@@ -1,246 +1,246 | |||||
1 | import numpy |
|
1 | import numpy | |
2 |
|
2 | |||
3 | from jroproc_base import ProcessingUnit, Operation |
|
3 | from jroproc_base import ProcessingUnit, Operation | |
4 | from schainpy.model.data.jrodata import Correlation |
|
4 | from schainpy.model.data.jrodata import Correlation | |
5 |
|
5 | |||
6 | class CorrelationProc(ProcessingUnit): |
|
6 | class CorrelationProc(ProcessingUnit): | |
7 |
|
7 | |||
8 | def __init__(self): |
|
8 | def __init__(self): | |
9 |
|
9 | |||
10 | ProcessingUnit.__init__(self) |
|
10 | ProcessingUnit.__init__(self) | |
11 |
|
11 | |||
12 | self.objectDict = {} |
|
12 | self.objectDict = {} | |
13 | self.buffer = None |
|
13 | self.buffer = None | |
14 | self.firstdatatime = None |
|
14 | self.firstdatatime = None | |
15 | self.profIndex = 0 |
|
15 | self.profIndex = 0 | |
16 | self.dataOut = Correlation() |
|
16 | self.dataOut = Correlation() | |
17 |
|
17 | |||
18 | def __updateObjFromVoltage(self): |
|
18 | def __updateObjFromVoltage(self): | |
19 |
|
19 | |||
20 | self.dataOut.timeZone = self.dataIn.timeZone |
|
20 | self.dataOut.timeZone = self.dataIn.timeZone | |
21 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
21 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
22 | self.dataOut.errorCount = self.dataIn.errorCount |
|
22 | self.dataOut.errorCount = self.dataIn.errorCount | |
23 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
23 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
24 |
|
24 | |||
25 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
25 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
26 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
26 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
27 | self.dataOut.channelList = self.dataIn.channelList |
|
27 | self.dataOut.channelList = self.dataIn.channelList | |
28 | self.dataOut.heightList = self.dataIn.heightList |
|
28 | self.dataOut.heightList = self.dataIn.heightList | |
29 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
29 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
30 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
30 | # self.dataOut.nHeights = self.dataIn.nHeights | |
31 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
31 | # self.dataOut.nChannels = self.dataIn.nChannels | |
32 | self.dataOut.nBaud = self.dataIn.nBaud |
|
32 | self.dataOut.nBaud = self.dataIn.nBaud | |
33 | self.dataOut.nCode = self.dataIn.nCode |
|
33 | self.dataOut.nCode = self.dataIn.nCode | |
34 | self.dataOut.code = self.dataIn.code |
|
34 | self.dataOut.code = self.dataIn.code | |
35 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
35 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
36 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
36 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
37 | self.dataOut.utctime = self.firstdatatime |
|
37 | self.dataOut.utctime = self.firstdatatime | |
38 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
38 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
39 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
39 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
40 |
|
|
40 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
41 | # self.dataOut.nIncohInt = 1 |
|
41 | # self.dataOut.nIncohInt = 1 | |
42 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
42 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
43 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
43 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
44 |
|
44 | |||
45 | # self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nPoints |
|
45 | # self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nPoints | |
46 |
|
46 | |||
47 |
|
47 | |||
48 | def removeDC(self, jspectra): |
|
48 | def removeDC(self, jspectra): | |
49 |
|
49 | |||
50 | nChannel = jspectra.shape[0] |
|
50 | nChannel = jspectra.shape[0] | |
51 |
|
51 | |||
52 | for i in range(nChannel): |
|
52 | for i in range(nChannel): | |
53 | jspectra_tmp = jspectra[i,:,:] |
|
53 | jspectra_tmp = jspectra[i,:,:] | |
54 | jspectra_DC = numpy.mean(jspectra_tmp,axis = 0) |
|
54 | jspectra_DC = numpy.mean(jspectra_tmp,axis = 0) | |
55 |
|
55 | |||
56 | jspectra_tmp = jspectra_tmp - jspectra_DC |
|
56 | jspectra_tmp = jspectra_tmp - jspectra_DC | |
57 | jspectra[i,:,:] = jspectra_tmp |
|
57 | jspectra[i,:,:] = jspectra_tmp | |
58 |
|
58 | |||
59 | return jspectra |
|
59 | return jspectra | |
60 |
|
60 | |||
61 |
|
61 | |||
62 | def removeNoise(self, mode = 2): |
|
62 | def removeNoise(self, mode = 2): | |
63 | indR = numpy.where(self.dataOut.lagR == 0)[0][0] |
|
63 | indR = numpy.where(self.dataOut.lagR == 0)[0][0] | |
64 | indT = numpy.where(self.dataOut.lagT == 0)[0][0] |
|
64 | indT = numpy.where(self.dataOut.lagT == 0)[0][0] | |
65 |
|
65 | |||
66 | jspectra = self.dataOut.data_corr[:,:,indR,:] |
|
66 | jspectra = self.dataOut.data_corr[:,:,indR,:] | |
67 |
|
67 | |||
68 | num_chan = jspectra.shape[0] |
|
68 | num_chan = jspectra.shape[0] | |
69 | num_hei = jspectra.shape[2] |
|
69 | num_hei = jspectra.shape[2] | |
70 |
|
70 | |||
71 | freq_dc = indT |
|
71 | freq_dc = indT | |
72 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
72 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
73 |
|
73 | |||
74 | NPot = self.dataOut.getNoise(mode) |
|
74 | NPot = self.dataOut.getNoise(mode) | |
75 | jspectra[:,freq_dc,:] = jspectra[:,freq_dc,:] - NPot |
|
75 | jspectra[:,freq_dc,:] = jspectra[:,freq_dc,:] - NPot | |
76 | SPot = jspectra[:,freq_dc,:] |
|
76 | SPot = jspectra[:,freq_dc,:] | |
77 | pairsAutoCorr = self.dataOut.getPairsAutoCorr() |
|
77 | pairsAutoCorr = self.dataOut.getPairsAutoCorr() | |
78 | # self.dataOut.signalPotency = SPot |
|
78 | # self.dataOut.signalPotency = SPot | |
79 | self.dataOut.noise = NPot |
|
79 | self.dataOut.noise = NPot | |
80 | self.dataOut.SNR = (SPot/NPot)[pairsAutoCorr] |
|
80 | self.dataOut.SNR = (SPot/NPot)[pairsAutoCorr] | |
81 | self.dataOut.data_corr[:,:,indR,:] = jspectra |
|
81 | self.dataOut.data_corr[:,:,indR,:] = jspectra | |
82 |
|
82 | |||
83 | return 1 |
|
83 | return 1 | |
84 |
|
84 | |||
85 |
|
85 | |||
86 | def calculateNormFactor(self): |
|
86 | def calculateNormFactor(self): | |
87 |
|
87 | |||
88 | pairsList = self.dataOut.pairsList |
|
88 | pairsList = self.dataOut.pairsList | |
89 | pairsAutoCorr = self.dataOut.pairsAutoCorr |
|
89 | pairsAutoCorr = self.dataOut.pairsAutoCorr | |
90 | nHeights = self.dataOut.nHeights |
|
90 | nHeights = self.dataOut.nHeights | |
91 | nPairs = len(pairsList) |
|
91 | nPairs = len(pairsList) | |
92 | normFactor = numpy.zeros((nPairs,nHeights)) |
|
92 | normFactor = numpy.zeros((nPairs,nHeights)) | |
93 |
|
93 | |||
94 | indR = numpy.where(self.dataOut.lagR == 0)[0][0] |
|
94 | indR = numpy.where(self.dataOut.lagR == 0)[0][0] | |
95 | indT = numpy.where(self.dataOut.lagT == 0)[0][0] |
|
95 | indT = numpy.where(self.dataOut.lagT == 0)[0][0] | |
96 |
|
96 | |||
97 | for l in range(len(pairsList)): |
|
97 | for l in range(len(pairsList)): | |
98 | firstChannel = pairsList[l][0] |
|
98 | firstChannel = pairsList[l][0] | |
99 | secondChannel = pairsList[l][1] |
|
99 | secondChannel = pairsList[l][1] | |
100 |
|
100 | |||
101 | AC1 = pairsAutoCorr[firstChannel] |
|
101 | AC1 = pairsAutoCorr[firstChannel] | |
102 | AC2 = pairsAutoCorr[secondChannel] |
|
102 | AC2 = pairsAutoCorr[secondChannel] | |
103 |
|
103 | |||
104 | if (AC1 >= 0 and AC2 >= 0): |
|
104 | if (AC1 >= 0 and AC2 >= 0): | |
105 |
|
105 | |||
106 | data1 = numpy.abs(self.dataOut.data_corr[AC1,:,indR,:]) |
|
106 | data1 = numpy.abs(self.dataOut.data_corr[AC1,:,indR,:]) | |
107 | data2 = numpy.abs(self.dataOut.data_corr[AC2,:,indR,:]) |
|
107 | data2 = numpy.abs(self.dataOut.data_corr[AC2,:,indR,:]) | |
108 | maxim1 = data1.max(axis = 0) |
|
108 | maxim1 = data1.max(axis = 0) | |
109 | maxim2 = data1.max(axis = 0) |
|
109 | maxim2 = data1.max(axis = 0) | |
110 | maxim = numpy.sqrt(maxim1*maxim2) |
|
110 | maxim = numpy.sqrt(maxim1*maxim2) | |
111 | else: |
|
111 | else: | |
112 | #In case there is no autocorrelation for the pair |
|
112 | #In case there is no autocorrelation for the pair | |
113 | data = numpy.abs(self.dataOut.data_corr[l,:,indR,:]) |
|
113 | data = numpy.abs(self.dataOut.data_corr[l,:,indR,:]) | |
114 | maxim = numpy.max(data, axis = 0) |
|
114 | maxim = numpy.max(data, axis = 0) | |
115 |
|
115 | |||
116 | normFactor[l,:] = maxim |
|
116 | normFactor[l,:] = maxim | |
117 |
|
117 | |||
118 | self.dataOut.normFactor = normFactor |
|
118 | self.dataOut.normFactor = normFactor | |
119 |
|
119 | |||
120 | return 1 |
|
120 | return 1 | |
121 |
|
121 | |||
122 | def run(self, lagT=None, lagR=None, pairsList=None, |
|
122 | def run(self, lagT=None, lagR=None, pairsList=None, | |
123 | nPoints=None, nAvg=None, bufferSize=None, |
|
123 | nPoints=None, nAvg=None, bufferSize=None, | |
124 | fullT = False, fullR = False, removeDC = False): |
|
124 | fullT = False, fullR = False, removeDC = False): | |
125 |
|
125 | |||
126 | self.dataOut.flagNoData = True |
|
126 | self.dataOut.flagNoData = True | |
127 |
|
127 | |||
128 | if self.dataIn.type == "Correlation": |
|
128 | if self.dataIn.type == "Correlation": | |
129 |
|
129 | |||
130 | self.dataOut.copy(self.dataIn) |
|
130 | self.dataOut.copy(self.dataIn) | |
131 |
|
131 | |||
132 | return |
|
132 | return | |
133 |
|
133 | |||
134 | if self.dataIn.type == "Voltage": |
|
134 | if self.dataIn.type == "Voltage": | |
135 |
|
135 | |||
136 | if pairsList == None: |
|
136 | if pairsList == None: | |
137 | pairsList = [numpy.array([0,0])] |
|
137 | pairsList = [numpy.array([0,0])] | |
138 |
|
138 | |||
139 | if nPoints == None: |
|
139 | if nPoints == None: | |
140 | nPoints = 128 |
|
140 | nPoints = 128 | |
141 | #------------------------------------------------------------ |
|
141 | #------------------------------------------------------------ | |
142 | #Condicionales para calcular Correlaciones en Tiempo y Rango |
|
142 | #Condicionales para calcular Correlaciones en Tiempo y Rango | |
143 | if fullT: |
|
143 | if fullT: | |
144 | lagT = numpy.arange(nPoints*2 - 1) - nPoints + 1 |
|
144 | lagT = numpy.arange(nPoints*2 - 1) - nPoints + 1 | |
145 | elif lagT == None: |
|
145 | elif lagT == None: | |
146 | lagT = numpy.array([0]) |
|
146 | lagT = numpy.array([0]) | |
147 | else: |
|
147 | else: | |
148 | lagT = numpy.array(lagT) |
|
148 | lagT = numpy.array(lagT) | |
149 |
|
149 | |||
150 | if fullR: |
|
150 | if fullR: | |
151 | lagR = numpy.arange(self.dataOut.nHeights) |
|
151 | lagR = numpy.arange(self.dataOut.nHeights) | |
152 | elif lagR == None: |
|
152 | elif lagR == None: | |
153 | lagR = numpy.array([0]) |
|
153 | lagR = numpy.array([0]) | |
154 | #------------------------------------------------------------- |
|
154 | #------------------------------------------------------------- | |
155 |
|
155 | |||
156 | if nAvg == None: |
|
156 | if nAvg == None: | |
157 | nAvg = 1 |
|
157 | nAvg = 1 | |
158 |
|
158 | |||
159 | if bufferSize == None: |
|
159 | if bufferSize == None: | |
160 | bufferSize = 0 |
|
160 | bufferSize = 0 | |
161 |
|
161 | |||
162 | deltaH = self.dataIn.heightList[1] - self.dataIn.heightList[0] |
|
162 | deltaH = self.dataIn.heightList[1] - self.dataIn.heightList[0] | |
163 | self.dataOut.lagR = numpy.round(numpy.array(lagR)/deltaH) |
|
163 | self.dataOut.lagR = numpy.round(numpy.array(lagR)/deltaH) | |
164 | self.dataOut.pairsList = pairsList |
|
164 | self.dataOut.pairsList = pairsList | |
165 | self.dataOut.nPoints = nPoints |
|
165 | self.dataOut.nPoints = nPoints | |
166 | # channels = numpy.sort(list(set(list(itertools.chain.from_iterable(pairsList))))) |
|
166 | # channels = numpy.sort(list(set(list(itertools.chain.from_iterable(pairsList))))) | |
167 |
|
167 | |||
168 | if self.buffer is None: |
|
168 | if self.buffer is None: | |
169 |
|
169 | |||
170 | self.buffer = numpy.zeros((self.dataIn.nChannels,self.dataIn.nProfiles,self.dataIn.nHeights),dtype='complex') |
|
170 | self.buffer = numpy.zeros((self.dataIn.nChannels,self.dataIn.nProfiles,self.dataIn.nHeights),dtype='complex') | |
171 |
|
171 | |||
172 |
|
172 | |||
173 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()[:,:] |
|
173 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()[:,:] | |
174 |
|
174 | |||
175 | self.profIndex += 1 |
|
175 | self.profIndex += 1 | |
176 |
|
176 | |||
177 | if self.firstdatatime == None: |
|
177 | if self.firstdatatime == None: | |
178 |
|
178 | |||
179 | self.firstdatatime = self.dataIn.utctime |
|
179 | self.firstdatatime = self.dataIn.utctime | |
180 |
|
180 | |||
181 | if self.profIndex == nPoints: |
|
181 | if self.profIndex == nPoints: | |
182 |
|
182 | |||
183 | tmp = self.buffer[:,0:nPoints,:] |
|
183 | tmp = self.buffer[:,0:nPoints,:] | |
184 | self.buffer = None |
|
184 | self.buffer = None | |
185 | self.buffer = tmp |
|
185 | self.buffer = tmp | |
186 |
|
186 | |||
187 | #--------------- Remover DC ------------ |
|
187 | #--------------- Remover DC ------------ | |
188 | if removeDC: |
|
188 | if removeDC: | |
189 | self.buffer = self.removeDC(self.buffer) |
|
189 | self.buffer = self.removeDC(self.buffer) | |
190 | #--------------------------------------------- |
|
190 | #--------------------------------------------- | |
191 | self.dataOut.data_volts = self.buffer |
|
191 | self.dataOut.data_volts = self.buffer | |
192 | self.__updateObjFromVoltage() |
|
192 | self.__updateObjFromVoltage() | |
193 | self.dataOut.data_corr = numpy.zeros((len(pairsList), |
|
193 | self.dataOut.data_corr = numpy.zeros((len(pairsList), | |
194 | len(lagT),len(lagR), |
|
194 | len(lagT),len(lagR), | |
195 | self.dataIn.nHeights), |
|
195 | self.dataIn.nHeights), | |
196 | dtype='complex') |
|
196 | dtype='complex') | |
197 |
|
197 | |||
198 | for l in range(len(pairsList)): |
|
198 | for l in range(len(pairsList)): | |
199 |
|
199 | |||
200 | firstChannel = pairsList[l][0] |
|
200 | firstChannel = pairsList[l][0] | |
201 | secondChannel = pairsList[l][1] |
|
201 | secondChannel = pairsList[l][1] | |
202 |
|
202 | |||
203 | tmp = None |
|
203 | tmp = None | |
204 | tmp = numpy.zeros((len(lagT),len(lagR),self.dataIn.nHeights),dtype='complex') |
|
204 | tmp = numpy.zeros((len(lagT),len(lagR),self.dataIn.nHeights),dtype='complex') | |
205 |
|
205 | |||
206 | for t in range(len(lagT)): |
|
206 | for t in range(len(lagT)): | |
207 |
|
207 | |||
208 | for r in range(len(lagR)): |
|
208 | for r in range(len(lagR)): | |
209 |
|
209 | |||
210 | idxT = lagT[t] |
|
210 | idxT = lagT[t] | |
211 | idxR = lagR[r] |
|
211 | idxR = lagR[r] | |
212 |
|
212 | |||
213 | if idxT >= 0: |
|
213 | if idxT >= 0: | |
214 | vStacked = numpy.vstack((self.buffer[secondChannel,idxT:,:], |
|
214 | vStacked = numpy.vstack((self.buffer[secondChannel,idxT:,:], | |
215 | numpy.zeros((idxT,self.dataIn.nHeights),dtype='complex'))) |
|
215 | numpy.zeros((idxT,self.dataIn.nHeights),dtype='complex'))) | |
216 | else: |
|
216 | else: | |
217 | vStacked = numpy.vstack((numpy.zeros((-idxT,self.dataIn.nHeights),dtype='complex'), |
|
217 | vStacked = numpy.vstack((numpy.zeros((-idxT,self.dataIn.nHeights),dtype='complex'), | |
218 | self.buffer[secondChannel,:(nPoints + idxT),:])) |
|
218 | self.buffer[secondChannel,:(nPoints + idxT),:])) | |
219 |
|
219 | |||
220 | if idxR >= 0: |
|
220 | if idxR >= 0: | |
221 | hStacked = numpy.hstack((vStacked[:,idxR:],numpy.zeros((nPoints,idxR),dtype='complex'))) |
|
221 | hStacked = numpy.hstack((vStacked[:,idxR:],numpy.zeros((nPoints,idxR),dtype='complex'))) | |
222 | else: |
|
222 | else: | |
223 | hStacked = numpy.hstack((numpy.zeros((nPoints,-idxR),dtype='complex'),vStacked[:,(self.dataOut.nHeights + idxR)])) |
|
223 | hStacked = numpy.hstack((numpy.zeros((nPoints,-idxR),dtype='complex'),vStacked[:,(self.dataOut.nHeights + idxR)])) | |
224 |
|
224 | |||
225 |
|
225 | |||
226 | tmp[t,r,:] = numpy.sum((numpy.conjugate(self.buffer[firstChannel,:,:])*hStacked),axis=0) |
|
226 | tmp[t,r,:] = numpy.sum((numpy.conjugate(self.buffer[firstChannel,:,:])*hStacked),axis=0) | |
227 |
|
227 | |||
228 |
|
228 | |||
229 | hStacked = None |
|
229 | hStacked = None | |
230 | vStacked = None |
|
230 | vStacked = None | |
231 |
|
231 | |||
232 | self.dataOut.data_corr[l,:,:,:] = tmp[:,:,:] |
|
232 | self.dataOut.data_corr[l,:,:,:] = tmp[:,:,:] | |
233 |
|
233 | |||
234 | #Se Calcula los factores de Normalizacion |
|
234 | #Se Calcula los factores de Normalizacion | |
235 | self.dataOut.pairsAutoCorr = self.dataOut.getPairsAutoCorr() |
|
235 | self.dataOut.pairsAutoCorr = self.dataOut.getPairsAutoCorr() | |
236 | self.dataOut.lagT = lagT*self.dataIn.ippSeconds*self.dataIn.nCohInt |
|
236 | self.dataOut.lagT = lagT*self.dataIn.ippSeconds*self.dataIn.nCohInt | |
237 | self.dataOut.lagR = lagR |
|
237 | self.dataOut.lagR = lagR | |
238 |
|
238 | |||
239 | self.calculateNormFactor() |
|
239 | self.calculateNormFactor() | |
240 |
|
240 | |||
241 | self.dataOut.flagNoData = False |
|
241 | self.dataOut.flagNoData = False | |
242 | self.buffer = None |
|
242 | self.buffer = None | |
243 | self.firstdatatime = None |
|
243 | self.firstdatatime = None | |
244 | self.profIndex = 0 |
|
244 | self.profIndex = 0 | |
245 |
|
245 | |||
246 | return No newline at end of file |
|
246 | return |
@@ -1,2144 +1,2154 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize |
|
3 | from scipy import optimize | |
4 | from scipy import interpolate |
|
4 | from scipy import interpolate | |
5 | from scipy import signal |
|
5 | from scipy import signal | |
6 | from scipy import stats |
|
6 | from scipy import stats | |
7 | import re |
|
7 | import re | |
8 | import datetime |
|
8 | import datetime | |
9 | import copy |
|
9 | import copy | |
10 | import sys |
|
10 | import sys | |
11 | import importlib |
|
11 | import importlib | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | from jroproc_base import ProcessingUnit, Operation |
|
14 | from jroproc_base import ProcessingUnit, Operation | |
15 | from schainpy.model.data.jrodata import Parameters |
|
15 | from schainpy.model.data.jrodata import Parameters | |
16 |
|
16 | |||
17 |
|
17 | |||
18 | class ParametersProc(ProcessingUnit): |
|
18 | class ParametersProc(ProcessingUnit): | |
19 |
|
19 | |||
20 | nSeconds = None |
|
20 | nSeconds = None | |
21 |
|
21 | |||
22 | def __init__(self): |
|
22 | def __init__(self): | |
23 | ProcessingUnit.__init__(self) |
|
23 | ProcessingUnit.__init__(self) | |
24 |
|
24 | |||
25 | # self.objectDict = {} |
|
25 | # self.objectDict = {} | |
26 | self.buffer = None |
|
26 | self.buffer = None | |
27 | self.firstdatatime = None |
|
27 | self.firstdatatime = None | |
28 | self.profIndex = 0 |
|
28 | self.profIndex = 0 | |
29 | self.dataOut = Parameters() |
|
29 | self.dataOut = Parameters() | |
30 |
|
30 | |||
31 | def __updateObjFromInput(self): |
|
31 | def __updateObjFromInput(self): | |
32 |
|
32 | |||
33 | self.dataOut.inputUnit = self.dataIn.type |
|
33 | self.dataOut.inputUnit = self.dataIn.type | |
34 |
|
34 | |||
35 | self.dataOut.timeZone = self.dataIn.timeZone |
|
35 | self.dataOut.timeZone = self.dataIn.timeZone | |
36 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
36 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
37 | self.dataOut.errorCount = self.dataIn.errorCount |
|
37 | self.dataOut.errorCount = self.dataIn.errorCount | |
38 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
38 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
39 |
|
39 | |||
40 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
40 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
41 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
41 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
42 | self.dataOut.channelList = self.dataIn.channelList |
|
42 | self.dataOut.channelList = self.dataIn.channelList | |
43 | self.dataOut.heightList = self.dataIn.heightList |
|
43 | self.dataOut.heightList = self.dataIn.heightList | |
44 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
44 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
45 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
45 | # self.dataOut.nHeights = self.dataIn.nHeights | |
46 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
46 | # self.dataOut.nChannels = self.dataIn.nChannels | |
47 | self.dataOut.nBaud = self.dataIn.nBaud |
|
47 | self.dataOut.nBaud = self.dataIn.nBaud | |
48 | self.dataOut.nCode = self.dataIn.nCode |
|
48 | self.dataOut.nCode = self.dataIn.nCode | |
49 | self.dataOut.code = self.dataIn.code |
|
49 | self.dataOut.code = self.dataIn.code | |
50 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
50 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
51 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
51 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
52 | self.dataOut.utctime = self.firstdatatime |
|
52 | self.dataOut.utctime = self.firstdatatime | |
53 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
53 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
54 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
54 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
55 | # self.dataOut.nCohInt = self.dataIn.nCohInt |
|
55 | # self.dataOut.nCohInt = self.dataIn.nCohInt | |
56 | # self.dataOut.nIncohInt = 1 |
|
56 | # self.dataOut.nIncohInt = 1 | |
57 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
57 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
58 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
58 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
59 | self.dataOut.timeInterval = self.dataIn.timeInterval |
|
59 | self.dataOut.timeInterval = self.dataIn.timeInterval | |
60 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
60 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
61 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | self.dataOut.frequency = self.dataIn.frequency | |
62 |
|
62 | |||
63 |
def run(self, nSeconds = |
|
63 | def run(self, nSeconds = 100, nProfiles = None): | |
64 |
|
64 | |||
65 |
|
65 | |||
66 |
|
66 | |||
67 | if self.firstdatatime == None: |
|
67 | if self.firstdatatime == None: | |
68 | self.firstdatatime = self.dataIn.utctime |
|
68 | self.firstdatatime = self.dataIn.utctime | |
69 |
|
69 | |||
70 | #---------------------- Voltage Data --------------------------- |
|
70 | #---------------------- Voltage Data --------------------------- | |
71 |
|
71 | |||
72 | if self.dataIn.type == "Voltage": |
|
72 | if self.dataIn.type == "Voltage": | |
73 | self.dataOut.flagNoData = True |
|
73 | self.dataOut.flagNoData = True | |
74 | if nSeconds != None: |
|
74 | ||
|
75 | ||||
|
76 | if self.buffer == None: | |||
75 | self.nSeconds = nSeconds |
|
77 | self.nSeconds = nSeconds | |
76 | self.nProfiles= int(numpy.floor(nSeconds/(self.dataIn.ippSeconds*self.dataIn.nCohInt))) |
|
78 | self.nProfiles= int(numpy.floor(nSeconds/(self.dataIn.ippSeconds*self.dataIn.nCohInt))) | |
|
79 | ||||
|
80 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |||
|
81 | self.nProfiles, | |||
|
82 | self.dataIn.nHeights), | |||
|
83 | dtype='complex') | |||
77 |
|
84 | |||
78 |
if self. |
|
85 | if self.profIndex == 7990: | |
79 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
86 | a = 1 | |
80 | self.nProfiles, |
|
87 | ||
81 | self.dataIn.nHeights), |
|
|||
82 | dtype='complex') |
|
|||
83 |
|
||||
84 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
88 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() | |
85 | self.profIndex += 1 |
|
89 | self.profIndex += 1 | |
86 |
|
90 | |||
87 | if self.profIndex == self.nProfiles: |
|
91 | if self.profIndex == self.nProfiles: | |
88 |
|
92 | |||
89 | self.__updateObjFromInput() |
|
93 | self.__updateObjFromInput() | |
90 | self.dataOut.data_pre = self.buffer.copy() |
|
94 | self.dataOut.data_pre = self.buffer.copy() | |
91 | self.dataOut.paramInterval = nSeconds |
|
95 | self.dataOut.paramInterval = nSeconds | |
92 | self.dataOut.flagNoData = False |
|
96 | self.dataOut.flagNoData = False | |
93 |
|
97 | |||
94 | self.buffer = None |
|
98 | self.buffer = None | |
95 | self.firstdatatime = None |
|
99 | self.firstdatatime = None | |
96 | self.profIndex = 0 |
|
100 | self.profIndex = 0 | |
97 | return |
|
101 | return | |
98 |
|
102 | |||
99 | #---------------------- Spectra Data --------------------------- |
|
103 | #---------------------- Spectra Data --------------------------- | |
100 |
|
104 | |||
101 | if self.dataIn.type == "Spectra": |
|
105 | if self.dataIn.type == "Spectra": | |
102 | self.dataOut.data_pre = self.dataIn.data_spc.copy() |
|
106 | self.dataOut.data_pre = self.dataIn.data_spc.copy() | |
103 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
107 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
104 | self.dataOut.noise = self.dataIn.getNoise() |
|
108 | self.dataOut.noise = self.dataIn.getNoise() | |
105 | self.dataOut.normFactor = self.dataIn.normFactor |
|
109 | self.dataOut.normFactor = self.dataIn.normFactor | |
106 | self.dataOut.groupList = self.dataIn.pairsList |
|
110 | self.dataOut.groupList = self.dataIn.pairsList | |
107 | self.dataOut.flagNoData = False |
|
111 | self.dataOut.flagNoData = False | |
108 |
|
112 | |||
109 | #---------------------- Correlation Data --------------------------- |
|
113 | #---------------------- Correlation Data --------------------------- | |
110 |
|
114 | |||
111 | if self.dataIn.type == "Correlation": |
|
115 | if self.dataIn.type == "Correlation": | |
112 | lagRRange = self.dataIn.lagR |
|
116 | lagRRange = self.dataIn.lagR | |
113 | indR = numpy.where(lagRRange == 0)[0][0] |
|
117 | indR = numpy.where(lagRRange == 0)[0][0] | |
114 |
|
118 | |||
115 | self.dataOut.data_pre = self.dataIn.data_corr.copy()[:,:,indR,:] |
|
119 | self.dataOut.data_pre = self.dataIn.data_corr.copy()[:,:,indR,:] | |
116 | self.dataOut.abscissaList = self.dataIn.getLagTRange(1) |
|
120 | self.dataOut.abscissaList = self.dataIn.getLagTRange(1) | |
117 | self.dataOut.noise = self.dataIn.noise |
|
121 | self.dataOut.noise = self.dataIn.noise | |
118 | self.dataOut.normFactor = self.dataIn.normFactor |
|
122 | self.dataOut.normFactor = self.dataIn.normFactor | |
119 | self.dataOut.data_SNR = self.dataIn.SNR |
|
123 | self.dataOut.data_SNR = self.dataIn.SNR | |
120 | self.dataOut.groupList = self.dataIn.pairsList |
|
124 | self.dataOut.groupList = self.dataIn.pairsList | |
121 | self.dataOut.flagNoData = False |
|
125 | self.dataOut.flagNoData = False | |
122 |
|
126 | |||
123 | #---------------------- Correlation Data --------------------------- |
|
127 | #---------------------- Correlation Data --------------------------- | |
124 |
|
128 | |||
125 | if self.dataIn.type == "Parameters": |
|
129 | if self.dataIn.type == "Parameters": | |
126 | self.dataOut.copy(self.dataIn) |
|
130 | self.dataOut.copy(self.dataIn) | |
127 | self.dataOut.flagNoData = False |
|
131 | self.dataOut.flagNoData = False | |
128 |
|
132 | |||
129 | return True |
|
133 | return True | |
130 |
|
134 | |||
131 | self.__updateObjFromInput() |
|
135 | self.__updateObjFromInput() | |
132 | self.firstdatatime = None |
|
136 | self.firstdatatime = None | |
133 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
137 | self.dataOut.utctimeInit = self.dataIn.utctime | |
134 |
self.dataOut. |
|
138 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
135 |
|
139 | |||
136 | #------------------- Get Moments ---------------------------------- |
|
140 | #------------------- Get Moments ---------------------------------- | |
137 | def GetMoments(self, channelList = None): |
|
141 | def GetMoments(self, channelList = None): | |
138 | ''' |
|
142 | ''' | |
139 | Function GetMoments() |
|
143 | Function GetMoments() | |
140 |
|
144 | |||
141 | Input: |
|
145 | Input: | |
142 | channelList : simple channel list to select e.g. [2,3,7] |
|
146 | channelList : simple channel list to select e.g. [2,3,7] | |
143 | self.dataOut.data_pre |
|
147 | self.dataOut.data_pre | |
144 | self.dataOut.abscissaList |
|
148 | self.dataOut.abscissaList | |
145 | self.dataOut.noise |
|
149 | self.dataOut.noise | |
146 |
|
150 | |||
147 | Affected: |
|
151 | Affected: | |
148 | self.dataOut.data_param |
|
152 | self.dataOut.data_param | |
149 | self.dataOut.data_SNR |
|
153 | self.dataOut.data_SNR | |
150 |
|
154 | |||
151 | ''' |
|
155 | ''' | |
152 | data = self.dataOut.data_pre |
|
156 | data = self.dataOut.data_pre | |
153 | absc = self.dataOut.abscissaList[:-1] |
|
157 | absc = self.dataOut.abscissaList[:-1] | |
154 | noise = self.dataOut.noise |
|
158 | noise = self.dataOut.noise | |
155 |
|
159 | |||
156 | data_param = numpy.zeros((data.shape[0], 4, data.shape[2])) |
|
160 | data_param = numpy.zeros((data.shape[0], 4, data.shape[2])) | |
157 |
|
161 | |||
158 | if channelList== None: |
|
162 | if channelList== None: | |
159 | channelList = self.dataIn.channelList |
|
163 | channelList = self.dataIn.channelList | |
160 | self.dataOut.channelList = channelList |
|
164 | self.dataOut.channelList = channelList | |
161 |
|
165 | |||
162 | for ind in channelList: |
|
166 | for ind in channelList: | |
163 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) |
|
167 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) | |
164 |
|
168 | |||
165 | self.dataOut.data_param = data_param[:,1:,:] |
|
169 | self.dataOut.data_param = data_param[:,1:,:] | |
166 | self.dataOut.data_SNR = data_param[:,0] |
|
170 | self.dataOut.data_SNR = data_param[:,0] | |
167 | return |
|
171 | return | |
168 |
|
172 | |||
169 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
173 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
170 |
|
174 | |||
171 | if (nicoh == None): nicoh = 1 |
|
175 | if (nicoh == None): nicoh = 1 | |
172 | if (graph == None): graph = 0 |
|
176 | if (graph == None): graph = 0 | |
173 | if (smooth == None): smooth = 0 |
|
177 | if (smooth == None): smooth = 0 | |
174 | elif (self.smooth < 3): smooth = 0 |
|
178 | elif (self.smooth < 3): smooth = 0 | |
175 |
|
179 | |||
176 | if (type1 == None): type1 = 0 |
|
180 | if (type1 == None): type1 = 0 | |
177 |
if (fwindow |
|
181 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
178 | if (snrth == None): snrth = -3 |
|
182 | if (snrth == None): snrth = -3 | |
179 | if (dc == None): dc = 0 |
|
183 | if (dc == None): dc = 0 | |
180 | if (aliasing == None): aliasing = 0 |
|
184 | if (aliasing == None): aliasing = 0 | |
181 | if (oldfd == None): oldfd = 0 |
|
185 | if (oldfd == None): oldfd = 0 | |
182 | if (wwauto == None): wwauto = 0 |
|
186 | if (wwauto == None): wwauto = 0 | |
183 |
|
187 | |||
184 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
188 | if (n0 < 1.e-20): n0 = 1.e-20 | |
185 |
|
189 | |||
186 | freq = oldfreq |
|
190 | freq = oldfreq | |
187 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
191 | vec_power = numpy.zeros(oldspec.shape[1]) | |
188 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
192 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
189 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
193 | vec_w = numpy.zeros(oldspec.shape[1]) | |
190 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
194 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
191 |
|
195 | |||
192 | for ind in range(oldspec.shape[1]): |
|
196 | for ind in range(oldspec.shape[1]): | |
193 |
|
197 | |||
194 | spec = oldspec[:,ind] |
|
198 | spec = oldspec[:,ind] | |
195 | aux = spec*fwindow |
|
199 | aux = spec*fwindow | |
196 | max_spec = aux.max() |
|
200 | max_spec = aux.max() | |
197 | m = list(aux).index(max_spec) |
|
201 | m = list(aux).index(max_spec) | |
198 |
|
202 | |||
199 | #Smooth |
|
203 | #Smooth | |
200 | if (smooth == 0): spec2 = spec |
|
204 | if (smooth == 0): spec2 = spec | |
201 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
205 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
202 |
|
206 | |||
203 | # Calculo de Momentos |
|
207 | # Calculo de Momentos | |
204 | bb = spec2[range(m,spec2.size)] |
|
208 | bb = spec2[range(m,spec2.size)] | |
205 | bb = (bb<n0).nonzero() |
|
209 | bb = (bb<n0).nonzero() | |
206 | bb = bb[0] |
|
210 | bb = bb[0] | |
207 |
|
211 | |||
208 | ss = spec2[range(0,m + 1)] |
|
212 | ss = spec2[range(0,m + 1)] | |
209 | ss = (ss<n0).nonzero() |
|
213 | ss = (ss<n0).nonzero() | |
210 | ss = ss[0] |
|
214 | ss = ss[0] | |
211 |
|
215 | |||
212 | if (bb.size == 0): |
|
216 | if (bb.size == 0): | |
213 | bb0 = spec.size - 1 - m |
|
217 | bb0 = spec.size - 1 - m | |
214 | else: |
|
218 | else: | |
215 | bb0 = bb[0] - 1 |
|
219 | bb0 = bb[0] - 1 | |
216 | if (bb0 < 0): |
|
220 | if (bb0 < 0): | |
217 | bb0 = 0 |
|
221 | bb0 = 0 | |
218 |
|
222 | |||
219 | if (ss.size == 0): ss1 = 1 |
|
223 | if (ss.size == 0): ss1 = 1 | |
220 | else: ss1 = max(ss) + 1 |
|
224 | else: ss1 = max(ss) + 1 | |
221 |
|
225 | |||
222 | if (ss1 > m): ss1 = m |
|
226 | if (ss1 > m): ss1 = m | |
223 |
|
227 | |||
224 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 |
|
228 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
225 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
229 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
226 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
230 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
227 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
231 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
228 | snr = (spec2.mean()-n0)/n0 |
|
232 | snr = (spec2.mean()-n0)/n0 | |
229 |
|
233 | |||
230 | if (snr < 1.e-20) : |
|
234 | if (snr < 1.e-20) : | |
231 | snr = 1.e-20 |
|
235 | snr = 1.e-20 | |
232 |
|
236 | |||
233 | vec_power[ind] = power |
|
237 | vec_power[ind] = power | |
234 | vec_fd[ind] = fd |
|
238 | vec_fd[ind] = fd | |
235 | vec_w[ind] = w |
|
239 | vec_w[ind] = w | |
236 | vec_snr[ind] = snr |
|
240 | vec_snr[ind] = snr | |
237 |
|
241 | |||
238 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
242 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
239 | return moments |
|
243 | return moments | |
240 |
|
244 | |||
241 | #------------------ Get SA Parameters -------------------------- |
|
245 | #------------------ Get SA Parameters -------------------------- | |
242 |
|
246 | |||
243 | def GetSAParameters(self): |
|
247 | def GetSAParameters(self): | |
244 | pairslist = self.dataOut.groupList |
|
248 | pairslist = self.dataOut.groupList | |
245 | num_pairs = len(pairslist) |
|
249 | num_pairs = len(pairslist) | |
246 |
|
250 | |||
247 | vel = self.dataOut.abscissaList |
|
251 | vel = self.dataOut.abscissaList | |
248 | spectra = self.dataOut.data_pre |
|
252 | spectra = self.dataOut.data_pre | |
249 | cspectra = self.dataIn.data_cspc |
|
253 | cspectra = self.dataIn.data_cspc | |
250 | delta_v = vel[1] - vel[0] |
|
254 | delta_v = vel[1] - vel[0] | |
251 |
|
255 | |||
252 | #Calculating the power spectrum |
|
256 | #Calculating the power spectrum | |
253 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
257 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
254 | #Normalizing Spectra |
|
258 | #Normalizing Spectra | |
255 | norm_spectra = spectra/spc_pow |
|
259 | norm_spectra = spectra/spc_pow | |
256 | #Calculating the norm_spectra at peak |
|
260 | #Calculating the norm_spectra at peak | |
257 | max_spectra = numpy.max(norm_spectra, 3) |
|
261 | max_spectra = numpy.max(norm_spectra, 3) | |
258 |
|
262 | |||
259 | #Normalizing Cross Spectra |
|
263 | #Normalizing Cross Spectra | |
260 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
264 | norm_cspectra = numpy.zeros(cspectra.shape) | |
261 |
|
265 | |||
262 | for i in range(num_chan): |
|
266 | for i in range(num_chan): | |
263 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
267 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
264 |
|
268 | |||
265 | max_cspectra = numpy.max(norm_cspectra,2) |
|
269 | max_cspectra = numpy.max(norm_cspectra,2) | |
266 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
270 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
267 |
|
271 | |||
268 | for i in range(num_pairs): |
|
272 | for i in range(num_pairs): | |
269 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
273 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
270 | #------------------- Get Lags ---------------------------------- |
|
274 | #------------------- Get Lags ---------------------------------- | |
271 |
|
275 | |||
272 | def GetLags(self): |
|
276 | def GetLags(self): | |
273 | ''' |
|
277 | ''' | |
274 | Function GetMoments() |
|
278 | Function GetMoments() | |
275 |
|
279 | |||
276 | Input: |
|
280 | Input: | |
277 | self.dataOut.data_pre |
|
281 | self.dataOut.data_pre | |
278 | self.dataOut.abscissaList |
|
282 | self.dataOut.abscissaList | |
279 | self.dataOut.noise |
|
283 | self.dataOut.noise | |
280 | self.dataOut.normFactor |
|
284 | self.dataOut.normFactor | |
281 | self.dataOut.data_SNR |
|
285 | self.dataOut.data_SNR | |
282 | self.dataOut.groupList |
|
286 | self.dataOut.groupList | |
283 | self.dataOut.nChannels |
|
287 | self.dataOut.nChannels | |
284 |
|
288 | |||
285 | Affected: |
|
289 | Affected: | |
286 | self.dataOut.data_param |
|
290 | self.dataOut.data_param | |
287 |
|
291 | |||
288 | ''' |
|
292 | ''' | |
289 |
|
293 | |||
290 | data = self.dataOut.data_pre |
|
294 | data = self.dataOut.data_pre | |
291 | normFactor = self.dataOut.normFactor |
|
295 | normFactor = self.dataOut.normFactor | |
292 | nHeights = self.dataOut.nHeights |
|
296 | nHeights = self.dataOut.nHeights | |
293 | absc = self.dataOut.abscissaList[:-1] |
|
297 | absc = self.dataOut.abscissaList[:-1] | |
294 | noise = self.dataOut.noise |
|
298 | noise = self.dataOut.noise | |
295 | SNR = self.dataOut.data_SNR |
|
299 | SNR = self.dataOut.data_SNR | |
296 | pairsList = self.dataOut.groupList |
|
300 | pairsList = self.dataOut.groupList | |
297 | nChannels = self.dataOut.nChannels |
|
301 | nChannels = self.dataOut.nChannels | |
298 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
302 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
299 | self.dataOut.data_param = numpy.zeros((len(pairsCrossCorr)*2 + 1, nHeights)) |
|
303 | self.dataOut.data_param = numpy.zeros((len(pairsCrossCorr)*2 + 1, nHeights)) | |
300 |
|
304 | |||
301 | dataNorm = numpy.abs(data) |
|
305 | dataNorm = numpy.abs(data) | |
302 | for l in range(len(pairsList)): |
|
306 | for l in range(len(pairsList)): | |
303 | dataNorm[l,:,:] = dataNorm[l,:,:]/normFactor[l,:] |
|
307 | dataNorm[l,:,:] = dataNorm[l,:,:]/normFactor[l,:] | |
304 |
|
308 | |||
305 | self.dataOut.data_param[:-1,:] = self.__calculateTaus(dataNorm, pairsCrossCorr, pairsAutoCorr, absc) |
|
309 | self.dataOut.data_param[:-1,:] = self.__calculateTaus(dataNorm, pairsCrossCorr, pairsAutoCorr, absc) | |
306 | self.dataOut.data_param[-1,:] = self.__calculateLag1Phase(data, pairsAutoCorr, absc) |
|
310 | self.dataOut.data_param[-1,:] = self.__calculateLag1Phase(data, pairsAutoCorr, absc) | |
307 | return |
|
311 | return | |
308 |
|
312 | |||
309 | def __getPairsAutoCorr(self, pairsList, nChannels): |
|
313 | def __getPairsAutoCorr(self, pairsList, nChannels): | |
310 |
|
314 | |||
311 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
315 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
312 |
|
316 | |||
313 | for l in range(len(pairsList)): |
|
317 | for l in range(len(pairsList)): | |
314 | firstChannel = pairsList[l][0] |
|
318 | firstChannel = pairsList[l][0] | |
315 | secondChannel = pairsList[l][1] |
|
319 | secondChannel = pairsList[l][1] | |
316 |
|
320 | |||
317 | #Obteniendo pares de Autocorrelacion |
|
321 | #Obteniendo pares de Autocorrelacion | |
318 | if firstChannel == secondChannel: |
|
322 | if firstChannel == secondChannel: | |
319 | pairsAutoCorr[firstChannel] = int(l) |
|
323 | pairsAutoCorr[firstChannel] = int(l) | |
320 |
|
324 | |||
321 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
325 | pairsAutoCorr = pairsAutoCorr.astype(int) | |
322 |
|
326 | |||
323 | pairsCrossCorr = range(len(pairsList)) |
|
327 | pairsCrossCorr = range(len(pairsList)) | |
324 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
328 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
325 |
|
329 | |||
326 | return pairsAutoCorr, pairsCrossCorr |
|
330 | return pairsAutoCorr, pairsCrossCorr | |
327 |
|
331 | |||
328 | def __calculateTaus(self, data, pairsCrossCorr, pairsAutoCorr, lagTRange): |
|
332 | def __calculateTaus(self, data, pairsCrossCorr, pairsAutoCorr, lagTRange): | |
329 |
|
333 | |||
330 | Pt0 = data.shape[1]/2 |
|
334 | Pt0 = data.shape[1]/2 | |
331 | #Funcion de Autocorrelacion |
|
335 | #Funcion de Autocorrelacion | |
332 | dataAutoCorr = stats.nanmean(data[pairsAutoCorr,:,:], axis = 0) |
|
336 | dataAutoCorr = stats.nanmean(data[pairsAutoCorr,:,:], axis = 0) | |
333 |
|
337 | |||
334 | #Obtencion Indice de TauCross |
|
338 | #Obtencion Indice de TauCross | |
335 | indCross = data[pairsCrossCorr,:,:].argmax(axis = 1) |
|
339 | indCross = data[pairsCrossCorr,:,:].argmax(axis = 1) | |
336 | #Obtencion Indice de TauAuto |
|
340 | #Obtencion Indice de TauAuto | |
337 | indAuto = numpy.zeros(indCross.shape,dtype = 'int') |
|
341 | indAuto = numpy.zeros(indCross.shape,dtype = 'int') | |
338 | CCValue = data[pairsCrossCorr,Pt0,:] |
|
342 | CCValue = data[pairsCrossCorr,Pt0,:] | |
339 | for i in range(pairsCrossCorr.size): |
|
343 | for i in range(pairsCrossCorr.size): | |
340 | indAuto[i,:] = numpy.abs(dataAutoCorr - CCValue[i,:]).argmin(axis = 0) |
|
344 | indAuto[i,:] = numpy.abs(dataAutoCorr - CCValue[i,:]).argmin(axis = 0) | |
341 |
|
345 | |||
342 | #Obtencion de TauCross y TauAuto |
|
346 | #Obtencion de TauCross y TauAuto | |
343 | tauCross = lagTRange[indCross] |
|
347 | tauCross = lagTRange[indCross] | |
344 | tauAuto = lagTRange[indAuto] |
|
348 | tauAuto = lagTRange[indAuto] | |
345 |
|
349 | |||
346 | Nan1, Nan2 = numpy.where(tauCross == lagTRange[0]) |
|
350 | Nan1, Nan2 = numpy.where(tauCross == lagTRange[0]) | |
347 |
|
351 | |||
348 | tauCross[Nan1,Nan2] = numpy.nan |
|
352 | tauCross[Nan1,Nan2] = numpy.nan | |
349 | tauAuto[Nan1,Nan2] = numpy.nan |
|
353 | tauAuto[Nan1,Nan2] = numpy.nan | |
350 | tau = numpy.vstack((tauCross,tauAuto)) |
|
354 | tau = numpy.vstack((tauCross,tauAuto)) | |
351 |
|
355 | |||
352 | return tau |
|
356 | return tau | |
353 |
|
357 | |||
354 | def __calculateLag1Phase(self, data, pairs, lagTRange): |
|
358 | def __calculateLag1Phase(self, data, pairs, lagTRange): | |
355 | data1 = stats.nanmean(data[pairs,:,:], axis = 0) |
|
359 | data1 = stats.nanmean(data[pairs,:,:], axis = 0) | |
356 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
360 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
357 |
|
361 | |||
358 | phase = numpy.angle(data1[lag1,:]) |
|
362 | phase = numpy.angle(data1[lag1,:]) | |
359 |
|
363 | |||
360 | return phase |
|
364 | return phase | |
361 | #------------------- Detect Meteors ------------------------------ |
|
365 | #------------------- Detect Meteors ------------------------------ | |
362 |
|
366 | |||
363 | def MeteorDetection(self, hei_ref = None, tauindex = 0, |
|
367 | def MeteorDetection(self, hei_ref = None, tauindex = 0, | |
364 | predefinedPhaseShifts = None, centerReceiverIndex = 2, saveAll = False, |
|
368 | predefinedPhaseShifts = None, centerReceiverIndex = 2, saveAll = False, | |
365 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
369 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
366 | noise_timeStep = 4, noise_multiple = 4, |
|
370 | noise_timeStep = 4, noise_multiple = 4, | |
367 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
371 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
368 | phaseThresh = 20, SNRThresh = 8, |
|
372 | phaseThresh = 20, SNRThresh = 8, | |
369 | hmin = 70, hmax=110, azimuth = 0) : |
|
373 | hmin = 70, hmax=110, azimuth = 0) : | |
370 |
|
374 | |||
371 | ''' |
|
375 | ''' | |
372 | Function DetectMeteors() |
|
376 | Function DetectMeteors() | |
373 | Project developed with paper: |
|
377 | Project developed with paper: | |
374 | HOLDSWORTH ET AL. 2004 |
|
378 | HOLDSWORTH ET AL. 2004 | |
375 |
|
379 | |||
376 | Input: |
|
380 | Input: | |
377 | self.dataOut.data_pre |
|
381 | self.dataOut.data_pre | |
378 |
|
382 | |||
379 | centerReceiverIndex: From the channels, which is the center receiver |
|
383 | centerReceiverIndex: From the channels, which is the center receiver | |
380 |
|
384 | |||
381 | hei_ref: Height reference for the Beacon signal extraction |
|
385 | hei_ref: Height reference for the Beacon signal extraction | |
382 | tauindex: |
|
386 | tauindex: | |
383 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
387 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
384 |
|
388 | |||
385 | cohDetection: Whether to user Coherent detection or not |
|
389 | cohDetection: Whether to user Coherent detection or not | |
386 | cohDet_timeStep: Coherent Detection calculation time step |
|
390 | cohDet_timeStep: Coherent Detection calculation time step | |
387 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
391 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
388 |
|
392 | |||
389 | noise_timeStep: Noise calculation time step |
|
393 | noise_timeStep: Noise calculation time step | |
390 | noise_multiple: Noise multiple to define signal threshold |
|
394 | noise_multiple: Noise multiple to define signal threshold | |
391 |
|
395 | |||
392 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
396 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
393 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
397 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
394 |
|
398 | |||
395 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
399 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
396 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
400 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
397 |
|
401 | |||
398 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
402 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
399 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
403 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
400 | azimuth: Azimuth angle correction |
|
404 | azimuth: Azimuth angle correction | |
401 |
|
405 | |||
402 | Affected: |
|
406 | Affected: | |
403 | self.dataOut.data_param |
|
407 | self.dataOut.data_param | |
404 |
|
408 | |||
405 | Rejection Criteria (Errors): |
|
409 | Rejection Criteria (Errors): | |
406 | 0: No error; analysis OK |
|
410 | 0: No error; analysis OK | |
407 | 1: SNR < SNR threshold |
|
411 | 1: SNR < SNR threshold | |
408 | 2: angle of arrival (AOA) ambiguously determined |
|
412 | 2: angle of arrival (AOA) ambiguously determined | |
409 | 3: AOA estimate not feasible |
|
413 | 3: AOA estimate not feasible | |
410 | 4: Large difference in AOAs obtained from different antenna baselines |
|
414 | 4: Large difference in AOAs obtained from different antenna baselines | |
411 | 5: echo at start or end of time series |
|
415 | 5: echo at start or end of time series | |
412 | 6: echo less than 5 examples long; too short for analysis |
|
416 | 6: echo less than 5 examples long; too short for analysis | |
413 | 7: echo rise exceeds 0.3s |
|
417 | 7: echo rise exceeds 0.3s | |
414 | 8: echo decay time less than twice rise time |
|
418 | 8: echo decay time less than twice rise time | |
415 | 9: large power level before echo |
|
419 | 9: large power level before echo | |
416 | 10: large power level after echo |
|
420 | 10: large power level after echo | |
417 | 11: poor fit to amplitude for estimation of decay time |
|
421 | 11: poor fit to amplitude for estimation of decay time | |
418 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
422 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
419 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
423 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
420 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
424 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
421 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
425 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
422 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
426 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
423 |
|
427 | |||
424 | 17: phase difference in meteor Reestimation |
|
428 | 17: phase difference in meteor Reestimation | |
425 |
|
429 | |||
426 | Data Storage: |
|
430 | Data Storage: | |
427 | Meteors for Wind Estimation (8): |
|
431 | Meteors for Wind Estimation (8): | |
428 | Day Hour | Range Height |
|
432 | Day Hour | Range Height | |
429 | Azimuth Zenith errorCosDir |
|
433 | Azimuth Zenith errorCosDir | |
430 | VelRad errorVelRad |
|
434 | VelRad errorVelRad | |
431 | TypeError |
|
435 | TypeError | |
432 |
|
436 | |||
433 | ''' |
|
437 | ''' | |
434 | #Get Beacon signal |
|
438 | #Get Beacon signal | |
435 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
439 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
436 |
|
440 | |||
437 | if hei_ref != None: |
|
441 | if hei_ref != None: | |
438 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
442 | newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
439 |
|
443 | |||
440 | heiRang = self.dataOut.getHeiRange() |
|
444 | heiRang = self.dataOut.getHeiRange() | |
441 | #Pairs List |
|
445 | #Pairs List | |
442 | pairslist = [] |
|
446 | pairslist = [] | |
443 | nChannel = self.dataOut.nChannels |
|
447 | nChannel = self.dataOut.nChannels | |
444 | for i in range(nChannel): |
|
448 | for i in range(nChannel): | |
445 | if i != centerReceiverIndex: |
|
449 | if i != centerReceiverIndex: | |
446 | pairslist.append((centerReceiverIndex,i)) |
|
450 | pairslist.append((centerReceiverIndex,i)) | |
447 |
|
451 | |||
448 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
452 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
449 | # see if the user put in pre defined phase shifts |
|
453 | # see if the user put in pre defined phase shifts | |
450 | voltsPShift = self.dataOut.data_pre.copy() |
|
454 | voltsPShift = self.dataOut.data_pre.copy() | |
451 |
|
455 | |||
452 | if predefinedPhaseShifts != None: |
|
456 | if predefinedPhaseShifts != None: | |
453 | hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
457 | hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
454 |
|
458 | |||
455 | elif beaconPhaseShifts: |
|
459 | elif beaconPhaseShifts: | |
456 | #get hardware phase shifts using beacon signal |
|
460 | #get hardware phase shifts using beacon signal | |
457 | hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
461 | hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
458 | hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
462 | hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
459 |
|
463 | |||
460 | else: |
|
464 | else: | |
461 | hardwarePhaseShifts = numpy.zeros(5) |
|
465 | hardwarePhaseShifts = numpy.zeros(5) | |
462 |
|
466 | |||
463 |
|
467 | |||
464 | voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
468 | voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
465 | for i in range(self.dataOut.data_pre.shape[0]): |
|
469 | for i in range(self.dataOut.data_pre.shape[0]): | |
466 | voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
470 | voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
467 |
|
471 | |||
468 |
|
472 | |||
469 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
473 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
470 |
|
474 | |||
471 | #Remove DC |
|
475 | #Remove DC | |
472 | voltsDC = numpy.mean(voltsPShift,1) |
|
476 | voltsDC = numpy.mean(voltsPShift,1) | |
473 | voltsDC = numpy.mean(voltsDC,1) |
|
477 | voltsDC = numpy.mean(voltsDC,1) | |
474 | for i in range(voltsDC.shape[0]): |
|
478 | for i in range(voltsDC.shape[0]): | |
475 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
479 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
476 |
|
480 | |||
477 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
481 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
478 | voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
482 | voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
479 |
|
483 | |||
480 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
484 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
481 | #Coherent Detection |
|
485 | #Coherent Detection | |
482 | if cohDetection: |
|
486 | if cohDetection: | |
483 | #use coherent detection to get the net power |
|
487 | #use coherent detection to get the net power | |
484 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
488 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
485 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, self.dataOut.timeInterval, pairslist, cohDet_thresh) |
|
489 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, self.dataOut.timeInterval, pairslist, cohDet_thresh) | |
486 |
|
490 | |||
487 | #Non-coherent detection! |
|
491 | #Non-coherent detection! | |
488 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
492 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
489 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
493 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
490 |
|
494 | |||
491 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
495 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
492 | #Get noise |
|
496 | #Get noise | |
493 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
497 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
494 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
498 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
495 | #Get signal threshold |
|
499 | #Get signal threshold | |
496 | signalThresh = noise_multiple*noise |
|
500 | signalThresh = noise_multiple*noise | |
497 | #Meteor echoes detection |
|
501 | #Meteor echoes detection | |
498 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
502 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
499 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
503 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
500 |
|
504 | |||
501 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
505 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
502 | #Parameters |
|
506 | #Parameters | |
503 | heiRange = self.dataOut.getHeiRange() |
|
507 | heiRange = self.dataOut.getHeiRange() | |
504 | rangeInterval = heiRange[1] - heiRange[0] |
|
508 | rangeInterval = heiRange[1] - heiRange[0] | |
505 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
509 | rangeLimit = multDet_rangeLimit/rangeInterval | |
506 | timeLimit = multDet_timeLimit/self.dataOut.timeInterval |
|
510 | timeLimit = multDet_timeLimit/self.dataOut.timeInterval | |
507 | #Multiple detection removals |
|
511 | #Multiple detection removals | |
508 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
512 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
509 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
513 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
510 |
|
514 | |||
511 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
515 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
512 | #Parameters |
|
516 | #Parameters | |
513 | phaseThresh = phaseThresh*numpy.pi/180 |
|
517 | phaseThresh = phaseThresh*numpy.pi/180 | |
514 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
518 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
515 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
519 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
516 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist, thresh, noise, self.dataOut.timeInterval, self.dataOut.frequency) |
|
520 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist, thresh, noise, self.dataOut.timeInterval, self.dataOut.frequency) | |
517 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
521 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
518 | #Estimation of decay times (Errors N 7, 8, 11) |
|
522 | #Estimation of decay times (Errors N 7, 8, 11) | |
519 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, self.dataOut.timeInterval, self.dataOut.frequency) |
|
523 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, self.dataOut.timeInterval, self.dataOut.frequency) | |
520 | #******************* END OF METEOR REESTIMATION ******************* |
|
524 | #******************* END OF METEOR REESTIMATION ******************* | |
521 |
|
525 | |||
522 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
526 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
523 | #Calculating Radial Velocity (Error N 15) |
|
527 | #Calculating Radial Velocity (Error N 15) | |
524 | radialStdThresh = 10 |
|
528 | radialStdThresh = 10 | |
525 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist, self.dataOut.timeInterval) |
|
529 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist, self.dataOut.timeInterval) | |
526 |
|
530 | |||
527 | if len(listMeteors4) > 0: |
|
531 | if len(listMeteors4) > 0: | |
528 |
|
532 | |||
529 | pairsList = [] |
|
533 | pairsList = [] | |
530 | pairx = (0,3) |
|
534 | pairx = (0,3) | |
531 | pairy = (1,2) |
|
535 | pairy = (1,2) | |
532 | pairsList.append(pairx) |
|
536 | pairsList.append(pairx) | |
533 | pairsList.append(pairy) |
|
537 | pairsList.append(pairy) | |
534 |
|
538 | |||
535 | #Setting New Array |
|
539 | #Setting New Array | |
536 | date = repr(self.dataOut.datatime) |
|
540 | date = repr(self.dataOut.datatime) | |
537 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
541 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
538 |
|
542 | |||
539 | meteorOps = MeteorOperations() |
|
543 | meteorOps = MeteorOperations() | |
540 | jph = numpy.array([0,0,0,0]) |
|
544 | jph = numpy.array([0,0,0,0]) | |
541 | h = (hmin,hmax) |
|
545 | h = (hmin,hmax) | |
542 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, jph) |
|
546 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, jph) | |
543 |
|
547 | |||
544 | # #Calculate AOA (Error N 3, 4) |
|
548 | # #Calculate AOA (Error N 3, 4) | |
545 | # #JONES ET AL. 1998 |
|
549 | # #JONES ET AL. 1998 | |
546 | # error = arrayParameters[:,-1] |
|
550 | # error = arrayParameters[:,-1] | |
547 | # AOAthresh = numpy.pi/8 |
|
551 | # AOAthresh = numpy.pi/8 | |
548 | # phases = -arrayParameters[:,9:13] |
|
552 | # phases = -arrayParameters[:,9:13] | |
549 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
553 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
550 | # |
|
554 | # | |
551 | # #Calculate Heights (Error N 13 and 14) |
|
555 | # #Calculate Heights (Error N 13 and 14) | |
552 | # error = arrayParameters[:,-1] |
|
556 | # error = arrayParameters[:,-1] | |
553 | # Ranges = arrayParameters[:,2] |
|
557 | # Ranges = arrayParameters[:,2] | |
554 | # zenith = arrayParameters[:,5] |
|
558 | # zenith = arrayParameters[:,5] | |
555 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
559 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
556 | # error = arrayParameters[:,-1] |
|
560 | # error = arrayParameters[:,-1] | |
557 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
561 | #********************* END OF PARAMETERS CALCULATION ************************** | |
558 |
|
562 | |||
559 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
563 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
560 | arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
564 | arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
561 | self.dataOut.data_param = arrayFinal |
|
565 | self.dataOut.data_param = arrayFinal | |
562 |
|
566 | |||
|
567 | if arrayFinal == None: | |||
|
568 | self.dataOut.flagNoData = True | |||
|
569 | ||||
563 | return |
|
570 | return | |
564 |
|
571 | |||
565 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
572 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
566 |
|
573 | |||
567 | minIndex = min(newheis[0]) |
|
574 | minIndex = min(newheis[0]) | |
568 | maxIndex = max(newheis[0]) |
|
575 | maxIndex = max(newheis[0]) | |
569 |
|
576 | |||
570 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
577 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
571 | nLength = voltage.shape[1]/n |
|
578 | nLength = voltage.shape[1]/n | |
572 | nMin = 0 |
|
579 | nMin = 0 | |
573 | nMax = 0 |
|
580 | nMax = 0 | |
574 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
581 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
575 |
|
582 | |||
576 | for i in range(n): |
|
583 | for i in range(n): | |
577 | nMax += nLength |
|
584 | nMax += nLength | |
578 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
585 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
579 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
586 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
580 | phaseOffset[:,i] = phaseCCF.transpose() |
|
587 | phaseOffset[:,i] = phaseCCF.transpose() | |
581 | nMin = nMax |
|
588 | nMin = nMax | |
582 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
589 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
583 |
|
590 | |||
584 | #Remove Outliers |
|
591 | #Remove Outliers | |
585 | factor = 2 |
|
592 | factor = 2 | |
586 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
593 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
587 | dw = numpy.std(wt,axis = 1) |
|
594 | dw = numpy.std(wt,axis = 1) | |
588 | dw = dw.reshape((dw.size,1)) |
|
595 | dw = dw.reshape((dw.size,1)) | |
589 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
596 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
590 | phaseOffset[ind] = numpy.nan |
|
597 | phaseOffset[ind] = numpy.nan | |
591 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
598 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
592 |
|
599 | |||
593 | return phaseOffset |
|
600 | return phaseOffset | |
594 |
|
601 | |||
595 | def __shiftPhase(self, data, phaseShift): |
|
602 | def __shiftPhase(self, data, phaseShift): | |
596 | #this will shift the phase of a complex number |
|
603 | #this will shift the phase of a complex number | |
597 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
604 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
598 | return dataShifted |
|
605 | return dataShifted | |
599 |
|
606 | |||
600 | def __estimatePhaseDifference(self, array, pairslist): |
|
607 | def __estimatePhaseDifference(self, array, pairslist): | |
601 | nChannel = array.shape[0] |
|
608 | nChannel = array.shape[0] | |
602 | nHeights = array.shape[2] |
|
609 | nHeights = array.shape[2] | |
603 | numPairs = len(pairslist) |
|
610 | numPairs = len(pairslist) | |
604 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
611 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
605 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
612 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
606 |
|
613 | |||
607 | #Correct phases |
|
614 | #Correct phases | |
608 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
615 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
609 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
616 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
610 |
|
617 | |||
611 | if indDer[0].shape[0] > 0: |
|
618 | if indDer[0].shape[0] > 0: | |
612 | for i in range(indDer[0].shape[0]): |
|
619 | for i in range(indDer[0].shape[0]): | |
613 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
620 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
614 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
621 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
615 |
|
622 | |||
616 | # for j in range(numSides): |
|
623 | # for j in range(numSides): | |
617 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
624 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
618 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
625 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
619 | # |
|
626 | # | |
620 | #Linear |
|
627 | #Linear | |
621 | phaseInt = numpy.zeros((numPairs,1)) |
|
628 | phaseInt = numpy.zeros((numPairs,1)) | |
622 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
629 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
623 | for j in range(numPairs): |
|
630 | for j in range(numPairs): | |
624 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
631 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
625 | phaseInt[j] = fit[1] |
|
632 | phaseInt[j] = fit[1] | |
626 | #Phase Differences |
|
633 | #Phase Differences | |
627 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
634 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
628 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
635 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
629 |
|
636 | |||
630 | #Dealias |
|
637 | #Dealias | |
631 | indAlias = numpy.where(phaseArrival > numpy.pi) |
|
638 | indAlias = numpy.where(phaseArrival > numpy.pi) | |
632 | phaseArrival[indAlias] -= 2*numpy.pi |
|
639 | phaseArrival[indAlias] -= 2*numpy.pi | |
633 | indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
640 | indAlias = numpy.where(phaseArrival < -numpy.pi) | |
634 | phaseArrival[indAlias] += 2*numpy.pi |
|
641 | phaseArrival[indAlias] += 2*numpy.pi | |
635 |
|
642 | |||
636 | return phaseDiff, phaseArrival |
|
643 | return phaseDiff, phaseArrival | |
637 |
|
644 | |||
638 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
645 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
639 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
646 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
640 | #find the phase shifts of each channel over 1 second intervals |
|
647 | #find the phase shifts of each channel over 1 second intervals | |
641 | #only look at ranges below the beacon signal |
|
648 | #only look at ranges below the beacon signal | |
642 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
649 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
643 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
650 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
644 | numHeights = volts.shape[2] |
|
651 | numHeights = volts.shape[2] | |
645 | nChannel = volts.shape[0] |
|
652 | nChannel = volts.shape[0] | |
646 | voltsCohDet = volts.copy() |
|
653 | voltsCohDet = volts.copy() | |
647 |
|
654 | |||
648 | pairsarray = numpy.array(pairslist) |
|
655 | pairsarray = numpy.array(pairslist) | |
649 | indSides = pairsarray[:,1] |
|
656 | indSides = pairsarray[:,1] | |
650 | # indSides = numpy.array(range(nChannel)) |
|
657 | # indSides = numpy.array(range(nChannel)) | |
651 | # indSides = numpy.delete(indSides, indCenter) |
|
658 | # indSides = numpy.delete(indSides, indCenter) | |
652 | # |
|
659 | # | |
653 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
660 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
654 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
661 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
655 |
|
662 | |||
656 | startInd = 0 |
|
663 | startInd = 0 | |
657 | endInd = 0 |
|
664 | endInd = 0 | |
658 |
|
665 | |||
659 | for i in range(numBlocks): |
|
666 | for i in range(numBlocks): | |
660 | startInd = endInd |
|
667 | startInd = endInd | |
661 | endInd = endInd + listBlocks[i].shape[1] |
|
668 | endInd = endInd + listBlocks[i].shape[1] | |
662 |
|
669 | |||
663 | arrayBlock = listBlocks[i] |
|
670 | arrayBlock = listBlocks[i] | |
664 | # arrayBlockCenter = listCenter[i] |
|
671 | # arrayBlockCenter = listCenter[i] | |
665 |
|
672 | |||
666 | #Estimate the Phase Difference |
|
673 | #Estimate the Phase Difference | |
667 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
674 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
668 | #Phase Difference RMS |
|
675 | #Phase Difference RMS | |
669 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
676 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
670 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
677 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
671 | indPhase = numpy.where(phaseRMSaux==4) |
|
678 | indPhase = numpy.where(phaseRMSaux==4) | |
672 | #Shifting |
|
679 | #Shifting | |
673 | if indPhase[0].shape[0] > 0: |
|
680 | if indPhase[0].shape[0] > 0: | |
674 | for j in range(indSides.size): |
|
681 | for j in range(indSides.size): | |
675 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
682 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
676 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
683 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
677 |
|
684 | |||
678 | return voltsCohDet |
|
685 | return voltsCohDet | |
679 |
|
686 | |||
680 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
687 | def __calculateCCF(self, volts, pairslist ,laglist): | |
681 |
|
688 | |||
682 | nHeights = volts.shape[2] |
|
689 | nHeights = volts.shape[2] | |
683 | nPoints = volts.shape[1] |
|
690 | nPoints = volts.shape[1] | |
684 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
691 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
685 |
|
692 | |||
686 | for i in range(len(pairslist)): |
|
693 | for i in range(len(pairslist)): | |
687 | volts1 = volts[pairslist[i][0]] |
|
694 | volts1 = volts[pairslist[i][0]] | |
688 | volts2 = volts[pairslist[i][1]] |
|
695 | volts2 = volts[pairslist[i][1]] | |
689 |
|
696 | |||
690 | for t in range(len(laglist)): |
|
697 | for t in range(len(laglist)): | |
691 | idxT = laglist[t] |
|
698 | idxT = laglist[t] | |
692 | if idxT >= 0: |
|
699 | if idxT >= 0: | |
693 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
700 | vStacked = numpy.vstack((volts2[idxT:,:], | |
694 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
701 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
695 | else: |
|
702 | else: | |
696 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
703 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
697 | volts2[:(nPoints + idxT),:])) |
|
704 | volts2[:(nPoints + idxT),:])) | |
698 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
705 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
699 |
|
706 | |||
700 | vStacked = None |
|
707 | vStacked = None | |
701 | return voltsCCF |
|
708 | return voltsCCF | |
702 |
|
709 | |||
703 | def __getNoise(self, power, timeSegment, timeInterval): |
|
710 | def __getNoise(self, power, timeSegment, timeInterval): | |
704 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
711 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
705 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
712 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
706 | numHeights = power.shape[1] |
|
713 | numHeights = power.shape[1] | |
707 |
|
714 | |||
708 | listPower = numpy.array_split(power, numBlocks, 0) |
|
715 | listPower = numpy.array_split(power, numBlocks, 0) | |
709 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
716 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
710 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
717 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
711 |
|
718 | |||
712 | startInd = 0 |
|
719 | startInd = 0 | |
713 | endInd = 0 |
|
720 | endInd = 0 | |
714 |
|
721 | |||
715 | for i in range(numBlocks): #split por canal |
|
722 | for i in range(numBlocks): #split por canal | |
716 | startInd = endInd |
|
723 | startInd = endInd | |
717 | endInd = endInd + listPower[i].shape[0] |
|
724 | endInd = endInd + listPower[i].shape[0] | |
718 |
|
725 | |||
719 | arrayBlock = listPower[i] |
|
726 | arrayBlock = listPower[i] | |
720 | noiseAux = numpy.mean(arrayBlock, 0) |
|
727 | noiseAux = numpy.mean(arrayBlock, 0) | |
721 | # noiseAux = numpy.median(noiseAux) |
|
728 | # noiseAux = numpy.median(noiseAux) | |
722 | # noiseAux = numpy.mean(arrayBlock) |
|
729 | # noiseAux = numpy.mean(arrayBlock) | |
723 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
730 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
724 |
|
731 | |||
725 | noiseAux1 = numpy.mean(arrayBlock) |
|
732 | noiseAux1 = numpy.mean(arrayBlock) | |
726 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
733 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
727 |
|
734 | |||
728 | return noise, noise1 |
|
735 | return noise, noise1 | |
729 |
|
736 | |||
730 | def __findMeteors(self, power, thresh): |
|
737 | def __findMeteors(self, power, thresh): | |
731 | nProf = power.shape[0] |
|
738 | nProf = power.shape[0] | |
732 | nHeights = power.shape[1] |
|
739 | nHeights = power.shape[1] | |
733 | listMeteors = [] |
|
740 | listMeteors = [] | |
734 |
|
741 | |||
735 | for i in range(nHeights): |
|
742 | for i in range(nHeights): | |
736 | powerAux = power[:,i] |
|
743 | powerAux = power[:,i] | |
737 | threshAux = thresh[:,i] |
|
744 | threshAux = thresh[:,i] | |
738 |
|
745 | |||
739 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
746 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
740 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
747 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
741 |
|
748 | |||
742 | j = 0 |
|
749 | j = 0 | |
743 |
|
750 | |||
744 | while (j < indUPthresh.size - 2): |
|
751 | while (j < indUPthresh.size - 2): | |
745 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
752 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
746 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
753 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
747 | indDNthresh = indDNthresh[indDNAux] |
|
754 | indDNthresh = indDNthresh[indDNAux] | |
748 |
|
755 | |||
749 | if (indDNthresh.size > 0): |
|
756 | if (indDNthresh.size > 0): | |
750 | indEnd = indDNthresh[0] - 1 |
|
757 | indEnd = indDNthresh[0] - 1 | |
751 | indInit = indUPthresh[j] |
|
758 | indInit = indUPthresh[j] | |
752 |
|
759 | |||
753 | meteor = powerAux[indInit:indEnd + 1] |
|
760 | meteor = powerAux[indInit:indEnd + 1] | |
754 | indPeak = meteor.argmax() + indInit |
|
761 | indPeak = meteor.argmax() + indInit | |
755 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
762 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
756 |
|
763 | |||
757 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
764 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
758 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
765 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
759 | else: j+=1 |
|
766 | else: j+=1 | |
760 | else: j+=1 |
|
767 | else: j+=1 | |
761 |
|
768 | |||
762 | return listMeteors |
|
769 | return listMeteors | |
763 |
|
770 | |||
764 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
771 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
765 |
|
772 | |||
766 | arrayMeteors = numpy.asarray(listMeteors) |
|
773 | arrayMeteors = numpy.asarray(listMeteors) | |
767 | listMeteors1 = [] |
|
774 | listMeteors1 = [] | |
768 |
|
775 | |||
769 | while arrayMeteors.shape[0] > 0: |
|
776 | while arrayMeteors.shape[0] > 0: | |
770 | FLAs = arrayMeteors[:,4] |
|
777 | FLAs = arrayMeteors[:,4] | |
771 | maxFLA = FLAs.argmax() |
|
778 | maxFLA = FLAs.argmax() | |
772 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
779 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
773 |
|
780 | |||
774 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
781 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
775 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
782 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
776 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
783 | MeteorHeight = arrayMeteors[maxFLA,0] | |
777 |
|
784 | |||
778 | #Check neighborhood |
|
785 | #Check neighborhood | |
779 | maxHeightIndex = MeteorHeight + rangeLimit |
|
786 | maxHeightIndex = MeteorHeight + rangeLimit | |
780 | minHeightIndex = MeteorHeight - rangeLimit |
|
787 | minHeightIndex = MeteorHeight - rangeLimit | |
781 | minTimeIndex = MeteorInitTime - timeLimit |
|
788 | minTimeIndex = MeteorInitTime - timeLimit | |
782 | maxTimeIndex = MeteorEndTime + timeLimit |
|
789 | maxTimeIndex = MeteorEndTime + timeLimit | |
783 |
|
790 | |||
784 | #Check Heights |
|
791 | #Check Heights | |
785 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
792 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
786 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
793 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
787 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
794 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
788 |
|
795 | |||
789 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
796 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
790 |
|
797 | |||
791 | return listMeteors1 |
|
798 | return listMeteors1 | |
792 |
|
799 | |||
793 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
800 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
794 | numHeights = volts.shape[2] |
|
801 | numHeights = volts.shape[2] | |
795 | nChannel = volts.shape[0] |
|
802 | nChannel = volts.shape[0] | |
796 |
|
803 | |||
797 | thresholdPhase = thresh[0] |
|
804 | thresholdPhase = thresh[0] | |
798 | thresholdNoise = thresh[1] |
|
805 | thresholdNoise = thresh[1] | |
799 | thresholdDB = float(thresh[2]) |
|
806 | thresholdDB = float(thresh[2]) | |
800 |
|
807 | |||
801 | thresholdDB1 = 10**(thresholdDB/10) |
|
808 | thresholdDB1 = 10**(thresholdDB/10) | |
802 | pairsarray = numpy.array(pairslist) |
|
809 | pairsarray = numpy.array(pairslist) | |
803 | indSides = pairsarray[:,1] |
|
810 | indSides = pairsarray[:,1] | |
804 |
|
811 | |||
805 | pairslist1 = list(pairslist) |
|
812 | pairslist1 = list(pairslist) | |
806 | pairslist1.append((0,1)) |
|
813 | pairslist1.append((0,1)) | |
807 | pairslist1.append((3,4)) |
|
814 | pairslist1.append((3,4)) | |
808 |
|
815 | |||
809 | listMeteors1 = [] |
|
816 | listMeteors1 = [] | |
810 | listPowerSeries = [] |
|
817 | listPowerSeries = [] | |
811 | listVoltageSeries = [] |
|
818 | listVoltageSeries = [] | |
812 | #volts has the war data |
|
819 | #volts has the war data | |
813 |
|
820 | |||
814 | if frequency == 30e6: |
|
821 | if frequency == 30e6: | |
815 | timeLag = 45*10**-3 |
|
822 | timeLag = 45*10**-3 | |
816 | else: |
|
823 | else: | |
817 | timeLag = 15*10**-3 |
|
824 | timeLag = 15*10**-3 | |
818 | lag = numpy.ceil(timeLag/timeInterval) |
|
825 | lag = numpy.ceil(timeLag/timeInterval) | |
819 |
|
826 | |||
820 | for i in range(len(listMeteors)): |
|
827 | for i in range(len(listMeteors)): | |
821 |
|
828 | |||
822 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
829 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
823 | meteorAux = numpy.zeros(16) |
|
830 | meteorAux = numpy.zeros(16) | |
824 |
|
831 | |||
825 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
832 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
826 | mHeight = listMeteors[i][0] |
|
833 | mHeight = listMeteors[i][0] | |
827 | mStart = listMeteors[i][1] |
|
834 | mStart = listMeteors[i][1] | |
828 | mPeak = listMeteors[i][2] |
|
835 | mPeak = listMeteors[i][2] | |
829 | mEnd = listMeteors[i][3] |
|
836 | mEnd = listMeteors[i][3] | |
830 |
|
837 | |||
831 | #get the volt data between the start and end times of the meteor |
|
838 | #get the volt data between the start and end times of the meteor | |
832 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
839 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
833 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
840 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
834 |
|
841 | |||
835 | #3.6. Phase Difference estimation |
|
842 | #3.6. Phase Difference estimation | |
836 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
843 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
837 |
|
844 | |||
838 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
845 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
839 | #meteorVolts0.- all Channels, all Profiles |
|
846 | #meteorVolts0.- all Channels, all Profiles | |
840 | meteorVolts0 = volts[:,:,mHeight] |
|
847 | meteorVolts0 = volts[:,:,mHeight] | |
841 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
848 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
842 | meteorNoise = noise[:,mHeight] |
|
849 | meteorNoise = noise[:,mHeight] | |
843 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
850 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
844 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
851 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
845 |
|
852 | |||
846 | #Times reestimation |
|
853 | #Times reestimation | |
847 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
854 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
848 | if mStart1.size > 0: |
|
855 | if mStart1.size > 0: | |
849 | mStart1 = mStart1[-1] + 1 |
|
856 | mStart1 = mStart1[-1] + 1 | |
850 |
|
857 | |||
851 | else: |
|
858 | else: | |
852 | mStart1 = mPeak |
|
859 | mStart1 = mPeak | |
853 |
|
860 | |||
854 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
861 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
855 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
862 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
856 | if mEndDecayTime1.size == 0: |
|
863 | if mEndDecayTime1.size == 0: | |
857 | mEndDecayTime1 = powerNet0.size |
|
864 | mEndDecayTime1 = powerNet0.size | |
858 | else: |
|
865 | else: | |
859 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
866 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
860 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
867 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
861 |
|
868 | |||
862 | #meteorVolts1.- all Channels, from start to end |
|
869 | #meteorVolts1.- all Channels, from start to end | |
863 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
870 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
864 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
871 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
865 | if meteorVolts2.shape[1] == 0: |
|
872 | if meteorVolts2.shape[1] == 0: | |
866 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
873 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
867 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
874 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
868 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
875 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
869 | ##################### END PARAMETERS REESTIMATION ######################### |
|
876 | ##################### END PARAMETERS REESTIMATION ######################### | |
870 |
|
877 | |||
871 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
878 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
872 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
879 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
873 | if meteorVolts2.shape[1] > 0: |
|
880 | if meteorVolts2.shape[1] > 0: | |
874 | #Phase Difference re-estimation |
|
881 | #Phase Difference re-estimation | |
875 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
882 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
876 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
883 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
877 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
884 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
878 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
885 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
879 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
886 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
880 |
|
887 | |||
881 | #Phase Difference RMS |
|
888 | #Phase Difference RMS | |
882 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
889 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
883 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
890 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
884 | #Data from Meteor |
|
891 | #Data from Meteor | |
885 | mPeak1 = powerNet1.argmax() + mStart1 |
|
892 | mPeak1 = powerNet1.argmax() + mStart1 | |
886 | mPeakPower1 = powerNet1.max() |
|
893 | mPeakPower1 = powerNet1.max() | |
887 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
894 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
888 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
895 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
889 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
896 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
890 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
897 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
891 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
898 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
892 | #Vectorize |
|
899 | #Vectorize | |
893 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
900 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
894 | meteorAux[7:11] = phaseDiffint[0:4] |
|
901 | meteorAux[7:11] = phaseDiffint[0:4] | |
895 |
|
902 | |||
896 | #Rejection Criterions |
|
903 | #Rejection Criterions | |
897 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
904 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
898 | meteorAux[-1] = 17 |
|
905 | meteorAux[-1] = 17 | |
899 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
906 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
900 | meteorAux[-1] = 1 |
|
907 | meteorAux[-1] = 1 | |
901 |
|
908 | |||
902 |
|
909 | |||
903 | else: |
|
910 | else: | |
904 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
911 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
905 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
912 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
906 | PowerSeries = 0 |
|
913 | PowerSeries = 0 | |
907 |
|
914 | |||
908 | listMeteors1.append(meteorAux) |
|
915 | listMeteors1.append(meteorAux) | |
909 | listPowerSeries.append(PowerSeries) |
|
916 | listPowerSeries.append(PowerSeries) | |
910 | listVoltageSeries.append(meteorVolts1) |
|
917 | listVoltageSeries.append(meteorVolts1) | |
911 |
|
918 | |||
912 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
919 | return listMeteors1, listPowerSeries, listVoltageSeries | |
913 |
|
920 | |||
914 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
921 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
915 |
|
922 | |||
916 | threshError = 10 |
|
923 | threshError = 10 | |
917 | #Depending if it is 30 or 50 MHz |
|
924 | #Depending if it is 30 or 50 MHz | |
918 | if frequency == 30e6: |
|
925 | if frequency == 30e6: | |
919 | timeLag = 45*10**-3 |
|
926 | timeLag = 45*10**-3 | |
920 | else: |
|
927 | else: | |
921 | timeLag = 15*10**-3 |
|
928 | timeLag = 15*10**-3 | |
922 | lag = numpy.ceil(timeLag/timeInterval) |
|
929 | lag = numpy.ceil(timeLag/timeInterval) | |
923 |
|
930 | |||
924 | listMeteors1 = [] |
|
931 | listMeteors1 = [] | |
925 |
|
932 | |||
926 | for i in range(len(listMeteors)): |
|
933 | for i in range(len(listMeteors)): | |
927 | meteorPower = listPower[i] |
|
934 | meteorPower = listPower[i] | |
928 | meteorAux = listMeteors[i] |
|
935 | meteorAux = listMeteors[i] | |
929 |
|
936 | |||
930 | if meteorAux[-1] == 0: |
|
937 | if meteorAux[-1] == 0: | |
931 |
|
938 | |||
932 | try: |
|
939 | try: | |
933 | indmax = meteorPower.argmax() |
|
940 | indmax = meteorPower.argmax() | |
934 | indlag = indmax + lag |
|
941 | indlag = indmax + lag | |
935 |
|
942 | |||
936 | y = meteorPower[indlag:] |
|
943 | y = meteorPower[indlag:] | |
937 | x = numpy.arange(0, y.size)*timeLag |
|
944 | x = numpy.arange(0, y.size)*timeLag | |
938 |
|
945 | |||
939 | #first guess |
|
946 | #first guess | |
940 | a = y[0] |
|
947 | a = y[0] | |
941 | tau = timeLag |
|
948 | tau = timeLag | |
942 | #exponential fit |
|
949 | #exponential fit | |
943 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
950 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
944 | y1 = self.__exponential_function(x, *popt) |
|
951 | y1 = self.__exponential_function(x, *popt) | |
945 | #error estimation |
|
952 | #error estimation | |
946 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
953 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
947 |
|
954 | |||
948 | decayTime = popt[1] |
|
955 | decayTime = popt[1] | |
949 | riseTime = indmax*timeInterval |
|
956 | riseTime = indmax*timeInterval | |
950 | meteorAux[11:13] = [decayTime, error] |
|
957 | meteorAux[11:13] = [decayTime, error] | |
951 |
|
958 | |||
952 | #Table items 7, 8 and 11 |
|
959 | #Table items 7, 8 and 11 | |
953 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
960 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
954 | meteorAux[-1] = 7 |
|
961 | meteorAux[-1] = 7 | |
955 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
962 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
956 | meteorAux[-1] = 8 |
|
963 | meteorAux[-1] = 8 | |
957 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
964 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
958 | meteorAux[-1] = 11 |
|
965 | meteorAux[-1] = 11 | |
959 |
|
966 | |||
960 |
|
967 | |||
961 | except: |
|
968 | except: | |
962 | meteorAux[-1] = 11 |
|
969 | meteorAux[-1] = 11 | |
963 |
|
970 | |||
964 |
|
971 | |||
965 | listMeteors1.append(meteorAux) |
|
972 | listMeteors1.append(meteorAux) | |
966 |
|
973 | |||
967 | return listMeteors1 |
|
974 | return listMeteors1 | |
968 |
|
975 | |||
969 | #Exponential Function |
|
976 | #Exponential Function | |
970 |
|
977 | |||
971 | def __exponential_function(self, x, a, tau): |
|
978 | def __exponential_function(self, x, a, tau): | |
972 | y = a*numpy.exp(-x/tau) |
|
979 | y = a*numpy.exp(-x/tau) | |
973 | return y |
|
980 | return y | |
974 |
|
981 | |||
975 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
982 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
976 |
|
983 | |||
977 | pairslist1 = list(pairslist) |
|
984 | pairslist1 = list(pairslist) | |
978 | pairslist1.append((0,1)) |
|
985 | pairslist1.append((0,1)) | |
979 | pairslist1.append((3,4)) |
|
986 | pairslist1.append((3,4)) | |
980 | numPairs = len(pairslist1) |
|
987 | numPairs = len(pairslist1) | |
981 | #Time Lag |
|
988 | #Time Lag | |
982 | timeLag = 45*10**-3 |
|
989 | timeLag = 45*10**-3 | |
983 | c = 3e8 |
|
990 | c = 3e8 | |
984 | lag = numpy.ceil(timeLag/timeInterval) |
|
991 | lag = numpy.ceil(timeLag/timeInterval) | |
985 | freq = 30e6 |
|
992 | freq = 30e6 | |
986 |
|
993 | |||
987 | listMeteors1 = [] |
|
994 | listMeteors1 = [] | |
988 |
|
995 | |||
989 | for i in range(len(listMeteors)): |
|
996 | for i in range(len(listMeteors)): | |
990 | meteorAux = listMeteors[i] |
|
997 | meteorAux = listMeteors[i] | |
991 | if meteorAux[-1] == 0: |
|
998 | if meteorAux[-1] == 0: | |
992 | mStart = listMeteors[i][1] |
|
999 | mStart = listMeteors[i][1] | |
993 | mPeak = listMeteors[i][2] |
|
1000 | mPeak = listMeteors[i][2] | |
994 | mLag = mPeak - mStart + lag |
|
1001 | mLag = mPeak - mStart + lag | |
995 |
|
1002 | |||
996 | #get the volt data between the start and end times of the meteor |
|
1003 | #get the volt data between the start and end times of the meteor | |
997 | meteorVolts = listVolts[i] |
|
1004 | meteorVolts = listVolts[i] | |
998 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
1005 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
999 |
|
1006 | |||
1000 | #Get CCF |
|
1007 | #Get CCF | |
1001 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
1008 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
1002 |
|
1009 | |||
1003 | #Method 2 |
|
1010 | #Method 2 | |
1004 | slopes = numpy.zeros(numPairs) |
|
1011 | slopes = numpy.zeros(numPairs) | |
1005 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
1012 | time = numpy.array([-2,-1,1,2])*timeInterval | |
1006 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
1013 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
1007 |
|
1014 | |||
1008 | #Correct phases |
|
1015 | #Correct phases | |
1009 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
1016 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
1010 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
1017 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
1011 |
|
1018 | |||
1012 | if indDer[0].shape[0] > 0: |
|
1019 | if indDer[0].shape[0] > 0: | |
1013 | for i in range(indDer[0].shape[0]): |
|
1020 | for i in range(indDer[0].shape[0]): | |
1014 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
1021 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
1015 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
1022 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
1016 |
|
1023 | |||
1017 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
1024 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
1018 | for j in range(numPairs): |
|
1025 | for j in range(numPairs): | |
1019 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
1026 | fit = stats.linregress(time, angAllCCF[j,:]) | |
1020 | slopes[j] = fit[0] |
|
1027 | slopes[j] = fit[0] | |
1021 |
|
1028 | |||
1022 | #Remove Outlier |
|
1029 | #Remove Outlier | |
1023 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
1030 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
1024 | # slopes = numpy.delete(slopes,indOut) |
|
1031 | # slopes = numpy.delete(slopes,indOut) | |
1025 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
1032 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
1026 | # slopes = numpy.delete(slopes,indOut) |
|
1033 | # slopes = numpy.delete(slopes,indOut) | |
1027 |
|
1034 | |||
1028 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
1035 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
1029 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
1036 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
1030 | meteorAux[-2] = radialError |
|
1037 | meteorAux[-2] = radialError | |
1031 | meteorAux[-3] = radialVelocity |
|
1038 | meteorAux[-3] = radialVelocity | |
1032 |
|
1039 | |||
1033 | #Setting Error |
|
1040 | #Setting Error | |
1034 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
1041 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
1035 | if numpy.abs(radialVelocity) > 200: |
|
1042 | if numpy.abs(radialVelocity) > 200: | |
1036 | meteorAux[-1] = 15 |
|
1043 | meteorAux[-1] = 15 | |
1037 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
1044 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
1038 | elif radialError > radialStdThresh: |
|
1045 | elif radialError > radialStdThresh: | |
1039 | meteorAux[-1] = 12 |
|
1046 | meteorAux[-1] = 12 | |
1040 |
|
1047 | |||
1041 | listMeteors1.append(meteorAux) |
|
1048 | listMeteors1.append(meteorAux) | |
1042 | return listMeteors1 |
|
1049 | return listMeteors1 | |
1043 |
|
1050 | |||
1044 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
1051 | def __setNewArrays(self, listMeteors, date, heiRang): | |
1045 |
|
1052 | |||
1046 | #New arrays |
|
1053 | #New arrays | |
1047 | arrayMeteors = numpy.array(listMeteors) |
|
1054 | arrayMeteors = numpy.array(listMeteors) | |
1048 | arrayParameters = numpy.zeros((len(listMeteors), 14)) |
|
1055 | arrayParameters = numpy.zeros((len(listMeteors), 14)) | |
1049 |
|
1056 | |||
1050 | #Date inclusion |
|
1057 | #Date inclusion | |
1051 | date = re.findall(r'\((.*?)\)', date) |
|
1058 | date = re.findall(r'\((.*?)\)', date) | |
1052 | date = date[0].split(',') |
|
1059 | date = date[0].split(',') | |
1053 | date = map(int, date) |
|
1060 | date = map(int, date) | |
|
1061 | ||||
|
1062 | if len(date)<6: | |||
|
1063 | date.append(0) | |||
|
1064 | ||||
1054 | date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
1065 | date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
1055 | arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
1066 | arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
1056 |
|
1067 | |||
1057 | #Meteor array |
|
1068 | #Meteor array | |
1058 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
1069 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
1059 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
1070 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
1060 |
|
1071 | |||
1061 | #Parameters Array |
|
1072 | #Parameters Array | |
1062 | arrayParameters[:,:2] = arrayDate #Date |
|
1073 | arrayParameters[:,:2] = arrayDate #Date | |
1063 | arrayParameters[:,2] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
1074 | arrayParameters[:,2] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
1064 | arrayParameters[:,7:9] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
1075 | arrayParameters[:,7:9] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
1065 | arrayParameters[:,9:13] = arrayMeteors[:,7:11] #Phases |
|
1076 | arrayParameters[:,9:13] = arrayMeteors[:,7:11] #Phases | |
1066 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
1077 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
1067 |
|
1078 | |||
1068 |
|
1079 | |||
1069 | return arrayParameters |
|
1080 | return arrayParameters | |
1070 |
|
1081 | |||
1071 | def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
1082 | def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
1072 |
|
1083 | |||
1073 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
1084 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
1074 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
1085 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
1075 |
|
1086 | |||
1076 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
1087 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
1077 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
1088 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
1078 | arrayAOA[:,2] = cosDirError |
|
1089 | arrayAOA[:,2] = cosDirError | |
1079 |
|
1090 | |||
1080 | azimuthAngle = arrayAOA[:,0] |
|
1091 | azimuthAngle = arrayAOA[:,0] | |
1081 | zenithAngle = arrayAOA[:,1] |
|
1092 | zenithAngle = arrayAOA[:,1] | |
1082 |
|
1093 | |||
1083 | #Setting Error |
|
1094 | #Setting Error | |
1084 | #Number 3: AOA not fesible |
|
1095 | #Number 3: AOA not fesible | |
1085 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
1096 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
1086 | error[indInvalid] = 3 |
|
1097 | error[indInvalid] = 3 | |
1087 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
1098 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
1088 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
1099 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
1089 | error[indInvalid] = 4 |
|
1100 | error[indInvalid] = 4 | |
1090 | return arrayAOA, error |
|
1101 | return arrayAOA, error | |
1091 |
|
1102 | |||
1092 | def __getDirectionCosines(self, arrayPhase, pairsList): |
|
1103 | def __getDirectionCosines(self, arrayPhase, pairsList): | |
1093 |
|
1104 | |||
1094 | #Initializing some variables |
|
1105 | #Initializing some variables | |
1095 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
1106 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
1096 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
1107 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
1097 |
|
1108 | |||
1098 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
1109 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
1099 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
1110 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
1100 |
|
1111 | |||
1101 |
|
1112 | |||
1102 | for i in range(2): |
|
1113 | for i in range(2): | |
1103 | #First Estimation |
|
1114 | #First Estimation | |
1104 | phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
1115 | phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
1105 | #Dealias |
|
1116 | #Dealias | |
1106 | indcsi = numpy.where(phi0_aux > numpy.pi) |
|
1117 | indcsi = numpy.where(phi0_aux > numpy.pi) | |
1107 | phi0_aux[indcsi] -= 2*numpy.pi |
|
1118 | phi0_aux[indcsi] -= 2*numpy.pi | |
1108 | indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
1119 | indcsi = numpy.where(phi0_aux < -numpy.pi) | |
1109 | phi0_aux[indcsi] += 2*numpy.pi |
|
1120 | phi0_aux[indcsi] += 2*numpy.pi | |
1110 | #Direction Cosine 0 |
|
1121 | #Direction Cosine 0 | |
1111 | cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
1122 | cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
1112 |
|
1123 | |||
1113 | #Most-Accurate Second Estimation |
|
1124 | #Most-Accurate Second Estimation | |
1114 | phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
1125 | phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
1115 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
1126 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
1116 | #Direction Cosine 1 |
|
1127 | #Direction Cosine 1 | |
1117 | cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
1128 | cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
1118 |
|
1129 | |||
1119 | #Searching the correct Direction Cosine |
|
1130 | #Searching the correct Direction Cosine | |
1120 | cosdir0_aux = cosdir0[:,i] |
|
1131 | cosdir0_aux = cosdir0[:,i] | |
1121 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
1132 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
1122 | #Minimum Distance |
|
1133 | #Minimum Distance | |
1123 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
1134 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
1124 | indcos = cosDiff.argmin(axis = 1) |
|
1135 | indcos = cosDiff.argmin(axis = 1) | |
1125 | #Saving Value obtained |
|
1136 | #Saving Value obtained | |
1126 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
1137 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
1127 |
|
1138 | |||
1128 | return cosdir0, cosdir |
|
1139 | return cosdir0, cosdir | |
1129 |
|
1140 | |||
1130 | def __calculateAOA(self, cosdir, azimuth): |
|
1141 | def __calculateAOA(self, cosdir, azimuth): | |
1131 | cosdirX = cosdir[:,0] |
|
1142 | cosdirX = cosdir[:,0] | |
1132 | cosdirY = cosdir[:,1] |
|
1143 | cosdirY = cosdir[:,1] | |
1133 |
|
1144 | |||
1134 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
1145 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
1135 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
1146 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
1136 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
1147 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
1137 |
|
1148 | |||
1138 | return angles |
|
1149 | return angles | |
1139 |
|
1150 | |||
1140 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
1151 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
1141 |
|
1152 | |||
1142 | Ramb = 375 #Ramb = c/(2*PRF) |
|
1153 | Ramb = 375 #Ramb = c/(2*PRF) | |
1143 | Re = 6371 #Earth Radius |
|
1154 | Re = 6371 #Earth Radius | |
1144 | heights = numpy.zeros(Ranges.shape) |
|
1155 | heights = numpy.zeros(Ranges.shape) | |
1145 |
|
1156 | |||
1146 | R_aux = numpy.array([0,1,2])*Ramb |
|
1157 | R_aux = numpy.array([0,1,2])*Ramb | |
1147 | R_aux = R_aux.reshape(1,R_aux.size) |
|
1158 | R_aux = R_aux.reshape(1,R_aux.size) | |
1148 |
|
1159 | |||
1149 | Ranges = Ranges.reshape(Ranges.size,1) |
|
1160 | Ranges = Ranges.reshape(Ranges.size,1) | |
1150 |
|
1161 | |||
1151 | Ri = Ranges + R_aux |
|
1162 | Ri = Ranges + R_aux | |
1152 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
1163 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
1153 |
|
1164 | |||
1154 | #Check if there is a height between 70 and 110 km |
|
1165 | #Check if there is a height between 70 and 110 km | |
1155 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
1166 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
1156 | ind_h = numpy.where(h_bool == 1)[0] |
|
1167 | ind_h = numpy.where(h_bool == 1)[0] | |
1157 |
|
1168 | |||
1158 | hCorr = hi[ind_h, :] |
|
1169 | hCorr = hi[ind_h, :] | |
1159 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
1170 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
1160 |
|
1171 | |||
1161 | hCorr = hi[ind_hCorr] |
|
1172 | hCorr = hi[ind_hCorr] | |
1162 | heights[ind_h] = hCorr |
|
1173 | heights[ind_h] = hCorr | |
1163 |
|
1174 | |||
1164 | #Setting Error |
|
1175 | #Setting Error | |
1165 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
1176 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
1166 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
1177 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
1167 |
|
1178 | |||
1168 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
1179 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
1169 | error[indInvalid2] = 14 |
|
1180 | error[indInvalid2] = 14 | |
1170 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
1181 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
1171 | error[indInvalid1] = 13 |
|
1182 | error[indInvalid1] = 13 | |
1172 |
|
1183 | |||
1173 | return heights, error |
|
1184 | return heights, error | |
1174 |
|
1185 | |||
1175 | def SpectralFitting(self, getSNR = True, path=None, file=None, groupList=None): |
|
1186 | def SpectralFitting(self, getSNR = True, path=None, file=None, groupList=None): | |
1176 |
|
1187 | |||
1177 | ''' |
|
1188 | ''' | |
1178 | Function GetMoments() |
|
1189 | Function GetMoments() | |
1179 |
|
1190 | |||
1180 | Input: |
|
1191 | Input: | |
1181 | Output: |
|
1192 | Output: | |
1182 | Variables modified: |
|
1193 | Variables modified: | |
1183 | ''' |
|
1194 | ''' | |
1184 | if path != None: |
|
1195 | if path != None: | |
1185 | sys.path.append(path) |
|
1196 | sys.path.append(path) | |
1186 | self.dataOut.library = importlib.import_module(file) |
|
1197 | self.dataOut.library = importlib.import_module(file) | |
1187 |
|
1198 | |||
1188 | #To be inserted as a parameter |
|
1199 | #To be inserted as a parameter | |
1189 | groupArray = numpy.array(groupList) |
|
1200 | groupArray = numpy.array(groupList) | |
1190 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1201 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1191 | self.dataOut.groupList = groupArray |
|
1202 | self.dataOut.groupList = groupArray | |
1192 |
|
1203 | |||
1193 | nGroups = groupArray.shape[0] |
|
1204 | nGroups = groupArray.shape[0] | |
1194 | nChannels = self.dataIn.nChannels |
|
1205 | nChannels = self.dataIn.nChannels | |
1195 | nHeights=self.dataIn.heightList.size |
|
1206 | nHeights=self.dataIn.heightList.size | |
1196 |
|
1207 | |||
1197 | #Parameters Array |
|
1208 | #Parameters Array | |
1198 | self.dataOut.data_param = None |
|
1209 | self.dataOut.data_param = None | |
1199 |
|
1210 | |||
1200 | #Set constants |
|
1211 | #Set constants | |
1201 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1212 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1202 | self.dataOut.constants = constants |
|
1213 | self.dataOut.constants = constants | |
1203 | M = self.dataIn.normFactor |
|
1214 | M = self.dataIn.normFactor | |
1204 | N = self.dataIn.nFFTPoints |
|
1215 | N = self.dataIn.nFFTPoints | |
1205 | ippSeconds = self.dataIn.ippSeconds |
|
1216 | ippSeconds = self.dataIn.ippSeconds | |
1206 | K = self.dataIn.nIncohInt |
|
1217 | K = self.dataIn.nIncohInt | |
1207 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1218 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1208 |
|
1219 | |||
1209 | #List of possible combinations |
|
1220 | #List of possible combinations | |
1210 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1221 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1211 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1222 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1212 |
|
1223 | |||
1213 | if getSNR: |
|
1224 | if getSNR: | |
1214 | listChannels = groupArray.reshape((groupArray.size)) |
|
1225 | listChannels = groupArray.reshape((groupArray.size)) | |
1215 | listChannels.sort() |
|
1226 | listChannels.sort() | |
1216 | noise = self.dataIn.getNoise() |
|
1227 | noise = self.dataIn.getNoise() | |
1217 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1228 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1218 |
|
1229 | |||
1219 | for i in range(nGroups): |
|
1230 | for i in range(nGroups): | |
1220 | coord = groupArray[i,:] |
|
1231 | coord = groupArray[i,:] | |
1221 |
|
1232 | |||
1222 | #Input data array |
|
1233 | #Input data array | |
1223 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1234 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1224 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1235 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1225 |
|
1236 | |||
1226 | #Cross Spectra data array for Covariance Matrixes |
|
1237 | #Cross Spectra data array for Covariance Matrixes | |
1227 | ind = 0 |
|
1238 | ind = 0 | |
1228 | for pairs in listComb: |
|
1239 | for pairs in listComb: | |
1229 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1240 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1230 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1241 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1231 | ind += 1 |
|
1242 | ind += 1 | |
1232 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1243 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1233 | dataCross = dataCross**2/K |
|
1244 | dataCross = dataCross**2/K | |
1234 |
|
1245 | |||
1235 | for h in range(nHeights): |
|
1246 | for h in range(nHeights): | |
1236 | # print self.dataOut.heightList[h] |
|
1247 | # print self.dataOut.heightList[h] | |
1237 |
|
1248 | |||
1238 | #Input |
|
1249 | #Input | |
1239 | d = data[:,h] |
|
1250 | d = data[:,h] | |
1240 |
|
1251 | |||
1241 | #Covariance Matrix |
|
1252 | #Covariance Matrix | |
1242 | D = numpy.diag(d**2/K) |
|
1253 | D = numpy.diag(d**2/K) | |
1243 | ind = 0 |
|
1254 | ind = 0 | |
1244 | for pairs in listComb: |
|
1255 | for pairs in listComb: | |
1245 | #Coordinates in Covariance Matrix |
|
1256 | #Coordinates in Covariance Matrix | |
1246 | x = pairs[0] |
|
1257 | x = pairs[0] | |
1247 | y = pairs[1] |
|
1258 | y = pairs[1] | |
1248 | #Channel Index |
|
1259 | #Channel Index | |
1249 | S12 = dataCross[ind,:,h] |
|
1260 | S12 = dataCross[ind,:,h] | |
1250 | D12 = numpy.diag(S12) |
|
1261 | D12 = numpy.diag(S12) | |
1251 | #Completing Covariance Matrix with Cross Spectras |
|
1262 | #Completing Covariance Matrix with Cross Spectras | |
1252 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1263 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1253 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1264 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1254 | ind += 1 |
|
1265 | ind += 1 | |
1255 | Dinv=numpy.linalg.inv(D) |
|
1266 | Dinv=numpy.linalg.inv(D) | |
1256 | L=numpy.linalg.cholesky(Dinv) |
|
1267 | L=numpy.linalg.cholesky(Dinv) | |
1257 | LT=L.T |
|
1268 | LT=L.T | |
1258 |
|
1269 | |||
1259 | dp = numpy.dot(LT,d) |
|
1270 | dp = numpy.dot(LT,d) | |
1260 |
|
1271 | |||
1261 | #Initial values |
|
1272 | #Initial values | |
1262 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1273 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1263 |
|
1274 | |||
1264 | if (h>0)and(error1[3]<5): |
|
1275 | if (h>0)and(error1[3]<5): | |
1265 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1276 | p0 = self.dataOut.data_param[i,:,h-1] | |
1266 | else: |
|
1277 | else: | |
1267 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1278 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1268 |
|
1279 | |||
1269 | try: |
|
1280 | try: | |
1270 | #Least Squares |
|
1281 | #Least Squares | |
1271 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1282 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1272 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1283 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1273 | #Chi square error |
|
1284 | #Chi square error | |
1274 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1285 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1275 | #Error with Jacobian |
|
1286 | #Error with Jacobian | |
1276 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1287 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1277 | except: |
|
1288 | except: | |
1278 | minp = p0*numpy.nan |
|
1289 | minp = p0*numpy.nan | |
1279 | error0 = numpy.nan |
|
1290 | error0 = numpy.nan | |
1280 | error1 = p0*numpy.nan |
|
1291 | error1 = p0*numpy.nan | |
1281 |
|
1292 | |||
1282 | #Save |
|
1293 | #Save | |
1283 |
if self.dataOut.data_param |
|
1294 | if self.dataOut.data_param == None: | |
1284 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1295 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1285 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1296 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1286 |
|
1297 | |||
1287 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1298 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1288 | self.dataOut.data_param[i,:,h] = minp |
|
1299 | self.dataOut.data_param[i,:,h] = minp | |
1289 | return |
|
1300 | return | |
1290 |
|
1301 | |||
1291 | def __residFunction(self, p, dp, LT, constants): |
|
1302 | def __residFunction(self, p, dp, LT, constants): | |
1292 |
|
1303 | |||
1293 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1304 | fm = self.dataOut.library.modelFunction(p, constants) | |
1294 | fmp=numpy.dot(LT,fm) |
|
1305 | fmp=numpy.dot(LT,fm) | |
1295 |
|
1306 | |||
1296 | return dp-fmp |
|
1307 | return dp-fmp | |
1297 |
|
1308 | |||
1298 | def __getSNR(self, z, noise): |
|
1309 | def __getSNR(self, z, noise): | |
1299 |
|
1310 | |||
1300 | avg = numpy.average(z, axis=1) |
|
1311 | avg = numpy.average(z, axis=1) | |
1301 | SNR = (avg.T-noise)/noise |
|
1312 | SNR = (avg.T-noise)/noise | |
1302 | SNR = SNR.T |
|
1313 | SNR = SNR.T | |
1303 | return SNR |
|
1314 | return SNR | |
1304 |
|
1315 | |||
1305 | def __chisq(p,chindex,hindex): |
|
1316 | def __chisq(p,chindex,hindex): | |
1306 | #similar to Resid but calculates CHI**2 |
|
1317 | #similar to Resid but calculates CHI**2 | |
1307 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1318 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1308 | dp=numpy.dot(LT,d) |
|
1319 | dp=numpy.dot(LT,d) | |
1309 | fmp=numpy.dot(LT,fm) |
|
1320 | fmp=numpy.dot(LT,fm) | |
1310 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1321 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1311 | return chisq |
|
1322 | return chisq | |
1312 |
|
1323 | |||
1313 |
|
1324 | |||
1314 |
|
1325 | |||
1315 | class WindProfiler(Operation): |
|
1326 | class WindProfiler(Operation): | |
1316 |
|
1327 | |||
1317 | __isConfig = False |
|
1328 | __isConfig = False | |
1318 |
|
1329 | |||
1319 | __initime = None |
|
1330 | __initime = None | |
1320 | __lastdatatime = None |
|
1331 | __lastdatatime = None | |
1321 | __integrationtime = None |
|
1332 | __integrationtime = None | |
1322 |
|
1333 | |||
1323 | __buffer = None |
|
1334 | __buffer = None | |
1324 |
|
1335 | |||
1325 | __dataReady = False |
|
1336 | __dataReady = False | |
1326 |
|
1337 | |||
1327 | __firstdata = None |
|
1338 | __firstdata = None | |
1328 |
|
1339 | |||
1329 | n = None |
|
1340 | n = None | |
1330 |
|
1341 | |||
1331 | def __init__(self): |
|
1342 | def __init__(self): | |
1332 | Operation.__init__(self) |
|
1343 | Operation.__init__(self) | |
1333 |
|
1344 | |||
1334 | def __calculateCosDir(self, elev, azim): |
|
1345 | def __calculateCosDir(self, elev, azim): | |
1335 | zen = (90 - elev)*numpy.pi/180 |
|
1346 | zen = (90 - elev)*numpy.pi/180 | |
1336 | azim = azim*numpy.pi/180 |
|
1347 | azim = azim*numpy.pi/180 | |
1337 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1348 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1338 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1349 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1339 |
|
1350 | |||
1340 | signX = numpy.sign(numpy.cos(azim)) |
|
1351 | signX = numpy.sign(numpy.cos(azim)) | |
1341 | signY = numpy.sign(numpy.sin(azim)) |
|
1352 | signY = numpy.sign(numpy.sin(azim)) | |
1342 |
|
1353 | |||
1343 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1354 | cosDirX = numpy.copysign(cosDirX, signX) | |
1344 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1355 | cosDirY = numpy.copysign(cosDirY, signY) | |
1345 | return cosDirX, cosDirY |
|
1356 | return cosDirX, cosDirY | |
1346 |
|
1357 | |||
1347 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1358 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1348 |
|
1359 | |||
1349 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1360 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1350 | zenith_arr = numpy.arccos(dir_cosw) |
|
1361 | zenith_arr = numpy.arccos(dir_cosw) | |
1351 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1362 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1352 |
|
1363 | |||
1353 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1364 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1354 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1365 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1355 |
|
1366 | |||
1356 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1367 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1357 |
|
1368 | |||
1358 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1369 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1359 |
|
1370 | |||
1360 | # |
|
1371 | # | |
1361 | if horOnly: |
|
1372 | if horOnly: | |
1362 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1373 | A = numpy.c_[dir_cosu,dir_cosv] | |
1363 | else: |
|
1374 | else: | |
1364 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1375 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1365 | A = numpy.asmatrix(A) |
|
1376 | A = numpy.asmatrix(A) | |
1366 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1377 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1367 |
|
1378 | |||
1368 | return A1 |
|
1379 | return A1 | |
1369 |
|
1380 | |||
1370 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1381 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1371 | listPhi = phi.tolist() |
|
1382 | listPhi = phi.tolist() | |
1372 | maxid = listPhi.index(max(listPhi)) |
|
1383 | maxid = listPhi.index(max(listPhi)) | |
1373 | minid = listPhi.index(min(listPhi)) |
|
1384 | minid = listPhi.index(min(listPhi)) | |
1374 |
|
1385 | |||
1375 | rango = range(len(phi)) |
|
1386 | rango = range(len(phi)) | |
1376 | # rango = numpy.delete(rango,maxid) |
|
1387 | # rango = numpy.delete(rango,maxid) | |
1377 |
|
1388 | |||
1378 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1389 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1379 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1390 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1380 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1391 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1381 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1392 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1382 |
|
1393 | |||
1383 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1394 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1384 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1395 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1385 |
|
1396 | |||
1386 | for i in rango: |
|
1397 | for i in rango: | |
1387 | x = heiRang*math.cos(phi[i]) |
|
1398 | x = heiRang*math.cos(phi[i]) | |
1388 | y1 = velRadial[i,:] |
|
1399 | y1 = velRadial[i,:] | |
1389 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1400 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1390 |
|
1401 | |||
1391 | x1 = heiRang1 |
|
1402 | x1 = heiRang1 | |
1392 | y11 = f1(x1) |
|
1403 | y11 = f1(x1) | |
1393 |
|
1404 | |||
1394 | y2 = SNR[i,:] |
|
1405 | y2 = SNR[i,:] | |
1395 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1406 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1396 | y21 = f2(x1) |
|
1407 | y21 = f2(x1) | |
1397 |
|
1408 | |||
1398 | velRadial1[i,:] = y11 |
|
1409 | velRadial1[i,:] = y11 | |
1399 | SNR1[i,:] = y21 |
|
1410 | SNR1[i,:] = y21 | |
1400 |
|
1411 | |||
1401 | return heiRang1, velRadial1, SNR1 |
|
1412 | return heiRang1, velRadial1, SNR1 | |
1402 |
|
1413 | |||
1403 | def __calculateVelUVW(self, A, velRadial): |
|
1414 | def __calculateVelUVW(self, A, velRadial): | |
1404 |
|
1415 | |||
1405 | #Operacion Matricial |
|
1416 | #Operacion Matricial | |
1406 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1417 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1407 | # for ind in range(velRadial.shape[1]): |
|
1418 | # for ind in range(velRadial.shape[1]): | |
1408 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1419 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1409 | # velUVW = velUVW.transpose() |
|
1420 | # velUVW = velUVW.transpose() | |
1410 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1421 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1411 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1422 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1412 |
|
1423 | |||
1413 |
|
1424 | |||
1414 | return velUVW |
|
1425 | return velUVW | |
1415 |
|
1426 | |||
1416 | def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1427 | def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1417 | """ |
|
1428 | """ | |
1418 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1429 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1419 |
|
1430 | |||
1420 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1431 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1421 | Direction correction (if necessary), Ranges and SNR |
|
1432 | Direction correction (if necessary), Ranges and SNR | |
1422 |
|
1433 | |||
1423 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1434 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1424 |
|
1435 | |||
1425 | Parameters affected: Winds, height range, SNR |
|
1436 | Parameters affected: Winds, height range, SNR | |
1426 | """ |
|
1437 | """ | |
1427 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(dirCosx, disrCosy, azimuth) |
|
1438 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(dirCosx, disrCosy, azimuth) | |
1428 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correct*velRadial0, SNR0) |
|
1439 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correct*velRadial0, SNR0) | |
1429 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1440 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1430 |
|
1441 | |||
1431 | #Calculo de Componentes de la velocidad con DBS |
|
1442 | #Calculo de Componentes de la velocidad con DBS | |
1432 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1443 | winds = self.__calculateVelUVW(A,velRadial1) | |
1433 |
|
1444 | |||
1434 | return winds, heiRang1, SNR1 |
|
1445 | return winds, heiRang1, SNR1 | |
1435 |
|
1446 | |||
1436 | def __calculateDistance(self, posx, posy, pairsCrossCorr, pairsList, pairs, azimuth = None): |
|
1447 | def __calculateDistance(self, posx, posy, pairsCrossCorr, pairsList, pairs, azimuth = None): | |
1437 |
|
1448 | |||
1438 | posx = numpy.asarray(posx) |
|
1449 | posx = numpy.asarray(posx) | |
1439 | posy = numpy.asarray(posy) |
|
1450 | posy = numpy.asarray(posy) | |
1440 |
|
1451 | |||
1441 | #Rotacion Inversa para alinear con el azimuth |
|
1452 | #Rotacion Inversa para alinear con el azimuth | |
1442 | if azimuth!= None: |
|
1453 | if azimuth!= None: | |
1443 | azimuth = azimuth*math.pi/180 |
|
1454 | azimuth = azimuth*math.pi/180 | |
1444 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1455 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1445 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1456 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1446 | else: |
|
1457 | else: | |
1447 | posx1 = posx |
|
1458 | posx1 = posx | |
1448 | posy1 = posy |
|
1459 | posy1 = posy | |
1449 |
|
1460 | |||
1450 | #Calculo de Distancias |
|
1461 | #Calculo de Distancias | |
1451 | distx = numpy.zeros(pairsCrossCorr.size) |
|
1462 | distx = numpy.zeros(pairsCrossCorr.size) | |
1452 | disty = numpy.zeros(pairsCrossCorr.size) |
|
1463 | disty = numpy.zeros(pairsCrossCorr.size) | |
1453 | dist = numpy.zeros(pairsCrossCorr.size) |
|
1464 | dist = numpy.zeros(pairsCrossCorr.size) | |
1454 | ang = numpy.zeros(pairsCrossCorr.size) |
|
1465 | ang = numpy.zeros(pairsCrossCorr.size) | |
1455 |
|
1466 | |||
1456 | for i in range(pairsCrossCorr.size): |
|
1467 | for i in range(pairsCrossCorr.size): | |
1457 | distx[i] = posx1[pairsList[pairsCrossCorr[i]][1]] - posx1[pairsList[pairsCrossCorr[i]][0]] |
|
1468 | distx[i] = posx1[pairsList[pairsCrossCorr[i]][1]] - posx1[pairsList[pairsCrossCorr[i]][0]] | |
1458 | disty[i] = posy1[pairsList[pairsCrossCorr[i]][1]] - posy1[pairsList[pairsCrossCorr[i]][0]] |
|
1469 | disty[i] = posy1[pairsList[pairsCrossCorr[i]][1]] - posy1[pairsList[pairsCrossCorr[i]][0]] | |
1459 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1470 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1460 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1471 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1461 | #Calculo de Matrices |
|
1472 | #Calculo de Matrices | |
1462 | nPairs = len(pairs) |
|
1473 | nPairs = len(pairs) | |
1463 | ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1474 | ang1 = numpy.zeros((nPairs, 2, 1)) | |
1464 | dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1475 | dist1 = numpy.zeros((nPairs, 2, 1)) | |
1465 |
|
1476 | |||
1466 | for j in range(nPairs): |
|
1477 | for j in range(nPairs): | |
1467 | dist1[j,0,0] = dist[pairs[j][0]] |
|
1478 | dist1[j,0,0] = dist[pairs[j][0]] | |
1468 | dist1[j,1,0] = dist[pairs[j][1]] |
|
1479 | dist1[j,1,0] = dist[pairs[j][1]] | |
1469 | ang1[j,0,0] = ang[pairs[j][0]] |
|
1480 | ang1[j,0,0] = ang[pairs[j][0]] | |
1470 | ang1[j,1,0] = ang[pairs[j][1]] |
|
1481 | ang1[j,1,0] = ang[pairs[j][1]] | |
1471 |
|
1482 | |||
1472 | return distx,disty, dist1,ang1 |
|
1483 | return distx,disty, dist1,ang1 | |
1473 |
|
1484 | |||
1474 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1485 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1475 |
|
1486 | |||
1476 | Ts = lagTRange[1] - lagTRange[0] |
|
1487 | Ts = lagTRange[1] - lagTRange[0] | |
1477 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1488 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1478 |
|
1489 | |||
1479 | return velW |
|
1490 | return velW | |
1480 |
|
1491 | |||
1481 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1492 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1482 | nPairs = tau1.shape[0] |
|
1493 | nPairs = tau1.shape[0] | |
1483 | vel = numpy.zeros((nPairs,3,tau1.shape[2])) |
|
1494 | vel = numpy.zeros((nPairs,3,tau1.shape[2])) | |
1484 |
|
1495 | |||
1485 | angCos = numpy.cos(ang) |
|
1496 | angCos = numpy.cos(ang) | |
1486 | angSin = numpy.sin(ang) |
|
1497 | angSin = numpy.sin(ang) | |
1487 |
|
1498 | |||
1488 | vel0 = dist*tau1/(2*tau2**2) |
|
1499 | vel0 = dist*tau1/(2*tau2**2) | |
1489 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1500 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1490 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1501 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1491 |
|
1502 | |||
1492 | ind = numpy.where(numpy.isinf(vel)) |
|
1503 | ind = numpy.where(numpy.isinf(vel)) | |
1493 | vel[ind] = numpy.nan |
|
1504 | vel[ind] = numpy.nan | |
1494 |
|
1505 | |||
1495 | return vel |
|
1506 | return vel | |
1496 |
|
1507 | |||
1497 | def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1508 | def __getPairsAutoCorr(self, pairsList, nChannels): | |
1498 |
|
1509 | |||
1499 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1510 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1500 |
|
1511 | |||
1501 | for l in range(len(pairsList)): |
|
1512 | for l in range(len(pairsList)): | |
1502 | firstChannel = pairsList[l][0] |
|
1513 | firstChannel = pairsList[l][0] | |
1503 | secondChannel = pairsList[l][1] |
|
1514 | secondChannel = pairsList[l][1] | |
1504 |
|
1515 | |||
1505 | #Obteniendo pares de Autocorrelacion |
|
1516 | #Obteniendo pares de Autocorrelacion | |
1506 | if firstChannel == secondChannel: |
|
1517 | if firstChannel == secondChannel: | |
1507 | pairsAutoCorr[firstChannel] = int(l) |
|
1518 | pairsAutoCorr[firstChannel] = int(l) | |
1508 |
|
1519 | |||
1509 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1520 | pairsAutoCorr = pairsAutoCorr.astype(int) | |
1510 |
|
1521 | |||
1511 | pairsCrossCorr = range(len(pairsList)) |
|
1522 | pairsCrossCorr = range(len(pairsList)) | |
1512 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1523 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1513 |
|
1524 | |||
1514 | return pairsAutoCorr, pairsCrossCorr |
|
1525 | return pairsAutoCorr, pairsCrossCorr | |
1515 |
|
1526 | |||
1516 | def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
1527 | def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1517 | """ |
|
1528 | """ | |
1518 | Function that implements Spaced Antenna (SA) technique. |
|
1529 | Function that implements Spaced Antenna (SA) technique. | |
1519 |
|
1530 | |||
1520 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1531 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1521 | Direction correction (if necessary), Ranges and SNR |
|
1532 | Direction correction (if necessary), Ranges and SNR | |
1522 |
|
1533 | |||
1523 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1534 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1524 |
|
1535 | |||
1525 | Parameters affected: Winds |
|
1536 | Parameters affected: Winds | |
1526 | """ |
|
1537 | """ | |
1527 | #Cross Correlation pairs obtained |
|
1538 | #Cross Correlation pairs obtained | |
1528 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1539 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1529 | pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
1540 | pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
1530 | pairsSelArray = numpy.array(pairsSelected) |
|
1541 | pairsSelArray = numpy.array(pairsSelected) | |
1531 | pairs = [] |
|
1542 | pairs = [] | |
1532 |
|
1543 | |||
1533 | #Wind estimation pairs obtained |
|
1544 | #Wind estimation pairs obtained | |
1534 | for i in range(pairsSelArray.shape[0]/2): |
|
1545 | for i in range(pairsSelArray.shape[0]/2): | |
1535 | ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
1546 | ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
1536 | ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
1547 | ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
1537 | pairs.append((ind1,ind2)) |
|
1548 | pairs.append((ind1,ind2)) | |
1538 |
|
1549 | |||
1539 | indtau = tau.shape[0]/2 |
|
1550 | indtau = tau.shape[0]/2 | |
1540 | tau1 = tau[:indtau,:] |
|
1551 | tau1 = tau[:indtau,:] | |
1541 | tau2 = tau[indtau:-1,:] |
|
1552 | tau2 = tau[indtau:-1,:] | |
1542 | tau1 = tau1[pairs,:] |
|
1553 | tau1 = tau1[pairs,:] | |
1543 | tau2 = tau2[pairs,:] |
|
1554 | tau2 = tau2[pairs,:] | |
1544 | phase1 = tau[-1,:] |
|
1555 | phase1 = tau[-1,:] | |
1545 |
|
1556 | |||
1546 | #--------------------------------------------------------------------- |
|
1557 | #--------------------------------------------------------------------- | |
1547 | #Metodo Directo |
|
1558 | #Metodo Directo | |
1548 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairsCrossCorr, pairsList, pairs,azimuth) |
|
1559 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairsCrossCorr, pairsList, pairs,azimuth) | |
1549 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
1560 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
1550 | winds = stats.nanmean(winds, axis=0) |
|
1561 | winds = stats.nanmean(winds, axis=0) | |
1551 | #--------------------------------------------------------------------- |
|
1562 | #--------------------------------------------------------------------- | |
1552 | #Metodo General |
|
1563 | #Metodo General | |
1553 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
1564 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
1554 | # #Calculo Coeficientes de Funcion de Correlacion |
|
1565 | # #Calculo Coeficientes de Funcion de Correlacion | |
1555 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
1566 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
1556 | # #Calculo de Velocidades |
|
1567 | # #Calculo de Velocidades | |
1557 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
1568 | # winds = self.calculateVelUV(F,G,A,B,H) | |
1558 |
|
1569 | |||
1559 | #--------------------------------------------------------------------- |
|
1570 | #--------------------------------------------------------------------- | |
1560 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
1571 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
1561 | winds = correctFactor*winds |
|
1572 | winds = correctFactor*winds | |
1562 | return winds |
|
1573 | return winds | |
1563 |
|
1574 | |||
1564 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
1575 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
1565 |
|
1576 | |||
1566 | dataTime = currentTime + paramInterval |
|
1577 | dataTime = currentTime + paramInterval | |
1567 | deltaTime = dataTime - self.__initime |
|
1578 | deltaTime = dataTime - self.__initime | |
1568 |
|
1579 | |||
1569 | if deltaTime >= outputInterval or deltaTime < 0: |
|
1580 | if deltaTime >= outputInterval or deltaTime < 0: | |
1570 | self.__dataReady = True |
|
1581 | self.__dataReady = True | |
1571 | return |
|
1582 | return | |
1572 |
|
1583 | |||
1573 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
1584 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
1574 | ''' |
|
1585 | ''' | |
1575 | Function that implements winds estimation technique with detected meteors. |
|
1586 | Function that implements winds estimation technique with detected meteors. | |
1576 |
|
1587 | |||
1577 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
1588 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
1578 |
|
1589 | |||
1579 | Output: Winds estimation (Zonal and Meridional) |
|
1590 | Output: Winds estimation (Zonal and Meridional) | |
1580 |
|
1591 | |||
1581 | Parameters affected: Winds |
|
1592 | Parameters affected: Winds | |
1582 | ''' |
|
1593 | ''' | |
1583 | print arrayMeteor.shape |
|
1594 | # print arrayMeteor.shape | |
1584 | #Settings |
|
1595 | #Settings | |
1585 | nInt = (heightMax - heightMin)/2 |
|
1596 | nInt = (heightMax - heightMin)/2 | |
|
1597 | # print nInt | |||
|
1598 | nInt = int(nInt) | |||
|
1599 | # print nInt | |||
1586 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
1600 | winds = numpy.zeros((2,nInt))*numpy.nan | |
1587 |
|
1601 | |||
1588 | #Filter errors |
|
1602 | #Filter errors | |
1589 | error = numpy.where(arrayMeteor[0,:,-1] == 0)[0] |
|
1603 | error = numpy.where(arrayMeteor[0,:,-1] == 0)[0] | |
1590 | finalMeteor = arrayMeteor[0,error,:] |
|
1604 | finalMeteor = arrayMeteor[0,error,:] | |
1591 |
|
1605 | |||
1592 | #Meteor Histogram |
|
1606 | #Meteor Histogram | |
1593 | finalHeights = finalMeteor[:,3] |
|
1607 | finalHeights = finalMeteor[:,3] | |
1594 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
1608 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
1595 | nMeteorsPerI = hist[0] |
|
1609 | nMeteorsPerI = hist[0] | |
1596 | heightPerI = hist[1] |
|
1610 | heightPerI = hist[1] | |
1597 |
|
1611 | |||
1598 | #Sort of meteors |
|
1612 | #Sort of meteors | |
1599 | indSort = finalHeights.argsort() |
|
1613 | indSort = finalHeights.argsort() | |
1600 | finalMeteor2 = finalMeteor[indSort,:] |
|
1614 | finalMeteor2 = finalMeteor[indSort,:] | |
1601 |
|
1615 | |||
1602 | # Calculating winds |
|
1616 | # Calculating winds | |
1603 | ind1 = 0 |
|
1617 | ind1 = 0 | |
1604 | ind2 = 0 |
|
1618 | ind2 = 0 | |
1605 |
|
1619 | |||
1606 | for i in range(nInt): |
|
1620 | for i in range(nInt): | |
1607 | nMet = nMeteorsPerI[i] |
|
1621 | nMet = nMeteorsPerI[i] | |
1608 | ind1 = ind2 |
|
1622 | ind1 = ind2 | |
1609 | ind2 = ind1 + nMet |
|
1623 | ind2 = ind1 + nMet | |
1610 |
|
1624 | |||
1611 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
1625 | meteorAux = finalMeteor2[ind1:ind2,:] | |
1612 |
|
1626 | |||
1613 | if meteorAux.shape[0] >= meteorThresh: |
|
1627 | if meteorAux.shape[0] >= meteorThresh: | |
1614 | vel = meteorAux[:, 7] |
|
1628 | vel = meteorAux[:, 7] | |
1615 | zen = meteorAux[:, 5]*numpy.pi/180 |
|
1629 | zen = meteorAux[:, 5]*numpy.pi/180 | |
1616 | azim = meteorAux[:, 4]*numpy.pi/180 |
|
1630 | azim = meteorAux[:, 4]*numpy.pi/180 | |
1617 |
|
1631 | |||
1618 | n = numpy.cos(zen) |
|
1632 | n = numpy.cos(zen) | |
1619 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
1633 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
1620 | # l = m*numpy.tan(azim) |
|
1634 | # l = m*numpy.tan(azim) | |
1621 | l = numpy.sin(zen)*numpy.sin(azim) |
|
1635 | l = numpy.sin(zen)*numpy.sin(azim) | |
1622 | m = numpy.sin(zen)*numpy.cos(azim) |
|
1636 | m = numpy.sin(zen)*numpy.cos(azim) | |
1623 |
|
1637 | |||
1624 | A = numpy.vstack((l, m)).transpose() |
|
1638 | A = numpy.vstack((l, m)).transpose() | |
1625 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
1639 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
1626 | windsAux = numpy.dot(A1, vel) |
|
1640 | windsAux = numpy.dot(A1, vel) | |
1627 |
|
1641 | |||
1628 | winds[0,i] = windsAux[0] |
|
1642 | winds[0,i] = windsAux[0] | |
1629 | winds[1,i] = windsAux[1] |
|
1643 | winds[1,i] = windsAux[1] | |
1630 |
|
1644 | |||
1631 | return winds, heightPerI[:-1] |
|
1645 | return winds, heightPerI[:-1] | |
1632 |
|
1646 | |||
1633 | def run(self, dataOut, technique, **kwargs): |
|
1647 | def run(self, dataOut, technique, **kwargs): | |
1634 |
|
1648 | |||
1635 | param = dataOut.data_param |
|
1649 | param = dataOut.data_param | |
1636 |
|
|
1650 | if dataOut.abscissaList != None: | |
1637 |
|
|
1651 | absc = dataOut.abscissaList[:-1] | |
1638 | noise = dataOut.noise |
|
1652 | noise = dataOut.noise | |
1639 | heightList = dataOut.heightList |
|
1653 | heightList = dataOut.heightList | |
1640 | SNR = dataOut.data_SNR |
|
1654 | SNR = dataOut.data_SNR | |
1641 |
|
1655 | |||
1642 | if technique == 'DBS': |
|
1656 | if technique == 'DBS': | |
1643 |
|
1657 | |||
1644 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): |
|
1658 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
1645 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1659 | theta_x = numpy.array(kwargs['dirCosx']) | |
1646 | theta_y = numpy.array(kwargs['dirCosy']) |
|
1660 | theta_y = numpy.array(kwargs['dirCosy']) | |
1647 | else: |
|
1661 | else: | |
1648 | elev = numpy.array(kwargs['elevation']) |
|
1662 | elev = numpy.array(kwargs['elevation']) | |
1649 | azim = numpy.array(kwargs['azimuth']) |
|
1663 | azim = numpy.array(kwargs['azimuth']) | |
1650 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1664 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1651 | azimuth = kwargs['correctAzimuth'] |
|
1665 | azimuth = kwargs['correctAzimuth'] | |
1652 | if kwargs.has_key('horizontalOnly'): |
|
1666 | if kwargs.has_key('horizontalOnly'): | |
1653 | horizontalOnly = kwargs['horizontalOnly'] |
|
1667 | horizontalOnly = kwargs['horizontalOnly'] | |
1654 | else: horizontalOnly = False |
|
1668 | else: horizontalOnly = False | |
1655 | if kwargs.has_key('correctFactor'): |
|
1669 | if kwargs.has_key('correctFactor'): | |
1656 | correctFactor = kwargs['correctFactor'] |
|
1670 | correctFactor = kwargs['correctFactor'] | |
1657 | else: correctFactor = 1 |
|
1671 | else: correctFactor = 1 | |
1658 | if kwargs.has_key('channelList'): |
|
1672 | if kwargs.has_key('channelList'): | |
1659 | channelList = kwargs['channelList'] |
|
1673 | channelList = kwargs['channelList'] | |
1660 | if len(channelList) == 2: |
|
1674 | if len(channelList) == 2: | |
1661 | horizontalOnly = True |
|
1675 | horizontalOnly = True | |
1662 | arrayChannel = numpy.array(channelList) |
|
1676 | arrayChannel = numpy.array(channelList) | |
1663 | param = param[arrayChannel,:,:] |
|
1677 | param = param[arrayChannel,:,:] | |
1664 | theta_x = theta_x[arrayChannel] |
|
1678 | theta_x = theta_x[arrayChannel] | |
1665 | theta_y = theta_y[arrayChannel] |
|
1679 | theta_y = theta_y[arrayChannel] | |
1666 |
|
1680 | |||
1667 | velRadial0 = param[:,1,:] #Radial velocity |
|
1681 | velRadial0 = param[:,1,:] #Radial velocity | |
1668 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(velRadial0, theta_x, theta_y, azimuth, correctFactor, horizontalOnly, heightList, SNR) #DBS Function |
|
1682 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(velRadial0, theta_x, theta_y, azimuth, correctFactor, horizontalOnly, heightList, SNR) #DBS Function | |
1669 | dataOut.utctimeInit = dataOut.utctime |
|
1683 | dataOut.utctimeInit = dataOut.utctime | |
1670 | dataOut.outputInterval = dataOut.timeInterval |
|
1684 | dataOut.outputInterval = dataOut.timeInterval | |
1671 |
|
1685 | |||
1672 | elif technique == 'SA': |
|
1686 | elif technique == 'SA': | |
1673 |
|
1687 | |||
1674 | #Parameters |
|
1688 | #Parameters | |
1675 | position_x = kwargs['positionX'] |
|
1689 | position_x = kwargs['positionX'] | |
1676 | position_y = kwargs['positionY'] |
|
1690 | position_y = kwargs['positionY'] | |
1677 | azimuth = kwargs['azimuth'] |
|
1691 | azimuth = kwargs['azimuth'] | |
1678 |
|
1692 | |||
1679 | if kwargs.has_key('crosspairsList'): |
|
1693 | if kwargs.has_key('crosspairsList'): | |
1680 | pairs = kwargs['crosspairsList'] |
|
1694 | pairs = kwargs['crosspairsList'] | |
1681 | else: |
|
1695 | else: | |
1682 | pairs = None |
|
1696 | pairs = None | |
1683 |
|
1697 | |||
1684 | if kwargs.has_key('correctFactor'): |
|
1698 | if kwargs.has_key('correctFactor'): | |
1685 | correctFactor = kwargs['correctFactor'] |
|
1699 | correctFactor = kwargs['correctFactor'] | |
1686 | else: |
|
1700 | else: | |
1687 | correctFactor = 1 |
|
1701 | correctFactor = 1 | |
1688 |
|
1702 | |||
1689 | tau = dataOut.data_param |
|
1703 | tau = dataOut.data_param | |
1690 | _lambda = dataOut.C/dataOut.frequency |
|
1704 | _lambda = dataOut.C/dataOut.frequency | |
1691 | pairsList = dataOut.groupList |
|
1705 | pairsList = dataOut.groupList | |
1692 | nChannels = dataOut.nChannels |
|
1706 | nChannels = dataOut.nChannels | |
1693 |
|
1707 | |||
1694 | dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
1708 | dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
1695 | dataOut.utctimeInit = dataOut.utctime |
|
1709 | dataOut.utctimeInit = dataOut.utctime | |
1696 | dataOut.outputInterval = dataOut.timeInterval |
|
1710 | dataOut.outputInterval = dataOut.timeInterval | |
1697 |
|
1711 | |||
1698 | elif technique == 'Meteors': |
|
1712 | elif technique == 'Meteors': | |
1699 | dataOut.flagNoData = True |
|
1713 | dataOut.flagNoData = True | |
1700 | self.__dataReady = False |
|
1714 | self.__dataReady = False | |
1701 |
|
1715 | |||
1702 | if kwargs.has_key('nHours'): |
|
1716 | if kwargs.has_key('nHours'): | |
1703 | nHours = kwargs['nHours'] |
|
1717 | nHours = kwargs['nHours'] | |
1704 | else: |
|
1718 | else: | |
1705 | nHours = 1 |
|
1719 | nHours = 1 | |
1706 |
|
1720 | |||
1707 | if kwargs.has_key('meteorsPerBin'): |
|
1721 | if kwargs.has_key('meteorsPerBin'): | |
1708 | meteorThresh = kwargs['meteorsPerBin'] |
|
1722 | meteorThresh = kwargs['meteorsPerBin'] | |
1709 | else: |
|
1723 | else: | |
1710 | meteorThresh = 6 |
|
1724 | meteorThresh = 6 | |
1711 |
|
1725 | |||
1712 | if kwargs.has_key('hmin'): |
|
1726 | if kwargs.has_key('hmin'): | |
1713 | hmin = kwargs['hmin'] |
|
1727 | hmin = kwargs['hmin'] | |
1714 | else: hmin = 70 |
|
1728 | else: hmin = 70 | |
1715 | if kwargs.has_key('hmax'): |
|
1729 | if kwargs.has_key('hmax'): | |
1716 | hmax = kwargs['hmax'] |
|
1730 | hmax = kwargs['hmax'] | |
1717 | else: hmax = 110 |
|
1731 | else: hmax = 110 | |
1718 |
|
1732 | |||
1719 | dataOut.outputInterval = nHours*3600 |
|
1733 | dataOut.outputInterval = nHours*3600 | |
1720 |
|
1734 | |||
1721 | if self.__isConfig == False: |
|
1735 | if self.__isConfig == False: | |
1722 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
1736 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
1723 | #Get Initial LTC time |
|
1737 | #Get Initial LTC time | |
1724 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
1738 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
1725 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
1739 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
1726 |
|
1740 | |||
1727 | self.__isConfig = True |
|
1741 | self.__isConfig = True | |
1728 |
|
1742 | |||
1729 |
if self.__buffer |
|
1743 | if self.__buffer == None: | |
1730 | self.__buffer = dataOut.data_param |
|
1744 | self.__buffer = dataOut.data_param | |
1731 | self.__firstdata = copy.copy(dataOut) |
|
1745 | self.__firstdata = copy.copy(dataOut) | |
1732 |
|
1746 | |||
1733 | else: |
|
1747 | else: | |
1734 | self.__buffer = numpy.hstack((self.__buffer, dataOut.data_param)) |
|
1748 | self.__buffer = numpy.hstack((self.__buffer, dataOut.data_param)) | |
1735 |
|
1749 | |||
1736 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
1750 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
1737 |
|
1751 | |||
1738 | if self.__dataReady: |
|
1752 | if self.__dataReady: | |
1739 | dataOut.utctimeInit = self.__initime |
|
1753 | dataOut.utctimeInit = self.__initime | |
1740 |
|
1754 | |||
1741 | self.__initime += dataOut.outputInterval #to erase time offset |
|
1755 | self.__initime += dataOut.outputInterval #to erase time offset | |
1742 |
|
1756 | |||
1743 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
1757 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
1744 | dataOut.flagNoData = False |
|
1758 | dataOut.flagNoData = False | |
1745 | self.__buffer = None |
|
1759 | self.__buffer = None | |
1746 |
|
1760 | |||
1747 | return |
|
1761 | return | |
1748 |
|
1762 | |||
1749 | class EWDriftsEstimation(Operation): |
|
1763 | class EWDriftsEstimation(Operation): | |
1750 |
|
1764 | |||
1751 |
|
1765 | |||
1752 | def __init__(self): |
|
1766 | def __init__(self): | |
1753 | Operation.__init__(self) |
|
1767 | Operation.__init__(self) | |
1754 |
|
1768 | |||
1755 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1769 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1756 | listPhi = phi.tolist() |
|
1770 | listPhi = phi.tolist() | |
1757 | maxid = listPhi.index(max(listPhi)) |
|
1771 | maxid = listPhi.index(max(listPhi)) | |
1758 | minid = listPhi.index(min(listPhi)) |
|
1772 | minid = listPhi.index(min(listPhi)) | |
1759 |
|
1773 | |||
1760 | rango = range(len(phi)) |
|
1774 | rango = range(len(phi)) | |
1761 | # rango = numpy.delete(rango,maxid) |
|
1775 | # rango = numpy.delete(rango,maxid) | |
1762 |
|
1776 | |||
1763 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1777 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1764 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1778 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1765 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1779 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1766 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1780 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1767 |
|
1781 | |||
1768 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1782 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1769 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1783 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1770 |
|
1784 | |||
1771 | for i in rango: |
|
1785 | for i in rango: | |
1772 | x = heiRang*math.cos(phi[i]) |
|
1786 | x = heiRang*math.cos(phi[i]) | |
1773 | y1 = velRadial[i,:] |
|
1787 | y1 = velRadial[i,:] | |
1774 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1788 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1775 |
|
1789 | |||
1776 | x1 = heiRang1 |
|
1790 | x1 = heiRang1 | |
1777 | y11 = f1(x1) |
|
1791 | y11 = f1(x1) | |
1778 |
|
1792 | |||
1779 | y2 = SNR[i,:] |
|
1793 | y2 = SNR[i,:] | |
1780 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1794 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1781 | y21 = f2(x1) |
|
1795 | y21 = f2(x1) | |
1782 |
|
1796 | |||
1783 | velRadial1[i,:] = y11 |
|
1797 | velRadial1[i,:] = y11 | |
1784 | SNR1[i,:] = y21 |
|
1798 | SNR1[i,:] = y21 | |
1785 |
|
1799 | |||
1786 | return heiRang1, velRadial1, SNR1 |
|
1800 | return heiRang1, velRadial1, SNR1 | |
1787 |
|
1801 | |||
1788 | def run(self, dataOut, zenith, zenithCorrection): |
|
1802 | def run(self, dataOut, zenith, zenithCorrection): | |
1789 | heiRang = dataOut.heightList |
|
1803 | heiRang = dataOut.heightList | |
1790 | velRadial = dataOut.data_param[:,3,:] |
|
1804 | velRadial = dataOut.data_param[:,3,:] | |
1791 | SNR = dataOut.data_SNR |
|
1805 | SNR = dataOut.data_SNR | |
1792 |
|
1806 | |||
1793 | zenith = numpy.array(zenith) |
|
1807 | zenith = numpy.array(zenith) | |
1794 | zenith -= zenithCorrection |
|
1808 | zenith -= zenithCorrection | |
1795 | zenith *= numpy.pi/180 |
|
1809 | zenith *= numpy.pi/180 | |
1796 |
|
1810 | |||
1797 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
1811 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
1798 |
|
1812 | |||
1799 | alp = zenith[0] |
|
1813 | alp = zenith[0] | |
1800 | bet = zenith[1] |
|
1814 | bet = zenith[1] | |
1801 |
|
1815 | |||
1802 | w_w = velRadial1[0,:] |
|
1816 | w_w = velRadial1[0,:] | |
1803 | w_e = velRadial1[1,:] |
|
1817 | w_e = velRadial1[1,:] | |
1804 |
|
1818 | |||
1805 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
1819 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
1806 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
1820 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
1807 |
|
1821 | |||
1808 | winds = numpy.vstack((u,w)) |
|
1822 | winds = numpy.vstack((u,w)) | |
1809 |
|
1823 | |||
1810 | dataOut.heightList = heiRang1 |
|
1824 | dataOut.heightList = heiRang1 | |
1811 | dataOut.data_output = winds |
|
1825 | dataOut.data_output = winds | |
1812 | dataOut.data_SNR = SNR1 |
|
1826 | dataOut.data_SNR = SNR1 | |
1813 |
|
1827 | |||
1814 | dataOut.utctimeInit = dataOut.utctime |
|
1828 | dataOut.utctimeInit = dataOut.utctime | |
1815 | dataOut.outputInterval = dataOut.timeInterval |
|
1829 | dataOut.outputInterval = dataOut.timeInterval | |
1816 | return |
|
1830 | return | |
1817 |
|
1831 | |||
1818 | class PhaseCalibration(Operation): |
|
1832 | class PhaseCalibration(Operation): | |
1819 |
|
1833 | |||
1820 | __buffer = None |
|
1834 | __buffer = None | |
1821 |
|
1835 | |||
1822 | __initime = None |
|
1836 | __initime = None | |
1823 |
|
1837 | |||
1824 | __dataReady = False |
|
1838 | __dataReady = False | |
1825 |
|
1839 | |||
1826 | __isConfig = False |
|
1840 | __isConfig = False | |
1827 |
|
1841 | |||
1828 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
1842 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
1829 |
|
1843 | |||
1830 | dataTime = currentTime + paramInterval |
|
1844 | dataTime = currentTime + paramInterval | |
1831 | deltaTime = dataTime - initTime |
|
1845 | deltaTime = dataTime - initTime | |
1832 |
|
1846 | |||
1833 | if deltaTime >= outputInterval or deltaTime < 0: |
|
1847 | if deltaTime >= outputInterval or deltaTime < 0: | |
1834 | return True |
|
1848 | return True | |
1835 |
|
1849 | |||
1836 | return False |
|
1850 | return False | |
1837 |
|
1851 | |||
1838 | def __getGammas(self, pairs, k, d, phases): |
|
1852 | def __getGammas(self, pairs, k, d, phases): | |
1839 | gammas = numpy.zeros(2) |
|
1853 | gammas = numpy.zeros(2) | |
1840 |
|
|
1854 | ||
1841 | for i in range(len(pairs)): |
|
1855 | for i in range(len(pairs)): | |
1842 |
|
1856 | |||
1843 | pairi = pairs[i] |
|
1857 | pairi = pairs[i] | |
1844 |
|
1858 | |||
1845 | #Calculating gamma |
|
1859 | #Calculating gamma | |
1846 | jdcos = phases[:,pairi[1]]/(k*d[pairi[1]]) |
|
1860 | jdcos = phases[:,pairi[1]]/(k*d[pairi[1]]) | |
1847 | jgamma = numpy.angle(numpy.exp(1j*(k*d[pairi[0]]*jdcos - phases[:,pairi[0]]))) |
|
1861 | jgamma = numpy.angle(numpy.exp(1j*(k*d[pairi[0]]*jdcos - phases[:,pairi[0]]))) | |
1848 |
|
1862 | |||
1849 | #Revised distribution |
|
1863 | #Revised distribution | |
1850 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
1864 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
1851 |
|
1865 | |||
1852 | #Histogram |
|
1866 | #Histogram | |
1853 | nBins = 64.0 |
|
1867 | nBins = 64.0 | |
1854 | rmin = -0.5*numpy.pi |
|
1868 | rmin = -0.5*numpy.pi | |
1855 | rmax = 0.5*numpy.pi |
|
1869 | rmax = 0.5*numpy.pi | |
1856 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
1870 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
1857 |
|
1871 | |||
1858 | meteorsY = phaseHisto[0] |
|
1872 | meteorsY = phaseHisto[0] | |
1859 | phasesX = phaseHisto[1][:-1] |
|
1873 | phasesX = phaseHisto[1][:-1] | |
1860 | width = phasesX[1] - phasesX[0] |
|
1874 | width = phasesX[1] - phasesX[0] | |
1861 | phasesX += width/2 |
|
1875 | phasesX += width/2 | |
1862 |
|
1876 | |||
1863 | #Gaussian aproximation |
|
1877 | #Gaussian aproximation | |
1864 | bpeak = meteorsY.argmax() |
|
1878 | bpeak = meteorsY.argmax() | |
1865 | peak = meteorsY.max() |
|
1879 | peak = meteorsY.max() | |
1866 | jmin = bpeak - 5 |
|
1880 | jmin = bpeak - 5 | |
1867 | jmax = bpeak + 5 + 1 |
|
1881 | jmax = bpeak + 5 + 1 | |
1868 |
|
1882 | |||
1869 | if jmin<0: |
|
1883 | if jmin<0: | |
1870 | jmin = 0 |
|
1884 | jmin = 0 | |
1871 | jmax = 6 |
|
1885 | jmax = 6 | |
1872 | elif jmax > meteorsY.size: |
|
1886 | elif jmax > meteorsY.size: | |
1873 | jmin = meteorsY.size - 6 |
|
1887 | jmin = meteorsY.size - 6 | |
1874 | jmax = meteorsY.size |
|
1888 | jmax = meteorsY.size | |
1875 |
|
1889 | |||
1876 | x0 = numpy.array([peak,bpeak,50]) |
|
1890 | x0 = numpy.array([peak,bpeak,50]) | |
1877 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
1891 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
1878 |
|
1892 | |||
1879 | #Gammas |
|
1893 | #Gammas | |
1880 | gammas[i] = coeff[0][1] |
|
1894 | gammas[i] = coeff[0][1] | |
1881 | # gammas[i] = bpeak |
|
1895 | ||
1882 |
|
||||
1883 | return gammas |
|
1896 | return gammas | |
1884 |
|
1897 | |||
1885 | def __residualFunction(self, coeffs, y, t): |
|
1898 | def __residualFunction(self, coeffs, y, t): | |
1886 |
|
1899 | |||
1887 | return y - self.__gauss_function(t, coeffs) |
|
1900 | return y - self.__gauss_function(t, coeffs) | |
1888 |
|
1901 | |||
1889 | def __gauss_function(self, t, coeffs): |
|
1902 | def __gauss_function(self, t, coeffs): | |
1890 |
|
1903 | |||
1891 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
1904 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
1892 |
|
1905 | |||
1893 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
1906 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
1894 | meteorOps = MeteorOperations() |
|
1907 | meteorOps = MeteorOperations() | |
1895 | nchan = 4 |
|
1908 | nchan = 4 | |
1896 | pairx = pairsList[0] |
|
1909 | pairx = pairsList[0] | |
1897 | pairy = pairsList[1] |
|
1910 | pairy = pairsList[1] | |
1898 | center_xangle = 0 |
|
1911 | center_xangle = 0 | |
1899 | center_yangle = 0 |
|
1912 | center_yangle = 0 | |
1900 |
range_angle = numpy.array([ |
|
1913 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
1901 | ntimes = len(range_angle) |
|
1914 | ntimes = len(range_angle) | |
1902 |
|
1915 | |||
1903 | nstepsx = 20.0 |
|
1916 | nstepsx = 20.0 | |
1904 | nstepsy = 20.0 |
|
1917 | nstepsy = 20.0 | |
1905 |
|
1918 | |||
1906 | for iz in range(ntimes): |
|
1919 | for iz in range(ntimes): | |
1907 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
1920 | min_xangle = -range_angle[iz]/2 + center_xangle | |
1908 | max_xangle = range_angle[iz]/2 + center_xangle |
|
1921 | max_xangle = range_angle[iz]/2 + center_xangle | |
1909 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
1922 | min_yangle = -range_angle[iz]/2 + center_yangle | |
1910 | max_yangle = range_angle[iz]/2 + center_yangle |
|
1923 | max_yangle = range_angle[iz]/2 + center_yangle | |
1911 |
|
1924 | |||
1912 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
1925 | inc_x = (max_xangle-min_xangle)/nstepsx | |
1913 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
1926 | inc_y = (max_yangle-min_yangle)/nstepsy | |
1914 |
|
1927 | |||
1915 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
1928 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
1916 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
1929 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
1917 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
1930 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
1918 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
1931 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
1919 | jph = numpy.zeros(nchan) |
|
1932 | jph = numpy.zeros(nchan) | |
1920 |
|
1933 | |||
1921 | # Iterations looking for the offset |
|
1934 | # Iterations looking for the offset | |
1922 | for iy in range(int(nstepsy)): |
|
1935 | for iy in range(int(nstepsy)): | |
1923 | for ix in range(int(nstepsx)): |
|
1936 | for ix in range(int(nstepsx)): | |
1924 | jph[pairy[1]] = alpha_y[iy] |
|
1937 | jph[pairy[1]] = alpha_y[iy] | |
1925 | jph[pairy[0]] = -gammas[1] + alpha_y[iy]*d[pairy[0]]/d[pairy[1]] |
|
1938 | jph[pairy[0]] = -gammas[1] + alpha_y[iy]*d[pairy[0]]/d[pairy[1]] | |
1926 |
|
1939 | |||
1927 | jph[pairx[1]] = alpha_x[ix] |
|
1940 | jph[pairx[1]] = alpha_x[ix] | |
1928 | jph[pairx[0]] = -gammas[0] + alpha_x[ix]*d[pairx[0]]/d[pairx[1]] |
|
1941 | jph[pairx[0]] = -gammas[0] + alpha_x[ix]*d[pairx[0]]/d[pairx[1]] | |
1929 |
|
1942 | |||
1930 | jph_array[:,ix,iy] = jph |
|
1943 | jph_array[:,ix,iy] = jph | |
1931 |
|
1944 | |||
1932 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, jph) |
|
1945 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, jph) | |
1933 | error = meteorsArray1[:,-1] |
|
1946 | error = meteorsArray1[:,-1] | |
1934 | ind1 = numpy.where(error==0)[0] |
|
1947 | ind1 = numpy.where(error==0)[0] | |
1935 | penalty[ix,iy] = ind1.size |
|
1948 | penalty[ix,iy] = ind1.size | |
1936 |
|
1949 | |||
1937 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
1950 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
1938 | phOffset = jph_array[:,i,j] |
|
1951 | phOffset = jph_array[:,i,j] | |
1939 |
|
1952 | |||
1940 | center_xangle = phOffset[pairx[1]] |
|
1953 | center_xangle = phOffset[pairx[1]] | |
1941 | center_yangle = phOffset[pairy[1]] |
|
1954 | center_yangle = phOffset[pairy[1]] | |
1942 |
|
1955 | |||
1943 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
1956 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
1944 | phOffset = phOffset*180/numpy.pi |
|
1957 | phOffset = phOffset*180/numpy.pi | |
1945 | return phOffset |
|
1958 | return phOffset | |
1946 |
|
1959 | |||
1947 |
|
1960 | |||
1948 | def run(self, dataOut, pairs, distances, hmin, hmax, nHours = None): |
|
1961 | def run(self, dataOut, pairs, distances, hmin, hmax, nHours = None): | |
1949 |
|
1962 | |||
1950 | dataOut.flagNoData = True |
|
1963 | dataOut.flagNoData = True | |
1951 | self.__dataReady = False |
|
1964 | self.__dataReady = False | |
1952 |
|
1965 | |||
1953 | if nHours == None: |
|
1966 | if nHours == None: | |
1954 | nHours = 1 |
|
1967 | nHours = 1 | |
1955 |
|
1968 | |||
1956 | dataOut.outputInterval = nHours*3600 |
|
1969 | dataOut.outputInterval = nHours*3600 | |
1957 |
|
1970 | |||
1958 | if self.__isConfig == False: |
|
1971 | if self.__isConfig == False: | |
1959 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
1972 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
1960 | #Get Initial LTC time |
|
1973 | #Get Initial LTC time | |
1961 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
1974 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
1962 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
1975 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
1963 |
|
1976 | |||
1964 | self.__isConfig = True |
|
1977 | self.__isConfig = True | |
1965 |
|
1978 | |||
1966 |
if self.__buffer |
|
1979 | if self.__buffer == None: | |
1967 | self.__buffer = dataOut.data_param.copy() |
|
1980 | self.__buffer = dataOut.data_param.copy() | |
1968 |
|
1981 | |||
1969 | else: |
|
1982 | else: | |
1970 | self.__buffer = numpy.hstack((self.__buffer, dataOut.data_param)) |
|
1983 | self.__buffer = numpy.hstack((self.__buffer, dataOut.data_param)) | |
1971 |
|
1984 | |||
1972 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
1985 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
1973 |
|
1986 | |||
1974 | if self.__dataReady: |
|
1987 | if self.__dataReady: | |
1975 | dataOut.utctimeInit = self.__initime |
|
1988 | dataOut.utctimeInit = self.__initime | |
1976 | self.__initime += dataOut.outputInterval #to erase time offset |
|
1989 | self.__initime += dataOut.outputInterval #to erase time offset | |
1977 |
|
1990 | |||
1978 | freq = dataOut.frequency |
|
1991 | freq = dataOut.frequency | |
1979 | c = dataOut.C #m/s |
|
1992 | c = dataOut.C #m/s | |
1980 | lamb = c/freq |
|
1993 | lamb = c/freq | |
1981 | k = 2*numpy.pi/lamb |
|
1994 | k = 2*numpy.pi/lamb | |
1982 | azimuth = 0 |
|
1995 | azimuth = 0 | |
1983 | h = (hmin, hmax) |
|
1996 | h = (hmin, hmax) | |
1984 | pairsList = ((0,3),(1,2)) |
|
1997 | pairsList = ((0,3),(1,2)) | |
1985 |
|
1998 | |||
1986 | meteorsArray = self.__buffer[0,:,:] |
|
1999 | meteorsArray = self.__buffer[0,:,:] | |
1987 | error = meteorsArray[:,-1] |
|
2000 | error = meteorsArray[:,-1] | |
1988 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
2001 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
1989 | ind1 = numpy.where(boolError)[0] |
|
2002 | ind1 = numpy.where(boolError)[0] | |
1990 | meteorsArray = meteorsArray[ind1,:] |
|
2003 | meteorsArray = meteorsArray[ind1,:] | |
1991 | meteorsArray[:,-1] = 0 |
|
2004 | meteorsArray[:,-1] = 0 | |
1992 | phases = meteorsArray[:,9:13] |
|
2005 | phases = meteorsArray[:,9:13] | |
1993 |
|
2006 | |||
1994 | #Calculate Gammas |
|
2007 | #Calculate Gammas | |
1995 | gammas = self.__getGammas(pairs, k, distances, phases) |
|
2008 | gammas = self.__getGammas(pairs, k, distances, phases) | |
1996 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
2009 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
1997 | #Calculate Phases |
|
2010 | #Calculate Phases | |
1998 | phasesOff = self.__getPhases(azimuth, h, pairsList, distances, gammas, meteorsArray) |
|
2011 | phasesOff = self.__getPhases(azimuth, h, pairsList, distances, gammas, meteorsArray) | |
1999 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
2012 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
2000 | dataOut.data_output = -phasesOff |
|
2013 | dataOut.data_output = -phasesOff | |
2001 | dataOut.flagNoData = False |
|
2014 | dataOut.flagNoData = False | |
2002 | self.__buffer = None |
|
2015 | self.__buffer = None | |
2003 |
|
2016 | |||
2004 |
|
2017 | |||
2005 | return |
|
2018 | return | |
2006 |
|
2019 | |||
2007 | class MeteorOperations(): |
|
2020 | class MeteorOperations(): | |
2008 |
|
2021 | |||
2009 | def __init__(self): |
|
2022 | def __init__(self): | |
2010 |
|
2023 | |||
2011 | return |
|
2024 | return | |
2012 |
|
2025 | |||
2013 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, jph): |
|
2026 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, jph): | |
2014 |
|
2027 | |||
2015 | arrayParameters = arrayParameters0.copy() |
|
2028 | arrayParameters = arrayParameters0.copy() | |
2016 | hmin = h[0] |
|
2029 | hmin = h[0] | |
2017 | hmax = h[1] |
|
2030 | hmax = h[1] | |
2018 |
|
2031 | |||
2019 | #Calculate AOA (Error N 3, 4) |
|
2032 | #Calculate AOA (Error N 3, 4) | |
2020 | #JONES ET AL. 1998 |
|
2033 | #JONES ET AL. 1998 | |
2021 | AOAthresh = numpy.pi/8 |
|
2034 | AOAthresh = numpy.pi/8 | |
2022 | error = arrayParameters[:,-1] |
|
2035 | error = arrayParameters[:,-1] | |
2023 | phases = -arrayParameters[:,9:13] + jph |
|
2036 | phases = -arrayParameters[:,9:13] + jph | |
2024 | arrayParameters[:,4:7], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2037 | arrayParameters[:,4:7], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2025 |
|
2038 | |||
2026 | #Calculate Heights (Error N 13 and 14) |
|
2039 | #Calculate Heights (Error N 13 and 14) | |
2027 | error = arrayParameters[:,-1] |
|
2040 | error = arrayParameters[:,-1] | |
2028 | Ranges = arrayParameters[:,2] |
|
2041 | Ranges = arrayParameters[:,2] | |
2029 | zenith = arrayParameters[:,5] |
|
2042 | zenith = arrayParameters[:,5] | |
2030 | arrayParameters[:,3], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
2043 | arrayParameters[:,3], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
2031 |
|
2044 | |||
2032 | #----------------------- Get Final data ------------------------------------ |
|
2045 | #----------------------- Get Final data ------------------------------------ | |
2033 | # error = arrayParameters[:,-1] |
|
2046 | # error = arrayParameters[:,-1] | |
2034 | # ind1 = numpy.where(error==0)[0] |
|
2047 | # ind1 = numpy.where(error==0)[0] | |
2035 | # arrayParameters = arrayParameters[ind1,:] |
|
2048 | # arrayParameters = arrayParameters[ind1,:] | |
2036 |
|
2049 | |||
2037 | return arrayParameters |
|
2050 | return arrayParameters | |
2038 |
|
2051 | |||
2039 | def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
2052 | def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
2040 |
|
2053 | |||
2041 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
2054 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
2042 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
2055 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
2043 |
|
2056 | |||
2044 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
2057 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
2045 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
2058 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
2046 | arrayAOA[:,2] = cosDirError |
|
2059 | arrayAOA[:,2] = cosDirError | |
2047 |
|
2060 | |||
2048 | azimuthAngle = arrayAOA[:,0] |
|
2061 | azimuthAngle = arrayAOA[:,0] | |
2049 | zenithAngle = arrayAOA[:,1] |
|
2062 | zenithAngle = arrayAOA[:,1] | |
2050 |
|
2063 | |||
2051 | #Setting Error |
|
2064 | #Setting Error | |
2052 | #Number 3: AOA not fesible |
|
2065 | #Number 3: AOA not fesible | |
2053 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
2066 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
2054 | error[indInvalid] = 3 |
|
2067 | error[indInvalid] = 3 | |
2055 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
2068 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
2056 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
2069 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
2057 | error[indInvalid] = 4 |
|
2070 | error[indInvalid] = 4 | |
2058 | return arrayAOA, error |
|
2071 | return arrayAOA, error | |
2059 |
|
2072 | |||
2060 | def __getDirectionCosines(self, arrayPhase, pairsList): |
|
2073 | def __getDirectionCosines(self, arrayPhase, pairsList): | |
2061 |
|
2074 | |||
2062 | #Initializing some variables |
|
2075 | #Initializing some variables | |
2063 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
2076 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
2064 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
2077 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
2065 |
|
2078 | |||
2066 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
2079 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
2067 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
2080 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
2068 |
|
2081 | |||
2069 |
|
2082 | |||
2070 | for i in range(2): |
|
2083 | for i in range(2): | |
2071 | #First Estimation |
|
2084 | #First Estimation | |
2072 | phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
2085 | phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
2073 | #Dealias |
|
2086 | #Dealias | |
2074 | indcsi = numpy.where(phi0_aux > numpy.pi) |
|
2087 | indcsi = numpy.where(phi0_aux > numpy.pi) | |
2075 | phi0_aux[indcsi] -= 2*numpy.pi |
|
2088 | phi0_aux[indcsi] -= 2*numpy.pi | |
2076 | indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
2089 | indcsi = numpy.where(phi0_aux < -numpy.pi) | |
2077 | phi0_aux[indcsi] += 2*numpy.pi |
|
2090 | phi0_aux[indcsi] += 2*numpy.pi | |
2078 | #Direction Cosine 0 |
|
2091 | #Direction Cosine 0 | |
2079 | cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
2092 | cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
2080 |
|
2093 | |||
2081 | #Most-Accurate Second Estimation |
|
2094 | #Most-Accurate Second Estimation | |
2082 | phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
2095 | phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
2083 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
2096 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
2084 | #Direction Cosine 1 |
|
2097 | #Direction Cosine 1 | |
2085 | cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
2098 | cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
2086 |
|
2099 | |||
2087 | #Searching the correct Direction Cosine |
|
2100 | #Searching the correct Direction Cosine | |
2088 | cosdir0_aux = cosdir0[:,i] |
|
2101 | cosdir0_aux = cosdir0[:,i] | |
2089 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
2102 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
2090 | #Minimum Distance |
|
2103 | #Minimum Distance | |
2091 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
2104 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
2092 | indcos = cosDiff.argmin(axis = 1) |
|
2105 | indcos = cosDiff.argmin(axis = 1) | |
2093 | #Saving Value obtained |
|
2106 | #Saving Value obtained | |
2094 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
2107 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
2095 |
|
2108 | |||
2096 | return cosdir0, cosdir |
|
2109 | return cosdir0, cosdir | |
2097 |
|
2110 | |||
2098 | def __calculateAOA(self, cosdir, azimuth): |
|
2111 | def __calculateAOA(self, cosdir, azimuth): | |
2099 | cosdirX = cosdir[:,0] |
|
2112 | cosdirX = cosdir[:,0] | |
2100 | cosdirY = cosdir[:,1] |
|
2113 | cosdirY = cosdir[:,1] | |
2101 |
|
2114 | |||
2102 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
2115 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
2103 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
2116 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
2104 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
2117 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
2105 |
|
2118 | |||
2106 | return angles |
|
2119 | return angles | |
2107 |
|
2120 | |||
2108 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
2121 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
2109 |
|
2122 | |||
2110 | Ramb = 375 #Ramb = c/(2*PRF) |
|
2123 | Ramb = 375 #Ramb = c/(2*PRF) | |
2111 | Re = 6371 #Earth Radius |
|
2124 | Re = 6371 #Earth Radius | |
2112 | heights = numpy.zeros(Ranges.shape) |
|
2125 | heights = numpy.zeros(Ranges.shape) | |
2113 |
|
2126 | |||
2114 | R_aux = numpy.array([0,1,2])*Ramb |
|
2127 | R_aux = numpy.array([0,1,2])*Ramb | |
2115 | R_aux = R_aux.reshape(1,R_aux.size) |
|
2128 | R_aux = R_aux.reshape(1,R_aux.size) | |
2116 |
|
2129 | |||
2117 | Ranges = Ranges.reshape(Ranges.size,1) |
|
2130 | Ranges = Ranges.reshape(Ranges.size,1) | |
2118 |
|
2131 | |||
2119 | Ri = Ranges + R_aux |
|
2132 | Ri = Ranges + R_aux | |
2120 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
2133 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
2121 |
|
2134 | |||
2122 | #Check if there is a height between 70 and 110 km |
|
2135 | #Check if there is a height between 70 and 110 km | |
2123 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
2136 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
2124 | ind_h = numpy.where(h_bool == 1)[0] |
|
2137 | ind_h = numpy.where(h_bool == 1)[0] | |
2125 |
|
2138 | |||
2126 | hCorr = hi[ind_h, :] |
|
2139 | hCorr = hi[ind_h, :] | |
2127 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
2140 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
2128 |
|
2141 | |||
2129 | hCorr = hi[ind_hCorr] |
|
2142 | hCorr = hi[ind_hCorr] | |
2130 | heights[ind_h] = hCorr |
|
2143 | heights[ind_h] = hCorr | |
2131 |
|
2144 | |||
2132 | #Setting Error |
|
2145 | #Setting Error | |
2133 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
2146 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
2134 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
2147 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
2135 |
|
2148 | |||
2136 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
2149 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
2137 | error[indInvalid2] = 14 |
|
2150 | error[indInvalid2] = 14 | |
2138 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
2151 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
2139 | error[indInvalid1] = 13 |
|
2152 | error[indInvalid1] = 13 | |
2140 |
|
2153 | |||
2141 |
return heights, error |
|
2154 | return heights, error No newline at end of file | |
2142 |
|
||||
2143 |
|
||||
2144 | No newline at end of file |
|
General Comments 0
You need to be logged in to leave comments.
Login now