##// END OF EJS Templates
Fix publish and plots operations issue #929
Juan C. Espinoza -
r1062:8048843f4edf
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -1,1220 +1,1220
1 '''
1 '''
2
2
3 $Author: murco $
3 $Author: murco $
4 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $
4 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $
5 '''
5 '''
6
6
7 import copy
7 import copy
8 import numpy
8 import numpy
9 import datetime
9 import datetime
10
10
11 from jroheaderIO import SystemHeader, RadarControllerHeader
11 from jroheaderIO import SystemHeader, RadarControllerHeader
12 from schainpy import cSchain
12 from schainpy import cSchain
13
13
14
14
15 def getNumpyDtype(dataTypeCode):
15 def getNumpyDtype(dataTypeCode):
16
16
17 if dataTypeCode == 0:
17 if dataTypeCode == 0:
18 numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')])
18 numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')])
19 elif dataTypeCode == 1:
19 elif dataTypeCode == 1:
20 numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')])
20 numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')])
21 elif dataTypeCode == 2:
21 elif dataTypeCode == 2:
22 numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')])
22 numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')])
23 elif dataTypeCode == 3:
23 elif dataTypeCode == 3:
24 numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')])
24 numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')])
25 elif dataTypeCode == 4:
25 elif dataTypeCode == 4:
26 numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')])
26 numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')])
27 elif dataTypeCode == 5:
27 elif dataTypeCode == 5:
28 numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')])
28 numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')])
29 else:
29 else:
30 raise ValueError, 'dataTypeCode was not defined'
30 raise ValueError, 'dataTypeCode was not defined'
31
31
32 return numpyDtype
32 return numpyDtype
33
33
34 def getDataTypeCode(numpyDtype):
34 def getDataTypeCode(numpyDtype):
35
35
36 if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]):
36 if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]):
37 datatype = 0
37 datatype = 0
38 elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]):
38 elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]):
39 datatype = 1
39 datatype = 1
40 elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]):
40 elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]):
41 datatype = 2
41 datatype = 2
42 elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]):
42 elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]):
43 datatype = 3
43 datatype = 3
44 elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]):
44 elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]):
45 datatype = 4
45 datatype = 4
46 elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]):
46 elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]):
47 datatype = 5
47 datatype = 5
48 else:
48 else:
49 datatype = None
49 datatype = None
50
50
51 return datatype
51 return datatype
52
52
53 def hildebrand_sekhon(data, navg):
53 def hildebrand_sekhon(data, navg):
54 """
54 """
55 This method is for the objective determination of the noise level in Doppler spectra. This
55 This method is for the objective determination of the noise level in Doppler spectra. This
56 implementation technique is based on the fact that the standard deviation of the spectral
56 implementation technique is based on the fact that the standard deviation of the spectral
57 densities is equal to the mean spectral density for white Gaussian noise
57 densities is equal to the mean spectral density for white Gaussian noise
58
58
59 Inputs:
59 Inputs:
60 Data : heights
60 Data : heights
61 navg : numbers of averages
61 navg : numbers of averages
62
62
63 Return:
63 Return:
64 -1 : any error
64 -1 : any error
65 anoise : noise's level
65 anoise : noise's level
66 """
66 """
67
67
68 sortdata = numpy.sort(data, axis=None)
68 sortdata = numpy.sort(data, axis=None)
69 # lenOfData = len(sortdata)
69 # lenOfData = len(sortdata)
70 # nums_min = lenOfData*0.2
70 # nums_min = lenOfData*0.2
71 #
71 #
72 # if nums_min <= 5:
72 # if nums_min <= 5:
73 # nums_min = 5
73 # nums_min = 5
74 #
74 #
75 # sump = 0.
75 # sump = 0.
76 #
76 #
77 # sumq = 0.
77 # sumq = 0.
78 #
78 #
79 # j = 0
79 # j = 0
80 #
80 #
81 # cont = 1
81 # cont = 1
82 #
82 #
83 # while((cont==1)and(j<lenOfData)):
83 # while((cont==1)and(j<lenOfData)):
84 #
84 #
85 # sump += sortdata[j]
85 # sump += sortdata[j]
86 #
86 #
87 # sumq += sortdata[j]**2
87 # sumq += sortdata[j]**2
88 #
88 #
89 # if j > nums_min:
89 # if j > nums_min:
90 # rtest = float(j)/(j-1) + 1.0/navg
90 # rtest = float(j)/(j-1) + 1.0/navg
91 # if ((sumq*j) > (rtest*sump**2)):
91 # if ((sumq*j) > (rtest*sump**2)):
92 # j = j - 1
92 # j = j - 1
93 # sump = sump - sortdata[j]
93 # sump = sump - sortdata[j]
94 # sumq = sumq - sortdata[j]**2
94 # sumq = sumq - sortdata[j]**2
95 # cont = 0
95 # cont = 0
96 #
96 #
97 # j += 1
97 # j += 1
98 #
98 #
99 # lnoise = sump /j
99 # lnoise = sump /j
100 #
100 #
101 # return lnoise
101 # return lnoise
102
102
103 return cSchain.hildebrand_sekhon(sortdata, navg)
103 return cSchain.hildebrand_sekhon(sortdata, navg)
104
104
105
105
106 class Beam:
106 class Beam:
107
107
108 def __init__(self):
108 def __init__(self):
109 self.codeList = []
109 self.codeList = []
110 self.azimuthList = []
110 self.azimuthList = []
111 self.zenithList = []
111 self.zenithList = []
112
112
113 class GenericData(object):
113 class GenericData(object):
114
114
115 flagNoData = True
115 flagNoData = True
116
116
117 def copy(self, inputObj=None):
117 def copy(self, inputObj=None):
118
118
119 if inputObj == None:
119 if inputObj == None:
120 return copy.deepcopy(self)
120 return copy.deepcopy(self)
121
121
122 for key in inputObj.__dict__.keys():
122 for key in inputObj.__dict__.keys():
123
123
124 attribute = inputObj.__dict__[key]
124 attribute = inputObj.__dict__[key]
125
125
126 #If this attribute is a tuple or list
126 #If this attribute is a tuple or list
127 if type(inputObj.__dict__[key]) in (tuple, list):
127 if type(inputObj.__dict__[key]) in (tuple, list):
128 self.__dict__[key] = attribute[:]
128 self.__dict__[key] = attribute[:]
129 continue
129 continue
130
130
131 #If this attribute is another object or instance
131 #If this attribute is another object or instance
132 if hasattr(attribute, '__dict__'):
132 if hasattr(attribute, '__dict__'):
133 self.__dict__[key] = attribute.copy()
133 self.__dict__[key] = attribute.copy()
134 continue
134 continue
135
135
136 self.__dict__[key] = inputObj.__dict__[key]
136 self.__dict__[key] = inputObj.__dict__[key]
137
137
138 def deepcopy(self):
138 def deepcopy(self):
139
139
140 return copy.deepcopy(self)
140 return copy.deepcopy(self)
141
141
142 def isEmpty(self):
142 def isEmpty(self):
143
143
144 return self.flagNoData
144 return self.flagNoData
145
145
146 class JROData(GenericData):
146 class JROData(GenericData):
147
147
148 # m_BasicHeader = BasicHeader()
148 # m_BasicHeader = BasicHeader()
149 # m_ProcessingHeader = ProcessingHeader()
149 # m_ProcessingHeader = ProcessingHeader()
150
150
151 systemHeaderObj = SystemHeader()
151 systemHeaderObj = SystemHeader()
152
152
153 radarControllerHeaderObj = RadarControllerHeader()
153 radarControllerHeaderObj = RadarControllerHeader()
154
154
155 # data = None
155 # data = None
156
156
157 type = None
157 type = None
158
158
159 datatype = None #dtype but in string
159 datatype = None #dtype but in string
160
160
161 # dtype = None
161 # dtype = None
162
162
163 # nChannels = None
163 # nChannels = None
164
164
165 # nHeights = None
165 # nHeights = None
166
166
167 nProfiles = None
167 nProfiles = None
168
168
169 heightList = None
169 heightList = None
170
170
171 channelList = None
171 channelList = None
172
172
173 flagDiscontinuousBlock = False
173 flagDiscontinuousBlock = False
174
174
175 useLocalTime = False
175 useLocalTime = False
176
176
177 utctime = None
177 utctime = None
178
178
179 timeZone = None
179 timeZone = None
180
180
181 dstFlag = None
181 dstFlag = None
182
182
183 errorCount = None
183 errorCount = None
184
184
185 blocksize = None
185 blocksize = None
186
186
187 # nCode = None
187 # nCode = None
188 #
188 #
189 # nBaud = None
189 # nBaud = None
190 #
190 #
191 # code = None
191 # code = None
192
192
193 flagDecodeData = False #asumo q la data no esta decodificada
193 flagDecodeData = False #asumo q la data no esta decodificada
194
194
195 flagDeflipData = False #asumo q la data no esta sin flip
195 flagDeflipData = False #asumo q la data no esta sin flip
196
196
197 flagShiftFFT = False
197 flagShiftFFT = False
198
198
199 # ippSeconds = None
199 # ippSeconds = None
200
200
201 # timeInterval = None
201 # timeInterval = None
202
202
203 nCohInt = None
203 nCohInt = None
204
204
205 # noise = None
205 # noise = None
206
206
207 windowOfFilter = 1
207 windowOfFilter = 1
208
208
209 #Speed of ligth
209 #Speed of ligth
210 C = 3e8
210 C = 3e8
211
211
212 frequency = 49.92e6
212 frequency = 49.92e6
213
213
214 realtime = False
214 realtime = False
215
215
216 beacon_heiIndexList = None
216 beacon_heiIndexList = None
217
217
218 last_block = None
218 last_block = None
219
219
220 blocknow = None
220 blocknow = None
221
221
222 azimuth = None
222 azimuth = None
223
223
224 zenith = None
224 zenith = None
225
225
226 beam = Beam()
226 beam = Beam()
227
227
228 profileIndex = None
228 profileIndex = None
229
229
230 def getNoise(self):
230 def getNoise(self):
231
231
232 raise NotImplementedError
232 raise NotImplementedError
233
233
234 def getNChannels(self):
234 def getNChannels(self):
235
235
236 return len(self.channelList)
236 return len(self.channelList)
237
237
238 def getChannelIndexList(self):
238 def getChannelIndexList(self):
239
239
240 return range(self.nChannels)
240 return range(self.nChannels)
241
241
242 def getNHeights(self):
242 def getNHeights(self):
243
243
244 return len(self.heightList)
244 return len(self.heightList)
245
245
246 def getHeiRange(self, extrapoints=0):
246 def getHeiRange(self, extrapoints=0):
247
247
248 heis = self.heightList
248 heis = self.heightList
249 # deltah = self.heightList[1] - self.heightList[0]
249 # deltah = self.heightList[1] - self.heightList[0]
250 #
250 #
251 # heis.append(self.heightList[-1])
251 # heis.append(self.heightList[-1])
252
252
253 return heis
253 return heis
254
254
255 def getDeltaH(self):
255 def getDeltaH(self):
256
256
257 delta = self.heightList[1] - self.heightList[0]
257 delta = self.heightList[1] - self.heightList[0]
258
258
259 return delta
259 return delta
260
260
261 def getltctime(self):
261 def getltctime(self):
262
262
263 if self.useLocalTime:
263 if self.useLocalTime:
264 return self.utctime - self.timeZone*60
264 return self.utctime - self.timeZone*60
265
265
266 return self.utctime
266 return self.utctime
267
267
268 def getDatatime(self):
268 def getDatatime(self):
269
269
270 datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime)
270 datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime)
271 return datatimeValue
271 return datatimeValue
272
272
273 def getTimeRange(self):
273 def getTimeRange(self):
274
274
275 datatime = []
275 datatime = []
276
276
277 datatime.append(self.ltctime)
277 datatime.append(self.ltctime)
278 datatime.append(self.ltctime + self.timeInterval+1)
278 datatime.append(self.ltctime + self.timeInterval+1)
279
279
280 datatime = numpy.array(datatime)
280 datatime = numpy.array(datatime)
281
281
282 return datatime
282 return datatime
283
283
284 def getFmaxTimeResponse(self):
284 def getFmaxTimeResponse(self):
285
285
286 period = (10**-6)*self.getDeltaH()/(0.15)
286 period = (10**-6)*self.getDeltaH()/(0.15)
287
287
288 PRF = 1./(period * self.nCohInt)
288 PRF = 1./(period * self.nCohInt)
289
289
290 fmax = PRF
290 fmax = PRF
291
291
292 return fmax
292 return fmax
293
293
294 def getFmax(self):
294 def getFmax(self):
295
295
296 PRF = 1./(self.ippSeconds * self.nCohInt)
296 PRF = 1./(self.ippSeconds * self.nCohInt)
297
297
298 fmax = PRF
298 fmax = PRF
299
299
300 return fmax
300 return fmax
301
301
302 def getVmax(self):
302 def getVmax(self):
303
303
304 _lambda = self.C/self.frequency
304 _lambda = self.C/self.frequency
305
305
306 vmax = self.getFmax() * _lambda/2
306 vmax = self.getFmax() * _lambda/2
307
307
308 return vmax
308 return vmax
309
309
310 def get_ippSeconds(self):
310 def get_ippSeconds(self):
311 '''
311 '''
312 '''
312 '''
313 return self.radarControllerHeaderObj.ippSeconds
313 return self.radarControllerHeaderObj.ippSeconds
314
314
315 def set_ippSeconds(self, ippSeconds):
315 def set_ippSeconds(self, ippSeconds):
316 '''
316 '''
317 '''
317 '''
318
318
319 self.radarControllerHeaderObj.ippSeconds = ippSeconds
319 self.radarControllerHeaderObj.ippSeconds = ippSeconds
320
320
321 return
321 return
322
322
323 def get_dtype(self):
323 def get_dtype(self):
324 '''
324 '''
325 '''
325 '''
326 return getNumpyDtype(self.datatype)
326 return getNumpyDtype(self.datatype)
327
327
328 def set_dtype(self, numpyDtype):
328 def set_dtype(self, numpyDtype):
329 '''
329 '''
330 '''
330 '''
331
331
332 self.datatype = getDataTypeCode(numpyDtype)
332 self.datatype = getDataTypeCode(numpyDtype)
333
333
334 def get_code(self):
334 def get_code(self):
335 '''
335 '''
336 '''
336 '''
337 return self.radarControllerHeaderObj.code
337 return self.radarControllerHeaderObj.code
338
338
339 def set_code(self, code):
339 def set_code(self, code):
340 '''
340 '''
341 '''
341 '''
342 self.radarControllerHeaderObj.code = code
342 self.radarControllerHeaderObj.code = code
343
343
344 return
344 return
345
345
346 def get_ncode(self):
346 def get_ncode(self):
347 '''
347 '''
348 '''
348 '''
349 return self.radarControllerHeaderObj.nCode
349 return self.radarControllerHeaderObj.nCode
350
350
351 def set_ncode(self, nCode):
351 def set_ncode(self, nCode):
352 '''
352 '''
353 '''
353 '''
354 self.radarControllerHeaderObj.nCode = nCode
354 self.radarControllerHeaderObj.nCode = nCode
355
355
356 return
356 return
357
357
358 def get_nbaud(self):
358 def get_nbaud(self):
359 '''
359 '''
360 '''
360 '''
361 return self.radarControllerHeaderObj.nBaud
361 return self.radarControllerHeaderObj.nBaud
362
362
363 def set_nbaud(self, nBaud):
363 def set_nbaud(self, nBaud):
364 '''
364 '''
365 '''
365 '''
366 self.radarControllerHeaderObj.nBaud = nBaud
366 self.radarControllerHeaderObj.nBaud = nBaud
367
367
368 return
368 return
369
369
370 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
370 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
371 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
371 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
372 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
372 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
373 #noise = property(getNoise, "I'm the 'nHeights' property.")
373 #noise = property(getNoise, "I'm the 'nHeights' property.")
374 datatime = property(getDatatime, "I'm the 'datatime' property")
374 datatime = property(getDatatime, "I'm the 'datatime' property")
375 ltctime = property(getltctime, "I'm the 'ltctime' property")
375 ltctime = property(getltctime, "I'm the 'ltctime' property")
376 ippSeconds = property(get_ippSeconds, set_ippSeconds)
376 ippSeconds = property(get_ippSeconds, set_ippSeconds)
377 dtype = property(get_dtype, set_dtype)
377 dtype = property(get_dtype, set_dtype)
378 # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
378 # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
379 code = property(get_code, set_code)
379 code = property(get_code, set_code)
380 nCode = property(get_ncode, set_ncode)
380 nCode = property(get_ncode, set_ncode)
381 nBaud = property(get_nbaud, set_nbaud)
381 nBaud = property(get_nbaud, set_nbaud)
382
382
383 class Voltage(JROData):
383 class Voltage(JROData):
384
384
385 #data es un numpy array de 2 dmensiones (canales, alturas)
385 #data es un numpy array de 2 dmensiones (canales, alturas)
386 data = None
386 data = None
387
387
388 def __init__(self):
388 def __init__(self):
389 '''
389 '''
390 Constructor
390 Constructor
391 '''
391 '''
392
392
393 self.useLocalTime = True
393 self.useLocalTime = True
394
394
395 self.radarControllerHeaderObj = RadarControllerHeader()
395 self.radarControllerHeaderObj = RadarControllerHeader()
396
396
397 self.systemHeaderObj = SystemHeader()
397 self.systemHeaderObj = SystemHeader()
398
398
399 self.type = "Voltage"
399 self.type = "Voltage"
400
400
401 self.data = None
401 self.data = None
402
402
403 # self.dtype = None
403 # self.dtype = None
404
404
405 # self.nChannels = 0
405 # self.nChannels = 0
406
406
407 # self.nHeights = 0
407 # self.nHeights = 0
408
408
409 self.nProfiles = None
409 self.nProfiles = None
410
410
411 self.heightList = None
411 self.heightList = None
412
412
413 self.channelList = None
413 self.channelList = None
414
414
415 # self.channelIndexList = None
415 # self.channelIndexList = None
416
416
417 self.flagNoData = True
417 self.flagNoData = True
418
418
419 self.flagDiscontinuousBlock = False
419 self.flagDiscontinuousBlock = False
420
420
421 self.utctime = None
421 self.utctime = None
422
422
423 self.timeZone = None
423 self.timeZone = None
424
424
425 self.dstFlag = None
425 self.dstFlag = None
426
426
427 self.errorCount = None
427 self.errorCount = None
428
428
429 self.nCohInt = None
429 self.nCohInt = None
430
430
431 self.blocksize = None
431 self.blocksize = None
432
432
433 self.flagDecodeData = False #asumo q la data no esta decodificada
433 self.flagDecodeData = False #asumo q la data no esta decodificada
434
434
435 self.flagDeflipData = False #asumo q la data no esta sin flip
435 self.flagDeflipData = False #asumo q la data no esta sin flip
436
436
437 self.flagShiftFFT = False
437 self.flagShiftFFT = False
438
438
439 self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil
439 self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil
440
440
441 self.profileIndex = 0
441 self.profileIndex = 0
442
442
443 def getNoisebyHildebrand(self, channel = None):
443 def getNoisebyHildebrand(self, channel = None):
444 """
444 """
445 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
445 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
446
446
447 Return:
447 Return:
448 noiselevel
448 noiselevel
449 """
449 """
450
450
451 if channel != None:
451 if channel != None:
452 data = self.data[channel]
452 data = self.data[channel]
453 nChannels = 1
453 nChannels = 1
454 else:
454 else:
455 data = self.data
455 data = self.data
456 nChannels = self.nChannels
456 nChannels = self.nChannels
457
457
458 noise = numpy.zeros(nChannels)
458 noise = numpy.zeros(nChannels)
459 power = data * numpy.conjugate(data)
459 power = data * numpy.conjugate(data)
460
460
461 for thisChannel in range(nChannels):
461 for thisChannel in range(nChannels):
462 if nChannels == 1:
462 if nChannels == 1:
463 daux = power[:].real
463 daux = power[:].real
464 else:
464 else:
465 daux = power[thisChannel,:].real
465 daux = power[thisChannel,:].real
466 noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
466 noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
467
467
468 return noise
468 return noise
469
469
470 def getNoise(self, type = 1, channel = None):
470 def getNoise(self, type = 1, channel = None):
471
471
472 if type == 1:
472 if type == 1:
473 noise = self.getNoisebyHildebrand(channel)
473 noise = self.getNoisebyHildebrand(channel)
474
474
475 return noise
475 return noise
476
476
477 def getPower(self, channel = None):
477 def getPower(self, channel = None):
478
478
479 if channel != None:
479 if channel != None:
480 data = self.data[channel]
480 data = self.data[channel]
481 else:
481 else:
482 data = self.data
482 data = self.data
483
483
484 power = data * numpy.conjugate(data)
484 power = data * numpy.conjugate(data)
485 powerdB = 10*numpy.log10(power.real)
485 powerdB = 10*numpy.log10(power.real)
486 powerdB = numpy.squeeze(powerdB)
486 powerdB = numpy.squeeze(powerdB)
487
487
488 return powerdB
488 return powerdB
489
489
490 def getTimeInterval(self):
490 def getTimeInterval(self):
491
491
492 timeInterval = self.ippSeconds * self.nCohInt
492 timeInterval = self.ippSeconds * self.nCohInt
493
493
494 return timeInterval
494 return timeInterval
495
495
496 noise = property(getNoise, "I'm the 'nHeights' property.")
496 noise = property(getNoise, "I'm the 'nHeights' property.")
497 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
497 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
498
498
499 class Spectra(JROData):
499 class Spectra(JROData):
500
500
501 #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas)
501 #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas)
502 data_spc = None
502 data_spc = None
503
503
504 #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas)
504 #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas)
505 data_cspc = None
505 data_cspc = None
506
506
507 #data dc es un numpy array de 2 dmensiones (canales, alturas)
507 #data dc es un numpy array de 2 dmensiones (canales, alturas)
508 data_dc = None
508 data_dc = None
509
509
510 #data power
510 #data power
511 data_pwr = None
511 data_pwr = None
512
512
513 nFFTPoints = None
513 nFFTPoints = None
514
514
515 # nPairs = None
515 # nPairs = None
516
516
517 pairsList = None
517 pairsList = None
518
518
519 nIncohInt = None
519 nIncohInt = None
520
520
521 wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
521 wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
522
522
523 nCohInt = None #se requiere para determinar el valor de timeInterval
523 nCohInt = None #se requiere para determinar el valor de timeInterval
524
524
525 ippFactor = None
525 ippFactor = None
526
526
527 profileIndex = 0
527 profileIndex = 0
528
528
529 plotting = "spectra"
529 plotting = "spectra"
530
530
531 def __init__(self):
531 def __init__(self):
532 '''
532 '''
533 Constructor
533 Constructor
534 '''
534 '''
535
535
536 self.useLocalTime = True
536 self.useLocalTime = True
537
537
538 self.radarControllerHeaderObj = RadarControllerHeader()
538 self.radarControllerHeaderObj = RadarControllerHeader()
539
539
540 self.systemHeaderObj = SystemHeader()
540 self.systemHeaderObj = SystemHeader()
541
541
542 self.type = "Spectra"
542 self.type = "Spectra"
543
543
544 # self.data = None
544 # self.data = None
545
545
546 # self.dtype = None
546 # self.dtype = None
547
547
548 # self.nChannels = 0
548 # self.nChannels = 0
549
549
550 # self.nHeights = 0
550 # self.nHeights = 0
551
551
552 self.nProfiles = None
552 self.nProfiles = None
553
553
554 self.heightList = None
554 self.heightList = None
555
555
556 self.channelList = None
556 self.channelList = None
557
557
558 # self.channelIndexList = None
558 # self.channelIndexList = None
559
559
560 self.pairsList = None
560 self.pairsList = None
561
561
562 self.flagNoData = True
562 self.flagNoData = True
563
563
564 self.flagDiscontinuousBlock = False
564 self.flagDiscontinuousBlock = False
565
565
566 self.utctime = None
566 self.utctime = None
567
567
568 self.nCohInt = None
568 self.nCohInt = None
569
569
570 self.nIncohInt = None
570 self.nIncohInt = None
571
571
572 self.blocksize = None
572 self.blocksize = None
573
573
574 self.nFFTPoints = None
574 self.nFFTPoints = None
575
575
576 self.wavelength = None
576 self.wavelength = None
577
577
578 self.flagDecodeData = False #asumo q la data no esta decodificada
578 self.flagDecodeData = False #asumo q la data no esta decodificada
579
579
580 self.flagDeflipData = False #asumo q la data no esta sin flip
580 self.flagDeflipData = False #asumo q la data no esta sin flip
581
581
582 self.flagShiftFFT = False
582 self.flagShiftFFT = False
583
583
584 self.ippFactor = 1
584 self.ippFactor = 1
585
585
586 #self.noise = None
586 #self.noise = None
587
587
588 self.beacon_heiIndexList = []
588 self.beacon_heiIndexList = []
589
589
590 self.noise_estimation = None
590 self.noise_estimation = None
591
591
592
592
593 def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
593 def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
594 """
594 """
595 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
595 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
596
596
597 Return:
597 Return:
598 noiselevel
598 noiselevel
599 """
599 """
600
600
601 noise = numpy.zeros(self.nChannels)
601 noise = numpy.zeros(self.nChannels)
602
602
603 for channel in range(self.nChannels):
603 for channel in range(self.nChannels):
604 daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index]
604 daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index]
605 noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
605 noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
606
606
607 return noise
607 return noise
608
608
609 def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
609 def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
610
610
611 if self.noise_estimation is not None:
611 if self.noise_estimation is not None:
612 return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py
612 return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py
613 else:
613 else:
614 noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index)
614 noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index)
615 return noise
615 return noise
616
616
617 def getFreqRangeTimeResponse(self, extrapoints=0):
617 def getFreqRangeTimeResponse(self, extrapoints=0):
618
618
619 deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor)
619 deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor)
620 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
620 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
621
621
622 return freqrange
622 return freqrange
623
623
624 def getAcfRange(self, extrapoints=0):
624 def getAcfRange(self, extrapoints=0):
625
625
626 deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor))
626 deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor))
627 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
627 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
628
628
629 return freqrange
629 return freqrange
630
630
631 def getFreqRange(self, extrapoints=0):
631 def getFreqRange(self, extrapoints=0):
632
632
633 deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor)
633 deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor)
634 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
634 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
635
635
636 return freqrange
636 return freqrange
637
637
638 def getVelRange(self, extrapoints=0):
638 def getVelRange(self, extrapoints=0):
639
639
640 deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor)
640 deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor)
641 velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2
641 velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2
642
642
643 return velrange
643 return velrange
644
644
645 def getNPairs(self):
645 def getNPairs(self):
646
646
647 return len(self.pairsList)
647 return len(self.pairsList)
648
648
649 def getPairsIndexList(self):
649 def getPairsIndexList(self):
650
650
651 return range(self.nPairs)
651 return range(self.nPairs)
652
652
653 def getNormFactor(self):
653 def getNormFactor(self):
654
654
655 pwcode = 1
655 pwcode = 1
656
656
657 if self.flagDecodeData:
657 if self.flagDecodeData:
658 pwcode = numpy.sum(self.code[0]**2)
658 pwcode = numpy.sum(self.code[0]**2)
659 #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
659 #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
660 normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
660 normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
661
661
662 return normFactor
662 return normFactor
663
663
664 def getFlagCspc(self):
664 def getFlagCspc(self):
665
665
666 if self.data_cspc is None:
666 if self.data_cspc is None:
667 return True
667 return True
668
668
669 return False
669 return False
670
670
671 def getFlagDc(self):
671 def getFlagDc(self):
672
672
673 if self.data_dc is None:
673 if self.data_dc is None:
674 return True
674 return True
675
675
676 return False
676 return False
677
677
678 def getTimeInterval(self):
678 def getTimeInterval(self):
679
679
680 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles
680 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles
681
681
682 return timeInterval
682 return timeInterval
683
683
684 def getPower(self):
684 def getPower(self):
685
685
686 factor = self.normFactor
686 factor = self.normFactor
687 z = self.data_spc/factor
687 z = self.data_spc/factor
688 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
688 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
689 avg = numpy.average(z, axis=1)
689 avg = numpy.average(z, axis=1)
690
690
691 return 10*numpy.log10(avg)
691 return 10*numpy.log10(avg)
692
692
693 def getCoherence(self, pairsList=None, phase=False):
693 def getCoherence(self, pairsList=None, phase=False):
694
694
695 z = []
695 z = []
696 if pairsList is None:
696 if pairsList is None:
697 pairsIndexList = self.pairsIndexList
697 pairsIndexList = self.pairsIndexList
698 else:
698 else:
699 pairsIndexList = []
699 pairsIndexList = []
700 for pair in pairsList:
700 for pair in pairsList:
701 if pair not in self.pairsList:
701 if pair not in self.pairsList:
702 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
702 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
703 pairsIndexList.append(self.pairsList.index(pair))
703 pairsIndexList.append(self.pairsList.index(pair))
704 for i in range(len(pairsIndexList)):
704 for i in range(len(pairsIndexList)):
705 pair = self.pairsList[pairsIndexList[i]]
705 pair = self.pairsList[pairsIndexList[i]]
706 ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0)
706 ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0)
707 powa = numpy.average(self.data_spc[pair[0], :, :], axis=0)
707 powa = numpy.average(self.data_spc[pair[0], :, :], axis=0)
708 powb = numpy.average(self.data_spc[pair[1], :, :], axis=0)
708 powb = numpy.average(self.data_spc[pair[1], :, :], axis=0)
709 avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
709 avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
710 if phase:
710 if phase:
711 data = numpy.arctan2(avgcoherenceComplex.imag,
711 data = numpy.arctan2(avgcoherenceComplex.imag,
712 avgcoherenceComplex.real)*180/numpy.pi
712 avgcoherenceComplex.real)*180/numpy.pi
713 else:
713 else:
714 data = numpy.abs(avgcoherenceComplex)
714 data = numpy.abs(avgcoherenceComplex)
715
715
716 z.append(data)
716 z.append(data)
717
717
718 return numpy.array(z)
718 return numpy.array(z)
719
719
720 def setValue(self, value):
720 def setValue(self, value):
721
721
722 print "This property should not be initialized"
722 print "This property should not be initialized"
723
723
724 return
724 return
725
725
726 nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.")
726 nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.")
727 pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.")
727 pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.")
728 normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.")
728 normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.")
729 flag_cspc = property(getFlagCspc, setValue)
729 flag_cspc = property(getFlagCspc, setValue)
730 flag_dc = property(getFlagDc, setValue)
730 flag_dc = property(getFlagDc, setValue)
731 noise = property(getNoise, setValue, "I'm the 'nHeights' property.")
731 noise = property(getNoise, setValue, "I'm the 'nHeights' property.")
732 timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property")
732 timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property")
733
733
734 class SpectraHeis(Spectra):
734 class SpectraHeis(Spectra):
735
735
736 data_spc = None
736 data_spc = None
737
737
738 data_cspc = None
738 data_cspc = None
739
739
740 data_dc = None
740 data_dc = None
741
741
742 nFFTPoints = None
742 nFFTPoints = None
743
743
744 # nPairs = None
744 # nPairs = None
745
745
746 pairsList = None
746 pairsList = None
747
747
748 nCohInt = None
748 nCohInt = None
749
749
750 nIncohInt = None
750 nIncohInt = None
751
751
752 def __init__(self):
752 def __init__(self):
753
753
754 self.radarControllerHeaderObj = RadarControllerHeader()
754 self.radarControllerHeaderObj = RadarControllerHeader()
755
755
756 self.systemHeaderObj = SystemHeader()
756 self.systemHeaderObj = SystemHeader()
757
757
758 self.type = "SpectraHeis"
758 self.type = "SpectraHeis"
759
759
760 # self.dtype = None
760 # self.dtype = None
761
761
762 # self.nChannels = 0
762 # self.nChannels = 0
763
763
764 # self.nHeights = 0
764 # self.nHeights = 0
765
765
766 self.nProfiles = None
766 self.nProfiles = None
767
767
768 self.heightList = None
768 self.heightList = None
769
769
770 self.channelList = None
770 self.channelList = None
771
771
772 # self.channelIndexList = None
772 # self.channelIndexList = None
773
773
774 self.flagNoData = True
774 self.flagNoData = True
775
775
776 self.flagDiscontinuousBlock = False
776 self.flagDiscontinuousBlock = False
777
777
778 # self.nPairs = 0
778 # self.nPairs = 0
779
779
780 self.utctime = None
780 self.utctime = None
781
781
782 self.blocksize = None
782 self.blocksize = None
783
783
784 self.profileIndex = 0
784 self.profileIndex = 0
785
785
786 self.nCohInt = 1
786 self.nCohInt = 1
787
787
788 self.nIncohInt = 1
788 self.nIncohInt = 1
789
789
790 def getNormFactor(self):
790 def getNormFactor(self):
791 pwcode = 1
791 pwcode = 1
792 if self.flagDecodeData:
792 if self.flagDecodeData:
793 pwcode = numpy.sum(self.code[0]**2)
793 pwcode = numpy.sum(self.code[0]**2)
794
794
795 normFactor = self.nIncohInt*self.nCohInt*pwcode
795 normFactor = self.nIncohInt*self.nCohInt*pwcode
796
796
797 return normFactor
797 return normFactor
798
798
799 def getTimeInterval(self):
799 def getTimeInterval(self):
800
800
801 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
801 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
802
802
803 return timeInterval
803 return timeInterval
804
804
805 normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
805 normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
806 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
806 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
807
807
808 class Fits(JROData):
808 class Fits(JROData):
809
809
810 heightList = None
810 heightList = None
811
811
812 channelList = None
812 channelList = None
813
813
814 flagNoData = True
814 flagNoData = True
815
815
816 flagDiscontinuousBlock = False
816 flagDiscontinuousBlock = False
817
817
818 useLocalTime = False
818 useLocalTime = False
819
819
820 utctime = None
820 utctime = None
821
821
822 timeZone = None
822 timeZone = None
823
823
824 # ippSeconds = None
824 # ippSeconds = None
825
825
826 # timeInterval = None
826 # timeInterval = None
827
827
828 nCohInt = None
828 nCohInt = None
829
829
830 nIncohInt = None
830 nIncohInt = None
831
831
832 noise = None
832 noise = None
833
833
834 windowOfFilter = 1
834 windowOfFilter = 1
835
835
836 #Speed of ligth
836 #Speed of ligth
837 C = 3e8
837 C = 3e8
838
838
839 frequency = 49.92e6
839 frequency = 49.92e6
840
840
841 realtime = False
841 realtime = False
842
842
843
843
844 def __init__(self):
844 def __init__(self):
845
845
846 self.type = "Fits"
846 self.type = "Fits"
847
847
848 self.nProfiles = None
848 self.nProfiles = None
849
849
850 self.heightList = None
850 self.heightList = None
851
851
852 self.channelList = None
852 self.channelList = None
853
853
854 # self.channelIndexList = None
854 # self.channelIndexList = None
855
855
856 self.flagNoData = True
856 self.flagNoData = True
857
857
858 self.utctime = None
858 self.utctime = None
859
859
860 self.nCohInt = 1
860 self.nCohInt = 1
861
861
862 self.nIncohInt = 1
862 self.nIncohInt = 1
863
863
864 self.useLocalTime = True
864 self.useLocalTime = True
865
865
866 self.profileIndex = 0
866 self.profileIndex = 0
867
867
868 # self.utctime = None
868 # self.utctime = None
869 # self.timeZone = None
869 # self.timeZone = None
870 # self.ltctime = None
870 # self.ltctime = None
871 # self.timeInterval = None
871 # self.timeInterval = None
872 # self.header = None
872 # self.header = None
873 # self.data_header = None
873 # self.data_header = None
874 # self.data = None
874 # self.data = None
875 # self.datatime = None
875 # self.datatime = None
876 # self.flagNoData = False
876 # self.flagNoData = False
877 # self.expName = ''
877 # self.expName = ''
878 # self.nChannels = None
878 # self.nChannels = None
879 # self.nSamples = None
879 # self.nSamples = None
880 # self.dataBlocksPerFile = None
880 # self.dataBlocksPerFile = None
881 # self.comments = ''
881 # self.comments = ''
882 #
882 #
883
883
884
884
885 def getltctime(self):
885 def getltctime(self):
886
886
887 if self.useLocalTime:
887 if self.useLocalTime:
888 return self.utctime - self.timeZone*60
888 return self.utctime - self.timeZone*60
889
889
890 return self.utctime
890 return self.utctime
891
891
892 def getDatatime(self):
892 def getDatatime(self):
893
893
894 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
894 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
895 return datatime
895 return datatime
896
896
897 def getTimeRange(self):
897 def getTimeRange(self):
898
898
899 datatime = []
899 datatime = []
900
900
901 datatime.append(self.ltctime)
901 datatime.append(self.ltctime)
902 datatime.append(self.ltctime + self.timeInterval)
902 datatime.append(self.ltctime + self.timeInterval)
903
903
904 datatime = numpy.array(datatime)
904 datatime = numpy.array(datatime)
905
905
906 return datatime
906 return datatime
907
907
908 def getHeiRange(self):
908 def getHeiRange(self):
909
909
910 heis = self.heightList
910 heis = self.heightList
911
911
912 return heis
912 return heis
913
913
914 def getNHeights(self):
914 def getNHeights(self):
915
915
916 return len(self.heightList)
916 return len(self.heightList)
917
917
918 def getNChannels(self):
918 def getNChannels(self):
919
919
920 return len(self.channelList)
920 return len(self.channelList)
921
921
922 def getChannelIndexList(self):
922 def getChannelIndexList(self):
923
923
924 return range(self.nChannels)
924 return range(self.nChannels)
925
925
926 def getNoise(self, type = 1):
926 def getNoise(self, type = 1):
927
927
928 #noise = numpy.zeros(self.nChannels)
928 #noise = numpy.zeros(self.nChannels)
929
929
930 if type == 1:
930 if type == 1:
931 noise = self.getNoisebyHildebrand()
931 noise = self.getNoisebyHildebrand()
932
932
933 if type == 2:
933 if type == 2:
934 noise = self.getNoisebySort()
934 noise = self.getNoisebySort()
935
935
936 if type == 3:
936 if type == 3:
937 noise = self.getNoisebyWindow()
937 noise = self.getNoisebyWindow()
938
938
939 return noise
939 return noise
940
940
941 def getTimeInterval(self):
941 def getTimeInterval(self):
942
942
943 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
943 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
944
944
945 return timeInterval
945 return timeInterval
946
946
947 datatime = property(getDatatime, "I'm the 'datatime' property")
947 datatime = property(getDatatime, "I'm the 'datatime' property")
948 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
948 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
949 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
949 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
950 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
950 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
951 noise = property(getNoise, "I'm the 'nHeights' property.")
951 noise = property(getNoise, "I'm the 'nHeights' property.")
952
952
953 ltctime = property(getltctime, "I'm the 'ltctime' property")
953 ltctime = property(getltctime, "I'm the 'ltctime' property")
954 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
954 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
955
955
956
956
957 class Correlation(JROData):
957 class Correlation(JROData):
958
958
959 noise = None
959 noise = None
960
960
961 SNR = None
961 SNR = None
962
962
963 #--------------------------------------------------
963 #--------------------------------------------------
964
964
965 mode = None
965 mode = None
966
966
967 split = False
967 split = False
968
968
969 data_cf = None
969 data_cf = None
970
970
971 lags = None
971 lags = None
972
972
973 lagRange = None
973 lagRange = None
974
974
975 pairsList = None
975 pairsList = None
976
976
977 normFactor = None
977 normFactor = None
978
978
979 #--------------------------------------------------
979 #--------------------------------------------------
980
980
981 # calculateVelocity = None
981 # calculateVelocity = None
982
982
983 nLags = None
983 nLags = None
984
984
985 nPairs = None
985 nPairs = None
986
986
987 nAvg = None
987 nAvg = None
988
988
989
989
990 def __init__(self):
990 def __init__(self):
991 '''
991 '''
992 Constructor
992 Constructor
993 '''
993 '''
994 self.radarControllerHeaderObj = RadarControllerHeader()
994 self.radarControllerHeaderObj = RadarControllerHeader()
995
995
996 self.systemHeaderObj = SystemHeader()
996 self.systemHeaderObj = SystemHeader()
997
997
998 self.type = "Correlation"
998 self.type = "Correlation"
999
999
1000 self.data = None
1000 self.data = None
1001
1001
1002 self.dtype = None
1002 self.dtype = None
1003
1003
1004 self.nProfiles = None
1004 self.nProfiles = None
1005
1005
1006 self.heightList = None
1006 self.heightList = None
1007
1007
1008 self.channelList = None
1008 self.channelList = None
1009
1009
1010 self.flagNoData = True
1010 self.flagNoData = True
1011
1011
1012 self.flagDiscontinuousBlock = False
1012 self.flagDiscontinuousBlock = False
1013
1013
1014 self.utctime = None
1014 self.utctime = None
1015
1015
1016 self.timeZone = None
1016 self.timeZone = None
1017
1017
1018 self.dstFlag = None
1018 self.dstFlag = None
1019
1019
1020 self.errorCount = None
1020 self.errorCount = None
1021
1021
1022 self.blocksize = None
1022 self.blocksize = None
1023
1023
1024 self.flagDecodeData = False #asumo q la data no esta decodificada
1024 self.flagDecodeData = False #asumo q la data no esta decodificada
1025
1025
1026 self.flagDeflipData = False #asumo q la data no esta sin flip
1026 self.flagDeflipData = False #asumo q la data no esta sin flip
1027
1027
1028 self.pairsList = None
1028 self.pairsList = None
1029
1029
1030 self.nPoints = None
1030 self.nPoints = None
1031
1031
1032 def getPairsList(self):
1032 def getPairsList(self):
1033
1033
1034 return self.pairsList
1034 return self.pairsList
1035
1035
1036 def getNoise(self, mode = 2):
1036 def getNoise(self, mode = 2):
1037
1037
1038 indR = numpy.where(self.lagR == 0)[0][0]
1038 indR = numpy.where(self.lagR == 0)[0][0]
1039 indT = numpy.where(self.lagT == 0)[0][0]
1039 indT = numpy.where(self.lagT == 0)[0][0]
1040
1040
1041 jspectra0 = self.data_corr[:,:,indR,:]
1041 jspectra0 = self.data_corr[:,:,indR,:]
1042 jspectra = copy.copy(jspectra0)
1042 jspectra = copy.copy(jspectra0)
1043
1043
1044 num_chan = jspectra.shape[0]
1044 num_chan = jspectra.shape[0]
1045 num_hei = jspectra.shape[2]
1045 num_hei = jspectra.shape[2]
1046
1046
1047 freq_dc = jspectra.shape[1]/2
1047 freq_dc = jspectra.shape[1]/2
1048 ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
1048 ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
1049
1049
1050 if ind_vel[0]<0:
1050 if ind_vel[0]<0:
1051 ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
1051 ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
1052
1052
1053 if mode == 1:
1053 if mode == 1:
1054 jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
1054 jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
1055
1055
1056 if mode == 2:
1056 if mode == 2:
1057
1057
1058 vel = numpy.array([-2,-1,1,2])
1058 vel = numpy.array([-2,-1,1,2])
1059 xx = numpy.zeros([4,4])
1059 xx = numpy.zeros([4,4])
1060
1060
1061 for fil in range(4):
1061 for fil in range(4):
1062 xx[fil,:] = vel[fil]**numpy.asarray(range(4))
1062 xx[fil,:] = vel[fil]**numpy.asarray(range(4))
1063
1063
1064 xx_inv = numpy.linalg.inv(xx)
1064 xx_inv = numpy.linalg.inv(xx)
1065 xx_aux = xx_inv[0,:]
1065 xx_aux = xx_inv[0,:]
1066
1066
1067 for ich in range(num_chan):
1067 for ich in range(num_chan):
1068 yy = jspectra[ich,ind_vel,:]
1068 yy = jspectra[ich,ind_vel,:]
1069 jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
1069 jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
1070
1070
1071 junkid = jspectra[ich,freq_dc,:]<=0
1071 junkid = jspectra[ich,freq_dc,:]<=0
1072 cjunkid = sum(junkid)
1072 cjunkid = sum(junkid)
1073
1073
1074 if cjunkid.any():
1074 if cjunkid.any():
1075 jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
1075 jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
1076
1076
1077 noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:]
1077 noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:]
1078
1078
1079 return noise
1079 return noise
1080
1080
1081 def getTimeInterval(self):
1081 def getTimeInterval(self):
1082
1082
1083 timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles
1083 timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles
1084
1084
1085 return timeInterval
1085 return timeInterval
1086
1086
1087 def splitFunctions(self):
1087 def splitFunctions(self):
1088
1088
1089 pairsList = self.pairsList
1089 pairsList = self.pairsList
1090 ccf_pairs = []
1090 ccf_pairs = []
1091 acf_pairs = []
1091 acf_pairs = []
1092 ccf_ind = []
1092 ccf_ind = []
1093 acf_ind = []
1093 acf_ind = []
1094 for l in range(len(pairsList)):
1094 for l in range(len(pairsList)):
1095 chan0 = pairsList[l][0]
1095 chan0 = pairsList[l][0]
1096 chan1 = pairsList[l][1]
1096 chan1 = pairsList[l][1]
1097
1097
1098 #Obteniendo pares de Autocorrelacion
1098 #Obteniendo pares de Autocorrelacion
1099 if chan0 == chan1:
1099 if chan0 == chan1:
1100 acf_pairs.append(chan0)
1100 acf_pairs.append(chan0)
1101 acf_ind.append(l)
1101 acf_ind.append(l)
1102 else:
1102 else:
1103 ccf_pairs.append(pairsList[l])
1103 ccf_pairs.append(pairsList[l])
1104 ccf_ind.append(l)
1104 ccf_ind.append(l)
1105
1105
1106 data_acf = self.data_cf[acf_ind]
1106 data_acf = self.data_cf[acf_ind]
1107 data_ccf = self.data_cf[ccf_ind]
1107 data_ccf = self.data_cf[ccf_ind]
1108
1108
1109 return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf
1109 return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf
1110
1110
1111 def getNormFactor(self):
1111 def getNormFactor(self):
1112 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions()
1112 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions()
1113 acf_pairs = numpy.array(acf_pairs)
1113 acf_pairs = numpy.array(acf_pairs)
1114 normFactor = numpy.zeros((self.nPairs,self.nHeights))
1114 normFactor = numpy.zeros((self.nPairs,self.nHeights))
1115
1115
1116 for p in range(self.nPairs):
1116 for p in range(self.nPairs):
1117 pair = self.pairsList[p]
1117 pair = self.pairsList[p]
1118
1118
1119 ch0 = pair[0]
1119 ch0 = pair[0]
1120 ch1 = pair[1]
1120 ch1 = pair[1]
1121
1121
1122 ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1)
1122 ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1)
1123 ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1)
1123 ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1)
1124 normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max)
1124 normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max)
1125
1125
1126 return normFactor
1126 return normFactor
1127
1127
1128 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
1128 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
1129 normFactor = property(getNormFactor, "I'm the 'normFactor property'")
1129 normFactor = property(getNormFactor, "I'm the 'normFactor property'")
1130
1130
1131 class Parameters(Spectra):
1131 class Parameters(Spectra):
1132
1132
1133 experimentInfo = None #Information about the experiment
1133 experimentInfo = None #Information about the experiment
1134
1134
1135 #Information from previous data
1135 #Information from previous data
1136
1136
1137 inputUnit = None #Type of data to be processed
1137 inputUnit = None #Type of data to be processed
1138
1138
1139 operation = None #Type of operation to parametrize
1139 operation = None #Type of operation to parametrize
1140
1140
1141 #normFactor = None #Normalization Factor
1141 #normFactor = None #Normalization Factor
1142
1142
1143 groupList = None #List of Pairs, Groups, etc
1143 groupList = None #List of Pairs, Groups, etc
1144
1144
1145 #Parameters
1145 #Parameters
1146
1146
1147 data_param = None #Parameters obtained
1147 data_param = None #Parameters obtained
1148
1148
1149 data_pre = None #Data Pre Parametrization
1149 data_pre = None #Data Pre Parametrization
1150
1150
1151 data_SNR = None #Signal to Noise Ratio
1151 data_SNR = None #Signal to Noise Ratio
1152
1152
1153 # heightRange = None #Heights
1153 # heightRange = None #Heights
1154
1154
1155 abscissaList = None #Abscissa, can be velocities, lags or time
1155 abscissaList = None #Abscissa, can be velocities, lags or time
1156
1156
1157 # noise = None #Noise Potency
1157 # noise = None #Noise Potency
1158
1158
1159 utctimeInit = None #Initial UTC time
1159 utctimeInit = None #Initial UTC time
1160
1160
1161 paramInterval = None #Time interval to calculate Parameters in seconds
1161 paramInterval = None #Time interval to calculate Parameters in seconds
1162
1162
1163 useLocalTime = True
1163 useLocalTime = True
1164
1164
1165 #Fitting
1165 #Fitting
1166
1166
1167 data_error = None #Error of the estimation
1167 data_error = None #Error of the estimation
1168
1168
1169 constants = None
1169 constants = None
1170
1170
1171 library = None
1171 library = None
1172
1172
1173 #Output signal
1173 #Output signal
1174
1174
1175 outputInterval = None #Time interval to calculate output signal in seconds
1175 outputInterval = None #Time interval to calculate output signal in seconds
1176
1176
1177 data_output = None #Out signal
1177 data_output = None #Out signal
1178
1178
1179 nAvg = None
1179 nAvg = None
1180
1180
1181 noise_estimation = None
1181 noise_estimation = None
1182
1182
1183
1183
1184 def __init__(self):
1184 def __init__(self):
1185 '''
1185 '''
1186 Constructor
1186 Constructor
1187 '''
1187 '''
1188 self.radarControllerHeaderObj = RadarControllerHeader()
1188 self.radarControllerHeaderObj = RadarControllerHeader()
1189
1189
1190 self.systemHeaderObj = SystemHeader()
1190 self.systemHeaderObj = SystemHeader()
1191
1191
1192 self.type = "Parameters"
1192 self.type = "Parameters"
1193
1193
1194 def getTimeRange1(self, interval):
1194 def getTimeRange1(self, interval):
1195
1195
1196 datatime = []
1196 datatime = []
1197
1197
1198 if self.useLocalTime:
1198 if self.useLocalTime:
1199 time1 = self.utctimeInit - self.timeZone*60
1199 time1 = self.utctimeInit - self.timeZone*60
1200 else:
1200 else:
1201 time1 = self.utctimeInit
1201 time1 = self.utctimeInit
1202
1202
1203 datatime.append(time1)
1203 datatime.append(time1)
1204 datatime.append(time1 + interval)
1204 datatime.append(time1 + interval)
1205 datatime = numpy.array(datatime)
1205 datatime = numpy.array(datatime)
1206
1206
1207 return datatime
1207 return datatime
1208
1208
1209 def getTimeInterval(self):
1209 def getTimeInterval(self):
1210
1210
1211 if hasattr(self, 'timeInterval1'):
1211 if hasattr(self, 'timeInterval1'):
1212 return self.timeInterval1
1212 return self.timeInterval1
1213 else:
1213 else:
1214 return self.paramInterval
1214 return self.paramInterval
1215
1215
1216 def getNoise(self):
1216 def getNoise(self):
1217
1217
1218 return self.spc_noise
1218 return self.spc_noise
1219
1219
1220 timeInterval = property(getTimeInterval)
1220 timeInterval = property(getTimeInterval)
This diff has been collapsed as it changes many lines, (1208 lines changed) Show them Hide them
@@ -1,964 +1,782
1
1
2 import os
2 import os
3 import zmq
4 import time
3 import time
5 import numpy
4 import glob
6 import datetime
5 import datetime
7 import numpy as np
6 from multiprocessing import Process
7
8 import zmq
9 import numpy
8 import matplotlib
10 import matplotlib
9 import glob
10 matplotlib.use('TkAgg')
11 import matplotlib.pyplot as plt
11 import matplotlib.pyplot as plt
12 from mpl_toolkits.axes_grid1 import make_axes_locatable
12 from mpl_toolkits.axes_grid1 import make_axes_locatable
13 from matplotlib.ticker import FuncFormatter, LinearLocator
13 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
14 from multiprocessing import Process
15
14
16 from schainpy.model.proc.jroproc_base import Operation
15 from schainpy.model.proc.jroproc_base import Operation
17
16 from schainpy.utils import log
18 plt.ion()
19
17
20 func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M'))
18 func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M'))
21 fromtimestamp = lambda x, mintime : (datetime.datetime.utcfromtimestamp(mintime).replace(hour=(x + 5), minute=0) - d1970).total_seconds()
22
19
20 d1970 = datetime.datetime(1970, 1, 1)
23
21
24 d1970 = datetime.datetime(1970,1,1)
25
22
26 class PlotData(Operation, Process):
23 class PlotData(Operation, Process):
24 '''
25 Base class for Schain plotting operations
26 '''
27
27
28 CODE = 'Figure'
28 CODE = 'Figure'
29 colormap = 'jro'
29 colormap = 'jro'
30 bgcolor = 'white'
30 CONFLATE = False
31 CONFLATE = False
31 __MAXNUMX = 80
32 __MAXNUMX = 80
32 __missing = 1E30
33 __missing = 1E30
33
34
34 def __init__(self, **kwargs):
35 def __init__(self, **kwargs):
35
36
36 Operation.__init__(self, plot=True, **kwargs)
37 Operation.__init__(self, plot=True, **kwargs)
37 Process.__init__(self)
38 Process.__init__(self)
38 self.kwargs['code'] = self.CODE
39 self.kwargs['code'] = self.CODE
39 self.mp = False
40 self.mp = False
40 self.dataOut = None
41 self.data = None
41 self.isConfig = False
42 self.isConfig = False
42 self.figure = None
43 self.figures = []
43 self.axes = []
44 self.axes = []
45 self.cb_axes = []
44 self.localtime = kwargs.pop('localtime', True)
46 self.localtime = kwargs.pop('localtime', True)
45 self.show = kwargs.get('show', True)
47 self.show = kwargs.get('show', True)
46 self.save = kwargs.get('save', False)
48 self.save = kwargs.get('save', False)
47 self.colormap = kwargs.get('colormap', self.colormap)
49 self.colormap = kwargs.get('colormap', self.colormap)
48 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
50 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
49 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
51 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
50 self.showprofile = kwargs.get('showprofile', True)
52 self.colormaps = kwargs.get('colormaps', None)
51 self.title = kwargs.get('wintitle', '')
53 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
54 self.showprofile = kwargs.get('showprofile', False)
55 self.title = kwargs.get('wintitle', self.CODE.upper())
56 self.cb_label = kwargs.get('cb_label', None)
57 self.cb_labels = kwargs.get('cb_labels', None)
52 self.xaxis = kwargs.get('xaxis', 'frequency')
58 self.xaxis = kwargs.get('xaxis', 'frequency')
53 self.zmin = kwargs.get('zmin', None)
59 self.zmin = kwargs.get('zmin', None)
54 self.zmax = kwargs.get('zmax', None)
60 self.zmax = kwargs.get('zmax', None)
61 self.zlimits = kwargs.get('zlimits', None)
55 self.xmin = kwargs.get('xmin', None)
62 self.xmin = kwargs.get('xmin', None)
63 if self.xmin is not None:
64 self.xmin += 5
56 self.xmax = kwargs.get('xmax', None)
65 self.xmax = kwargs.get('xmax', None)
57 self.xrange = kwargs.get('xrange', 24)
66 self.xrange = kwargs.get('xrange', 24)
58 self.ymin = kwargs.get('ymin', None)
67 self.ymin = kwargs.get('ymin', None)
59 self.ymax = kwargs.get('ymax', None)
68 self.ymax = kwargs.get('ymax', None)
60 self.__MAXNUMY = kwargs.get('decimation', 5000)
69 self.xlabel = kwargs.get('xlabel', None)
61 self.throttle_value = 5
70 self.__MAXNUMY = kwargs.get('decimation', 100)
62 self.times = []
71 self.showSNR = kwargs.get('showSNR', False)
63 #self.interactive = self.kwargs['parent']
72 self.oneFigure = kwargs.get('oneFigure', True)
73 self.width = kwargs.get('width', None)
74 self.height = kwargs.get('height', None)
75 self.colorbar = kwargs.get('colorbar', True)
76 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
77 self.titles = ['' for __ in range(16)]
78
79 def __setup(self):
80 '''
81 Common setup for all figures, here figures and axes are created
82 '''
83
84 self.setup()
85
86 if self.width is None:
87 self.width = 8
64
88
89 self.figures = []
90 self.axes = []
91 self.cb_axes = []
92 self.pf_axes = []
93 self.cmaps = []
94
95 size = '15%' if self.ncols==1 else '30%'
96 pad = '4%' if self.ncols==1 else '8%'
97
98 if self.oneFigure:
99 if self.height is None:
100 self.height = 1.4*self.nrows + 1
101 fig = plt.figure(figsize=(self.width, self.height),
102 edgecolor='k',
103 facecolor='w')
104 self.figures.append(fig)
105 for n in range(self.nplots):
106 ax = fig.add_subplot(self.nrows, self.ncols, n+1)
107 ax.tick_params(labelsize=8)
108 ax.firsttime = True
109 self.axes.append(ax)
110 if self.showprofile:
111 cax = self.__add_axes(ax, size=size, pad=pad)
112 cax.tick_params(labelsize=8)
113 self.pf_axes.append(cax)
114 else:
115 if self.height is None:
116 self.height = 3
117 for n in range(self.nplots):
118 fig = plt.figure(figsize=(self.width, self.height),
119 edgecolor='k',
120 facecolor='w')
121 ax = fig.add_subplot(1, 1, 1)
122 ax.tick_params(labelsize=8)
123 ax.firsttime = True
124 self.figures.append(fig)
125 self.axes.append(ax)
126 if self.showprofile:
127 cax = self.__add_axes(ax, size=size, pad=pad)
128 cax.tick_params(labelsize=8)
129 self.pf_axes.append(cax)
130
131 for n in range(self.nrows):
132 if self.colormaps is not None:
133 cmap = plt.get_cmap(self.colormaps[n])
134 else:
135 cmap = plt.get_cmap(self.colormap)
136 cmap.set_bad(self.bgcolor, 1.)
137 self.cmaps.append(cmap)
138
139 def __add_axes(self, ax, size='30%', pad='8%'):
65 '''
140 '''
66 this new parameter is created to plot data from varius channels at different figures
141 Add new axes to the given figure
67 1. crear una lista de figuras donde se puedan plotear las figuras,
68 2. dar las opciones de configuracion a cada figura, estas opciones son iguales para ambas figuras
69 3. probar?
70 '''
142 '''
71 self.ind_plt_ch = kwargs.get('ind_plt_ch', False)
143 divider = make_axes_locatable(ax)
72 self.figurelist = None
144 nax = divider.new_horizontal(size=size, pad=pad)
145 ax.figure.add_axes(nax)
146 return nax
73
147
74
148
75 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
149 def setup(self):
150 '''
151 This method should be implemented in the child class, the following
152 attributes should be set:
153
154 self.nrows: number of rows
155 self.ncols: number of cols
156 self.nplots: number of plots (channels or pairs)
157 self.ylabel: label for Y axes
158 self.titles: list of axes title
159
160 '''
161 raise(NotImplementedError, 'Implement this method in child class')
76
162
163 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
164 '''
165 Create a masked array for missing data
166 '''
77 if x_buffer.shape[0] < 2:
167 if x_buffer.shape[0] < 2:
78 return x_buffer, y_buffer, z_buffer
168 return x_buffer, y_buffer, z_buffer
79
169
80 deltas = x_buffer[1:] - x_buffer[0:-1]
170 deltas = x_buffer[1:] - x_buffer[0:-1]
81 x_median = np.median(deltas)
171 x_median = numpy.median(deltas)
82
172
83 index = np.where(deltas > 5*x_median)
173 index = numpy.where(deltas > 5*x_median)
84
174
85 if len(index[0]) != 0:
175 if len(index[0]) != 0:
86 z_buffer[::, index[0], ::] = self.__missing
176 z_buffer[::, index[0], ::] = self.__missing
87 z_buffer = np.ma.masked_inside(z_buffer,
177 z_buffer = numpy.ma.masked_inside(z_buffer,
88 0.99*self.__missing,
178 0.99*self.__missing,
89 1.01*self.__missing)
179 1.01*self.__missing)
90
180
91 return x_buffer, y_buffer, z_buffer
181 return x_buffer, y_buffer, z_buffer
92
182
93 def decimate(self):
183 def decimate(self):
94
184
95 # dx = int(len(self.x)/self.__MAXNUMX) + 1
185 # dx = int(len(self.x)/self.__MAXNUMX) + 1
96 dy = int(len(self.y)/self.__MAXNUMY) + 1
186 dy = int(len(self.y)/self.__MAXNUMY) + 1
97
187
98 # x = self.x[::dx]
188 # x = self.x[::dx]
99 x = self.x
189 x = self.x
100 y = self.y[::dy]
190 y = self.y[::dy]
101 z = self.z[::, ::, ::dy]
191 z = self.z[::, ::, ::dy]
102
192
103 return x, y, z
193 return x, y, z
104
194
105 '''
195 def format(self):
106 JM:
196 '''
107 elimana las otras imagenes generadas debido a que lso workers no llegan en orden y le pueden
197 Set min and max values, labels, ticks and titles
108 poner otro tiempo a la figura q no necesariamente es el ultimo.
198 '''
109 Solo se realiza cuando termina la imagen.
110 Problemas:
111
199
112 File "/home/ci-81/workspace/schainv2.3/schainpy/model/graphics/jroplot_data.py", line 145, in __plot
200 if self.xmin is None:
113 for n, eachfigure in enumerate(self.figurelist):
201 xmin = self.min_time
114 TypeError: 'NoneType' object is not iterable
202 else:
203 if self.xaxis is 'time':
204 dt = datetime.datetime.fromtimestamp(self.min_time)
205 xmin = (datetime.datetime.combine(dt.date(),
206 datetime.time(int(self.xmin), 0, 0))-d1970).total_seconds()
207 else:
208 xmin = self.xmin
115
209
116 '''
210 if self.xmax is None:
117 def deleteanotherfiles(self):
211 xmax = xmin+self.xrange*60*60
118 figurenames=[]
212 else:
119 if self.figurelist != None:
213 if self.xaxis is 'time':
120 for n, eachfigure in enumerate(self.figurelist):
214 dt = datetime.datetime.fromtimestamp(self.min_time)
121 #add specific name for each channel in channelList
215 xmax = (datetime.datetime.combine(dt.date(),
122 ghostfigname = os.path.join(self.save, '{}_{}_{}'.format(self.titles[n].replace(' ',''),self.CODE,
216 datetime.time(int(self.xmax), 0, 0))-d1970).total_seconds()
123 datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d')))
217 else:
124 figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n].replace(' ',''),self.CODE,
218 xmax = self.xmax
125 datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
219
126
220 ymin = self.ymin if self.ymin else numpy.nanmin(self.y)
127 for ghostfigure in glob.glob(ghostfigname+'*'): #ghostfigure will adopt all posible names of figures
221 ymax = self.ymax if self.ymax else numpy.nanmax(self.y)
128 if ghostfigure != figname:
222
129 os.remove(ghostfigure)
223 ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20
130 print 'Removing GhostFigures:' , figname
224
131 else :
225 for n, ax in enumerate(self.axes):
132 '''Erasing ghost images for just on******************'''
226 if ax.firsttime:
133 ghostfigname = os.path.join(self.save, '{}_{}'.format(self.CODE,datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d')))
227 ax.set_facecolor(self.bgcolor)
134 figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
228 ax.yaxis.set_major_locator(MultipleLocator(ystep))
135 for ghostfigure in glob.glob(ghostfigname+'*'): #ghostfigure will adopt all posible names of figures
229 if self.xaxis is 'time':
136 if ghostfigure != figname:
230 ax.xaxis.set_major_formatter(FuncFormatter(func))
137 os.remove(ghostfigure)
231 ax.xaxis.set_major_locator(LinearLocator(9))
138 print 'Removing GhostFigures:' , figname
232 if self.xlabel is not None:
233 ax.set_xlabel(self.xlabel)
234 ax.set_ylabel(self.ylabel)
235 ax.firsttime = False
236 if self.showprofile:
237 self.pf_axes[n].set_ylim(ymin, ymax)
238 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
239 self.pf_axes[n].set_xlabel('dB')
240 self.pf_axes[n].grid(b=True, axis='x')
241 [tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()]
242 if self.colorbar:
243 cb = plt.colorbar(ax.plt, ax=ax, pad=0.02)
244 cb.ax.tick_params(labelsize=8)
245 if self.cb_label:
246 cb.set_label(self.cb_label, size=8)
247 elif self.cb_labels:
248 cb.set_label(self.cb_labels[n], size=8)
249
250 ax.set_title('{} - {} UTC'.format(
251 self.titles[n],
252 datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S')),
253 size=8)
254 ax.set_xlim(xmin, xmax)
255 ax.set_ylim(ymin, ymax)
256
139
257
140 def __plot(self):
258 def __plot(self):
141
259 '''
142 print 'plotting...{}'.format(self.CODE)
260 '''
143 if self.ind_plt_ch is False : #standard
261 log.success('Plotting', self.name)
262
263 self.plot()
264 self.format()
265
266 for n, fig in enumerate(self.figures):
267 if self.nrows == 0 or self.nplots == 0:
268 log.warning('No data', self.name)
269 continue
144 if self.show:
270 if self.show:
145 self.figure.show()
271 fig.show()
146 self.plot()
272
147 plt.tight_layout()
273 fig.tight_layout()
148 self.figure.canvas.manager.set_window_title('{} {} - {}'.format(self.title, self.CODE.upper(),
274 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
149 datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d')))
275 datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d')))
150 else :
276 # fig.canvas.draw()
151 print 'len(self.figurelist): ',len(self.figurelist)
277
152 for n, eachfigure in enumerate(self.figurelist):
278 if self.save and self.data.ended:
153 if self.show:
279 channels = range(self.nrows)
154 eachfigure.show()
280 if self.oneFigure:
155
281 label = ''
156 self.plot()
282 else:
157 eachfigure.tight_layout() # ajuste de cada subplot
283 label = '_{}'.format(channels[n])
158 eachfigure.canvas.manager.set_window_title('{} {} - {}'.format(self.title[n], self.CODE.upper(),
284 figname = os.path.join(
159 datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d')))
285 self.save,
160
286 '{}{}_{}.png'.format(
161 # if self.save:
287 self.CODE,
162 # if self.ind_plt_ch is False : #standard
288 label,
163 # figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,
289 datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')
164 # datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
290 )
165 # print 'Saving figure: {}'.format(figname)
291 )
166 # self.figure.savefig(figname)
167 # else :
168 # for n, eachfigure in enumerate(self.figurelist):
169 # #add specific name for each channel in channelList
170 # figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n],self.CODE,
171 # datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
172 #
173 # print 'Saving figure: {}'.format(figname)
174 # eachfigure.savefig(figname)
175
176 if self.ind_plt_ch is False :
177 self.figure.canvas.draw()
178 else :
179 for eachfigure in self.figurelist:
180 eachfigure.canvas.draw()
181
182 if self.save:
183 if self.ind_plt_ch is False : #standard
184 figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,
185 datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
186 print 'Saving figure: {}'.format(figname)
292 print 'Saving figure: {}'.format(figname)
187 self.figure.savefig(figname)
293 fig.savefig(figname)
188 else :
189 for n, eachfigure in enumerate(self.figurelist):
190 #add specific name for each channel in channelList
191 figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n].replace(' ',''),self.CODE,
192 datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
193
194 print 'Saving figure: {}'.format(figname)
195 eachfigure.savefig(figname)
196
197
294
198 def plot(self):
295 def plot(self):
199
296 '''
200 print 'plotting...{}'.format(self.CODE.upper())
297 '''
201 return
298 raise(NotImplementedError, 'Implement this method in child class')
202
299
203 def run(self):
300 def run(self):
204
301
205 print '[Starting] {}'.format(self.name)
302 log.success('Starting', self.name)
206
303
207 context = zmq.Context()
304 context = zmq.Context()
208 receiver = context.socket(zmq.SUB)
305 receiver = context.socket(zmq.SUB)
209 receiver.setsockopt(zmq.SUBSCRIBE, '')
306 receiver.setsockopt(zmq.SUBSCRIBE, '')
210 receiver.setsockopt(zmq.CONFLATE, self.CONFLATE)
307 receiver.setsockopt(zmq.CONFLATE, self.CONFLATE)
211
308
212 if 'server' in self.kwargs['parent']:
309 if 'server' in self.kwargs['parent']:
213 receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server']))
310 receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server']))
214 else:
311 else:
215 receiver.connect("ipc:///tmp/zmq.plots")
312 receiver.connect("ipc:///tmp/zmq.plots")
216
217 seconds_passed = 0
218
313
219 while True:
314 while True:
220 try:
315 try:
221 self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)#flags=zmq.NOBLOCK
316 self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)
222 self.started = self.data['STARTED']
317
223 self.dataOut = self.data['dataOut']
318 self.min_time = self.data.times[0]
224
319 self.max_time = self.data.times[-1]
225 if (len(self.times) < len(self.data['times']) and not self.started and self.data['ENDED']):
226 continue
227
228 self.times = self.data['times']
229 self.times.sort()
230 self.throttle_value = self.data['throttle']
231 self.min_time = self.times[0]
232 self.max_time = self.times[-1]
233
320
234 if self.isConfig is False:
321 if self.isConfig is False:
235 print 'setting up'
322 self.__setup()
236 self.setup()
237 self.isConfig = True
323 self.isConfig = True
238 self.__plot()
324
239
325 self.__plot()
240 if self.data['ENDED'] is True:
241 print '********GRAPHIC ENDED********'
242 self.ended = True
243 self.isConfig = False
244 self.__plot()
245 self.deleteanotherfiles() #CLPDG
246 elif seconds_passed >= self.data['throttle']:
247 print 'passed', seconds_passed
248 self.__plot()
249 seconds_passed = 0
250
326
251 except zmq.Again as e:
327 except zmq.Again as e:
252 print 'Waiting for data...'
328 log.log('Waiting for data...')
253 plt.pause(2)
329 if self.data:
254 seconds_passed += 2
330 plt.pause(self.data.throttle)
331 else:
332 time.sleep(2)
255
333
256 def close(self):
334 def close(self):
257 if self.dataOut:
335 if self.data:
258 self.__plot()
336 self.__plot()
259
337
260
338
261 class PlotSpectraData(PlotData):
339 class PlotSpectraData(PlotData):
340 '''
341 Plot for Spectra data
342 '''
262
343
263 CODE = 'spc'
344 CODE = 'spc'
264 colormap = 'jro'
345 colormap = 'jro'
265 CONFLATE = False
266
346
267 def setup(self):
347 def setup(self):
268
348 self.nplots = len(self.data.channels)
269 ncolspan = 1
349 self.ncols = int(numpy.sqrt(self.nplots)+ 0.9)
270 colspan = 1
350 self.nrows = int((1.0*self.nplots/self.ncols) + 0.9)
271 self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9)
351 self.width = 3.4*self.ncols
272 self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9)
352 self.height = 3*self.nrows
273 self.width = 3.6*self.ncols
353 self.cb_label = 'dB'
274 self.height = 3.2*self.nrows
354 if self.showprofile:
275 if self.showprofile:
355 self.width += 0.8*self.ncols
276 ncolspan = 3
277 colspan = 2
278 self.width += 1.2*self.ncols
279
356
280 self.ylabel = 'Range [Km]'
357 self.ylabel = 'Range [Km]'
281 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
282
283 if self.figure is None:
284 self.figure = plt.figure(figsize=(self.width, self.height),
285 edgecolor='k',
286 facecolor='w')
287 else:
288 self.figure.clf()
289
290 n = 0
291 for y in range(self.nrows):
292 for x in range(self.ncols):
293 if n >= self.dataOut.nChannels:
294 break
295 ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan)
296 if self.showprofile:
297 ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1)
298
299 ax.firsttime = True
300 self.axes.append(ax)
301 n += 1
302
358
303 def plot(self):
359 def plot(self):
304
305 if self.xaxis == "frequency":
360 if self.xaxis == "frequency":
306 x = self.dataOut.getFreqRange(1)/1000.
361 x = self.data.xrange[0]
307 xlabel = "Frequency (kHz)"
362 self.xlabel = "Frequency (kHz)"
308 elif self.xaxis == "time":
363 elif self.xaxis == "time":
309 x = self.dataOut.getAcfRange(1)
364 x = self.data.xrange[1]
310 xlabel = "Time (ms)"
365 self.xlabel = "Time (ms)"
311 else:
366 else:
312 x = self.dataOut.getVelRange(1)
367 x = self.data.xrange[2]
313 xlabel = "Velocity (m/s)"
368 self.xlabel = "Velocity (m/s)"
369
370 if self.CODE == 'spc_mean':
371 x = self.data.xrange[2]
372 self.xlabel = "Velocity (m/s)"
314
373
315 y = self.dataOut.getHeiRange()
374 self.titles = []
316 z = self.data[self.CODE]
317
375
376 y = self.data.heights
377 self.y = y
378 z = self.data['spc']
379
318 for n, ax in enumerate(self.axes):
380 for n, ax in enumerate(self.axes):
381 noise = self.data['noise'][n][-1]
382 if self.CODE == 'spc_mean':
383 mean = self.data['mean'][n][-1]
319 if ax.firsttime:
384 if ax.firsttime:
320 self.xmax = self.xmax if self.xmax else np.nanmax(x)
385 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
321 self.xmin = self.xmin if self.xmin else -self.xmax
386 self.xmin = self.xmin if self.xmin else -self.xmax
322 self.ymin = self.ymin if self.ymin else np.nanmin(y)
387 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
323 self.ymax = self.ymax if self.ymax else np.nanmax(y)
388 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
324 self.zmin = self.zmin if self.zmin else np.nanmin(z)
389 ax.plt = ax.pcolormesh(x, y, z[n].T,
325 self.zmax = self.zmax if self.zmax else np.nanmax(z)
390 vmin=self.zmin,
326 ax.plot = ax.pcolormesh(x, y, z[n].T,
391 vmax=self.zmax,
327 vmin=self.zmin,
392 cmap=plt.get_cmap(self.colormap)
328 vmax=self.zmax,
393 )
329 cmap=plt.get_cmap(self.colormap)
330 )
331 divider = make_axes_locatable(ax)
332 cax = divider.new_horizontal(size='3%', pad=0.05)
333 self.figure.add_axes(cax)
334 plt.colorbar(ax.plot, cax)
335
336 ax.set_xlim(self.xmin, self.xmax)
337 ax.set_ylim(self.ymin, self.ymax)
338
339 ax.set_ylabel(self.ylabel)
340 ax.set_xlabel(xlabel)
341
342 ax.firsttime = False
343
394
344 if self.showprofile:
395 if self.showprofile:
345 ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
396 ax.plt_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], y)[0]
346 ax.ax_profile.set_xlim(self.zmin, self.zmax)
397 ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
347 ax.ax_profile.set_ylim(self.ymin, self.ymax)
398 color="k", linestyle="dashed", lw=1)[0]
348 ax.ax_profile.set_xlabel('dB')
399 if self.CODE == 'spc_mean':
349 ax.ax_profile.grid(b=True, axis='x')
400 ax.plt_mean = ax.plot(mean, y, color='k')[0]
350 ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
351 color="k", linestyle="dashed", lw=2)[0]
352 [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
353 else:
401 else:
354 ax.plot.set_array(z[n].T.ravel())
402 ax.plt.set_array(z[n].T.ravel())
355 if self.showprofile:
403 if self.showprofile:
356 ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y)
404 ax.plt_profile.set_data(self.data['rti'][n][-1], y)
357 ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
405 ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
406 if self.CODE == 'spc_mean':
407 ax.plt_mean.set_data(mean, y)
358
408
359 ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
409 self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
360 size=8)
361 self.saveTime = self.max_time
410 self.saveTime = self.max_time
362
411
363
412
364 class PlotCrossSpectraData(PlotData):
413 class PlotCrossSpectraData(PlotData):
365
414
366 CODE = 'cspc'
415 CODE = 'cspc'
367 zmin_coh = None
416 zmin_coh = None
368 zmax_coh = None
417 zmax_coh = None
369 zmin_phase = None
418 zmin_phase = None
370 zmax_phase = None
419 zmax_phase = None
371 CONFLATE = False
372
420
373 def setup(self):
421 def setup(self):
374
422
375 ncolspan = 1
423 self.ncols = 4
376 colspan = 1
424 self.nrows = len(self.data.pairs)
377 self.ncols = 2
425 self.nplots = self.nrows*4
378 self.nrows = self.dataOut.nPairs
426 self.width = 3.4*self.ncols
379 self.width = 3.6*self.ncols
427 self.height = 3*self.nrows
380 self.height = 3.2*self.nrows
381
382 self.ylabel = 'Range [Km]'
428 self.ylabel = 'Range [Km]'
383 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
429 self.showprofile = False
384
385 if self.figure is None:
386 self.figure = plt.figure(figsize=(self.width, self.height),
387 edgecolor='k',
388 facecolor='w')
389 else:
390 self.figure.clf()
391
392 for y in range(self.nrows):
393 for x in range(self.ncols):
394 ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1)
395 ax.firsttime = True
396 self.axes.append(ax)
397
430
398 def plot(self):
431 def plot(self):
399
432
400 if self.xaxis == "frequency":
433 if self.xaxis == "frequency":
401 x = self.dataOut.getFreqRange(1)/1000.
434 x = self.data.xrange[0]
402 xlabel = "Frequency (kHz)"
435 self.xlabel = "Frequency (kHz)"
403 elif self.xaxis == "time":
436 elif self.xaxis == "time":
404 x = self.dataOut.getAcfRange(1)
437 x = self.data.xrange[1]
405 xlabel = "Time (ms)"
438 self.xlabel = "Time (ms)"
406 else:
439 else:
407 x = self.dataOut.getVelRange(1)
440 x = self.data.xrange[2]
408 xlabel = "Velocity (m/s)"
441 self.xlabel = "Velocity (m/s)"
442
443 self.titles = []
409
444
410 y = self.dataOut.getHeiRange()
445 y = self.data.heights
411 z_coh = self.data['cspc_coh']
446 self.y = y
412 z_phase = self.data['cspc_phase']
447 spc = self.data['spc']
448 cspc = self.data['cspc']
413
449
414 for n in range(self.nrows):
450 for n in range(self.nrows):
415 ax = self.axes[2*n]
451 noise = self.data['noise'][n][-1]
416 ax1 = self.axes[2*n+1]
452 pair = self.data.pairs[n]
453 ax = self.axes[4*n]
454 ax3 = self.axes[4*n+3]
417 if ax.firsttime:
455 if ax.firsttime:
418 self.xmax = self.xmax if self.xmax else np.nanmax(x)
456 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
419 self.xmin = self.xmin if self.xmin else -self.xmax
457 self.xmin = self.xmin if self.xmin else -self.xmax
420 self.ymin = self.ymin if self.ymin else np.nanmin(y)
458 self.zmin = self.zmin if self.zmin else numpy.nanmin(spc)
421 self.ymax = self.ymax if self.ymax else np.nanmax(y)
459 self.zmax = self.zmax if self.zmax else numpy.nanmax(spc)
422 self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0
460 ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T,
423 self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0
461 vmin=self.zmin,
424 self.zmin_phase = self.zmin_phase if self.zmin_phase else -180
462 vmax=self.zmax,
425 self.zmax_phase = self.zmax_phase if self.zmax_phase else 180
463 cmap=plt.get_cmap(self.colormap)
426
464 )
427 ax.plot = ax.pcolormesh(x, y, z_coh[n].T,
428 vmin=self.zmin_coh,
429 vmax=self.zmax_coh,
430 cmap=plt.get_cmap(self.colormap_coh)
431 )
432 divider = make_axes_locatable(ax)
433 cax = divider.new_horizontal(size='3%', pad=0.05)
434 self.figure.add_axes(cax)
435 plt.colorbar(ax.plot, cax)
436
437 ax.set_xlim(self.xmin, self.xmax)
438 ax.set_ylim(self.ymin, self.ymax)
439
440 ax.set_ylabel(self.ylabel)
441 ax.set_xlabel(xlabel)
442 ax.firsttime = False
443
444 ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T,
445 vmin=self.zmin_phase,
446 vmax=self.zmax_phase,
447 cmap=plt.get_cmap(self.colormap_phase)
448 )
449 divider = make_axes_locatable(ax1)
450 cax = divider.new_horizontal(size='3%', pad=0.05)
451 self.figure.add_axes(cax)
452 plt.colorbar(ax1.plot, cax)
453
454 ax1.set_xlim(self.xmin, self.xmax)
455 ax1.set_ylim(self.ymin, self.ymax)
456
457 ax1.set_ylabel(self.ylabel)
458 ax1.set_xlabel(xlabel)
459 ax1.firsttime = False
460 else:
465 else:
461 ax.plot.set_array(z_coh[n].T.ravel())
466 ax.plt.set_array(spc[pair[0]].T.ravel())
462 ax1.plot.set_array(z_phase[n].T.ravel())
467 self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
463
464 ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
465 ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
466 self.saveTime = self.max_time
467
468
468
469 class PlotSpectraMeanData(PlotSpectraData):
469 ax = self.axes[4*n+1]
470
470 if ax.firsttime:
471 CODE = 'spc_mean'
471 ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T,
472 colormap = 'jet'
473
474 def plot(self):
475
476 if self.xaxis == "frequency":
477 x = self.dataOut.getFreqRange(1)/1000.
478 xlabel = "Frequency (kHz)"
479 elif self.xaxis == "time":
480 x = self.dataOut.getAcfRange(1)
481 xlabel = "Time (ms)"
482 else:
483 x = self.dataOut.getVelRange(1)
484 xlabel = "Velocity (m/s)"
485
486 y = self.dataOut.getHeiRange()
487 z = self.data['spc']
488 mean = self.data['mean'][self.max_time]
489
490 for n, ax in enumerate(self.axes):
491
492 if ax.firsttime:
493 self.xmax = self.xmax if self.xmax else np.nanmax(x)
494 self.xmin = self.xmin if self.xmin else -self.xmax
495 self.ymin = self.ymin if self.ymin else np.nanmin(y)
496 self.ymax = self.ymax if self.ymax else np.nanmax(y)
497 self.zmin = self.zmin if self.zmin else np.nanmin(z)
498 self.zmax = self.zmax if self.zmax else np.nanmax(z)
499 ax.plt = ax.pcolormesh(x, y, z[n].T,
500 vmin=self.zmin,
472 vmin=self.zmin,
501 vmax=self.zmax,
473 vmax=self.zmax,
502 cmap=plt.get_cmap(self.colormap)
474 cmap=plt.get_cmap(self.colormap)
503 )
475 )
504 ax.plt_dop = ax.plot(mean[n], y,
505 color='k')[0]
506
507 divider = make_axes_locatable(ax)
508 cax = divider.new_horizontal(size='3%', pad=0.05)
509 self.figure.add_axes(cax)
510 plt.colorbar(ax.plt, cax)
511
512 ax.set_xlim(self.xmin, self.xmax)
513 ax.set_ylim(self.ymin, self.ymax)
514
515 ax.set_ylabel(self.ylabel)
516 ax.set_xlabel(xlabel)
517
518 ax.firsttime = False
519
520 if self.showprofile:
521 ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
522 ax.ax_profile.set_xlim(self.zmin, self.zmax)
523 ax.ax_profile.set_ylim(self.ymin, self.ymax)
524 ax.ax_profile.set_xlabel('dB')
525 ax.ax_profile.grid(b=True, axis='x')
526 ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
527 color="k", linestyle="dashed", lw=2)[0]
528 [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
529 else:
476 else:
530 ax.plt.set_array(z[n].T.ravel())
477 ax.plt.set_array(spc[pair[1]].T.ravel())
531 ax.plt_dop.set_data(mean[n], y)
478 self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
532 if self.showprofile:
479
533 ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y)
480 out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]])
534 ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
481 coh = numpy.abs(out)
482 phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi
483
484 ax = self.axes[4*n+2]
485 if ax.firsttime:
486 ax.plt = ax.pcolormesh(x, y, coh.T,
487 vmin=0,
488 vmax=1,
489 cmap=plt.get_cmap(self.colormap_coh)
490 )
491 else:
492 ax.plt.set_array(coh.T.ravel())
493 self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
535
494
536 ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
495 ax = self.axes[4*n+3]
537 size=8)
496 if ax.firsttime:
497 ax.plt = ax.pcolormesh(x, y, phase.T,
498 vmin=-180,
499 vmax=180,
500 cmap=plt.get_cmap(self.colormap_phase)
501 )
502 else:
503 ax.plt.set_array(phase.T.ravel())
504 self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
505
538 self.saveTime = self.max_time
506 self.saveTime = self.max_time
539
507
540
508
509 class PlotSpectraMeanData(PlotSpectraData):
510 '''
511 Plot for Spectra and Mean
512 '''
513 CODE = 'spc_mean'
514 colormap = 'jro'
515
516
541 class PlotRTIData(PlotData):
517 class PlotRTIData(PlotData):
518 '''
519 Plot for RTI data
520 '''
542
521
543 CODE = 'rti'
522 CODE = 'rti'
544 colormap = 'jro'
523 colormap = 'jro'
545
524
546 def setup(self):
525 def setup(self):
547 self.ncols = 1
526 self.xaxis = 'time'
548 self.nrows = self.dataOut.nChannels
527 self.ncols = 1
549 self.width = 10
528 self.nrows = len(self.data.channels)
550 #TODO : arreglar la altura de la figura, esta hardcodeada.
529 self.nplots = len(self.data.channels)
551 #Se arreglo, testear!
552 if self.ind_plt_ch:
553 self.height = 3.2#*self.nrows if self.nrows<6 else 12
554 else:
555 self.height = 2.2*self.nrows if self.nrows<6 else 12
556
557 '''
558 if self.nrows==1:
559 self.height += 1
560 '''
561 self.ylabel = 'Range [Km]'
530 self.ylabel = 'Range [Km]'
562 self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
531 self.cb_label = 'dB'
563
532 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
564 '''
565 Logica:
566 1) Si la variable ind_plt_ch es True, va a crear mas de 1 figura
567 2) guardamos "Figures" en una lista y "axes" en otra, quizas se deberia guardar el
568 axis dentro de "Figures" como un diccionario.
569 '''
570 if self.ind_plt_ch is False: #standard mode
571
572 if self.figure is None: #solo para la priemra vez
573 self.figure = plt.figure(figsize=(self.width, self.height),
574 edgecolor='k',
575 facecolor='w')
576 else:
577 self.figure.clf()
578 self.axes = []
579
580
581 for n in range(self.nrows):
582 ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
583 #ax = self.figure(n+1)
584 ax.firsttime = True
585 self.axes.append(ax)
586
587 else : #append one figure foreach channel in channelList
588 if self.figurelist == None:
589 self.figurelist = []
590 for n in range(self.nrows):
591 self.figure = plt.figure(figsize=(self.width, self.height),
592 edgecolor='k',
593 facecolor='w')
594 #add always one subplot
595 self.figurelist.append(self.figure)
596
597 else : # cada dia nuevo limpia el axes, pero mantiene el figure
598 for eachfigure in self.figurelist:
599 eachfigure.clf() # eliminaria todas las figuras de la lista?
600 self.axes = []
601
602 for eachfigure in self.figurelist:
603 ax = eachfigure.add_subplot(1,1,1) #solo 1 axis por figura
604 #ax = self.figure(n+1)
605 ax.firsttime = True
606 #Cada figura tiene un distinto puntero
607 self.axes.append(ax)
608 #plt.close(eachfigure)
609
610
533
611 def plot(self):
534 def plot(self):
535 self.x = self.data.times
536 self.y = self.data.heights
537 self.z = self.data[self.CODE]
538 self.z = numpy.ma.masked_invalid(self.z)
612
539
613 if self.ind_plt_ch is False: #standard mode
540 for n, ax in enumerate(self.axes):
614 self.x = np.array(self.times)
541 x, y, z = self.fill_gaps(*self.decimate())
615 self.y = self.dataOut.getHeiRange()
542 self.zmin = self.zmin if self.zmin else numpy.min(self.z)
616 self.z = []
543 self.zmax = self.zmax if self.zmax else numpy.max(self.z)
617
544 if ax.firsttime:
618 for ch in range(self.nrows):
545 ax.plt = ax.pcolormesh(x, y, z[n].T,
619 self.z.append([self.data[self.CODE][t][ch] for t in self.times])
546 vmin=self.zmin,
620
547 vmax=self.zmax,
621 self.z = np.array(self.z)
548 cmap=plt.get_cmap(self.colormap)
622 for n, ax in enumerate(self.axes):
549 )
623 x, y, z = self.fill_gaps(*self.decimate())
550 if self.showprofile:
624 if self.xmin is None:
551 ax.plot_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], self.y)[0]
625 xmin = self.min_time
552 ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y,
626 else:
553 color="k", linestyle="dashed", lw=1)[0]
627 xmin = fromtimestamp(int(self.xmin), self.min_time)
554 else:
628 if self.xmax is None:
555 ax.collections.remove(ax.collections[0])
629 xmax = xmin + self.xrange*60*60
556 ax.plt = ax.pcolormesh(x, y, z[n].T,
630 else:
557 vmin=self.zmin,
631 xmax = xmin + (self.xmax - self.xmin) * 60 * 60
558 vmax=self.zmax,
632 self.zmin = self.zmin if self.zmin else np.min(self.z)
559 cmap=plt.get_cmap(self.colormap)
633 self.zmax = self.zmax if self.zmax else np.max(self.z)
560 )
634 if ax.firsttime:
561 if self.showprofile:
635 self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
562 ax.plot_profile.set_data(self.data['rti'][n][-1], self.y)
636 self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
563 ax.plot_noise.set_data(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y)
637 plot = ax.pcolormesh(x, y, z[n].T,
638 vmin=self.zmin,
639 vmax=self.zmax,
640 cmap=plt.get_cmap(self.colormap)
641 )
642 divider = make_axes_locatable(ax)
643 cax = divider.new_horizontal(size='2%', pad=0.05)
644 self.figure.add_axes(cax)
645 plt.colorbar(plot, cax)
646 ax.set_ylim(self.ymin, self.ymax)
647 ax.xaxis.set_major_formatter(FuncFormatter(func))
648 ax.xaxis.set_major_locator(LinearLocator(6))
649 ax.set_ylabel(self.ylabel)
650 # if self.xmin is None:
651 # xmin = self.min_time
652 # else:
653 # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(),
654 # datetime.time(self.xmin, 0, 0))-d1970).total_seconds()
655
656 ax.set_xlim(xmin, xmax)
657 ax.firsttime = False
658 else:
659 ax.collections.remove(ax.collections[0])
660 ax.set_xlim(xmin, xmax)
661 plot = ax.pcolormesh(x, y, z[n].T,
662 vmin=self.zmin,
663 vmax=self.zmax,
664 cmap=plt.get_cmap(self.colormap)
665 )
666 ax.set_title('{} {}'.format(self.titles[n],
667 datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
668 size=8)
669
670 self.saveTime = self.min_time
671 else :
672 self.x = np.array(self.times)
673 self.y = self.dataOut.getHeiRange()
674 self.z = []
675
676 for ch in range(self.nrows):
677 self.z.append([self.data[self.CODE][t][ch] for t in self.times])
678
679 self.z = np.array(self.z)
680 for n, eachfigure in enumerate(self.figurelist): #estaba ax in axes
681
682 x, y, z = self.fill_gaps(*self.decimate())
683 xmin = self.min_time
684 xmax = xmin+self.xrange*60*60
685 self.zmin = self.zmin if self.zmin else np.min(self.z)
686 self.zmax = self.zmax if self.zmax else np.max(self.z)
687 if self.axes[n].firsttime:
688 self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
689 self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
690 plot = self.axes[n].pcolormesh(x, y, z[n].T,
691 vmin=self.zmin,
692 vmax=self.zmax,
693 cmap=plt.get_cmap(self.colormap)
694 )
695 divider = make_axes_locatable(self.axes[n])
696 cax = divider.new_horizontal(size='2%', pad=0.05)
697 eachfigure.add_axes(cax)
698 #self.figure2.add_axes(cax)
699 plt.colorbar(plot, cax)
700 self.axes[n].set_ylim(self.ymin, self.ymax)
701
702 self.axes[n].xaxis.set_major_formatter(FuncFormatter(func))
703 self.axes[n].xaxis.set_major_locator(LinearLocator(6))
704
705 self.axes[n].set_ylabel(self.ylabel)
706
707 if self.xmin is None:
708 xmin = self.min_time
709 else:
710 xmin = (datetime.datetime.combine(self.dataOut.datatime.date(),
711 datetime.time(self.xmin, 0, 0))-d1970).total_seconds()
712
713 self.axes[n].set_xlim(xmin, xmax)
714 self.axes[n].firsttime = False
715 else:
716 self.axes[n].collections.remove(self.axes[n].collections[0])
717 self.axes[n].set_xlim(xmin, xmax)
718 plot = self.axes[n].pcolormesh(x, y, z[n].T,
719 vmin=self.zmin,
720 vmax=self.zmax,
721 cmap=plt.get_cmap(self.colormap)
722 )
723 self.axes[n].set_title('{} {}'.format(self.titles[n],
724 datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
725 size=8)
726
564
727 self.saveTime = self.min_time
565 self.saveTime = self.min_time
728
566
729
567
730 class PlotCOHData(PlotRTIData):
568 class PlotCOHData(PlotRTIData):
569 '''
570 Plot for Coherence data
571 '''
731
572
732 CODE = 'coh'
573 CODE = 'coh'
733
574
734 def setup(self):
575 def setup(self):
735
576 self.xaxis = 'time'
736 self.ncols = 1
577 self.ncols = 1
737 self.nrows = self.dataOut.nPairs
578 self.nrows = len(self.data.pairs)
738 self.width = 10
579 self.nplots = len(self.data.pairs)
739 self.height = 2.2*self.nrows if self.nrows<6 else 12
580 self.ylabel = 'Range [Km]'
740 self.ind_plt_ch = False #just for coherence and phase
581 if self.CODE == 'coh':
741 if self.nrows==1:
582 self.cb_label = ''
742 self.height += 1
583 self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
743 self.ylabel = 'Range [Km]'
744 self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList]
745
746 if self.figure is None:
747 self.figure = plt.figure(figsize=(self.width, self.height),
748 edgecolor='k',
749 facecolor='w')
750 else:
584 else:
751 self.figure.clf()
585 self.cb_label = 'Degrees'
752 self.axes = []
586 self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
753
587
754 for n in range(self.nrows):
588
755 ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
589 class PlotPHASEData(PlotCOHData):
756 ax.firsttime = True
590 '''
757 self.axes.append(ax)
591 Plot for Phase map data
592 '''
593
594 CODE = 'phase'
595 colormap = 'seismic'
758
596
759
597
760 class PlotNoiseData(PlotData):
598 class PlotNoiseData(PlotData):
599 '''
600 Plot for noise
601 '''
602
761 CODE = 'noise'
603 CODE = 'noise'
762
604
763 def setup(self):
605 def setup(self):
764
606 self.xaxis = 'time'
765 self.ncols = 1
607 self.ncols = 1
766 self.nrows = 1
608 self.nrows = 1
767 self.width = 10
609 self.nplots = 1
768 self.height = 3.2
769 self.ylabel = 'Intensity [dB]'
610 self.ylabel = 'Intensity [dB]'
770 self.titles = ['Noise']
611 self.titles = ['Noise']
771
612 self.colorbar = False
772 if self.figure is None:
773 self.figure = plt.figure(figsize=(self.width, self.height),
774 edgecolor='k',
775 facecolor='w')
776 else:
777 self.figure.clf()
778 self.axes = []
779
780 self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1)
781 self.ax.firsttime = True
782
613
783 def plot(self):
614 def plot(self):
784
615
785 x = self.times
616 x = self.data.times
786 xmin = self.min_time
617 xmin = self.min_time
787 xmax = xmin+self.xrange*60*60
618 xmax = xmin+self.xrange*60*60
788 if self.ax.firsttime:
619 Y = self.data[self.CODE]
789 for ch in self.dataOut.channelList:
620
790 y = [self.data[self.CODE][t][ch] for t in self.times]
621 if self.axes[0].firsttime:
791 self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch))
622 for ch in self.data.channels:
792 self.ax.firsttime = False
623 y = Y[ch]
793 self.ax.xaxis.set_major_formatter(FuncFormatter(func))
624 self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
794 self.ax.xaxis.set_major_locator(LinearLocator(6))
795 self.ax.set_ylabel(self.ylabel)
796 plt.legend()
625 plt.legend()
797 else:
626 else:
798 for ch in self.dataOut.channelList:
627 for ch in self.data.channels:
799 y = [self.data[self.CODE][t][ch] for t in self.times]
628 y = Y[ch]
800 self.ax.lines[ch].set_data(x, y)
629 self.axes[0].lines[ch].set_data(x, y)
801
630
802 self.ax.set_xlim(xmin, xmax)
631 self.ymin = numpy.nanmin(Y) - 5
803 self.ax.set_ylim(min(y)-5, max(y)+5)
632 self.ymax = numpy.nanmax(Y) + 5
804 self.saveTime = self.min_time
633 self.saveTime = self.min_time
805
634
806
635
807 class PlotWindProfilerData(PlotRTIData):
808
809 CODE = 'wind'
810 colormap = 'seismic'
811
812 def setup(self):
813 self.ncols = 1
814 self.nrows = self.dataOut.data_output.shape[0]
815 self.width = 10
816 self.height = 2.2*self.nrows
817 self.ylabel = 'Height [Km]'
818 self.titles = ['Zonal Wind' ,'Meridional Wind', 'Vertical Wind']
819 self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)']
820 self.windFactor = [1, 1, 100]
821
822 if self.figure is None:
823 self.figure = plt.figure(figsize=(self.width, self.height),
824 edgecolor='k',
825 facecolor='w')
826 else:
827 self.figure.clf()
828 self.axes = []
829
830 for n in range(self.nrows):
831 ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
832 ax.firsttime = True
833 self.axes.append(ax)
834
835 def plot(self):
836
837 self.x = np.array(self.times)
838 self.y = self.dataOut.heightList
839 self.z = []
840
841 for ch in range(self.nrows):
842 self.z.append([self.data['output'][t][ch] for t in self.times])
843
844 self.z = np.array(self.z)
845 self.z = numpy.ma.masked_invalid(self.z)
846
847 cmap=plt.get_cmap(self.colormap)
848 cmap.set_bad('black', 1.)
849
850 for n, ax in enumerate(self.axes):
851 x, y, z = self.fill_gaps(*self.decimate())
852 xmin = self.min_time
853 xmax = xmin+self.xrange*60*60
854 if ax.firsttime:
855 self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
856 self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
857 self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :]))
858 self.zmin = self.zmin if self.zmin else -self.zmax
859
860 plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
861 vmin=self.zmin,
862 vmax=self.zmax,
863 cmap=cmap
864 )
865 divider = make_axes_locatable(ax)
866 cax = divider.new_horizontal(size='2%', pad=0.05)
867 self.figure.add_axes(cax)
868 cb = plt.colorbar(plot, cax)
869 cb.set_label(self.clabels[n])
870 ax.set_ylim(self.ymin, self.ymax)
871
872 ax.xaxis.set_major_formatter(FuncFormatter(func))
873 ax.xaxis.set_major_locator(LinearLocator(6))
874
875 ax.set_ylabel(self.ylabel)
876
877 ax.set_xlim(xmin, xmax)
878 ax.firsttime = False
879 else:
880 ax.collections.remove(ax.collections[0])
881 ax.set_xlim(xmin, xmax)
882 plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
883 vmin=self.zmin,
884 vmax=self.zmax,
885 cmap=plt.get_cmap(self.colormap)
886 )
887 ax.set_title('{} {}'.format(self.titles[n],
888 datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
889 size=8)
890
891 self.saveTime = self.min_time
892
893
894 class PlotSNRData(PlotRTIData):
636 class PlotSNRData(PlotRTIData):
637 '''
638 Plot for SNR Data
639 '''
640
895 CODE = 'snr'
641 CODE = 'snr'
896 colormap = 'jet'
642 colormap = 'jet'
897
643
644
898 class PlotDOPData(PlotRTIData):
645 class PlotDOPData(PlotRTIData):
646 '''
647 Plot for DOPPLER Data
648 '''
649
899 CODE = 'dop'
650 CODE = 'dop'
900 colormap = 'jet'
651 colormap = 'jet'
901
652
902
653
903 class PlotPHASEData(PlotCOHData):
904 CODE = 'phase'
905 colormap = 'seismic'
906
907
908 class PlotSkyMapData(PlotData):
654 class PlotSkyMapData(PlotData):
655 '''
656 Plot for meteors detection data
657 '''
909
658
910 CODE = 'met'
659 CODE = 'met'
911
660
912 def setup(self):
661 def setup(self):
913
662
914 self.ncols = 1
663 self.ncols = 1
915 self.nrows = 1
664 self.nrows = 1
916 self.width = 7.2
665 self.width = 7.2
917 self.height = 7.2
666 self.height = 7.2
918
667
919 self.xlabel = 'Zonal Zenith Angle (deg)'
668 self.xlabel = 'Zonal Zenith Angle (deg)'
920 self.ylabel = 'Meridional Zenith Angle (deg)'
669 self.ylabel = 'Meridional Zenith Angle (deg)'
921
670
922 if self.figure is None:
671 if self.figure is None:
923 self.figure = plt.figure(figsize=(self.width, self.height),
672 self.figure = plt.figure(figsize=(self.width, self.height),
924 edgecolor='k',
673 edgecolor='k',
925 facecolor='w')
674 facecolor='w')
926 else:
675 else:
927 self.figure.clf()
676 self.figure.clf()
928
677
929 self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True)
678 self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True)
930 self.ax.firsttime = True
679 self.ax.firsttime = True
931
680
932
681
933 def plot(self):
682 def plot(self):
934
683
935 arrayParameters = np.concatenate([self.data['param'][t] for t in self.times])
684 arrayParameters = numpy.concatenate([self.data['param'][t] for t in self.data.times])
936 error = arrayParameters[:,-1]
685 error = arrayParameters[:,-1]
937 indValid = numpy.where(error == 0)[0]
686 indValid = numpy.where(error == 0)[0]
938 finalMeteor = arrayParameters[indValid,:]
687 finalMeteor = arrayParameters[indValid,:]
939 finalAzimuth = finalMeteor[:,3]
688 finalAzimuth = finalMeteor[:,3]
940 finalZenith = finalMeteor[:,4]
689 finalZenith = finalMeteor[:,4]
941
690
942 x = finalAzimuth*numpy.pi/180
691 x = finalAzimuth*numpy.pi/180
943 y = finalZenith
692 y = finalZenith
944
693
945 if self.ax.firsttime:
694 if self.ax.firsttime:
946 self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0]
695 self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0]
947 self.ax.set_ylim(0,90)
696 self.ax.set_ylim(0,90)
948 self.ax.set_yticks(numpy.arange(0,90,20))
697 self.ax.set_yticks(numpy.arange(0,90,20))
949 self.ax.set_xlabel(self.xlabel)
698 self.ax.set_xlabel(self.xlabel)
950 self.ax.set_ylabel(self.ylabel)
699 self.ax.set_ylabel(self.ylabel)
951 self.ax.yaxis.labelpad = 40
700 self.ax.yaxis.labelpad = 40
952 self.ax.firsttime = False
701 self.ax.firsttime = False
953 else:
702 else:
954 self.ax.plot.set_data(x, y)
703 self.ax.plot.set_data(x, y)
955
704
956
705
957 dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S')
706 dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S')
958 dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')
707 dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')
959 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
708 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
960 dt2,
709 dt2,
961 len(x))
710 len(x))
962 self.ax.set_title(title, size=8)
711 self.ax.set_title(title, size=8)
963
712
964 self.saveTime = self.max_time
713 self.saveTime = self.max_time
714
715 class PlotParamData(PlotRTIData):
716 '''
717 Plot for data_param object
718 '''
719
720 CODE = 'param'
721 colormap = 'seismic'
722
723 def setup(self):
724 self.xaxis = 'time'
725 self.ncols = 1
726 self.nrows = self.data.shape(self.CODE)[0]
727 self.nplots = self.nrows
728 if self.showSNR:
729 self.nrows += 1
730
731 self.ylabel = 'Height [Km]'
732 self.titles = self.data.parameters \
733 if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)]
734 if self.showSNR:
735 self.titles.append('SNR')
736
737 def plot(self):
738 self.data.normalize_heights()
739 self.x = self.data.times
740 self.y = self.data.heights
741 if self.showSNR:
742 self.z = numpy.concatenate(
743 (self.data[self.CODE], self.data['snr'])
744 )
745 else:
746 self.z = self.data[self.CODE]
747
748 self.z = numpy.ma.masked_invalid(self.z)
749
750 for n, ax in enumerate(self.axes):
751
752 x, y, z = self.fill_gaps(*self.decimate())
753
754 if ax.firsttime:
755 if self.zlimits is not None:
756 self.zmin, self.zmax = self.zlimits[n]
757 self.zmax = self.zmax if self.zmax is not None else numpy.nanmax(abs(self.z[:-1, :]))
758 self.zmin = self.zmin if self.zmin is not None else -self.zmax
759 ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n],
760 vmin=self.zmin,
761 vmax=self.zmax,
762 cmap=self.cmaps[n]
763 )
764 else:
765 if self.zlimits is not None:
766 self.zmin, self.zmax = self.zlimits[n]
767 ax.collections.remove(ax.collections[0])
768 ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n],
769 vmin=self.zmin,
770 vmax=self.zmax,
771 cmap=self.cmaps[n]
772 )
773
774 self.saveTime = self.min_time
775
776 class PlotOuputData(PlotParamData):
777 '''
778 Plot data_output object
779 '''
780
781 CODE = 'output'
782 colormap = 'seismic' No newline at end of file
1 NO CONTENT: modified file
NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
@@ -1,904 +1,903
1 import itertools
2
1 import numpy
3 import numpy
2
4
3 from jroproc_base import ProcessingUnit, Operation
5 from jroproc_base import ProcessingUnit, Operation
4 from schainpy.model.data.jrodata import Spectra
6 from schainpy.model.data.jrodata import Spectra
5 from schainpy.model.data.jrodata import hildebrand_sekhon
7 from schainpy.model.data.jrodata import hildebrand_sekhon
6
8
7 class SpectraProc(ProcessingUnit):
9 class SpectraProc(ProcessingUnit):
8
10
9 def __init__(self, **kwargs):
11 def __init__(self, **kwargs):
10
12
11 ProcessingUnit.__init__(self, **kwargs)
13 ProcessingUnit.__init__(self, **kwargs)
12
14
13 self.buffer = None
15 self.buffer = None
14 self.firstdatatime = None
16 self.firstdatatime = None
15 self.profIndex = 0
17 self.profIndex = 0
16 self.dataOut = Spectra()
18 self.dataOut = Spectra()
17 self.id_min = None
19 self.id_min = None
18 self.id_max = None
20 self.id_max = None
19
21
20 def __updateSpecFromVoltage(self):
22 def __updateSpecFromVoltage(self):
21
23
22 self.dataOut.timeZone = self.dataIn.timeZone
24 self.dataOut.timeZone = self.dataIn.timeZone
23 self.dataOut.dstFlag = self.dataIn.dstFlag
25 self.dataOut.dstFlag = self.dataIn.dstFlag
24 self.dataOut.errorCount = self.dataIn.errorCount
26 self.dataOut.errorCount = self.dataIn.errorCount
25 self.dataOut.useLocalTime = self.dataIn.useLocalTime
27 self.dataOut.useLocalTime = self.dataIn.useLocalTime
26
28
27 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
29 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
28 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
30 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
29 self.dataOut.channelList = self.dataIn.channelList
31 self.dataOut.channelList = self.dataIn.channelList
30 self.dataOut.heightList = self.dataIn.heightList
32 self.dataOut.heightList = self.dataIn.heightList
31 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
33 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
32
34
33 self.dataOut.nBaud = self.dataIn.nBaud
35 self.dataOut.nBaud = self.dataIn.nBaud
34 self.dataOut.nCode = self.dataIn.nCode
36 self.dataOut.nCode = self.dataIn.nCode
35 self.dataOut.code = self.dataIn.code
37 self.dataOut.code = self.dataIn.code
36 self.dataOut.nProfiles = self.dataOut.nFFTPoints
38 self.dataOut.nProfiles = self.dataOut.nFFTPoints
37
39
38 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
40 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
39 self.dataOut.utctime = self.firstdatatime
41 self.dataOut.utctime = self.firstdatatime
40 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
42 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
41 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
43 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
42 self.dataOut.flagShiftFFT = False
44 self.dataOut.flagShiftFFT = False
43
45
44 self.dataOut.nCohInt = self.dataIn.nCohInt
46 self.dataOut.nCohInt = self.dataIn.nCohInt
45 self.dataOut.nIncohInt = 1
47 self.dataOut.nIncohInt = 1
46
48
47 self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
49 self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
48
50
49 self.dataOut.frequency = self.dataIn.frequency
51 self.dataOut.frequency = self.dataIn.frequency
50 self.dataOut.realtime = self.dataIn.realtime
52 self.dataOut.realtime = self.dataIn.realtime
51
53
52 self.dataOut.azimuth = self.dataIn.azimuth
54 self.dataOut.azimuth = self.dataIn.azimuth
53 self.dataOut.zenith = self.dataIn.zenith
55 self.dataOut.zenith = self.dataIn.zenith
54
56
55 self.dataOut.beam.codeList = self.dataIn.beam.codeList
57 self.dataOut.beam.codeList = self.dataIn.beam.codeList
56 self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
58 self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
57 self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
59 self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
58
60
59 def __getFft(self):
61 def __getFft(self):
60 """
62 """
61 Convierte valores de Voltaje a Spectra
63 Convierte valores de Voltaje a Spectra
62
64
63 Affected:
65 Affected:
64 self.dataOut.data_spc
66 self.dataOut.data_spc
65 self.dataOut.data_cspc
67 self.dataOut.data_cspc
66 self.dataOut.data_dc
68 self.dataOut.data_dc
67 self.dataOut.heightList
69 self.dataOut.heightList
68 self.profIndex
70 self.profIndex
69 self.buffer
71 self.buffer
70 self.dataOut.flagNoData
72 self.dataOut.flagNoData
71 """
73 """
72 fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1)
74 fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1)
73 fft_volt = fft_volt.astype(numpy.dtype('complex'))
75 fft_volt = fft_volt.astype(numpy.dtype('complex'))
74 dc = fft_volt[:,0,:]
76 dc = fft_volt[:,0,:]
75
77
76 #calculo de self-spectra
78 #calculo de self-spectra
77 fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
79 fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
78 spc = fft_volt * numpy.conjugate(fft_volt)
80 spc = fft_volt * numpy.conjugate(fft_volt)
79 spc = spc.real
81 spc = spc.real
80
82
81 blocksize = 0
83 blocksize = 0
82 blocksize += dc.size
84 blocksize += dc.size
83 blocksize += spc.size
85 blocksize += spc.size
84
86
85 cspc = None
87 cspc = None
86 pairIndex = 0
88 pairIndex = 0
87 if self.dataOut.pairsList != None:
89 if self.dataOut.pairsList != None:
88 #calculo de cross-spectra
90 #calculo de cross-spectra
89 cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
91 cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
90 for pair in self.dataOut.pairsList:
92 for pair in self.dataOut.pairsList:
91 if pair[0] not in self.dataOut.channelList:
93 if pair[0] not in self.dataOut.channelList:
92 raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))
94 raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))
93 if pair[1] not in self.dataOut.channelList:
95 if pair[1] not in self.dataOut.channelList:
94 raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))
96 raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))
95
97
96 cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:])
98 cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:])
97 pairIndex += 1
99 pairIndex += 1
98 blocksize += cspc.size
100 blocksize += cspc.size
99
101
100 self.dataOut.data_spc = spc
102 self.dataOut.data_spc = spc
101 self.dataOut.data_cspc = cspc
103 self.dataOut.data_cspc = cspc
102 self.dataOut.data_dc = dc
104 self.dataOut.data_dc = dc
103 self.dataOut.blockSize = blocksize
105 self.dataOut.blockSize = blocksize
104 self.dataOut.flagShiftFFT = True
106 self.dataOut.flagShiftFFT = True
105
107
106 def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None):
108 def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None):
107
109
108 self.dataOut.flagNoData = True
110 self.dataOut.flagNoData = True
109
111
110 if self.dataIn.type == "Spectra":
112 if self.dataIn.type == "Spectra":
111 self.dataOut.copy(self.dataIn)
113 self.dataOut.copy(self.dataIn)
112 # self.__selectPairs(pairsList)
114 if not pairsList:
115 pairsList = itertools.combinations(self.dataOut.channelList, 2)
116 if self.dataOut.data_cspc is not None:
117 self.__selectPairs(pairsList)
113 return True
118 return True
114
119
115 if self.dataIn.type == "Voltage":
120 if self.dataIn.type == "Voltage":
116
121
117 if nFFTPoints == None:
122 if nFFTPoints == None:
118 raise ValueError, "This SpectraProc.run() need nFFTPoints input variable"
123 raise ValueError, "This SpectraProc.run() need nFFTPoints input variable"
119
124
120 if nProfiles == None:
125 if nProfiles == None:
121 nProfiles = nFFTPoints
126 nProfiles = nFFTPoints
122
127
123 if ippFactor == None:
128 if ippFactor == None:
124 ippFactor = 1
129 ippFactor = 1
125
130
126 self.dataOut.ippFactor = ippFactor
131 self.dataOut.ippFactor = ippFactor
127
132
128 self.dataOut.nFFTPoints = nFFTPoints
133 self.dataOut.nFFTPoints = nFFTPoints
129 self.dataOut.pairsList = pairsList
134 self.dataOut.pairsList = pairsList
130
135
131 if self.buffer is None:
136 if self.buffer is None:
132 self.buffer = numpy.zeros( (self.dataIn.nChannels,
137 self.buffer = numpy.zeros( (self.dataIn.nChannels,
133 nProfiles,
138 nProfiles,
134 self.dataIn.nHeights),
139 self.dataIn.nHeights),
135 dtype='complex')
140 dtype='complex')
136
141
137 if self.dataIn.flagDataAsBlock:
142 if self.dataIn.flagDataAsBlock:
138 #data dimension: [nChannels, nProfiles, nSamples]
143 #data dimension: [nChannels, nProfiles, nSamples]
139 nVoltProfiles = self.dataIn.data.shape[1]
144 nVoltProfiles = self.dataIn.data.shape[1]
140 # nVoltProfiles = self.dataIn.nProfiles
145 # nVoltProfiles = self.dataIn.nProfiles
141
146
142 if nVoltProfiles == nProfiles:
147 if nVoltProfiles == nProfiles:
143 self.buffer = self.dataIn.data.copy()
148 self.buffer = self.dataIn.data.copy()
144 self.profIndex = nVoltProfiles
149 self.profIndex = nVoltProfiles
145
150
146 elif nVoltProfiles < nProfiles:
151 elif nVoltProfiles < nProfiles:
147
152
148 if self.profIndex == 0:
153 if self.profIndex == 0:
149 self.id_min = 0
154 self.id_min = 0
150 self.id_max = nVoltProfiles
155 self.id_max = nVoltProfiles
151
156
152 self.buffer[:,self.id_min:self.id_max,:] = self.dataIn.data
157 self.buffer[:,self.id_min:self.id_max,:] = self.dataIn.data
153 self.profIndex += nVoltProfiles
158 self.profIndex += nVoltProfiles
154 self.id_min += nVoltProfiles
159 self.id_min += nVoltProfiles
155 self.id_max += nVoltProfiles
160 self.id_max += nVoltProfiles
156 else:
161 else:
157 raise ValueError, "The type object %s has %d profiles, it should just has %d profiles"%(self.dataIn.type,self.dataIn.data.shape[1],nProfiles)
162 raise ValueError, "The type object %s has %d profiles, it should just has %d profiles"%(self.dataIn.type,self.dataIn.data.shape[1],nProfiles)
158 self.dataOut.flagNoData = True
163 self.dataOut.flagNoData = True
159 return 0
164 return 0
160 else:
165 else:
161 self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()
166 self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()
162 self.profIndex += 1
167 self.profIndex += 1
163
168
164 if self.firstdatatime == None:
169 if self.firstdatatime == None:
165 self.firstdatatime = self.dataIn.utctime
170 self.firstdatatime = self.dataIn.utctime
166
171
167 if self.profIndex == nProfiles:
172 if self.profIndex == nProfiles:
168 self.__updateSpecFromVoltage()
173 self.__updateSpecFromVoltage()
169 self.__getFft()
174 self.__getFft()
170
175
171 self.dataOut.flagNoData = False
176 self.dataOut.flagNoData = False
172 self.firstdatatime = None
177 self.firstdatatime = None
173 self.profIndex = 0
178 self.profIndex = 0
174
179
175 return True
180 return True
176
181
177 raise ValueError, "The type of input object '%s' is not valid"%(self.dataIn.type)
182 raise ValueError, "The type of input object '%s' is not valid"%(self.dataIn.type)
178
183
179 def __selectPairs(self, pairsList):
184 def __selectPairs(self, pairsList):
180
185
181 if channelList == None:
186 if not pairsList:
182 return
187 return
183
188
184 pairsIndexListSelected = []
189 pairs = []
185
190 pairsIndex = []
186 for thisPair in pairsList:
187
191
188 if thisPair not in self.dataOut.pairsList:
192 for pair in pairsList:
193 if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList:
189 continue
194 continue
190
195 pairs.append(pair)
191 pairIndex = self.dataOut.pairsList.index(thisPair)
196 pairsIndex.append(pairs.index(pair))
192
197
193 pairsIndexListSelected.append(pairIndex)
198 self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex]
194
199 self.dataOut.pairsList = pairs
195 if not pairsIndexListSelected:
200 self.dataOut.pairsIndexList = pairsIndex
196 self.dataOut.data_cspc = None
197 self.dataOut.pairsList = []
198 return
199
200 self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
201 self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected]
202
201
203 return
202 return
204
203
205 def __selectPairsByChannel(self, channelList=None):
204 def __selectPairsByChannel(self, channelList=None):
206
205
207 if channelList == None:
206 if channelList == None:
208 return
207 return
209
208
210 pairsIndexListSelected = []
209 pairsIndexListSelected = []
211 for pairIndex in self.dataOut.pairsIndexList:
210 for pairIndex in self.dataOut.pairsIndexList:
212 #First pair
211 #First pair
213 if self.dataOut.pairsList[pairIndex][0] not in channelList:
212 if self.dataOut.pairsList[pairIndex][0] not in channelList:
214 continue
213 continue
215 #Second pair
214 #Second pair
216 if self.dataOut.pairsList[pairIndex][1] not in channelList:
215 if self.dataOut.pairsList[pairIndex][1] not in channelList:
217 continue
216 continue
218
217
219 pairsIndexListSelected.append(pairIndex)
218 pairsIndexListSelected.append(pairIndex)
220
219
221 if not pairsIndexListSelected:
220 if not pairsIndexListSelected:
222 self.dataOut.data_cspc = None
221 self.dataOut.data_cspc = None
223 self.dataOut.pairsList = []
222 self.dataOut.pairsList = []
224 return
223 return
225
224
226 self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
225 self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
227 self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected]
226 self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected]
228
227
229 return
228 return
230
229
231 def selectChannels(self, channelList):
230 def selectChannels(self, channelList):
232
231
233 channelIndexList = []
232 channelIndexList = []
234
233
235 for channel in channelList:
234 for channel in channelList:
236 if channel not in self.dataOut.channelList:
235 if channel not in self.dataOut.channelList:
237 raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList))
236 raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList))
238
237
239 index = self.dataOut.channelList.index(channel)
238 index = self.dataOut.channelList.index(channel)
240 channelIndexList.append(index)
239 channelIndexList.append(index)
241
240
242 self.selectChannelsByIndex(channelIndexList)
241 self.selectChannelsByIndex(channelIndexList)
243
242
244 def selectChannelsByIndex(self, channelIndexList):
243 def selectChannelsByIndex(self, channelIndexList):
245 """
244 """
246 Selecciona un bloque de datos en base a canales segun el channelIndexList
245 Selecciona un bloque de datos en base a canales segun el channelIndexList
247
246
248 Input:
247 Input:
249 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
248 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
250
249
251 Affected:
250 Affected:
252 self.dataOut.data_spc
251 self.dataOut.data_spc
253 self.dataOut.channelIndexList
252 self.dataOut.channelIndexList
254 self.dataOut.nChannels
253 self.dataOut.nChannels
255
254
256 Return:
255 Return:
257 None
256 None
258 """
257 """
259
258
260 for channelIndex in channelIndexList:
259 for channelIndex in channelIndexList:
261 if channelIndex not in self.dataOut.channelIndexList:
260 if channelIndex not in self.dataOut.channelIndexList:
262 raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList)
261 raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList)
263
262
264 # nChannels = len(channelIndexList)
263 # nChannels = len(channelIndexList)
265
264
266 data_spc = self.dataOut.data_spc[channelIndexList,:]
265 data_spc = self.dataOut.data_spc[channelIndexList,:]
267 data_dc = self.dataOut.data_dc[channelIndexList,:]
266 data_dc = self.dataOut.data_dc[channelIndexList,:]
268
267
269 self.dataOut.data_spc = data_spc
268 self.dataOut.data_spc = data_spc
270 self.dataOut.data_dc = data_dc
269 self.dataOut.data_dc = data_dc
271
270
272 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
271 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
273 # self.dataOut.nChannels = nChannels
272 # self.dataOut.nChannels = nChannels
274
273
275 self.__selectPairsByChannel(self.dataOut.channelList)
274 self.__selectPairsByChannel(self.dataOut.channelList)
276
275
277 return 1
276 return 1
278
277
279 def selectHeights(self, minHei, maxHei):
278 def selectHeights(self, minHei, maxHei):
280 """
279 """
281 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
280 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
282 minHei <= height <= maxHei
281 minHei <= height <= maxHei
283
282
284 Input:
283 Input:
285 minHei : valor minimo de altura a considerar
284 minHei : valor minimo de altura a considerar
286 maxHei : valor maximo de altura a considerar
285 maxHei : valor maximo de altura a considerar
287
286
288 Affected:
287 Affected:
289 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
288 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
290
289
291 Return:
290 Return:
292 1 si el metodo se ejecuto con exito caso contrario devuelve 0
291 1 si el metodo se ejecuto con exito caso contrario devuelve 0
293 """
292 """
294
293
295 if (minHei > maxHei):
294 if (minHei > maxHei):
296 raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)
295 raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)
297
296
298 if (minHei < self.dataOut.heightList[0]):
297 if (minHei < self.dataOut.heightList[0]):
299 minHei = self.dataOut.heightList[0]
298 minHei = self.dataOut.heightList[0]
300
299
301 if (maxHei > self.dataOut.heightList[-1]):
300 if (maxHei > self.dataOut.heightList[-1]):
302 maxHei = self.dataOut.heightList[-1]
301 maxHei = self.dataOut.heightList[-1]
303
302
304 minIndex = 0
303 minIndex = 0
305 maxIndex = 0
304 maxIndex = 0
306 heights = self.dataOut.heightList
305 heights = self.dataOut.heightList
307
306
308 inda = numpy.where(heights >= minHei)
307 inda = numpy.where(heights >= minHei)
309 indb = numpy.where(heights <= maxHei)
308 indb = numpy.where(heights <= maxHei)
310
309
311 try:
310 try:
312 minIndex = inda[0][0]
311 minIndex = inda[0][0]
313 except:
312 except:
314 minIndex = 0
313 minIndex = 0
315
314
316 try:
315 try:
317 maxIndex = indb[0][-1]
316 maxIndex = indb[0][-1]
318 except:
317 except:
319 maxIndex = len(heights)
318 maxIndex = len(heights)
320
319
321 self.selectHeightsByIndex(minIndex, maxIndex)
320 self.selectHeightsByIndex(minIndex, maxIndex)
322
321
323 return 1
322 return 1
324
323
325 def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None):
324 def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None):
326 newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
325 newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
327
326
328 if hei_ref != None:
327 if hei_ref != None:
329 newheis = numpy.where(self.dataOut.heightList>hei_ref)
328 newheis = numpy.where(self.dataOut.heightList>hei_ref)
330
329
331 minIndex = min(newheis[0])
330 minIndex = min(newheis[0])
332 maxIndex = max(newheis[0])
331 maxIndex = max(newheis[0])
333 data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
332 data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
334 heightList = self.dataOut.heightList[minIndex:maxIndex+1]
333 heightList = self.dataOut.heightList[minIndex:maxIndex+1]
335
334
336 # determina indices
335 # determina indices
337 nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0]))
336 nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0]))
338 avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0))
337 avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0))
339 beacon_dB = numpy.sort(avg_dB)[-nheis:]
338 beacon_dB = numpy.sort(avg_dB)[-nheis:]
340 beacon_heiIndexList = []
339 beacon_heiIndexList = []
341 for val in avg_dB.tolist():
340 for val in avg_dB.tolist():
342 if val >= beacon_dB[0]:
341 if val >= beacon_dB[0]:
343 beacon_heiIndexList.append(avg_dB.tolist().index(val))
342 beacon_heiIndexList.append(avg_dB.tolist().index(val))
344
343
345 #data_spc = data_spc[:,:,beacon_heiIndexList]
344 #data_spc = data_spc[:,:,beacon_heiIndexList]
346 data_cspc = None
345 data_cspc = None
347 if self.dataOut.data_cspc is not None:
346 if self.dataOut.data_cspc is not None:
348 data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
347 data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
349 #data_cspc = data_cspc[:,:,beacon_heiIndexList]
348 #data_cspc = data_cspc[:,:,beacon_heiIndexList]
350
349
351 data_dc = None
350 data_dc = None
352 if self.dataOut.data_dc is not None:
351 if self.dataOut.data_dc is not None:
353 data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
352 data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
354 #data_dc = data_dc[:,beacon_heiIndexList]
353 #data_dc = data_dc[:,beacon_heiIndexList]
355
354
356 self.dataOut.data_spc = data_spc
355 self.dataOut.data_spc = data_spc
357 self.dataOut.data_cspc = data_cspc
356 self.dataOut.data_cspc = data_cspc
358 self.dataOut.data_dc = data_dc
357 self.dataOut.data_dc = data_dc
359 self.dataOut.heightList = heightList
358 self.dataOut.heightList = heightList
360 self.dataOut.beacon_heiIndexList = beacon_heiIndexList
359 self.dataOut.beacon_heiIndexList = beacon_heiIndexList
361
360
362 return 1
361 return 1
363
362
364
363
365 def selectHeightsByIndex(self, minIndex, maxIndex):
364 def selectHeightsByIndex(self, minIndex, maxIndex):
366 """
365 """
367 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
366 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
368 minIndex <= index <= maxIndex
367 minIndex <= index <= maxIndex
369
368
370 Input:
369 Input:
371 minIndex : valor de indice minimo de altura a considerar
370 minIndex : valor de indice minimo de altura a considerar
372 maxIndex : valor de indice maximo de altura a considerar
371 maxIndex : valor de indice maximo de altura a considerar
373
372
374 Affected:
373 Affected:
375 self.dataOut.data_spc
374 self.dataOut.data_spc
376 self.dataOut.data_cspc
375 self.dataOut.data_cspc
377 self.dataOut.data_dc
376 self.dataOut.data_dc
378 self.dataOut.heightList
377 self.dataOut.heightList
379
378
380 Return:
379 Return:
381 1 si el metodo se ejecuto con exito caso contrario devuelve 0
380 1 si el metodo se ejecuto con exito caso contrario devuelve 0
382 """
381 """
383
382
384 if (minIndex < 0) or (minIndex > maxIndex):
383 if (minIndex < 0) or (minIndex > maxIndex):
385 raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)
384 raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)
386
385
387 if (maxIndex >= self.dataOut.nHeights):
386 if (maxIndex >= self.dataOut.nHeights):
388 maxIndex = self.dataOut.nHeights-1
387 maxIndex = self.dataOut.nHeights-1
389
388
390 #Spectra
389 #Spectra
391 data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
390 data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
392
391
393 data_cspc = None
392 data_cspc = None
394 if self.dataOut.data_cspc is not None:
393 if self.dataOut.data_cspc is not None:
395 data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
394 data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
396
395
397 data_dc = None
396 data_dc = None
398 if self.dataOut.data_dc is not None:
397 if self.dataOut.data_dc is not None:
399 data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
398 data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
400
399
401 self.dataOut.data_spc = data_spc
400 self.dataOut.data_spc = data_spc
402 self.dataOut.data_cspc = data_cspc
401 self.dataOut.data_cspc = data_cspc
403 self.dataOut.data_dc = data_dc
402 self.dataOut.data_dc = data_dc
404
403
405 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
404 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
406
405
407 return 1
406 return 1
408
407
409 def removeDC(self, mode = 2):
408 def removeDC(self, mode = 2):
410 jspectra = self.dataOut.data_spc
409 jspectra = self.dataOut.data_spc
411 jcspectra = self.dataOut.data_cspc
410 jcspectra = self.dataOut.data_cspc
412
411
413
412
414 num_chan = jspectra.shape[0]
413 num_chan = jspectra.shape[0]
415 num_hei = jspectra.shape[2]
414 num_hei = jspectra.shape[2]
416
415
417 if jcspectra is not None:
416 if jcspectra is not None:
418 jcspectraExist = True
417 jcspectraExist = True
419 num_pairs = jcspectra.shape[0]
418 num_pairs = jcspectra.shape[0]
420 else: jcspectraExist = False
419 else: jcspectraExist = False
421
420
422 freq_dc = jspectra.shape[1]/2
421 freq_dc = jspectra.shape[1]/2
423 ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
422 ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
424
423
425 if ind_vel[0]<0:
424 if ind_vel[0]<0:
426 ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
425 ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
427
426
428 if mode == 1:
427 if mode == 1:
429 jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
428 jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
430
429
431 if jcspectraExist:
430 if jcspectraExist:
432 jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2
431 jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2
433
432
434 if mode == 2:
433 if mode == 2:
435
434
436 vel = numpy.array([-2,-1,1,2])
435 vel = numpy.array([-2,-1,1,2])
437 xx = numpy.zeros([4,4])
436 xx = numpy.zeros([4,4])
438
437
439 for fil in range(4):
438 for fil in range(4):
440 xx[fil,:] = vel[fil]**numpy.asarray(range(4))
439 xx[fil,:] = vel[fil]**numpy.asarray(range(4))
441
440
442 xx_inv = numpy.linalg.inv(xx)
441 xx_inv = numpy.linalg.inv(xx)
443 xx_aux = xx_inv[0,:]
442 xx_aux = xx_inv[0,:]
444
443
445 for ich in range(num_chan):
444 for ich in range(num_chan):
446 yy = jspectra[ich,ind_vel,:]
445 yy = jspectra[ich,ind_vel,:]
447 jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
446 jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
448
447
449 junkid = jspectra[ich,freq_dc,:]<=0
448 junkid = jspectra[ich,freq_dc,:]<=0
450 cjunkid = sum(junkid)
449 cjunkid = sum(junkid)
451
450
452 if cjunkid.any():
451 if cjunkid.any():
453 jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
452 jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
454
453
455 if jcspectraExist:
454 if jcspectraExist:
456 for ip in range(num_pairs):
455 for ip in range(num_pairs):
457 yy = jcspectra[ip,ind_vel,:]
456 yy = jcspectra[ip,ind_vel,:]
458 jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy)
457 jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy)
459
458
460
459
461 self.dataOut.data_spc = jspectra
460 self.dataOut.data_spc = jspectra
462 self.dataOut.data_cspc = jcspectra
461 self.dataOut.data_cspc = jcspectra
463
462
464 return 1
463 return 1
465
464
466 def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None):
465 def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None):
467
466
468 jspectra = self.dataOut.data_spc
467 jspectra = self.dataOut.data_spc
469 jcspectra = self.dataOut.data_cspc
468 jcspectra = self.dataOut.data_cspc
470 jnoise = self.dataOut.getNoise()
469 jnoise = self.dataOut.getNoise()
471 num_incoh = self.dataOut.nIncohInt
470 num_incoh = self.dataOut.nIncohInt
472
471
473 num_channel = jspectra.shape[0]
472 num_channel = jspectra.shape[0]
474 num_prof = jspectra.shape[1]
473 num_prof = jspectra.shape[1]
475 num_hei = jspectra.shape[2]
474 num_hei = jspectra.shape[2]
476
475
477 #hei_interf
476 #hei_interf
478 if hei_interf is None:
477 if hei_interf is None:
479 count_hei = num_hei/2 #Como es entero no importa
478 count_hei = num_hei/2 #Como es entero no importa
480 hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei
479 hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei
481 hei_interf = numpy.asarray(hei_interf)[0]
480 hei_interf = numpy.asarray(hei_interf)[0]
482 #nhei_interf
481 #nhei_interf
483 if (nhei_interf == None):
482 if (nhei_interf == None):
484 nhei_interf = 5
483 nhei_interf = 5
485 if (nhei_interf < 1):
484 if (nhei_interf < 1):
486 nhei_interf = 1
485 nhei_interf = 1
487 if (nhei_interf > count_hei):
486 if (nhei_interf > count_hei):
488 nhei_interf = count_hei
487 nhei_interf = count_hei
489 if (offhei_interf == None):
488 if (offhei_interf == None):
490 offhei_interf = 0
489 offhei_interf = 0
491
490
492 ind_hei = range(num_hei)
491 ind_hei = range(num_hei)
493 # mask_prof = numpy.asarray(range(num_prof - 2)) + 1
492 # mask_prof = numpy.asarray(range(num_prof - 2)) + 1
494 # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
493 # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
495 mask_prof = numpy.asarray(range(num_prof))
494 mask_prof = numpy.asarray(range(num_prof))
496 num_mask_prof = mask_prof.size
495 num_mask_prof = mask_prof.size
497 comp_mask_prof = [0, num_prof/2]
496 comp_mask_prof = [0, num_prof/2]
498
497
499
498
500 #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
499 #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
501 if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
500 if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
502 jnoise = numpy.nan
501 jnoise = numpy.nan
503 noise_exist = jnoise[0] < numpy.Inf
502 noise_exist = jnoise[0] < numpy.Inf
504
503
505 #Subrutina de Remocion de la Interferencia
504 #Subrutina de Remocion de la Interferencia
506 for ich in range(num_channel):
505 for ich in range(num_channel):
507 #Se ordena los espectros segun su potencia (menor a mayor)
506 #Se ordena los espectros segun su potencia (menor a mayor)
508 power = jspectra[ich,mask_prof,:]
507 power = jspectra[ich,mask_prof,:]
509 power = power[:,hei_interf]
508 power = power[:,hei_interf]
510 power = power.sum(axis = 0)
509 power = power.sum(axis = 0)
511 psort = power.ravel().argsort()
510 psort = power.ravel().argsort()
512
511
513 #Se estima la interferencia promedio en los Espectros de Potencia empleando
512 #Se estima la interferencia promedio en los Espectros de Potencia empleando
514 junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]]
513 junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]]
515
514
516 if noise_exist:
515 if noise_exist:
517 # tmp_noise = jnoise[ich] / num_prof
516 # tmp_noise = jnoise[ich] / num_prof
518 tmp_noise = jnoise[ich]
517 tmp_noise = jnoise[ich]
519 junkspc_interf = junkspc_interf - tmp_noise
518 junkspc_interf = junkspc_interf - tmp_noise
520 #junkspc_interf[:,comp_mask_prof] = 0
519 #junkspc_interf[:,comp_mask_prof] = 0
521
520
522 jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf
521 jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf
523 jspc_interf = jspc_interf.transpose()
522 jspc_interf = jspc_interf.transpose()
524 #Calculando el espectro de interferencia promedio
523 #Calculando el espectro de interferencia promedio
525 noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh))
524 noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh))
526 noiseid = noiseid[0]
525 noiseid = noiseid[0]
527 cnoiseid = noiseid.size
526 cnoiseid = noiseid.size
528 interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh))
527 interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh))
529 interfid = interfid[0]
528 interfid = interfid[0]
530 cinterfid = interfid.size
529 cinterfid = interfid.size
531
530
532 if (cnoiseid > 0): jspc_interf[noiseid] = 0
531 if (cnoiseid > 0): jspc_interf[noiseid] = 0
533
532
534 #Expandiendo los perfiles a limpiar
533 #Expandiendo los perfiles a limpiar
535 if (cinterfid > 0):
534 if (cinterfid > 0):
536 new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof
535 new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof
537 new_interfid = numpy.asarray(new_interfid)
536 new_interfid = numpy.asarray(new_interfid)
538 new_interfid = {x for x in new_interfid}
537 new_interfid = {x for x in new_interfid}
539 new_interfid = numpy.array(list(new_interfid))
538 new_interfid = numpy.array(list(new_interfid))
540 new_cinterfid = new_interfid.size
539 new_cinterfid = new_interfid.size
541 else: new_cinterfid = 0
540 else: new_cinterfid = 0
542
541
543 for ip in range(new_cinterfid):
542 for ip in range(new_cinterfid):
544 ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort()
543 ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort()
545 jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]]
544 jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]]
546
545
547
546
548 jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices
547 jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices
549
548
550 #Removiendo la interferencia del punto de mayor interferencia
549 #Removiendo la interferencia del punto de mayor interferencia
551 ListAux = jspc_interf[mask_prof].tolist()
550 ListAux = jspc_interf[mask_prof].tolist()
552 maxid = ListAux.index(max(ListAux))
551 maxid = ListAux.index(max(ListAux))
553
552
554
553
555 if cinterfid > 0:
554 if cinterfid > 0:
556 for ip in range(cinterfid*(interf == 2) - 1):
555 for ip in range(cinterfid*(interf == 2) - 1):
557 ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero()
556 ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero()
558 cind = len(ind)
557 cind = len(ind)
559
558
560 if (cind > 0):
559 if (cind > 0):
561 jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh))
560 jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh))
562
561
563 ind = numpy.array([-2,-1,1,2])
562 ind = numpy.array([-2,-1,1,2])
564 xx = numpy.zeros([4,4])
563 xx = numpy.zeros([4,4])
565
564
566 for id1 in range(4):
565 for id1 in range(4):
567 xx[:,id1] = ind[id1]**numpy.asarray(range(4))
566 xx[:,id1] = ind[id1]**numpy.asarray(range(4))
568
567
569 xx_inv = numpy.linalg.inv(xx)
568 xx_inv = numpy.linalg.inv(xx)
570 xx = xx_inv[:,0]
569 xx = xx_inv[:,0]
571 ind = (ind + maxid + num_mask_prof)%num_mask_prof
570 ind = (ind + maxid + num_mask_prof)%num_mask_prof
572 yy = jspectra[ich,mask_prof[ind],:]
571 yy = jspectra[ich,mask_prof[ind],:]
573 jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
572 jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
574
573
575
574
576 indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero()
575 indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero()
577 jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh))
576 jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh))
578
577
579 #Remocion de Interferencia en el Cross Spectra
578 #Remocion de Interferencia en el Cross Spectra
580 if jcspectra is None: return jspectra, jcspectra
579 if jcspectra is None: return jspectra, jcspectra
581 num_pairs = jcspectra.size/(num_prof*num_hei)
580 num_pairs = jcspectra.size/(num_prof*num_hei)
582 jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
581 jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
583
582
584 for ip in range(num_pairs):
583 for ip in range(num_pairs):
585
584
586 #-------------------------------------------
585 #-------------------------------------------
587
586
588 cspower = numpy.abs(jcspectra[ip,mask_prof,:])
587 cspower = numpy.abs(jcspectra[ip,mask_prof,:])
589 cspower = cspower[:,hei_interf]
588 cspower = cspower[:,hei_interf]
590 cspower = cspower.sum(axis = 0)
589 cspower = cspower.sum(axis = 0)
591
590
592 cspsort = cspower.ravel().argsort()
591 cspsort = cspower.ravel().argsort()
593 junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]]
592 junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]]
594 junkcspc_interf = junkcspc_interf.transpose()
593 junkcspc_interf = junkcspc_interf.transpose()
595 jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf
594 jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf
596
595
597 ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
596 ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
598
597
599 median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
598 median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
600 median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
599 median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
601 junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag)
600 junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag)
602
601
603 for iprof in range(num_prof):
602 for iprof in range(num_prof):
604 ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort()
603 ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort()
605 jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]]
604 jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]]
606
605
607 #Removiendo la Interferencia
606 #Removiendo la Interferencia
608 jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf
607 jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf
609
608
610 ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
609 ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
611 maxid = ListAux.index(max(ListAux))
610 maxid = ListAux.index(max(ListAux))
612
611
613 ind = numpy.array([-2,-1,1,2])
612 ind = numpy.array([-2,-1,1,2])
614 xx = numpy.zeros([4,4])
613 xx = numpy.zeros([4,4])
615
614
616 for id1 in range(4):
615 for id1 in range(4):
617 xx[:,id1] = ind[id1]**numpy.asarray(range(4))
616 xx[:,id1] = ind[id1]**numpy.asarray(range(4))
618
617
619 xx_inv = numpy.linalg.inv(xx)
618 xx_inv = numpy.linalg.inv(xx)
620 xx = xx_inv[:,0]
619 xx = xx_inv[:,0]
621
620
622 ind = (ind + maxid + num_mask_prof)%num_mask_prof
621 ind = (ind + maxid + num_mask_prof)%num_mask_prof
623 yy = jcspectra[ip,mask_prof[ind],:]
622 yy = jcspectra[ip,mask_prof[ind],:]
624 jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
623 jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
625
624
626 #Guardar Resultados
625 #Guardar Resultados
627 self.dataOut.data_spc = jspectra
626 self.dataOut.data_spc = jspectra
628 self.dataOut.data_cspc = jcspectra
627 self.dataOut.data_cspc = jcspectra
629
628
630 return 1
629 return 1
631
630
632 def setRadarFrequency(self, frequency=None):
631 def setRadarFrequency(self, frequency=None):
633
632
634 if frequency != None:
633 if frequency != None:
635 self.dataOut.frequency = frequency
634 self.dataOut.frequency = frequency
636
635
637 return 1
636 return 1
638
637
639 def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None):
638 def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None):
640 #validacion de rango
639 #validacion de rango
641 if minHei == None:
640 if minHei == None:
642 minHei = self.dataOut.heightList[0]
641 minHei = self.dataOut.heightList[0]
643
642
644 if maxHei == None:
643 if maxHei == None:
645 maxHei = self.dataOut.heightList[-1]
644 maxHei = self.dataOut.heightList[-1]
646
645
647 if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
646 if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
648 print 'minHei: %.2f is out of the heights range'%(minHei)
647 print 'minHei: %.2f is out of the heights range'%(minHei)
649 print 'minHei is setting to %.2f'%(self.dataOut.heightList[0])
648 print 'minHei is setting to %.2f'%(self.dataOut.heightList[0])
650 minHei = self.dataOut.heightList[0]
649 minHei = self.dataOut.heightList[0]
651
650
652 if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei):
651 if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei):
653 print 'maxHei: %.2f is out of the heights range'%(maxHei)
652 print 'maxHei: %.2f is out of the heights range'%(maxHei)
654 print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1])
653 print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1])
655 maxHei = self.dataOut.heightList[-1]
654 maxHei = self.dataOut.heightList[-1]
656
655
657 # validacion de velocidades
656 # validacion de velocidades
658 velrange = self.dataOut.getVelRange(1)
657 velrange = self.dataOut.getVelRange(1)
659
658
660 if minVel == None:
659 if minVel == None:
661 minVel = velrange[0]
660 minVel = velrange[0]
662
661
663 if maxVel == None:
662 if maxVel == None:
664 maxVel = velrange[-1]
663 maxVel = velrange[-1]
665
664
666 if (minVel < velrange[0]) or (minVel > maxVel):
665 if (minVel < velrange[0]) or (minVel > maxVel):
667 print 'minVel: %.2f is out of the velocity range'%(minVel)
666 print 'minVel: %.2f is out of the velocity range'%(minVel)
668 print 'minVel is setting to %.2f'%(velrange[0])
667 print 'minVel is setting to %.2f'%(velrange[0])
669 minVel = velrange[0]
668 minVel = velrange[0]
670
669
671 if (maxVel > velrange[-1]) or (maxVel < minVel):
670 if (maxVel > velrange[-1]) or (maxVel < minVel):
672 print 'maxVel: %.2f is out of the velocity range'%(maxVel)
671 print 'maxVel: %.2f is out of the velocity range'%(maxVel)
673 print 'maxVel is setting to %.2f'%(velrange[-1])
672 print 'maxVel is setting to %.2f'%(velrange[-1])
674 maxVel = velrange[-1]
673 maxVel = velrange[-1]
675
674
676 # seleccion de indices para rango
675 # seleccion de indices para rango
677 minIndex = 0
676 minIndex = 0
678 maxIndex = 0
677 maxIndex = 0
679 heights = self.dataOut.heightList
678 heights = self.dataOut.heightList
680
679
681 inda = numpy.where(heights >= minHei)
680 inda = numpy.where(heights >= minHei)
682 indb = numpy.where(heights <= maxHei)
681 indb = numpy.where(heights <= maxHei)
683
682
684 try:
683 try:
685 minIndex = inda[0][0]
684 minIndex = inda[0][0]
686 except:
685 except:
687 minIndex = 0
686 minIndex = 0
688
687
689 try:
688 try:
690 maxIndex = indb[0][-1]
689 maxIndex = indb[0][-1]
691 except:
690 except:
692 maxIndex = len(heights)
691 maxIndex = len(heights)
693
692
694 if (minIndex < 0) or (minIndex > maxIndex):
693 if (minIndex < 0) or (minIndex > maxIndex):
695 raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
694 raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
696
695
697 if (maxIndex >= self.dataOut.nHeights):
696 if (maxIndex >= self.dataOut.nHeights):
698 maxIndex = self.dataOut.nHeights-1
697 maxIndex = self.dataOut.nHeights-1
699
698
700 # seleccion de indices para velocidades
699 # seleccion de indices para velocidades
701 indminvel = numpy.where(velrange >= minVel)
700 indminvel = numpy.where(velrange >= minVel)
702 indmaxvel = numpy.where(velrange <= maxVel)
701 indmaxvel = numpy.where(velrange <= maxVel)
703 try:
702 try:
704 minIndexVel = indminvel[0][0]
703 minIndexVel = indminvel[0][0]
705 except:
704 except:
706 minIndexVel = 0
705 minIndexVel = 0
707
706
708 try:
707 try:
709 maxIndexVel = indmaxvel[0][-1]
708 maxIndexVel = indmaxvel[0][-1]
710 except:
709 except:
711 maxIndexVel = len(velrange)
710 maxIndexVel = len(velrange)
712
711
713 #seleccion del espectro
712 #seleccion del espectro
714 data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1]
713 data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1]
715 #estimacion de ruido
714 #estimacion de ruido
716 noise = numpy.zeros(self.dataOut.nChannels)
715 noise = numpy.zeros(self.dataOut.nChannels)
717
716
718 for channel in range(self.dataOut.nChannels):
717 for channel in range(self.dataOut.nChannels):
719 daux = data_spc[channel,:,:]
718 daux = data_spc[channel,:,:]
720 noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt)
719 noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt)
721
720
722 self.dataOut.noise_estimation = noise.copy()
721 self.dataOut.noise_estimation = noise.copy()
723
722
724 return 1
723 return 1
725
724
726 class IncohInt(Operation):
725 class IncohInt(Operation):
727
726
728
727
729 __profIndex = 0
728 __profIndex = 0
730 __withOverapping = False
729 __withOverapping = False
731
730
732 __byTime = False
731 __byTime = False
733 __initime = None
732 __initime = None
734 __lastdatatime = None
733 __lastdatatime = None
735 __integrationtime = None
734 __integrationtime = None
736
735
737 __buffer_spc = None
736 __buffer_spc = None
738 __buffer_cspc = None
737 __buffer_cspc = None
739 __buffer_dc = None
738 __buffer_dc = None
740
739
741 __dataReady = False
740 __dataReady = False
742
741
743 __timeInterval = None
742 __timeInterval = None
744
743
745 n = None
744 n = None
746
745
747
746
748
747
749 def __init__(self, **kwargs):
748 def __init__(self, **kwargs):
750
749
751 Operation.__init__(self, **kwargs)
750 Operation.__init__(self, **kwargs)
752 # self.isConfig = False
751 # self.isConfig = False
753
752
754 def setup(self, n=None, timeInterval=None, overlapping=False):
753 def setup(self, n=None, timeInterval=None, overlapping=False):
755 """
754 """
756 Set the parameters of the integration class.
755 Set the parameters of the integration class.
757
756
758 Inputs:
757 Inputs:
759
758
760 n : Number of coherent integrations
759 n : Number of coherent integrations
761 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
760 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
762 overlapping :
761 overlapping :
763
762
764 """
763 """
765
764
766 self.__initime = None
765 self.__initime = None
767 self.__lastdatatime = 0
766 self.__lastdatatime = 0
768
767
769 self.__buffer_spc = 0
768 self.__buffer_spc = 0
770 self.__buffer_cspc = 0
769 self.__buffer_cspc = 0
771 self.__buffer_dc = 0
770 self.__buffer_dc = 0
772
771
773 self.__profIndex = 0
772 self.__profIndex = 0
774 self.__dataReady = False
773 self.__dataReady = False
775 self.__byTime = False
774 self.__byTime = False
776
775
777 if n is None and timeInterval is None:
776 if n is None and timeInterval is None:
778 raise ValueError, "n or timeInterval should be specified ..."
777 raise ValueError, "n or timeInterval should be specified ..."
779
778
780 if n is not None:
779 if n is not None:
781 self.n = int(n)
780 self.n = int(n)
782 else:
781 else:
783 self.__integrationtime = int(timeInterval) #if (type(timeInterval)!=integer) -> change this line
782 self.__integrationtime = int(timeInterval) #if (type(timeInterval)!=integer) -> change this line
784 self.n = None
783 self.n = None
785 self.__byTime = True
784 self.__byTime = True
786
785
787 def putData(self, data_spc, data_cspc, data_dc):
786 def putData(self, data_spc, data_cspc, data_dc):
788
787
789 """
788 """
790 Add a profile to the __buffer_spc and increase in one the __profileIndex
789 Add a profile to the __buffer_spc and increase in one the __profileIndex
791
790
792 """
791 """
793
792
794 self.__buffer_spc += data_spc
793 self.__buffer_spc += data_spc
795
794
796 if data_cspc is None:
795 if data_cspc is None:
797 self.__buffer_cspc = None
796 self.__buffer_cspc = None
798 else:
797 else:
799 self.__buffer_cspc += data_cspc
798 self.__buffer_cspc += data_cspc
800
799
801 if data_dc is None:
800 if data_dc is None:
802 self.__buffer_dc = None
801 self.__buffer_dc = None
803 else:
802 else:
804 self.__buffer_dc += data_dc
803 self.__buffer_dc += data_dc
805
804
806 self.__profIndex += 1
805 self.__profIndex += 1
807
806
808 return
807 return
809
808
810 def pushData(self):
809 def pushData(self):
811 """
810 """
812 Return the sum of the last profiles and the profiles used in the sum.
811 Return the sum of the last profiles and the profiles used in the sum.
813
812
814 Affected:
813 Affected:
815
814
816 self.__profileIndex
815 self.__profileIndex
817
816
818 """
817 """
819
818
820 data_spc = self.__buffer_spc
819 data_spc = self.__buffer_spc
821 data_cspc = self.__buffer_cspc
820 data_cspc = self.__buffer_cspc
822 data_dc = self.__buffer_dc
821 data_dc = self.__buffer_dc
823 n = self.__profIndex
822 n = self.__profIndex
824
823
825 self.__buffer_spc = 0
824 self.__buffer_spc = 0
826 self.__buffer_cspc = 0
825 self.__buffer_cspc = 0
827 self.__buffer_dc = 0
826 self.__buffer_dc = 0
828 self.__profIndex = 0
827 self.__profIndex = 0
829
828
830 return data_spc, data_cspc, data_dc, n
829 return data_spc, data_cspc, data_dc, n
831
830
832 def byProfiles(self, *args):
831 def byProfiles(self, *args):
833
832
834 self.__dataReady = False
833 self.__dataReady = False
835 avgdata_spc = None
834 avgdata_spc = None
836 avgdata_cspc = None
835 avgdata_cspc = None
837 avgdata_dc = None
836 avgdata_dc = None
838
837
839 self.putData(*args)
838 self.putData(*args)
840
839
841 if self.__profIndex == self.n:
840 if self.__profIndex == self.n:
842
841
843 avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
842 avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
844 self.n = n
843 self.n = n
845 self.__dataReady = True
844 self.__dataReady = True
846
845
847 return avgdata_spc, avgdata_cspc, avgdata_dc
846 return avgdata_spc, avgdata_cspc, avgdata_dc
848
847
849 def byTime(self, datatime, *args):
848 def byTime(self, datatime, *args):
850
849
851 self.__dataReady = False
850 self.__dataReady = False
852 avgdata_spc = None
851 avgdata_spc = None
853 avgdata_cspc = None
852 avgdata_cspc = None
854 avgdata_dc = None
853 avgdata_dc = None
855
854
856 self.putData(*args)
855 self.putData(*args)
857
856
858 if (datatime - self.__initime) >= self.__integrationtime:
857 if (datatime - self.__initime) >= self.__integrationtime:
859 avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
858 avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
860 self.n = n
859 self.n = n
861 self.__dataReady = True
860 self.__dataReady = True
862
861
863 return avgdata_spc, avgdata_cspc, avgdata_dc
862 return avgdata_spc, avgdata_cspc, avgdata_dc
864
863
865 def integrate(self, datatime, *args):
864 def integrate(self, datatime, *args):
866
865
867 if self.__profIndex == 0:
866 if self.__profIndex == 0:
868 self.__initime = datatime
867 self.__initime = datatime
869
868
870 if self.__byTime:
869 if self.__byTime:
871 avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args)
870 avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args)
872 else:
871 else:
873 avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
872 avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
874
873
875 if not self.__dataReady:
874 if not self.__dataReady:
876 return None, None, None, None
875 return None, None, None, None
877
876
878 return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc
877 return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc
879
878
880 def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
879 def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
881
880
882 if n==1:
881 if n==1:
883 return
882 return
884
883
885 dataOut.flagNoData = True
884 dataOut.flagNoData = True
886
885
887 if not self.isConfig:
886 if not self.isConfig:
888 self.setup(n, timeInterval, overlapping)
887 self.setup(n, timeInterval, overlapping)
889 self.isConfig = True
888 self.isConfig = True
890
889
891 avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
890 avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
892 dataOut.data_spc,
891 dataOut.data_spc,
893 dataOut.data_cspc,
892 dataOut.data_cspc,
894 dataOut.data_dc)
893 dataOut.data_dc)
895
894
896 if self.__dataReady:
895 if self.__dataReady:
897
896
898 dataOut.data_spc = avgdata_spc
897 dataOut.data_spc = avgdata_spc
899 dataOut.data_cspc = avgdata_cspc
898 dataOut.data_cspc = avgdata_cspc
900 dataOut.data_dc = avgdata_dc
899 dataOut.data_dc = avgdata_dc
901
900
902 dataOut.nIncohInt *= self.n
901 dataOut.nIncohInt *= self.n
903 dataOut.utctime = avgdatatime
902 dataOut.utctime = avgdatatime
904 dataOut.flagNoData = False
903 dataOut.flagNoData = False
@@ -1,501 +1,604
1 '''
1 '''
2 @author: Juan C. Espinoza
2 @author: Juan C. Espinoza
3 '''
3 '''
4
4
5 import time
5 import time
6 import json
6 import json
7 import numpy
7 import numpy
8 import paho.mqtt.client as mqtt
8 import paho.mqtt.client as mqtt
9 import zmq
9 import zmq
10 import datetime
10 import datetime
11 from zmq.utils.monitor import recv_monitor_message
11 from zmq.utils.monitor import recv_monitor_message
12 from functools import wraps
12 from functools import wraps
13 from threading import Thread
13 from threading import Thread
14 from multiprocessing import Process
14 from multiprocessing import Process
15
15
16 from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit
16 from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit
17 from schainpy.model.data.jrodata import JROData
17 from schainpy.model.data.jrodata import JROData
18 from schainpy.utils import log
18
19
19 MAXNUMX = 100
20 MAXNUMX = 100
20 MAXNUMY = 100
21 MAXNUMY = 100
21
22
22 class PrettyFloat(float):
23 class PrettyFloat(float):
23 def __repr__(self):
24 def __repr__(self):
24 return '%.2f' % self
25 return '%.2f' % self
25
26
26 def roundFloats(obj):
27 def roundFloats(obj):
27 if isinstance(obj, list):
28 if isinstance(obj, list):
28 return map(roundFloats, obj)
29 return map(roundFloats, obj)
29 elif isinstance(obj, float):
30 elif isinstance(obj, float):
30 return round(obj, 2)
31 return round(obj, 2)
31
32
32 def decimate(z, MAXNUMY):
33 def decimate(z, MAXNUMY):
33 # dx = int(len(self.x)/self.__MAXNUMX) + 1
34
35 dy = int(len(z[0])/MAXNUMY) + 1
34 dy = int(len(z[0])/MAXNUMY) + 1
36
35
37 return z[::, ::dy]
36 return z[::, ::dy]
38
37
39 class throttle(object):
38 class throttle(object):
40 """Decorator that prevents a function from being called more than once every
39 '''
40 Decorator that prevents a function from being called more than once every
41 time period.
41 time period.
42 To create a function that cannot be called more than once a minute, but
42 To create a function that cannot be called more than once a minute, but
43 will sleep until it can be called:
43 will sleep until it can be called:
44 @throttle(minutes=1)
44 @throttle(minutes=1)
45 def foo():
45 def foo():
46 pass
46 pass
47
47
48 for i in range(10):
48 for i in range(10):
49 foo()
49 foo()
50 print "This function has run %s times." % i
50 print "This function has run %s times." % i
51 """
51 '''
52
52
53 def __init__(self, seconds=0, minutes=0, hours=0):
53 def __init__(self, seconds=0, minutes=0, hours=0):
54 self.throttle_period = datetime.timedelta(
54 self.throttle_period = datetime.timedelta(
55 seconds=seconds, minutes=minutes, hours=hours
55 seconds=seconds, minutes=minutes, hours=hours
56 )
56 )
57
57
58 self.time_of_last_call = datetime.datetime.min
58 self.time_of_last_call = datetime.datetime.min
59
59
60 def __call__(self, fn):
60 def __call__(self, fn):
61 @wraps(fn)
61 @wraps(fn)
62 def wrapper(*args, **kwargs):
62 def wrapper(*args, **kwargs):
63 now = datetime.datetime.now()
63 now = datetime.datetime.now()
64 time_since_last_call = now - self.time_of_last_call
64 time_since_last_call = now - self.time_of_last_call
65 time_left = self.throttle_period - time_since_last_call
65 time_left = self.throttle_period - time_since_last_call
66
66
67 if time_left > datetime.timedelta(seconds=0):
67 if time_left > datetime.timedelta(seconds=0):
68 return
68 return
69
69
70 self.time_of_last_call = datetime.datetime.now()
70 self.time_of_last_call = datetime.datetime.now()
71 return fn(*args, **kwargs)
71 return fn(*args, **kwargs)
72
72
73 return wrapper
73 return wrapper
74
74
75 class Data(object):
76 '''
77 Object to hold data to be plotted
78 '''
79
80 def __init__(self, plottypes, throttle_value):
81 self.plottypes = plottypes
82 self.throttle = throttle_value
83 self.ended = False
84 self.__times = []
85
86 def __str__(self):
87 dum = ['{}{}'.format(key, self.shape(key)) for key in self.data]
88 return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times))
89
90 def __len__(self):
91 return len(self.__times)
92
93 def __getitem__(self, key):
94 if key not in self.data:
95 raise KeyError(log.error('Missing key: {}'.format(key)))
96
97 if 'spc' in key:
98 ret = self.data[key]
99 else:
100 ret = numpy.array([self.data[key][x] for x in self.times])
101 if ret.ndim > 1:
102 ret = numpy.swapaxes(ret, 0, 1)
103 return ret
104
105 def setup(self):
106 '''
107 Configure object
108 '''
109
110 self.ended = False
111 self.data = {}
112 self.__times = []
113 self.__heights = []
114 self.__all_heights = set()
115 for plot in self.plottypes:
116 self.data[plot] = {}
117
118 def shape(self, key):
119 '''
120 Get the shape of the one-element data for the given key
121 '''
122
123 if len(self.data[key]):
124 if 'spc' in key:
125 return self.data[key].shape
126 return self.data[key][self.__times[0]].shape
127 return (0,)
128
129 def update(self, dataOut):
130 '''
131 Update data object with new dataOut
132 '''
133
134 tm = dataOut.utctime
135 if tm in self.__times:
136 return
137
138 self.parameters = getattr(dataOut, 'parameters', [])
139 self.pairs = dataOut.pairsList
140 self.channels = dataOut.channelList
141 self.xrange = (dataOut.getFreqRange(1)/1000. , dataOut.getAcfRange(1) , dataOut.getVelRange(1))
142 self.interval = dataOut.getTimeInterval()
143 self.__heights.append(dataOut.heightList)
144 self.__all_heights.update(dataOut.heightList)
145 self.__times.append(tm)
146
147 for plot in self.plottypes:
148 if plot == 'spc':
149 z = dataOut.data_spc/dataOut.normFactor
150 self.data[plot] = 10*numpy.log10(z)
151 if plot == 'cspc':
152 self.data[plot] = dataOut.data_cspc
153 if plot == 'noise':
154 self.data[plot][tm] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
155 if plot == 'rti':
156 self.data[plot][tm] = dataOut.getPower()
157 if plot == 'snr_db':
158 self.data['snr'][tm] = dataOut.data_SNR
159 if plot == 'snr':
160 self.data[plot][tm] = 10*numpy.log10(dataOut.data_SNR)
161 if plot == 'dop':
162 self.data[plot][tm] = 10*numpy.log10(dataOut.data_DOP)
163 if plot == 'mean':
164 self.data[plot][tm] = dataOut.data_MEAN
165 if plot == 'std':
166 self.data[plot][tm] = dataOut.data_STD
167 if plot == 'coh':
168 self.data[plot][tm] = dataOut.getCoherence()
169 if plot == 'phase':
170 self.data[plot][tm] = dataOut.getCoherence(phase=True)
171 if plot == 'output':
172 self.data[plot][tm] = dataOut.data_output
173 if plot == 'param':
174 self.data[plot][tm] = dataOut.data_param
175
176 def normalize_heights(self):
177 '''
178 Ensure same-dimension of the data for different heighList
179 '''
180
181 H = numpy.array(list(self.__all_heights))
182 H.sort()
183 for key in self.data:
184 shape = self.shape(key)[:-1] + H.shape
185 for tm, obj in self.data[key].items():
186 h = self.__heights[self.__times.index(tm)]
187 if H.size == h.size:
188 continue
189 index = numpy.where(numpy.in1d(H, h))[0]
190 dummy = numpy.zeros(shape) + numpy.nan
191 if len(shape) == 2:
192 dummy[:, index] = obj
193 else:
194 dummy[index] = obj
195 self.data[key][tm] = dummy
196
197 self.__heights = [H for tm in self.__times]
198
199 def jsonify(self, decimate=False):
200 '''
201 Convert data to json
202 '''
203
204 ret = {}
205 tm = self.times[-1]
206
207 for key, value in self.data:
208 if key in ('spc', 'cspc'):
209 ret[key] = roundFloats(self.data[key].to_list())
210 else:
211 ret[key] = roundFloats(self.data[key][tm].to_list())
212
213 ret['timestamp'] = tm
214 ret['interval'] = self.interval
215
216 @property
217 def times(self):
218 '''
219 Return the list of times of the current data
220 '''
221
222 ret = numpy.array(self.__times)
223 ret.sort()
224 return ret
225
226 @property
227 def heights(self):
228 '''
229 Return the list of heights of the current data
230 '''
231
232 return numpy.array(self.__heights[-1])
75
233
76 class PublishData(Operation):
234 class PublishData(Operation):
77 """Clase publish."""
235 '''
236 Operation to send data over zmq.
237 '''
78
238
79 def __init__(self, **kwargs):
239 def __init__(self, **kwargs):
80 """Inicio."""
240 """Inicio."""
81 Operation.__init__(self, **kwargs)
241 Operation.__init__(self, **kwargs)
82 self.isConfig = False
242 self.isConfig = False
83 self.client = None
243 self.client = None
84 self.zeromq = None
244 self.zeromq = None
85 self.mqtt = None
245 self.mqtt = None
86
246
87 def on_disconnect(self, client, userdata, rc):
247 def on_disconnect(self, client, userdata, rc):
88 if rc != 0:
248 if rc != 0:
89 print("Unexpected disconnection.")
249 log.warning('Unexpected disconnection.')
90 self.connect()
250 self.connect()
91
251
92 def connect(self):
252 def connect(self):
93 print 'trying to connect'
253 log.warning('trying to connect')
94 try:
254 try:
95 self.client.connect(
255 self.client.connect(
96 host=self.host,
256 host=self.host,
97 port=self.port,
257 port=self.port,
98 keepalive=60*10,
258 keepalive=60*10,
99 bind_address='')
259 bind_address='')
100 self.client.loop_start()
260 self.client.loop_start()
101 # self.client.publish(
261 # self.client.publish(
102 # self.topic + 'SETUP',
262 # self.topic + 'SETUP',
103 # json.dumps(setup),
263 # json.dumps(setup),
104 # retain=True
264 # retain=True
105 # )
265 # )
106 except:
266 except:
107 print "MQTT Conection error."
267 log.error('MQTT Conection error.')
108 self.client = False
268 self.client = False
109
269
110 def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, verbose=True, **kwargs):
270 def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, verbose=True, **kwargs):
111 self.counter = 0
271 self.counter = 0
112 self.topic = kwargs.get('topic', 'schain')
272 self.topic = kwargs.get('topic', 'schain')
113 self.delay = kwargs.get('delay', 0)
273 self.delay = kwargs.get('delay', 0)
114 self.plottype = kwargs.get('plottype', 'spectra')
274 self.plottype = kwargs.get('plottype', 'spectra')
115 self.host = kwargs.get('host', "10.10.10.82")
275 self.host = kwargs.get('host', "10.10.10.82")
116 self.port = kwargs.get('port', 3000)
276 self.port = kwargs.get('port', 3000)
117 self.clientId = clientId
277 self.clientId = clientId
118 self.cnt = 0
278 self.cnt = 0
119 self.zeromq = zeromq
279 self.zeromq = zeromq
120 self.mqtt = kwargs.get('plottype', 0)
280 self.mqtt = kwargs.get('plottype', 0)
121 self.client = None
281 self.client = None
122 self.verbose = verbose
282 self.verbose = verbose
123 self.dataOut.firstdata = True
124 setup = []
283 setup = []
125 if mqtt is 1:
284 if mqtt is 1:
126 self.client = mqtt.Client(
285 self.client = mqtt.Client(
127 client_id=self.clientId + self.topic + 'SCHAIN',
286 client_id=self.clientId + self.topic + 'SCHAIN',
128 clean_session=True)
287 clean_session=True)
129 self.client.on_disconnect = self.on_disconnect
288 self.client.on_disconnect = self.on_disconnect
130 self.connect()
289 self.connect()
131 for plot in self.plottype:
290 for plot in self.plottype:
132 setup.append({
291 setup.append({
133 'plot': plot,
292 'plot': plot,
134 'topic': self.topic + plot,
293 'topic': self.topic + plot,
135 'title': getattr(self, plot + '_' + 'title', False),
294 'title': getattr(self, plot + '_' + 'title', False),
136 'xlabel': getattr(self, plot + '_' + 'xlabel', False),
295 'xlabel': getattr(self, plot + '_' + 'xlabel', False),
137 'ylabel': getattr(self, plot + '_' + 'ylabel', False),
296 'ylabel': getattr(self, plot + '_' + 'ylabel', False),
138 'xrange': getattr(self, plot + '_' + 'xrange', False),
297 'xrange': getattr(self, plot + '_' + 'xrange', False),
139 'yrange': getattr(self, plot + '_' + 'yrange', False),
298 'yrange': getattr(self, plot + '_' + 'yrange', False),
140 'zrange': getattr(self, plot + '_' + 'zrange', False),
299 'zrange': getattr(self, plot + '_' + 'zrange', False),
141 })
300 })
142 if zeromq is 1:
301 if zeromq is 1:
143 context = zmq.Context()
302 context = zmq.Context()
144 self.zmq_socket = context.socket(zmq.PUSH)
303 self.zmq_socket = context.socket(zmq.PUSH)
145 server = kwargs.get('server', 'zmq.pipe')
304 server = kwargs.get('server', 'zmq.pipe')
146
305
147 if 'tcp://' in server:
306 if 'tcp://' in server:
148 address = server
307 address = server
149 else:
308 else:
150 address = 'ipc:///tmp/%s' % server
309 address = 'ipc:///tmp/%s' % server
151
310
152 self.zmq_socket.connect(address)
311 self.zmq_socket.connect(address)
153 time.sleep(1)
312 time.sleep(1)
154
313
155
314
156 def publish_data(self):
315 def publish_data(self):
157 self.dataOut.finished = False
316 self.dataOut.finished = False
158 if self.mqtt is 1:
317 if self.mqtt is 1:
159 yData = self.dataOut.heightList[:2].tolist()
318 yData = self.dataOut.heightList[:2].tolist()
160 if self.plottype == 'spectra':
319 if self.plottype == 'spectra':
161 data = getattr(self.dataOut, 'data_spc')
320 data = getattr(self.dataOut, 'data_spc')
162 z = data/self.dataOut.normFactor
321 z = data/self.dataOut.normFactor
163 zdB = 10*numpy.log10(z)
322 zdB = 10*numpy.log10(z)
164 xlen, ylen = zdB[0].shape
323 xlen, ylen = zdB[0].shape
165 dx = int(xlen/MAXNUMX) + 1
324 dx = int(xlen/MAXNUMX) + 1
166 dy = int(ylen/MAXNUMY) + 1
325 dy = int(ylen/MAXNUMY) + 1
167 Z = [0 for i in self.dataOut.channelList]
326 Z = [0 for i in self.dataOut.channelList]
168 for i in self.dataOut.channelList:
327 for i in self.dataOut.channelList:
169 Z[i] = zdB[i][::dx, ::dy].tolist()
328 Z[i] = zdB[i][::dx, ::dy].tolist()
170 payload = {
329 payload = {
171 'timestamp': self.dataOut.utctime,
330 'timestamp': self.dataOut.utctime,
172 'data': roundFloats(Z),
331 'data': roundFloats(Z),
173 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
332 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
174 'interval': self.dataOut.getTimeInterval(),
333 'interval': self.dataOut.getTimeInterval(),
175 'type': self.plottype,
334 'type': self.plottype,
176 'yData': yData
335 'yData': yData
177 }
336 }
178 # print payload
179
337
180 elif self.plottype in ('rti', 'power'):
338 elif self.plottype in ('rti', 'power'):
181 data = getattr(self.dataOut, 'data_spc')
339 data = getattr(self.dataOut, 'data_spc')
182 z = data/self.dataOut.normFactor
340 z = data/self.dataOut.normFactor
183 avg = numpy.average(z, axis=1)
341 avg = numpy.average(z, axis=1)
184 avgdB = 10*numpy.log10(avg)
342 avgdB = 10*numpy.log10(avg)
185 xlen, ylen = z[0].shape
343 xlen, ylen = z[0].shape
186 dy = numpy.floor(ylen/self.__MAXNUMY) + 1
344 dy = numpy.floor(ylen/self.__MAXNUMY) + 1
187 AVG = [0 for i in self.dataOut.channelList]
345 AVG = [0 for i in self.dataOut.channelList]
188 for i in self.dataOut.channelList:
346 for i in self.dataOut.channelList:
189 AVG[i] = avgdB[i][::dy].tolist()
347 AVG[i] = avgdB[i][::dy].tolist()
190 payload = {
348 payload = {
191 'timestamp': self.dataOut.utctime,
349 'timestamp': self.dataOut.utctime,
192 'data': roundFloats(AVG),
350 'data': roundFloats(AVG),
193 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
351 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
194 'interval': self.dataOut.getTimeInterval(),
352 'interval': self.dataOut.getTimeInterval(),
195 'type': self.plottype,
353 'type': self.plottype,
196 'yData': yData
354 'yData': yData
197 }
355 }
198 elif self.plottype == 'noise':
356 elif self.plottype == 'noise':
199 noise = self.dataOut.getNoise()/self.dataOut.normFactor
357 noise = self.dataOut.getNoise()/self.dataOut.normFactor
200 noisedB = 10*numpy.log10(noise)
358 noisedB = 10*numpy.log10(noise)
201 payload = {
359 payload = {
202 'timestamp': self.dataOut.utctime,
360 'timestamp': self.dataOut.utctime,
203 'data': roundFloats(noisedB.reshape(-1, 1).tolist()),
361 'data': roundFloats(noisedB.reshape(-1, 1).tolist()),
204 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
362 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
205 'interval': self.dataOut.getTimeInterval(),
363 'interval': self.dataOut.getTimeInterval(),
206 'type': self.plottype,
364 'type': self.plottype,
207 'yData': yData
365 'yData': yData
208 }
366 }
209 elif self.plottype == 'snr':
367 elif self.plottype == 'snr':
210 data = getattr(self.dataOut, 'data_SNR')
368 data = getattr(self.dataOut, 'data_SNR')
211 avgdB = 10*numpy.log10(data)
369 avgdB = 10*numpy.log10(data)
212
370
213 ylen = data[0].size
371 ylen = data[0].size
214 dy = numpy.floor(ylen/self.__MAXNUMY) + 1
372 dy = numpy.floor(ylen/self.__MAXNUMY) + 1
215 AVG = [0 for i in self.dataOut.channelList]
373 AVG = [0 for i in self.dataOut.channelList]
216 for i in self.dataOut.channelList:
374 for i in self.dataOut.channelList:
217 AVG[i] = avgdB[i][::dy].tolist()
375 AVG[i] = avgdB[i][::dy].tolist()
218 payload = {
376 payload = {
219 'timestamp': self.dataOut.utctime,
377 'timestamp': self.dataOut.utctime,
220 'data': roundFloats(AVG),
378 'data': roundFloats(AVG),
221 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
379 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList],
222 'type': self.plottype,
380 'type': self.plottype,
223 'yData': yData
381 'yData': yData
224 }
382 }
225 else:
383 else:
226 print "Tipo de grafico invalido"
384 print "Tipo de grafico invalido"
227 payload = {
385 payload = {
228 'data': 'None',
386 'data': 'None',
229 'timestamp': 'None',
387 'timestamp': 'None',
230 'type': None
388 'type': None
231 }
389 }
232 # print 'Publishing data to {}'.format(self.host)
390
233 self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0)
391 self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0)
234
392
235 if self.zeromq is 1:
393 if self.zeromq is 1:
236 if self.verbose:
394 if self.verbose:
237 print '[Sending] {} - {}'.format(self.dataOut.type, self.dataOut.datatime)
395 log.log(
396 '{} - {}'.format(self.dataOut.type, self.dataOut.datatime),
397 'Sending'
398 )
238 self.zmq_socket.send_pyobj(self.dataOut)
399 self.zmq_socket.send_pyobj(self.dataOut)
239 self.dataOut.firstdata = False
240
241
400
242 def run(self, dataOut, **kwargs):
401 def run(self, dataOut, **kwargs):
243 self.dataOut = dataOut
402 self.dataOut = dataOut
244 if not self.isConfig:
403 if not self.isConfig:
245 self.setup(**kwargs)
404 self.setup(**kwargs)
246 self.isConfig = True
405 self.isConfig = True
247
406
248 self.publish_data()
407 self.publish_data()
249 time.sleep(self.delay)
408 time.sleep(self.delay)
250
409
251 def close(self):
410 def close(self):
252 if self.zeromq is 1:
411 if self.zeromq is 1:
253 self.dataOut.finished = True
412 self.dataOut.finished = True
254 self.zmq_socket.send_pyobj(self.dataOut)
413 self.zmq_socket.send_pyobj(self.dataOut)
414 time.sleep(0.1)
255 self.zmq_socket.close()
415 self.zmq_socket.close()
256 if self.client:
416 if self.client:
257 self.client.loop_stop()
417 self.client.loop_stop()
258 self.client.disconnect()
418 self.client.disconnect()
259
419
260
420
261 class ReceiverData(ProcessingUnit):
421 class ReceiverData(ProcessingUnit):
262
422
263 def __init__(self, **kwargs):
423 def __init__(self, **kwargs):
264
424
265 ProcessingUnit.__init__(self, **kwargs)
425 ProcessingUnit.__init__(self, **kwargs)
266
426
267 self.isConfig = False
427 self.isConfig = False
268 server = kwargs.get('server', 'zmq.pipe')
428 server = kwargs.get('server', 'zmq.pipe')
269 if 'tcp://' in server:
429 if 'tcp://' in server:
270 address = server
430 address = server
271 else:
431 else:
272 address = 'ipc:///tmp/%s' % server
432 address = 'ipc:///tmp/%s' % server
273
433
274 self.address = address
434 self.address = address
275 self.dataOut = JROData()
435 self.dataOut = JROData()
276
436
277 def setup(self):
437 def setup(self):
278
438
279 self.context = zmq.Context()
439 self.context = zmq.Context()
280 self.receiver = self.context.socket(zmq.PULL)
440 self.receiver = self.context.socket(zmq.PULL)
281 self.receiver.bind(self.address)
441 self.receiver.bind(self.address)
282 time.sleep(0.5)
442 time.sleep(0.5)
283 print '[Starting] ReceiverData from {}'.format(self.address)
443 log.success('ReceiverData from {}'.format(self.address))
284
444
285
445
286 def run(self):
446 def run(self):
287
447
288 if not self.isConfig:
448 if not self.isConfig:
289 self.setup()
449 self.setup()
290 self.isConfig = True
450 self.isConfig = True
291
451
292 self.dataOut = self.receiver.recv_pyobj()
452 self.dataOut = self.receiver.recv_pyobj()
293 print '[Receiving] {} - {}'.format(self.dataOut.type,
453 log.log('{} - {}'.format(self.dataOut.type,
294 self.dataOut.datatime.ctime())
454 self.dataOut.datatime.ctime(),),
455 'Receiving')
295
456
296
457
297 class PlotterReceiver(ProcessingUnit, Process):
458 class PlotterReceiver(ProcessingUnit, Process):
298
459
299 throttle_value = 5
460 throttle_value = 5
300
461
301 def __init__(self, **kwargs):
462 def __init__(self, **kwargs):
302
463
303 ProcessingUnit.__init__(self, **kwargs)
464 ProcessingUnit.__init__(self, **kwargs)
304 Process.__init__(self)
465 Process.__init__(self)
305 self.mp = False
466 self.mp = False
306 self.isConfig = False
467 self.isConfig = False
307 self.isWebConfig = False
468 self.isWebConfig = False
308 self.plottypes = []
309 self.connections = 0
469 self.connections = 0
310 server = kwargs.get('server', 'zmq.pipe')
470 server = kwargs.get('server', 'zmq.pipe')
311 plot_server = kwargs.get('plot_server', 'zmq.web')
471 plot_server = kwargs.get('plot_server', 'zmq.web')
312 if 'tcp://' in server:
472 if 'tcp://' in server:
313 address = server
473 address = server
314 else:
474 else:
315 address = 'ipc:///tmp/%s' % server
475 address = 'ipc:///tmp/%s' % server
316
476
317 if 'tcp://' in plot_server:
477 if 'tcp://' in plot_server:
318 plot_address = plot_server
478 plot_address = plot_server
319 else:
479 else:
320 plot_address = 'ipc:///tmp/%s' % plot_server
480 plot_address = 'ipc:///tmp/%s' % plot_server
321
481
322 self.address = address
482 self.address = address
323 self.plot_address = plot_address
483 self.plot_address = plot_address
324 self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')]
484 self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')]
325 self.realtime = kwargs.get('realtime', False)
485 self.realtime = kwargs.get('realtime', False)
326 self.throttle_value = kwargs.get('throttle', 5)
486 self.throttle_value = kwargs.get('throttle', 5)
327 self.sendData = self.initThrottle(self.throttle_value)
487 self.sendData = self.initThrottle(self.throttle_value)
488 self.dates = []
328 self.setup()
489 self.setup()
329
490
330 def setup(self):
491 def setup(self):
331
492
332 self.data = {}
493 self.data = Data(self.plottypes, self.throttle_value)
333 self.data['times'] = []
494 self.isConfig = True
334 for plottype in self.plottypes:
335 self.data[plottype] = {}
336 self.data['noise'] = {}
337 self.data['throttle'] = self.throttle_value
338 self.data['ENDED'] = False
339 self.isConfig = True
340 self.data_web = {}
341
495
342 def event_monitor(self, monitor):
496 def event_monitor(self, monitor):
343
497
344 events = {}
498 events = {}
345
499
346 for name in dir(zmq):
500 for name in dir(zmq):
347 if name.startswith('EVENT_'):
501 if name.startswith('EVENT_'):
348 value = getattr(zmq, name)
502 value = getattr(zmq, name)
349 events[value] = name
503 events[value] = name
350
504
351 while monitor.poll():
505 while monitor.poll():
352 evt = recv_monitor_message(monitor)
506 evt = recv_monitor_message(monitor)
353 if evt['event'] == 32:
507 if evt['event'] == 32:
354 self.connections += 1
508 self.connections += 1
355 if evt['event'] == 512:
509 if evt['event'] == 512:
356 pass
510 pass
357 if self.connections == 0 and self.started is True:
358 self.ended = True
359
511
360 evt.update({'description': events[evt['event']]})
512 evt.update({'description': events[evt['event']]})
361
513
362 if evt['event'] == zmq.EVENT_MONITOR_STOPPED:
514 if evt['event'] == zmq.EVENT_MONITOR_STOPPED:
363 break
515 break
364 monitor.close()
516 monitor.close()
365 print("event monitor thread done!")
517 print('event monitor thread done!')
366
518
367 def initThrottle(self, throttle_value):
519 def initThrottle(self, throttle_value):
368
520
369 @throttle(seconds=throttle_value)
521 @throttle(seconds=throttle_value)
370 def sendDataThrottled(fn_sender, data):
522 def sendDataThrottled(fn_sender, data):
371 fn_sender(data)
523 fn_sender(data)
372
524
373 return sendDataThrottled
525 return sendDataThrottled
374
526
375
376 def send(self, data):
527 def send(self, data):
377 # print '[sending] data=%s size=%s' % (data.keys(), len(data['times']))
528 log.success('Sending {}'.format(data), self.name)
378 self.sender.send_pyobj(data)
529 self.sender.send_pyobj(data)
379
530
380
381 def update(self):
382 t = self.dataOut.utctime
383
384 if t in self.data['times']:
385 return
386
387 self.data['times'].append(t)
388 self.data['dataOut'] = self.dataOut
389
390 for plottype in self.plottypes:
391 if plottype == 'spc':
392 z = self.dataOut.data_spc/self.dataOut.normFactor
393 self.data[plottype] = 10*numpy.log10(z)
394 self.data['noise'][t] = 10*numpy.log10(self.dataOut.getNoise()/self.dataOut.normFactor)
395 if plottype == 'cspc':
396 jcoherence = self.dataOut.data_cspc/numpy.sqrt(self.dataOut.data_spc*self.dataOut.data_spc)
397 self.data['cspc_coh'] = numpy.abs(jcoherence)
398 self.data['cspc_phase'] = numpy.arctan2(jcoherence.imag, jcoherence.real)*180/numpy.pi
399 if plottype == 'rti':
400 self.data[plottype][t] = self.dataOut.getPower()
401 if plottype == 'snr':
402 self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_SNR)
403 if plottype == 'dop':
404 self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_DOP)
405 if plottype == 'mean':
406 self.data[plottype][t] = self.dataOut.data_MEAN
407 if plottype == 'std':
408 self.data[plottype][t] = self.dataOut.data_STD
409 if plottype == 'coh':
410 self.data[plottype][t] = self.dataOut.getCoherence()
411 if plottype == 'phase':
412 self.data[plottype][t] = self.dataOut.getCoherence(phase=True)
413 if plottype == 'output':
414 self.data[plottype][t] = self.dataOut.data_output
415 if plottype == 'param':
416 self.data[plottype][t] = self.dataOut.data_param
417 if self.realtime:
418 self.data_web['timestamp'] = t
419 if plottype == 'spc':
420 self.data_web[plottype] = roundFloats(decimate(self.data[plottype]).tolist())
421 elif plottype == 'cspc':
422 self.data_web['cspc_coh'] = roundFloats(decimate(self.data['cspc_coh']).tolist())
423 self.data_web['cspc_phase'] = roundFloats(decimate(self.data['cspc_phase']).tolist())
424 elif plottype == 'noise':
425 self.data_web['noise'] = roundFloats(self.data['noise'][t].tolist())
426 else:
427 self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist())
428 self.data_web['interval'] = self.dataOut.getTimeInterval()
429 self.data_web['type'] = plottype
430
431 def run(self):
531 def run(self):
432
532
433 print '[Starting] {} from {}'.format(self.name, self.address)
533 log.success(
534 'Starting from {}'.format(self.address),
535 self.name
536 )
434
537
435 self.context = zmq.Context()
538 self.context = zmq.Context()
436 self.receiver = self.context.socket(zmq.PULL)
539 self.receiver = self.context.socket(zmq.PULL)
437 self.receiver.bind(self.address)
540 self.receiver.bind(self.address)
438 monitor = self.receiver.get_monitor_socket()
541 monitor = self.receiver.get_monitor_socket()
439 self.sender = self.context.socket(zmq.PUB)
542 self.sender = self.context.socket(zmq.PUB)
440 if self.realtime:
543 if self.realtime:
441 self.sender_web = self.context.socket(zmq.PUB)
544 self.sender_web = self.context.socket(zmq.PUB)
442 self.sender_web.connect(self.plot_address)
545 self.sender_web.connect(self.plot_address)
443 time.sleep(1)
546 time.sleep(1)
444
547
445 if 'server' in self.kwargs:
548 if 'server' in self.kwargs:
446 self.sender.bind("ipc:///tmp/{}.plots".format(self.kwargs['server']))
549 self.sender.bind("ipc:///tmp/{}.plots".format(self.kwargs['server']))
447 else:
550 else:
448 self.sender.bind("ipc:///tmp/zmq.plots")
551 self.sender.bind("ipc:///tmp/zmq.plots")
449
552
450 time.sleep(3)
553 time.sleep(2)
451
554
452 t = Thread(target=self.event_monitor, args=(monitor,))
555 t = Thread(target=self.event_monitor, args=(monitor,))
453 t.start()
556 t.start()
454
557
455 while True:
558 while True:
456 self.dataOut = self.receiver.recv_pyobj()
559 dataOut = self.receiver.recv_pyobj()
457 # print '[Receiving] {} - {}'.format(self.dataOut.type,
560 dt = datetime.datetime.fromtimestamp(dataOut.utctime).date()
458 # self.dataOut.datatime.ctime())
561 sended = False
459
562 if dt not in self.dates:
460 self.update()
563 if self.data:
564 self.data.ended = True
565 self.send(self.data)
566 sended = True
567 self.data.setup()
568 self.dates.append(dt)
461
569
462 if self.dataOut.firstdata is True:
570 self.data.update(dataOut)
463 self.data['STARTED'] = True
464
571
465 if self.dataOut.finished is True:
572 if dataOut.finished is True:
466 self.send(self.data)
467 self.connections -= 1
573 self.connections -= 1
468 if self.connections == 0 and self.started:
574 if self.connections == 0 and dt in self.dates:
469 self.ended = True
575 self.data.ended = True
470 self.data['ENDED'] = True
471 self.send(self.data)
576 self.send(self.data)
472 self.setup()
577 self.data.setup()
473 self.started = False
474 else:
578 else:
475 if self.realtime:
579 if self.realtime:
476 self.send(self.data)
580 self.send(self.data)
477 self.sender_web.send_string(json.dumps(self.data_web))
581 # self.sender_web.send_string(self.data.jsonify())
478 else:
582 else:
479 self.sendData(self.send, self.data)
583 if not sended:
480 self.started = True
584 self.sendData(self.send, self.data)
481
585
482 self.data['STARTED'] = False
483 return
586 return
484
587
485 def sendToWeb(self):
588 def sendToWeb(self):
486
589
487 if not self.isWebConfig:
590 if not self.isWebConfig:
488 context = zmq.Context()
591 context = zmq.Context()
489 sender_web_config = context.socket(zmq.PUB)
592 sender_web_config = context.socket(zmq.PUB)
490 if 'tcp://' in self.plot_address:
593 if 'tcp://' in self.plot_address:
491 dum, address, port = self.plot_address.split(':')
594 dum, address, port = self.plot_address.split(':')
492 conf_address = '{}:{}:{}'.format(dum, address, int(port)+1)
595 conf_address = '{}:{}:{}'.format(dum, address, int(port)+1)
493 else:
596 else:
494 conf_address = self.plot_address + '.config'
597 conf_address = self.plot_address + '.config'
495 sender_web_config.bind(conf_address)
598 sender_web_config.bind(conf_address)
496 time.sleep(1)
599 time.sleep(1)
497 for kwargs in self.operationKwargs.values():
600 for kwargs in self.operationKwargs.values():
498 if 'plot' in kwargs:
601 if 'plot' in kwargs:
499 print '[Sending] Config data to web for {}'.format(kwargs['code'].upper())
602 log.success('[Sending] Config data to web for {}'.format(kwargs['code'].upper()))
500 sender_web_config.send_string(json.dumps(kwargs))
603 sender_web_config.send_string(json.dumps(kwargs))
501 self.isWebConfig = True
604 self.isWebConfig = True No newline at end of file
General Comments 0
You need to be logged in to leave comments. Login now