@@ -1,688 +1,691 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Base class to create plot operations |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import sys |
|
11 | 11 | import zmq |
|
12 | 12 | import time |
|
13 | 13 | import numpy |
|
14 | 14 | import datetime |
|
15 | 15 | from collections import deque |
|
16 | 16 | from functools import wraps |
|
17 | 17 | from threading import Thread |
|
18 | 18 | import matplotlib |
|
19 | 19 | |
|
20 | 20 | if 'BACKEND' in os.environ: |
|
21 | 21 | matplotlib.use(os.environ['BACKEND']) |
|
22 | 22 | elif 'linux' in sys.platform: |
|
23 | 23 | matplotlib.use("TkAgg") |
|
24 | 24 | elif 'darwin' in sys.platform: |
|
25 | 25 | matplotlib.use('MacOSX') |
|
26 | 26 | else: |
|
27 | 27 | from schainpy.utils import log |
|
28 | 28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
29 | 29 | matplotlib.use('Agg') |
|
30 | 30 | |
|
31 | 31 | import matplotlib.pyplot as plt |
|
32 | 32 | from matplotlib.patches import Polygon |
|
33 | 33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
34 | 34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
35 | 35 | |
|
36 | 36 | from schainpy.model.data.jrodata import PlotterData |
|
37 | 37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
38 | 38 | from schainpy.utils import log |
|
39 | 39 | |
|
40 | 40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
41 | 41 | blu_values = matplotlib.pyplot.get_cmap( |
|
42 | 42 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
43 | 43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
44 | 44 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
45 | 45 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
46 | 46 | |
|
47 | 47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
48 | 48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
49 | 49 | |
|
50 | 50 | EARTH_RADIUS = 6.3710e3 |
|
51 | 51 | |
|
52 | 52 | def ll2xy(lat1, lon1, lat2, lon2): |
|
53 | 53 | |
|
54 | 54 | p = 0.017453292519943295 |
|
55 | 55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
56 | 56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
57 | 57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
58 | 58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
59 | 59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
60 | 60 | theta = -theta + numpy.pi/2 |
|
61 | 61 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def km2deg(km): |
|
65 | 65 | ''' |
|
66 | 66 | Convert distance in km to degrees |
|
67 | 67 | ''' |
|
68 | 68 | |
|
69 | 69 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
70 | 70 | |
|
71 | 71 | |
|
72 | 72 | def figpause(interval): |
|
73 | 73 | backend = plt.rcParams['backend'] |
|
74 | 74 | if backend in matplotlib.rcsetup.interactive_bk: |
|
75 | 75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
76 | 76 | if figManager is not None: |
|
77 | 77 | canvas = figManager.canvas |
|
78 | 78 | if canvas.figure.stale: |
|
79 | 79 | canvas.draw() |
|
80 | 80 | try: |
|
81 | 81 | canvas.start_event_loop(interval) |
|
82 | 82 | except: |
|
83 | 83 | pass |
|
84 | 84 | return |
|
85 | 85 | |
|
86 | 86 | def popup(message): |
|
87 | 87 | ''' |
|
88 | 88 | ''' |
|
89 | 89 | |
|
90 | 90 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
91 | 91 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
92 | 92 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
93 | 93 | size='20', weight='heavy', color='w') |
|
94 | 94 | fig.show() |
|
95 | 95 | figpause(1000) |
|
96 | 96 | |
|
97 | 97 | |
|
98 | 98 | class Throttle(object): |
|
99 | 99 | ''' |
|
100 | 100 | Decorator that prevents a function from being called more than once every |
|
101 | 101 | time period. |
|
102 | 102 | To create a function that cannot be called more than once a minute, but |
|
103 | 103 | will sleep until it can be called: |
|
104 | 104 | @Throttle(minutes=1) |
|
105 | 105 | def foo(): |
|
106 | 106 | pass |
|
107 | 107 | |
|
108 | 108 | for i in range(10): |
|
109 | 109 | foo() |
|
110 | 110 | print "This function has run %s times." % i |
|
111 | 111 | ''' |
|
112 | 112 | |
|
113 | 113 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
114 | 114 | self.throttle_period = datetime.timedelta( |
|
115 | 115 | seconds=seconds, minutes=minutes, hours=hours |
|
116 | 116 | ) |
|
117 | 117 | |
|
118 | 118 | self.time_of_last_call = datetime.datetime.min |
|
119 | 119 | |
|
120 | 120 | def __call__(self, fn): |
|
121 | 121 | @wraps(fn) |
|
122 | 122 | def wrapper(*args, **kwargs): |
|
123 | 123 | coerce = kwargs.pop('coerce', None) |
|
124 | 124 | if coerce: |
|
125 | 125 | self.time_of_last_call = datetime.datetime.now() |
|
126 | 126 | return fn(*args, **kwargs) |
|
127 | 127 | else: |
|
128 | 128 | now = datetime.datetime.now() |
|
129 | 129 | time_since_last_call = now - self.time_of_last_call |
|
130 | 130 | time_left = self.throttle_period - time_since_last_call |
|
131 | 131 | |
|
132 | 132 | if time_left > datetime.timedelta(seconds=0): |
|
133 | 133 | return |
|
134 | 134 | |
|
135 | 135 | self.time_of_last_call = datetime.datetime.now() |
|
136 | 136 | return fn(*args, **kwargs) |
|
137 | 137 | |
|
138 | 138 | return wrapper |
|
139 | 139 | |
|
140 | 140 | def apply_throttle(value): |
|
141 | 141 | |
|
142 | 142 | @Throttle(seconds=value) |
|
143 | 143 | def fnThrottled(fn): |
|
144 | 144 | fn() |
|
145 | 145 | |
|
146 | 146 | return fnThrottled |
|
147 | 147 | |
|
148 | 148 | |
|
149 | 149 | @MPDecorator |
|
150 | 150 | class Plot(Operation): |
|
151 | 151 | """Base class for Schain plotting operations |
|
152 | 152 | |
|
153 | 153 | This class should never be use directtly you must subclass a new operation, |
|
154 | 154 | children classes must be defined as follow: |
|
155 | 155 | |
|
156 | 156 | ExamplePlot(Plot): |
|
157 | 157 | |
|
158 | 158 | CODE = 'code' |
|
159 | 159 | colormap = 'jet' |
|
160 | 160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
161 | 161 | |
|
162 | 162 | def setup(self): |
|
163 | 163 | pass |
|
164 | 164 | |
|
165 | 165 | def plot(self): |
|
166 | 166 | pass |
|
167 | 167 | |
|
168 | 168 | """ |
|
169 | 169 | |
|
170 | 170 | CODE = 'Figure' |
|
171 | 171 | colormap = 'jet' |
|
172 | 172 | bgcolor = 'white' |
|
173 | 173 | buffering = True |
|
174 | 174 | __missing = 1E30 |
|
175 | 175 | |
|
176 | 176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
177 | 177 | 'showprofile'] |
|
178 | 178 | |
|
179 | 179 | def __init__(self): |
|
180 | 180 | |
|
181 | 181 | Operation.__init__(self) |
|
182 | 182 | self.isConfig = False |
|
183 | 183 | self.isPlotConfig = False |
|
184 | 184 | self.save_time = 0 |
|
185 | 185 | self.sender_time = 0 |
|
186 | 186 | self.data = None |
|
187 | 187 | self.firsttime = True |
|
188 | 188 | self.sender_queue = deque(maxlen=10) |
|
189 | 189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
190 | 190 | |
|
191 | 191 | def __fmtTime(self, x, pos): |
|
192 | 192 | ''' |
|
193 | 193 | ''' |
|
194 | 194 | |
|
195 | 195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
196 | 196 | |
|
197 | 197 | def __setup(self, **kwargs): |
|
198 | 198 | ''' |
|
199 | 199 | Initialize variables |
|
200 | 200 | ''' |
|
201 | 201 | |
|
202 | 202 | self.figures = [] |
|
203 | 203 | self.axes = [] |
|
204 | 204 | self.cb_axes = [] |
|
205 | 205 | self.localtime = kwargs.pop('localtime', True) |
|
206 | 206 | self.show = kwargs.get('show', True) |
|
207 | 207 | self.save = kwargs.get('save', False) |
|
208 | 208 | self.save_period = kwargs.get('save_period', 0) |
|
209 | 209 | self.colormap = kwargs.get('colormap', self.colormap) |
|
210 | 210 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
211 | 211 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
212 | 212 | self.colormaps = kwargs.get('colormaps', None) |
|
213 | 213 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
214 | 214 | self.showprofile = kwargs.get('showprofile', False) |
|
215 | 215 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
216 | 216 | self.cb_label = kwargs.get('cb_label', None) |
|
217 | 217 | self.cb_labels = kwargs.get('cb_labels', None) |
|
218 | 218 | self.labels = kwargs.get('labels', None) |
|
219 | 219 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
220 | 220 | self.zmin = kwargs.get('zmin', None) |
|
221 | 221 | self.zmax = kwargs.get('zmax', None) |
|
222 | 222 | self.zlimits = kwargs.get('zlimits', None) |
|
223 | 223 | self.xmin = kwargs.get('xmin', None) |
|
224 | 224 | self.xmax = kwargs.get('xmax', None) |
|
225 | 225 | self.xrange = kwargs.get('xrange', 12) |
|
226 | 226 | self.xscale = kwargs.get('xscale', None) |
|
227 | 227 | self.ymin = kwargs.get('ymin', None) |
|
228 | 228 | self.ymax = kwargs.get('ymax', None) |
|
229 | 229 | self.yscale = kwargs.get('yscale', None) |
|
230 | 230 | self.xlabel = kwargs.get('xlabel', None) |
|
231 | 231 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
232 | 232 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
233 | 233 | self.decimation = kwargs.get('decimation', None) |
|
234 | self.showSNR = kwargs.get('showSNR', False) | |
|
235 | 234 | self.oneFigure = kwargs.get('oneFigure', True) |
|
236 | 235 | self.width = kwargs.get('width', None) |
|
237 | 236 | self.height = kwargs.get('height', None) |
|
238 | 237 | self.colorbar = kwargs.get('colorbar', True) |
|
239 | 238 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
240 | 239 | self.channels = kwargs.get('channels', None) |
|
241 | 240 | self.titles = kwargs.get('titles', []) |
|
242 | 241 | self.polar = False |
|
243 | 242 | self.type = kwargs.get('type', 'iq') |
|
244 | 243 | self.grid = kwargs.get('grid', False) |
|
245 | 244 | self.pause = kwargs.get('pause', False) |
|
246 | 245 | self.save_code = kwargs.get('save_code', self.CODE) |
|
247 | 246 | self.throttle = kwargs.get('throttle', 0) |
|
248 | 247 | self.exp_code = kwargs.get('exp_code', None) |
|
249 | 248 | self.server = kwargs.get('server', False) |
|
250 | 249 | self.sender_period = kwargs.get('sender_period', 60) |
|
251 | 250 | self.tag = kwargs.get('tag', '') |
|
252 | 251 | self.height_index = kwargs.get('height_index', None) |
|
253 | 252 | self.__throttle_plot = apply_throttle(self.throttle) |
|
254 | 253 | code = self.attr_data if self.attr_data else self.CODE |
|
255 | 254 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
256 | 255 | |
|
257 | 256 | if self.server: |
|
258 | 257 | if not self.server.startswith('tcp://'): |
|
259 | 258 | self.server = 'tcp://{}'.format(self.server) |
|
260 | 259 | log.success( |
|
261 | 260 | 'Sending to server: {}'.format(self.server), |
|
262 | 261 | self.name |
|
263 | 262 | ) |
|
264 | 263 | |
|
264 | if isinstance(self.attr_data, str): | |
|
265 | self.attr_data = [self.attr_data] | |
|
266 | ||
|
265 | 267 | def __setup_plot(self): |
|
266 | 268 | ''' |
|
267 | 269 | Common setup for all figures, here figures and axes are created |
|
268 | 270 | ''' |
|
269 | 271 | |
|
270 | 272 | self.setup() |
|
271 | 273 | |
|
272 | 274 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
273 | 275 | |
|
274 | 276 | if self.width is None: |
|
275 | 277 | self.width = 8 |
|
276 | 278 | |
|
277 | 279 | self.figures = [] |
|
278 | 280 | self.axes = [] |
|
279 | 281 | self.cb_axes = [] |
|
280 | 282 | self.pf_axes = [] |
|
281 | 283 | self.cmaps = [] |
|
282 | 284 | |
|
283 | 285 | size = '15%' if self.ncols == 1 else '30%' |
|
284 | 286 | pad = '4%' if self.ncols == 1 else '8%' |
|
285 | 287 | |
|
286 | 288 | if self.oneFigure: |
|
287 | 289 | if self.height is None: |
|
288 | 290 | self.height = 1.4 * self.nrows + 1 |
|
289 | 291 | fig = plt.figure(figsize=(self.width, self.height), |
|
290 | 292 | edgecolor='k', |
|
291 | 293 | facecolor='w') |
|
292 | 294 | self.figures.append(fig) |
|
293 | 295 | for n in range(self.nplots): |
|
294 | 296 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
295 | 297 | n + 1, polar=self.polar) |
|
296 | 298 | ax.tick_params(labelsize=8) |
|
297 | 299 | ax.firsttime = True |
|
298 | 300 | ax.index = 0 |
|
299 | 301 | ax.press = None |
|
300 | 302 | self.axes.append(ax) |
|
301 | 303 | if self.showprofile: |
|
302 | 304 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
303 | 305 | cax.tick_params(labelsize=8) |
|
304 | 306 | self.pf_axes.append(cax) |
|
305 | 307 | else: |
|
306 | 308 | if self.height is None: |
|
307 | 309 | self.height = 3 |
|
308 | 310 | for n in range(self.nplots): |
|
309 | 311 | fig = plt.figure(figsize=(self.width, self.height), |
|
310 | 312 | edgecolor='k', |
|
311 | 313 | facecolor='w') |
|
312 | 314 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
313 | 315 | ax.tick_params(labelsize=8) |
|
314 | 316 | ax.firsttime = True |
|
315 | 317 | ax.index = 0 |
|
316 | 318 | ax.press = None |
|
317 | 319 | self.figures.append(fig) |
|
318 | 320 | self.axes.append(ax) |
|
319 | 321 | if self.showprofile: |
|
320 | 322 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
321 | 323 | cax.tick_params(labelsize=8) |
|
322 | 324 | self.pf_axes.append(cax) |
|
323 | 325 | |
|
324 | 326 | for n in range(self.nrows): |
|
327 | print(self.nrows) | |
|
325 | 328 | if self.colormaps is not None: |
|
326 | 329 | cmap = plt.get_cmap(self.colormaps[n]) |
|
327 | 330 | else: |
|
328 | 331 | cmap = plt.get_cmap(self.colormap) |
|
329 | 332 | cmap.set_bad(self.bgcolor, 1.) |
|
330 | 333 | self.cmaps.append(cmap) |
|
331 | 334 | |
|
332 | 335 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
333 | 336 | ''' |
|
334 | 337 | Add new axes to the given figure |
|
335 | 338 | ''' |
|
336 | 339 | divider = make_axes_locatable(ax) |
|
337 | 340 | nax = divider.new_horizontal(size=size, pad=pad) |
|
338 | 341 | ax.figure.add_axes(nax) |
|
339 | 342 | return nax |
|
340 | 343 | |
|
341 | 344 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
342 | 345 | ''' |
|
343 | 346 | Create a masked array for missing data |
|
344 | 347 | ''' |
|
345 | 348 | if x_buffer.shape[0] < 2: |
|
346 | 349 | return x_buffer, y_buffer, z_buffer |
|
347 | 350 | |
|
348 | 351 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
349 | 352 | x_median = numpy.median(deltas) |
|
350 | 353 | |
|
351 | 354 | index = numpy.where(deltas > 5 * x_median) |
|
352 | 355 | |
|
353 | 356 | if len(index[0]) != 0: |
|
354 | 357 | z_buffer[::, index[0], ::] = self.__missing |
|
355 | 358 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
356 | 359 | 0.99 * self.__missing, |
|
357 | 360 | 1.01 * self.__missing) |
|
358 | 361 | |
|
359 | 362 | return x_buffer, y_buffer, z_buffer |
|
360 | 363 | |
|
361 | 364 | def decimate(self): |
|
362 | 365 | |
|
363 | 366 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
364 | 367 | dy = int(len(self.y) / self.decimation) + 1 |
|
365 | 368 | |
|
366 | 369 | # x = self.x[::dx] |
|
367 | 370 | x = self.x |
|
368 | 371 | y = self.y[::dy] |
|
369 | 372 | z = self.z[::, ::, ::dy] |
|
370 | 373 | |
|
371 | 374 | return x, y, z |
|
372 | 375 | |
|
373 | 376 | def format(self): |
|
374 | 377 | ''' |
|
375 | 378 | Set min and max values, labels, ticks and titles |
|
376 | 379 | ''' |
|
377 | 380 | |
|
378 | 381 | for n, ax in enumerate(self.axes): |
|
379 | 382 | if ax.firsttime: |
|
380 | 383 | if self.xaxis != 'time': |
|
381 | 384 | xmin = self.xmin |
|
382 | 385 | xmax = self.xmax |
|
383 | 386 | else: |
|
384 | 387 | xmin = self.tmin |
|
385 | 388 | xmax = self.tmin + self.xrange*60*60 |
|
386 | 389 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
387 | 390 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
388 | 391 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
389 | 392 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
390 | 393 | ax.set_facecolor(self.bgcolor) |
|
391 | 394 | if self.xscale: |
|
392 | 395 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
393 | 396 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
394 | 397 | if self.yscale: |
|
395 | 398 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
396 | 399 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
397 | 400 | if self.xlabel is not None: |
|
398 | 401 | ax.set_xlabel(self.xlabel) |
|
399 | 402 | if self.ylabel is not None: |
|
400 | 403 | ax.set_ylabel(self.ylabel) |
|
401 | 404 | if self.showprofile: |
|
402 | 405 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
403 | 406 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
404 | 407 | self.pf_axes[n].set_xlabel('dB') |
|
405 | 408 | self.pf_axes[n].grid(b=True, axis='x') |
|
406 | 409 | [tick.set_visible(False) |
|
407 | 410 | for tick in self.pf_axes[n].get_yticklabels()] |
|
408 | 411 | if self.colorbar: |
|
409 | 412 | ax.cbar = plt.colorbar( |
|
410 | 413 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
411 | 414 | ax.cbar.ax.tick_params(labelsize=8) |
|
412 | 415 | ax.cbar.ax.press = None |
|
413 | 416 | if self.cb_label: |
|
414 | 417 | ax.cbar.set_label(self.cb_label, size=8) |
|
415 | 418 | elif self.cb_labels: |
|
416 | 419 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
417 | 420 | else: |
|
418 | 421 | ax.cbar = None |
|
419 | 422 | ax.set_xlim(xmin, xmax) |
|
420 | 423 | ax.set_ylim(ymin, ymax) |
|
421 | 424 | ax.firsttime = False |
|
422 | 425 | if self.grid: |
|
423 | 426 | ax.grid(True) |
|
424 | 427 | if not self.polar: |
|
425 | 428 | ax.set_title('{} {} {}'.format( |
|
426 | 429 | self.titles[n], |
|
427 | 430 | self.getDateTime(self.data.max_time).strftime( |
|
428 | 431 | '%Y-%m-%d %H:%M:%S'), |
|
429 | 432 | self.time_label), |
|
430 | 433 | size=8) |
|
431 | 434 | else: |
|
432 | 435 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
433 | 436 | ax.set_ylim(0, 90) |
|
434 | 437 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
435 | 438 | ax.yaxis.labelpad = 40 |
|
436 | 439 | |
|
437 | 440 | if self.firsttime: |
|
438 | 441 | for n, fig in enumerate(self.figures): |
|
439 | 442 | fig.subplots_adjust(**self.plots_adjust) |
|
440 | 443 | self.firsttime = False |
|
441 | 444 | |
|
442 | 445 | def clear_figures(self): |
|
443 | 446 | ''' |
|
444 | 447 | Reset axes for redraw plots |
|
445 | 448 | ''' |
|
446 | 449 | |
|
447 | 450 | for ax in self.axes+self.pf_axes+self.cb_axes: |
|
448 | 451 | ax.clear() |
|
449 | 452 | ax.firsttime = True |
|
450 | 453 | if hasattr(ax, 'cbar') and ax.cbar: |
|
451 | 454 | ax.cbar.remove() |
|
452 | 455 | |
|
453 | 456 | def __plot(self): |
|
454 | 457 | ''' |
|
455 | 458 | Main function to plot, format and save figures |
|
456 | 459 | ''' |
|
457 | 460 | |
|
458 | 461 | self.plot() |
|
459 | 462 | self.format() |
|
460 | 463 | |
|
461 | 464 | for n, fig in enumerate(self.figures): |
|
462 | 465 | if self.nrows == 0 or self.nplots == 0: |
|
463 | 466 | log.warning('No data', self.name) |
|
464 | 467 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
465 | 468 | fig.canvas.manager.set_window_title(self.CODE) |
|
466 | 469 | continue |
|
467 | 470 | |
|
468 | 471 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
469 | 472 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
470 | 473 | fig.canvas.draw() |
|
471 | 474 | if self.show: |
|
472 | 475 | fig.show() |
|
473 | 476 | figpause(0.01) |
|
474 | 477 | |
|
475 | 478 | if self.save: |
|
476 | 479 | self.save_figure(n) |
|
477 | 480 | |
|
478 | 481 | if self.server: |
|
479 | 482 | self.send_to_server() |
|
480 | 483 | |
|
481 | 484 | def __update(self, dataOut, timestamp): |
|
482 | 485 | ''' |
|
483 | 486 | ''' |
|
484 | 487 | |
|
485 | 488 | metadata = { |
|
486 | 489 | 'yrange': dataOut.heightList, |
|
487 | 490 | 'interval': dataOut.timeInterval, |
|
488 | 491 | 'channels': dataOut.channelList |
|
489 | 492 | } |
|
490 | 493 | |
|
491 | 494 | data, meta = self.update(dataOut) |
|
492 | 495 | metadata.update(meta) |
|
493 | 496 | self.data.update(data, timestamp, metadata) |
|
494 | 497 | |
|
495 | 498 | def save_figure(self, n): |
|
496 | 499 | ''' |
|
497 | 500 | ''' |
|
498 | 501 | |
|
499 | 502 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
500 | 503 | return |
|
501 | 504 | |
|
502 | 505 | self.save_time = self.data.max_time |
|
503 | 506 | |
|
504 | 507 | fig = self.figures[n] |
|
505 | 508 | |
|
509 | if self.throttle == 0: | |
|
506 | 510 | figname = os.path.join( |
|
507 | 511 | self.save, |
|
508 | 512 | self.save_code, |
|
509 | 513 | '{}_{}.png'.format( |
|
510 | 514 | self.save_code, |
|
511 | 515 | self.getDateTime(self.data.max_time).strftime( |
|
512 | 516 | '%Y%m%d_%H%M%S' |
|
513 | 517 | ), |
|
514 | 518 | ) |
|
515 | 519 | ) |
|
516 | 520 | log.log('Saving figure: {}'.format(figname), self.name) |
|
517 | 521 | if not os.path.isdir(os.path.dirname(figname)): |
|
518 | 522 | os.makedirs(os.path.dirname(figname)) |
|
519 | 523 | fig.savefig(figname) |
|
520 | 524 | |
|
521 | if self.throttle == 0: | |
|
522 | 525 |
|
|
523 | 526 |
|
|
524 | 527 |
|
|
525 | 528 |
|
|
526 | 529 |
|
|
527 | 530 |
|
|
528 | 531 |
|
|
529 | 532 |
|
|
530 | 533 |
|
|
531 | 534 |
|
|
532 | 535 | |
|
533 | 536 | def send_to_server(self): |
|
534 | 537 | ''' |
|
535 | 538 | ''' |
|
536 | 539 | |
|
537 | 540 | if self.exp_code == None: |
|
538 | 541 | log.warning('Missing `exp_code` skipping sending to server...') |
|
539 | 542 | |
|
540 | 543 | last_time = self.data.max_time |
|
541 | 544 | interval = last_time - self.sender_time |
|
542 | 545 | if interval < self.sender_period: |
|
543 | 546 | return |
|
544 | 547 | |
|
545 | 548 | self.sender_time = last_time |
|
546 | 549 | |
|
547 | 550 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
548 | 551 | for attr in attrs: |
|
549 | 552 | value = getattr(self, attr) |
|
550 | 553 | if value: |
|
551 | 554 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
552 | 555 | value = round(float(value), 2) |
|
553 | 556 | self.data.meta[attr] = value |
|
554 | 557 | if self.colormap == 'jet': |
|
555 | 558 | self.data.meta['colormap'] = 'Jet' |
|
556 | 559 | elif 'RdBu' in self.colormap: |
|
557 | 560 | self.data.meta['colormap'] = 'RdBu' |
|
558 | 561 | else: |
|
559 | 562 | self.data.meta['colormap'] = 'Viridis' |
|
560 | 563 | self.data.meta['interval'] = int(interval) |
|
561 | 564 | |
|
562 | 565 | self.sender_queue.append(last_time) |
|
563 | 566 | |
|
564 | 567 | while True: |
|
565 | 568 | try: |
|
566 | 569 | tm = self.sender_queue.popleft() |
|
567 | 570 | except IndexError: |
|
568 | 571 | break |
|
569 | 572 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) |
|
570 | 573 | self.socket.send_string(msg) |
|
571 | 574 | socks = dict(self.poll.poll(2000)) |
|
572 | 575 | if socks.get(self.socket) == zmq.POLLIN: |
|
573 | 576 | reply = self.socket.recv_string() |
|
574 | 577 | if reply == 'ok': |
|
575 | 578 | log.log("Response from server ok", self.name) |
|
576 | 579 | time.sleep(0.1) |
|
577 | 580 | continue |
|
578 | 581 | else: |
|
579 | 582 | log.warning( |
|
580 | 583 | "Malformed reply from server: {}".format(reply), self.name) |
|
581 | 584 | else: |
|
582 | 585 | log.warning( |
|
583 | 586 | "No response from server, retrying...", self.name) |
|
584 | 587 | self.sender_queue.appendleft(tm) |
|
585 | 588 | self.socket.setsockopt(zmq.LINGER, 0) |
|
586 | 589 | self.socket.close() |
|
587 | 590 | self.poll.unregister(self.socket) |
|
588 | 591 | self.socket = self.context.socket(zmq.REQ) |
|
589 | 592 | self.socket.connect(self.server) |
|
590 | 593 | self.poll.register(self.socket, zmq.POLLIN) |
|
591 | 594 | break |
|
592 | 595 | |
|
593 | 596 | def setup(self): |
|
594 | 597 | ''' |
|
595 | 598 | This method should be implemented in the child class, the following |
|
596 | 599 | attributes should be set: |
|
597 | 600 | |
|
598 | 601 | self.nrows: number of rows |
|
599 | 602 | self.ncols: number of cols |
|
600 | 603 | self.nplots: number of plots (channels or pairs) |
|
601 | 604 | self.ylabel: label for Y axes |
|
602 | 605 | self.titles: list of axes title |
|
603 | 606 | |
|
604 | 607 | ''' |
|
605 | 608 | raise NotImplementedError |
|
606 | 609 | |
|
607 | 610 | def plot(self): |
|
608 | 611 | ''' |
|
609 | 612 | Must be defined in the child class, the actual plotting method |
|
610 | 613 | ''' |
|
611 | 614 | raise NotImplementedError |
|
612 | 615 | |
|
613 | 616 | def update(self, dataOut): |
|
614 | 617 | ''' |
|
615 | 618 | Must be defined in the child class, update self.data with new data |
|
616 | 619 | ''' |
|
617 | 620 | |
|
618 | 621 | data = { |
|
619 | 622 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
620 | 623 | } |
|
621 | 624 | meta = {} |
|
622 | 625 | |
|
623 | 626 | return data, meta |
|
624 | 627 | |
|
625 | 628 | def run(self, dataOut, **kwargs): |
|
626 | 629 | ''' |
|
627 | 630 | Main plotting routine |
|
628 | 631 | ''' |
|
629 | 632 | |
|
630 | 633 | if self.isConfig is False: |
|
631 | 634 | self.__setup(**kwargs) |
|
632 | 635 | |
|
633 | 636 | if self.localtime: |
|
634 | 637 | self.getDateTime = datetime.datetime.fromtimestamp |
|
635 | 638 | else: |
|
636 | 639 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
637 | 640 | |
|
638 | 641 | self.data.setup() |
|
639 | 642 | self.isConfig = True |
|
640 | 643 | if self.server: |
|
641 | 644 | self.context = zmq.Context() |
|
642 | 645 | self.socket = self.context.socket(zmq.REQ) |
|
643 | 646 | self.socket.connect(self.server) |
|
644 | 647 | self.poll = zmq.Poller() |
|
645 | 648 | self.poll.register(self.socket, zmq.POLLIN) |
|
646 | 649 | |
|
647 | 650 | tm = getattr(dataOut, self.attr_time) |
|
648 | 651 | |
|
649 | 652 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
650 | 653 | self.save_time = tm |
|
651 | 654 | self.__plot() |
|
652 | 655 | self.tmin += self.xrange*60*60 |
|
653 | 656 | self.data.setup() |
|
654 | 657 | self.clear_figures() |
|
655 | 658 | |
|
656 | 659 | self.__update(dataOut, tm) |
|
657 | 660 | |
|
658 | 661 | if self.isPlotConfig is False: |
|
659 | 662 | self.__setup_plot() |
|
660 | 663 | self.isPlotConfig = True |
|
661 | 664 | if self.xaxis == 'time': |
|
662 | 665 | dt = self.getDateTime(tm) |
|
663 | 666 | if self.xmin is None: |
|
664 | 667 | self.tmin = tm |
|
665 | 668 | self.xmin = dt.hour |
|
666 | 669 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
667 | 670 | seconds = (minutes - int(minutes)) * 60 |
|
668 | 671 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
669 | 672 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
670 | 673 | if self.localtime: |
|
671 | 674 | self.tmin += time.timezone |
|
672 | 675 | |
|
673 | 676 | if self.xmin is not None and self.xmax is not None: |
|
674 | 677 | self.xrange = self.xmax - self.xmin |
|
675 | 678 | |
|
676 | 679 | if self.throttle == 0: |
|
677 | 680 | self.__plot() |
|
678 | 681 | else: |
|
679 | 682 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
680 | 683 | |
|
681 | 684 | def close(self): |
|
682 | 685 | |
|
683 | 686 | if self.data and not self.data.flagNoData: |
|
684 | 687 | self.save_time = self.data.max_time |
|
685 | 688 | self.__plot() |
|
686 | 689 | if self.data and not self.data.flagNoData and self.pause: |
|
687 | 690 | figpause(10) |
|
688 | 691 |
@@ -1,358 +1,358 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | colormap = 'jet' |
|
39 | 39 | plot_type = 'pcolor' |
|
40 | 40 | |
|
41 | 41 | |
|
42 | 42 | class SnrPlot(RTIPlot): |
|
43 | 43 | ''' |
|
44 | 44 | Plot for SNR Data |
|
45 | 45 | ''' |
|
46 | 46 | |
|
47 | 47 | CODE = 'snr' |
|
48 | 48 | colormap = 'jet' |
|
49 | 49 | |
|
50 | 50 | def update(self, dataOut): |
|
51 | 51 | |
|
52 | 52 | data = { |
|
53 | 53 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
54 | 54 | } |
|
55 | 55 | |
|
56 | 56 | return data, {} |
|
57 | 57 | |
|
58 | 58 | class DopplerPlot(RTIPlot): |
|
59 | 59 | ''' |
|
60 | 60 | Plot for DOPPLER Data (1st moment) |
|
61 | 61 | ''' |
|
62 | 62 | |
|
63 | 63 | CODE = 'dop' |
|
64 | 64 | colormap = 'jet' |
|
65 | 65 | |
|
66 | 66 | def update(self, dataOut): |
|
67 | 67 | |
|
68 | 68 | data = { |
|
69 | 69 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
70 | 70 | } |
|
71 | 71 | |
|
72 | 72 | return data, {} |
|
73 | 73 | |
|
74 | 74 | class PowerPlot(RTIPlot): |
|
75 | 75 | ''' |
|
76 | 76 | Plot for Power Data (0 moment) |
|
77 | 77 | ''' |
|
78 | 78 | |
|
79 | 79 | CODE = 'pow' |
|
80 | 80 | colormap = 'jet' |
|
81 | 81 | |
|
82 | 82 | def update(self, dataOut): |
|
83 | 83 | |
|
84 | 84 | data = { |
|
85 | 85 | 'pow': 10*numpy.log10(dataOut.data_pow) |
|
86 | 86 | } |
|
87 | 87 | |
|
88 | 88 | return data, {} |
|
89 | 89 | |
|
90 | 90 | class SpectralWidthPlot(RTIPlot): |
|
91 | 91 | ''' |
|
92 | 92 | Plot for Spectral Width Data (2nd moment) |
|
93 | 93 | ''' |
|
94 | 94 | |
|
95 | 95 | CODE = 'width' |
|
96 | 96 | colormap = 'jet' |
|
97 | 97 | |
|
98 | 98 | def update(self, dataOut): |
|
99 | 99 | |
|
100 | 100 | data = { |
|
101 | 101 | 'width': dataOut.data_width |
|
102 | 102 | } |
|
103 | 103 | |
|
104 | 104 | return data, {} |
|
105 | 105 | |
|
106 | 106 | class SkyMapPlot(Plot): |
|
107 | 107 | ''' |
|
108 | 108 | Plot for meteors detection data |
|
109 | 109 | ''' |
|
110 | 110 | |
|
111 | 111 | CODE = 'param' |
|
112 | 112 | |
|
113 | 113 | def setup(self): |
|
114 | 114 | |
|
115 | 115 | self.ncols = 1 |
|
116 | 116 | self.nrows = 1 |
|
117 | 117 | self.width = 7.2 |
|
118 | 118 | self.height = 7.2 |
|
119 | 119 | self.nplots = 1 |
|
120 | 120 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
121 | 121 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
122 | 122 | self.polar = True |
|
123 | 123 | self.ymin = -180 |
|
124 | 124 | self.ymax = 180 |
|
125 | 125 | self.colorbar = False |
|
126 | 126 | |
|
127 | 127 | def plot(self): |
|
128 | 128 | |
|
129 | 129 | arrayParameters = numpy.concatenate(self.data['param']) |
|
130 | 130 | error = arrayParameters[:, -1] |
|
131 | 131 | indValid = numpy.where(error == 0)[0] |
|
132 | 132 | finalMeteor = arrayParameters[indValid, :] |
|
133 | 133 | finalAzimuth = finalMeteor[:, 3] |
|
134 | 134 | finalZenith = finalMeteor[:, 4] |
|
135 | 135 | |
|
136 | 136 | x = finalAzimuth * numpy.pi / 180 |
|
137 | 137 | y = finalZenith |
|
138 | 138 | |
|
139 | 139 | ax = self.axes[0] |
|
140 | 140 | |
|
141 | 141 | if ax.firsttime: |
|
142 | 142 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
143 | 143 | else: |
|
144 | 144 | ax.plot.set_data(x, y) |
|
145 | 145 | |
|
146 | 146 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
147 | 147 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
148 | 148 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
149 | 149 | dt2, |
|
150 | 150 | len(x)) |
|
151 | 151 | self.titles[0] = title |
|
152 | 152 | |
|
153 | 153 | |
|
154 | 154 | class GenericRTIPlot(Plot): |
|
155 | 155 | ''' |
|
156 | 156 | Plot for data_xxxx object |
|
157 | 157 | ''' |
|
158 | 158 | |
|
159 | 159 | CODE = 'param' |
|
160 | 160 | colormap = 'viridis' |
|
161 | 161 | plot_type = 'pcolorbuffer' |
|
162 | 162 | |
|
163 | 163 | def setup(self): |
|
164 | 164 | self.xaxis = 'time' |
|
165 | 165 | self.ncols = 1 |
|
166 |
self.nrows = self.data.shape( |
|
|
166 | self.nrows = self.data.shape('param')[0] | |
|
167 | 167 | self.nplots = self.nrows |
|
168 | 168 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
169 | 169 | |
|
170 | 170 | if not self.xlabel: |
|
171 | 171 | self.xlabel = 'Time' |
|
172 | 172 | |
|
173 | 173 | self.ylabel = 'Height [km]' |
|
174 | 174 | if not self.titles: |
|
175 | 175 | self.titles = self.data.parameters \ |
|
176 | 176 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] |
|
177 | 177 | |
|
178 | 178 | def update(self, dataOut): |
|
179 | 179 | |
|
180 | 180 | data = { |
|
181 |
|
|
|
181 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
|
182 | 182 | } |
|
183 | 183 | |
|
184 | 184 | meta = {} |
|
185 | 185 | |
|
186 | 186 | return data, meta |
|
187 | 187 | |
|
188 | 188 | def plot(self): |
|
189 | 189 | # self.data.normalize_heights() |
|
190 | 190 | self.x = self.data.times |
|
191 | 191 | self.y = self.data.yrange |
|
192 |
self.z = self.data[ |
|
|
192 | self.z = self.data['param'] | |
|
193 | 193 | |
|
194 | 194 | self.z = numpy.ma.masked_invalid(self.z) |
|
195 | 195 | |
|
196 | 196 | if self.decimation is None: |
|
197 | 197 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
198 | 198 | else: |
|
199 | 199 | x, y, z = self.fill_gaps(*self.decimate()) |
|
200 | 200 | |
|
201 | 201 | for n, ax in enumerate(self.axes): |
|
202 | 202 | |
|
203 | 203 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
204 | 204 | self.z[n]) |
|
205 | 205 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
206 | 206 | self.z[n]) |
|
207 | 207 | |
|
208 | 208 | if ax.firsttime: |
|
209 | 209 | if self.zlimits is not None: |
|
210 | 210 | self.zmin, self.zmax = self.zlimits[n] |
|
211 | 211 | |
|
212 | 212 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
213 | 213 | vmin=self.zmin, |
|
214 | 214 | vmax=self.zmax, |
|
215 | 215 | cmap=self.cmaps[n] |
|
216 | 216 | ) |
|
217 | 217 | else: |
|
218 | 218 | if self.zlimits is not None: |
|
219 | 219 | self.zmin, self.zmax = self.zlimits[n] |
|
220 | 220 | ax.collections.remove(ax.collections[0]) |
|
221 | 221 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
222 | 222 | vmin=self.zmin, |
|
223 | 223 | vmax=self.zmax, |
|
224 | 224 | cmap=self.cmaps[n] |
|
225 | 225 | ) |
|
226 | 226 | |
|
227 | 227 | |
|
228 | 228 | class PolarMapPlot(Plot): |
|
229 | 229 | ''' |
|
230 | 230 | Plot for weather radar |
|
231 | 231 | ''' |
|
232 | 232 | |
|
233 | 233 | CODE = 'param' |
|
234 | 234 | colormap = 'seismic' |
|
235 | 235 | |
|
236 | 236 | def setup(self): |
|
237 | 237 | self.ncols = 1 |
|
238 | 238 | self.nrows = 1 |
|
239 | 239 | self.width = 9 |
|
240 | 240 | self.height = 8 |
|
241 | 241 | self.mode = self.data.meta['mode'] |
|
242 | 242 | if self.channels is not None: |
|
243 | 243 | self.nplots = len(self.channels) |
|
244 | 244 | self.nrows = len(self.channels) |
|
245 | 245 | else: |
|
246 | 246 | self.nplots = self.data.shape(self.CODE)[0] |
|
247 | 247 | self.nrows = self.nplots |
|
248 | 248 | self.channels = list(range(self.nplots)) |
|
249 | 249 | if self.mode == 'E': |
|
250 | 250 | self.xlabel = 'Longitude' |
|
251 | 251 | self.ylabel = 'Latitude' |
|
252 | 252 | else: |
|
253 | 253 | self.xlabel = 'Range (km)' |
|
254 | 254 | self.ylabel = 'Height (km)' |
|
255 | 255 | self.bgcolor = 'white' |
|
256 | 256 | self.cb_labels = self.data.meta['units'] |
|
257 | 257 | self.lat = self.data.meta['latitude'] |
|
258 | 258 | self.lon = self.data.meta['longitude'] |
|
259 | 259 | self.xmin, self.xmax = float( |
|
260 | 260 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
261 | 261 | self.ymin, self.ymax = float( |
|
262 | 262 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
263 | 263 | # self.polar = True |
|
264 | 264 | |
|
265 | 265 | def plot(self): |
|
266 | 266 | |
|
267 | 267 | for n, ax in enumerate(self.axes): |
|
268 | 268 | data = self.data['param'][self.channels[n]] |
|
269 | 269 | |
|
270 | 270 | zeniths = numpy.linspace( |
|
271 | 271 | 0, self.data.meta['max_range'], data.shape[1]) |
|
272 | 272 | if self.mode == 'E': |
|
273 | 273 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
274 | 274 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
275 | 275 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
276 | 276 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
277 | 277 | x = km2deg(x) + self.lon |
|
278 | 278 | y = km2deg(y) + self.lat |
|
279 | 279 | else: |
|
280 | 280 | azimuths = numpy.radians(self.data.yrange) |
|
281 | 281 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
282 | 282 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
283 | 283 | self.y = zeniths |
|
284 | 284 | |
|
285 | 285 | if ax.firsttime: |
|
286 | 286 | if self.zlimits is not None: |
|
287 | 287 | self.zmin, self.zmax = self.zlimits[n] |
|
288 | 288 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
289 | 289 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
290 | 290 | vmin=self.zmin, |
|
291 | 291 | vmax=self.zmax, |
|
292 | 292 | cmap=self.cmaps[n]) |
|
293 | 293 | else: |
|
294 | 294 | if self.zlimits is not None: |
|
295 | 295 | self.zmin, self.zmax = self.zlimits[n] |
|
296 | 296 | ax.collections.remove(ax.collections[0]) |
|
297 | 297 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
298 | 298 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
299 | 299 | vmin=self.zmin, |
|
300 | 300 | vmax=self.zmax, |
|
301 | 301 | cmap=self.cmaps[n]) |
|
302 | 302 | |
|
303 | 303 | if self.mode == 'A': |
|
304 | 304 | continue |
|
305 | 305 | |
|
306 | 306 | # plot district names |
|
307 | 307 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
308 | 308 | for line in f: |
|
309 | 309 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
310 | 310 | lat = float(lat) |
|
311 | 311 | lon = float(lon) |
|
312 | 312 | # ax.plot(lon, lat, '.b', ms=2) |
|
313 | 313 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
314 | 314 | va='bottom', size='8', color='black') |
|
315 | 315 | |
|
316 | 316 | # plot limites |
|
317 | 317 | limites = [] |
|
318 | 318 | tmp = [] |
|
319 | 319 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
320 | 320 | if '#' in line: |
|
321 | 321 | if tmp: |
|
322 | 322 | limites.append(tmp) |
|
323 | 323 | tmp = [] |
|
324 | 324 | continue |
|
325 | 325 | values = line.strip().split(',') |
|
326 | 326 | tmp.append((float(values[0]), float(values[1]))) |
|
327 | 327 | for points in limites: |
|
328 | 328 | ax.add_patch( |
|
329 | 329 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
330 | 330 | |
|
331 | 331 | # plot Cuencas |
|
332 | 332 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
333 | 333 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
334 | 334 | values = [line.strip().split(',') for line in f] |
|
335 | 335 | points = [(float(s[0]), float(s[1])) for s in values] |
|
336 | 336 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
337 | 337 | |
|
338 | 338 | # plot grid |
|
339 | 339 | for r in (15, 30, 45, 60): |
|
340 | 340 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
341 | 341 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
342 | 342 | ax.text( |
|
343 | 343 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
344 | 344 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
345 | 345 | '{}km'.format(r), |
|
346 | 346 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
347 | 347 | |
|
348 | 348 | if self.mode == 'E': |
|
349 | 349 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
350 | 350 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
351 | 351 | else: |
|
352 | 352 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
353 | 353 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
354 | 354 | |
|
355 | 355 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
356 | 356 | self.titles = ['{} {}'.format( |
|
357 | 357 | self.data.parameters[x], title) for x in self.channels] |
|
358 | 358 |
@@ -1,702 +1,702 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | 22 | plot_type = 'pcolor' |
|
23 | 23 | buffering = False |
|
24 | 24 | |
|
25 | 25 | def setup(self): |
|
26 | 26 | self.nplots = len(self.data.channels) |
|
27 | 27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | 28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | 29 | self.height = 2.6 * self.nrows |
|
30 | 30 | self.cb_label = 'dB' |
|
31 | 31 | if self.showprofile: |
|
32 | 32 | self.width = 4 * self.ncols |
|
33 | 33 | else: |
|
34 | 34 | self.width = 3.5 * self.ncols |
|
35 | 35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
36 | 36 | self.ylabel = 'Range [km]' |
|
37 | 37 | |
|
38 | 38 | def update(self, dataOut): |
|
39 | 39 | |
|
40 | 40 | data = {} |
|
41 | 41 | meta = {} |
|
42 | 42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
43 | 43 | data['spc'] = spc |
|
44 | 44 | data['rti'] = dataOut.getPower() |
|
45 | 45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
46 | 46 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
47 | 47 | if self.CODE == 'spc_moments': |
|
48 | 48 | data['moments'] = dataOut.moments |
|
49 | 49 | |
|
50 | 50 | return data, meta |
|
51 | 51 | |
|
52 | 52 | def plot(self): |
|
53 | 53 | if self.xaxis == "frequency": |
|
54 | 54 | x = self.data.xrange[0] |
|
55 | 55 | self.xlabel = "Frequency (kHz)" |
|
56 | 56 | elif self.xaxis == "time": |
|
57 | 57 | x = self.data.xrange[1] |
|
58 | 58 | self.xlabel = "Time (ms)" |
|
59 | 59 | else: |
|
60 | 60 | x = self.data.xrange[2] |
|
61 | 61 | self.xlabel = "Velocity (m/s)" |
|
62 | 62 | |
|
63 | 63 | if self.CODE == 'spc_moments': |
|
64 | 64 | x = self.data.xrange[2] |
|
65 | 65 | self.xlabel = "Velocity (m/s)" |
|
66 | 66 | |
|
67 | 67 | self.titles = [] |
|
68 | 68 | |
|
69 | 69 | y = self.data.yrange |
|
70 | 70 | self.y = y |
|
71 | 71 | |
|
72 | 72 | data = self.data[-1] |
|
73 | 73 | z = data['spc'] |
|
74 | 74 | |
|
75 | 75 | for n, ax in enumerate(self.axes): |
|
76 | 76 | noise = data['noise'][n] |
|
77 | 77 | if self.CODE == 'spc_moments': |
|
78 |
mean = data['moments'][n, |
|
|
78 | mean = data['moments'][n, 1] | |
|
79 | 79 | if ax.firsttime: |
|
80 | 80 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
81 | 81 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
82 | 82 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
83 | 83 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
84 | 84 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
85 | 85 | vmin=self.zmin, |
|
86 | 86 | vmax=self.zmax, |
|
87 | 87 | cmap=plt.get_cmap(self.colormap) |
|
88 | 88 | ) |
|
89 | 89 | |
|
90 | 90 | if self.showprofile: |
|
91 | 91 | ax.plt_profile = self.pf_axes[n].plot( |
|
92 | 92 | data['rti'][n], y)[0] |
|
93 | 93 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
94 | 94 | color="k", linestyle="dashed", lw=1)[0] |
|
95 | 95 | if self.CODE == 'spc_moments': |
|
96 | 96 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
97 | 97 | else: |
|
98 | 98 | ax.plt.set_array(z[n].T.ravel()) |
|
99 | 99 | if self.showprofile: |
|
100 | 100 | ax.plt_profile.set_data(data['rti'][n], y) |
|
101 | 101 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
102 | 102 | if self.CODE == 'spc_moments': |
|
103 | 103 | ax.plt_mean.set_data(mean, y) |
|
104 | 104 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
105 | 105 | |
|
106 | 106 | |
|
107 | 107 | class CrossSpectraPlot(Plot): |
|
108 | 108 | |
|
109 | 109 | CODE = 'cspc' |
|
110 | 110 | colormap = 'jet' |
|
111 | 111 | plot_type = 'pcolor' |
|
112 | 112 | zmin_coh = None |
|
113 | 113 | zmax_coh = None |
|
114 | 114 | zmin_phase = None |
|
115 | 115 | zmax_phase = None |
|
116 | 116 | |
|
117 | 117 | def setup(self): |
|
118 | 118 | |
|
119 | 119 | self.ncols = 4 |
|
120 | 120 | self.nplots = len(self.data.pairs) * 2 |
|
121 | 121 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
122 | 122 | self.width = 3.1 * self.ncols |
|
123 | 123 | self.height = 2.6 * self.nrows |
|
124 | 124 | self.ylabel = 'Range [km]' |
|
125 | 125 | self.showprofile = False |
|
126 | 126 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
127 | 127 | |
|
128 | 128 | def update(self, dataOut): |
|
129 | 129 | |
|
130 | 130 | data = {} |
|
131 | 131 | meta = {} |
|
132 | 132 | |
|
133 | 133 | spc = dataOut.data_spc |
|
134 | 134 | cspc = dataOut.data_cspc |
|
135 | 135 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
136 | 136 | meta['pairs'] = dataOut.pairsList |
|
137 | 137 | |
|
138 | 138 | tmp = [] |
|
139 | 139 | |
|
140 | 140 | for n, pair in enumerate(meta['pairs']): |
|
141 | 141 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
142 | 142 | coh = numpy.abs(out) |
|
143 | 143 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
144 | 144 | tmp.append(coh) |
|
145 | 145 | tmp.append(phase) |
|
146 | 146 | |
|
147 | 147 | data['cspc'] = numpy.array(tmp) |
|
148 | 148 | |
|
149 | 149 | return data, meta |
|
150 | 150 | |
|
151 | 151 | def plot(self): |
|
152 | 152 | |
|
153 | 153 | if self.xaxis == "frequency": |
|
154 | 154 | x = self.data.xrange[0] |
|
155 | 155 | self.xlabel = "Frequency (kHz)" |
|
156 | 156 | elif self.xaxis == "time": |
|
157 | 157 | x = self.data.xrange[1] |
|
158 | 158 | self.xlabel = "Time (ms)" |
|
159 | 159 | else: |
|
160 | 160 | x = self.data.xrange[2] |
|
161 | 161 | self.xlabel = "Velocity (m/s)" |
|
162 | 162 | |
|
163 | 163 | self.titles = [] |
|
164 | 164 | |
|
165 | 165 | y = self.data.yrange |
|
166 | 166 | self.y = y |
|
167 | 167 | |
|
168 | 168 | data = self.data[-1] |
|
169 | 169 | cspc = data['cspc'] |
|
170 | 170 | |
|
171 | 171 | for n in range(len(self.data.pairs)): |
|
172 | 172 | pair = self.data.pairs[n] |
|
173 | 173 | coh = cspc[n*2] |
|
174 | 174 | phase = cspc[n*2+1] |
|
175 | 175 | ax = self.axes[2 * n] |
|
176 | 176 | if ax.firsttime: |
|
177 | 177 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
178 | 178 | vmin=0, |
|
179 | 179 | vmax=1, |
|
180 | 180 | cmap=plt.get_cmap(self.colormap_coh) |
|
181 | 181 | ) |
|
182 | 182 | else: |
|
183 | 183 | ax.plt.set_array(coh.T.ravel()) |
|
184 | 184 | self.titles.append( |
|
185 | 185 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
186 | 186 | |
|
187 | 187 | ax = self.axes[2 * n + 1] |
|
188 | 188 | if ax.firsttime: |
|
189 | 189 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
190 | 190 | vmin=-180, |
|
191 | 191 | vmax=180, |
|
192 | 192 | cmap=plt.get_cmap(self.colormap_phase) |
|
193 | 193 | ) |
|
194 | 194 | else: |
|
195 | 195 | ax.plt.set_array(phase.T.ravel()) |
|
196 | 196 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
197 | 197 | |
|
198 | 198 | |
|
199 | 199 | class RTIPlot(Plot): |
|
200 | 200 | ''' |
|
201 | 201 | Plot for RTI data |
|
202 | 202 | ''' |
|
203 | 203 | |
|
204 | 204 | CODE = 'rti' |
|
205 | 205 | colormap = 'jet' |
|
206 | 206 | plot_type = 'pcolorbuffer' |
|
207 | 207 | |
|
208 | 208 | def setup(self): |
|
209 | 209 | self.xaxis = 'time' |
|
210 | 210 | self.ncols = 1 |
|
211 | 211 | self.nrows = len(self.data.channels) |
|
212 | 212 | self.nplots = len(self.data.channels) |
|
213 | 213 | self.ylabel = 'Range [km]' |
|
214 | 214 | self.xlabel = 'Time' |
|
215 | 215 | self.cb_label = 'dB' |
|
216 | 216 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
217 | 217 | self.titles = ['{} Channel {}'.format( |
|
218 | 218 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
219 | 219 | |
|
220 | 220 | def update(self, dataOut): |
|
221 | 221 | |
|
222 | 222 | data = {} |
|
223 | 223 | meta = {} |
|
224 | 224 | data['rti'] = dataOut.getPower() |
|
225 | 225 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
226 | 226 | |
|
227 | 227 | return data, meta |
|
228 | 228 | |
|
229 | 229 | def plot(self): |
|
230 | 230 | self.x = self.data.times |
|
231 | 231 | self.y = self.data.yrange |
|
232 | 232 | self.z = self.data[self.CODE] |
|
233 | 233 | self.z = numpy.ma.masked_invalid(self.z) |
|
234 | 234 | |
|
235 | 235 | if self.decimation is None: |
|
236 | 236 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
237 | 237 | else: |
|
238 | 238 | x, y, z = self.fill_gaps(*self.decimate()) |
|
239 | 239 | |
|
240 | 240 | for n, ax in enumerate(self.axes): |
|
241 | 241 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
242 | 242 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
243 | 243 | data = self.data[-1] |
|
244 | 244 | if ax.firsttime: |
|
245 | 245 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
246 | 246 | vmin=self.zmin, |
|
247 | 247 | vmax=self.zmax, |
|
248 | 248 | cmap=plt.get_cmap(self.colormap) |
|
249 | 249 | ) |
|
250 | 250 | if self.showprofile: |
|
251 | 251 | ax.plot_profile = self.pf_axes[n].plot( |
|
252 | 252 | data['rti'][n], self.y)[0] |
|
253 | 253 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
254 | 254 | color="k", linestyle="dashed", lw=1)[0] |
|
255 | 255 | else: |
|
256 | 256 | ax.collections.remove(ax.collections[0]) |
|
257 | 257 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
258 | 258 | vmin=self.zmin, |
|
259 | 259 | vmax=self.zmax, |
|
260 | 260 | cmap=plt.get_cmap(self.colormap) |
|
261 | 261 | ) |
|
262 | 262 | if self.showprofile: |
|
263 | 263 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
264 | 264 | ax.plot_noise.set_data(numpy.repeat( |
|
265 | 265 | data['noise'][n], len(self.y)), self.y) |
|
266 | 266 | |
|
267 | 267 | |
|
268 | 268 | class CoherencePlot(RTIPlot): |
|
269 | 269 | ''' |
|
270 | 270 | Plot for Coherence data |
|
271 | 271 | ''' |
|
272 | 272 | |
|
273 | 273 | CODE = 'coh' |
|
274 | 274 | |
|
275 | 275 | def setup(self): |
|
276 | 276 | self.xaxis = 'time' |
|
277 | 277 | self.ncols = 1 |
|
278 | 278 | self.nrows = len(self.data.pairs) |
|
279 | 279 | self.nplots = len(self.data.pairs) |
|
280 | 280 | self.ylabel = 'Range [km]' |
|
281 | 281 | self.xlabel = 'Time' |
|
282 | 282 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
283 | 283 | if self.CODE == 'coh': |
|
284 | 284 | self.cb_label = '' |
|
285 | 285 | self.titles = [ |
|
286 | 286 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
287 | 287 | else: |
|
288 | 288 | self.cb_label = 'Degrees' |
|
289 | 289 | self.titles = [ |
|
290 | 290 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
291 | 291 | |
|
292 | 292 | def update(self, dataOut): |
|
293 | 293 | |
|
294 | 294 | data = {} |
|
295 | 295 | meta = {} |
|
296 | 296 | data['coh'] = dataOut.getCoherence() |
|
297 | 297 | meta['pairs'] = dataOut.pairsList |
|
298 | 298 | |
|
299 | 299 | return data, meta |
|
300 | 300 | |
|
301 | 301 | class PhasePlot(CoherencePlot): |
|
302 | 302 | ''' |
|
303 | 303 | Plot for Phase map data |
|
304 | 304 | ''' |
|
305 | 305 | |
|
306 | 306 | CODE = 'phase' |
|
307 | 307 | colormap = 'seismic' |
|
308 | 308 | |
|
309 | 309 | def update(self, dataOut): |
|
310 | 310 | |
|
311 | 311 | data = {} |
|
312 | 312 | meta = {} |
|
313 | 313 | data['phase'] = dataOut.getCoherence(phase=True) |
|
314 | 314 | meta['pairs'] = dataOut.pairsList |
|
315 | 315 | |
|
316 | 316 | return data, meta |
|
317 | 317 | |
|
318 | 318 | class NoisePlot(Plot): |
|
319 | 319 | ''' |
|
320 | 320 | Plot for noise |
|
321 | 321 | ''' |
|
322 | 322 | |
|
323 | 323 | CODE = 'noise' |
|
324 | 324 | plot_type = 'scatterbuffer' |
|
325 | 325 | |
|
326 | 326 | def setup(self): |
|
327 | 327 | self.xaxis = 'time' |
|
328 | 328 | self.ncols = 1 |
|
329 | 329 | self.nrows = 1 |
|
330 | 330 | self.nplots = 1 |
|
331 | 331 | self.ylabel = 'Intensity [dB]' |
|
332 | 332 | self.xlabel = 'Time' |
|
333 | 333 | self.titles = ['Noise'] |
|
334 | 334 | self.colorbar = False |
|
335 | 335 | self.plots_adjust.update({'right': 0.85 }) |
|
336 | 336 | |
|
337 | 337 | def update(self, dataOut): |
|
338 | 338 | |
|
339 | 339 | data = {} |
|
340 | 340 | meta = {} |
|
341 | 341 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
342 | 342 | meta['yrange'] = numpy.array([]) |
|
343 | 343 | |
|
344 | 344 | return data, meta |
|
345 | 345 | |
|
346 | 346 | def plot(self): |
|
347 | 347 | |
|
348 | 348 | x = self.data.times |
|
349 | 349 | xmin = self.data.min_time |
|
350 | 350 | xmax = xmin + self.xrange * 60 * 60 |
|
351 | 351 | Y = self.data['noise'] |
|
352 | 352 | |
|
353 | 353 | if self.axes[0].firsttime: |
|
354 | 354 | self.ymin = numpy.nanmin(Y) - 5 |
|
355 | 355 | self.ymax = numpy.nanmax(Y) + 5 |
|
356 | 356 | for ch in self.data.channels: |
|
357 | 357 | y = Y[ch] |
|
358 | 358 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
359 | 359 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
360 | 360 | else: |
|
361 | 361 | for ch in self.data.channels: |
|
362 | 362 | y = Y[ch] |
|
363 | 363 | self.axes[0].lines[ch].set_data(x, y) |
|
364 | 364 | |
|
365 | 365 | |
|
366 | 366 | class PowerProfilePlot(Plot): |
|
367 | 367 | |
|
368 | 368 | CODE = 'pow_profile' |
|
369 | 369 | plot_type = 'scatter' |
|
370 | 370 | |
|
371 | 371 | def setup(self): |
|
372 | 372 | |
|
373 | 373 | self.ncols = 1 |
|
374 | 374 | self.nrows = 1 |
|
375 | 375 | self.nplots = 1 |
|
376 | 376 | self.height = 4 |
|
377 | 377 | self.width = 3 |
|
378 | 378 | self.ylabel = 'Range [km]' |
|
379 | 379 | self.xlabel = 'Intensity [dB]' |
|
380 | 380 | self.titles = ['Power Profile'] |
|
381 | 381 | self.colorbar = False |
|
382 | 382 | |
|
383 | 383 | def update(self, dataOut): |
|
384 | 384 | |
|
385 | 385 | data = {} |
|
386 | 386 | meta = {} |
|
387 | 387 | data[self.CODE] = dataOut.getPower() |
|
388 | 388 | |
|
389 | 389 | return data, meta |
|
390 | 390 | |
|
391 | 391 | def plot(self): |
|
392 | 392 | |
|
393 | 393 | y = self.data.yrange |
|
394 | 394 | self.y = y |
|
395 | 395 | |
|
396 | 396 | x = self.data[-1][self.CODE] |
|
397 | 397 | |
|
398 | 398 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
399 | 399 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
400 | 400 | |
|
401 | 401 | if self.axes[0].firsttime: |
|
402 | 402 | for ch in self.data.channels: |
|
403 | 403 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
404 | 404 | plt.legend() |
|
405 | 405 | else: |
|
406 | 406 | for ch in self.data.channels: |
|
407 | 407 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
408 | 408 | |
|
409 | 409 | |
|
410 | 410 | class SpectraCutPlot(Plot): |
|
411 | 411 | |
|
412 | 412 | CODE = 'spc_cut' |
|
413 | 413 | plot_type = 'scatter' |
|
414 | 414 | buffering = False |
|
415 | 415 | |
|
416 | 416 | def setup(self): |
|
417 | 417 | |
|
418 | 418 | self.nplots = len(self.data.channels) |
|
419 | 419 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
420 | 420 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
421 | 421 | self.width = 3.4 * self.ncols + 1.5 |
|
422 | 422 | self.height = 3 * self.nrows |
|
423 | 423 | self.ylabel = 'Power [dB]' |
|
424 | 424 | self.colorbar = False |
|
425 | 425 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
426 | 426 | |
|
427 | 427 | def update(self, dataOut): |
|
428 | 428 | |
|
429 | 429 | data = {} |
|
430 | 430 | meta = {} |
|
431 | 431 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
432 | 432 | data['spc'] = spc |
|
433 | 433 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
434 | 434 | |
|
435 | 435 | return data, meta |
|
436 | 436 | |
|
437 | 437 | def plot(self): |
|
438 | 438 | if self.xaxis == "frequency": |
|
439 | 439 | x = self.data.xrange[0][1:] |
|
440 | 440 | self.xlabel = "Frequency (kHz)" |
|
441 | 441 | elif self.xaxis == "time": |
|
442 | 442 | x = self.data.xrange[1] |
|
443 | 443 | self.xlabel = "Time (ms)" |
|
444 | 444 | else: |
|
445 | 445 | x = self.data.xrange[2] |
|
446 | 446 | self.xlabel = "Velocity (m/s)" |
|
447 | 447 | |
|
448 | 448 | self.titles = [] |
|
449 | 449 | |
|
450 | 450 | y = self.data.yrange |
|
451 | 451 | z = self.data[-1]['spc'] |
|
452 | 452 | |
|
453 | 453 | if self.height_index: |
|
454 | 454 | index = numpy.array(self.height_index) |
|
455 | 455 | else: |
|
456 | 456 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
457 | 457 | |
|
458 | 458 | for n, ax in enumerate(self.axes): |
|
459 | 459 | if ax.firsttime: |
|
460 | 460 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
461 | 461 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
462 | 462 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
463 | 463 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
464 | 464 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
465 | 465 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
466 | 466 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
467 | 467 | else: |
|
468 | 468 | for i, line in enumerate(ax.plt): |
|
469 | line.set_data(x, z[n, :, i]) | |
|
469 | line.set_data(x, z[n, :, index[i]]) | |
|
470 | 470 | self.titles.append('CH {}'.format(n)) |
|
471 | 471 | |
|
472 | 472 | |
|
473 | 473 | class BeaconPhase(Plot): |
|
474 | 474 | |
|
475 | 475 | __isConfig = None |
|
476 | 476 | __nsubplots = None |
|
477 | 477 | |
|
478 | 478 | PREFIX = 'beacon_phase' |
|
479 | 479 | |
|
480 | 480 | def __init__(self): |
|
481 | 481 | Plot.__init__(self) |
|
482 | 482 | self.timerange = 24*60*60 |
|
483 | 483 | self.isConfig = False |
|
484 | 484 | self.__nsubplots = 1 |
|
485 | 485 | self.counter_imagwr = 0 |
|
486 | 486 | self.WIDTH = 800 |
|
487 | 487 | self.HEIGHT = 400 |
|
488 | 488 | self.WIDTHPROF = 120 |
|
489 | 489 | self.HEIGHTPROF = 0 |
|
490 | 490 | self.xdata = None |
|
491 | 491 | self.ydata = None |
|
492 | 492 | |
|
493 | 493 | self.PLOT_CODE = BEACON_CODE |
|
494 | 494 | |
|
495 | 495 | self.FTP_WEI = None |
|
496 | 496 | self.EXP_CODE = None |
|
497 | 497 | self.SUB_EXP_CODE = None |
|
498 | 498 | self.PLOT_POS = None |
|
499 | 499 | |
|
500 | 500 | self.filename_phase = None |
|
501 | 501 | |
|
502 | 502 | self.figfile = None |
|
503 | 503 | |
|
504 | 504 | self.xmin = None |
|
505 | 505 | self.xmax = None |
|
506 | 506 | |
|
507 | 507 | def getSubplots(self): |
|
508 | 508 | |
|
509 | 509 | ncol = 1 |
|
510 | 510 | nrow = 1 |
|
511 | 511 | |
|
512 | 512 | return nrow, ncol |
|
513 | 513 | |
|
514 | 514 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
515 | 515 | |
|
516 | 516 | self.__showprofile = showprofile |
|
517 | 517 | self.nplots = nplots |
|
518 | 518 | |
|
519 | 519 | ncolspan = 7 |
|
520 | 520 | colspan = 6 |
|
521 | 521 | self.__nsubplots = 2 |
|
522 | 522 | |
|
523 | 523 | self.createFigure(id = id, |
|
524 | 524 | wintitle = wintitle, |
|
525 | 525 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
526 | 526 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
527 | 527 | show=show) |
|
528 | 528 | |
|
529 | 529 | nrow, ncol = self.getSubplots() |
|
530 | 530 | |
|
531 | 531 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
532 | 532 | |
|
533 | 533 | def save_phase(self, filename_phase): |
|
534 | 534 | f = open(filename_phase,'w+') |
|
535 | 535 | f.write('\n\n') |
|
536 | 536 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
537 | 537 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
538 | 538 | f.close() |
|
539 | 539 | |
|
540 | 540 | def save_data(self, filename_phase, data, data_datetime): |
|
541 | 541 | f=open(filename_phase,'a') |
|
542 | 542 | timetuple_data = data_datetime.timetuple() |
|
543 | 543 | day = str(timetuple_data.tm_mday) |
|
544 | 544 | month = str(timetuple_data.tm_mon) |
|
545 | 545 | year = str(timetuple_data.tm_year) |
|
546 | 546 | hour = str(timetuple_data.tm_hour) |
|
547 | 547 | minute = str(timetuple_data.tm_min) |
|
548 | 548 | second = str(timetuple_data.tm_sec) |
|
549 | 549 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
550 | 550 | f.close() |
|
551 | 551 | |
|
552 | 552 | def plot(self): |
|
553 | 553 | log.warning('TODO: Not yet implemented...') |
|
554 | 554 | |
|
555 | 555 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
556 | 556 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
557 | 557 | timerange=None, |
|
558 | 558 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
559 | 559 | server=None, folder=None, username=None, password=None, |
|
560 | 560 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
561 | 561 | |
|
562 | 562 | if dataOut.flagNoData: |
|
563 | 563 | return dataOut |
|
564 | 564 | |
|
565 | 565 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
566 | 566 | return |
|
567 | 567 | |
|
568 | 568 | if pairsList == None: |
|
569 | 569 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
570 | 570 | else: |
|
571 | 571 | pairsIndexList = [] |
|
572 | 572 | for pair in pairsList: |
|
573 | 573 | if pair not in dataOut.pairsList: |
|
574 | 574 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
575 | 575 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
576 | 576 | |
|
577 | 577 | if pairsIndexList == []: |
|
578 | 578 | return |
|
579 | 579 | |
|
580 | 580 | # if len(pairsIndexList) > 4: |
|
581 | 581 | # pairsIndexList = pairsIndexList[0:4] |
|
582 | 582 | |
|
583 | 583 | hmin_index = None |
|
584 | 584 | hmax_index = None |
|
585 | 585 | |
|
586 | 586 | if hmin != None and hmax != None: |
|
587 | 587 | indexes = numpy.arange(dataOut.nHeights) |
|
588 | 588 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
589 | 589 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
590 | 590 | |
|
591 | 591 | if hmin_list.any(): |
|
592 | 592 | hmin_index = hmin_list[0] |
|
593 | 593 | |
|
594 | 594 | if hmax_list.any(): |
|
595 | 595 | hmax_index = hmax_list[-1]+1 |
|
596 | 596 | |
|
597 | 597 | x = dataOut.getTimeRange() |
|
598 | 598 | |
|
599 | 599 | thisDatetime = dataOut.datatime |
|
600 | 600 | |
|
601 | 601 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
602 | 602 | xlabel = "Local Time" |
|
603 | 603 | ylabel = "Phase (degrees)" |
|
604 | 604 | |
|
605 | 605 | update_figfile = False |
|
606 | 606 | |
|
607 | 607 | nplots = len(pairsIndexList) |
|
608 | 608 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
609 | 609 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
610 | 610 | for i in range(nplots): |
|
611 | 611 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
612 | 612 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
613 | 613 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
614 | 614 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
615 | 615 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
616 | 616 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
617 | 617 | |
|
618 | 618 | if dataOut.beacon_heiIndexList: |
|
619 | 619 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
620 | 620 | else: |
|
621 | 621 | phase_beacon[i] = numpy.average(phase) |
|
622 | 622 | |
|
623 | 623 | if not self.isConfig: |
|
624 | 624 | |
|
625 | 625 | nplots = len(pairsIndexList) |
|
626 | 626 | |
|
627 | 627 | self.setup(id=id, |
|
628 | 628 | nplots=nplots, |
|
629 | 629 | wintitle=wintitle, |
|
630 | 630 | showprofile=showprofile, |
|
631 | 631 | show=show) |
|
632 | 632 | |
|
633 | 633 | if timerange != None: |
|
634 | 634 | self.timerange = timerange |
|
635 | 635 | |
|
636 | 636 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
637 | 637 | |
|
638 | 638 | if ymin == None: ymin = 0 |
|
639 | 639 | if ymax == None: ymax = 360 |
|
640 | 640 | |
|
641 | 641 | self.FTP_WEI = ftp_wei |
|
642 | 642 | self.EXP_CODE = exp_code |
|
643 | 643 | self.SUB_EXP_CODE = sub_exp_code |
|
644 | 644 | self.PLOT_POS = plot_pos |
|
645 | 645 | |
|
646 | 646 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
647 | 647 | self.isConfig = True |
|
648 | 648 | self.figfile = figfile |
|
649 | 649 | self.xdata = numpy.array([]) |
|
650 | 650 | self.ydata = numpy.array([]) |
|
651 | 651 | |
|
652 | 652 | update_figfile = True |
|
653 | 653 | |
|
654 | 654 | #open file beacon phase |
|
655 | 655 | path = '%s%03d' %(self.PREFIX, self.id) |
|
656 | 656 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
657 | 657 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
658 | 658 | #self.save_phase(self.filename_phase) |
|
659 | 659 | |
|
660 | 660 | |
|
661 | 661 | #store data beacon phase |
|
662 | 662 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
663 | 663 | |
|
664 | 664 | self.setWinTitle(title) |
|
665 | 665 | |
|
666 | 666 | |
|
667 | 667 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
668 | 668 | |
|
669 | 669 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
670 | 670 | |
|
671 | 671 | axes = self.axesList[0] |
|
672 | 672 | |
|
673 | 673 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
674 | 674 | |
|
675 | 675 | if len(self.ydata)==0: |
|
676 | 676 | self.ydata = phase_beacon.reshape(-1,1) |
|
677 | 677 | else: |
|
678 | 678 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
679 | 679 | |
|
680 | 680 | |
|
681 | 681 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
682 | 682 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
683 | 683 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
684 | 684 | XAxisAsTime=True, grid='both' |
|
685 | 685 | ) |
|
686 | 686 | |
|
687 | 687 | self.draw() |
|
688 | 688 | |
|
689 | 689 | if dataOut.ltctime >= self.xmax: |
|
690 | 690 | self.counter_imagwr = wr_period |
|
691 | 691 | self.isConfig = False |
|
692 | 692 | update_figfile = True |
|
693 | 693 | |
|
694 | 694 | self.save(figpath=figpath, |
|
695 | 695 | figfile=figfile, |
|
696 | 696 | save=save, |
|
697 | 697 | ftp=ftp, |
|
698 | 698 | wr_period=wr_period, |
|
699 | 699 | thisDatetime=thisDatetime, |
|
700 | 700 | update_figfile=update_figfile) |
|
701 | 701 | |
|
702 | 702 | return dataOut No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now