 0)
1552 1568 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1553 1569
1554 1570 phase = numpy.angle(data1[lag1,:])
1555
1571
1556 1572 return phase
1557
1573
1558 1574 class SpectralFitting(Operation):
1559 1575 '''
1560 1576 Function GetMoments()
1561
1577
1562 1578 Input:
1563 1579 Output:
1564 1580 Variables modified:
1565 1581 '''
1566
1567 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1568
1569
1582
1583 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1584
1585
1570 1586 if path != None:
1571 1587 sys.path.append(path)
1572 1588 self.dataOut.library = importlib.import_module(file)
1573
1589
1574 1590 #To be inserted as a parameter
1575 1591 groupArray = numpy.array(groupList)
1576 # groupArray = numpy.array([[0,1],[2,3]])
1592 # groupArray = numpy.array([[0,1],[2,3]])
1577 1593 self.dataOut.groupList = groupArray
1578
1594
1579 1595 nGroups = groupArray.shape[0]
1580 1596 nChannels = self.dataIn.nChannels
1581 1597 nHeights=self.dataIn.heightList.size
1582
1598
1583 1599 #Parameters Array
1584 1600 self.dataOut.data_param = None
1585
1601
1586 1602 #Set constants
1587 1603 constants = self.dataOut.library.setConstants(self.dataIn)
1588 1604 self.dataOut.constants = constants
@@ -1591,24 +1607,24 class SpectralFitting(Operation):
1591 1607 ippSeconds = self.dataIn.ippSeconds
1592 1608 K = self.dataIn.nIncohInt
1593 1609 pairsArray = numpy.array(self.dataIn.pairsList)
1594
1610
1595 1611 #List of possible combinations
1596 1612 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1597 1613 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1598
1614
1599 1615 if getSNR:
1600 1616 listChannels = groupArray.reshape((groupArray.size))
1601 1617 listChannels.sort()
1602 1618 noise = self.dataIn.getNoise()
1603 1619 self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1604
1605 for i in range(nGroups):
1620
1621 for i in range(nGroups):
1606 1622 coord = groupArray[i,:]
1607
1623
1608 1624 #Input data array
1609 1625 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1610 1626 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1611
1627
1612 1628 #Cross Spectra data array for Covariance Matrixes
1613 1629 ind = 0
1614 1630 for pairs in listComb:
@@ -1617,9 +1633,9 class SpectralFitting(Operation):
1617 1633 ind += 1
1618 1634 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1619 1635 dataCross = dataCross**2/K
1620
1636
1621 1637 for h in range(nHeights):
1622
1638
1623 1639 #Input
1624 1640 d = data[:,h]
1625 1641
@@ -1628,7 +1644,7 class SpectralFitting(Operation):
1628 1644 ind = 0
1629 1645 for pairs in listComb:
1630 1646 #Coordinates in Covariance Matrix
1631 x = pairs[0]
1647 x = pairs[0]
1632 1648 y = pairs[1]
1633 1649 #Channel Index
1634 1650 S12 = dataCross[ind,:,h]
@@ -1642,15 +1658,15 class SpectralFitting(Operation):
1642 1658 LT=L.T
1643 1659
1644 1660 dp = numpy.dot(LT,d)
1645
1661
1646 1662 #Initial values
1647 1663 data_spc = self.dataIn.data_spc[coord,:,h]
1648
1664
1649 1665 if (h>0)and(error1[3]<5):
1650 1666 p0 = self.dataOut.data_param[i,:,h-1]
1651 1667 else:
1652 1668 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1653
1669
1654 1670 try:
1655 1671 #Least Squares
1656 1672 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
@@ -1663,30 +1679,30 class SpectralFitting(Operation):
1663 1679 minp = p0*numpy.nan
1664 1680 error0 = numpy.nan
1665 1681 error1 = p0*numpy.nan
1666
1682
1667 1683 #Save
1668 1684 if self.dataOut.data_param is None:
1669 1685 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1670 1686 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1671
1687
1672 1688 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1673 1689 self.dataOut.data_param[i,:,h] = minp
1674 1690 return
1675
1691
1676 1692 def __residFunction(self, p, dp, LT, constants):
1677 1693
1678 1694 fm = self.dataOut.library.modelFunction(p, constants)
1679 1695 fmp=numpy.dot(LT,fm)
1680
1696
1681 1697 return dp-fmp
1682 1698
1683 1699 def __getSNR(self, z, noise):
1684
1700
1685 1701 avg = numpy.average(z, axis=1)
1686 1702 SNR = (avg.T-noise)/noise
1687 1703 SNR = SNR.T
1688 1704 return SNR
1689
1705
1690 1706 def __chisq(p,chindex,hindex):
1691 1707 #similar to Resid but calculates CHI**2
1692 1708 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
@@ -1694,53 +1710,53 class SpectralFitting(Operation):
1694 1710 fmp=numpy.dot(LT,fm)
1695 1711 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1696 1712 return chisq
1697
1713
1698 1714 class WindProfiler(Operation):
1699
1715
1700 1716 __isConfig = False
1701
1717
1702 1718 __initime = None
1703 1719 __lastdatatime = None
1704 1720 __integrationtime = None
1705
1721
1706 1722 __buffer = None
1707
1723
1708 1724 __dataReady = False
1709
1725
1710 1726 __firstdata = None
1711
1727
1712 1728 n = None
1713
1714 def __init__(self):
1729
1730 def __init__(self):
1715 1731 Operation.__init__(self)
1716
1732
1717 1733 def __calculateCosDir(self, elev, azim):
1718 1734 zen = (90 - elev)*numpy.pi/180
1719 1735 azim = azim*numpy.pi/180
1720 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1736 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1721 1737 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1722
1738
1723 1739 signX = numpy.sign(numpy.cos(azim))
1724 1740 signY = numpy.sign(numpy.sin(azim))
1725
1741
1726 1742 cosDirX = numpy.copysign(cosDirX, signX)
1727 1743 cosDirY = numpy.copysign(cosDirY, signY)
1728 1744 return cosDirX, cosDirY
1729
1745
1730 1746 def __calculateAngles(self, theta_x, theta_y, azimuth):
1731
1747
1732 1748 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1733 1749 zenith_arr = numpy.arccos(dir_cosw)
1734 1750 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1735
1751
1736 1752 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1737 1753 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1738
1754
1739 1755 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1740 1756
1741 1757 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1742
1743 #
1758
1759 #
1744 1760 if horOnly:
1745 1761 A = numpy.c_[dir_cosu,dir_cosv]
1746 1762 else:
@@ -1754,37 +1770,37 class WindProfiler(Operation):
1754 1770 listPhi = phi.tolist()
1755 1771 maxid = listPhi.index(max(listPhi))
1756 1772 minid = listPhi.index(min(listPhi))
1757
1758 rango = list(range(len(phi)))
1773
1774 rango = list(range(len(phi)))
1759 1775 # rango = numpy.delete(rango,maxid)
1760
1776
1761 1777 heiRang1 = heiRang*math.cos(phi[maxid])
1762 1778 heiRangAux = heiRang*math.cos(phi[minid])
1763 1779 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1764 1780 heiRang1 = numpy.delete(heiRang1,indOut)
1765
1781
1766 1782 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1767 1783 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1768
1784
1769 1785 for i in rango:
1770 1786 x = heiRang*math.cos(phi[i])
1771 1787 y1 = velRadial[i,:]
1772 1788 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1773
1789
1774 1790 x1 = heiRang1
1775 1791 y11 = f1(x1)
1776
1792
1777 1793 y2 = SNR[i,:]
1778 1794 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1779 1795 y21 = f2(x1)
1780
1796
1781 1797 velRadial1[i,:] = y11
1782 1798 SNR1[i,:] = y21
1783
1799
1784 1800 return heiRang1, velRadial1, SNR1
1785 1801
1786 1802 def __calculateVelUVW(self, A, velRadial):
1787
1803
1788 1804 #Operacion Matricial
1789 1805 # velUVW = numpy.zeros((velRadial.shape[1],3))
1790 1806 # for ind in range(velRadial.shape[1]):
@@ -1792,27 +1808,27 class WindProfiler(Operation):
1792 1808 # velUVW = velUVW.transpose()
1793 1809 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1794 1810 velUVW[:,:] = numpy.dot(A,velRadial)
1795
1796
1811
1812
1797 1813 return velUVW
1798
1814
1799 1815 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1800
1816
1801 1817 def techniqueDBS(self, kwargs):
1802 1818 """
1803 1819 Function that implements Doppler Beam Swinging (DBS) technique.
1804
1820
1805 1821 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1806 1822 Direction correction (if necessary), Ranges and SNR
1807
1823
1808 1824 Output: Winds estimation (Zonal, Meridional and Vertical)
1809
1825
1810 1826 Parameters affected: Winds, height range, SNR
1811 1827 """
1812 1828 velRadial0 = kwargs['velRadial']
1813 1829 heiRang = kwargs['heightList']
1814 1830 SNR0 = kwargs['SNR']
1815
1831
1816 1832 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1817 1833 theta_x = numpy.array(kwargs['dirCosx'])
1818 1834 theta_y = numpy.array(kwargs['dirCosy'])
@@ -1820,7 +1836,7 class WindProfiler(Operation):
1820 1836 elev = numpy.array(kwargs['elevation'])
1821 1837 azim = numpy.array(kwargs['azimuth'])
1822 1838 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1823 azimuth = kwargs['correctAzimuth']
1839 azimuth = kwargs['correctAzimuth']
1824 1840 if 'horizontalOnly' in kwargs:
1825 1841 horizontalOnly = kwargs['horizontalOnly']
1826 1842 else: horizontalOnly = False
@@ -1835,22 +1851,22 class WindProfiler(Operation):
1835 1851 param = param[arrayChannel,:,:]
1836 1852 theta_x = theta_x[arrayChannel]
1837 1853 theta_y = theta_y[arrayChannel]
1838
1839 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1840 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1854
1855 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1856 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1841 1857 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1842
1858
1843 1859 #Calculo de Componentes de la velocidad con DBS
1844 1860 winds = self.__calculateVelUVW(A,velRadial1)
1845
1861
1846 1862 return winds, heiRang1, SNR1
1847
1863
1848 1864 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1849
1865
1850 1866 nPairs = len(pairs_ccf)
1851 1867 posx = numpy.asarray(posx)
1852 1868 posy = numpy.asarray(posy)
1853
1869
1854 1870 #Rotacion Inversa para alinear con el azimuth
1855 1871 if azimuth!= None:
1856 1872 azimuth = azimuth*math.pi/180
@@ -1859,126 +1875,126 class WindProfiler(Operation):
1859 1875 else:
1860 1876 posx1 = posx
1861 1877 posy1 = posy
1862
1878
1863 1879 #Calculo de Distancias
1864 1880 distx = numpy.zeros(nPairs)
1865 1881 disty = numpy.zeros(nPairs)
1866 1882 dist = numpy.zeros(nPairs)
1867 1883 ang = numpy.zeros(nPairs)
1868
1884
1869 1885 for i in range(nPairs):
1870 1886 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1871 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1887 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1872 1888 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1873 1889 ang[i] = numpy.arctan2(disty[i],distx[i])
1874
1890
1875 1891 return distx, disty, dist, ang
1876 #Calculo de Matrices
1892 #Calculo de Matrices
1877 1893 # nPairs = len(pairs)
1878 1894 # ang1 = numpy.zeros((nPairs, 2, 1))
1879 1895 # dist1 = numpy.zeros((nPairs, 2, 1))
1880 #
1896 #
1881 1897 # for j in range(nPairs):
1882 1898 # dist1[j,0,0] = dist[pairs[j][0]]
1883 1899 # dist1[j,1,0] = dist[pairs[j][1]]
1884 1900 # ang1[j,0,0] = ang[pairs[j][0]]
1885 1901 # ang1[j,1,0] = ang[pairs[j][1]]
1886 #
1902 #
1887 1903 # return distx,disty, dist1,ang1
1888 1904
1889
1905
1890 1906 def __calculateVelVer(self, phase, lagTRange, _lambda):
1891 1907
1892 1908 Ts = lagTRange[1] - lagTRange[0]
1893 1909 velW = -_lambda*phase/(4*math.pi*Ts)
1894
1910
1895 1911 return velW
1896
1912
1897 1913 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1898 1914 nPairs = tau1.shape[0]
1899 1915 nHeights = tau1.shape[1]
1900 vel = numpy.zeros((nPairs,3,nHeights))
1916 vel = numpy.zeros((nPairs,3,nHeights))
1901 1917 dist1 = numpy.reshape(dist, (dist.size,1))
1902
1918
1903 1919 angCos = numpy.cos(ang)
1904 1920 angSin = numpy.sin(ang)
1905
1906 vel0 = dist1*tau1/(2*tau2**2)
1921
1922 vel0 = dist1*tau1/(2*tau2**2)
1907 1923 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1908 1924 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1909
1925
1910 1926 ind = numpy.where(numpy.isinf(vel))
1911 1927 vel[ind] = numpy.nan
1912
1928
1913 1929 return vel
1914
1930
1915 1931 # def __getPairsAutoCorr(self, pairsList, nChannels):
1916 #
1932 #
1917 1933 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1918 #
1919 # for l in range(len(pairsList)):
1934 #
1935 # for l in range(len(pairsList)):
1920 1936 # firstChannel = pairsList[l][0]
1921 1937 # secondChannel = pairsList[l][1]
1922 #
1923 # #Obteniendo pares de Autocorrelacion
1938 #
1939 # #Obteniendo pares de Autocorrelacion
1924 1940 # if firstChannel == secondChannel:
1925 1941 # pairsAutoCorr[firstChannel] = int(l)
1926 #
1942 #
1927 1943 # pairsAutoCorr = pairsAutoCorr.astype(int)
1928 #
1944 #
1929 1945 # pairsCrossCorr = range(len(pairsList))
1930 1946 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1931 #
1947 #
1932 1948 # return pairsAutoCorr, pairsCrossCorr
1933
1949
1934 1950 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1935 1951 def techniqueSA(self, kwargs):
1936
1937 """
1952
1953 """
1938 1954 Function that implements Spaced Antenna (SA) technique.
1939
1955
1940 1956 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1941 1957 Direction correction (if necessary), Ranges and SNR
1942
1958
1943 1959 Output: Winds estimation (Zonal, Meridional and Vertical)
1944
1960
1945 1961 Parameters affected: Winds
1946 1962 """
1947 1963 position_x = kwargs['positionX']
1948 1964 position_y = kwargs['positionY']
1949 1965 azimuth = kwargs['azimuth']
1950
1966
1951 1967 if 'correctFactor' in kwargs:
1952 1968 correctFactor = kwargs['correctFactor']
1953 1969 else:
1954 1970 correctFactor = 1
1955
1971
1956 1972 groupList = kwargs['groupList']
1957 1973 pairs_ccf = groupList[1]
1958 1974 tau = kwargs['tau']
1959 1975 _lambda = kwargs['_lambda']
1960
1976
1961 1977 #Cross Correlation pairs obtained
1962 1978 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1963 1979 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1964 1980 # pairsSelArray = numpy.array(pairsSelected)
1965 1981 # pairs = []
1966 #
1982 #
1967 1983 # #Wind estimation pairs obtained
1968 1984 # for i in range(pairsSelArray.shape[0]/2):
1969 1985 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1970 1986 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1971 1987 # pairs.append((ind1,ind2))
1972
1988
1973 1989 indtau = tau.shape[0]/2
1974 1990 tau1 = tau[:indtau,:]
1975 1991 tau2 = tau[indtau:-1,:]
1976 1992 # tau1 = tau1[pairs,:]
1977 1993 # tau2 = tau2[pairs,:]
1978 1994 phase1 = tau[-1,:]
1979
1995
1980 1996 #---------------------------------------------------------------------
1981 #Metodo Directo
1997 #Metodo Directo
1982 1998 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1983 1999 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1984 2000 winds = stats.nanmean(winds, axis=0)
@@ -1994,97 +2010,97 class WindProfiler(Operation):
1994 2010 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1995 2011 winds = correctFactor*winds
1996 2012 return winds
1997
2013
1998 2014 def __checkTime(self, currentTime, paramInterval, outputInterval):
1999
2015
2000 2016 dataTime = currentTime + paramInterval
2001 2017 deltaTime = dataTime - self.__initime
2002
2018
2003 2019 if deltaTime >= outputInterval or deltaTime < 0:
2004 2020 self.__dataReady = True
2005 return
2006
2021 return
2022
2007 2023 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
2008 2024 '''
2009 2025 Function that implements winds estimation technique with detected meteors.
2010
2026
2011 2027 Input: Detected meteors, Minimum meteor quantity to wind estimation
2012
2028
2013 2029 Output: Winds estimation (Zonal and Meridional)
2014
2030
2015 2031 Parameters affected: Winds
2016 '''
2032 '''
2017 2033 #Settings
2018 2034 nInt = (heightMax - heightMin)/2
2019 2035 nInt = int(nInt)
2020 winds = numpy.zeros((2,nInt))*numpy.nan
2021
2036 winds = numpy.zeros((2,nInt))*numpy.nan
2037
2022 2038 #Filter errors
2023 2039 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
2024 2040 finalMeteor = arrayMeteor[error,:]
2025
2041
2026 2042 #Meteor Histogram
2027 2043 finalHeights = finalMeteor[:,2]
2028 2044 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
2029 2045 nMeteorsPerI = hist[0]
2030 2046 heightPerI = hist[1]
2031
2047
2032 2048 #Sort of meteors
2033 2049 indSort = finalHeights.argsort()
2034 2050 finalMeteor2 = finalMeteor[indSort,:]
2035
2051
2036 2052 # Calculating winds
2037 2053 ind1 = 0
2038 ind2 = 0
2039
2054 ind2 = 0
2055
2040 2056 for i in range(nInt):
2041 2057 nMet = nMeteorsPerI[i]
2042 2058 ind1 = ind2
2043 2059 ind2 = ind1 + nMet
2044
2060
2045 2061 meteorAux = finalMeteor2[ind1:ind2,:]
2046
2062
2047 2063 if meteorAux.shape[0] >= meteorThresh:
2048 2064 vel = meteorAux[:, 6]
2049 2065 zen = meteorAux[:, 4]*numpy.pi/180
2050 2066 azim = meteorAux[:, 3]*numpy.pi/180
2051
2067
2052 2068 n = numpy.cos(zen)
2053 2069 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
2054 2070 # l = m*numpy.tan(azim)
2055 2071 l = numpy.sin(zen)*numpy.sin(azim)
2056 2072 m = numpy.sin(zen)*numpy.cos(azim)
2057
2073
2058 2074 A = numpy.vstack((l, m)).transpose()
2059 2075 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
2060 2076 windsAux = numpy.dot(A1, vel)
2061
2077
2062 2078 winds[0,i] = windsAux[0]
2063 2079 winds[1,i] = windsAux[1]
2064
2080
2065 2081 return winds, heightPerI[:-1]
2066
2082
2067 2083 def techniqueNSM_SA(self, **kwargs):
2068 2084 metArray = kwargs['metArray']
2069 2085 heightList = kwargs['heightList']
2070 2086 timeList = kwargs['timeList']
2071
2087
2072 2088 rx_location = kwargs['rx_location']
2073 2089 groupList = kwargs['groupList']
2074 2090 azimuth = kwargs['azimuth']
2075 2091 dfactor = kwargs['dfactor']
2076 2092 k = kwargs['k']
2077
2093
2078 2094 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
2079 2095 d = dist*dfactor
2080 2096 #Phase calculation
2081 2097 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2082
2098
2083 2099 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2084
2100
2085 2101 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2086 2102 azimuth1 = azimuth1*numpy.pi/180
2087
2103
2088 2104 for i in range(heightList.size):
2089 2105 h = heightList[i]
2090 2106 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
@@ -2097,71 +2113,71 class WindProfiler(Operation):
2097 2113 A = numpy.asmatrix(A)
2098 2114 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2099 2115 velHor = numpy.dot(A1,velAux)
2100
2116
2101 2117 velEst[i,:] = numpy.squeeze(velHor)
2102 2118 return velEst
2103
2119
2104 2120 def __getPhaseSlope(self, metArray, heightList, timeList):
2105 2121 meteorList = []
2106 2122 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2107 2123 #Putting back together the meteor matrix
2108 2124 utctime = metArray[:,0]
2109 2125 uniqueTime = numpy.unique(utctime)
2110
2126
2111 2127 phaseDerThresh = 0.5
2112 2128 ippSeconds = timeList[1] - timeList[0]
2113 2129 sec = numpy.where(timeList>1)[0][0]
2114 2130 nPairs = metArray.shape[1] - 6
2115 2131 nHeights = len(heightList)
2116
2132
2117 2133 for t in uniqueTime:
2118 2134 metArray1 = metArray[utctime==t,:]
2119 2135 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2120 2136 tmet = metArray1[:,1].astype(int)
2121 2137 hmet = metArray1[:,2].astype(int)
2122
2138
2123 2139 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2124 2140 metPhase[:,:] = numpy.nan
2125 2141 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2126
2142
2127 2143 #Delete short trails
2128 2144 metBool = ~numpy.isnan(metPhase[0,:,:])
2129 2145 heightVect = numpy.sum(metBool, axis = 1)
2130 2146 metBool[heightVect<sec,:] = False
2131 2147 metPhase[:,heightVect<sec,:] = numpy.nan
2132
2148
2133 2149 #Derivative
2134 2150 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2135 2151 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2136 2152 metPhase[phDerAux] = numpy.nan
2137
2153
2138 2154 #--------------------------METEOR DETECTION -----------------------------------------
2139 2155 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2140
2156
2141 2157 for p in numpy.arange(nPairs):
2142 2158 phase = metPhase[p,:,:]
2143 2159 phDer = metDer[p,:,:]
2144
2160
2145 2161 for h in indMet:
2146 2162 height = heightList[h]
2147 2163 phase1 = phase[h,:] #82
2148 2164 phDer1 = phDer[h,:]
2149
2165
2150 2166 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2151
2167
2152 2168 indValid = numpy.where(~numpy.isnan(phase1))[0]
2153 2169 initMet = indValid[0]
2154 2170 endMet = 0
2155
2171
2156 2172 for i in range(len(indValid)-1):
2157
2173
2158 2174 #Time difference
2159 2175 inow = indValid[i]
2160 2176 inext = indValid[i+1]
2161 2177 idiff = inext - inow
2162 2178 #Phase difference
2163 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2164
2179 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2180
2165 2181 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2166 2182 sizeTrail = inow - initMet + 1
2167 2183 if sizeTrail>3*sec: #Too short meteors
@@ -2177,43 +2193,43 class WindProfiler(Operation):
2177 2193 vel = slope#*height*1000/(k*d)
2178 2194 estAux = numpy.array([utctime,p,height, vel, rsq])
2179 2195 meteorList.append(estAux)
2180 initMet = inext
2196 initMet = inext
2181 2197 metArray2 = numpy.array(meteorList)
2182
2198
2183 2199 return metArray2
2184
2200
2185 2201 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2186
2202
2187 2203 azimuth1 = numpy.zeros(len(pairslist))
2188 2204 dist = numpy.zeros(len(pairslist))
2189
2205
2190 2206 for i in range(len(rx_location)):
2191 2207 ch0 = pairslist[i][0]
2192 2208 ch1 = pairslist[i][1]
2193
2209
2194 2210 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2195 2211 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2196 2212 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2197 2213 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2198
2214
2199 2215 azimuth1 -= azimuth0
2200 2216 return azimuth1, dist
2201
2217
2202 2218 def techniqueNSM_DBS(self, **kwargs):
2203 2219 metArray = kwargs['metArray']
2204 2220 heightList = kwargs['heightList']
2205 timeList = kwargs['timeList']
2221 timeList = kwargs['timeList']
2206 2222 azimuth = kwargs['azimuth']
2207 2223 theta_x = numpy.array(kwargs['theta_x'])
2208 2224 theta_y = numpy.array(kwargs['theta_y'])
2209
2225
2210 2226 utctime = metArray[:,0]
2211 2227 cmet = metArray[:,1].astype(int)
2212 2228 hmet = metArray[:,3].astype(int)
2213 2229 SNRmet = metArray[:,4]
2214 2230 vmet = metArray[:,5]
2215 2231 spcmet = metArray[:,6]
2216
2232
2217 2233 nChan = numpy.max(cmet) + 1
2218 2234 nHeights = len(heightList)
2219 2235
@@ -2229,20 +2245,20 class WindProfiler(Operation):
2229 2245
2230 2246 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2231 2247 indthisH = numpy.where(thisH)
2232
2248
2233 2249 if numpy.size(indthisH) > 3:
2234
2250
2235 2251 vel_aux = vmet[thisH]
2236 2252 chan_aux = cmet[thisH]
2237 2253 cosu_aux = dir_cosu[chan_aux]
2238 2254 cosv_aux = dir_cosv[chan_aux]
2239 2255 cosw_aux = dir_cosw[chan_aux]
2240
2241 nch = numpy.size(numpy.unique(chan_aux))
2256
2257 nch = numpy.size(numpy.unique(chan_aux))
2242 2258 if nch > 1:
2243 2259 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2244 2260 velEst[i,:] = numpy.dot(A,vel_aux)
2245
2261
2246 2262 return velEst
2247 2263
2248 2264 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
@@ -2253,39 +2269,39 class WindProfiler(Operation):
2253 2269 # noise = dataOut.noise
2254 2270 heightList = dataOut.heightList
2255 2271 SNR = dataOut.data_SNR
2256
2272
2257 2273 if technique == 'DBS':
2258
2259 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2274
2275 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2260 2276 kwargs['heightList'] = heightList
2261 2277 kwargs['SNR'] = SNR
2262
2278
2263 2279 dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
2264 2280 dataOut.utctimeInit = dataOut.utctime
2265 2281 dataOut.outputInterval = dataOut.paramInterval
2266
2282
2267 2283 elif technique == 'SA':
2268
2284
2269 2285 #Parameters
2270 2286 # position_x = kwargs['positionX']
2271 2287 # position_y = kwargs['positionY']
2272 2288 # azimuth = kwargs['azimuth']
2273 #
2289 #
2274 2290 # if kwargs.has_key('crosspairsList'):
2275 2291 # pairs = kwargs['crosspairsList']
2276 2292 # else:
2277 # pairs = None
2278 #
2293 # pairs = None
2294 #
2279 2295 # if kwargs.has_key('correctFactor'):
2280 2296 # correctFactor = kwargs['correctFactor']
2281 2297 # else:
2282 2298 # correctFactor = 1
2283
2299
2284 2300 # tau = dataOut.data_param
2285 2301 # _lambda = dataOut.C/dataOut.frequency
2286 2302 # pairsList = dataOut.groupList
2287 2303 # nChannels = dataOut.nChannels
2288
2304
2289 2305 kwargs['groupList'] = dataOut.groupList
2290 2306 kwargs['tau'] = dataOut.data_param
2291 2307 kwargs['_lambda'] = dataOut.C/dataOut.frequency
@@ -2293,30 +2309,30 class WindProfiler(Operation):
2293 2309 dataOut.data_output = self.techniqueSA(kwargs)
2294 2310 dataOut.utctimeInit = dataOut.utctime
2295 2311 dataOut.outputInterval = dataOut.timeInterval
2296
2297 elif technique == 'Meteors':
2312
2313 elif technique == 'Meteors':
2298 2314 dataOut.flagNoData = True
2299 2315 self.__dataReady = False
2300
2316
2301 2317 if 'nHours' in kwargs:
2302 2318 nHours = kwargs['nHours']
2303 else:
2319 else:
2304 2320 nHours = 1
2305
2321
2306 2322 if 'meteorsPerBin' in kwargs:
2307 2323 meteorThresh = kwargs['meteorsPerBin']
2308 2324 else:
2309 2325 meteorThresh = 6
2310
2326
2311 2327 if 'hmin' in kwargs:
2312 2328 hmin = kwargs['hmin']
2313 2329 else: hmin = 70
2314 2330 if 'hmax' in kwargs:
2315 2331 hmax = kwargs['hmax']
2316 2332 else: hmax = 110
2317
2333
2318 2334 dataOut.outputInterval = nHours*3600
2319
2335
2320 2336 if self.__isConfig == False:
2321 2337 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2322 2338 #Get Initial LTC time
@@ -2324,29 +2340,29 class WindProfiler(Operation):
2324 2340 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2325 2341
2326 2342 self.__isConfig = True
2327
2343
2328 2344 if self.__buffer is None:
2329 2345 self.__buffer = dataOut.data_param
2330 2346 self.__firstdata = copy.copy(dataOut)
2331 2347
2332 2348 else:
2333 2349 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2334
2350
2335 2351 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2336
2352
2337 2353 if self.__dataReady:
2338 2354 dataOut.utctimeInit = self.__initime
2339
2355
2340 2356 self.__initime += dataOut.outputInterval #to erase time offset
2341
2357
2342 2358 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2343 2359 dataOut.flagNoData = False
2344 2360 self.__buffer = None
2345
2361
2346 2362 elif technique == 'Meteors1':
2347 2363 dataOut.flagNoData = True
2348 2364 self.__dataReady = False
2349
2365
2350 2366 if 'nMins' in kwargs:
2351 2367 nMins = kwargs['nMins']
2352 2368 else: nMins = 20
@@ -2361,7 +2377,7 class WindProfiler(Operation):
2361 2377 if 'mode' in kwargs:
2362 2378 mode = kwargs['mode']
2363 2379 if 'theta_x' in kwargs:
2364 theta_x = kwargs['theta_x']
2380 theta_x = kwargs['theta_x']
2365 2381 if 'theta_y' in kwargs:
2366 2382 theta_y = kwargs['theta_y']
2367 2383 else: mode = 'SA'
@@ -2374,10 +2390,10 class WindProfiler(Operation):
2374 2390 freq = 50e6
2375 2391 lamb = C/freq
2376 2392 k = 2*numpy.pi/lamb
2377
2393
2378 2394 timeList = dataOut.abscissaList
2379 2395 heightList = dataOut.heightList
2380
2396
2381 2397 if self.__isConfig == False:
2382 2398 dataOut.outputInterval = nMins*60
2383 2399 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
@@ -2388,20 +2404,20 class WindProfiler(Operation):
2388 2404 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2389 2405
2390 2406 self.__isConfig = True
2391
2407
2392 2408 if self.__buffer is None:
2393 2409 self.__buffer = dataOut.data_param
2394 2410 self.__firstdata = copy.copy(dataOut)
2395 2411
2396 2412 else:
2397 2413 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2398
2414
2399 2415 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2400
2416
2401 2417 if self.__dataReady:
2402 2418 dataOut.utctimeInit = self.__initime
2403 2419 self.__initime += dataOut.outputInterval #to erase time offset
2404
2420
2405 2421 metArray = self.__buffer
2406 2422 if mode == 'SA':
2407 2423 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
@@ -2412,71 +2428,71 class WindProfiler(Operation):
2412 2428 self.__buffer = None
2413 2429
2414 2430 return
2415
2431
2416 2432 class EWDriftsEstimation(Operation):
2417
2418 def __init__(self):
2419 Operation.__init__(self)
2420
2433
2434 def __init__(self):
2435 Operation.__init__(self)
2436
2421 2437 def __correctValues(self, heiRang, phi, velRadial, SNR):
2422 2438 listPhi = phi.tolist()
2423 2439 maxid = listPhi.index(max(listPhi))
2424 2440 minid = listPhi.index(min(listPhi))
2425
2426 rango = list(range(len(phi)))
2441
2442 rango = list(range(len(phi)))
2427 2443 # rango = numpy.delete(rango,maxid)
2428
2444
2429 2445 heiRang1 = heiRang*math.cos(phi[maxid])
2430 2446 heiRangAux = heiRang*math.cos(phi[minid])
2431 2447 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2432 2448 heiRang1 = numpy.delete(heiRang1,indOut)
2433
2449
2434 2450 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2435 2451 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2436
2452
2437 2453 for i in rango:
2438 2454 x = heiRang*math.cos(phi[i])
2439 2455 y1 = velRadial[i,:]
2440 2456 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2441
2457
2442 2458 x1 = heiRang1
2443 2459 y11 = f1(x1)
2444
2460
2445 2461 y2 = SNR[i,:]
2446 2462 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2447 2463 y21 = f2(x1)
2448
2464
2449 2465 velRadial1[i,:] = y11
2450 2466 SNR1[i,:] = y21
2451
2467
2452 2468 return heiRang1, velRadial1, SNR1
2453 2469
2454 2470 def run(self, dataOut, zenith, zenithCorrection):
2455 2471 heiRang = dataOut.heightList
2456 2472 velRadial = dataOut.data_param[:,3,:]
2457 2473 SNR = dataOut.data_SNR
2458
2474
2459 2475 zenith = numpy.array(zenith)
2460 zenith -= zenithCorrection
2476 zenith -= zenithCorrection
2461 2477 zenith *= numpy.pi/180
2462
2478
2463 2479 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2464
2480
2465 2481 alp = zenith[0]
2466 2482 bet = zenith[1]
2467
2483
2468 2484 w_w = velRadial1[0,:]
2469 2485 w_e = velRadial1[1,:]
2470
2471 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2472 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2473
2486
2487 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2488 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2489
2474 2490 winds = numpy.vstack((u,w))
2475
2491
2476 2492 dataOut.heightList = heiRang1
2477 2493 dataOut.data_output = winds
2478 2494 dataOut.data_SNR = SNR1
2479
2495
2480 2496 dataOut.utctimeInit = dataOut.utctime
2481 2497 dataOut.outputInterval = dataOut.timeInterval
2482 2498 return
@@ -2489,11 +2505,11 class NonSpecularMeteorDetection(Operation):
2489 2505 data_acf = dataOut.data_pre[0]
2490 2506 data_ccf = dataOut.data_pre[1]
2491 2507 pairsList = dataOut.groupList[1]
2492
2508
2493 2509 lamb = dataOut.C/dataOut.frequency
2494 2510 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2495 2511 paramInterval = dataOut.paramInterval
2496
2512
2497 2513 nChannels = data_acf.shape[0]
2498 2514 nLags = data_acf.shape[1]
2499 2515 nProfiles = data_acf.shape[2]
@@ -2503,7 +2519,7 class NonSpecularMeteorDetection(Operation):
2503 2519 heightList = dataOut.heightList
2504 2520 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2505 2521 utctime = dataOut.utctime
2506
2522
2507 2523 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2508 2524
2509 2525 #------------------------ SNR --------------------------------------
@@ -2515,7 +2531,7 class NonSpecularMeteorDetection(Operation):
2515 2531 SNR[i] = (power[i]-noise[i])/noise[i]
2516 2532 SNRm = numpy.nanmean(SNR, axis = 0)
2517 2533 SNRdB = 10*numpy.log10(SNR)
2518
2534
2519 2535 if mode == 'SA':
2520 2536 dataOut.groupList = dataOut.groupList[1]
2521 2537 nPairs = data_ccf.shape[0]
@@ -2523,22 +2539,22 class NonSpecularMeteorDetection(Operation):
2523 2539 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2524 2540 # phase1 = numpy.copy(phase)
2525 2541 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2526
2542
2527 2543 for p in range(nPairs):
2528 2544 ch0 = pairsList[p][0]
2529 2545 ch1 = pairsList[p][1]
2530 2546 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2531 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2532 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2533 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2534 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2547 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2548 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2549 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2550 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2535 2551 coh = numpy.nanmax(coh1, axis = 0)
2536 2552 # struc = numpy.ones((5,1))
2537 2553 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2538 2554 #---------------------- Radial Velocity ----------------------------
2539 2555 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2540 2556 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2541
2557
2542 2558 if allData:
2543 2559 boolMetFin = ~numpy.isnan(SNRm)
2544 2560 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
@@ -2546,31 +2562,31 class NonSpecularMeteorDetection(Operation):
2546 2562 #------------------------ Meteor mask ---------------------------------
2547 2563 # #SNR mask
2548 2564 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2549 #
2565 #
2550 2566 # #Erase small objects
2551 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2552 #
2567 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2568 #
2553 2569 # auxEEJ = numpy.sum(boolMet1,axis=0)
2554 2570 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2555 2571 # indEEJ = numpy.where(indOver)[0]
2556 2572 # indNEEJ = numpy.where(~indOver)[0]
2557 #
2573 #
2558 2574 # boolMetFin = boolMet1
2559 #
2575 #
2560 2576 # if indEEJ.size > 0:
2561 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2562 #
2577 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2578 #
2563 2579 # boolMet2 = coh > cohThresh
2564 2580 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2565 #
2581 #
2566 2582 # #Final Meteor mask
2567 2583 # boolMetFin = boolMet1|boolMet2
2568
2584
2569 2585 #Coherence mask
2570 2586 boolMet1 = coh > 0.75
2571 2587 struc = numpy.ones((30,1))
2572 2588 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2573
2589
2574 2590 #Derivative mask
2575 2591 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2576 2592 boolMet2 = derPhase < 0.2
@@ -2587,7 +2603,7 class NonSpecularMeteorDetection(Operation):
2587 2603
2588 2604 tmet = coordMet[0]
2589 2605 hmet = coordMet[1]
2590
2606
2591 2607 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2592 2608 data_param[:,0] = utctime
2593 2609 data_param[:,1] = tmet
@@ -2596,7 +2612,7 class NonSpecularMeteorDetection(Operation):
2596 2612 data_param[:,4] = velRad[tmet,hmet]
2597 2613 data_param[:,5] = coh[tmet,hmet]
2598 2614 data_param[:,6:] = phase[:,tmet,hmet].T
2599
2615
2600 2616 elif mode == 'DBS':
2601 2617 dataOut.groupList = numpy.arange(nChannels)
2602 2618
@@ -2604,7 +2620,7 class NonSpecularMeteorDetection(Operation):
2604 2620 phase = numpy.angle(data_acf[:,1,:,:])
2605 2621 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2606 2622 velRad = phase*lamb/(4*numpy.pi*tSamp)
2607
2623
2608 2624 #Spectral width
2609 2625 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2610 2626 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
@@ -2619,24 +2635,24 class NonSpecularMeteorDetection(Operation):
2619 2635 #SNR
2620 2636 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2621 2637 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2622
2638
2623 2639 #Radial velocity
2624 2640 boolMet2 = numpy.abs(velRad) < 20
2625 2641 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2626
2642
2627 2643 #Spectral Width
2628 2644 boolMet3 = spcWidth < 30
2629 2645 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2630 2646 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2631 2647 boolMetFin = boolMet1&boolMet2&boolMet3
2632
2648
2633 2649 #Creating data_param
2634 2650 coordMet = numpy.where(boolMetFin)
2635 2651
2636 2652 cmet = coordMet[0]
2637 2653 tmet = coordMet[1]
2638 2654 hmet = coordMet[2]
2639
2655
2640 2656 data_param = numpy.zeros((tmet.size, 7))
2641 2657 data_param[:,0] = utctime
2642 2658 data_param[:,1] = cmet
@@ -2645,7 +2661,7 class NonSpecularMeteorDetection(Operation):
2645 2661 data_param[:,4] = SNR[cmet,tmet,hmet].T
2646 2662 data_param[:,5] = velRad[cmet,tmet,hmet].T
2647 2663 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2648
2664
2649 2665 # self.dataOut.data_param = data_int
2650 2666 if len(data_param) == 0:
2651 2667 dataOut.flagNoData = True
@@ -2655,21 +2671,21 class NonSpecularMeteorDetection(Operation):
2655 2671 def __erase_small(self, binArray, threshX, threshY):
2656 2672 labarray, numfeat = ndimage.measurements.label(binArray)
2657 2673 binArray1 = numpy.copy(binArray)
2658
2674
2659 2675 for i in range(1,numfeat + 1):
2660 2676 auxBin = (labarray==i)
2661 2677 auxSize = auxBin.sum()
2662
2678
2663 2679 x,y = numpy.where(auxBin)
2664 2680 widthX = x.max() - x.min()
2665 2681 widthY = y.max() - y.min()
2666
2682
2667 2683 #width X: 3 seg -> 12.5*3
2668 #width Y:
2669
2684 #width Y:
2685
2670 2686 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2671 2687 binArray1[auxBin] = False
2672
2688
2673 2689 return binArray1
2674 2690
2675 2691 #--------------- Specular Meteor ----------------
@@ -2679,36 +2695,36 class SMDetection(Operation):
2679 2695 Function DetectMeteors()
2680 2696 Project developed with paper:
2681 2697 HOLDSWORTH ET AL. 2004
2682
2698
2683 2699 Input:
2684 2700 self.dataOut.data_pre
2685
2701
2686 2702 centerReceiverIndex: From the channels, which is the center receiver
2687
2703
2688 2704 hei_ref: Height reference for the Beacon signal extraction
2689 2705 tauindex:
2690 2706 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2691
2707
2692 2708 cohDetection: Whether to user Coherent detection or not
2693 2709 cohDet_timeStep: Coherent Detection calculation time step
2694 2710 cohDet_thresh: Coherent Detection phase threshold to correct phases
2695
2711
2696 2712 noise_timeStep: Noise calculation time step
2697 2713 noise_multiple: Noise multiple to define signal threshold
2698
2714
2699 2715 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2700 2716 multDet_rangeLimit: Multiple Detection Removal range limit in km
2701
2717
2702 2718 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2703 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2704
2719 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2720
2705 2721 hmin: Minimum Height of the meteor to use it in the further wind estimations
2706 2722 hmax: Maximum Height of the meteor to use it in the further wind estimations
2707 2723 azimuth: Azimuth angle correction
2708
2724
2709 2725 Affected:
2710 2726 self.dataOut.data_param
2711
2727
2712 2728 Rejection Criteria (Errors):
2713 2729 0: No error; analysis OK
2714 2730 1: SNR < SNR threshold
@@ -2727,9 +2743,9 class SMDetection(Operation):
2727 2743 14: height ambiguous echo: more then one possible height within 70 to 110 km
2728 2744 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2729 2745 16: oscilatory echo, indicating event most likely not an underdense echo
2730
2746
2731 2747 17: phase difference in meteor Reestimation
2732
2748
2733 2749 Data Storage:
2734 2750 Meteors for Wind Estimation (8):
2735 2751 Utc Time | Range Height
@@ -2737,19 +2753,19 class SMDetection(Operation):
2737 2753 VelRad errorVelRad
2738 2754 Phase0 Phase1 Phase2 Phase3
2739 2755 TypeError
2740
2741 '''
2742
2756
2757 '''
2758
2743 2759 def run(self, dataOut, hei_ref = None, tauindex = 0,
2744 2760 phaseOffsets = None,
2745 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2761 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2746 2762 noise_timeStep = 4, noise_multiple = 4,
2747 2763 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2748 2764 phaseThresh = 20, SNRThresh = 5,
2749 2765 hmin = 50, hmax=150, azimuth = 0,
2750 2766 channelPositions = None) :
2751
2752
2767
2768
2753 2769 #Getting Pairslist
2754 2770 if channelPositions is None:
2755 2771 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
@@ -2759,53 +2775,53 class SMDetection(Operation):
2759 2775 heiRang = dataOut.getHeiRange()
2760 2776 #Get Beacon signal - No Beacon signal anymore
2761 2777 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2762 #
2778 #
2763 2779 # if hei_ref != None:
2764 2780 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2765 #
2766
2767
2781 #
2782
2783
2768 2784 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2769 2785 # see if the user put in pre defined phase shifts
2770 2786 voltsPShift = dataOut.data_pre.copy()
2771
2787
2772 2788 # if predefinedPhaseShifts != None:
2773 2789 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2774 #
2790 #
2775 2791 # # elif beaconPhaseShifts:
2776 2792 # # #get hardware phase shifts using beacon signal
2777 2793 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2778 2794 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2779 #
2795 #
2780 2796 # else:
2781 # hardwarePhaseShifts = numpy.zeros(5)
2782 #
2797 # hardwarePhaseShifts = numpy.zeros(5)
2798 #
2783 2799 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2784 2800 # for i in range(self.dataOut.data_pre.shape[0]):
2785 2801 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2786 2802
2787 2803 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2788
2804
2789 2805 #Remove DC
2790 2806 voltsDC = numpy.mean(voltsPShift,1)
2791 2807 voltsDC = numpy.mean(voltsDC,1)
2792 2808 for i in range(voltsDC.shape[0]):
2793 2809 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2794
2795 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2810
2811 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2796 2812 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2797
2813
2798 2814 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2799 2815 #Coherent Detection
2800 2816 if cohDetection:
2801 2817 #use coherent detection to get the net power
2802 2818 cohDet_thresh = cohDet_thresh*numpy.pi/180
2803 2819 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2804
2820
2805 2821 #Non-coherent detection!
2806 2822 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2807 2823 #********** END OF COH/NON-COH POWER CALCULATION**********************
2808
2824
2809 2825 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2810 2826 #Get noise
2811 2827 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
@@ -2815,7 +2831,7 class SMDetection(Operation):
2815 2831 #Meteor echoes detection
2816 2832 listMeteors = self.__findMeteors(powerNet, signalThresh)
2817 2833 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2818
2834
2819 2835 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2820 2836 #Parameters
2821 2837 heiRange = dataOut.getHeiRange()
@@ -2825,7 +2841,7 class SMDetection(Operation):
2825 2841 #Multiple detection removals
2826 2842 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2827 2843 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2828
2844
2829 2845 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2830 2846 #Parameters
2831 2847 phaseThresh = phaseThresh*numpy.pi/180
@@ -2836,40 +2852,40 class SMDetection(Operation):
2836 2852 #Estimation of decay times (Errors N 7, 8, 11)
2837 2853 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2838 2854 #******************* END OF METEOR REESTIMATION *******************
2839
2855
2840 2856 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2841 2857 #Calculating Radial Velocity (Error N 15)
2842 2858 radialStdThresh = 10
2843 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2859 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2844 2860
2845 2861 if len(listMeteors4) > 0:
2846 2862 #Setting New Array
2847 2863 date = dataOut.utctime
2848 2864 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2849
2865
2850 2866 #Correcting phase offset
2851 2867 if phaseOffsets != None:
2852 2868 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2853 2869 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2854
2870
2855 2871 #Second Pairslist
2856 2872 pairsList = []
2857 2873 pairx = (0,1)
2858 2874 pairy = (2,3)
2859 2875 pairsList.append(pairx)
2860 2876 pairsList.append(pairy)
2861
2877
2862 2878 jph = numpy.array([0,0,0,0])
2863 2879 h = (hmin,hmax)
2864 2880 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2865
2881
2866 2882 # #Calculate AOA (Error N 3, 4)
2867 2883 # #JONES ET AL. 1998
2868 2884 # error = arrayParameters[:,-1]
2869 2885 # AOAthresh = numpy.pi/8
2870 2886 # phases = -arrayParameters[:,9:13]
2871 2887 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2872 #
2888 #
2873 2889 # #Calculate Heights (Error N 13 and 14)
2874 2890 # error = arrayParameters[:,-1]
2875 2891 # Ranges = arrayParameters[:,2]
@@ -2877,73 +2893,73 class SMDetection(Operation):
2877 2893 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2878 2894 # error = arrayParameters[:,-1]
2879 2895 #********************* END OF PARAMETERS CALCULATION **************************
2880
2881 #***************************+ PASS DATA TO NEXT STEP **********************
2896
2897 #***************************+ PASS DATA TO NEXT STEP **********************
2882 2898 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2883 2899 dataOut.data_param = arrayParameters
2884
2900
2885 2901 if arrayParameters is None:
2886 2902 dataOut.flagNoData = True
2887 2903 else:
2888 2904 dataOut.flagNoData = True
2889
2905
2890 2906 return
2891
2907
2892 2908 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2893
2909
2894 2910 minIndex = min(newheis[0])
2895 2911 maxIndex = max(newheis[0])
2896
2912
2897 2913 voltage = voltage0[:,:,minIndex:maxIndex+1]
2898 2914 nLength = voltage.shape[1]/n
2899 2915 nMin = 0
2900 2916 nMax = 0
2901 2917 phaseOffset = numpy.zeros((len(pairslist),n))
2902
2918
2903 2919 for i in range(n):
2904 2920 nMax += nLength
2905 2921 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2906 2922 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2907 phaseOffset[:,i] = phaseCCF.transpose()
2923 phaseOffset[:,i] = phaseCCF.transpose()
2908 2924 nMin = nMax
2909 2925 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2910
2926
2911 2927 #Remove Outliers
2912 2928 factor = 2
2913 2929 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2914 2930 dw = numpy.std(wt,axis = 1)
2915 2931 dw = dw.reshape((dw.size,1))
2916 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2932 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2917 2933 phaseOffset[ind] = numpy.nan
2918 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2919
2934 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2935
2920 2936 return phaseOffset
2921
2937
2922 2938 def __shiftPhase(self, data, phaseShift):
2923 2939 #this will shift the phase of a complex number
2924 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2940 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2925 2941 return dataShifted
2926
2942
2927 2943 def __estimatePhaseDifference(self, array, pairslist):
2928 2944 nChannel = array.shape[0]
2929 2945 nHeights = array.shape[2]
2930 2946 numPairs = len(pairslist)
2931 2947 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2932 2948 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2933
2949
2934 2950 #Correct phases
2935 2951 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2936 2952 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2937
2938 if indDer[0].shape[0] > 0:
2953
2954 if indDer[0].shape[0] > 0:
2939 2955 for i in range(indDer[0].shape[0]):
2940 2956 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2941 2957 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2942
2958
2943 2959 # for j in range(numSides):
2944 2960 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2945 2961 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2946 #
2962 #
2947 2963 #Linear
2948 2964 phaseInt = numpy.zeros((numPairs,1))
2949 2965 angAllCCF = phaseCCF[:,[0,1,3,4],0]
@@ -2953,16 +2969,16 class SMDetection(Operation):
2953 2969 #Phase Differences
2954 2970 phaseDiff = phaseInt - phaseCCF[:,2,:]
2955 2971 phaseArrival = phaseInt.reshape(phaseInt.size)
2956
2972
2957 2973 #Dealias
2958 2974 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2959 2975 # indAlias = numpy.where(phaseArrival > numpy.pi)
2960 2976 # phaseArrival[indAlias] -= 2*numpy.pi
2961 2977 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2962 2978 # phaseArrival[indAlias] += 2*numpy.pi
2963
2979
2964 2980 return phaseDiff, phaseArrival
2965
2981
2966 2982 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2967 2983 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2968 2984 #find the phase shifts of each channel over 1 second intervals
@@ -2972,25 +2988,25 class SMDetection(Operation):
2972 2988 numHeights = volts.shape[2]
2973 2989 nChannel = volts.shape[0]
2974 2990 voltsCohDet = volts.copy()
2975
2991
2976 2992 pairsarray = numpy.array(pairslist)
2977 2993 indSides = pairsarray[:,1]
2978 2994 # indSides = numpy.array(range(nChannel))
2979 2995 # indSides = numpy.delete(indSides, indCenter)
2980 #
2996 #
2981 2997 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2982 2998 listBlocks = numpy.array_split(volts, numBlocks, 1)
2983
2999
2984 3000 startInd = 0
2985 3001 endInd = 0
2986
3002
2987 3003 for i in range(numBlocks):
2988 3004 startInd = endInd
2989 endInd = endInd + listBlocks[i].shape[1]
2990
3005 endInd = endInd + listBlocks[i].shape[1]
3006
2991 3007 arrayBlock = listBlocks[i]
2992 3008 # arrayBlockCenter = listCenter[i]
2993
3009
2994 3010 #Estimate the Phase Difference
2995 3011 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2996 3012 #Phase Difference RMS
@@ -3002,21 +3018,21 class SMDetection(Operation):
3002 3018 for j in range(indSides.size):
3003 3019 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
3004 3020 voltsCohDet[:,startInd:endInd,:] = arrayBlock
3005
3021
3006 3022 return voltsCohDet
3007
3023
3008 3024 def __calculateCCF(self, volts, pairslist ,laglist):
3009
3025
3010 3026 nHeights = volts.shape[2]
3011 nPoints = volts.shape[1]
3027 nPoints = volts.shape[1]
3012 3028 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
3013
3029
3014 3030 for i in range(len(pairslist)):
3015 3031 volts1 = volts[pairslist[i][0]]
3016 volts2 = volts[pairslist[i][1]]
3017
3032 volts2 = volts[pairslist[i][1]]
3033
3018 3034 for t in range(len(laglist)):
3019 idxT = laglist[t]
3035 idxT = laglist[t]
3020 3036 if idxT >= 0:
3021 3037 vStacked = numpy.vstack((volts2[idxT:,:],
3022 3038 numpy.zeros((idxT, nHeights),dtype='complex')))
@@ -3024,10 +3040,10 class SMDetection(Operation):
3024 3040 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
3025 3041 volts2[:(nPoints + idxT),:]))
3026 3042 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
3027
3043
3028 3044 vStacked = None
3029 3045 return voltsCCF
3030
3046
3031 3047 def __getNoise(self, power, timeSegment, timeInterval):
3032 3048 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
3033 3049 numBlocks = int(power.shape[0]/numProfPerBlock)
@@ -3036,100 +3052,100 class SMDetection(Operation):
3036 3052 listPower = numpy.array_split(power, numBlocks, 0)
3037 3053 noise = numpy.zeros((power.shape[0], power.shape[1]))
3038 3054 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
3039
3055
3040 3056 startInd = 0
3041 3057 endInd = 0
3042
3058
3043 3059 for i in range(numBlocks): #split por canal
3044 3060 startInd = endInd
3045 endInd = endInd + listPower[i].shape[0]
3046
3061 endInd = endInd + listPower[i].shape[0]
3062
3047 3063 arrayBlock = listPower[i]
3048 3064 noiseAux = numpy.mean(arrayBlock, 0)
3049 3065 # noiseAux = numpy.median(noiseAux)
3050 3066 # noiseAux = numpy.mean(arrayBlock)
3051 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
3052
3067 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
3068
3053 3069 noiseAux1 = numpy.mean(arrayBlock)
3054 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
3055
3070 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
3071
3056 3072 return noise, noise1
3057
3073
3058 3074 def __findMeteors(self, power, thresh):
3059 3075 nProf = power.shape[0]
3060 3076 nHeights = power.shape[1]
3061 3077 listMeteors = []
3062
3078
3063 3079 for i in range(nHeights):
3064 3080 powerAux = power[:,i]
3065 3081 threshAux = thresh[:,i]
3066
3082
3067 3083 indUPthresh = numpy.where(powerAux > threshAux)[0]
3068 3084 indDNthresh = numpy.where(powerAux <= threshAux)[0]
3069
3085
3070 3086 j = 0
3071
3087
3072 3088 while (j < indUPthresh.size - 2):
3073 3089 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
3074 3090 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
3075 3091 indDNthresh = indDNthresh[indDNAux]
3076
3092
3077 3093 if (indDNthresh.size > 0):
3078 3094 indEnd = indDNthresh[0] - 1
3079 3095 indInit = indUPthresh[j]
3080
3096
3081 3097 meteor = powerAux[indInit:indEnd + 1]
3082 3098 indPeak = meteor.argmax() + indInit
3083 3099 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3084
3100
3085 3101 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3086 3102 j = numpy.where(indUPthresh == indEnd)[0] + 1
3087 3103 else: j+=1
3088 3104 else: j+=1
3089
3105
3090 3106 return listMeteors
3091
3107
3092 3108 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3093
3094 arrayMeteors = numpy.asarray(listMeteors)
3109
3110 arrayMeteors = numpy.asarray(listMeteors)
3095 3111 listMeteors1 = []
3096
3112
3097 3113 while arrayMeteors.shape[0] > 0:
3098 3114 FLAs = arrayMeteors[:,4]
3099 3115 maxFLA = FLAs.argmax()
3100 3116 listMeteors1.append(arrayMeteors[maxFLA,:])
3101
3117
3102 3118 MeteorInitTime = arrayMeteors[maxFLA,1]
3103 3119 MeteorEndTime = arrayMeteors[maxFLA,3]
3104 3120 MeteorHeight = arrayMeteors[maxFLA,0]
3105
3121
3106 3122 #Check neighborhood
3107 3123 maxHeightIndex = MeteorHeight + rangeLimit
3108 3124 minHeightIndex = MeteorHeight - rangeLimit
3109 3125 minTimeIndex = MeteorInitTime - timeLimit
3110 3126 maxTimeIndex = MeteorEndTime + timeLimit
3111
3127
3112 3128 #Check Heights
3113 3129 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3114 3130 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3115 3131 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3116
3132
3117 3133 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3118
3134
3119 3135 return listMeteors1
3120
3136
3121 3137 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3122 3138 numHeights = volts.shape[2]
3123 3139 nChannel = volts.shape[0]
3124
3140
3125 3141 thresholdPhase = thresh[0]
3126 3142 thresholdNoise = thresh[1]
3127 3143 thresholdDB = float(thresh[2])
3128
3144
3129 3145 thresholdDB1 = 10**(thresholdDB/10)
3130 3146 pairsarray = numpy.array(pairslist)
3131 3147 indSides = pairsarray[:,1]
3132
3148
3133 3149 pairslist1 = list(pairslist)
3134 3150 pairslist1.append((0,1))
3135 3151 pairslist1.append((3,4))
@@ -3138,31 +3154,31 class SMDetection(Operation):
3138 3154 listPowerSeries = []
3139 3155 listVoltageSeries = []
3140 3156 #volts has the war data
3141
3157
3142 3158 if frequency == 30e6:
3143 3159 timeLag = 45*10**-3
3144 3160 else:
3145 3161 timeLag = 15*10**-3
3146 3162 lag = numpy.ceil(timeLag/timeInterval)
3147
3163
3148 3164 for i in range(len(listMeteors)):
3149
3165
3150 3166 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3151 3167 meteorAux = numpy.zeros(16)
3152
3168
3153 3169 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3154 3170 mHeight = listMeteors[i][0]
3155 3171 mStart = listMeteors[i][1]
3156 3172 mPeak = listMeteors[i][2]
3157 3173 mEnd = listMeteors[i][3]
3158
3174
3159 3175 #get the volt data between the start and end times of the meteor
3160 3176 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3161 3177 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3162
3178
3163 3179 #3.6. Phase Difference estimation
3164 3180 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3165
3181
3166 3182 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3167 3183 #meteorVolts0.- all Channels, all Profiles
3168 3184 meteorVolts0 = volts[:,:,mHeight]
@@ -3170,15 +3186,15 class SMDetection(Operation):
3170 3186 meteorNoise = noise[:,mHeight]
3171 3187 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3172 3188 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3173
3189
3174 3190 #Times reestimation
3175 3191 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3176 3192 if mStart1.size > 0:
3177 3193 mStart1 = mStart1[-1] + 1
3178
3179 else:
3194
3195 else:
3180 3196 mStart1 = mPeak
3181
3197
3182 3198 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3183 3199 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3184 3200 if mEndDecayTime1.size == 0:
@@ -3186,7 +3202,7 class SMDetection(Operation):
3186 3202 else:
3187 3203 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3188 3204 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3189
3205
3190 3206 #meteorVolts1.- all Channels, from start to end
3191 3207 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3192 3208 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
@@ -3195,17 +3211,17 class SMDetection(Operation):
3195 3211 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3196 3212 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3197 3213 ##################### END PARAMETERS REESTIMATION #########################
3198
3214
3199 3215 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3200 3216 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3201 if meteorVolts2.shape[1] > 0:
3217 if meteorVolts2.shape[1] > 0:
3202 3218 #Phase Difference re-estimation
3203 3219 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3204 3220 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3205 3221 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3206 3222 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3207 3223 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3208
3224
3209 3225 #Phase Difference RMS
3210 3226 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3211 3227 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
@@ -3220,27 +3236,27 class SMDetection(Operation):
3220 3236 #Vectorize
3221 3237 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3222 3238 meteorAux[7:11] = phaseDiffint[0:4]
3223
3239
3224 3240 #Rejection Criterions
3225 3241 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3226 3242 meteorAux[-1] = 17
3227 3243 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3228 3244 meteorAux[-1] = 1
3229
3230
3231 else:
3245
3246
3247 else:
3232 3248 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3233 3249 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3234 3250 PowerSeries = 0
3235
3251
3236 3252 listMeteors1.append(meteorAux)
3237 3253 listPowerSeries.append(PowerSeries)
3238 3254 listVoltageSeries.append(meteorVolts1)
3239
3240 return listMeteors1, listPowerSeries, listVoltageSeries
3241
3255
3256 return listMeteors1, listPowerSeries, listVoltageSeries
3257
3242 3258 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3243
3259
3244 3260 threshError = 10
3245 3261 #Depending if it is 30 or 50 MHz
3246 3262 if frequency == 30e6:
@@ -3248,22 +3264,22 class SMDetection(Operation):
3248 3264 else:
3249 3265 timeLag = 15*10**-3
3250 3266 lag = numpy.ceil(timeLag/timeInterval)
3251
3267
3252 3268 listMeteors1 = []
3253
3269
3254 3270 for i in range(len(listMeteors)):
3255 3271 meteorPower = listPower[i]
3256 3272 meteorAux = listMeteors[i]
3257
3273
3258 3274 if meteorAux[-1] == 0:
3259 3275
3260 try:
3276 try:
3261 3277 indmax = meteorPower.argmax()
3262 3278 indlag = indmax + lag
3263
3279
3264 3280 y = meteorPower[indlag:]
3265 3281 x = numpy.arange(0, y.size)*timeLag
3266
3282
3267 3283 #first guess
3268 3284 a = y[0]
3269 3285 tau = timeLag
@@ -3272,26 +3288,26 class SMDetection(Operation):
3272 3288 y1 = self.__exponential_function(x, *popt)
3273 3289 #error estimation
3274 3290 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3275
3291
3276 3292 decayTime = popt[1]
3277 3293 riseTime = indmax*timeInterval
3278 3294 meteorAux[11:13] = [decayTime, error]
3279
3295
3280 3296 #Table items 7, 8 and 11
3281 3297 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3282 meteorAux[-1] = 7
3298 meteorAux[-1] = 7
3283 3299 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3284 3300 meteorAux[-1] = 8
3285 3301 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3286 meteorAux[-1] = 11
3287
3288
3302 meteorAux[-1] = 11
3303
3304
3289 3305 except:
3290 meteorAux[-1] = 11
3291
3292
3306 meteorAux[-1] = 11
3307
3308
3293 3309 listMeteors1.append(meteorAux)
3294
3310
3295 3311 return listMeteors1
3296 3312
3297 3313 #Exponential Function
@@ -3299,9 +3315,9 class SMDetection(Operation):
3299 3315 def __exponential_function(self, x, a, tau):
3300 3316 y = a*numpy.exp(-x/tau)
3301 3317 return y
3302
3318
3303 3319 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3304
3320
3305 3321 pairslist1 = list(pairslist)
3306 3322 pairslist1.append((0,1))
3307 3323 pairslist1.append((3,4))
@@ -3311,33 +3327,33 class SMDetection(Operation):
3311 3327 c = 3e8
3312 3328 lag = numpy.ceil(timeLag/timeInterval)
3313 3329 freq = 30e6
3314
3330
3315 3331 listMeteors1 = []
3316
3332
3317 3333 for i in range(len(listMeteors)):
3318 3334 meteorAux = listMeteors[i]
3319 3335 if meteorAux[-1] == 0:
3320 3336 mStart = listMeteors[i][1]
3321 mPeak = listMeteors[i][2]
3337 mPeak = listMeteors[i][2]
3322 3338 mLag = mPeak - mStart + lag
3323
3339
3324 3340 #get the volt data between the start and end times of the meteor
3325 3341 meteorVolts = listVolts[i]
3326 3342 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3327 3343
3328 3344 #Get CCF
3329 3345 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3330
3346
3331 3347 #Method 2
3332 3348 slopes = numpy.zeros(numPairs)
3333 3349 time = numpy.array([-2,-1,1,2])*timeInterval
3334 3350 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3335
3351
3336 3352 #Correct phases
3337 3353 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3338 3354 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3339
3340 if indDer[0].shape[0] > 0:
3355
3356 if indDer[0].shape[0] > 0:
3341 3357 for i in range(indDer[0].shape[0]):
3342 3358 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3343 3359 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
@@ -3346,51 +3362,51 class SMDetection(Operation):
3346 3362 for j in range(numPairs):
3347 3363 fit = stats.linregress(time, angAllCCF[j,:])
3348 3364 slopes[j] = fit[0]
3349
3365
3350 3366 #Remove Outlier
3351 3367 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3352 3368 # slopes = numpy.delete(slopes,indOut)
3353 3369 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3354 3370 # slopes = numpy.delete(slopes,indOut)
3355
3371
3356 3372 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3357 3373 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3358 3374 meteorAux[-2] = radialError
3359 3375 meteorAux[-3] = radialVelocity
3360
3376
3361 3377 #Setting Error
3362 3378 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3363 if numpy.abs(radialVelocity) > 200:
3379 if numpy.abs(radialVelocity) > 200:
3364 3380 meteorAux[-1] = 15
3365 3381 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3366 3382 elif radialError > radialStdThresh:
3367 3383 meteorAux[-1] = 12
3368
3384
3369 3385 listMeteors1.append(meteorAux)
3370 3386 return listMeteors1
3371
3387
3372 3388 def __setNewArrays(self, listMeteors, date, heiRang):
3373
3389
3374 3390 #New arrays
3375 3391 arrayMeteors = numpy.array(listMeteors)
3376 3392 arrayParameters = numpy.zeros((len(listMeteors), 13))
3377
3393
3378 3394 #Date inclusion
3379 3395 # date = re.findall(r'\((.*?)\)', date)
3380 3396 # date = date[0].split(',')
3381 3397 # date = map(int, date)
3382 #
3398 #
3383 3399 # if len(date)<6:
3384 3400 # date.append(0)
3385 #
3401 #
3386 3402 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3387 3403 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3388 3404 arrayDate = numpy.tile(date, (len(listMeteors)))
3389
3405
3390 3406 #Meteor array
3391 3407 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3392 3408 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3393
3409
3394 3410 #Parameters Array
3395 3411 arrayParameters[:,0] = arrayDate #Date
3396 3412 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
@@ -3398,13 +3414,13 class SMDetection(Operation):
3398 3414 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3399 3415 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3400 3416
3401
3417
3402 3418 return arrayParameters
3403
3419
3404 3420 class CorrectSMPhases(Operation):
3405
3421
3406 3422 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3407
3423
3408 3424 arrayParameters = dataOut.data_param
3409 3425 pairsList = []
3410 3426 pairx = (0,1)
@@ -3412,49 +3428,49 class CorrectSMPhases(Operation):
3412 3428 pairsList.append(pairx)
3413 3429 pairsList.append(pairy)
3414 3430 jph = numpy.zeros(4)
3415
3431
3416 3432 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3417 3433 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3418 3434 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3419
3435
3420 3436 meteorOps = SMOperations()
3421 3437 if channelPositions is None:
3422 3438 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3423 3439 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3424
3440
3425 3441 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3426 3442 h = (hmin,hmax)
3427
3443
3428 3444 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3429
3445
3430 3446 dataOut.data_param = arrayParameters
3431 3447 return
3432 3448
3433 3449 class SMPhaseCalibration(Operation):
3434
3450
3435 3451 __buffer = None
3436 3452
3437 3453 __initime = None
3438 3454
3439 3455 __dataReady = False
3440
3456
3441 3457 __isConfig = False
3442
3458
3443 3459 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3444
3460
3445 3461 dataTime = currentTime + paramInterval
3446 3462 deltaTime = dataTime - initTime
3447
3463
3448 3464 if deltaTime >= outputInterval or deltaTime < 0:
3449 3465 return True
3450
3466
3451 3467 return False
3452
3468
3453 3469 def __getGammas(self, pairs, d, phases):
3454 3470 gammas = numpy.zeros(2)
3455
3471
3456 3472 for i in range(len(pairs)):
3457
3473
3458 3474 pairi = pairs[i]
3459 3475
3460 3476 phip3 = phases[:,pairi[0]]
@@ -3468,7 +3484,7 class SMPhaseCalibration(Operation):
3468 3484 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3469 3485 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3470 3486 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3471
3487
3472 3488 #Revised distribution
3473 3489 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3474 3490
@@ -3477,39 +3493,39 class SMPhaseCalibration(Operation):
3477 3493 rmin = -0.5*numpy.pi
3478 3494 rmax = 0.5*numpy.pi
3479 3495 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3480
3496
3481 3497 meteorsY = phaseHisto[0]
3482 3498 phasesX = phaseHisto[1][:-1]
3483 3499 width = phasesX[1] - phasesX[0]
3484 3500 phasesX += width/2
3485
3501
3486 3502 #Gaussian aproximation
3487 3503 bpeak = meteorsY.argmax()
3488 3504 peak = meteorsY.max()
3489 3505 jmin = bpeak - 5
3490 3506 jmax = bpeak + 5 + 1
3491
3507
3492 3508 if jmin<0:
3493 3509 jmin = 0
3494 3510 jmax = 6
3495 3511 elif jmax > meteorsY.size:
3496 3512 jmin = meteorsY.size - 6
3497 3513 jmax = meteorsY.size
3498
3514
3499 3515 x0 = numpy.array([peak,bpeak,50])
3500 3516 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3501
3517
3502 3518 #Gammas
3503 3519 gammas[i] = coeff[0][1]
3504
3520
3505 3521 return gammas
3506
3522
3507 3523 def __residualFunction(self, coeffs, y, t):
3508
3524
3509 3525 return y - self.__gauss_function(t, coeffs)
3510 3526
3511 3527 def __gauss_function(self, t, coeffs):
3512
3528
3513 3529 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3514 3530
3515 3531 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
@@ -3530,16 +3546,16 class SMPhaseCalibration(Operation):
3530 3546 max_xangle = range_angle[iz]/2 + center_xangle
3531 3547 min_yangle = -range_angle[iz]/2 + center_yangle
3532 3548 max_yangle = range_angle[iz]/2 + center_yangle
3533
3549
3534 3550 inc_x = (max_xangle-min_xangle)/nstepsx
3535 3551 inc_y = (max_yangle-min_yangle)/nstepsy
3536
3552
3537 3553 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3538 3554 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3539 3555 penalty = numpy.zeros((nstepsx,nstepsy))
3540 3556 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3541 3557 jph = numpy.zeros(nchan)
3542
3558
3543 3559 # Iterations looking for the offset
3544 3560 for iy in range(int(nstepsy)):
3545 3561 for ix in range(int(nstepsx)):
@@ -3547,46 +3563,46 class SMPhaseCalibration(Operation):
3547 3563 d2 = d[pairsList[1][1]]
3548 3564 d5 = d[pairsList[0][0]]
3549 3565 d4 = d[pairsList[0][1]]
3550
3566
3551 3567 alp2 = alpha_y[iy] #gamma 1
3552 alp4 = alpha_x[ix] #gamma 0
3553
3568 alp4 = alpha_x[ix] #gamma 0
3569
3554 3570 alp3 = -alp2*d3/d2 - gammas[1]
3555 3571 alp5 = -alp4*d5/d4 - gammas[0]
3556 3572 # jph[pairy[1]] = alpha_y[iy]
3557 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3558
3573 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3574
3559 3575 # jph[pairx[1]] = alpha_x[ix]
3560 3576 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3561 3577 jph[pairsList[0][1]] = alp4
3562 3578 jph[pairsList[0][0]] = alp5
3563 3579 jph[pairsList[1][0]] = alp3
3564 jph[pairsList[1][1]] = alp2
3580 jph[pairsList[1][1]] = alp2
3565 3581 jph_array[:,ix,iy] = jph
3566 3582 # d = [2.0,2.5,2.5,2.0]
3567 #falta chequear si va a leer bien los meteoros
3583 #falta chequear si va a leer bien los meteoros
3568 3584 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3569 3585 error = meteorsArray1[:,-1]
3570 3586 ind1 = numpy.where(error==0)[0]
3571 3587 penalty[ix,iy] = ind1.size
3572
3588
3573 3589 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3574 3590 phOffset = jph_array[:,i,j]
3575
3591
3576 3592 center_xangle = phOffset[pairx[1]]
3577 3593 center_yangle = phOffset[pairy[1]]
3578
3594
3579 3595 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3580 phOffset = phOffset*180/numpy.pi
3596 phOffset = phOffset*180/numpy.pi
3581 3597 return phOffset
3582
3583
3598
3599
3584 3600 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3585
3601
3586 3602 dataOut.flagNoData = True
3587 self.__dataReady = False
3603 self.__dataReady = False
3588 3604 dataOut.outputInterval = nHours*3600
3589
3605
3590 3606 if self.__isConfig == False:
3591 3607 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3592 3608 #Get Initial LTC time
@@ -3594,19 +3610,19 class SMPhaseCalibration(Operation):
3594 3610 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3595 3611
3596 3612 self.__isConfig = True
3597
3613
3598 3614 if self.__buffer is None:
3599 3615 self.__buffer = dataOut.data_param.copy()
3600 3616
3601 3617 else:
3602 3618 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3603
3619
3604 3620 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3605
3621
3606 3622 if self.__dataReady:
3607 3623 dataOut.utctimeInit = self.__initime
3608 3624 self.__initime += dataOut.outputInterval #to erase time offset
3609
3625
3610 3626 freq = dataOut.frequency
3611 3627 c = dataOut.C #m/s
3612 3628 lamb = c/freq
@@ -3628,13 +3644,13 class SMPhaseCalibration(Operation):
3628 3644 pairs.append((1,0))
3629 3645 else:
3630 3646 pairs.append((0,1))
3631
3647
3632 3648 if distances[3] > distances[2]:
3633 3649 pairs.append((3,2))
3634 3650 else:
3635 3651 pairs.append((2,3))
3636 3652 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3637
3653
3638 3654 meteorsArray = self.__buffer
3639 3655 error = meteorsArray[:,-1]
3640 3656 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
@@ -3642,7 +3658,7 class SMPhaseCalibration(Operation):
3642 3658 meteorsArray = meteorsArray[ind1,:]
3643 3659 meteorsArray[:,-1] = 0
3644 3660 phases = meteorsArray[:,8:12]
3645
3661
3646 3662 #Calculate Gammas
3647 3663 gammas = self.__getGammas(pairs, distances, phases)
3648 3664 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
@@ -3652,22 +3668,22 class SMPhaseCalibration(Operation):
3652 3668 dataOut.data_output = -phasesOff
3653 3669 dataOut.flagNoData = False
3654 3670 self.__buffer = None
3655
3656
3671
3672
3657 3673 return
3658
3674
3659 3675 class SMOperations():
3660
3676
3661 3677 def __init__(self):
3662
3678
3663 3679 return
3664
3680
3665 3681 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3666
3682
3667 3683 arrayParameters = arrayParameters0.copy()
3668 3684 hmin = h[0]
3669 3685 hmax = h[1]
3670
3686
3671 3687 #Calculate AOA (Error N 3, 4)
3672 3688 #JONES ET AL. 1998
3673 3689 AOAthresh = numpy.pi/8
@@ -3675,72 +3691,72 class SMOperations():
3675 3691 phases = -arrayParameters[:,8:12] + jph
3676 3692 # phases = numpy.unwrap(phases)
3677 3693 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3678
3694
3679 3695 #Calculate Heights (Error N 13 and 14)
3680 3696 error = arrayParameters[:,-1]
3681 3697 Ranges = arrayParameters[:,1]
3682 3698 zenith = arrayParameters[:,4]
3683 3699 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3684
3700
3685 3701 #----------------------- Get Final data ------------------------------------
3686 3702 # error = arrayParameters[:,-1]
3687 3703 # ind1 = numpy.where(error==0)[0]
3688 3704 # arrayParameters = arrayParameters[ind1,:]
3689
3705
3690 3706 return arrayParameters
3691
3707
3692 3708 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3693
3709
3694 3710 arrayAOA = numpy.zeros((phases.shape[0],3))
3695 3711 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3696
3712
3697 3713 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3698 3714 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3699 3715 arrayAOA[:,2] = cosDirError
3700
3716
3701 3717 azimuthAngle = arrayAOA[:,0]
3702 3718 zenithAngle = arrayAOA[:,1]
3703
3719
3704 3720 #Setting Error
3705 3721 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3706 3722 error[indError] = 0
3707 3723 #Number 3: AOA not fesible
3708 3724 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3709 error[indInvalid] = 3
3725 error[indInvalid] = 3
3710 3726 #Number 4: Large difference in AOAs obtained from different antenna baselines
3711 3727 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3712 error[indInvalid] = 4
3728 error[indInvalid] = 4
3713 3729 return arrayAOA, error
3714
3730
3715 3731 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3716
3732
3717 3733 #Initializing some variables
3718 3734 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3719 3735 ang_aux = ang_aux.reshape(1,ang_aux.size)
3720
3736
3721 3737 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3722 3738 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3723
3724
3739
3740
3725 3741 for i in range(2):
3726 3742 ph0 = arrayPhase[:,pairsList[i][0]]
3727 3743 ph1 = arrayPhase[:,pairsList[i][1]]
3728 3744 d0 = distances[pairsList[i][0]]
3729 3745 d1 = distances[pairsList[i][1]]
3730
3731 ph0_aux = ph0 + ph1
3746
3747 ph0_aux = ph0 + ph1
3732 3748 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3733 3749 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3734 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3750 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3735 3751 #First Estimation
3736 3752 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3737
3753
3738 3754 #Most-Accurate Second Estimation
3739 3755 phi1_aux = ph0 - ph1
3740 3756 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3741 3757 #Direction Cosine 1
3742 3758 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3743
3759
3744 3760 #Searching the correct Direction Cosine
3745 3761 cosdir0_aux = cosdir0[:,i]
3746 3762 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
@@ -3749,59 +3765,59 class SMOperations():
3749 3765 indcos = cosDiff.argmin(axis = 1)
3750 3766 #Saving Value obtained
3751 3767 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3752
3768
3753 3769 return cosdir0, cosdir
3754
3770
3755 3771 def __calculateAOA(self, cosdir, azimuth):
3756 3772 cosdirX = cosdir[:,0]
3757 3773 cosdirY = cosdir[:,1]
3758
3774
3759 3775 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3760 3776 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3761 3777 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3762
3778
3763 3779 return angles
3764
3780
3765 3781 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3766
3782
3767 3783 Ramb = 375 #Ramb = c/(2*PRF)
3768 3784 Re = 6371 #Earth Radius
3769 3785 heights = numpy.zeros(Ranges.shape)
3770
3786
3771 3787 R_aux = numpy.array([0,1,2])*Ramb
3772 3788 R_aux = R_aux.reshape(1,R_aux.size)
3773 3789
3774 3790 Ranges = Ranges.reshape(Ranges.size,1)
3775
3791
3776 3792 Ri = Ranges + R_aux
3777 3793 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3778
3794
3779 3795 #Check if there is a height between 70 and 110 km
3780 3796 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3781 3797 ind_h = numpy.where(h_bool == 1)[0]
3782
3798
3783 3799 hCorr = hi[ind_h, :]
3784 3800 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3785
3801
3786 3802 hCorr = hi[ind_hCorr][:len(ind_h)]
3787 3803 heights[ind_h] = hCorr
3788
3804
3789 3805 #Setting Error
3790 3806 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3791 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3807 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3792 3808 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3793 3809 error[indError] = 0
3794 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3810 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3795 3811 error[indInvalid2] = 14
3796 3812 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3797 error[indInvalid1] = 13
3798
3813 error[indInvalid1] = 13
3814
3799 3815 return heights, error
3800
3816
3801 3817 def getPhasePairs(self, channelPositions):
3802 3818 chanPos = numpy.array(channelPositions)
3803 3819 listOper = list(itertools.combinations(list(range(5)),2))
3804
3820
3805 3821 distances = numpy.zeros(4)
3806 3822 axisX = []
3807 3823 axisY = []
@@ -3809,15 +3825,15 class SMOperations():
3809 3825 distY = numpy.zeros(3)
3810 3826 ix = 0
3811 3827 iy = 0
3812
3828
3813 3829 pairX = numpy.zeros((2,2))
3814 3830 pairY = numpy.zeros((2,2))
3815
3831
3816 3832 for i in range(len(listOper)):
3817 3833 pairi = listOper[i]
3818
3834
3819 3835 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3820
3836
3821 3837 if posDif[0] == 0:
3822 3838 axisY.append(pairi)
3823 3839 distY[iy] = posDif[1]
@@ -3826,7 +3842,7 class SMOperations():
3826 3842 axisX.append(pairi)
3827 3843 distX[ix] = posDif[0]
3828 3844 ix += 1
3829
3845
3830 3846 for i in range(2):
3831 3847 if i==0:
3832 3848 dist0 = distX
@@ -3834,7 +3850,7 class SMOperations():
3834 3850 else:
3835 3851 dist0 = distY
3836 3852 axis0 = axisY
3837
3853
3838 3854 side = numpy.argsort(dist0)[:-1]
3839 3855 axis0 = numpy.array(axis0)[side,:]
3840 3856 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
@@ -3842,7 +3858,7 class SMOperations():
3842 3858 side = axis1[axis1 != chanC]
3843 3859 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3844 3860 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3845 if diff1<0:
3861 if diff1<0:
3846 3862 chan2 = side[0]
3847 3863 d2 = numpy.abs(diff1)
3848 3864 chan1 = side[1]
@@ -3852,7 +3868,7 class SMOperations():
3852 3868 d2 = numpy.abs(diff2)
3853 3869 chan1 = side[0]
3854 3870 d1 = numpy.abs(diff1)
3855
3871
3856 3872 if i==0:
3857 3873 chanCX = chanC
3858 3874 chan1X = chan1
@@ -3864,10 +3880,10 class SMOperations():
3864 3880 chan2Y = chan2
3865 3881 distances[2:4] = numpy.array([d1,d2])
3866 3882 # axisXsides = numpy.reshape(axisX[ix,:],4)
3867 #
3883 #
3868 3884 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3869 3885 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3870 #
3886 #
3871 3887 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3872 3888 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3873 3889 # channel25X = int(pairX[0,ind25X])
@@ -3876,59 +3892,59 class SMOperations():
3876 3892 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3877 3893 # channel25Y = int(pairY[0,ind25Y])
3878 3894 # channel20Y = int(pairY[1,ind20Y])
3879
3895
3880 3896 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3881 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3882
3897 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3898
3883 3899 return pairslist, distances
3884 3900 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3885 #
3901 #
3886 3902 # arrayAOA = numpy.zeros((phases.shape[0],3))
3887 3903 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3888 #
3904 #
3889 3905 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3890 3906 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3891 3907 # arrayAOA[:,2] = cosDirError
3892 #
3908 #
3893 3909 # azimuthAngle = arrayAOA[:,0]
3894 3910 # zenithAngle = arrayAOA[:,1]
3895 #
3911 #
3896 3912 # #Setting Error
3897 3913 # #Number 3: AOA not fesible
3898 3914 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3899 # error[indInvalid] = 3
3915 # error[indInvalid] = 3
3900 3916 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3901 3917 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3902 # error[indInvalid] = 4
3918 # error[indInvalid] = 4
3903 3919 # return arrayAOA, error
3904 #
3920 #
3905 3921 # def __getDirectionCosines(self, arrayPhase, pairsList):
3906 #
3922 #
3907 3923 # #Initializing some variables
3908 3924 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3909 3925 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3910 #
3926 #
3911 3927 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3912 3928 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3913 #
3914 #
3929 #
3930 #
3915 3931 # for i in range(2):
3916 3932 # #First Estimation
3917 3933 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3918 3934 # #Dealias
3919 3935 # indcsi = numpy.where(phi0_aux > numpy.pi)
3920 # phi0_aux[indcsi] -= 2*numpy.pi
3936 # phi0_aux[indcsi] -= 2*numpy.pi
3921 3937 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3922 # phi0_aux[indcsi] += 2*numpy.pi
3938 # phi0_aux[indcsi] += 2*numpy.pi
3923 3939 # #Direction Cosine 0
3924 3940 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3925 #
3941 #
3926 3942 # #Most-Accurate Second Estimation
3927 3943 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3928 3944 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3929 3945 # #Direction Cosine 1
3930 3946 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3931 #
3947 #
3932 3948 # #Searching the correct Direction Cosine
3933 3949 # cosdir0_aux = cosdir0[:,i]
3934 3950 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
@@ -3937,51 +3953,50 class SMOperations():
3937 3953 # indcos = cosDiff.argmin(axis = 1)
3938 3954 # #Saving Value obtained
3939 3955 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3940 #
3956 #
3941 3957 # return cosdir0, cosdir
3942 #
3958 #
3943 3959 # def __calculateAOA(self, cosdir, azimuth):
3944 3960 # cosdirX = cosdir[:,0]
3945 3961 # cosdirY = cosdir[:,1]
3946 #
3962 #
3947 3963 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3948 3964 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3949 3965 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3950 #
3966 #
3951 3967 # return angles
3952 #
3968 #
3953 3969 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3954 #
3970 #
3955 3971 # Ramb = 375 #Ramb = c/(2*PRF)
3956 3972 # Re = 6371 #Earth Radius
3957 3973 # heights = numpy.zeros(Ranges.shape)
3958 #
3974 #
3959 3975 # R_aux = numpy.array([0,1,2])*Ramb
3960 3976 # R_aux = R_aux.reshape(1,R_aux.size)
3961 #
3977 #
3962 3978 # Ranges = Ranges.reshape(Ranges.size,1)
3963 #
3979 #
3964 3980 # Ri = Ranges + R_aux
3965 3981 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3966 #
3982 #
3967 3983 # #Check if there is a height between 70 and 110 km
3968 3984 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3969 3985 # ind_h = numpy.where(h_bool == 1)[0]
3970 #
3986 #
3971 3987 # hCorr = hi[ind_h, :]
3972 3988 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3973 #
3974 # hCorr = hi[ind_hCorr]
3989 #
3990 # hCorr = hi[ind_hCorr]
3975 3991 # heights[ind_h] = hCorr
3976 #
3992 #
3977 3993 # #Setting Error
3978 3994 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3979 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3980 #
3981 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3995 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3996 #
3997 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3982 3998 # error[indInvalid2] = 14
3983 3999 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3984 # error[indInvalid1] = 13
3985 #
3986 # return heights, error
3987 No newline at end of file
4000 # error[indInvalid1] = 13
4001 #
4002 # return heights, error
@@ -2,7 +2,8 import sys
2 2 import numpy,math
3 3 from scipy import interpolate
4 4 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
5 from schainpy.model.data.jrodata import Voltage
5 from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon
6 from schainpy.model.data import _noise
6 7 from schainpy.utils import log
7 8 from time import time
8 9
@@ -1338,9 +1339,6 class PulsePairVoltage(Operation):
1338 1339 n,
1339 1340 dataOut.nHeights),
1340 1341 dtype='complex')
1341 #self.noise = numpy.zeros([self.__nch,self.__nHeis])
1342 #for i in range(self.__nch):
1343 # self.noise[i]=dataOut.getNoise(channel=i)
1344 1342
1345 1343 def putData(self,data):
1346 1344 '''
@@ -1355,95 +1353,118 class PulsePairVoltage(Operation):
1355 1353 Return the PULSEPAIR and the profiles used in the operation
1356 1354 Affected : self.__profileIndex
1357 1355 '''
1356 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1358 1357 if self.removeDC==True:
1359 1358 mean = numpy.mean(self.__buffer,1)
1360 1359 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1361 1360 dc= numpy.tile(tmp,[1,self.__nProf,1])
1362 1361 self.__buffer = self.__buffer - dc
1362 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Calculo de Potencia Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1363 pair0 = self.__buffer*numpy.conj(self.__buffer)
1364 pair0 = pair0.real
1365 lag_0 = numpy.sum(pair0,1)
1366 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Calculo de Ruido x canalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1367 self.noise = numpy.zeros(self.__nch)
1368 for i in range(self.__nch):
1369 daux = numpy.sort(pair0[i,:,:],axis= None)
1370 self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
1371
1372 self.noise = self.noise.reshape(self.__nch,1)
1373 self.noise = numpy.tile(self.noise,[1,self.__nHeis])
1374 noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
1375 noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
1376 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Potencia recibida= P , Potencia senal = S , Ruido= NΒ·Β·
1377 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· P= S+N ,P=lag_0/N Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1378 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Power Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1379 data_power = lag_0/(self.n*self.nCohInt)
1380 #------------------ Senal Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1381 data_intensity = pair0 - noise_buffer
1382 data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
1383 #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
1384 for i in range(self.__nch):
1385 for j in range(self.__nHeis):
1386 if data_intensity[i][j] < 0:
1387 data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
1363 1388
1364 lag_0 = numpy.sum(self.__buffer*numpy.conj(self.__buffer),1)
1365 data_intensity = lag_0/(self.n*self.nCohInt)#*self.nCohInt)
1366
1389 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo de Frecuencia y Velocidad dopplerΒ·Β·Β·Β·Β·Β·Β·Β·
1367 1390 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1368 1391 lag_1 = numpy.sum(pair1,1)
1369 #angle = numpy.angle(numpy.sum(pair1,1))*180/(math.pi)
1370 data_velocity = (-1.0*self.lambda_/(4*math.pi*self.ippSec))*numpy.angle(lag_1)#self.ippSec*self.nCohInt
1392 data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
1393 data_velocity = (self.lambda_/2.0)*data_freq
1371 1394
1372 self.noise = numpy.zeros([self.__nch,self.__nHeis])
1373 for i in range(self.__nch):
1374 self.noise[i]=dataOut.getNoise(channel=i)
1395 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Potencia promedio estimada de la SenalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1396 lag_0 = lag_0/self.n
1397 S = lag_0-self.noise
1375 1398
1376 lag_0 = lag_0.real/(self.n)
1399 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Frecuencia Doppler promedio Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1377 1400 lag_1 = lag_1/(self.n-1)
1378 1401 R1 = numpy.abs(lag_1)
1379 S = (lag_0-self.noise)
1380 1402
1403 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo del SNRΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1381 1404 data_snrPP = S/self.noise
1382 data_snrPP = numpy.where(data_snrPP<0,1,data_snrPP)
1405 for i in range(self.__nch):
1406 for j in range(self.__nHeis):
1407 if data_snrPP[i][j] < 1.e-20:
1408 data_snrPP[i][j] = 1.e-20
1383 1409
1410 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo del ancho espectral Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1384 1411 L = S/R1
1385 1412 L = numpy.where(L<0,1,L)
1386 1413 L = numpy.log(L)
1387
1388 1414 tmp = numpy.sqrt(numpy.absolute(L))
1389
1390 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*tmp*numpy.sign(L)
1391 #data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*k
1415 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
1392 1416 n = self.__profIndex
1393 1417
1394 1418 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1395 1419 self.__profIndex = 0
1396 return data_intensity,data_velocity,data_snrPP,data_specwidth,n
1420 return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n
1397 1421
1398 1422 def pulsePairbyProfiles(self,dataOut):
1399 1423
1400 1424 self.__dataReady = False
1425 data_power = None
1401 1426 data_intensity = None
1402 1427 data_velocity = None
1403 1428 data_specwidth = None
1404 1429 data_snrPP = None
1405 1430 self.putData(data=dataOut.data)
1406 1431 if self.__profIndex == self.n:
1407 #self.noise = numpy.zeros([self.__nch,self.__nHeis])
1408 #for i in range(self.__nch):
1409 # self.noise[i]=data.getNoise(channel=i)
1410 #print(self.noise.shape)
1411 data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut)
1432 data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut)
1412 1433 self.__dataReady = True
1413 1434
1414 return data_intensity, data_velocity,data_snrPP,data_specwidth
1435 return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth
1415 1436
1416 1437 def pulsePairOp(self, dataOut, datatime= None):
1417 1438
1418 1439 if self.__initime == None:
1419 1440 self.__initime = datatime
1420 #print("hola")
1421 data_intensity, data_velocity,data_snrPP,data_specwidth = self.pulsePairbyProfiles(dataOut)
1441 data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut)
1422 1442 self.__lastdatatime = datatime
1423 1443
1424 if data_intensity is None:
1425 return None, None,None,None,None
1444 if data_power is None:
1445 return None, None, None,None,None,None
1426 1446
1427 1447 avgdatatime = self.__initime
1428 1448 deltatime = datatime - self.__lastdatatime
1429 1449 self.__initime = datatime
1430 1450
1431 return data_intensity, data_velocity,data_snrPP,data_specwidth,avgdatatime
1451 return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime
1432 1452
1433 1453 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1434 1454
1435 1455 if not self.isConfig:
1436 1456 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1437 1457 self.isConfig = True
1438 data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1458 data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1439 1459 dataOut.flagNoData = True
1440 1460
1441 1461 if self.__dataReady:
1442 1462 dataOut.nCohInt *= self.n
1443 dataOut.data_intensity = data_intensity #valor para intensidad
1444 dataOut.data_velocity = data_velocity #valor para velocidad
1445 dataOut.data_snrPP = data_snrPP # valor para snr
1446 dataOut.data_specwidth = data_specwidth
1463 dataOut.dataPP_POW = data_intensity # S
1464 dataOut.dataPP_POWER = data_power # P
1465 dataOut.dataPP_DOP = data_velocity
1466 dataOut.dataPP_SNR = data_snrPP
1467 dataOut.dataPP_WIDTH = data_specwidth
1447 1468 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1448 1469 dataOut.utctime = avgdatatime
1449 1470 dataOut.flagNoData = False
@@ -2,8 +2,11 import os,sys
2 2 import datetime
3 3 import time
4 4 from schainpy.controller import Project
5 path = '/home/alex/Downloads/NEW_WR2/spc16removeDC'
6 figpath = path
5 #path = '/home/alex/Downloads/NEW_WR2/spc16removeDC'
6 #figpath = path
7
8 path = '/home/alex/Downloads/test_rawdata'
9 figpath = '/home/alex/Downloads/hdf5_testPP'
7 10 desc = "Simulator Test"
8 11
9 12 controllerObj = Project()
@@ -25,25 +28,49 readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader',
25 28 delay=0,
26 29 online=0,
27 30 walk=0,
28 nTotalReadFiles=3)
29
30 opObj11 = readUnitConfObj.addOperation(name='printInfo')
31 profilesPerBlock=625,
32 dataBlocksPerFile=100)#,#nTotalReadFiles=2)
31 33
34 '''
35 readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader',
36 path=path,
37 startDate="2020/01/01", #"2020/01/01",#today,
38 endDate= "2020/12/01", #"2020/12/30",#today,
39 startTime='00:00:00',
40 endTime='23:59:59',
41 delay=0,
42 #set=0,
43 online=0,
44 walk=1)
45 '''
46 #opObj11 = readUnitConfObj.addOperation(name='printInfo')
32 47 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
33 48 #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other')
34 #opObj11.addParameter(name='n', value='10', format='int')
49 #opObj11.addParameter(name='n', value='4', format='int')
35 50
36 51 #opObj10 = procUnitConfObjA.addOperation(name='selectChannels')
37 52 #opObj10.addParameter(name='channelList', value=[0])
38 53 opObj11 = procUnitConfObjA.addOperation(name='PulsePairVoltage', optype='other')
39 opObj11.addParameter(name='n', value='300', format='int')#10
54 opObj11.addParameter(name='n', value='625', format='int')#10
40 55 opObj11.addParameter(name='removeDC', value=1, format='int')
41 56
42 57 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
58 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
43 59
44 opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
60
61 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
45 62 #opObj11.addParameter(name='xmax', value=8)
46 63
47 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
64 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
65
66 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
67
68
69 opObj10 = procUnitConfObjB.addOperation(name='ParameterWriter')
70 opObj10.addParameter(name='path',value=figpath)
71 #opObj10.addParameter(name='mode',value=0)
72 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
73 opObj10.addParameter(name='metadataList',value='utctimeInit,timeInterval',format='list')
74 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,dataPP_SNR,dataPP_WIDTH')#,format='list'
48 75
49 76 controllerObj.start()
General Comments 0
You need to be logged in to leave comments. Login now