##// END OF EJS Templates
Fix labels for spectral moments data
Juan C. Espinoza -
r1228:7f6a5c61254e
parent child
Show More
@@ -1,3858 +1,3858
1 1 import numpy
2 2 import math
3 3 from scipy import optimize, interpolate, signal, stats, ndimage
4 4 import scipy
5 5 import re
6 6 import datetime
7 7 import copy
8 8 import sys
9 9 import importlib
10 10 import itertools
11 11 from multiprocessing import Pool, TimeoutError
12 12 from multiprocessing.pool import ThreadPool
13 13 import time
14 14
15 15 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
16 16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
17 17 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
18 18 from scipy import asarray as ar,exp
19 19 from scipy.optimize import curve_fit
20 20 from schainpy.utils import log
21 21 import warnings
22 22 from numpy import NaN
23 23 from scipy.optimize.optimize import OptimizeWarning
24 24 warnings.filterwarnings('ignore')
25 25
26 26
27 27 SPEED_OF_LIGHT = 299792458
28 28
29 29
30 30 '''solving pickling issue'''
31 31
32 32 def _pickle_method(method):
33 33 func_name = method.__func__.__name__
34 34 obj = method.__self__
35 35 cls = method.__self__.__class__
36 36 return _unpickle_method, (func_name, obj, cls)
37 37
38 38 def _unpickle_method(func_name, obj, cls):
39 39 for cls in cls.mro():
40 40 try:
41 41 func = cls.__dict__[func_name]
42 42 except KeyError:
43 43 pass
44 44 else:
45 45 break
46 46 return func.__get__(obj, cls)
47 47
48 48 @MPDecorator
49 49 class ParametersProc(ProcessingUnit):
50 50
51 51 METHODS = {}
52 52 nSeconds = None
53 53
54 54 def __init__(self):
55 55 ProcessingUnit.__init__(self)
56 56
57 57 # self.objectDict = {}
58 58 self.buffer = None
59 59 self.firstdatatime = None
60 60 self.profIndex = 0
61 61 self.dataOut = Parameters()
62 62 self.setupReq = False #Agregar a todas las unidades de proc
63 63
64 64 def __updateObjFromInput(self):
65 65
66 66 self.dataOut.inputUnit = self.dataIn.type
67 67
68 68 self.dataOut.timeZone = self.dataIn.timeZone
69 69 self.dataOut.dstFlag = self.dataIn.dstFlag
70 70 self.dataOut.errorCount = self.dataIn.errorCount
71 71 self.dataOut.useLocalTime = self.dataIn.useLocalTime
72 72
73 73 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
74 74 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
75 75 self.dataOut.channelList = self.dataIn.channelList
76 76 self.dataOut.heightList = self.dataIn.heightList
77 77 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
78 78 # self.dataOut.nHeights = self.dataIn.nHeights
79 79 # self.dataOut.nChannels = self.dataIn.nChannels
80 80 self.dataOut.nBaud = self.dataIn.nBaud
81 81 self.dataOut.nCode = self.dataIn.nCode
82 82 self.dataOut.code = self.dataIn.code
83 83 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
84 84 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
85 85 # self.dataOut.utctime = self.firstdatatime
86 86 self.dataOut.utctime = self.dataIn.utctime
87 87 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
88 88 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
89 89 self.dataOut.nCohInt = self.dataIn.nCohInt
90 90 # self.dataOut.nIncohInt = 1
91 91 self.dataOut.ippSeconds = self.dataIn.ippSeconds
92 92 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
93 93 self.dataOut.timeInterval1 = self.dataIn.timeInterval
94 94 self.dataOut.heightList = self.dataIn.getHeiRange()
95 95 self.dataOut.frequency = self.dataIn.frequency
96 96 # self.dataOut.noise = self.dataIn.noise
97 97 self.dataOut.error = self.dataIn.error
98 98
99 99 def run(self):
100 100
101 101
102 102
103 103 #---------------------- Voltage Data ---------------------------
104 104
105 105 if self.dataIn.type == "Voltage":
106 106
107 107 self.__updateObjFromInput()
108 108 self.dataOut.data_pre = self.dataIn.data.copy()
109 109 self.dataOut.flagNoData = False
110 110 self.dataOut.utctimeInit = self.dataIn.utctime
111 111 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
112 112 return
113 113
114 114 #---------------------- Spectra Data ---------------------------
115 115
116 116 if self.dataIn.type == "Spectra":
117 117
118 118 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
119 119 self.dataOut.data_spc = self.dataIn.data_spc
120 120 self.dataOut.data_cspc = self.dataIn.data_cspc
121 121 self.dataOut.nProfiles = self.dataIn.nProfiles
122 122 self.dataOut.nIncohInt = self.dataIn.nIncohInt
123 123 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
124 124 self.dataOut.ippFactor = self.dataIn.ippFactor
125 125 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
126 126 self.dataOut.spc_noise = self.dataIn.getNoise()
127 127 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
128 128 # self.dataOut.normFactor = self.dataIn.normFactor
129 129 self.dataOut.pairsList = self.dataIn.pairsList
130 130 self.dataOut.groupList = self.dataIn.pairsList
131 131 self.dataOut.flagNoData = False
132 132
133 133 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
134 134 self.dataOut.ChanDist = self.dataIn.ChanDist
135 135 else: self.dataOut.ChanDist = None
136 136
137 137 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
138 138 # self.dataOut.VelRange = self.dataIn.VelRange
139 139 #else: self.dataOut.VelRange = None
140 140
141 141 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
142 142 self.dataOut.RadarConst = self.dataIn.RadarConst
143 143
144 144 if hasattr(self.dataIn, 'NPW'): #NPW
145 145 self.dataOut.NPW = self.dataIn.NPW
146 146
147 147 if hasattr(self.dataIn, 'COFA'): #COFA
148 148 self.dataOut.COFA = self.dataIn.COFA
149 149
150 150
151 151
152 152 #---------------------- Correlation Data ---------------------------
153 153
154 154 if self.dataIn.type == "Correlation":
155 155 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
156 156
157 157 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
158 158 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
159 159 self.dataOut.groupList = (acf_pairs, ccf_pairs)
160 160
161 161 self.dataOut.abscissaList = self.dataIn.lagRange
162 162 self.dataOut.noise = self.dataIn.noise
163 163 self.dataOut.data_SNR = self.dataIn.SNR
164 164 self.dataOut.flagNoData = False
165 165 self.dataOut.nAvg = self.dataIn.nAvg
166 166
167 167 #---------------------- Parameters Data ---------------------------
168 168
169 169 if self.dataIn.type == "Parameters":
170 170 self.dataOut.copy(self.dataIn)
171 171 self.dataOut.flagNoData = False
172 172
173 173 return True
174 174
175 175 self.__updateObjFromInput()
176 176 self.dataOut.utctimeInit = self.dataIn.utctime
177 177 self.dataOut.paramInterval = self.dataIn.timeInterval
178 178
179 179 return
180 180
181 181
182 182 def target(tups):
183 183
184 184 obj, args = tups
185 185
186 186 return obj.FitGau(args)
187 187
188 188
189 189 class SpectralFilters(Operation):
190 190
191 191 '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR
192 192
193 193 LimitR : It is the limit in m/s of Rainfall
194 194 LimitW : It is the limit in m/s for Winds
195 195
196 196 Input:
197 197
198 198 self.dataOut.data_pre : SPC and CSPC
199 199 self.dataOut.spc_range : To select wind and rainfall velocities
200 200
201 201 Affected:
202 202
203 203 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
204 204 self.dataOut.spcparam_range : Used in SpcParamPlot
205 205 self.dataOut.SPCparam : Used in PrecipitationProc
206 206
207 207
208 208 '''
209 209
210 210 def __init__(self):
211 211 Operation.__init__(self)
212 212 self.i=0
213 213
214 214 def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5):
215 215
216 216
217 217 #Limite de vientos
218 218 LimitR = PositiveLimit
219 219 LimitN = NegativeLimit
220 220
221 221 self.spc = dataOut.data_pre[0].copy()
222 222 self.cspc = dataOut.data_pre[1].copy()
223 223
224 224 self.Num_Hei = self.spc.shape[2]
225 225 self.Num_Bin = self.spc.shape[1]
226 226 self.Num_Chn = self.spc.shape[0]
227 227
228 228 VelRange = dataOut.spc_range[2]
229 229 TimeRange = dataOut.spc_range[1]
230 230 FrecRange = dataOut.spc_range[0]
231 231
232 232 Vmax= 2*numpy.max(dataOut.spc_range[2])
233 233 Tmax= 2*numpy.max(dataOut.spc_range[1])
234 234 Fmax= 2*numpy.max(dataOut.spc_range[0])
235 235
236 236 Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()]
237 237 Breaker1R=numpy.where(VelRange == Breaker1R)
238 238
239 239 Delta = self.Num_Bin/2 - Breaker1R[0]
240 240
241 241
242 242 '''Reacomodando SPCrange'''
243 243
244 244 VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0)
245 245
246 246 VelRange[-(int(self.Num_Bin/2)):]+= Vmax
247 247
248 248 FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0)
249 249
250 250 FrecRange[-(int(self.Num_Bin/2)):]+= Fmax
251 251
252 252 TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0)
253 253
254 254 TimeRange[-(int(self.Num_Bin/2)):]+= Tmax
255 255
256 256 ''' ------------------ '''
257 257
258 258 Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()]
259 259 Breaker2R=numpy.where(VelRange == Breaker2R)
260 260
261 261
262 262 SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1)
263 263
264 264 SPCcut = SPCroll.copy()
265 265 for i in range(self.Num_Chn):
266 266
267 267 SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i]
268 268 SPCcut[i,-int(Delta):,:] = dataOut.noise[i]
269 269
270 270 SPCcut[i]=SPCcut[i]- dataOut.noise[i]
271 271 SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20
272 272
273 273 SPCroll[i]=SPCroll[i]-dataOut.noise[i]
274 274 SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20
275 275
276 276 SPC_ch1 = SPCroll
277 277
278 278 SPC_ch2 = SPCcut
279 279
280 280 SPCparam = (SPC_ch1, SPC_ch2, self.spc)
281 281 dataOut.SPCparam = numpy.asarray(SPCparam)
282 282
283 283
284 284 dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1])
285 285
286 286 dataOut.spcparam_range[2]=VelRange
287 287 dataOut.spcparam_range[1]=TimeRange
288 288 dataOut.spcparam_range[0]=FrecRange
289 289 return dataOut
290 290
291 291 class GaussianFit(Operation):
292 292
293 293 '''
294 294 Function that fit of one and two generalized gaussians (gg) based
295 295 on the PSD shape across an "power band" identified from a cumsum of
296 296 the measured spectrum - noise.
297 297
298 298 Input:
299 299 self.dataOut.data_pre : SelfSpectra
300 300
301 301 Output:
302 302 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
303 303
304 304 '''
305 305 def __init__(self):
306 306 Operation.__init__(self)
307 307 self.i=0
308 308
309 309
310 310 def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
311 311 """This routine will find a couple of generalized Gaussians to a power spectrum
312 312 input: spc
313 313 output:
314 314 Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise
315 315 """
316 316
317 317 self.spc = dataOut.data_pre[0].copy()
318 318 self.Num_Hei = self.spc.shape[2]
319 319 self.Num_Bin = self.spc.shape[1]
320 320 self.Num_Chn = self.spc.shape[0]
321 321 Vrange = dataOut.abscissaList
322 322
323 323 GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei])
324 324 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
325 325 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
326 326 SPC_ch1[:] = numpy.NaN
327 327 SPC_ch2[:] = numpy.NaN
328 328
329 329
330 330 start_time = time.time()
331 331
332 332 noise_ = dataOut.spc_noise[0].copy()
333 333
334 334
335 335 pool = Pool(processes=self.Num_Chn)
336 336 args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)]
337 337 objs = [self for __ in range(self.Num_Chn)]
338 338 attrs = list(zip(objs, args))
339 339 gauSPC = pool.map(target, attrs)
340 340 dataOut.SPCparam = numpy.asarray(SPCparam)
341 341
342 342 ''' Parameters:
343 343 1. Amplitude
344 344 2. Shift
345 345 3. Width
346 346 4. Power
347 347 '''
348 348
349 349 def FitGau(self, X):
350 350
351 351 Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X
352 352
353 353 SPCparam = []
354 354 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
355 355 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
356 356 SPC_ch1[:] = 0#numpy.NaN
357 357 SPC_ch2[:] = 0#numpy.NaN
358 358
359 359
360 360
361 361 for ht in range(self.Num_Hei):
362 362
363 363
364 364 spc = numpy.asarray(self.spc)[ch,:,ht]
365 365
366 366 #############################################
367 367 # normalizing spc and noise
368 368 # This part differs from gg1
369 369 spc_norm_max = max(spc)
370 370 #spc = spc / spc_norm_max
371 371 pnoise = pnoise #/ spc_norm_max
372 372 #############################################
373 373
374 374 fatspectra=1.0
375 375
376 376 wnoise = noise_ #/ spc_norm_max
377 377 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
378 378 #if wnoise>1.1*pnoise: # to be tested later
379 379 # wnoise=pnoise
380 380 noisebl=wnoise*0.9;
381 381 noisebh=wnoise*1.1
382 382 spc=spc-wnoise
383 383
384 384 minx=numpy.argmin(spc)
385 385 #spcs=spc.copy()
386 386 spcs=numpy.roll(spc,-minx)
387 387 cum=numpy.cumsum(spcs)
388 388 tot_noise=wnoise * self.Num_Bin #64;
389 389
390 390 snr = sum(spcs)/tot_noise
391 391 snrdB=10.*numpy.log10(snr)
392 392
393 393 if snrdB < SNRlimit :
394 394 snr = numpy.NaN
395 395 SPC_ch1[:,ht] = 0#numpy.NaN
396 396 SPC_ch1[:,ht] = 0#numpy.NaN
397 397 SPCparam = (SPC_ch1,SPC_ch2)
398 398 continue
399 399
400 400
401 401 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
402 402 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
403 403
404 404 cummax=max(cum);
405 405 epsi=0.08*fatspectra # cumsum to narrow down the energy region
406 406 cumlo=cummax*epsi;
407 407 cumhi=cummax*(1-epsi)
408 408 powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
409 409
410 410
411 411 if len(powerindex) < 1:# case for powerindex 0
412 412 continue
413 413 powerlo=powerindex[0]
414 414 powerhi=powerindex[-1]
415 415 powerwidth=powerhi-powerlo
416 416
417 417 firstpeak=powerlo+powerwidth/10.# first gaussian energy location
418 418 secondpeak=powerhi-powerwidth/10.#second gaussian energy location
419 419 midpeak=(firstpeak+secondpeak)/2.
420 420 firstamp=spcs[int(firstpeak)]
421 421 secondamp=spcs[int(secondpeak)]
422 422 midamp=spcs[int(midpeak)]
423 423
424 424 x=numpy.arange( self.Num_Bin )
425 425 y_data=spc+wnoise
426 426
427 427 ''' single Gaussian '''
428 428 shift0=numpy.mod(midpeak+minx, self.Num_Bin )
429 429 width0=powerwidth/4.#Initialization entire power of spectrum divided by 4
430 430 power0=2.
431 431 amplitude0=midamp
432 432 state0=[shift0,width0,amplitude0,power0,wnoise]
433 433 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
434 434 lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
435 435
436 436 chiSq1=lsq1[1];
437 437
438 438
439 439 if fatspectra<1.0 and powerwidth<4:
440 440 choice=0
441 441 Amplitude0=lsq1[0][2]
442 442 shift0=lsq1[0][0]
443 443 width0=lsq1[0][1]
444 444 p0=lsq1[0][3]
445 445 Amplitude1=0.
446 446 shift1=0.
447 447 width1=0.
448 448 p1=0.
449 449 noise=lsq1[0][4]
450 450 #return (numpy.array([shift0,width0,Amplitude0,p0]),
451 451 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
452 452
453 453 ''' two gaussians '''
454 454 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
455 455 shift0=numpy.mod(firstpeak+minx, self.Num_Bin );
456 456 shift1=numpy.mod(secondpeak+minx, self.Num_Bin )
457 457 width0=powerwidth/6.;
458 458 width1=width0
459 459 power0=2.;
460 460 power1=power0
461 461 amplitude0=firstamp;
462 462 amplitude1=secondamp
463 463 state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
464 464 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
465 465 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
466 466 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
467 467
468 468 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
469 469
470 470
471 471 chiSq2=lsq2[1];
472 472
473 473
474 474
475 475 oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
476 476
477 477 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
478 478 if oneG:
479 479 choice=0
480 480 else:
481 481 w1=lsq2[0][1]; w2=lsq2[0][5]
482 482 a1=lsq2[0][2]; a2=lsq2[0][6]
483 483 p1=lsq2[0][3]; p2=lsq2[0][7]
484 484 s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1;
485 485 s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2;
486 486 gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling
487 487
488 488 if gp1>gp2:
489 489 if a1>0.7*a2:
490 490 choice=1
491 491 else:
492 492 choice=2
493 493 elif gp2>gp1:
494 494 if a2>0.7*a1:
495 495 choice=2
496 496 else:
497 497 choice=1
498 498 else:
499 499 choice=numpy.argmax([a1,a2])+1
500 500 #else:
501 501 #choice=argmin([std2a,std2b])+1
502 502
503 503 else: # with low SNR go to the most energetic peak
504 504 choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
505 505
506 506
507 507 shift0=lsq2[0][0];
508 508 vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0])
509 509 shift1=lsq2[0][4];
510 510 vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0])
511 511
512 512 max_vel = 1.0
513 513
514 514 #first peak will be 0, second peak will be 1
515 515 if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range
516 516 shift0=lsq2[0][0]
517 517 width0=lsq2[0][1]
518 518 Amplitude0=lsq2[0][2]
519 519 p0=lsq2[0][3]
520 520
521 521 shift1=lsq2[0][4]
522 522 width1=lsq2[0][5]
523 523 Amplitude1=lsq2[0][6]
524 524 p1=lsq2[0][7]
525 525 noise=lsq2[0][8]
526 526 else:
527 527 shift1=lsq2[0][0]
528 528 width1=lsq2[0][1]
529 529 Amplitude1=lsq2[0][2]
530 530 p1=lsq2[0][3]
531 531
532 532 shift0=lsq2[0][4]
533 533 width0=lsq2[0][5]
534 534 Amplitude0=lsq2[0][6]
535 535 p0=lsq2[0][7]
536 536 noise=lsq2[0][8]
537 537
538 538 if Amplitude0<0.05: # in case the peak is noise
539 539 shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN]
540 540 if Amplitude1<0.05:
541 541 shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN]
542 542
543 543
544 544 SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0
545 545 SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1
546 546 SPCparam = (SPC_ch1,SPC_ch2)
547 547
548 548
549 549 return GauSPC
550 550
551 551 def y_model1(self,x,state):
552 552 shift0,width0,amplitude0,power0,noise=state
553 553 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
554 554
555 555 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
556 556
557 557 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
558 558 return model0+model0u+model0d+noise
559 559
560 560 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
561 561 shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state
562 562 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
563 563
564 564 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
565 565
566 566 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
567 567 model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1)
568 568
569 569 model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1)
570 570
571 571 model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1)
572 572 return model0+model0u+model0d+model1+model1u+model1d+noise
573 573
574 574 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
575 575
576 576 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
577 577
578 578 def misfit2(self,state,y_data,x,num_intg):
579 579 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
580 580
581 581
582 582
583 583 class PrecipitationProc(Operation):
584 584
585 585 '''
586 586 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
587 587
588 588 Input:
589 589 self.dataOut.data_pre : SelfSpectra
590 590
591 591 Output:
592 592
593 593 self.dataOut.data_output : Reflectivity factor, rainfall Rate
594 594
595 595
596 596 Parameters affected:
597 597 '''
598 598
599 599 def __init__(self):
600 600 Operation.__init__(self)
601 601 self.i=0
602 602
603 603
604 604 def gaus(self,xSamples,Amp,Mu,Sigma):
605 605 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
606 606
607 607
608 608
609 609 def Moments(self, ySamples, xSamples):
610 610 Pot = numpy.nansum( ySamples ) # Potencia, momento 0
611 611 yNorm = ySamples / Pot
612 612
613 613 Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento
614 614 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
615 615 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
616 616
617 617 return numpy.array([Pot, Vr, Desv])
618 618
619 619 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
620 620 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350):
621 621
622 622
623 623 Velrange = dataOut.spcparam_range[2]
624 624 FrecRange = dataOut.spcparam_range[0]
625 625
626 626 dV= Velrange[1]-Velrange[0]
627 627 dF= FrecRange[1]-FrecRange[0]
628 628
629 629 if radar == "MIRA35C" :
630 630
631 631 self.spc = dataOut.data_pre[0].copy()
632 632 self.Num_Hei = self.spc.shape[2]
633 633 self.Num_Bin = self.spc.shape[1]
634 634 self.Num_Chn = self.spc.shape[0]
635 635 Ze = self.dBZeMODE2(dataOut)
636 636
637 637 else:
638 638
639 639 self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() #
640 640
641 641 """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX"""
642 642
643 643 self.spc[:,:,0:7]= numpy.NaN
644 644
645 645 """##########################################"""
646 646
647 647 self.Num_Hei = self.spc.shape[2]
648 648 self.Num_Bin = self.spc.shape[1]
649 649 self.Num_Chn = self.spc.shape[0]
650 650
651 651 ''' Se obtiene la constante del RADAR '''
652 652
653 653 self.Pt = Pt
654 654 self.Gt = Gt
655 655 self.Gr = Gr
656 656 self.Lambda = Lambda
657 657 self.aL = aL
658 658 self.tauW = tauW
659 659 self.ThetaT = ThetaT
660 660 self.ThetaR = ThetaR
661 661
662 662 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
663 663 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
664 664 RadarConstant = 10e-26 * Numerator / Denominator #
665 665
666 666 ''' ============================= '''
667 667
668 668 self.spc[0] = (self.spc[0]-dataOut.noise[0])
669 669 self.spc[1] = (self.spc[1]-dataOut.noise[1])
670 670 self.spc[2] = (self.spc[2]-dataOut.noise[2])
671 671
672 672 self.spc[ numpy.where(self.spc < 0)] = 0
673 673
674 674 SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise))
675 675 SPCmean[ numpy.where(SPCmean < 0)] = 0
676 676
677 677 ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei])
678 678 ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei])
679 679 ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei])
680 680
681 681 Pr = SPCmean[:,:]
682 682
683 683 VelMeteoro = numpy.mean(SPCmean,axis=0)
684 684
685 685 D_range = numpy.zeros([self.Num_Bin,self.Num_Hei])
686 686 SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei])
687 687 N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei])
688 688 V_mean = numpy.zeros(self.Num_Hei)
689 689 del_V = numpy.zeros(self.Num_Hei)
690 690 Z = numpy.zeros(self.Num_Hei)
691 691 Ze = numpy.zeros(self.Num_Hei)
692 692 RR = numpy.zeros(self.Num_Hei)
693 693
694 694 Range = dataOut.heightList*1000.
695 695
696 696 for R in range(self.Num_Hei):
697 697
698 698 h = Range[R] + Altitude #Range from ground to radar pulse altitude
699 699 del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity
700 700
701 701 D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3
702 702
703 703 '''NOTA: ETA(n) dn = ETA(f) df
704 704
705 705 dn = 1 Diferencial de muestreo
706 706 df = ETA(n) / ETA(f)
707 707
708 708 '''
709 709
710 710 ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA)
711 711
712 712 ETAv[:,R]=ETAn[:,R]/dV
713 713
714 714 ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R])
715 715
716 716 SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma)
717 717
718 718 N_dist[:,R] = ETAn[:,R] / SIGMA[:,R]
719 719
720 720 DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin])
721 721
722 722 try:
723 723 popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments)
724 724 except:
725 725 popt01=numpy.zeros(3)
726 726 popt01[1]= DMoments[1]
727 727
728 728 if popt01[1]<0 or popt01[1]>20:
729 729 popt01[1]=numpy.NaN
730 730
731 731
732 732 V_mean[R]=popt01[1]
733 733
734 734 Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18
735 735
736 736 RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate
737 737
738 738 Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km)
739 739
740 740
741 741
742 742 RR2 = (Z/200)**(1/1.6)
743 743 dBRR = 10*numpy.log10(RR)
744 744 dBRR2 = 10*numpy.log10(RR2)
745 745
746 746 dBZe = 10*numpy.log10(Ze)
747 747 dBZ = 10*numpy.log10(Z)
748 748
749 749 dataOut.data_output = RR[8]
750 750 dataOut.data_param = numpy.ones([3,self.Num_Hei])
751 751 dataOut.channelList = [0,1,2]
752 752
753 753 dataOut.data_param[0]=dBZ
754 754 dataOut.data_param[1]=V_mean
755 755 dataOut.data_param[2]=RR
756 756
757 757 return dataOut
758 758
759 759 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
760 760
761 761 NPW = dataOut.NPW
762 762 COFA = dataOut.COFA
763 763
764 764 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
765 765 RadarConst = dataOut.RadarConst
766 766 #frequency = 34.85*10**9
767 767
768 768 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
769 769 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
770 770
771 771 ETA = numpy.sum(SNR,1)
772 772
773 773 ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN)
774 774
775 775 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
776 776
777 777 for r in range(self.Num_Hei):
778 778
779 779 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
780 780 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
781 781
782 782 return Ze
783 783
784 784 # def GetRadarConstant(self):
785 785 #
786 786 # """
787 787 # Constants:
788 788 #
789 789 # Pt: Transmission Power dB 5kW 5000
790 790 # Gt: Transmission Gain dB 24.7 dB 295.1209
791 791 # Gr: Reception Gain dB 18.5 dB 70.7945
792 792 # Lambda: Wavelenght m 0.6741 m 0.6741
793 793 # aL: Attenuation loses dB 4dB 2.5118
794 794 # tauW: Width of transmission pulse s 4us 4e-6
795 795 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
796 796 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
797 797 #
798 798 # """
799 799 #
800 800 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
801 801 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
802 802 # RadarConstant = Numerator / Denominator
803 803 #
804 804 # return RadarConstant
805 805
806 806
807 807
808 808 class FullSpectralAnalysis(Operation):
809 809
810 810 """
811 811 Function that implements Full Spectral Analisys technique.
812 812
813 813 Input:
814 814 self.dataOut.data_pre : SelfSpectra and CrossSPectra data
815 815 self.dataOut.groupList : Pairlist of channels
816 816 self.dataOut.ChanDist : Physical distance between receivers
817 817
818 818
819 819 Output:
820 820
821 821 self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind
822 822
823 823
824 824 Parameters affected: Winds, height range, SNR
825 825
826 826 """
827 827 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7):
828 828
829 829 self.indice=int(numpy.random.rand()*1000)
830 830
831 831 spc = dataOut.data_pre[0].copy()
832 832 cspc = dataOut.data_pre[1]
833 833
834 834 """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX"""
835 835
836 836 SNRspc = spc.copy()
837 837 SNRspc[:,:,0:7]= numpy.NaN
838 838
839 839 """##########################################"""
840 840
841 841
842 842 nChannel = spc.shape[0]
843 843 nProfiles = spc.shape[1]
844 844 nHeights = spc.shape[2]
845 845
846 846 pairsList = dataOut.groupList
847 847 if dataOut.ChanDist is not None :
848 848 ChanDist = dataOut.ChanDist
849 849 else:
850 850 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
851 851
852 852 FrecRange = dataOut.spc_range[0]
853 853
854 854 ySamples=numpy.ones([nChannel,nProfiles])
855 855 phase=numpy.ones([nChannel,nProfiles])
856 856 CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_)
857 857 coherence=numpy.ones([nChannel,nProfiles])
858 858 PhaseSlope=numpy.ones(nChannel)
859 859 PhaseInter=numpy.ones(nChannel)
860 860 data_SNR=numpy.zeros([nProfiles])
861 861
862 862 data = dataOut.data_pre
863 863 noise = dataOut.noise
864 864
865 865 dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0]
866 866
867 867 dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20
868 868
869 869
870 870 data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN
871 871
872 872 velocityX=[]
873 873 velocityY=[]
874 874 velocityV=[]
875 875 PhaseLine=[]
876 876
877 877 dbSNR = 10*numpy.log10(dataOut.data_SNR)
878 878 dbSNR = numpy.average(dbSNR,0)
879 879
880 880 for Height in range(nHeights):
881 881
882 882 [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit)
883 883 PhaseLine = numpy.append(PhaseLine, PhaseSlope)
884 884
885 885 if abs(Vzon)<100. and abs(Vzon)> 0.:
886 886 velocityX=numpy.append(velocityX, Vzon)#Vmag
887 887
888 888 else:
889 889 velocityX=numpy.append(velocityX, numpy.NaN)
890 890
891 891 if abs(Vmer)<100. and abs(Vmer) > 0.:
892 892 velocityY=numpy.append(velocityY, -Vmer)#Vang
893 893
894 894 else:
895 895 velocityY=numpy.append(velocityY, numpy.NaN)
896 896
897 897 if dbSNR[Height] > SNRlimit:
898 898 velocityV=numpy.append(velocityV, -Vver)#FirstMoment[Height])
899 899 else:
900 900 velocityV=numpy.append(velocityV, numpy.NaN)
901 901
902 902
903 903
904 904 '''Nota: Cambiar el signo de numpy.array(velocityX) cuando se intente procesar datos de BLTR'''
905 905 data_output[0] = numpy.array(velocityX) #self.moving_average(numpy.array(velocityX) , N=1)
906 906 data_output[1] = numpy.array(velocityY) #self.moving_average(numpy.array(velocityY) , N=1)
907 907 data_output[2] = velocityV#FirstMoment
908 908
909 909 xFrec=FrecRange[0:spc.shape[1]]
910 910
911 911 dataOut.data_output=data_output
912 912
913 913 return dataOut
914 914
915 915
916 916 def moving_average(self,x, N=2):
917 917 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
918 918
919 919 def gaus(self,xSamples,Amp,Mu,Sigma):
920 920 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
921 921
922 922
923 923
924 924 def Moments(self, ySamples, xSamples):
925 925 Pot = numpy.nansum( ySamples ) # Potencia, momento 0
926 926 yNorm = ySamples / Pot
927 927 Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento
928 928 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
929 929 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
930 930
931 931 return numpy.array([Pot, Vr, Desv])
932 932
933 933 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit):
934 934
935 935
936 936
937 937 ySamples=numpy.ones([spc.shape[0],spc.shape[1]])
938 938 phase=numpy.ones([spc.shape[0],spc.shape[1]])
939 939 CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_)
940 940 coherence=numpy.ones([spc.shape[0],spc.shape[1]])
941 941 PhaseSlope=numpy.zeros(spc.shape[0])
942 942 PhaseInter=numpy.ones(spc.shape[0])
943 943 xFrec=AbbsisaRange[0][0:spc.shape[1]]
944 944 xVel =AbbsisaRange[2][0:spc.shape[1]]
945 945 Vv=numpy.empty(spc.shape[2])*0
946 946 SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]#
947 947
948 948 SPCmoments = self.Moments(SPCav[:,Height], xVel )
949 949 CSPCmoments = []
950 950 cspcNoise = numpy.empty(3)
951 951
952 952 '''Getting Eij and Nij'''
953 953
954 954 Xi01=ChanDist[0][0]
955 955 Eta01=ChanDist[0][1]
956 956
957 957 Xi02=ChanDist[1][0]
958 958 Eta02=ChanDist[1][1]
959 959
960 960 Xi12=ChanDist[2][0]
961 961 Eta12=ChanDist[2][1]
962 962
963 963 z = spc.copy()
964 964 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
965 965
966 966 for i in range(spc.shape[0]):
967 967
968 968 '''****** Line of Data SPC ******'''
969 969 zline=z[i,:,Height].copy() - noise[i] # Se resta ruido
970 970
971 971 '''****** SPC is normalized ******'''
972 972 SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido
973 973 FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado
974 974
975 975 xSamples = xFrec # Se toma el rango de frecuncias
976 976 ySamples[i] = FactNorm # Se toman los valores de SPC normalizado
977 977
978 978 for i in range(spc.shape[0]):
979 979
980 980 '''****** Line of Data CSPC ******'''
981 981 cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido
982 982 SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido
983 983 cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado
984 984
985 985 '''****** CSPC is normalized with respect to Briggs and Vincent ******'''
986 986 chan_index0 = pairsList[i][0]
987 987 chan_index1 = pairsList[i][1]
988 988
989 989 CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2
990 990 CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor)
991 991
992 992 CSPCSamples[i] = CSPCNorm
993 993
994 994 coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor)
995 995
996 996 #coherence[i]= self.moving_average(coherence[i],N=1)
997 997
998 998 phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi
999 999
1000 1000 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples),
1001 1001 self.Moments(numpy.abs(CSPCSamples[1]), xSamples),
1002 1002 self.Moments(numpy.abs(CSPCSamples[2]), xSamples)])
1003 1003
1004 1004
1005 1005 popt=[1e-10,0,1e-10]
1006 1006 popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10]
1007 1007 FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0
1008 1008
1009 1009 CSPCMask01 = numpy.abs(CSPCSamples[0])
1010 1010 CSPCMask02 = numpy.abs(CSPCSamples[1])
1011 1011 CSPCMask12 = numpy.abs(CSPCSamples[2])
1012 1012
1013 1013 mask01 = ~numpy.isnan(CSPCMask01)
1014 1014 mask02 = ~numpy.isnan(CSPCMask02)
1015 1015 mask12 = ~numpy.isnan(CSPCMask12)
1016 1016
1017 1017 #mask = ~numpy.isnan(CSPCMask01)
1018 1018 CSPCMask01 = CSPCMask01[mask01]
1019 1019 CSPCMask02 = CSPCMask02[mask02]
1020 1020 CSPCMask12 = CSPCMask12[mask12]
1021 1021 #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01)
1022 1022
1023 1023
1024 1024
1025 1025 '''***Fit Gauss CSPC01***'''
1026 1026 if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 :
1027 1027 try:
1028 1028 popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0])
1029 1029 popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1])
1030 1030 popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2])
1031 1031 FitGauss01 = self.gaus(xSamples,*popt01)
1032 1032 FitGauss02 = self.gaus(xSamples,*popt02)
1033 1033 FitGauss12 = self.gaus(xSamples,*popt12)
1034 1034 except:
1035 1035 FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0]))
1036 1036 FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1]))
1037 1037 FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2]))
1038 1038
1039 1039
1040 1040 CSPCopt = numpy.vstack([popt01,popt02,popt12])
1041 1041
1042 1042 '''****** Getting fij width ******'''
1043 1043
1044 1044 yMean = numpy.average(ySamples, axis=0) # ySamples[0]
1045 1045
1046 1046 '''******* Getting fitting Gaussian *******'''
1047 1047 meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia)
1048 1048 sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia)
1049 1049
1050 1050 yMoments = self.Moments(yMean, xSamples)
1051 1051
1052 1052 if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001:
1053 1053 try:
1054 1054 popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments)
1055 1055 FitGauss=self.gaus(xSamples,*popt)
1056 1056
1057 1057 except :#RuntimeError:
1058 1058 FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
1059 1059
1060 1060
1061 1061 else:
1062 1062 FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
1063 1063
1064 1064
1065 1065
1066 1066 '''****** Getting Fij ******'''
1067 1067 Fijcspc = CSPCopt[:,2]/2*3
1068 1068
1069 1069
1070 1070 GaussCenter = popt[1] #xFrec[GCpos]
1071 1071 #Punto en Eje X de la Gaussiana donde se encuentra el centro
1072 1072 ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()]
1073 1073 PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0]
1074 1074
1075 1075 #Punto e^-1 hubicado en la Gaussiana
1076 1076 PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1)
1077 1077 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss"
1078 1078 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1079 1079
1080 1080 if xSamples[PointFij] > xSamples[PointGauCenter]:
1081 1081 Fij = xSamples[PointFij] - xSamples[PointGauCenter]
1082 1082
1083 1083 else:
1084 1084 Fij = xSamples[PointGauCenter] - xSamples[PointFij]
1085 1085
1086 1086
1087 1087 '''****** Taking frequency ranges from SPCs ******'''
1088 1088
1089 1089
1090 1090 #GaussCenter = popt[1] #Primer momento 01
1091 1091 GauWidth = popt[2] *3/2 #Ancho de banda de Gau01
1092 1092 Range = numpy.empty(2)
1093 1093 Range[0] = GaussCenter - GauWidth
1094 1094 Range[1] = GaussCenter + GauWidth
1095 1095 #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max)
1096 1096 ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()]
1097 1097 ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()]
1098 1098
1099 1099 PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0]
1100 1100 PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0]
1101 1101
1102 1102 Range=numpy.array([ PointRangeMin, PointRangeMax ])
1103 1103
1104 1104 FrecRange = xFrec[ Range[0] : Range[1] ]
1105 1105 VelRange = xVel[ Range[0] : Range[1] ]
1106 1106
1107 1107
1108 1108 '''****** Getting SCPC Slope ******'''
1109 1109
1110 1110 for i in range(spc.shape[0]):
1111 1111
1112 1112 if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3:
1113 1113 PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3)
1114 1114
1115 1115 '''***********************VelRange******************'''
1116 1116
1117 1117 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1118 1118
1119 1119 if len(FrecRange) == len(PhaseRange):
1120 1120 try:
1121 1121 slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask])
1122 1122 PhaseSlope[i]=slope
1123 1123 PhaseInter[i]=intercept
1124 1124 except:
1125 1125 PhaseSlope[i]=0
1126 1126 PhaseInter[i]=0
1127 1127 else:
1128 1128 PhaseSlope[i]=0
1129 1129 PhaseInter[i]=0
1130 1130 else:
1131 1131 PhaseSlope[i]=0
1132 1132 PhaseInter[i]=0
1133 1133
1134 1134
1135 1135 '''Getting constant C'''
1136 1136 cC=(Fij*numpy.pi)**2
1137 1137
1138 1138 '''****** Getting constants F and G ******'''
1139 1139 MijEijNij=numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1140 1140 MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi)
1141 1141 MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi)
1142 1142 MijResults=numpy.array([MijResult0,MijResult1])
1143 1143 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1144 1144
1145 1145 '''****** Getting constants A, B and H ******'''
1146 1146 W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0]))
1147 1147 W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1]))
1148 1148 W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2]))
1149 1149
1150 1150 WijResult0=((cF*Xi01+cG*Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC))
1151 1151 WijResult1=((cF*Xi02+cG*Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC))
1152 1152 WijResult2=((cF*Xi12+cG*Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC))
1153 1153
1154 1154 WijResults=numpy.array([WijResult0, WijResult1, WijResult2])
1155 1155
1156 1156 WijEijNij=numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1157 1157 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1158 1158
1159 1159 VxVy=numpy.array([[cA,cH],[cH,cB]])
1160 1160 VxVyResults=numpy.array([-cF,-cG])
1161 1161 (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
1162 1162
1163 1163 Vzon = Vy
1164 1164 Vmer = Vx
1165 1165 Vmag=numpy.sqrt(Vzon**2+Vmer**2)
1166 1166 Vang=numpy.arctan2(Vmer,Vzon)
1167 1167 if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4:
1168 1168 Vver=popt[1]
1169 1169 else:
1170 1170 Vver=numpy.NaN
1171 1171 FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12])
1172 1172
1173 1173
1174 1174 return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC
1175 1175
1176 1176 class SpectralMoments(Operation):
1177 1177
1178 1178 '''
1179 1179 Function SpectralMoments()
1180 1180
1181 1181 Calculates moments (power, mean, standard deviation) and SNR of the signal
1182 1182
1183 1183 Type of dataIn: Spectra
1184 1184
1185 1185 Configuration Parameters:
1186 1186
1187 1187 dirCosx : Cosine director in X axis
1188 1188 dirCosy : Cosine director in Y axis
1189 1189
1190 1190 elevation :
1191 1191 azimuth :
1192 1192
1193 1193 Input:
1194 1194 channelList : simple channel list to select e.g. [2,3,7]
1195 1195 self.dataOut.data_pre : Spectral data
1196 1196 self.dataOut.abscissaList : List of frequencies
1197 1197 self.dataOut.noise : Noise level per channel
1198 1198
1199 1199 Affected:
1200 1200 self.dataOut.moments : Parameters per channel
1201 1201 self.dataOut.data_SNR : SNR per channel
1202 1202
1203 1203 '''
1204 1204
1205 1205 def run(self, dataOut):
1206 1206
1207 1207 #dataOut.data_pre = dataOut.data_pre[0]
1208 1208 data = dataOut.data_pre[0]
1209 1209 absc = dataOut.abscissaList[:-1]
1210 1210 noise = dataOut.noise
1211 1211 nChannel = data.shape[0]
1212 1212 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1213 1213
1214 1214 for ind in range(nChannel):
1215 1215 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1216 1216
1217 1217 dataOut.moments = data_param[:,1:,:]
1218 1218 dataOut.data_SNR = data_param[:,0]
1219 dataOut.data_DOP = data_param[:,1]
1220 dataOut.data_MEAN = data_param[:,2]
1221 dataOut.data_STD = data_param[:,3]
1219 dataOut.data_POW = data_param[:,1]
1220 dataOut.data_DOP = data_param[:,2]
1221 dataOut.data_WIDTH = data_param[:,3]
1222 1222 return dataOut
1223 1223
1224 1224 def __calculateMoments(self, oldspec, oldfreq, n0,
1225 1225 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1226 1226
1227 1227 if (nicoh is None): nicoh = 1
1228 1228 if (graph is None): graph = 0
1229 1229 if (smooth is None): smooth = 0
1230 1230 elif (self.smooth < 3): smooth = 0
1231 1231
1232 1232 if (type1 is None): type1 = 0
1233 1233 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1234 1234 if (snrth is None): snrth = -3
1235 1235 if (dc is None): dc = 0
1236 1236 if (aliasing is None): aliasing = 0
1237 1237 if (oldfd is None): oldfd = 0
1238 1238 if (wwauto is None): wwauto = 0
1239 1239
1240 1240 if (n0 < 1.e-20): n0 = 1.e-20
1241 1241
1242 1242 freq = oldfreq
1243 1243 vec_power = numpy.zeros(oldspec.shape[1])
1244 1244 vec_fd = numpy.zeros(oldspec.shape[1])
1245 1245 vec_w = numpy.zeros(oldspec.shape[1])
1246 1246 vec_snr = numpy.zeros(oldspec.shape[1])
1247 1247
1248 1248 oldspec = numpy.ma.masked_invalid(oldspec)
1249 1249
1250 1250 for ind in range(oldspec.shape[1]):
1251 1251
1252 1252 spec = oldspec[:,ind]
1253 1253 aux = spec*fwindow
1254 1254 max_spec = aux.max()
1255 1255 m = list(aux).index(max_spec)
1256 1256
1257 1257 #Smooth
1258 1258 if (smooth == 0): spec2 = spec
1259 1259 else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1260 1260
1261 1261 # Calculo de Momentos
1262 1262 bb = spec2[list(range(m,spec2.size))]
1263 1263 bb = (bb<n0).nonzero()
1264 1264 bb = bb[0]
1265 1265
1266 1266 ss = spec2[list(range(0,m + 1))]
1267 1267 ss = (ss<n0).nonzero()
1268 1268 ss = ss[0]
1269 1269
1270 1270 if (bb.size == 0):
1271 1271 bb0 = spec.size - 1 - m
1272 1272 else:
1273 1273 bb0 = bb[0] - 1
1274 1274 if (bb0 < 0):
1275 1275 bb0 = 0
1276 1276
1277 1277 if (ss.size == 0): ss1 = 1
1278 1278 else: ss1 = max(ss) + 1
1279 1279
1280 1280 if (ss1 > m): ss1 = m
1281 1281
1282 1282 valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1
1283 1283 power = ((spec2[valid] - n0)*fwindow[valid]).sum()
1284 1284 fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
1285 1285 w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
1286 1286 snr = (spec2.mean()-n0)/n0
1287 1287
1288 1288 if (snr < 1.e-20) :
1289 1289 snr = 1.e-20
1290 1290
1291 1291 vec_power[ind] = power
1292 1292 vec_fd[ind] = fd
1293 1293 vec_w[ind] = w
1294 1294 vec_snr[ind] = snr
1295 1295
1296 1296 moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1297 1297 return moments
1298 1298
1299 1299 #------------------ Get SA Parameters --------------------------
1300 1300
1301 1301 def GetSAParameters(self):
1302 1302 #SA en frecuencia
1303 1303 pairslist = self.dataOut.groupList
1304 1304 num_pairs = len(pairslist)
1305 1305
1306 1306 vel = self.dataOut.abscissaList
1307 1307 spectra = self.dataOut.data_pre
1308 1308 cspectra = self.dataIn.data_cspc
1309 1309 delta_v = vel[1] - vel[0]
1310 1310
1311 1311 #Calculating the power spectrum
1312 1312 spc_pow = numpy.sum(spectra, 3)*delta_v
1313 1313 #Normalizing Spectra
1314 1314 norm_spectra = spectra/spc_pow
1315 1315 #Calculating the norm_spectra at peak
1316 1316 max_spectra = numpy.max(norm_spectra, 3)
1317 1317
1318 1318 #Normalizing Cross Spectra
1319 1319 norm_cspectra = numpy.zeros(cspectra.shape)
1320 1320
1321 1321 for i in range(num_chan):
1322 1322 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1323 1323
1324 1324 max_cspectra = numpy.max(norm_cspectra,2)
1325 1325 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1326 1326
1327 1327 for i in range(num_pairs):
1328 1328 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1329 1329 #------------------- Get Lags ----------------------------------
1330 1330
1331 1331 class SALags(Operation):
1332 1332 '''
1333 1333 Function GetMoments()
1334 1334
1335 1335 Input:
1336 1336 self.dataOut.data_pre
1337 1337 self.dataOut.abscissaList
1338 1338 self.dataOut.noise
1339 1339 self.dataOut.normFactor
1340 1340 self.dataOut.data_SNR
1341 1341 self.dataOut.groupList
1342 1342 self.dataOut.nChannels
1343 1343
1344 1344 Affected:
1345 1345 self.dataOut.data_param
1346 1346
1347 1347 '''
1348 1348 def run(self, dataOut):
1349 1349 data_acf = dataOut.data_pre[0]
1350 1350 data_ccf = dataOut.data_pre[1]
1351 1351 normFactor_acf = dataOut.normFactor[0]
1352 1352 normFactor_ccf = dataOut.normFactor[1]
1353 1353 pairs_acf = dataOut.groupList[0]
1354 1354 pairs_ccf = dataOut.groupList[1]
1355 1355
1356 1356 nHeights = dataOut.nHeights
1357 1357 absc = dataOut.abscissaList
1358 1358 noise = dataOut.noise
1359 1359 SNR = dataOut.data_SNR
1360 1360 nChannels = dataOut.nChannels
1361 1361 # pairsList = dataOut.groupList
1362 1362 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1363 1363
1364 1364 for l in range(len(pairs_acf)):
1365 1365 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1366 1366
1367 1367 for l in range(len(pairs_ccf)):
1368 1368 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1369 1369
1370 1370 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1371 1371 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1372 1372 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1373 1373 return
1374 1374
1375 1375 # def __getPairsAutoCorr(self, pairsList, nChannels):
1376 1376 #
1377 1377 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1378 1378 #
1379 1379 # for l in range(len(pairsList)):
1380 1380 # firstChannel = pairsList[l][0]
1381 1381 # secondChannel = pairsList[l][1]
1382 1382 #
1383 1383 # #Obteniendo pares de Autocorrelacion
1384 1384 # if firstChannel == secondChannel:
1385 1385 # pairsAutoCorr[firstChannel] = int(l)
1386 1386 #
1387 1387 # pairsAutoCorr = pairsAutoCorr.astype(int)
1388 1388 #
1389 1389 # pairsCrossCorr = range(len(pairsList))
1390 1390 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1391 1391 #
1392 1392 # return pairsAutoCorr, pairsCrossCorr
1393 1393
1394 1394 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1395 1395
1396 1396 lag0 = data_acf.shape[1]/2
1397 1397 #Funcion de Autocorrelacion
1398 1398 mean_acf = stats.nanmean(data_acf, axis = 0)
1399 1399
1400 1400 #Obtencion Indice de TauCross
1401 1401 ind_ccf = data_ccf.argmax(axis = 1)
1402 1402 #Obtencion Indice de TauAuto
1403 1403 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1404 1404 ccf_lag0 = data_ccf[:,lag0,:]
1405 1405
1406 1406 for i in range(ccf_lag0.shape[0]):
1407 1407 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1408 1408
1409 1409 #Obtencion de TauCross y TauAuto
1410 1410 tau_ccf = lagRange[ind_ccf]
1411 1411 tau_acf = lagRange[ind_acf]
1412 1412
1413 1413 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1414 1414
1415 1415 tau_ccf[Nan1,Nan2] = numpy.nan
1416 1416 tau_acf[Nan1,Nan2] = numpy.nan
1417 1417 tau = numpy.vstack((tau_ccf,tau_acf))
1418 1418
1419 1419 return tau
1420 1420
1421 1421 def __calculateLag1Phase(self, data, lagTRange):
1422 1422 data1 = stats.nanmean(data, axis = 0)
1423 1423 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1424 1424
1425 1425 phase = numpy.angle(data1[lag1,:])
1426 1426
1427 1427 return phase
1428 1428
1429 1429 class SpectralFitting(Operation):
1430 1430 '''
1431 1431 Function GetMoments()
1432 1432
1433 1433 Input:
1434 1434 Output:
1435 1435 Variables modified:
1436 1436 '''
1437 1437
1438 1438 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1439 1439
1440 1440
1441 1441 if path != None:
1442 1442 sys.path.append(path)
1443 1443 self.dataOut.library = importlib.import_module(file)
1444 1444
1445 1445 #To be inserted as a parameter
1446 1446 groupArray = numpy.array(groupList)
1447 1447 # groupArray = numpy.array([[0,1],[2,3]])
1448 1448 self.dataOut.groupList = groupArray
1449 1449
1450 1450 nGroups = groupArray.shape[0]
1451 1451 nChannels = self.dataIn.nChannels
1452 1452 nHeights=self.dataIn.heightList.size
1453 1453
1454 1454 #Parameters Array
1455 1455 self.dataOut.data_param = None
1456 1456
1457 1457 #Set constants
1458 1458 constants = self.dataOut.library.setConstants(self.dataIn)
1459 1459 self.dataOut.constants = constants
1460 1460 M = self.dataIn.normFactor
1461 1461 N = self.dataIn.nFFTPoints
1462 1462 ippSeconds = self.dataIn.ippSeconds
1463 1463 K = self.dataIn.nIncohInt
1464 1464 pairsArray = numpy.array(self.dataIn.pairsList)
1465 1465
1466 1466 #List of possible combinations
1467 1467 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1468 1468 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1469 1469
1470 1470 if getSNR:
1471 1471 listChannels = groupArray.reshape((groupArray.size))
1472 1472 listChannels.sort()
1473 1473 noise = self.dataIn.getNoise()
1474 1474 self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1475 1475
1476 1476 for i in range(nGroups):
1477 1477 coord = groupArray[i,:]
1478 1478
1479 1479 #Input data array
1480 1480 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1481 1481 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1482 1482
1483 1483 #Cross Spectra data array for Covariance Matrixes
1484 1484 ind = 0
1485 1485 for pairs in listComb:
1486 1486 pairsSel = numpy.array([coord[x],coord[y]])
1487 1487 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1488 1488 ind += 1
1489 1489 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1490 1490 dataCross = dataCross**2/K
1491 1491
1492 1492 for h in range(nHeights):
1493 1493
1494 1494 #Input
1495 1495 d = data[:,h]
1496 1496
1497 1497 #Covariance Matrix
1498 1498 D = numpy.diag(d**2/K)
1499 1499 ind = 0
1500 1500 for pairs in listComb:
1501 1501 #Coordinates in Covariance Matrix
1502 1502 x = pairs[0]
1503 1503 y = pairs[1]
1504 1504 #Channel Index
1505 1505 S12 = dataCross[ind,:,h]
1506 1506 D12 = numpy.diag(S12)
1507 1507 #Completing Covariance Matrix with Cross Spectras
1508 1508 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1509 1509 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1510 1510 ind += 1
1511 1511 Dinv=numpy.linalg.inv(D)
1512 1512 L=numpy.linalg.cholesky(Dinv)
1513 1513 LT=L.T
1514 1514
1515 1515 dp = numpy.dot(LT,d)
1516 1516
1517 1517 #Initial values
1518 1518 data_spc = self.dataIn.data_spc[coord,:,h]
1519 1519
1520 1520 if (h>0)and(error1[3]<5):
1521 1521 p0 = self.dataOut.data_param[i,:,h-1]
1522 1522 else:
1523 1523 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1524 1524
1525 1525 try:
1526 1526 #Least Squares
1527 1527 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1528 1528 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1529 1529 #Chi square error
1530 1530 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1531 1531 #Error with Jacobian
1532 1532 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1533 1533 except:
1534 1534 minp = p0*numpy.nan
1535 1535 error0 = numpy.nan
1536 1536 error1 = p0*numpy.nan
1537 1537
1538 1538 #Save
1539 1539 if self.dataOut.data_param is None:
1540 1540 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1541 1541 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1542 1542
1543 1543 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1544 1544 self.dataOut.data_param[i,:,h] = minp
1545 1545 return
1546 1546
1547 1547 def __residFunction(self, p, dp, LT, constants):
1548 1548
1549 1549 fm = self.dataOut.library.modelFunction(p, constants)
1550 1550 fmp=numpy.dot(LT,fm)
1551 1551
1552 1552 return dp-fmp
1553 1553
1554 1554 def __getSNR(self, z, noise):
1555 1555
1556 1556 avg = numpy.average(z, axis=1)
1557 1557 SNR = (avg.T-noise)/noise
1558 1558 SNR = SNR.T
1559 1559 return SNR
1560 1560
1561 1561 def __chisq(p,chindex,hindex):
1562 1562 #similar to Resid but calculates CHI**2
1563 1563 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1564 1564 dp=numpy.dot(LT,d)
1565 1565 fmp=numpy.dot(LT,fm)
1566 1566 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1567 1567 return chisq
1568 1568
1569 1569 class WindProfiler(Operation):
1570 1570
1571 1571 __isConfig = False
1572 1572
1573 1573 __initime = None
1574 1574 __lastdatatime = None
1575 1575 __integrationtime = None
1576 1576
1577 1577 __buffer = None
1578 1578
1579 1579 __dataReady = False
1580 1580
1581 1581 __firstdata = None
1582 1582
1583 1583 n = None
1584 1584
1585 1585 def __init__(self):
1586 1586 Operation.__init__(self)
1587 1587
1588 1588 def __calculateCosDir(self, elev, azim):
1589 1589 zen = (90 - elev)*numpy.pi/180
1590 1590 azim = azim*numpy.pi/180
1591 1591 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1592 1592 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1593 1593
1594 1594 signX = numpy.sign(numpy.cos(azim))
1595 1595 signY = numpy.sign(numpy.sin(azim))
1596 1596
1597 1597 cosDirX = numpy.copysign(cosDirX, signX)
1598 1598 cosDirY = numpy.copysign(cosDirY, signY)
1599 1599 return cosDirX, cosDirY
1600 1600
1601 1601 def __calculateAngles(self, theta_x, theta_y, azimuth):
1602 1602
1603 1603 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1604 1604 zenith_arr = numpy.arccos(dir_cosw)
1605 1605 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1606 1606
1607 1607 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1608 1608 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1609 1609
1610 1610 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1611 1611
1612 1612 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1613 1613
1614 1614 #
1615 1615 if horOnly:
1616 1616 A = numpy.c_[dir_cosu,dir_cosv]
1617 1617 else:
1618 1618 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1619 1619 A = numpy.asmatrix(A)
1620 1620 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1621 1621
1622 1622 return A1
1623 1623
1624 1624 def __correctValues(self, heiRang, phi, velRadial, SNR):
1625 1625 listPhi = phi.tolist()
1626 1626 maxid = listPhi.index(max(listPhi))
1627 1627 minid = listPhi.index(min(listPhi))
1628 1628
1629 1629 rango = list(range(len(phi)))
1630 1630 # rango = numpy.delete(rango,maxid)
1631 1631
1632 1632 heiRang1 = heiRang*math.cos(phi[maxid])
1633 1633 heiRangAux = heiRang*math.cos(phi[minid])
1634 1634 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1635 1635 heiRang1 = numpy.delete(heiRang1,indOut)
1636 1636
1637 1637 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1638 1638 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1639 1639
1640 1640 for i in rango:
1641 1641 x = heiRang*math.cos(phi[i])
1642 1642 y1 = velRadial[i,:]
1643 1643 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1644 1644
1645 1645 x1 = heiRang1
1646 1646 y11 = f1(x1)
1647 1647
1648 1648 y2 = SNR[i,:]
1649 1649 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1650 1650 y21 = f2(x1)
1651 1651
1652 1652 velRadial1[i,:] = y11
1653 1653 SNR1[i,:] = y21
1654 1654
1655 1655 return heiRang1, velRadial1, SNR1
1656 1656
1657 1657 def __calculateVelUVW(self, A, velRadial):
1658 1658
1659 1659 #Operacion Matricial
1660 1660 # velUVW = numpy.zeros((velRadial.shape[1],3))
1661 1661 # for ind in range(velRadial.shape[1]):
1662 1662 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1663 1663 # velUVW = velUVW.transpose()
1664 1664 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1665 1665 velUVW[:,:] = numpy.dot(A,velRadial)
1666 1666
1667 1667
1668 1668 return velUVW
1669 1669
1670 1670 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1671 1671
1672 1672 def techniqueDBS(self, kwargs):
1673 1673 """
1674 1674 Function that implements Doppler Beam Swinging (DBS) technique.
1675 1675
1676 1676 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1677 1677 Direction correction (if necessary), Ranges and SNR
1678 1678
1679 1679 Output: Winds estimation (Zonal, Meridional and Vertical)
1680 1680
1681 1681 Parameters affected: Winds, height range, SNR
1682 1682 """
1683 1683 velRadial0 = kwargs['velRadial']
1684 1684 heiRang = kwargs['heightList']
1685 1685 SNR0 = kwargs['SNR']
1686 1686
1687 1687 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1688 1688 theta_x = numpy.array(kwargs['dirCosx'])
1689 1689 theta_y = numpy.array(kwargs['dirCosy'])
1690 1690 else:
1691 1691 elev = numpy.array(kwargs['elevation'])
1692 1692 azim = numpy.array(kwargs['azimuth'])
1693 1693 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1694 1694 azimuth = kwargs['correctAzimuth']
1695 1695 if 'horizontalOnly' in kwargs:
1696 1696 horizontalOnly = kwargs['horizontalOnly']
1697 1697 else: horizontalOnly = False
1698 1698 if 'correctFactor' in kwargs:
1699 1699 correctFactor = kwargs['correctFactor']
1700 1700 else: correctFactor = 1
1701 1701 if 'channelList' in kwargs:
1702 1702 channelList = kwargs['channelList']
1703 1703 if len(channelList) == 2:
1704 1704 horizontalOnly = True
1705 1705 arrayChannel = numpy.array(channelList)
1706 1706 param = param[arrayChannel,:,:]
1707 1707 theta_x = theta_x[arrayChannel]
1708 1708 theta_y = theta_y[arrayChannel]
1709 1709
1710 1710 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1711 1711 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1712 1712 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1713 1713
1714 1714 #Calculo de Componentes de la velocidad con DBS
1715 1715 winds = self.__calculateVelUVW(A,velRadial1)
1716 1716
1717 1717 return winds, heiRang1, SNR1
1718 1718
1719 1719 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1720 1720
1721 1721 nPairs = len(pairs_ccf)
1722 1722 posx = numpy.asarray(posx)
1723 1723 posy = numpy.asarray(posy)
1724 1724
1725 1725 #Rotacion Inversa para alinear con el azimuth
1726 1726 if azimuth!= None:
1727 1727 azimuth = azimuth*math.pi/180
1728 1728 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1729 1729 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1730 1730 else:
1731 1731 posx1 = posx
1732 1732 posy1 = posy
1733 1733
1734 1734 #Calculo de Distancias
1735 1735 distx = numpy.zeros(nPairs)
1736 1736 disty = numpy.zeros(nPairs)
1737 1737 dist = numpy.zeros(nPairs)
1738 1738 ang = numpy.zeros(nPairs)
1739 1739
1740 1740 for i in range(nPairs):
1741 1741 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1742 1742 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1743 1743 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1744 1744 ang[i] = numpy.arctan2(disty[i],distx[i])
1745 1745
1746 1746 return distx, disty, dist, ang
1747 1747 #Calculo de Matrices
1748 1748 # nPairs = len(pairs)
1749 1749 # ang1 = numpy.zeros((nPairs, 2, 1))
1750 1750 # dist1 = numpy.zeros((nPairs, 2, 1))
1751 1751 #
1752 1752 # for j in range(nPairs):
1753 1753 # dist1[j,0,0] = dist[pairs[j][0]]
1754 1754 # dist1[j,1,0] = dist[pairs[j][1]]
1755 1755 # ang1[j,0,0] = ang[pairs[j][0]]
1756 1756 # ang1[j,1,0] = ang[pairs[j][1]]
1757 1757 #
1758 1758 # return distx,disty, dist1,ang1
1759 1759
1760 1760
1761 1761 def __calculateVelVer(self, phase, lagTRange, _lambda):
1762 1762
1763 1763 Ts = lagTRange[1] - lagTRange[0]
1764 1764 velW = -_lambda*phase/(4*math.pi*Ts)
1765 1765
1766 1766 return velW
1767 1767
1768 1768 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1769 1769 nPairs = tau1.shape[0]
1770 1770 nHeights = tau1.shape[1]
1771 1771 vel = numpy.zeros((nPairs,3,nHeights))
1772 1772 dist1 = numpy.reshape(dist, (dist.size,1))
1773 1773
1774 1774 angCos = numpy.cos(ang)
1775 1775 angSin = numpy.sin(ang)
1776 1776
1777 1777 vel0 = dist1*tau1/(2*tau2**2)
1778 1778 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1779 1779 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1780 1780
1781 1781 ind = numpy.where(numpy.isinf(vel))
1782 1782 vel[ind] = numpy.nan
1783 1783
1784 1784 return vel
1785 1785
1786 1786 # def __getPairsAutoCorr(self, pairsList, nChannels):
1787 1787 #
1788 1788 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1789 1789 #
1790 1790 # for l in range(len(pairsList)):
1791 1791 # firstChannel = pairsList[l][0]
1792 1792 # secondChannel = pairsList[l][1]
1793 1793 #
1794 1794 # #Obteniendo pares de Autocorrelacion
1795 1795 # if firstChannel == secondChannel:
1796 1796 # pairsAutoCorr[firstChannel] = int(l)
1797 1797 #
1798 1798 # pairsAutoCorr = pairsAutoCorr.astype(int)
1799 1799 #
1800 1800 # pairsCrossCorr = range(len(pairsList))
1801 1801 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1802 1802 #
1803 1803 # return pairsAutoCorr, pairsCrossCorr
1804 1804
1805 1805 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1806 1806 def techniqueSA(self, kwargs):
1807 1807
1808 1808 """
1809 1809 Function that implements Spaced Antenna (SA) technique.
1810 1810
1811 1811 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1812 1812 Direction correction (if necessary), Ranges and SNR
1813 1813
1814 1814 Output: Winds estimation (Zonal, Meridional and Vertical)
1815 1815
1816 1816 Parameters affected: Winds
1817 1817 """
1818 1818 position_x = kwargs['positionX']
1819 1819 position_y = kwargs['positionY']
1820 1820 azimuth = kwargs['azimuth']
1821 1821
1822 1822 if 'correctFactor' in kwargs:
1823 1823 correctFactor = kwargs['correctFactor']
1824 1824 else:
1825 1825 correctFactor = 1
1826 1826
1827 1827 groupList = kwargs['groupList']
1828 1828 pairs_ccf = groupList[1]
1829 1829 tau = kwargs['tau']
1830 1830 _lambda = kwargs['_lambda']
1831 1831
1832 1832 #Cross Correlation pairs obtained
1833 1833 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1834 1834 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1835 1835 # pairsSelArray = numpy.array(pairsSelected)
1836 1836 # pairs = []
1837 1837 #
1838 1838 # #Wind estimation pairs obtained
1839 1839 # for i in range(pairsSelArray.shape[0]/2):
1840 1840 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1841 1841 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1842 1842 # pairs.append((ind1,ind2))
1843 1843
1844 1844 indtau = tau.shape[0]/2
1845 1845 tau1 = tau[:indtau,:]
1846 1846 tau2 = tau[indtau:-1,:]
1847 1847 # tau1 = tau1[pairs,:]
1848 1848 # tau2 = tau2[pairs,:]
1849 1849 phase1 = tau[-1,:]
1850 1850
1851 1851 #---------------------------------------------------------------------
1852 1852 #Metodo Directo
1853 1853 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1854 1854 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1855 1855 winds = stats.nanmean(winds, axis=0)
1856 1856 #---------------------------------------------------------------------
1857 1857 #Metodo General
1858 1858 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1859 1859 # #Calculo Coeficientes de Funcion de Correlacion
1860 1860 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1861 1861 # #Calculo de Velocidades
1862 1862 # winds = self.calculateVelUV(F,G,A,B,H)
1863 1863
1864 1864 #---------------------------------------------------------------------
1865 1865 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1866 1866 winds = correctFactor*winds
1867 1867 return winds
1868 1868
1869 1869 def __checkTime(self, currentTime, paramInterval, outputInterval):
1870 1870
1871 1871 dataTime = currentTime + paramInterval
1872 1872 deltaTime = dataTime - self.__initime
1873 1873
1874 1874 if deltaTime >= outputInterval or deltaTime < 0:
1875 1875 self.__dataReady = True
1876 1876 return
1877 1877
1878 1878 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1879 1879 '''
1880 1880 Function that implements winds estimation technique with detected meteors.
1881 1881
1882 1882 Input: Detected meteors, Minimum meteor quantity to wind estimation
1883 1883
1884 1884 Output: Winds estimation (Zonal and Meridional)
1885 1885
1886 1886 Parameters affected: Winds
1887 1887 '''
1888 1888 #Settings
1889 1889 nInt = (heightMax - heightMin)/2
1890 1890 nInt = int(nInt)
1891 1891 winds = numpy.zeros((2,nInt))*numpy.nan
1892 1892
1893 1893 #Filter errors
1894 1894 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1895 1895 finalMeteor = arrayMeteor[error,:]
1896 1896
1897 1897 #Meteor Histogram
1898 1898 finalHeights = finalMeteor[:,2]
1899 1899 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1900 1900 nMeteorsPerI = hist[0]
1901 1901 heightPerI = hist[1]
1902 1902
1903 1903 #Sort of meteors
1904 1904 indSort = finalHeights.argsort()
1905 1905 finalMeteor2 = finalMeteor[indSort,:]
1906 1906
1907 1907 # Calculating winds
1908 1908 ind1 = 0
1909 1909 ind2 = 0
1910 1910
1911 1911 for i in range(nInt):
1912 1912 nMet = nMeteorsPerI[i]
1913 1913 ind1 = ind2
1914 1914 ind2 = ind1 + nMet
1915 1915
1916 1916 meteorAux = finalMeteor2[ind1:ind2,:]
1917 1917
1918 1918 if meteorAux.shape[0] >= meteorThresh:
1919 1919 vel = meteorAux[:, 6]
1920 1920 zen = meteorAux[:, 4]*numpy.pi/180
1921 1921 azim = meteorAux[:, 3]*numpy.pi/180
1922 1922
1923 1923 n = numpy.cos(zen)
1924 1924 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1925 1925 # l = m*numpy.tan(azim)
1926 1926 l = numpy.sin(zen)*numpy.sin(azim)
1927 1927 m = numpy.sin(zen)*numpy.cos(azim)
1928 1928
1929 1929 A = numpy.vstack((l, m)).transpose()
1930 1930 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1931 1931 windsAux = numpy.dot(A1, vel)
1932 1932
1933 1933 winds[0,i] = windsAux[0]
1934 1934 winds[1,i] = windsAux[1]
1935 1935
1936 1936 return winds, heightPerI[:-1]
1937 1937
1938 1938 def techniqueNSM_SA(self, **kwargs):
1939 1939 metArray = kwargs['metArray']
1940 1940 heightList = kwargs['heightList']
1941 1941 timeList = kwargs['timeList']
1942 1942
1943 1943 rx_location = kwargs['rx_location']
1944 1944 groupList = kwargs['groupList']
1945 1945 azimuth = kwargs['azimuth']
1946 1946 dfactor = kwargs['dfactor']
1947 1947 k = kwargs['k']
1948 1948
1949 1949 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1950 1950 d = dist*dfactor
1951 1951 #Phase calculation
1952 1952 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
1953 1953
1954 1954 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
1955 1955
1956 1956 velEst = numpy.zeros((heightList.size,2))*numpy.nan
1957 1957 azimuth1 = azimuth1*numpy.pi/180
1958 1958
1959 1959 for i in range(heightList.size):
1960 1960 h = heightList[i]
1961 1961 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
1962 1962 metHeight = metArray1[indH,:]
1963 1963 if metHeight.shape[0] >= 2:
1964 1964 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
1965 1965 iazim = metHeight[:,1].astype(int)
1966 1966 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
1967 1967 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
1968 1968 A = numpy.asmatrix(A)
1969 1969 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
1970 1970 velHor = numpy.dot(A1,velAux)
1971 1971
1972 1972 velEst[i,:] = numpy.squeeze(velHor)
1973 1973 return velEst
1974 1974
1975 1975 def __getPhaseSlope(self, metArray, heightList, timeList):
1976 1976 meteorList = []
1977 1977 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
1978 1978 #Putting back together the meteor matrix
1979 1979 utctime = metArray[:,0]
1980 1980 uniqueTime = numpy.unique(utctime)
1981 1981
1982 1982 phaseDerThresh = 0.5
1983 1983 ippSeconds = timeList[1] - timeList[0]
1984 1984 sec = numpy.where(timeList>1)[0][0]
1985 1985 nPairs = metArray.shape[1] - 6
1986 1986 nHeights = len(heightList)
1987 1987
1988 1988 for t in uniqueTime:
1989 1989 metArray1 = metArray[utctime==t,:]
1990 1990 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
1991 1991 tmet = metArray1[:,1].astype(int)
1992 1992 hmet = metArray1[:,2].astype(int)
1993 1993
1994 1994 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
1995 1995 metPhase[:,:] = numpy.nan
1996 1996 metPhase[:,hmet,tmet] = metArray1[:,6:].T
1997 1997
1998 1998 #Delete short trails
1999 1999 metBool = ~numpy.isnan(metPhase[0,:,:])
2000 2000 heightVect = numpy.sum(metBool, axis = 1)
2001 2001 metBool[heightVect<sec,:] = False
2002 2002 metPhase[:,heightVect<sec,:] = numpy.nan
2003 2003
2004 2004 #Derivative
2005 2005 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2006 2006 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2007 2007 metPhase[phDerAux] = numpy.nan
2008 2008
2009 2009 #--------------------------METEOR DETECTION -----------------------------------------
2010 2010 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2011 2011
2012 2012 for p in numpy.arange(nPairs):
2013 2013 phase = metPhase[p,:,:]
2014 2014 phDer = metDer[p,:,:]
2015 2015
2016 2016 for h in indMet:
2017 2017 height = heightList[h]
2018 2018 phase1 = phase[h,:] #82
2019 2019 phDer1 = phDer[h,:]
2020 2020
2021 2021 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2022 2022
2023 2023 indValid = numpy.where(~numpy.isnan(phase1))[0]
2024 2024 initMet = indValid[0]
2025 2025 endMet = 0
2026 2026
2027 2027 for i in range(len(indValid)-1):
2028 2028
2029 2029 #Time difference
2030 2030 inow = indValid[i]
2031 2031 inext = indValid[i+1]
2032 2032 idiff = inext - inow
2033 2033 #Phase difference
2034 2034 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2035 2035
2036 2036 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2037 2037 sizeTrail = inow - initMet + 1
2038 2038 if sizeTrail>3*sec: #Too short meteors
2039 2039 x = numpy.arange(initMet,inow+1)*ippSeconds
2040 2040 y = phase1[initMet:inow+1]
2041 2041 ynnan = ~numpy.isnan(y)
2042 2042 x = x[ynnan]
2043 2043 y = y[ynnan]
2044 2044 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2045 2045 ylin = x*slope + intercept
2046 2046 rsq = r_value**2
2047 2047 if rsq > 0.5:
2048 2048 vel = slope#*height*1000/(k*d)
2049 2049 estAux = numpy.array([utctime,p,height, vel, rsq])
2050 2050 meteorList.append(estAux)
2051 2051 initMet = inext
2052 2052 metArray2 = numpy.array(meteorList)
2053 2053
2054 2054 return metArray2
2055 2055
2056 2056 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2057 2057
2058 2058 azimuth1 = numpy.zeros(len(pairslist))
2059 2059 dist = numpy.zeros(len(pairslist))
2060 2060
2061 2061 for i in range(len(rx_location)):
2062 2062 ch0 = pairslist[i][0]
2063 2063 ch1 = pairslist[i][1]
2064 2064
2065 2065 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2066 2066 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2067 2067 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2068 2068 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2069 2069
2070 2070 azimuth1 -= azimuth0
2071 2071 return azimuth1, dist
2072 2072
2073 2073 def techniqueNSM_DBS(self, **kwargs):
2074 2074 metArray = kwargs['metArray']
2075 2075 heightList = kwargs['heightList']
2076 2076 timeList = kwargs['timeList']
2077 2077 azimuth = kwargs['azimuth']
2078 2078 theta_x = numpy.array(kwargs['theta_x'])
2079 2079 theta_y = numpy.array(kwargs['theta_y'])
2080 2080
2081 2081 utctime = metArray[:,0]
2082 2082 cmet = metArray[:,1].astype(int)
2083 2083 hmet = metArray[:,3].astype(int)
2084 2084 SNRmet = metArray[:,4]
2085 2085 vmet = metArray[:,5]
2086 2086 spcmet = metArray[:,6]
2087 2087
2088 2088 nChan = numpy.max(cmet) + 1
2089 2089 nHeights = len(heightList)
2090 2090
2091 2091 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2092 2092 hmet = heightList[hmet]
2093 2093 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2094 2094
2095 2095 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2096 2096
2097 2097 for i in range(nHeights - 1):
2098 2098 hmin = heightList[i]
2099 2099 hmax = heightList[i + 1]
2100 2100
2101 2101 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2102 2102 indthisH = numpy.where(thisH)
2103 2103
2104 2104 if numpy.size(indthisH) > 3:
2105 2105
2106 2106 vel_aux = vmet[thisH]
2107 2107 chan_aux = cmet[thisH]
2108 2108 cosu_aux = dir_cosu[chan_aux]
2109 2109 cosv_aux = dir_cosv[chan_aux]
2110 2110 cosw_aux = dir_cosw[chan_aux]
2111 2111
2112 2112 nch = numpy.size(numpy.unique(chan_aux))
2113 2113 if nch > 1:
2114 2114 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2115 2115 velEst[i,:] = numpy.dot(A,vel_aux)
2116 2116
2117 2117 return velEst
2118 2118
2119 2119 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2120 2120
2121 2121 param = dataOut.data_param
2122 2122 if dataOut.abscissaList != None:
2123 2123 absc = dataOut.abscissaList[:-1]
2124 2124 # noise = dataOut.noise
2125 2125 heightList = dataOut.heightList
2126 2126 SNR = dataOut.data_SNR
2127 2127
2128 2128 if technique == 'DBS':
2129 2129
2130 2130 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2131 2131 kwargs['heightList'] = heightList
2132 2132 kwargs['SNR'] = SNR
2133 2133
2134 2134 dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
2135 2135 dataOut.utctimeInit = dataOut.utctime
2136 2136 dataOut.outputInterval = dataOut.paramInterval
2137 2137
2138 2138 elif technique == 'SA':
2139 2139
2140 2140 #Parameters
2141 2141 # position_x = kwargs['positionX']
2142 2142 # position_y = kwargs['positionY']
2143 2143 # azimuth = kwargs['azimuth']
2144 2144 #
2145 2145 # if kwargs.has_key('crosspairsList'):
2146 2146 # pairs = kwargs['crosspairsList']
2147 2147 # else:
2148 2148 # pairs = None
2149 2149 #
2150 2150 # if kwargs.has_key('correctFactor'):
2151 2151 # correctFactor = kwargs['correctFactor']
2152 2152 # else:
2153 2153 # correctFactor = 1
2154 2154
2155 2155 # tau = dataOut.data_param
2156 2156 # _lambda = dataOut.C/dataOut.frequency
2157 2157 # pairsList = dataOut.groupList
2158 2158 # nChannels = dataOut.nChannels
2159 2159
2160 2160 kwargs['groupList'] = dataOut.groupList
2161 2161 kwargs['tau'] = dataOut.data_param
2162 2162 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2163 2163 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2164 2164 dataOut.data_output = self.techniqueSA(kwargs)
2165 2165 dataOut.utctimeInit = dataOut.utctime
2166 2166 dataOut.outputInterval = dataOut.timeInterval
2167 2167
2168 2168 elif technique == 'Meteors':
2169 2169 dataOut.flagNoData = True
2170 2170 self.__dataReady = False
2171 2171
2172 2172 if 'nHours' in kwargs:
2173 2173 nHours = kwargs['nHours']
2174 2174 else:
2175 2175 nHours = 1
2176 2176
2177 2177 if 'meteorsPerBin' in kwargs:
2178 2178 meteorThresh = kwargs['meteorsPerBin']
2179 2179 else:
2180 2180 meteorThresh = 6
2181 2181
2182 2182 if 'hmin' in kwargs:
2183 2183 hmin = kwargs['hmin']
2184 2184 else: hmin = 70
2185 2185 if 'hmax' in kwargs:
2186 2186 hmax = kwargs['hmax']
2187 2187 else: hmax = 110
2188 2188
2189 2189 dataOut.outputInterval = nHours*3600
2190 2190
2191 2191 if self.__isConfig == False:
2192 2192 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2193 2193 #Get Initial LTC time
2194 2194 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2195 2195 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2196 2196
2197 2197 self.__isConfig = True
2198 2198
2199 2199 if self.__buffer is None:
2200 2200 self.__buffer = dataOut.data_param
2201 2201 self.__firstdata = copy.copy(dataOut)
2202 2202
2203 2203 else:
2204 2204 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2205 2205
2206 2206 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2207 2207
2208 2208 if self.__dataReady:
2209 2209 dataOut.utctimeInit = self.__initime
2210 2210
2211 2211 self.__initime += dataOut.outputInterval #to erase time offset
2212 2212
2213 2213 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2214 2214 dataOut.flagNoData = False
2215 2215 self.__buffer = None
2216 2216
2217 2217 elif technique == 'Meteors1':
2218 2218 dataOut.flagNoData = True
2219 2219 self.__dataReady = False
2220 2220
2221 2221 if 'nMins' in kwargs:
2222 2222 nMins = kwargs['nMins']
2223 2223 else: nMins = 20
2224 2224 if 'rx_location' in kwargs:
2225 2225 rx_location = kwargs['rx_location']
2226 2226 else: rx_location = [(0,1),(1,1),(1,0)]
2227 2227 if 'azimuth' in kwargs:
2228 2228 azimuth = kwargs['azimuth']
2229 2229 else: azimuth = 51.06
2230 2230 if 'dfactor' in kwargs:
2231 2231 dfactor = kwargs['dfactor']
2232 2232 if 'mode' in kwargs:
2233 2233 mode = kwargs['mode']
2234 2234 if 'theta_x' in kwargs:
2235 2235 theta_x = kwargs['theta_x']
2236 2236 if 'theta_y' in kwargs:
2237 2237 theta_y = kwargs['theta_y']
2238 2238 else: mode = 'SA'
2239 2239
2240 2240 #Borrar luego esto
2241 2241 if dataOut.groupList is None:
2242 2242 dataOut.groupList = [(0,1),(0,2),(1,2)]
2243 2243 groupList = dataOut.groupList
2244 2244 C = 3e8
2245 2245 freq = 50e6
2246 2246 lamb = C/freq
2247 2247 k = 2*numpy.pi/lamb
2248 2248
2249 2249 timeList = dataOut.abscissaList
2250 2250 heightList = dataOut.heightList
2251 2251
2252 2252 if self.__isConfig == False:
2253 2253 dataOut.outputInterval = nMins*60
2254 2254 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2255 2255 #Get Initial LTC time
2256 2256 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2257 2257 minuteAux = initime.minute
2258 2258 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2259 2259 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2260 2260
2261 2261 self.__isConfig = True
2262 2262
2263 2263 if self.__buffer is None:
2264 2264 self.__buffer = dataOut.data_param
2265 2265 self.__firstdata = copy.copy(dataOut)
2266 2266
2267 2267 else:
2268 2268 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2269 2269
2270 2270 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2271 2271
2272 2272 if self.__dataReady:
2273 2273 dataOut.utctimeInit = self.__initime
2274 2274 self.__initime += dataOut.outputInterval #to erase time offset
2275 2275
2276 2276 metArray = self.__buffer
2277 2277 if mode == 'SA':
2278 2278 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2279 2279 elif mode == 'DBS':
2280 2280 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2281 2281 dataOut.data_output = dataOut.data_output.T
2282 2282 dataOut.flagNoData = False
2283 2283 self.__buffer = None
2284 2284
2285 2285 return
2286 2286
2287 2287 class EWDriftsEstimation(Operation):
2288 2288
2289 2289 def __init__(self):
2290 2290 Operation.__init__(self)
2291 2291
2292 2292 def __correctValues(self, heiRang, phi, velRadial, SNR):
2293 2293 listPhi = phi.tolist()
2294 2294 maxid = listPhi.index(max(listPhi))
2295 2295 minid = listPhi.index(min(listPhi))
2296 2296
2297 2297 rango = list(range(len(phi)))
2298 2298 # rango = numpy.delete(rango,maxid)
2299 2299
2300 2300 heiRang1 = heiRang*math.cos(phi[maxid])
2301 2301 heiRangAux = heiRang*math.cos(phi[minid])
2302 2302 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2303 2303 heiRang1 = numpy.delete(heiRang1,indOut)
2304 2304
2305 2305 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2306 2306 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2307 2307
2308 2308 for i in rango:
2309 2309 x = heiRang*math.cos(phi[i])
2310 2310 y1 = velRadial[i,:]
2311 2311 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2312 2312
2313 2313 x1 = heiRang1
2314 2314 y11 = f1(x1)
2315 2315
2316 2316 y2 = SNR[i,:]
2317 2317 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2318 2318 y21 = f2(x1)
2319 2319
2320 2320 velRadial1[i,:] = y11
2321 2321 SNR1[i,:] = y21
2322 2322
2323 2323 return heiRang1, velRadial1, SNR1
2324 2324
2325 2325 def run(self, dataOut, zenith, zenithCorrection):
2326 2326 heiRang = dataOut.heightList
2327 2327 velRadial = dataOut.data_param[:,3,:]
2328 2328 SNR = dataOut.data_SNR
2329 2329
2330 2330 zenith = numpy.array(zenith)
2331 2331 zenith -= zenithCorrection
2332 2332 zenith *= numpy.pi/180
2333 2333
2334 2334 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2335 2335
2336 2336 alp = zenith[0]
2337 2337 bet = zenith[1]
2338 2338
2339 2339 w_w = velRadial1[0,:]
2340 2340 w_e = velRadial1[1,:]
2341 2341
2342 2342 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2343 2343 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2344 2344
2345 2345 winds = numpy.vstack((u,w))
2346 2346
2347 2347 dataOut.heightList = heiRang1
2348 2348 dataOut.data_output = winds
2349 2349 dataOut.data_SNR = SNR1
2350 2350
2351 2351 dataOut.utctimeInit = dataOut.utctime
2352 2352 dataOut.outputInterval = dataOut.timeInterval
2353 2353 return
2354 2354
2355 2355 #--------------- Non Specular Meteor ----------------
2356 2356
2357 2357 class NonSpecularMeteorDetection(Operation):
2358 2358
2359 2359 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2360 2360 data_acf = dataOut.data_pre[0]
2361 2361 data_ccf = dataOut.data_pre[1]
2362 2362 pairsList = dataOut.groupList[1]
2363 2363
2364 2364 lamb = dataOut.C/dataOut.frequency
2365 2365 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2366 2366 paramInterval = dataOut.paramInterval
2367 2367
2368 2368 nChannels = data_acf.shape[0]
2369 2369 nLags = data_acf.shape[1]
2370 2370 nProfiles = data_acf.shape[2]
2371 2371 nHeights = dataOut.nHeights
2372 2372 nCohInt = dataOut.nCohInt
2373 2373 sec = numpy.round(nProfiles/dataOut.paramInterval)
2374 2374 heightList = dataOut.heightList
2375 2375 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2376 2376 utctime = dataOut.utctime
2377 2377
2378 2378 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2379 2379
2380 2380 #------------------------ SNR --------------------------------------
2381 2381 power = data_acf[:,0,:,:].real
2382 2382 noise = numpy.zeros(nChannels)
2383 2383 SNR = numpy.zeros(power.shape)
2384 2384 for i in range(nChannels):
2385 2385 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2386 2386 SNR[i] = (power[i]-noise[i])/noise[i]
2387 2387 SNRm = numpy.nanmean(SNR, axis = 0)
2388 2388 SNRdB = 10*numpy.log10(SNR)
2389 2389
2390 2390 if mode == 'SA':
2391 2391 dataOut.groupList = dataOut.groupList[1]
2392 2392 nPairs = data_ccf.shape[0]
2393 2393 #---------------------- Coherence and Phase --------------------------
2394 2394 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2395 2395 # phase1 = numpy.copy(phase)
2396 2396 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2397 2397
2398 2398 for p in range(nPairs):
2399 2399 ch0 = pairsList[p][0]
2400 2400 ch1 = pairsList[p][1]
2401 2401 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2402 2402 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2403 2403 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2404 2404 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2405 2405 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2406 2406 coh = numpy.nanmax(coh1, axis = 0)
2407 2407 # struc = numpy.ones((5,1))
2408 2408 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2409 2409 #---------------------- Radial Velocity ----------------------------
2410 2410 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2411 2411 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2412 2412
2413 2413 if allData:
2414 2414 boolMetFin = ~numpy.isnan(SNRm)
2415 2415 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2416 2416 else:
2417 2417 #------------------------ Meteor mask ---------------------------------
2418 2418 # #SNR mask
2419 2419 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2420 2420 #
2421 2421 # #Erase small objects
2422 2422 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2423 2423 #
2424 2424 # auxEEJ = numpy.sum(boolMet1,axis=0)
2425 2425 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2426 2426 # indEEJ = numpy.where(indOver)[0]
2427 2427 # indNEEJ = numpy.where(~indOver)[0]
2428 2428 #
2429 2429 # boolMetFin = boolMet1
2430 2430 #
2431 2431 # if indEEJ.size > 0:
2432 2432 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2433 2433 #
2434 2434 # boolMet2 = coh > cohThresh
2435 2435 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2436 2436 #
2437 2437 # #Final Meteor mask
2438 2438 # boolMetFin = boolMet1|boolMet2
2439 2439
2440 2440 #Coherence mask
2441 2441 boolMet1 = coh > 0.75
2442 2442 struc = numpy.ones((30,1))
2443 2443 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2444 2444
2445 2445 #Derivative mask
2446 2446 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2447 2447 boolMet2 = derPhase < 0.2
2448 2448 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2449 2449 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2450 2450 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2451 2451 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2452 2452 # #Final mask
2453 2453 # boolMetFin = boolMet2
2454 2454 boolMetFin = boolMet1&boolMet2
2455 2455 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2456 2456 #Creating data_param
2457 2457 coordMet = numpy.where(boolMetFin)
2458 2458
2459 2459 tmet = coordMet[0]
2460 2460 hmet = coordMet[1]
2461 2461
2462 2462 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2463 2463 data_param[:,0] = utctime
2464 2464 data_param[:,1] = tmet
2465 2465 data_param[:,2] = hmet
2466 2466 data_param[:,3] = SNRm[tmet,hmet]
2467 2467 data_param[:,4] = velRad[tmet,hmet]
2468 2468 data_param[:,5] = coh[tmet,hmet]
2469 2469 data_param[:,6:] = phase[:,tmet,hmet].T
2470 2470
2471 2471 elif mode == 'DBS':
2472 2472 dataOut.groupList = numpy.arange(nChannels)
2473 2473
2474 2474 #Radial Velocities
2475 2475 phase = numpy.angle(data_acf[:,1,:,:])
2476 2476 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2477 2477 velRad = phase*lamb/(4*numpy.pi*tSamp)
2478 2478
2479 2479 #Spectral width
2480 2480 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2481 2481 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2482 2482 acf1 = data_acf[:,1,:,:]
2483 2483 acf2 = data_acf[:,2,:,:]
2484 2484
2485 2485 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2486 2486 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2487 2487 if allData:
2488 2488 boolMetFin = ~numpy.isnan(SNRdB)
2489 2489 else:
2490 2490 #SNR
2491 2491 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2492 2492 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2493 2493
2494 2494 #Radial velocity
2495 2495 boolMet2 = numpy.abs(velRad) < 20
2496 2496 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2497 2497
2498 2498 #Spectral Width
2499 2499 boolMet3 = spcWidth < 30
2500 2500 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2501 2501 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2502 2502 boolMetFin = boolMet1&boolMet2&boolMet3
2503 2503
2504 2504 #Creating data_param
2505 2505 coordMet = numpy.where(boolMetFin)
2506 2506
2507 2507 cmet = coordMet[0]
2508 2508 tmet = coordMet[1]
2509 2509 hmet = coordMet[2]
2510 2510
2511 2511 data_param = numpy.zeros((tmet.size, 7))
2512 2512 data_param[:,0] = utctime
2513 2513 data_param[:,1] = cmet
2514 2514 data_param[:,2] = tmet
2515 2515 data_param[:,3] = hmet
2516 2516 data_param[:,4] = SNR[cmet,tmet,hmet].T
2517 2517 data_param[:,5] = velRad[cmet,tmet,hmet].T
2518 2518 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2519 2519
2520 2520 # self.dataOut.data_param = data_int
2521 2521 if len(data_param) == 0:
2522 2522 dataOut.flagNoData = True
2523 2523 else:
2524 2524 dataOut.data_param = data_param
2525 2525
2526 2526 def __erase_small(self, binArray, threshX, threshY):
2527 2527 labarray, numfeat = ndimage.measurements.label(binArray)
2528 2528 binArray1 = numpy.copy(binArray)
2529 2529
2530 2530 for i in range(1,numfeat + 1):
2531 2531 auxBin = (labarray==i)
2532 2532 auxSize = auxBin.sum()
2533 2533
2534 2534 x,y = numpy.where(auxBin)
2535 2535 widthX = x.max() - x.min()
2536 2536 widthY = y.max() - y.min()
2537 2537
2538 2538 #width X: 3 seg -> 12.5*3
2539 2539 #width Y:
2540 2540
2541 2541 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2542 2542 binArray1[auxBin] = False
2543 2543
2544 2544 return binArray1
2545 2545
2546 2546 #--------------- Specular Meteor ----------------
2547 2547
2548 2548 class SMDetection(Operation):
2549 2549 '''
2550 2550 Function DetectMeteors()
2551 2551 Project developed with paper:
2552 2552 HOLDSWORTH ET AL. 2004
2553 2553
2554 2554 Input:
2555 2555 self.dataOut.data_pre
2556 2556
2557 2557 centerReceiverIndex: From the channels, which is the center receiver
2558 2558
2559 2559 hei_ref: Height reference for the Beacon signal extraction
2560 2560 tauindex:
2561 2561 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2562 2562
2563 2563 cohDetection: Whether to user Coherent detection or not
2564 2564 cohDet_timeStep: Coherent Detection calculation time step
2565 2565 cohDet_thresh: Coherent Detection phase threshold to correct phases
2566 2566
2567 2567 noise_timeStep: Noise calculation time step
2568 2568 noise_multiple: Noise multiple to define signal threshold
2569 2569
2570 2570 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2571 2571 multDet_rangeLimit: Multiple Detection Removal range limit in km
2572 2572
2573 2573 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2574 2574 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2575 2575
2576 2576 hmin: Minimum Height of the meteor to use it in the further wind estimations
2577 2577 hmax: Maximum Height of the meteor to use it in the further wind estimations
2578 2578 azimuth: Azimuth angle correction
2579 2579
2580 2580 Affected:
2581 2581 self.dataOut.data_param
2582 2582
2583 2583 Rejection Criteria (Errors):
2584 2584 0: No error; analysis OK
2585 2585 1: SNR < SNR threshold
2586 2586 2: angle of arrival (AOA) ambiguously determined
2587 2587 3: AOA estimate not feasible
2588 2588 4: Large difference in AOAs obtained from different antenna baselines
2589 2589 5: echo at start or end of time series
2590 2590 6: echo less than 5 examples long; too short for analysis
2591 2591 7: echo rise exceeds 0.3s
2592 2592 8: echo decay time less than twice rise time
2593 2593 9: large power level before echo
2594 2594 10: large power level after echo
2595 2595 11: poor fit to amplitude for estimation of decay time
2596 2596 12: poor fit to CCF phase variation for estimation of radial drift velocity
2597 2597 13: height unresolvable echo: not valid height within 70 to 110 km
2598 2598 14: height ambiguous echo: more then one possible height within 70 to 110 km
2599 2599 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2600 2600 16: oscilatory echo, indicating event most likely not an underdense echo
2601 2601
2602 2602 17: phase difference in meteor Reestimation
2603 2603
2604 2604 Data Storage:
2605 2605 Meteors for Wind Estimation (8):
2606 2606 Utc Time | Range Height
2607 2607 Azimuth Zenith errorCosDir
2608 2608 VelRad errorVelRad
2609 2609 Phase0 Phase1 Phase2 Phase3
2610 2610 TypeError
2611 2611
2612 2612 '''
2613 2613
2614 2614 def run(self, dataOut, hei_ref = None, tauindex = 0,
2615 2615 phaseOffsets = None,
2616 2616 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2617 2617 noise_timeStep = 4, noise_multiple = 4,
2618 2618 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2619 2619 phaseThresh = 20, SNRThresh = 5,
2620 2620 hmin = 50, hmax=150, azimuth = 0,
2621 2621 channelPositions = None) :
2622 2622
2623 2623
2624 2624 #Getting Pairslist
2625 2625 if channelPositions is None:
2626 2626 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2627 2627 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2628 2628 meteorOps = SMOperations()
2629 2629 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2630 2630 heiRang = dataOut.getHeiRange()
2631 2631 #Get Beacon signal - No Beacon signal anymore
2632 2632 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2633 2633 #
2634 2634 # if hei_ref != None:
2635 2635 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2636 2636 #
2637 2637
2638 2638
2639 2639 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2640 2640 # see if the user put in pre defined phase shifts
2641 2641 voltsPShift = dataOut.data_pre.copy()
2642 2642
2643 2643 # if predefinedPhaseShifts != None:
2644 2644 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2645 2645 #
2646 2646 # # elif beaconPhaseShifts:
2647 2647 # # #get hardware phase shifts using beacon signal
2648 2648 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2649 2649 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2650 2650 #
2651 2651 # else:
2652 2652 # hardwarePhaseShifts = numpy.zeros(5)
2653 2653 #
2654 2654 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2655 2655 # for i in range(self.dataOut.data_pre.shape[0]):
2656 2656 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2657 2657
2658 2658 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2659 2659
2660 2660 #Remove DC
2661 2661 voltsDC = numpy.mean(voltsPShift,1)
2662 2662 voltsDC = numpy.mean(voltsDC,1)
2663 2663 for i in range(voltsDC.shape[0]):
2664 2664 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2665 2665
2666 2666 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2667 2667 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2668 2668
2669 2669 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2670 2670 #Coherent Detection
2671 2671 if cohDetection:
2672 2672 #use coherent detection to get the net power
2673 2673 cohDet_thresh = cohDet_thresh*numpy.pi/180
2674 2674 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2675 2675
2676 2676 #Non-coherent detection!
2677 2677 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2678 2678 #********** END OF COH/NON-COH POWER CALCULATION**********************
2679 2679
2680 2680 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2681 2681 #Get noise
2682 2682 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2683 2683 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2684 2684 #Get signal threshold
2685 2685 signalThresh = noise_multiple*noise
2686 2686 #Meteor echoes detection
2687 2687 listMeteors = self.__findMeteors(powerNet, signalThresh)
2688 2688 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2689 2689
2690 2690 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2691 2691 #Parameters
2692 2692 heiRange = dataOut.getHeiRange()
2693 2693 rangeInterval = heiRange[1] - heiRange[0]
2694 2694 rangeLimit = multDet_rangeLimit/rangeInterval
2695 2695 timeLimit = multDet_timeLimit/dataOut.timeInterval
2696 2696 #Multiple detection removals
2697 2697 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2698 2698 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2699 2699
2700 2700 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2701 2701 #Parameters
2702 2702 phaseThresh = phaseThresh*numpy.pi/180
2703 2703 thresh = [phaseThresh, noise_multiple, SNRThresh]
2704 2704 #Meteor reestimation (Errors N 1, 6, 12, 17)
2705 2705 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2706 2706 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2707 2707 #Estimation of decay times (Errors N 7, 8, 11)
2708 2708 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2709 2709 #******************* END OF METEOR REESTIMATION *******************
2710 2710
2711 2711 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2712 2712 #Calculating Radial Velocity (Error N 15)
2713 2713 radialStdThresh = 10
2714 2714 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2715 2715
2716 2716 if len(listMeteors4) > 0:
2717 2717 #Setting New Array
2718 2718 date = dataOut.utctime
2719 2719 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2720 2720
2721 2721 #Correcting phase offset
2722 2722 if phaseOffsets != None:
2723 2723 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2724 2724 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2725 2725
2726 2726 #Second Pairslist
2727 2727 pairsList = []
2728 2728 pairx = (0,1)
2729 2729 pairy = (2,3)
2730 2730 pairsList.append(pairx)
2731 2731 pairsList.append(pairy)
2732 2732
2733 2733 jph = numpy.array([0,0,0,0])
2734 2734 h = (hmin,hmax)
2735 2735 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2736 2736
2737 2737 # #Calculate AOA (Error N 3, 4)
2738 2738 # #JONES ET AL. 1998
2739 2739 # error = arrayParameters[:,-1]
2740 2740 # AOAthresh = numpy.pi/8
2741 2741 # phases = -arrayParameters[:,9:13]
2742 2742 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2743 2743 #
2744 2744 # #Calculate Heights (Error N 13 and 14)
2745 2745 # error = arrayParameters[:,-1]
2746 2746 # Ranges = arrayParameters[:,2]
2747 2747 # zenith = arrayParameters[:,5]
2748 2748 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2749 2749 # error = arrayParameters[:,-1]
2750 2750 #********************* END OF PARAMETERS CALCULATION **************************
2751 2751
2752 2752 #***************************+ PASS DATA TO NEXT STEP **********************
2753 2753 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2754 2754 dataOut.data_param = arrayParameters
2755 2755
2756 2756 if arrayParameters is None:
2757 2757 dataOut.flagNoData = True
2758 2758 else:
2759 2759 dataOut.flagNoData = True
2760 2760
2761 2761 return
2762 2762
2763 2763 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2764 2764
2765 2765 minIndex = min(newheis[0])
2766 2766 maxIndex = max(newheis[0])
2767 2767
2768 2768 voltage = voltage0[:,:,minIndex:maxIndex+1]
2769 2769 nLength = voltage.shape[1]/n
2770 2770 nMin = 0
2771 2771 nMax = 0
2772 2772 phaseOffset = numpy.zeros((len(pairslist),n))
2773 2773
2774 2774 for i in range(n):
2775 2775 nMax += nLength
2776 2776 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2777 2777 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2778 2778 phaseOffset[:,i] = phaseCCF.transpose()
2779 2779 nMin = nMax
2780 2780 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2781 2781
2782 2782 #Remove Outliers
2783 2783 factor = 2
2784 2784 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2785 2785 dw = numpy.std(wt,axis = 1)
2786 2786 dw = dw.reshape((dw.size,1))
2787 2787 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2788 2788 phaseOffset[ind] = numpy.nan
2789 2789 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2790 2790
2791 2791 return phaseOffset
2792 2792
2793 2793 def __shiftPhase(self, data, phaseShift):
2794 2794 #this will shift the phase of a complex number
2795 2795 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2796 2796 return dataShifted
2797 2797
2798 2798 def __estimatePhaseDifference(self, array, pairslist):
2799 2799 nChannel = array.shape[0]
2800 2800 nHeights = array.shape[2]
2801 2801 numPairs = len(pairslist)
2802 2802 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2803 2803 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2804 2804
2805 2805 #Correct phases
2806 2806 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2807 2807 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2808 2808
2809 2809 if indDer[0].shape[0] > 0:
2810 2810 for i in range(indDer[0].shape[0]):
2811 2811 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2812 2812 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2813 2813
2814 2814 # for j in range(numSides):
2815 2815 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2816 2816 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2817 2817 #
2818 2818 #Linear
2819 2819 phaseInt = numpy.zeros((numPairs,1))
2820 2820 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2821 2821 for j in range(numPairs):
2822 2822 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2823 2823 phaseInt[j] = fit[1]
2824 2824 #Phase Differences
2825 2825 phaseDiff = phaseInt - phaseCCF[:,2,:]
2826 2826 phaseArrival = phaseInt.reshape(phaseInt.size)
2827 2827
2828 2828 #Dealias
2829 2829 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2830 2830 # indAlias = numpy.where(phaseArrival > numpy.pi)
2831 2831 # phaseArrival[indAlias] -= 2*numpy.pi
2832 2832 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2833 2833 # phaseArrival[indAlias] += 2*numpy.pi
2834 2834
2835 2835 return phaseDiff, phaseArrival
2836 2836
2837 2837 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2838 2838 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2839 2839 #find the phase shifts of each channel over 1 second intervals
2840 2840 #only look at ranges below the beacon signal
2841 2841 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2842 2842 numBlocks = int(volts.shape[1]/numProfPerBlock)
2843 2843 numHeights = volts.shape[2]
2844 2844 nChannel = volts.shape[0]
2845 2845 voltsCohDet = volts.copy()
2846 2846
2847 2847 pairsarray = numpy.array(pairslist)
2848 2848 indSides = pairsarray[:,1]
2849 2849 # indSides = numpy.array(range(nChannel))
2850 2850 # indSides = numpy.delete(indSides, indCenter)
2851 2851 #
2852 2852 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2853 2853 listBlocks = numpy.array_split(volts, numBlocks, 1)
2854 2854
2855 2855 startInd = 0
2856 2856 endInd = 0
2857 2857
2858 2858 for i in range(numBlocks):
2859 2859 startInd = endInd
2860 2860 endInd = endInd + listBlocks[i].shape[1]
2861 2861
2862 2862 arrayBlock = listBlocks[i]
2863 2863 # arrayBlockCenter = listCenter[i]
2864 2864
2865 2865 #Estimate the Phase Difference
2866 2866 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2867 2867 #Phase Difference RMS
2868 2868 arrayPhaseRMS = numpy.abs(phaseDiff)
2869 2869 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2870 2870 indPhase = numpy.where(phaseRMSaux==4)
2871 2871 #Shifting
2872 2872 if indPhase[0].shape[0] > 0:
2873 2873 for j in range(indSides.size):
2874 2874 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2875 2875 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2876 2876
2877 2877 return voltsCohDet
2878 2878
2879 2879 def __calculateCCF(self, volts, pairslist ,laglist):
2880 2880
2881 2881 nHeights = volts.shape[2]
2882 2882 nPoints = volts.shape[1]
2883 2883 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2884 2884
2885 2885 for i in range(len(pairslist)):
2886 2886 volts1 = volts[pairslist[i][0]]
2887 2887 volts2 = volts[pairslist[i][1]]
2888 2888
2889 2889 for t in range(len(laglist)):
2890 2890 idxT = laglist[t]
2891 2891 if idxT >= 0:
2892 2892 vStacked = numpy.vstack((volts2[idxT:,:],
2893 2893 numpy.zeros((idxT, nHeights),dtype='complex')))
2894 2894 else:
2895 2895 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2896 2896 volts2[:(nPoints + idxT),:]))
2897 2897 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2898 2898
2899 2899 vStacked = None
2900 2900 return voltsCCF
2901 2901
2902 2902 def __getNoise(self, power, timeSegment, timeInterval):
2903 2903 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2904 2904 numBlocks = int(power.shape[0]/numProfPerBlock)
2905 2905 numHeights = power.shape[1]
2906 2906
2907 2907 listPower = numpy.array_split(power, numBlocks, 0)
2908 2908 noise = numpy.zeros((power.shape[0], power.shape[1]))
2909 2909 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2910 2910
2911 2911 startInd = 0
2912 2912 endInd = 0
2913 2913
2914 2914 for i in range(numBlocks): #split por canal
2915 2915 startInd = endInd
2916 2916 endInd = endInd + listPower[i].shape[0]
2917 2917
2918 2918 arrayBlock = listPower[i]
2919 2919 noiseAux = numpy.mean(arrayBlock, 0)
2920 2920 # noiseAux = numpy.median(noiseAux)
2921 2921 # noiseAux = numpy.mean(arrayBlock)
2922 2922 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2923 2923
2924 2924 noiseAux1 = numpy.mean(arrayBlock)
2925 2925 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2926 2926
2927 2927 return noise, noise1
2928 2928
2929 2929 def __findMeteors(self, power, thresh):
2930 2930 nProf = power.shape[0]
2931 2931 nHeights = power.shape[1]
2932 2932 listMeteors = []
2933 2933
2934 2934 for i in range(nHeights):
2935 2935 powerAux = power[:,i]
2936 2936 threshAux = thresh[:,i]
2937 2937
2938 2938 indUPthresh = numpy.where(powerAux > threshAux)[0]
2939 2939 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2940 2940
2941 2941 j = 0
2942 2942
2943 2943 while (j < indUPthresh.size - 2):
2944 2944 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2945 2945 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2946 2946 indDNthresh = indDNthresh[indDNAux]
2947 2947
2948 2948 if (indDNthresh.size > 0):
2949 2949 indEnd = indDNthresh[0] - 1
2950 2950 indInit = indUPthresh[j]
2951 2951
2952 2952 meteor = powerAux[indInit:indEnd + 1]
2953 2953 indPeak = meteor.argmax() + indInit
2954 2954 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
2955 2955
2956 2956 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
2957 2957 j = numpy.where(indUPthresh == indEnd)[0] + 1
2958 2958 else: j+=1
2959 2959 else: j+=1
2960 2960
2961 2961 return listMeteors
2962 2962
2963 2963 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
2964 2964
2965 2965 arrayMeteors = numpy.asarray(listMeteors)
2966 2966 listMeteors1 = []
2967 2967
2968 2968 while arrayMeteors.shape[0] > 0:
2969 2969 FLAs = arrayMeteors[:,4]
2970 2970 maxFLA = FLAs.argmax()
2971 2971 listMeteors1.append(arrayMeteors[maxFLA,:])
2972 2972
2973 2973 MeteorInitTime = arrayMeteors[maxFLA,1]
2974 2974 MeteorEndTime = arrayMeteors[maxFLA,3]
2975 2975 MeteorHeight = arrayMeteors[maxFLA,0]
2976 2976
2977 2977 #Check neighborhood
2978 2978 maxHeightIndex = MeteorHeight + rangeLimit
2979 2979 minHeightIndex = MeteorHeight - rangeLimit
2980 2980 minTimeIndex = MeteorInitTime - timeLimit
2981 2981 maxTimeIndex = MeteorEndTime + timeLimit
2982 2982
2983 2983 #Check Heights
2984 2984 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
2985 2985 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
2986 2986 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
2987 2987
2988 2988 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
2989 2989
2990 2990 return listMeteors1
2991 2991
2992 2992 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
2993 2993 numHeights = volts.shape[2]
2994 2994 nChannel = volts.shape[0]
2995 2995
2996 2996 thresholdPhase = thresh[0]
2997 2997 thresholdNoise = thresh[1]
2998 2998 thresholdDB = float(thresh[2])
2999 2999
3000 3000 thresholdDB1 = 10**(thresholdDB/10)
3001 3001 pairsarray = numpy.array(pairslist)
3002 3002 indSides = pairsarray[:,1]
3003 3003
3004 3004 pairslist1 = list(pairslist)
3005 3005 pairslist1.append((0,1))
3006 3006 pairslist1.append((3,4))
3007 3007
3008 3008 listMeteors1 = []
3009 3009 listPowerSeries = []
3010 3010 listVoltageSeries = []
3011 3011 #volts has the war data
3012 3012
3013 3013 if frequency == 30e6:
3014 3014 timeLag = 45*10**-3
3015 3015 else:
3016 3016 timeLag = 15*10**-3
3017 3017 lag = numpy.ceil(timeLag/timeInterval)
3018 3018
3019 3019 for i in range(len(listMeteors)):
3020 3020
3021 3021 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3022 3022 meteorAux = numpy.zeros(16)
3023 3023
3024 3024 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3025 3025 mHeight = listMeteors[i][0]
3026 3026 mStart = listMeteors[i][1]
3027 3027 mPeak = listMeteors[i][2]
3028 3028 mEnd = listMeteors[i][3]
3029 3029
3030 3030 #get the volt data between the start and end times of the meteor
3031 3031 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3032 3032 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3033 3033
3034 3034 #3.6. Phase Difference estimation
3035 3035 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3036 3036
3037 3037 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3038 3038 #meteorVolts0.- all Channels, all Profiles
3039 3039 meteorVolts0 = volts[:,:,mHeight]
3040 3040 meteorThresh = noise[:,mHeight]*thresholdNoise
3041 3041 meteorNoise = noise[:,mHeight]
3042 3042 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3043 3043 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3044 3044
3045 3045 #Times reestimation
3046 3046 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3047 3047 if mStart1.size > 0:
3048 3048 mStart1 = mStart1[-1] + 1
3049 3049
3050 3050 else:
3051 3051 mStart1 = mPeak
3052 3052
3053 3053 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3054 3054 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3055 3055 if mEndDecayTime1.size == 0:
3056 3056 mEndDecayTime1 = powerNet0.size
3057 3057 else:
3058 3058 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3059 3059 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3060 3060
3061 3061 #meteorVolts1.- all Channels, from start to end
3062 3062 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3063 3063 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3064 3064 if meteorVolts2.shape[1] == 0:
3065 3065 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3066 3066 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3067 3067 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3068 3068 ##################### END PARAMETERS REESTIMATION #########################
3069 3069
3070 3070 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3071 3071 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3072 3072 if meteorVolts2.shape[1] > 0:
3073 3073 #Phase Difference re-estimation
3074 3074 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3075 3075 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3076 3076 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3077 3077 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3078 3078 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3079 3079
3080 3080 #Phase Difference RMS
3081 3081 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3082 3082 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3083 3083 #Data from Meteor
3084 3084 mPeak1 = powerNet1.argmax() + mStart1
3085 3085 mPeakPower1 = powerNet1.max()
3086 3086 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3087 3087 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3088 3088 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3089 3089 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3090 3090 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3091 3091 #Vectorize
3092 3092 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3093 3093 meteorAux[7:11] = phaseDiffint[0:4]
3094 3094
3095 3095 #Rejection Criterions
3096 3096 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3097 3097 meteorAux[-1] = 17
3098 3098 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3099 3099 meteorAux[-1] = 1
3100 3100
3101 3101
3102 3102 else:
3103 3103 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3104 3104 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3105 3105 PowerSeries = 0
3106 3106
3107 3107 listMeteors1.append(meteorAux)
3108 3108 listPowerSeries.append(PowerSeries)
3109 3109 listVoltageSeries.append(meteorVolts1)
3110 3110
3111 3111 return listMeteors1, listPowerSeries, listVoltageSeries
3112 3112
3113 3113 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3114 3114
3115 3115 threshError = 10
3116 3116 #Depending if it is 30 or 50 MHz
3117 3117 if frequency == 30e6:
3118 3118 timeLag = 45*10**-3
3119 3119 else:
3120 3120 timeLag = 15*10**-3
3121 3121 lag = numpy.ceil(timeLag/timeInterval)
3122 3122
3123 3123 listMeteors1 = []
3124 3124
3125 3125 for i in range(len(listMeteors)):
3126 3126 meteorPower = listPower[i]
3127 3127 meteorAux = listMeteors[i]
3128 3128
3129 3129 if meteorAux[-1] == 0:
3130 3130
3131 3131 try:
3132 3132 indmax = meteorPower.argmax()
3133 3133 indlag = indmax + lag
3134 3134
3135 3135 y = meteorPower[indlag:]
3136 3136 x = numpy.arange(0, y.size)*timeLag
3137 3137
3138 3138 #first guess
3139 3139 a = y[0]
3140 3140 tau = timeLag
3141 3141 #exponential fit
3142 3142 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3143 3143 y1 = self.__exponential_function(x, *popt)
3144 3144 #error estimation
3145 3145 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3146 3146
3147 3147 decayTime = popt[1]
3148 3148 riseTime = indmax*timeInterval
3149 3149 meteorAux[11:13] = [decayTime, error]
3150 3150
3151 3151 #Table items 7, 8 and 11
3152 3152 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3153 3153 meteorAux[-1] = 7
3154 3154 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3155 3155 meteorAux[-1] = 8
3156 3156 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3157 3157 meteorAux[-1] = 11
3158 3158
3159 3159
3160 3160 except:
3161 3161 meteorAux[-1] = 11
3162 3162
3163 3163
3164 3164 listMeteors1.append(meteorAux)
3165 3165
3166 3166 return listMeteors1
3167 3167
3168 3168 #Exponential Function
3169 3169
3170 3170 def __exponential_function(self, x, a, tau):
3171 3171 y = a*numpy.exp(-x/tau)
3172 3172 return y
3173 3173
3174 3174 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3175 3175
3176 3176 pairslist1 = list(pairslist)
3177 3177 pairslist1.append((0,1))
3178 3178 pairslist1.append((3,4))
3179 3179 numPairs = len(pairslist1)
3180 3180 #Time Lag
3181 3181 timeLag = 45*10**-3
3182 3182 c = 3e8
3183 3183 lag = numpy.ceil(timeLag/timeInterval)
3184 3184 freq = 30e6
3185 3185
3186 3186 listMeteors1 = []
3187 3187
3188 3188 for i in range(len(listMeteors)):
3189 3189 meteorAux = listMeteors[i]
3190 3190 if meteorAux[-1] == 0:
3191 3191 mStart = listMeteors[i][1]
3192 3192 mPeak = listMeteors[i][2]
3193 3193 mLag = mPeak - mStart + lag
3194 3194
3195 3195 #get the volt data between the start and end times of the meteor
3196 3196 meteorVolts = listVolts[i]
3197 3197 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3198 3198
3199 3199 #Get CCF
3200 3200 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3201 3201
3202 3202 #Method 2
3203 3203 slopes = numpy.zeros(numPairs)
3204 3204 time = numpy.array([-2,-1,1,2])*timeInterval
3205 3205 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3206 3206
3207 3207 #Correct phases
3208 3208 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3209 3209 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3210 3210
3211 3211 if indDer[0].shape[0] > 0:
3212 3212 for i in range(indDer[0].shape[0]):
3213 3213 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3214 3214 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3215 3215
3216 3216 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3217 3217 for j in range(numPairs):
3218 3218 fit = stats.linregress(time, angAllCCF[j,:])
3219 3219 slopes[j] = fit[0]
3220 3220
3221 3221 #Remove Outlier
3222 3222 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3223 3223 # slopes = numpy.delete(slopes,indOut)
3224 3224 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3225 3225 # slopes = numpy.delete(slopes,indOut)
3226 3226
3227 3227 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3228 3228 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3229 3229 meteorAux[-2] = radialError
3230 3230 meteorAux[-3] = radialVelocity
3231 3231
3232 3232 #Setting Error
3233 3233 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3234 3234 if numpy.abs(radialVelocity) > 200:
3235 3235 meteorAux[-1] = 15
3236 3236 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3237 3237 elif radialError > radialStdThresh:
3238 3238 meteorAux[-1] = 12
3239 3239
3240 3240 listMeteors1.append(meteorAux)
3241 3241 return listMeteors1
3242 3242
3243 3243 def __setNewArrays(self, listMeteors, date, heiRang):
3244 3244
3245 3245 #New arrays
3246 3246 arrayMeteors = numpy.array(listMeteors)
3247 3247 arrayParameters = numpy.zeros((len(listMeteors), 13))
3248 3248
3249 3249 #Date inclusion
3250 3250 # date = re.findall(r'\((.*?)\)', date)
3251 3251 # date = date[0].split(',')
3252 3252 # date = map(int, date)
3253 3253 #
3254 3254 # if len(date)<6:
3255 3255 # date.append(0)
3256 3256 #
3257 3257 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3258 3258 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3259 3259 arrayDate = numpy.tile(date, (len(listMeteors)))
3260 3260
3261 3261 #Meteor array
3262 3262 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3263 3263 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3264 3264
3265 3265 #Parameters Array
3266 3266 arrayParameters[:,0] = arrayDate #Date
3267 3267 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3268 3268 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3269 3269 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3270 3270 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3271 3271
3272 3272
3273 3273 return arrayParameters
3274 3274
3275 3275 class CorrectSMPhases(Operation):
3276 3276
3277 3277 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3278 3278
3279 3279 arrayParameters = dataOut.data_param
3280 3280 pairsList = []
3281 3281 pairx = (0,1)
3282 3282 pairy = (2,3)
3283 3283 pairsList.append(pairx)
3284 3284 pairsList.append(pairy)
3285 3285 jph = numpy.zeros(4)
3286 3286
3287 3287 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3288 3288 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3289 3289 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3290 3290
3291 3291 meteorOps = SMOperations()
3292 3292 if channelPositions is None:
3293 3293 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3294 3294 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3295 3295
3296 3296 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3297 3297 h = (hmin,hmax)
3298 3298
3299 3299 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3300 3300
3301 3301 dataOut.data_param = arrayParameters
3302 3302 return
3303 3303
3304 3304 class SMPhaseCalibration(Operation):
3305 3305
3306 3306 __buffer = None
3307 3307
3308 3308 __initime = None
3309 3309
3310 3310 __dataReady = False
3311 3311
3312 3312 __isConfig = False
3313 3313
3314 3314 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3315 3315
3316 3316 dataTime = currentTime + paramInterval
3317 3317 deltaTime = dataTime - initTime
3318 3318
3319 3319 if deltaTime >= outputInterval or deltaTime < 0:
3320 3320 return True
3321 3321
3322 3322 return False
3323 3323
3324 3324 def __getGammas(self, pairs, d, phases):
3325 3325 gammas = numpy.zeros(2)
3326 3326
3327 3327 for i in range(len(pairs)):
3328 3328
3329 3329 pairi = pairs[i]
3330 3330
3331 3331 phip3 = phases[:,pairi[0]]
3332 3332 d3 = d[pairi[0]]
3333 3333 phip2 = phases[:,pairi[1]]
3334 3334 d2 = d[pairi[1]]
3335 3335 #Calculating gamma
3336 3336 # jdcos = alp1/(k*d1)
3337 3337 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3338 3338 jgamma = -phip2*d3/d2 - phip3
3339 3339 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3340 3340 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3341 3341 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3342 3342
3343 3343 #Revised distribution
3344 3344 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3345 3345
3346 3346 #Histogram
3347 3347 nBins = 64
3348 3348 rmin = -0.5*numpy.pi
3349 3349 rmax = 0.5*numpy.pi
3350 3350 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3351 3351
3352 3352 meteorsY = phaseHisto[0]
3353 3353 phasesX = phaseHisto[1][:-1]
3354 3354 width = phasesX[1] - phasesX[0]
3355 3355 phasesX += width/2
3356 3356
3357 3357 #Gaussian aproximation
3358 3358 bpeak = meteorsY.argmax()
3359 3359 peak = meteorsY.max()
3360 3360 jmin = bpeak - 5
3361 3361 jmax = bpeak + 5 + 1
3362 3362
3363 3363 if jmin<0:
3364 3364 jmin = 0
3365 3365 jmax = 6
3366 3366 elif jmax > meteorsY.size:
3367 3367 jmin = meteorsY.size - 6
3368 3368 jmax = meteorsY.size
3369 3369
3370 3370 x0 = numpy.array([peak,bpeak,50])
3371 3371 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3372 3372
3373 3373 #Gammas
3374 3374 gammas[i] = coeff[0][1]
3375 3375
3376 3376 return gammas
3377 3377
3378 3378 def __residualFunction(self, coeffs, y, t):
3379 3379
3380 3380 return y - self.__gauss_function(t, coeffs)
3381 3381
3382 3382 def __gauss_function(self, t, coeffs):
3383 3383
3384 3384 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3385 3385
3386 3386 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3387 3387 meteorOps = SMOperations()
3388 3388 nchan = 4
3389 3389 pairx = pairsList[0] #x es 0
3390 3390 pairy = pairsList[1] #y es 1
3391 3391 center_xangle = 0
3392 3392 center_yangle = 0
3393 3393 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3394 3394 ntimes = len(range_angle)
3395 3395
3396 3396 nstepsx = 20
3397 3397 nstepsy = 20
3398 3398
3399 3399 for iz in range(ntimes):
3400 3400 min_xangle = -range_angle[iz]/2 + center_xangle
3401 3401 max_xangle = range_angle[iz]/2 + center_xangle
3402 3402 min_yangle = -range_angle[iz]/2 + center_yangle
3403 3403 max_yangle = range_angle[iz]/2 + center_yangle
3404 3404
3405 3405 inc_x = (max_xangle-min_xangle)/nstepsx
3406 3406 inc_y = (max_yangle-min_yangle)/nstepsy
3407 3407
3408 3408 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3409 3409 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3410 3410 penalty = numpy.zeros((nstepsx,nstepsy))
3411 3411 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3412 3412 jph = numpy.zeros(nchan)
3413 3413
3414 3414 # Iterations looking for the offset
3415 3415 for iy in range(int(nstepsy)):
3416 3416 for ix in range(int(nstepsx)):
3417 3417 d3 = d[pairsList[1][0]]
3418 3418 d2 = d[pairsList[1][1]]
3419 3419 d5 = d[pairsList[0][0]]
3420 3420 d4 = d[pairsList[0][1]]
3421 3421
3422 3422 alp2 = alpha_y[iy] #gamma 1
3423 3423 alp4 = alpha_x[ix] #gamma 0
3424 3424
3425 3425 alp3 = -alp2*d3/d2 - gammas[1]
3426 3426 alp5 = -alp4*d5/d4 - gammas[0]
3427 3427 # jph[pairy[1]] = alpha_y[iy]
3428 3428 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3429 3429
3430 3430 # jph[pairx[1]] = alpha_x[ix]
3431 3431 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3432 3432 jph[pairsList[0][1]] = alp4
3433 3433 jph[pairsList[0][0]] = alp5
3434 3434 jph[pairsList[1][0]] = alp3
3435 3435 jph[pairsList[1][1]] = alp2
3436 3436 jph_array[:,ix,iy] = jph
3437 3437 # d = [2.0,2.5,2.5,2.0]
3438 3438 #falta chequear si va a leer bien los meteoros
3439 3439 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3440 3440 error = meteorsArray1[:,-1]
3441 3441 ind1 = numpy.where(error==0)[0]
3442 3442 penalty[ix,iy] = ind1.size
3443 3443
3444 3444 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3445 3445 phOffset = jph_array[:,i,j]
3446 3446
3447 3447 center_xangle = phOffset[pairx[1]]
3448 3448 center_yangle = phOffset[pairy[1]]
3449 3449
3450 3450 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3451 3451 phOffset = phOffset*180/numpy.pi
3452 3452 return phOffset
3453 3453
3454 3454
3455 3455 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3456 3456
3457 3457 dataOut.flagNoData = True
3458 3458 self.__dataReady = False
3459 3459 dataOut.outputInterval = nHours*3600
3460 3460
3461 3461 if self.__isConfig == False:
3462 3462 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3463 3463 #Get Initial LTC time
3464 3464 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3465 3465 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3466 3466
3467 3467 self.__isConfig = True
3468 3468
3469 3469 if self.__buffer is None:
3470 3470 self.__buffer = dataOut.data_param.copy()
3471 3471
3472 3472 else:
3473 3473 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3474 3474
3475 3475 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3476 3476
3477 3477 if self.__dataReady:
3478 3478 dataOut.utctimeInit = self.__initime
3479 3479 self.__initime += dataOut.outputInterval #to erase time offset
3480 3480
3481 3481 freq = dataOut.frequency
3482 3482 c = dataOut.C #m/s
3483 3483 lamb = c/freq
3484 3484 k = 2*numpy.pi/lamb
3485 3485 azimuth = 0
3486 3486 h = (hmin, hmax)
3487 3487 # pairs = ((0,1),(2,3)) #Estrella
3488 3488 # pairs = ((1,0),(2,3)) #T
3489 3489
3490 3490 if channelPositions is None:
3491 3491 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3492 3492 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3493 3493 meteorOps = SMOperations()
3494 3494 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3495 3495
3496 3496 #Checking correct order of pairs
3497 3497 pairs = []
3498 3498 if distances[1] > distances[0]:
3499 3499 pairs.append((1,0))
3500 3500 else:
3501 3501 pairs.append((0,1))
3502 3502
3503 3503 if distances[3] > distances[2]:
3504 3504 pairs.append((3,2))
3505 3505 else:
3506 3506 pairs.append((2,3))
3507 3507 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3508 3508
3509 3509 meteorsArray = self.__buffer
3510 3510 error = meteorsArray[:,-1]
3511 3511 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3512 3512 ind1 = numpy.where(boolError)[0]
3513 3513 meteorsArray = meteorsArray[ind1,:]
3514 3514 meteorsArray[:,-1] = 0
3515 3515 phases = meteorsArray[:,8:12]
3516 3516
3517 3517 #Calculate Gammas
3518 3518 gammas = self.__getGammas(pairs, distances, phases)
3519 3519 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3520 3520 #Calculate Phases
3521 3521 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3522 3522 phasesOff = phasesOff.reshape((1,phasesOff.size))
3523 3523 dataOut.data_output = -phasesOff
3524 3524 dataOut.flagNoData = False
3525 3525 self.__buffer = None
3526 3526
3527 3527
3528 3528 return
3529 3529
3530 3530 class SMOperations():
3531 3531
3532 3532 def __init__(self):
3533 3533
3534 3534 return
3535 3535
3536 3536 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3537 3537
3538 3538 arrayParameters = arrayParameters0.copy()
3539 3539 hmin = h[0]
3540 3540 hmax = h[1]
3541 3541
3542 3542 #Calculate AOA (Error N 3, 4)
3543 3543 #JONES ET AL. 1998
3544 3544 AOAthresh = numpy.pi/8
3545 3545 error = arrayParameters[:,-1]
3546 3546 phases = -arrayParameters[:,8:12] + jph
3547 3547 # phases = numpy.unwrap(phases)
3548 3548 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3549 3549
3550 3550 #Calculate Heights (Error N 13 and 14)
3551 3551 error = arrayParameters[:,-1]
3552 3552 Ranges = arrayParameters[:,1]
3553 3553 zenith = arrayParameters[:,4]
3554 3554 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3555 3555
3556 3556 #----------------------- Get Final data ------------------------------------
3557 3557 # error = arrayParameters[:,-1]
3558 3558 # ind1 = numpy.where(error==0)[0]
3559 3559 # arrayParameters = arrayParameters[ind1,:]
3560 3560
3561 3561 return arrayParameters
3562 3562
3563 3563 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3564 3564
3565 3565 arrayAOA = numpy.zeros((phases.shape[0],3))
3566 3566 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3567 3567
3568 3568 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3569 3569 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3570 3570 arrayAOA[:,2] = cosDirError
3571 3571
3572 3572 azimuthAngle = arrayAOA[:,0]
3573 3573 zenithAngle = arrayAOA[:,1]
3574 3574
3575 3575 #Setting Error
3576 3576 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3577 3577 error[indError] = 0
3578 3578 #Number 3: AOA not fesible
3579 3579 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3580 3580 error[indInvalid] = 3
3581 3581 #Number 4: Large difference in AOAs obtained from different antenna baselines
3582 3582 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3583 3583 error[indInvalid] = 4
3584 3584 return arrayAOA, error
3585 3585
3586 3586 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3587 3587
3588 3588 #Initializing some variables
3589 3589 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3590 3590 ang_aux = ang_aux.reshape(1,ang_aux.size)
3591 3591
3592 3592 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3593 3593 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3594 3594
3595 3595
3596 3596 for i in range(2):
3597 3597 ph0 = arrayPhase[:,pairsList[i][0]]
3598 3598 ph1 = arrayPhase[:,pairsList[i][1]]
3599 3599 d0 = distances[pairsList[i][0]]
3600 3600 d1 = distances[pairsList[i][1]]
3601 3601
3602 3602 ph0_aux = ph0 + ph1
3603 3603 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3604 3604 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3605 3605 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3606 3606 #First Estimation
3607 3607 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3608 3608
3609 3609 #Most-Accurate Second Estimation
3610 3610 phi1_aux = ph0 - ph1
3611 3611 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3612 3612 #Direction Cosine 1
3613 3613 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3614 3614
3615 3615 #Searching the correct Direction Cosine
3616 3616 cosdir0_aux = cosdir0[:,i]
3617 3617 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3618 3618 #Minimum Distance
3619 3619 cosDiff = (cosdir1 - cosdir0_aux)**2
3620 3620 indcos = cosDiff.argmin(axis = 1)
3621 3621 #Saving Value obtained
3622 3622 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3623 3623
3624 3624 return cosdir0, cosdir
3625 3625
3626 3626 def __calculateAOA(self, cosdir, azimuth):
3627 3627 cosdirX = cosdir[:,0]
3628 3628 cosdirY = cosdir[:,1]
3629 3629
3630 3630 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3631 3631 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3632 3632 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3633 3633
3634 3634 return angles
3635 3635
3636 3636 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3637 3637
3638 3638 Ramb = 375 #Ramb = c/(2*PRF)
3639 3639 Re = 6371 #Earth Radius
3640 3640 heights = numpy.zeros(Ranges.shape)
3641 3641
3642 3642 R_aux = numpy.array([0,1,2])*Ramb
3643 3643 R_aux = R_aux.reshape(1,R_aux.size)
3644 3644
3645 3645 Ranges = Ranges.reshape(Ranges.size,1)
3646 3646
3647 3647 Ri = Ranges + R_aux
3648 3648 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3649 3649
3650 3650 #Check if there is a height between 70 and 110 km
3651 3651 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3652 3652 ind_h = numpy.where(h_bool == 1)[0]
3653 3653
3654 3654 hCorr = hi[ind_h, :]
3655 3655 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3656 3656
3657 3657 hCorr = hi[ind_hCorr][:len(ind_h)]
3658 3658 heights[ind_h] = hCorr
3659 3659
3660 3660 #Setting Error
3661 3661 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3662 3662 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3663 3663 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3664 3664 error[indError] = 0
3665 3665 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3666 3666 error[indInvalid2] = 14
3667 3667 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3668 3668 error[indInvalid1] = 13
3669 3669
3670 3670 return heights, error
3671 3671
3672 3672 def getPhasePairs(self, channelPositions):
3673 3673 chanPos = numpy.array(channelPositions)
3674 3674 listOper = list(itertools.combinations(list(range(5)),2))
3675 3675
3676 3676 distances = numpy.zeros(4)
3677 3677 axisX = []
3678 3678 axisY = []
3679 3679 distX = numpy.zeros(3)
3680 3680 distY = numpy.zeros(3)
3681 3681 ix = 0
3682 3682 iy = 0
3683 3683
3684 3684 pairX = numpy.zeros((2,2))
3685 3685 pairY = numpy.zeros((2,2))
3686 3686
3687 3687 for i in range(len(listOper)):
3688 3688 pairi = listOper[i]
3689 3689
3690 3690 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3691 3691
3692 3692 if posDif[0] == 0:
3693 3693 axisY.append(pairi)
3694 3694 distY[iy] = posDif[1]
3695 3695 iy += 1
3696 3696 elif posDif[1] == 0:
3697 3697 axisX.append(pairi)
3698 3698 distX[ix] = posDif[0]
3699 3699 ix += 1
3700 3700
3701 3701 for i in range(2):
3702 3702 if i==0:
3703 3703 dist0 = distX
3704 3704 axis0 = axisX
3705 3705 else:
3706 3706 dist0 = distY
3707 3707 axis0 = axisY
3708 3708
3709 3709 side = numpy.argsort(dist0)[:-1]
3710 3710 axis0 = numpy.array(axis0)[side,:]
3711 3711 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3712 3712 axis1 = numpy.unique(numpy.reshape(axis0,4))
3713 3713 side = axis1[axis1 != chanC]
3714 3714 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3715 3715 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3716 3716 if diff1<0:
3717 3717 chan2 = side[0]
3718 3718 d2 = numpy.abs(diff1)
3719 3719 chan1 = side[1]
3720 3720 d1 = numpy.abs(diff2)
3721 3721 else:
3722 3722 chan2 = side[1]
3723 3723 d2 = numpy.abs(diff2)
3724 3724 chan1 = side[0]
3725 3725 d1 = numpy.abs(diff1)
3726 3726
3727 3727 if i==0:
3728 3728 chanCX = chanC
3729 3729 chan1X = chan1
3730 3730 chan2X = chan2
3731 3731 distances[0:2] = numpy.array([d1,d2])
3732 3732 else:
3733 3733 chanCY = chanC
3734 3734 chan1Y = chan1
3735 3735 chan2Y = chan2
3736 3736 distances[2:4] = numpy.array([d1,d2])
3737 3737 # axisXsides = numpy.reshape(axisX[ix,:],4)
3738 3738 #
3739 3739 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3740 3740 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3741 3741 #
3742 3742 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3743 3743 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3744 3744 # channel25X = int(pairX[0,ind25X])
3745 3745 # channel20X = int(pairX[1,ind20X])
3746 3746 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3747 3747 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3748 3748 # channel25Y = int(pairY[0,ind25Y])
3749 3749 # channel20Y = int(pairY[1,ind20Y])
3750 3750
3751 3751 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3752 3752 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3753 3753
3754 3754 return pairslist, distances
3755 3755 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3756 3756 #
3757 3757 # arrayAOA = numpy.zeros((phases.shape[0],3))
3758 3758 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3759 3759 #
3760 3760 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3761 3761 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3762 3762 # arrayAOA[:,2] = cosDirError
3763 3763 #
3764 3764 # azimuthAngle = arrayAOA[:,0]
3765 3765 # zenithAngle = arrayAOA[:,1]
3766 3766 #
3767 3767 # #Setting Error
3768 3768 # #Number 3: AOA not fesible
3769 3769 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3770 3770 # error[indInvalid] = 3
3771 3771 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3772 3772 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3773 3773 # error[indInvalid] = 4
3774 3774 # return arrayAOA, error
3775 3775 #
3776 3776 # def __getDirectionCosines(self, arrayPhase, pairsList):
3777 3777 #
3778 3778 # #Initializing some variables
3779 3779 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3780 3780 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3781 3781 #
3782 3782 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3783 3783 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3784 3784 #
3785 3785 #
3786 3786 # for i in range(2):
3787 3787 # #First Estimation
3788 3788 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3789 3789 # #Dealias
3790 3790 # indcsi = numpy.where(phi0_aux > numpy.pi)
3791 3791 # phi0_aux[indcsi] -= 2*numpy.pi
3792 3792 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3793 3793 # phi0_aux[indcsi] += 2*numpy.pi
3794 3794 # #Direction Cosine 0
3795 3795 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3796 3796 #
3797 3797 # #Most-Accurate Second Estimation
3798 3798 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3799 3799 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3800 3800 # #Direction Cosine 1
3801 3801 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3802 3802 #
3803 3803 # #Searching the correct Direction Cosine
3804 3804 # cosdir0_aux = cosdir0[:,i]
3805 3805 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3806 3806 # #Minimum Distance
3807 3807 # cosDiff = (cosdir1 - cosdir0_aux)**2
3808 3808 # indcos = cosDiff.argmin(axis = 1)
3809 3809 # #Saving Value obtained
3810 3810 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3811 3811 #
3812 3812 # return cosdir0, cosdir
3813 3813 #
3814 3814 # def __calculateAOA(self, cosdir, azimuth):
3815 3815 # cosdirX = cosdir[:,0]
3816 3816 # cosdirY = cosdir[:,1]
3817 3817 #
3818 3818 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3819 3819 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3820 3820 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3821 3821 #
3822 3822 # return angles
3823 3823 #
3824 3824 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3825 3825 #
3826 3826 # Ramb = 375 #Ramb = c/(2*PRF)
3827 3827 # Re = 6371 #Earth Radius
3828 3828 # heights = numpy.zeros(Ranges.shape)
3829 3829 #
3830 3830 # R_aux = numpy.array([0,1,2])*Ramb
3831 3831 # R_aux = R_aux.reshape(1,R_aux.size)
3832 3832 #
3833 3833 # Ranges = Ranges.reshape(Ranges.size,1)
3834 3834 #
3835 3835 # Ri = Ranges + R_aux
3836 3836 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3837 3837 #
3838 3838 # #Check if there is a height between 70 and 110 km
3839 3839 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3840 3840 # ind_h = numpy.where(h_bool == 1)[0]
3841 3841 #
3842 3842 # hCorr = hi[ind_h, :]
3843 3843 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3844 3844 #
3845 3845 # hCorr = hi[ind_hCorr]
3846 3846 # heights[ind_h] = hCorr
3847 3847 #
3848 3848 # #Setting Error
3849 3849 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3850 3850 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3851 3851 #
3852 3852 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3853 3853 # error[indInvalid2] = 14
3854 3854 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3855 3855 # error[indInvalid1] = 13
3856 3856 #
3857 3857 # return heights, error
3858 3858 No newline at end of file
General Comments 0
You need to be logged in to leave comments. Login now