@@ -1,526 +1,512 | |||
|
1 | 1 | import numpy,math,random,time |
|
2 | 2 | #---------------1 Heredamos JRODatareader |
|
3 | 3 | from schainpy.model.io.jroIO_base import * |
|
4 | 4 | #---------------2 Heredamos las propiedades de ProcessingUnit |
|
5 | 5 | from schainpy.model.proc.jroproc_base import ProcessingUnit,Operation,MPDecorator |
|
6 | 6 | #---------------3 Importaremos las clases BascicHeader, SystemHeader, RadarControlHeader, ProcessingHeader |
|
7 | 7 | from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader,SystemHeader,RadarControllerHeader, ProcessingHeader |
|
8 | 8 | #---------------4 Importaremos el objeto Voltge |
|
9 | 9 | from schainpy.model.data.jrodata import Voltage |
|
10 | 10 | |
|
11 | 11 | class SimulatorReader(JRODataReader, ProcessingUnit): |
|
12 | 12 | incIntFactor = 1 |
|
13 | 13 | nFFTPoints = 0 |
|
14 | 14 | FixPP_IncInt = 1 |
|
15 | 15 | FixRCP_IPP = 1000 |
|
16 | 16 | FixPP_CohInt = 1 |
|
17 | 17 | Tau_0 = 250 |
|
18 | 18 | AcqH0_0 = 70 |
|
19 | 19 | H0 = AcqH0_0 |
|
20 | 20 | AcqDH_0 = 1.25 |
|
21 | 21 | DH0 = AcqDH_0 |
|
22 | 22 | Bauds = 32 |
|
23 | 23 | BaudWidth = None |
|
24 | 24 | FixRCP_TXA = 40 |
|
25 | 25 | FixRCP_TXB = 70 |
|
26 | 26 | fAngle = 2.0*math.pi*(1/16) |
|
27 | 27 | DC_level = 500 |
|
28 | 28 | stdev = 8 |
|
29 | 29 | Num_Codes = 2 |
|
30 | 30 | #code0 = numpy.array([1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1]) |
|
31 | 31 | #code1 = numpy.array([1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0]) |
|
32 | 32 | #Dyn_snCode = numpy.array([Num_Codes,Bauds]) |
|
33 | 33 | Dyn_snCode = None |
|
34 | 34 | Samples = 200 |
|
35 | 35 | channels = 2 |
|
36 | 36 | pulses = None |
|
37 | 37 | Reference = None |
|
38 | 38 | pulse_size = None |
|
39 | 39 | prof_gen = None |
|
40 | 40 | Fdoppler = 100 |
|
41 | 41 | Hdoppler = 36 |
|
42 | 42 | Adoppler = 300 |
|
43 | 43 | frequency = 9345 |
|
44 | 44 | nTotalReadFiles = 1000 |
|
45 | 45 | |
|
46 | 46 | def __init__(self): |
|
47 | 47 | """ |
|
48 | 48 | Inicializador de la clases SimulatorReader para |
|
49 | 49 | generar datos de voltage simulados. |
|
50 | 50 | Input: |
|
51 | 51 | dataOut: Objeto de la clase Voltage. |
|
52 | 52 | Este Objeto sera utilizado apra almacenar |
|
53 | 53 | un perfil de datos cada vez qe se haga |
|
54 | 54 | un requerimiento (getData) |
|
55 | 55 | """ |
|
56 | 56 | ProcessingUnit.__init__(self) |
|
57 | 57 | print(" [ START ] init - Metodo Simulator Reader") |
|
58 | 58 | |
|
59 | 59 | self.isConfig = False |
|
60 | 60 | self.basicHeaderObj = BasicHeader(LOCALTIME) |
|
61 | 61 | self.systemHeaderObj = SystemHeader() |
|
62 | 62 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
63 | 63 | self.processingHeaderObj = ProcessingHeader() |
|
64 | 64 | self.profileIndex = 2**32-1 |
|
65 | 65 | self.dataOut = Voltage() |
|
66 | 66 | #code0 = numpy.array([1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1]) |
|
67 | 67 | code0 = numpy.array([1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1]) |
|
68 | 68 | #code1 = numpy.array([1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0]) |
|
69 | 69 | code1 = numpy.array([1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1]) |
|
70 | 70 | #self.Dyn_snCode = numpy.array([code0,code1]) |
|
71 | 71 | self.Dyn_snCode = None |
|
72 | 72 | |
|
73 | 73 | def set_kwargs(self, **kwargs): |
|
74 | 74 | for key, value in kwargs.items(): |
|
75 | 75 | setattr(self, key, value) |
|
76 | 76 | |
|
77 | 77 | def __hasNotDataInBuffer(self): |
|
78 | 78 | |
|
79 | 79 | if self.profileIndex >= self.processingHeaderObj.profilesPerBlock* self.nTxs: |
|
80 | 80 | if self.nReadBlocks>0: |
|
81 | 81 | tmp = self.dataOut.utctime |
|
82 | 82 | tmp_utc = int(self.dataOut.utctime) |
|
83 | 83 | tmp_milisecond = int((tmp-tmp_utc)*1000) |
|
84 | 84 | self.basicHeaderObj.utc = tmp_utc |
|
85 | 85 | self.basicHeaderObj.miliSecond= tmp_milisecond |
|
86 | 86 | return 1 |
|
87 | 87 | return 0 |
|
88 | 88 | |
|
89 | 89 | def setNextFile(self): |
|
90 | 90 | """Set the next file to be readed open it and parse de file header""" |
|
91 | 91 | |
|
92 | 92 | if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile): |
|
93 | 93 | self.nReadFiles=self.nReadFiles+1 |
|
94 | 94 | if self.nReadFiles > self.nTotalReadFiles: |
|
95 | 95 | self.flagNoMoreFiles=1 |
|
96 | 96 | raise schainpy.admin.SchainWarning('No more files to read') |
|
97 | 97 | |
|
98 | 98 | print('------------------- [Opening file] ------------------------------',self.nReadFiles) |
|
99 | 99 | self.nReadBlocks = 0 |
|
100 | 100 | #if self.nReadBlocks==0: |
|
101 | 101 | # self.readFirstHeader() |
|
102 | 102 | |
|
103 | 103 | def __setNewBlock(self): |
|
104 | 104 | self.setNextFile() |
|
105 | 105 | if self.flagIsNewFile: |
|
106 | 106 | return 1 |
|
107 | 107 | |
|
108 | 108 | def readNextBlock(self): |
|
109 | 109 | while True: |
|
110 | 110 | self.__setNewBlock() |
|
111 | 111 | if not(self.readBlock()): |
|
112 | 112 | return 0 |
|
113 | 113 | self.getBasicHeader() |
|
114 | 114 | break |
|
115 | 115 | if self.verbose: |
|
116 | 116 | print("[Reading] Block No. %d/%d -> %s" %(self.nReadBlocks, |
|
117 | 117 | self.processingHeaderObj.dataBlocksPerFile, |
|
118 | 118 | self.dataOut.datatime.ctime()) ) |
|
119 | 119 | return 1 |
|
120 | 120 | |
|
121 | 121 | def getFirstHeader(self): |
|
122 | 122 | self.getBasicHeader() |
|
123 | 123 | self.dataOut.processingHeaderObj = self.processingHeaderObj.copy() |
|
124 | 124 | self.dataOut.systemHeaderObj = self.systemHeaderObj.copy() |
|
125 | 125 | self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy() |
|
126 | 126 | self.dataOut.dtype = self.dtype |
|
127 | 127 | |
|
128 | 128 | self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock |
|
129 | 129 | self.dataOut.heightList = numpy.arange(self.processingHeaderObj.nHeights) * self.processingHeaderObj.deltaHeight + self.processingHeaderObj.firstHeight |
|
130 | 130 | self.dataOut.channelList = list(range(self.systemHeaderObj.nChannels)) |
|
131 | 131 | self.dataOut.nCohInt = self.processingHeaderObj.nCohInt |
|
132 | 132 | # asumo q la data no esta decodificada |
|
133 | 133 | self.dataOut.flagDecodeData = self.processingHeaderObj.flag_decode |
|
134 | 134 | # asumo q la data no esta sin flip |
|
135 | 135 | self.dataOut.flagDeflipData = self.processingHeaderObj.flag_deflip |
|
136 | 136 | self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft |
|
137 | 137 | self.dataOut.frequency = self.frequency |
|
138 | 138 | |
|
139 | 139 | def getBasicHeader(self): |
|
140 | 140 | self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond / \ |
|
141 | 141 | 1000. + self.profileIndex * self.radarControllerHeaderObj.ippSeconds |
|
142 | 142 | |
|
143 | 143 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock |
|
144 | 144 | self.dataOut.timeZone = self.basicHeaderObj.timeZone |
|
145 | 145 | self.dataOut.dstFlag = self.basicHeaderObj.dstFlag |
|
146 | 146 | self.dataOut.errorCount = self.basicHeaderObj.errorCount |
|
147 | 147 | self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime |
|
148 | 148 | self.dataOut.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs |
|
149 | 149 | |
|
150 | 150 | def readFirstHeader(self): |
|
151 | 151 | |
|
152 | 152 | datatype = int(numpy.log2((self.processingHeaderObj.processFlags & |
|
153 | 153 | PROCFLAG.DATATYPE_MASK)) - numpy.log2(PROCFLAG.DATATYPE_CHAR)) |
|
154 | 154 | if datatype == 0: |
|
155 | 155 | datatype_str = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
156 | 156 | elif datatype == 1: |
|
157 | 157 | datatype_str = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
158 | 158 | elif datatype == 2: |
|
159 | 159 | datatype_str = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
160 | 160 | elif datatype == 3: |
|
161 | 161 | datatype_str = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
162 | 162 | elif datatype == 4: |
|
163 | 163 | datatype_str = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
164 | 164 | elif datatype == 5: |
|
165 | 165 | datatype_str = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
166 | 166 | else: |
|
167 | 167 | raise ValueError('Data type was not defined') |
|
168 | 168 | |
|
169 | 169 | self.dtype = datatype_str |
|
170 | 170 | |
|
171 | 171 | |
|
172 | 172 | def set_RCH(self, expType=2, nTx=1,ipp=None, txA=0, txB=0, |
|
173 | 173 | nWindows=None, nHeights=None, firstHeight=None, deltaHeight=None, |
|
174 | 174 | numTaus=0, line6Function=0, line5Function=0, fClock=None, |
|
175 | 175 | prePulseBefore=0, prePulseAfter=0, |
|
176 | 176 | codeType=0, nCode=0, nBaud=0, code=None, |
|
177 | 177 | flip1=0, flip2=0,Taus=0): |
|
178 | 178 | self.radarControllerHeaderObj.expType = expType |
|
179 | 179 | self.radarControllerHeaderObj.nTx = nTx |
|
180 | 180 | self.radarControllerHeaderObj.ipp = float(ipp) |
|
181 | 181 | self.radarControllerHeaderObj.txA = float(txA) |
|
182 | 182 | self.radarControllerHeaderObj.txB = float(txB) |
|
183 | 183 | self.radarControllerHeaderObj.rangeIpp = b'A\n'#ipp |
|
184 | 184 | self.radarControllerHeaderObj.rangeTxA = b'' |
|
185 | 185 | self.radarControllerHeaderObj.rangeTxB = b'' |
|
186 | 186 | |
|
187 | 187 | self.radarControllerHeaderObj.nHeights = int(nHeights) |
|
188 | 188 | self.radarControllerHeaderObj.firstHeight = numpy.array([firstHeight]) |
|
189 | 189 | self.radarControllerHeaderObj.deltaHeight = numpy.array([deltaHeight]) |
|
190 | 190 | self.radarControllerHeaderObj.samplesWin = numpy.array([nHeights]) |
|
191 | 191 | |
|
192 | 192 | |
|
193 | 193 | self.radarControllerHeaderObj.nWindows = nWindows |
|
194 | 194 | self.radarControllerHeaderObj.numTaus = numTaus |
|
195 | 195 | self.radarControllerHeaderObj.codeType = codeType |
|
196 | 196 | self.radarControllerHeaderObj.line6Function = line6Function |
|
197 | 197 | self.radarControllerHeaderObj.line5Function = line5Function |
|
198 | 198 | #self.radarControllerHeaderObj.fClock = fClock |
|
199 | 199 | self.radarControllerHeaderObj.prePulseBefore= prePulseBefore |
|
200 | 200 | self.radarControllerHeaderObj.prePulseAfter = prePulseAfter |
|
201 | 201 | |
|
202 | 202 | self.radarControllerHeaderObj.flip1 = flip1 |
|
203 | 203 | self.radarControllerHeaderObj.flip2 = flip2 |
|
204 | 204 | |
|
205 | 205 | self.radarControllerHeaderObj.code_size = 0 |
|
206 | 206 | if self.radarControllerHeaderObj.codeType != 0: |
|
207 | 207 | self.radarControllerHeaderObj.nCode = nCode |
|
208 | 208 | self.radarControllerHeaderObj.nBaud = nBaud |
|
209 | 209 | self.radarControllerHeaderObj.code = code |
|
210 | 210 | self.radarControllerHeaderObj.code_size = int(numpy.ceil(nBaud / 32.)) * nCode * 4 |
|
211 | 211 | |
|
212 | 212 | if fClock is None and deltaHeight is not None: |
|
213 | 213 | self.fClock = 0.15 / (deltaHeight * 1e-6) |
|
214 | 214 | self.radarControllerHeaderObj.fClock = self.fClock |
|
215 | 215 | if numTaus==0: |
|
216 | 216 | self.radarControllerHeaderObj.Taus = numpy.array(0,'<f4') |
|
217 | 217 | else: |
|
218 | 218 | self.radarControllerHeaderObj.Taus = numpy.array(Taus,'<f4') |
|
219 | 219 | |
|
220 | 220 | def set_PH(self, dtype=0, blockSize=0, profilesPerBlock=0, |
|
221 | 221 | dataBlocksPerFile=0, nWindows=0, processFlags=0, nCohInt=0, |
|
222 | 222 | nIncohInt=0, totalSpectra=0, nHeights=0, firstHeight=0, |
|
223 | 223 | deltaHeight=0, samplesWin=0, spectraComb=0, nCode=0, |
|
224 | 224 | code=0, nBaud=None, shif_fft=False, flag_dc=False, |
|
225 | 225 | flag_cspc=False, flag_decode=False, flag_deflip=False): |
|
226 | 226 | |
|
227 | 227 | self.processingHeaderObj.dtype = dtype |
|
228 | 228 | self.processingHeaderObj.profilesPerBlock = profilesPerBlock |
|
229 | 229 | self.processingHeaderObj.dataBlocksPerFile = dataBlocksPerFile |
|
230 | 230 | self.processingHeaderObj.nWindows = nWindows |
|
231 | 231 | self.processingHeaderObj.processFlags = processFlags |
|
232 | 232 | self.processingHeaderObj.nCohInt = nCohInt |
|
233 | 233 | self.processingHeaderObj.nIncohInt = nIncohInt |
|
234 | 234 | self.processingHeaderObj.totalSpectra = totalSpectra |
|
235 | 235 | |
|
236 | 236 | self.processingHeaderObj.nHeights = int(nHeights) |
|
237 | 237 | self.processingHeaderObj.firstHeight = firstHeight#numpy.array([firstHeight])#firstHeight |
|
238 | 238 | self.processingHeaderObj.deltaHeight = deltaHeight#numpy.array([deltaHeight])#deltaHeight |
|
239 | 239 | self.processingHeaderObj.samplesWin = nHeights#numpy.array([nHeights])#nHeights |
|
240 | 240 | |
|
241 | 241 | def set_BH(self, utc = 0, miliSecond = 0, timeZone = 0): |
|
242 | 242 | self.basicHeaderObj.utc = utc |
|
243 | 243 | self.basicHeaderObj.miliSecond = miliSecond |
|
244 | 244 | self.basicHeaderObj.timeZone = timeZone |
|
245 | 245 | |
|
246 | 246 | def set_SH(self, nSamples=0, nProfiles=0, nChannels=0, adcResolution=14, pciDioBusWidth=32): |
|
247 | 247 | #self.systemHeaderObj.size = size |
|
248 | 248 | self.systemHeaderObj.nSamples = nSamples |
|
249 | 249 | self.systemHeaderObj.nProfiles = nProfiles |
|
250 | 250 | self.systemHeaderObj.nChannels = nChannels |
|
251 | 251 | self.systemHeaderObj.adcResolution = adcResolution |
|
252 | 252 | self.systemHeaderObj.pciDioBusWidth = pciDioBusWidth |
|
253 | 253 | |
|
254 | 254 | def init_acquisition(self): |
|
255 | 255 | |
|
256 | 256 | if self.nFFTPoints != 0: |
|
257 | 257 | self.incIntFactor = m_nProfilesperBlock/self.nFFTPoints |
|
258 | 258 | if (self.FixPP_IncInt > self.incIntFactor): |
|
259 | 259 | self.incIntFactor = self.FixPP_IncInt/ self.incIntFactor |
|
260 | 260 | elif(self.FixPP_IncInt< self.incIntFactor): |
|
261 | 261 | print("False alert...") |
|
262 | 262 | |
|
263 | 263 | ProfilesperBlock = self.processingHeaderObj.profilesPerBlock |
|
264 | 264 | |
|
265 | 265 | self.timeperblock =int(((self.FixRCP_IPP |
|
266 | 266 | *ProfilesperBlock |
|
267 | 267 | *self.FixPP_CohInt |
|
268 | 268 | *self.incIntFactor) |
|
269 | 269 | /150.0) |
|
270 | 270 | *0.9 |
|
271 | 271 | +0.5) |
|
272 | 272 | # para cada canal |
|
273 | 273 | self.profiles = ProfilesperBlock*self.FixPP_CohInt |
|
274 | 274 | self.profiles = ProfilesperBlock |
|
275 | 275 | self.Reference = int((self.Tau_0-self.AcqH0_0)/(self.AcqDH_0)+0.5) |
|
276 | 276 | self.BaudWidth = int((self.FixRCP_TXA/self.AcqDH_0)/self.Bauds + 0.5 ) |
|
277 | 277 | |
|
278 | 278 | if (self.BaudWidth==0): |
|
279 | 279 | self.BaudWidth=1 |
|
280 | 280 | |
|
281 | 281 | def init_pulse(self,Num_Codes=Num_Codes,Bauds=Bauds,BaudWidth=BaudWidth,Dyn_snCode=Dyn_snCode): |
|
282 | 282 | |
|
283 | 283 | Num_Codes = Num_Codes |
|
284 | 284 | Bauds = Bauds |
|
285 | 285 | BaudWidth = BaudWidth |
|
286 | 286 | Dyn_snCode = Dyn_snCode |
|
287 | 287 | |
|
288 | 288 | if Dyn_snCode: |
|
289 | 289 | print("EXISTE") |
|
290 | 290 | else: |
|
291 | 291 | print("No existe") |
|
292 | 292 | |
|
293 | 293 | if Dyn_snCode: # if Bauds: |
|
294 | 294 | pulses = list(range(0,Num_Codes)) |
|
295 | 295 | num_codes = Num_Codes |
|
296 | 296 | for i in range(num_codes): |
|
297 | 297 | pulse_size = Bauds*BaudWidth |
|
298 | 298 | pulses[i] = numpy.zeros(pulse_size) |
|
299 | 299 | for j in range(Bauds): |
|
300 | 300 | for k in range(BaudWidth): |
|
301 | 301 | pulses[i][j*BaudWidth+k] = int(Dyn_snCode[i][j]*600) |
|
302 | 302 | else: |
|
303 | 303 | print("sin code") |
|
304 | 304 | pulses = list(range(1)) |
|
305 | 305 | if self.AcqDH_0>0.149: |
|
306 | 306 | pulse_size = int(self.FixRCP_TXB/0.15+0.5) |
|
307 | 307 | else: |
|
308 | 308 | pulse_size = int((self.FixRCP_TXB/self.AcqDH_0)+0.5) #0.0375 |
|
309 | 309 | pulses[0] = numpy.ones(pulse_size) |
|
310 | 310 | pulses = 600*pulses[0] |
|
311 | 311 | |
|
312 | 312 | return pulses,pulse_size |
|
313 | 313 | |
|
314 | 314 | def jro_GenerateBlockOfData(self,Samples=Samples,DC_level= DC_level,stdev=stdev, |
|
315 | 315 | Reference= Reference,pulses= pulses, |
|
316 | 316 | Num_Codes= Num_Codes,pulse_size=pulse_size, |
|
317 | 317 | prof_gen= prof_gen,H0 = H0,DH0=DH0, |
|
318 | 318 | Adoppler=Adoppler,Fdoppler= Fdoppler,Hdoppler=Hdoppler): |
|
319 | 319 | Samples = Samples |
|
320 | 320 | DC_level = DC_level |
|
321 | 321 | stdev = stdev |
|
322 | 322 | m_nR = Reference |
|
323 | 323 | pulses = pulses |
|
324 | 324 | num_codes = Num_Codes |
|
325 | 325 | ps = pulse_size |
|
326 | 326 | prof_gen = prof_gen |
|
327 | 327 | channels = self.channels |
|
328 | 328 | H0 = H0 |
|
329 | 329 | DH0 = DH0 |
|
330 | 330 | ippSec = self.radarControllerHeaderObj.ippSeconds |
|
331 | 331 | Fdoppler = self.Fdoppler |
|
332 | 332 | Hdoppler = self.Hdoppler |
|
333 | 333 | Adoppler = self.Adoppler |
|
334 | 334 | |
|
335 | 335 | self.datablock = numpy.zeros([channels,prof_gen,Samples],dtype= numpy.complex64) |
|
336 | 336 | for i in range(channels): |
|
337 | 337 | for k in range(prof_gen): |
|
338 | 338 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·NOISEΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
339 | 339 | Noise_r = numpy.random.normal(DC_level,stdev,Samples) |
|
340 | 340 | Noise_i = numpy.random.normal(DC_level,stdev,Samples) |
|
341 | 341 | Noise = numpy.zeros(Samples,dtype=complex) |
|
342 | 342 | Noise.real = Noise_r |
|
343 | 343 | Noise.imag = Noise_i |
|
344 | 344 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·PULSOSΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
345 | 345 | Pulso = numpy.zeros(pulse_size,dtype=complex) |
|
346 | 346 | Pulso.real = pulses[k%num_codes] |
|
347 | 347 | Pulso.imag = pulses[k%num_codes] |
|
348 | 348 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· PULSES+NOISEΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
349 | 349 | InBuffer = numpy.zeros(Samples,dtype=complex) |
|
350 | 350 | InBuffer[m_nR:m_nR+ps] = Pulso |
|
351 | 351 | InBuffer = InBuffer+Noise |
|
352 | 352 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· ANGLE Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
353 | 353 | InBuffer.real[m_nR:m_nR+ps] = InBuffer.real[m_nR:m_nR+ps]*(math.cos( self.fAngle)*5) |
|
354 | 354 | InBuffer.imag[m_nR:m_nR+ps] = InBuffer.imag[m_nR:m_nR+ps]*(math.sin( self.fAngle)*5) |
|
355 | 355 | InBuffer=InBuffer |
|
356 | 356 | self.datablock[i][k]= InBuffer |
|
357 | #plot_cts(InBuffer,H0=H0,DH0=DH0) | |
|
358 | #wave_fft(x=InBuffer,plot_show=True) | |
|
359 | #time.sleep(1) | |
|
357 | ||
|
360 | 358 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·DOPPLER SIGNAL............................................... |
|
361 | 359 | time_vec = numpy.linspace(0,(prof_gen-1)*ippSec,int(prof_gen))+self.nReadBlocks*ippSec*prof_gen+(self.nReadFiles-1)*ippSec*prof_gen |
|
362 | 360 | fd = Fdoppler #+(600.0/120)*self.nReadBlocks |
|
363 | 361 | d_signal = Adoppler*numpy.array(numpy.exp(1.0j*2.0*math.pi*fd*time_vec),dtype=numpy.complex64) |
|
364 | 362 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·SeΓ±al con ancho espectralΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
365 | #specw_sig = numpy.zeros(int(prof_gen),dtype=complex) | |
|
366 | #specw_sig.real[200:200+100] = 1*numpy.ones(100) | |
|
367 | #specw_sig.imag[200:200+100] = 1*numpy.ones(100) | |
|
368 | # w=2 | |
|
369 |
specw_sig = numpy. |
|
|
370 | w = 3 | |
|
371 | A = 10 | |
|
372 | specw_sig = specw_sig/w | |
|
373 | specw_sig = numpy.sinc(specw_sig) | |
|
374 | specw_sig = A*numpy.array(specw_sig,dtype=numpy.complex64) | |
|
363 | #specw_sig = numpy.linspace(-149,150,300) | |
|
364 | #w = 8 | |
|
365 | #A = 20 | |
|
366 | #specw_sig = specw_sig/w | |
|
367 | #specw_sig = numpy.sinc(specw_sig) | |
|
368 | #specw_sig = A*numpy.array(specw_sig,dtype=numpy.complex64) | |
|
375 | 369 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLERΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
376 | 370 | HD=int(Hdoppler/self.AcqDH_0) |
|
377 | 371 | for i in range(12): |
|
378 | 372 | self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ d_signal# RESULT |
|
379 | ||
|
380 | HD=int(Hdoppler/self.AcqDH_0) | |
|
381 | HD=int(HD/2) | |
|
382 | for i in range(12): | |
|
383 | self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ specw_sig*d_signal# RESULT | |
|
384 | ||
|
385 | ''' | |
|
386 | a= numpy.zeros(10) | |
|
387 | for i in range(10): | |
|
388 | a[i]=i+self.nReadBlocks+20 | |
|
389 | for i in a: | |
|
390 | self.datablock[0,:,int(i)]=self.datablock[0,:,int(i)]+ d_signal # RESULT | |
|
391 | ''' | |
|
373 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLER*Sinc(x)Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |
|
374 | #HD=int(Hdoppler/self.AcqDH_0) | |
|
375 | #HD=int(HD/2) | |
|
376 | #for i in range(12): | |
|
377 | # self.datablock[0,:,HD+i]=self.datablock[0,:,HD+i]+ specw_sig*d_signal# RESULT | |
|
392 | 378 | |
|
393 | 379 | def readBlock(self): |
|
394 | 380 | |
|
395 | 381 | self.jro_GenerateBlockOfData(Samples= self.samples,DC_level=self.DC_level, |
|
396 | 382 | stdev=self.stdev,Reference= self.Reference, |
|
397 | 383 | pulses = self.pulses,Num_Codes=self.Num_Codes, |
|
398 | 384 | pulse_size=self.pulse_size,prof_gen=self.profiles, |
|
399 | 385 | H0=self.H0,DH0=self.DH0) |
|
400 | 386 | |
|
401 | 387 | self.profileIndex = 0 |
|
402 | 388 | self.flagIsNewFile = 0 |
|
403 | 389 | self.flagIsNewBlock = 1 |
|
404 | 390 | self.nTotalBlocks += 1 |
|
405 | 391 | self.nReadBlocks += 1 |
|
406 | 392 | |
|
407 | 393 | return 1 |
|
408 | 394 | |
|
409 | 395 | |
|
410 | 396 | def getData(self): |
|
411 | 397 | if self.flagNoMoreFiles: |
|
412 | 398 | self.dataOut.flagNodata = True |
|
413 | 399 | return 0 |
|
414 | 400 | self.flagDiscontinuousBlock = 0 |
|
415 | 401 | self.flagIsNewBlock = 0 |
|
416 | 402 | if self.__hasNotDataInBuffer(): # aqui es verdad |
|
417 | 403 | if not(self.readNextBlock()): # return 1 y por eso el if not salta a getBasic Header |
|
418 | 404 | return 0 |
|
419 | 405 | self.getFirstHeader() # atributo |
|
420 | 406 | |
|
421 | 407 | if not self.getByBlock: |
|
422 | 408 | self.dataOut.flagDataAsBlock = False |
|
423 | 409 | self.dataOut.data = self.datablock[:, self.profileIndex, :] |
|
424 | 410 | self.dataOut.profileIndex = self.profileIndex |
|
425 | 411 | self.profileIndex += 1 |
|
426 | 412 | else: |
|
427 | 413 | pass |
|
428 | 414 | self.dataOut.flagNoData = False |
|
429 | 415 | self.getBasicHeader() |
|
430 | 416 | self.dataOut.realtime = self.online |
|
431 | 417 | return self.dataOut.data |
|
432 | 418 | |
|
433 | 419 | |
|
434 | 420 | def setup(self,frequency=49.92e6,incIntFactor= 1, nFFTPoints = 0, FixPP_IncInt=1,FixRCP_IPP=1000, |
|
435 | 421 | FixPP_CohInt= 1,Tau_0= 250,AcqH0_0 = 70 ,AcqDH_0=1.25, Bauds= 32, |
|
436 | 422 | FixRCP_TXA = 40, FixRCP_TXB = 50, fAngle = 2.0*math.pi*(1/16),DC_level= 50, |
|
437 | 423 | stdev= 8,Num_Codes = 1 , Dyn_snCode = None, samples=200, |
|
438 | 424 | channels=2,Fdoppler=20,Hdoppler=36,Adoppler=500,nTotalReadFiles=10000, |
|
439 | 425 | **kwargs): |
|
440 | 426 | |
|
441 | 427 | self.set_kwargs(**kwargs) |
|
442 | 428 | self.nReadBlocks = 0 |
|
443 | 429 | self.nReadFiles = 1 |
|
444 | 430 | print('------------------- [Opening file: ] ------------------------------',self.nReadFiles) |
|
445 | 431 | |
|
446 | 432 | tmp = time.time() |
|
447 | 433 | tmp_utc = int(tmp) |
|
448 | 434 | tmp_milisecond = int((tmp-tmp_utc)*1000) |
|
449 | 435 | print(" SETUP -basicHeaderObj.utc",datetime.datetime.utcfromtimestamp(tmp)) |
|
450 | 436 | if Dyn_snCode is None: |
|
451 | 437 | Num_Codes=1 |
|
452 | 438 | Bauds =1 |
|
453 | 439 | |
|
454 | 440 | |
|
455 | 441 | |
|
456 | 442 | self.set_BH(utc= tmp_utc,miliSecond= tmp_milisecond,timeZone=300 ) |
|
457 | 443 | self.set_RCH( expType=0, nTx=150,ipp=FixRCP_IPP, txA=FixRCP_TXA, txB= FixRCP_TXB, |
|
458 | 444 | nWindows=1 , nHeights=samples, firstHeight=AcqH0_0, deltaHeight=AcqDH_0, |
|
459 | 445 | numTaus=1, line6Function=0, line5Function=0, fClock=None, |
|
460 | 446 | prePulseBefore=0, prePulseAfter=0, |
|
461 | 447 | codeType=0, nCode=Num_Codes, nBaud=32, code=Dyn_snCode, |
|
462 | 448 | flip1=0, flip2=0,Taus=Tau_0) |
|
463 | 449 | |
|
464 | 450 | self.set_PH(dtype=0, blockSize=0, profilesPerBlock=300, |
|
465 | 451 | dataBlocksPerFile=120, nWindows=1, processFlags=numpy.array([1024]), nCohInt=1, |
|
466 | 452 | nIncohInt=1, totalSpectra=0, nHeights=samples, firstHeight=AcqH0_0, |
|
467 | 453 | deltaHeight=AcqDH_0, samplesWin=samples, spectraComb=0, nCode=0, |
|
468 | 454 | code=0, nBaud=None, shif_fft=False, flag_dc=False, |
|
469 | 455 | flag_cspc=False, flag_decode=False, flag_deflip=False) |
|
470 | 456 | |
|
471 | 457 | self.set_SH(nSamples=samples, nProfiles=300, nChannels=channels) |
|
472 | 458 | |
|
473 | 459 | self.readFirstHeader() |
|
474 | 460 | |
|
475 | 461 | self.frequency = frequency |
|
476 | 462 | self.incIntFactor = incIntFactor |
|
477 | 463 | self.nFFTPoints = nFFTPoints |
|
478 | 464 | self.FixPP_IncInt = FixPP_IncInt |
|
479 | 465 | self.FixRCP_IPP = FixRCP_IPP |
|
480 | 466 | self.FixPP_CohInt = FixPP_CohInt |
|
481 | 467 | self.Tau_0 = Tau_0 |
|
482 | 468 | self.AcqH0_0 = AcqH0_0 |
|
483 | 469 | self.H0 = AcqH0_0 |
|
484 | 470 | self.AcqDH_0 = AcqDH_0 |
|
485 | 471 | self.DH0 = AcqDH_0 |
|
486 | 472 | self.Bauds = Bauds |
|
487 | 473 | self.FixRCP_TXA = FixRCP_TXA |
|
488 | 474 | self.FixRCP_TXB = FixRCP_TXB |
|
489 | 475 | self.fAngle = fAngle |
|
490 | 476 | self.DC_level = DC_level |
|
491 | 477 | self.stdev = stdev |
|
492 | 478 | self.Num_Codes = Num_Codes |
|
493 | 479 | self.Dyn_snCode = Dyn_snCode |
|
494 | 480 | self.samples = samples |
|
495 | 481 | self.channels = channels |
|
496 | 482 | self.profiles = None |
|
497 | 483 | self.m_nReference = None |
|
498 | 484 | self.Baudwidth = None |
|
499 | 485 | self.Fdoppler = Fdoppler |
|
500 | 486 | self.Hdoppler = Hdoppler |
|
501 | 487 | self.Adoppler = Adoppler |
|
502 | 488 | self.nTotalReadFiles = int(nTotalReadFiles) |
|
503 | 489 | |
|
504 | 490 | print("IPP ", self.FixRCP_IPP) |
|
505 | 491 | print("Tau_0 ",self.Tau_0) |
|
506 | 492 | print("AcqH0_0",self.AcqH0_0) |
|
507 | 493 | print("samples,window ",self.samples) |
|
508 | 494 | print("AcqDH_0",AcqDH_0) |
|
509 | 495 | print("FixRCP_TXA",self.FixRCP_TXA) |
|
510 | 496 | print("FixRCP_TXB",self.FixRCP_TXB) |
|
511 | 497 | print("Dyn_snCode",Dyn_snCode) |
|
512 | 498 | print("Fdoppler", Fdoppler) |
|
513 | 499 | print("Hdoppler",Hdoppler) |
|
514 | 500 | print("Vdopplermax",Fdoppler*(3.0e8/self.frequency)/2.0) |
|
515 | 501 | print("nTotalReadFiles", nTotalReadFiles) |
|
516 | 502 | |
|
517 | 503 | self.init_acquisition() |
|
518 | 504 | self.pulses,self.pulse_size=self.init_pulse(Num_Codes=self.Num_Codes,Bauds=self.Bauds,BaudWidth=self.BaudWidth,Dyn_snCode=Dyn_snCode) |
|
519 | 505 | print(" [ END ] - SETUP metodo") |
|
520 | 506 | return |
|
521 | 507 | |
|
522 | 508 | def run(self,**kwargs): # metodo propio |
|
523 | 509 | if not(self.isConfig): |
|
524 | 510 | self.setup(**kwargs) |
|
525 | 511 | self.isConfig = True |
|
526 | 512 | self.getData() |
@@ -1,1581 +1,1587 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy,math |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
5 | 5 | from schainpy.model.data.jrodata import Voltage |
|
6 | 6 | from schainpy.utils import log |
|
7 | 7 | from time import time |
|
8 | 8 | |
|
9 | 9 | |
|
10 | 10 | |
|
11 | 11 | class VoltageProc(ProcessingUnit): |
|
12 | 12 | |
|
13 | 13 | def __init__(self): |
|
14 | 14 | |
|
15 | 15 | ProcessingUnit.__init__(self) |
|
16 | 16 | |
|
17 | 17 | self.dataOut = Voltage() |
|
18 | 18 | self.flip = 1 |
|
19 | 19 | self.setupReq = False |
|
20 | 20 | |
|
21 | 21 | def run(self): |
|
22 | 22 | |
|
23 | 23 | if self.dataIn.type == 'AMISR': |
|
24 | 24 | self.__updateObjFromAmisrInput() |
|
25 | 25 | |
|
26 | 26 | if self.dataIn.type == 'Voltage': |
|
27 | 27 | self.dataOut.copy(self.dataIn) |
|
28 | 28 | |
|
29 | 29 | def __updateObjFromAmisrInput(self): |
|
30 | 30 | |
|
31 | 31 | self.dataOut.timeZone = self.dataIn.timeZone |
|
32 | 32 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
33 | 33 | self.dataOut.errorCount = self.dataIn.errorCount |
|
34 | 34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
35 | 35 | |
|
36 | 36 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
37 | 37 | self.dataOut.data = self.dataIn.data |
|
38 | 38 | self.dataOut.utctime = self.dataIn.utctime |
|
39 | 39 | self.dataOut.channelList = self.dataIn.channelList |
|
40 | 40 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
41 | 41 | self.dataOut.heightList = self.dataIn.heightList |
|
42 | 42 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
43 | 43 | |
|
44 | 44 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
45 | 45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
46 | 46 | self.dataOut.frequency = self.dataIn.frequency |
|
47 | 47 | |
|
48 | 48 | self.dataOut.azimuth = self.dataIn.azimuth |
|
49 | 49 | self.dataOut.zenith = self.dataIn.zenith |
|
50 | 50 | |
|
51 | 51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
52 | 52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
53 | 53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
54 | 54 | |
|
55 | 55 | |
|
56 | 56 | class selectChannels(Operation): |
|
57 | 57 | |
|
58 | 58 | def run(self, dataOut, channelList): |
|
59 | 59 | |
|
60 | 60 | channelIndexList = [] |
|
61 | 61 | self.dataOut = dataOut |
|
62 | 62 | for channel in channelList: |
|
63 | 63 | if channel not in self.dataOut.channelList: |
|
64 | 64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
65 | 65 | |
|
66 | 66 | index = self.dataOut.channelList.index(channel) |
|
67 | 67 | channelIndexList.append(index) |
|
68 | 68 | self.selectChannelsByIndex(channelIndexList) |
|
69 | 69 | return self.dataOut |
|
70 | 70 | |
|
71 | 71 | def selectChannelsByIndex(self, channelIndexList): |
|
72 | 72 | """ |
|
73 | 73 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
74 | 74 | |
|
75 | 75 | Input: |
|
76 | 76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
77 | 77 | |
|
78 | 78 | Affected: |
|
79 | 79 | self.dataOut.data |
|
80 | 80 | self.dataOut.channelIndexList |
|
81 | 81 | self.dataOut.nChannels |
|
82 | 82 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
83 | 83 | self.dataOut.systemHeaderObj.numChannels |
|
84 | 84 | self.dataOut.m_ProcessingHeader.blockSize |
|
85 | 85 | |
|
86 | 86 | Return: |
|
87 | 87 | None |
|
88 | 88 | """ |
|
89 | 89 | |
|
90 | 90 | for channelIndex in channelIndexList: |
|
91 | 91 | if channelIndex not in self.dataOut.channelIndexList: |
|
92 | 92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
93 | 93 | |
|
94 | 94 | if self.dataOut.type == 'Voltage': |
|
95 | 95 | if self.dataOut.flagDataAsBlock: |
|
96 | 96 | """ |
|
97 | 97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
98 | 98 | """ |
|
99 | 99 | data = self.dataOut.data[channelIndexList,:,:] |
|
100 | 100 | else: |
|
101 | 101 | data = self.dataOut.data[channelIndexList,:] |
|
102 | 102 | |
|
103 | 103 | self.dataOut.data = data |
|
104 | 104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
105 | 105 | self.dataOut.channelList = range(len(channelIndexList)) |
|
106 | 106 | |
|
107 | 107 | elif self.dataOut.type == 'Spectra': |
|
108 | 108 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
109 | 109 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
110 | 110 | |
|
111 | 111 | self.dataOut.data_spc = data_spc |
|
112 | 112 | self.dataOut.data_dc = data_dc |
|
113 | 113 | |
|
114 | 114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
115 | 115 | self.dataOut.channelList = range(len(channelIndexList)) |
|
116 | 116 | self.__selectPairsByChannel(channelIndexList) |
|
117 | 117 | |
|
118 | 118 | return 1 |
|
119 | 119 | |
|
120 | 120 | def __selectPairsByChannel(self, channelList=None): |
|
121 | 121 | |
|
122 | 122 | if channelList == None: |
|
123 | 123 | return |
|
124 | 124 | |
|
125 | 125 | pairsIndexListSelected = [] |
|
126 | 126 | for pairIndex in self.dataOut.pairsIndexList: |
|
127 | 127 | # First pair |
|
128 | 128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
129 | 129 | continue |
|
130 | 130 | # Second pair |
|
131 | 131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
132 | 132 | continue |
|
133 | 133 | |
|
134 | 134 | pairsIndexListSelected.append(pairIndex) |
|
135 | 135 | |
|
136 | 136 | if not pairsIndexListSelected: |
|
137 | 137 | self.dataOut.data_cspc = None |
|
138 | 138 | self.dataOut.pairsList = [] |
|
139 | 139 | return |
|
140 | 140 | |
|
141 | 141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
142 | 142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
143 | 143 | for i in pairsIndexListSelected] |
|
144 | 144 | |
|
145 | 145 | return |
|
146 | 146 | |
|
147 | 147 | class selectHeights(Operation): |
|
148 | 148 | |
|
149 | 149 | def run(self, dataOut, minHei=None, maxHei=None): |
|
150 | 150 | """ |
|
151 | 151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
152 | 152 | minHei <= height <= maxHei |
|
153 | 153 | |
|
154 | 154 | Input: |
|
155 | 155 | minHei : valor minimo de altura a considerar |
|
156 | 156 | maxHei : valor maximo de altura a considerar |
|
157 | 157 | |
|
158 | 158 | Affected: |
|
159 | 159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
160 | 160 | |
|
161 | 161 | Return: |
|
162 | 162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
163 | 163 | """ |
|
164 | 164 | |
|
165 | 165 | self.dataOut = dataOut |
|
166 | 166 | |
|
167 | 167 | if minHei == None: |
|
168 | 168 | minHei = self.dataOut.heightList[0] |
|
169 | 169 | |
|
170 | 170 | if maxHei == None: |
|
171 | 171 | maxHei = self.dataOut.heightList[-1] |
|
172 | 172 | |
|
173 | 173 | if (minHei < self.dataOut.heightList[0]): |
|
174 | 174 | minHei = self.dataOut.heightList[0] |
|
175 | 175 | |
|
176 | 176 | if (maxHei > self.dataOut.heightList[-1]): |
|
177 | 177 | maxHei = self.dataOut.heightList[-1] |
|
178 | 178 | |
|
179 | 179 | minIndex = 0 |
|
180 | 180 | maxIndex = 0 |
|
181 | 181 | heights = self.dataOut.heightList |
|
182 | 182 | |
|
183 | 183 | inda = numpy.where(heights >= minHei) |
|
184 | 184 | indb = numpy.where(heights <= maxHei) |
|
185 | 185 | |
|
186 | 186 | try: |
|
187 | 187 | minIndex = inda[0][0] |
|
188 | 188 | except: |
|
189 | 189 | minIndex = 0 |
|
190 | 190 | |
|
191 | 191 | try: |
|
192 | 192 | maxIndex = indb[0][-1] |
|
193 | 193 | except: |
|
194 | 194 | maxIndex = len(heights) |
|
195 | 195 | |
|
196 | 196 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
197 | 197 | |
|
198 | 198 | return self.dataOut |
|
199 | 199 | |
|
200 | 200 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
201 | 201 | """ |
|
202 | 202 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
203 | 203 | minIndex <= index <= maxIndex |
|
204 | 204 | |
|
205 | 205 | Input: |
|
206 | 206 | minIndex : valor de indice minimo de altura a considerar |
|
207 | 207 | maxIndex : valor de indice maximo de altura a considerar |
|
208 | 208 | |
|
209 | 209 | Affected: |
|
210 | 210 | self.dataOut.data |
|
211 | 211 | self.dataOut.heightList |
|
212 | 212 | |
|
213 | 213 | Return: |
|
214 | 214 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
215 | 215 | """ |
|
216 | 216 | |
|
217 | 217 | if self.dataOut.type == 'Voltage': |
|
218 | 218 | if (minIndex < 0) or (minIndex > maxIndex): |
|
219 | 219 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
220 | 220 | |
|
221 | 221 | if (maxIndex >= self.dataOut.nHeights): |
|
222 | 222 | maxIndex = self.dataOut.nHeights |
|
223 | 223 | |
|
224 | 224 | #voltage |
|
225 | 225 | if self.dataOut.flagDataAsBlock: |
|
226 | 226 | """ |
|
227 | 227 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
228 | 228 | """ |
|
229 | 229 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
230 | 230 | else: |
|
231 | 231 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
232 | 232 | |
|
233 | 233 | # firstHeight = self.dataOut.heightList[minIndex] |
|
234 | 234 | |
|
235 | 235 | self.dataOut.data = data |
|
236 | 236 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
237 | 237 | |
|
238 | 238 | if self.dataOut.nHeights <= 1: |
|
239 | 239 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
240 | 240 | elif self.dataOut.type == 'Spectra': |
|
241 | 241 | if (minIndex < 0) or (minIndex > maxIndex): |
|
242 | 242 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
243 | 243 | minIndex, maxIndex)) |
|
244 | 244 | |
|
245 | 245 | if (maxIndex >= self.dataOut.nHeights): |
|
246 | 246 | maxIndex = self.dataOut.nHeights - 1 |
|
247 | 247 | |
|
248 | 248 | # Spectra |
|
249 | 249 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
250 | 250 | |
|
251 | 251 | data_cspc = None |
|
252 | 252 | if self.dataOut.data_cspc is not None: |
|
253 | 253 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
254 | 254 | |
|
255 | 255 | data_dc = None |
|
256 | 256 | if self.dataOut.data_dc is not None: |
|
257 | 257 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
258 | 258 | |
|
259 | 259 | self.dataOut.data_spc = data_spc |
|
260 | 260 | self.dataOut.data_cspc = data_cspc |
|
261 | 261 | self.dataOut.data_dc = data_dc |
|
262 | 262 | |
|
263 | 263 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
264 | 264 | |
|
265 | 265 | return 1 |
|
266 | 266 | |
|
267 | 267 | |
|
268 | 268 | class filterByHeights(Operation): |
|
269 | 269 | |
|
270 | 270 | def run(self, dataOut, window): |
|
271 | 271 | |
|
272 | 272 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
273 | 273 | |
|
274 | 274 | if window == None: |
|
275 | 275 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
276 | 276 | |
|
277 | 277 | newdelta = deltaHeight * window |
|
278 | 278 | r = dataOut.nHeights % window |
|
279 | 279 | newheights = (dataOut.nHeights-r)/window |
|
280 | 280 | |
|
281 | 281 | if newheights <= 1: |
|
282 | 282 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
283 | 283 | |
|
284 | 284 | if dataOut.flagDataAsBlock: |
|
285 | 285 | """ |
|
286 | 286 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
287 | 287 | """ |
|
288 | 288 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
289 | 289 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
290 | 290 | buffer = numpy.sum(buffer,3) |
|
291 | 291 | |
|
292 | 292 | else: |
|
293 | 293 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
294 | 294 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
295 | 295 | buffer = numpy.sum(buffer,2) |
|
296 | 296 | |
|
297 | 297 | dataOut.data = buffer |
|
298 | 298 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
299 | 299 | dataOut.windowOfFilter = window |
|
300 | 300 | |
|
301 | 301 | return dataOut |
|
302 | 302 | |
|
303 | 303 | |
|
304 | 304 | class setH0(Operation): |
|
305 | 305 | |
|
306 | 306 | def run(self, dataOut, h0, deltaHeight = None): |
|
307 | 307 | |
|
308 | 308 | if not deltaHeight: |
|
309 | 309 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
310 | 310 | |
|
311 | 311 | nHeights = dataOut.nHeights |
|
312 | 312 | |
|
313 | 313 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
314 | 314 | |
|
315 | 315 | dataOut.heightList = newHeiRange |
|
316 | 316 | |
|
317 | 317 | return dataOut |
|
318 | 318 | |
|
319 | 319 | |
|
320 | 320 | class deFlip(Operation): |
|
321 | 321 | |
|
322 | 322 | def run(self, dataOut, channelList = []): |
|
323 | 323 | |
|
324 | 324 | data = dataOut.data.copy() |
|
325 | 325 | |
|
326 | 326 | if dataOut.flagDataAsBlock: |
|
327 | 327 | flip = self.flip |
|
328 | 328 | profileList = list(range(dataOut.nProfiles)) |
|
329 | 329 | |
|
330 | 330 | if not channelList: |
|
331 | 331 | for thisProfile in profileList: |
|
332 | 332 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
333 | 333 | flip *= -1.0 |
|
334 | 334 | else: |
|
335 | 335 | for thisChannel in channelList: |
|
336 | 336 | if thisChannel not in dataOut.channelList: |
|
337 | 337 | continue |
|
338 | 338 | |
|
339 | 339 | for thisProfile in profileList: |
|
340 | 340 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
341 | 341 | flip *= -1.0 |
|
342 | 342 | |
|
343 | 343 | self.flip = flip |
|
344 | 344 | |
|
345 | 345 | else: |
|
346 | 346 | if not channelList: |
|
347 | 347 | data[:,:] = data[:,:]*self.flip |
|
348 | 348 | else: |
|
349 | 349 | for thisChannel in channelList: |
|
350 | 350 | if thisChannel not in dataOut.channelList: |
|
351 | 351 | continue |
|
352 | 352 | |
|
353 | 353 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
354 | 354 | |
|
355 | 355 | self.flip *= -1. |
|
356 | 356 | |
|
357 | 357 | dataOut.data = data |
|
358 | 358 | |
|
359 | 359 | return dataOut |
|
360 | 360 | |
|
361 | 361 | |
|
362 | 362 | class setAttribute(Operation): |
|
363 | 363 | ''' |
|
364 | 364 | Set an arbitrary attribute(s) to dataOut |
|
365 | 365 | ''' |
|
366 | 366 | |
|
367 | 367 | def __init__(self): |
|
368 | 368 | |
|
369 | 369 | Operation.__init__(self) |
|
370 | 370 | self._ready = False |
|
371 | 371 | |
|
372 | 372 | def run(self, dataOut, **kwargs): |
|
373 | 373 | |
|
374 | 374 | for key, value in kwargs.items(): |
|
375 | 375 | setattr(dataOut, key, value) |
|
376 | 376 | |
|
377 | 377 | return dataOut |
|
378 | 378 | |
|
379 | 379 | |
|
380 | 380 | class interpolateHeights(Operation): |
|
381 | 381 | |
|
382 | 382 | def run(self, dataOut, topLim, botLim): |
|
383 | 383 | #69 al 72 para julia |
|
384 | 384 | #82-84 para meteoros |
|
385 | 385 | if len(numpy.shape(dataOut.data))==2: |
|
386 | 386 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
387 | 387 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
388 | 388 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
389 | 389 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
390 | 390 | else: |
|
391 | 391 | nHeights = dataOut.data.shape[2] |
|
392 | 392 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
393 | 393 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
394 | 394 | f = interpolate.interp1d(x, y, axis = 2) |
|
395 | 395 | xnew = numpy.arange(botLim,topLim+1) |
|
396 | 396 | ynew = f(xnew) |
|
397 | 397 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
398 | 398 | |
|
399 | 399 | return dataOut |
|
400 | 400 | |
|
401 | 401 | |
|
402 | 402 | class CohInt(Operation): |
|
403 | 403 | |
|
404 | 404 | isConfig = False |
|
405 | 405 | __profIndex = 0 |
|
406 | 406 | __byTime = False |
|
407 | 407 | __initime = None |
|
408 | 408 | __lastdatatime = None |
|
409 | 409 | __integrationtime = None |
|
410 | 410 | __buffer = None |
|
411 | 411 | __bufferStride = [] |
|
412 | 412 | __dataReady = False |
|
413 | 413 | __profIndexStride = 0 |
|
414 | 414 | __dataToPutStride = False |
|
415 | 415 | n = None |
|
416 | 416 | |
|
417 | 417 | def __init__(self, **kwargs): |
|
418 | 418 | |
|
419 | 419 | Operation.__init__(self, **kwargs) |
|
420 | 420 | |
|
421 | 421 | # self.isConfig = False |
|
422 | 422 | |
|
423 | 423 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
424 | 424 | """ |
|
425 | 425 | Set the parameters of the integration class. |
|
426 | 426 | |
|
427 | 427 | Inputs: |
|
428 | 428 | |
|
429 | 429 | n : Number of coherent integrations |
|
430 | 430 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
431 | 431 | overlapping : |
|
432 | 432 | """ |
|
433 | 433 | |
|
434 | 434 | self.__initime = None |
|
435 | 435 | self.__lastdatatime = 0 |
|
436 | 436 | self.__buffer = None |
|
437 | 437 | self.__dataReady = False |
|
438 | 438 | self.byblock = byblock |
|
439 | 439 | self.stride = stride |
|
440 | 440 | |
|
441 | 441 | if n == None and timeInterval == None: |
|
442 | 442 | raise ValueError("n or timeInterval should be specified ...") |
|
443 | 443 | |
|
444 | 444 | if n != None: |
|
445 | 445 | self.n = n |
|
446 | 446 | self.__byTime = False |
|
447 | 447 | else: |
|
448 | 448 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
449 | 449 | self.n = 9999 |
|
450 | 450 | self.__byTime = True |
|
451 | 451 | |
|
452 | 452 | if overlapping: |
|
453 | 453 | self.__withOverlapping = True |
|
454 | 454 | self.__buffer = None |
|
455 | 455 | else: |
|
456 | 456 | self.__withOverlapping = False |
|
457 | 457 | self.__buffer = 0 |
|
458 | 458 | |
|
459 | 459 | self.__profIndex = 0 |
|
460 | 460 | |
|
461 | 461 | def putData(self, data): |
|
462 | 462 | |
|
463 | 463 | """ |
|
464 | 464 | Add a profile to the __buffer and increase in one the __profileIndex |
|
465 | 465 | |
|
466 | 466 | """ |
|
467 | 467 | |
|
468 | 468 | if not self.__withOverlapping: |
|
469 | 469 | self.__buffer += data.copy() |
|
470 | 470 | self.__profIndex += 1 |
|
471 | 471 | return |
|
472 | 472 | |
|
473 | 473 | #Overlapping data |
|
474 | 474 | nChannels, nHeis = data.shape |
|
475 | 475 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
476 | 476 | |
|
477 | 477 | #If the buffer is empty then it takes the data value |
|
478 | 478 | if self.__buffer is None: |
|
479 | 479 | self.__buffer = data |
|
480 | 480 | self.__profIndex += 1 |
|
481 | 481 | return |
|
482 | 482 | |
|
483 | 483 | #If the buffer length is lower than n then stakcing the data value |
|
484 | 484 | if self.__profIndex < self.n: |
|
485 | 485 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
486 | 486 | self.__profIndex += 1 |
|
487 | 487 | return |
|
488 | 488 | |
|
489 | 489 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
490 | 490 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
491 | 491 | self.__buffer[self.n-1] = data |
|
492 | 492 | self.__profIndex = self.n |
|
493 | 493 | return |
|
494 | 494 | |
|
495 | 495 | |
|
496 | 496 | def pushData(self): |
|
497 | 497 | """ |
|
498 | 498 | Return the sum of the last profiles and the profiles used in the sum. |
|
499 | 499 | |
|
500 | 500 | Affected: |
|
501 | 501 | |
|
502 | 502 | self.__profileIndex |
|
503 | 503 | |
|
504 | 504 | """ |
|
505 | 505 | |
|
506 | 506 | if not self.__withOverlapping: |
|
507 | 507 | data = self.__buffer |
|
508 | 508 | n = self.__profIndex |
|
509 | 509 | |
|
510 | 510 | self.__buffer = 0 |
|
511 | 511 | self.__profIndex = 0 |
|
512 | 512 | |
|
513 | 513 | return data, n |
|
514 | 514 | |
|
515 | 515 | #Integration with Overlapping |
|
516 | 516 | data = numpy.sum(self.__buffer, axis=0) |
|
517 | 517 | # print data |
|
518 | 518 | # raise |
|
519 | 519 | n = self.__profIndex |
|
520 | 520 | |
|
521 | 521 | return data, n |
|
522 | 522 | |
|
523 | 523 | def byProfiles(self, data): |
|
524 | 524 | |
|
525 | 525 | self.__dataReady = False |
|
526 | 526 | avgdata = None |
|
527 | 527 | # n = None |
|
528 | 528 | # print data |
|
529 | 529 | # raise |
|
530 | 530 | self.putData(data) |
|
531 | 531 | |
|
532 | 532 | if self.__profIndex == self.n: |
|
533 | 533 | avgdata, n = self.pushData() |
|
534 | 534 | self.__dataReady = True |
|
535 | 535 | |
|
536 | 536 | return avgdata |
|
537 | 537 | |
|
538 | 538 | def byTime(self, data, datatime): |
|
539 | 539 | |
|
540 | 540 | self.__dataReady = False |
|
541 | 541 | avgdata = None |
|
542 | 542 | n = None |
|
543 | 543 | |
|
544 | 544 | self.putData(data) |
|
545 | 545 | |
|
546 | 546 | if (datatime - self.__initime) >= self.__integrationtime: |
|
547 | 547 | avgdata, n = self.pushData() |
|
548 | 548 | self.n = n |
|
549 | 549 | self.__dataReady = True |
|
550 | 550 | |
|
551 | 551 | return avgdata |
|
552 | 552 | |
|
553 | 553 | def integrateByStride(self, data, datatime): |
|
554 | 554 | # print data |
|
555 | 555 | if self.__profIndex == 0: |
|
556 | 556 | self.__buffer = [[data.copy(), datatime]] |
|
557 | 557 | else: |
|
558 | 558 | self.__buffer.append([data.copy(),datatime]) |
|
559 | 559 | self.__profIndex += 1 |
|
560 | 560 | self.__dataReady = False |
|
561 | 561 | |
|
562 | 562 | if self.__profIndex == self.n * self.stride : |
|
563 | 563 | self.__dataToPutStride = True |
|
564 | 564 | self.__profIndexStride = 0 |
|
565 | 565 | self.__profIndex = 0 |
|
566 | 566 | self.__bufferStride = [] |
|
567 | 567 | for i in range(self.stride): |
|
568 | 568 | current = self.__buffer[i::self.stride] |
|
569 | 569 | data = numpy.sum([t[0] for t in current], axis=0) |
|
570 | 570 | avgdatatime = numpy.average([t[1] for t in current]) |
|
571 | 571 | # print data |
|
572 | 572 | self.__bufferStride.append((data, avgdatatime)) |
|
573 | 573 | |
|
574 | 574 | if self.__dataToPutStride: |
|
575 | 575 | self.__dataReady = True |
|
576 | 576 | self.__profIndexStride += 1 |
|
577 | 577 | if self.__profIndexStride == self.stride: |
|
578 | 578 | self.__dataToPutStride = False |
|
579 | 579 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
580 | 580 | # raise |
|
581 | 581 | return self.__bufferStride[self.__profIndexStride - 1] |
|
582 | 582 | |
|
583 | 583 | |
|
584 | 584 | return None, None |
|
585 | 585 | |
|
586 | 586 | def integrate(self, data, datatime=None): |
|
587 | 587 | |
|
588 | 588 | if self.__initime == None: |
|
589 | 589 | self.__initime = datatime |
|
590 | 590 | |
|
591 | 591 | if self.__byTime: |
|
592 | 592 | avgdata = self.byTime(data, datatime) |
|
593 | 593 | else: |
|
594 | 594 | avgdata = self.byProfiles(data) |
|
595 | 595 | |
|
596 | 596 | |
|
597 | 597 | self.__lastdatatime = datatime |
|
598 | 598 | |
|
599 | 599 | if avgdata is None: |
|
600 | 600 | return None, None |
|
601 | 601 | |
|
602 | 602 | avgdatatime = self.__initime |
|
603 | 603 | |
|
604 | 604 | deltatime = datatime - self.__lastdatatime |
|
605 | 605 | |
|
606 | 606 | if not self.__withOverlapping: |
|
607 | 607 | self.__initime = datatime |
|
608 | 608 | else: |
|
609 | 609 | self.__initime += deltatime |
|
610 | 610 | |
|
611 | 611 | return avgdata, avgdatatime |
|
612 | 612 | |
|
613 | 613 | def integrateByBlock(self, dataOut): |
|
614 | 614 | |
|
615 | 615 | times = int(dataOut.data.shape[1]/self.n) |
|
616 | 616 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
617 | 617 | |
|
618 | 618 | id_min = 0 |
|
619 | 619 | id_max = self.n |
|
620 | 620 | |
|
621 | 621 | for i in range(times): |
|
622 | 622 | junk = dataOut.data[:,id_min:id_max,:] |
|
623 | 623 | avgdata[:,i,:] = junk.sum(axis=1) |
|
624 | 624 | id_min += self.n |
|
625 | 625 | id_max += self.n |
|
626 | 626 | |
|
627 | 627 | timeInterval = dataOut.ippSeconds*self.n |
|
628 | 628 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
629 | 629 | self.__dataReady = True |
|
630 | 630 | return avgdata, avgdatatime |
|
631 | 631 | |
|
632 | 632 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
633 | 633 | |
|
634 | 634 | if not self.isConfig: |
|
635 | 635 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
636 | 636 | self.isConfig = True |
|
637 | 637 | |
|
638 | 638 | if dataOut.flagDataAsBlock: |
|
639 | 639 | """ |
|
640 | 640 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
641 | 641 | """ |
|
642 | 642 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
643 | 643 | dataOut.nProfiles /= self.n |
|
644 | 644 | else: |
|
645 | 645 | if stride is None: |
|
646 | 646 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
647 | 647 | else: |
|
648 | 648 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
649 | 649 | |
|
650 | 650 | |
|
651 | 651 | # dataOut.timeInterval *= n |
|
652 | 652 | dataOut.flagNoData = True |
|
653 | 653 | |
|
654 | 654 | if self.__dataReady: |
|
655 | 655 | dataOut.data = avgdata |
|
656 | 656 | dataOut.nCohInt *= self.n |
|
657 | 657 | dataOut.utctime = avgdatatime |
|
658 | 658 | # print avgdata, avgdatatime |
|
659 | 659 | # raise |
|
660 | 660 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
661 | 661 | dataOut.flagNoData = False |
|
662 | 662 | return dataOut |
|
663 | 663 | |
|
664 | 664 | class Decoder(Operation): |
|
665 | 665 | |
|
666 | 666 | isConfig = False |
|
667 | 667 | __profIndex = 0 |
|
668 | 668 | |
|
669 | 669 | code = None |
|
670 | 670 | |
|
671 | 671 | nCode = None |
|
672 | 672 | nBaud = None |
|
673 | 673 | |
|
674 | 674 | def __init__(self, **kwargs): |
|
675 | 675 | |
|
676 | 676 | Operation.__init__(self, **kwargs) |
|
677 | 677 | |
|
678 | 678 | self.times = None |
|
679 | 679 | self.osamp = None |
|
680 | 680 | # self.__setValues = False |
|
681 | 681 | self.isConfig = False |
|
682 | 682 | self.setupReq = False |
|
683 | 683 | def setup(self, code, osamp, dataOut): |
|
684 | 684 | |
|
685 | 685 | self.__profIndex = 0 |
|
686 | 686 | |
|
687 | 687 | self.code = code |
|
688 | 688 | |
|
689 | 689 | self.nCode = len(code) |
|
690 | 690 | self.nBaud = len(code[0]) |
|
691 | 691 | |
|
692 | 692 | if (osamp != None) and (osamp >1): |
|
693 | 693 | self.osamp = osamp |
|
694 | 694 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
695 | 695 | self.nBaud = self.nBaud*self.osamp |
|
696 | 696 | |
|
697 | 697 | self.__nChannels = dataOut.nChannels |
|
698 | 698 | self.__nProfiles = dataOut.nProfiles |
|
699 | 699 | self.__nHeis = dataOut.nHeights |
|
700 | 700 | |
|
701 | 701 | if self.__nHeis < self.nBaud: |
|
702 | 702 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
703 | 703 | |
|
704 | 704 | #Frequency |
|
705 | 705 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
706 | 706 | |
|
707 | 707 | __codeBuffer[:,0:self.nBaud] = self.code |
|
708 | 708 | |
|
709 | 709 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
710 | 710 | |
|
711 | 711 | if dataOut.flagDataAsBlock: |
|
712 | 712 | |
|
713 | 713 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
714 | 714 | |
|
715 | 715 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
716 | 716 | |
|
717 | 717 | else: |
|
718 | 718 | |
|
719 | 719 | #Time |
|
720 | 720 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
721 | 721 | |
|
722 | 722 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
723 | 723 | |
|
724 | 724 | def __convolutionInFreq(self, data): |
|
725 | 725 | |
|
726 | 726 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
727 | 727 | |
|
728 | 728 | fft_data = numpy.fft.fft(data, axis=1) |
|
729 | 729 | |
|
730 | 730 | conv = fft_data*fft_code |
|
731 | 731 | |
|
732 | 732 | data = numpy.fft.ifft(conv,axis=1) |
|
733 | 733 | |
|
734 | 734 | return data |
|
735 | 735 | |
|
736 | 736 | def __convolutionInFreqOpt(self, data): |
|
737 | 737 | |
|
738 | 738 | raise NotImplementedError |
|
739 | 739 | |
|
740 | 740 | def __convolutionInTime(self, data): |
|
741 | 741 | |
|
742 | 742 | code = self.code[self.__profIndex] |
|
743 | 743 | for i in range(self.__nChannels): |
|
744 | 744 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
745 | 745 | |
|
746 | 746 | return self.datadecTime |
|
747 | 747 | |
|
748 | 748 | def __convolutionByBlockInTime(self, data): |
|
749 | 749 | |
|
750 | 750 | repetitions = int(self.__nProfiles / self.nCode) |
|
751 | 751 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
752 | 752 | junk = junk.flatten() |
|
753 | 753 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
754 | 754 | profilesList = range(self.__nProfiles) |
|
755 | 755 | |
|
756 | 756 | for i in range(self.__nChannels): |
|
757 | 757 | for j in profilesList: |
|
758 | 758 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
759 | 759 | return self.datadecTime |
|
760 | 760 | |
|
761 | 761 | def __convolutionByBlockInFreq(self, data): |
|
762 | 762 | |
|
763 | 763 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
764 | 764 | |
|
765 | 765 | |
|
766 | 766 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
767 | 767 | |
|
768 | 768 | fft_data = numpy.fft.fft(data, axis=2) |
|
769 | 769 | |
|
770 | 770 | conv = fft_data*fft_code |
|
771 | 771 | |
|
772 | 772 | data = numpy.fft.ifft(conv,axis=2) |
|
773 | 773 | |
|
774 | 774 | return data |
|
775 | 775 | |
|
776 | 776 | |
|
777 | 777 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
778 | 778 | |
|
779 | 779 | if dataOut.flagDecodeData: |
|
780 | 780 | print("This data is already decoded, recoding again ...") |
|
781 | 781 | |
|
782 | 782 | if not self.isConfig: |
|
783 | 783 | |
|
784 | 784 | if code is None: |
|
785 | 785 | if dataOut.code is None: |
|
786 | 786 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
787 | 787 | |
|
788 | 788 | code = dataOut.code |
|
789 | 789 | else: |
|
790 | 790 | code = numpy.array(code).reshape(nCode,nBaud) |
|
791 | 791 | self.setup(code, osamp, dataOut) |
|
792 | 792 | |
|
793 | 793 | self.isConfig = True |
|
794 | 794 | |
|
795 | 795 | if mode == 3: |
|
796 | 796 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
797 | 797 | |
|
798 | 798 | if times != None: |
|
799 | 799 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
800 | 800 | |
|
801 | 801 | if self.code is None: |
|
802 | 802 | print("Fail decoding: Code is not defined.") |
|
803 | 803 | return |
|
804 | 804 | |
|
805 | 805 | self.__nProfiles = dataOut.nProfiles |
|
806 | 806 | datadec = None |
|
807 | 807 | |
|
808 | 808 | if mode == 3: |
|
809 | 809 | mode = 0 |
|
810 | 810 | |
|
811 | 811 | if dataOut.flagDataAsBlock: |
|
812 | 812 | """ |
|
813 | 813 | Decoding when data have been read as block, |
|
814 | 814 | """ |
|
815 | 815 | |
|
816 | 816 | if mode == 0: |
|
817 | 817 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
818 | 818 | if mode == 1: |
|
819 | 819 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
820 | 820 | else: |
|
821 | 821 | """ |
|
822 | 822 | Decoding when data have been read profile by profile |
|
823 | 823 | """ |
|
824 | 824 | if mode == 0: |
|
825 | 825 | datadec = self.__convolutionInTime(dataOut.data) |
|
826 | 826 | |
|
827 | 827 | if mode == 1: |
|
828 | 828 | datadec = self.__convolutionInFreq(dataOut.data) |
|
829 | 829 | |
|
830 | 830 | if mode == 2: |
|
831 | 831 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
832 | 832 | |
|
833 | 833 | if datadec is None: |
|
834 | 834 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
835 | 835 | |
|
836 | 836 | dataOut.code = self.code |
|
837 | 837 | dataOut.nCode = self.nCode |
|
838 | 838 | dataOut.nBaud = self.nBaud |
|
839 | 839 | |
|
840 | 840 | dataOut.data = datadec |
|
841 | 841 | |
|
842 | 842 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
843 | 843 | |
|
844 | 844 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
845 | 845 | |
|
846 | 846 | if self.__profIndex == self.nCode-1: |
|
847 | 847 | self.__profIndex = 0 |
|
848 | 848 | return dataOut |
|
849 | 849 | |
|
850 | 850 | self.__profIndex += 1 |
|
851 | 851 | |
|
852 | 852 | return dataOut |
|
853 | 853 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
854 | 854 | |
|
855 | 855 | |
|
856 | 856 | class ProfileConcat(Operation): |
|
857 | 857 | |
|
858 | 858 | isConfig = False |
|
859 | 859 | buffer = None |
|
860 | 860 | |
|
861 | 861 | def __init__(self, **kwargs): |
|
862 | 862 | |
|
863 | 863 | Operation.__init__(self, **kwargs) |
|
864 | 864 | self.profileIndex = 0 |
|
865 | 865 | |
|
866 | 866 | def reset(self): |
|
867 | 867 | self.buffer = numpy.zeros_like(self.buffer) |
|
868 | 868 | self.start_index = 0 |
|
869 | 869 | self.times = 1 |
|
870 | 870 | |
|
871 | 871 | def setup(self, data, m, n=1): |
|
872 | 872 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
873 | 873 | self.nHeights = data.shape[1]#.nHeights |
|
874 | 874 | self.start_index = 0 |
|
875 | 875 | self.times = 1 |
|
876 | 876 | |
|
877 | 877 | def concat(self, data): |
|
878 | 878 | |
|
879 | 879 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
880 | 880 | self.start_index = self.start_index + self.nHeights |
|
881 | 881 | |
|
882 | 882 | def run(self, dataOut, m): |
|
883 | 883 | dataOut.flagNoData = True |
|
884 | 884 | |
|
885 | 885 | if not self.isConfig: |
|
886 | 886 | self.setup(dataOut.data, m, 1) |
|
887 | 887 | self.isConfig = True |
|
888 | 888 | |
|
889 | 889 | if dataOut.flagDataAsBlock: |
|
890 | 890 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
891 | 891 | |
|
892 | 892 | else: |
|
893 | 893 | self.concat(dataOut.data) |
|
894 | 894 | self.times += 1 |
|
895 | 895 | if self.times > m: |
|
896 | 896 | dataOut.data = self.buffer |
|
897 | 897 | self.reset() |
|
898 | 898 | dataOut.flagNoData = False |
|
899 | 899 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
900 | 900 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
901 | 901 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
902 | 902 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
903 | 903 | dataOut.ippSeconds *= m |
|
904 | 904 | return dataOut |
|
905 | 905 | |
|
906 | 906 | class ProfileSelector(Operation): |
|
907 | 907 | |
|
908 | 908 | profileIndex = None |
|
909 | 909 | # Tamanho total de los perfiles |
|
910 | 910 | nProfiles = None |
|
911 | 911 | |
|
912 | 912 | def __init__(self, **kwargs): |
|
913 | 913 | |
|
914 | 914 | Operation.__init__(self, **kwargs) |
|
915 | 915 | self.profileIndex = 0 |
|
916 | 916 | |
|
917 | 917 | def incProfileIndex(self): |
|
918 | 918 | |
|
919 | 919 | self.profileIndex += 1 |
|
920 | 920 | |
|
921 | 921 | if self.profileIndex >= self.nProfiles: |
|
922 | 922 | self.profileIndex = 0 |
|
923 | 923 | |
|
924 | 924 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
925 | 925 | |
|
926 | 926 | if profileIndex < minIndex: |
|
927 | 927 | return False |
|
928 | 928 | |
|
929 | 929 | if profileIndex > maxIndex: |
|
930 | 930 | return False |
|
931 | 931 | |
|
932 | 932 | return True |
|
933 | 933 | |
|
934 | 934 | def isThisProfileInList(self, profileIndex, profileList): |
|
935 | 935 | |
|
936 | 936 | if profileIndex not in profileList: |
|
937 | 937 | return False |
|
938 | 938 | |
|
939 | 939 | return True |
|
940 | 940 | |
|
941 | 941 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
942 | 942 | |
|
943 | 943 | """ |
|
944 | 944 | ProfileSelector: |
|
945 | 945 | |
|
946 | 946 | Inputs: |
|
947 | 947 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
948 | 948 | |
|
949 | 949 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
950 | 950 | |
|
951 | 951 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
952 | 952 | |
|
953 | 953 | """ |
|
954 | 954 | |
|
955 | 955 | if rangeList is not None: |
|
956 | 956 | if type(rangeList[0]) not in (tuple, list): |
|
957 | 957 | rangeList = [rangeList] |
|
958 | 958 | |
|
959 | 959 | dataOut.flagNoData = True |
|
960 | 960 | |
|
961 | 961 | if dataOut.flagDataAsBlock: |
|
962 | 962 | """ |
|
963 | 963 | data dimension = [nChannels, nProfiles, nHeis] |
|
964 | 964 | """ |
|
965 | 965 | if profileList != None: |
|
966 | 966 | dataOut.data = dataOut.data[:,profileList,:] |
|
967 | 967 | |
|
968 | 968 | if profileRangeList != None: |
|
969 | 969 | minIndex = profileRangeList[0] |
|
970 | 970 | maxIndex = profileRangeList[1] |
|
971 | 971 | profileList = list(range(minIndex, maxIndex+1)) |
|
972 | 972 | |
|
973 | 973 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
974 | 974 | |
|
975 | 975 | if rangeList != None: |
|
976 | 976 | |
|
977 | 977 | profileList = [] |
|
978 | 978 | |
|
979 | 979 | for thisRange in rangeList: |
|
980 | 980 | minIndex = thisRange[0] |
|
981 | 981 | maxIndex = thisRange[1] |
|
982 | 982 | |
|
983 | 983 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
984 | 984 | |
|
985 | 985 | dataOut.data = dataOut.data[:,profileList,:] |
|
986 | 986 | |
|
987 | 987 | dataOut.nProfiles = len(profileList) |
|
988 | 988 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
989 | 989 | dataOut.flagNoData = False |
|
990 | 990 | |
|
991 | 991 | return dataOut |
|
992 | 992 | |
|
993 | 993 | """ |
|
994 | 994 | data dimension = [nChannels, nHeis] |
|
995 | 995 | """ |
|
996 | 996 | |
|
997 | 997 | if profileList != None: |
|
998 | 998 | |
|
999 | 999 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1000 | 1000 | |
|
1001 | 1001 | self.nProfiles = len(profileList) |
|
1002 | 1002 | dataOut.nProfiles = self.nProfiles |
|
1003 | 1003 | dataOut.profileIndex = self.profileIndex |
|
1004 | 1004 | dataOut.flagNoData = False |
|
1005 | 1005 | |
|
1006 | 1006 | self.incProfileIndex() |
|
1007 | 1007 | return dataOut |
|
1008 | 1008 | |
|
1009 | 1009 | if profileRangeList != None: |
|
1010 | 1010 | |
|
1011 | 1011 | minIndex = profileRangeList[0] |
|
1012 | 1012 | maxIndex = profileRangeList[1] |
|
1013 | 1013 | |
|
1014 | 1014 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1015 | 1015 | |
|
1016 | 1016 | self.nProfiles = maxIndex - minIndex + 1 |
|
1017 | 1017 | dataOut.nProfiles = self.nProfiles |
|
1018 | 1018 | dataOut.profileIndex = self.profileIndex |
|
1019 | 1019 | dataOut.flagNoData = False |
|
1020 | 1020 | |
|
1021 | 1021 | self.incProfileIndex() |
|
1022 | 1022 | return dataOut |
|
1023 | 1023 | |
|
1024 | 1024 | if rangeList != None: |
|
1025 | 1025 | |
|
1026 | 1026 | nProfiles = 0 |
|
1027 | 1027 | |
|
1028 | 1028 | for thisRange in rangeList: |
|
1029 | 1029 | minIndex = thisRange[0] |
|
1030 | 1030 | maxIndex = thisRange[1] |
|
1031 | 1031 | |
|
1032 | 1032 | nProfiles += maxIndex - minIndex + 1 |
|
1033 | 1033 | |
|
1034 | 1034 | for thisRange in rangeList: |
|
1035 | 1035 | |
|
1036 | 1036 | minIndex = thisRange[0] |
|
1037 | 1037 | maxIndex = thisRange[1] |
|
1038 | 1038 | |
|
1039 | 1039 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1040 | 1040 | |
|
1041 | 1041 | self.nProfiles = nProfiles |
|
1042 | 1042 | dataOut.nProfiles = self.nProfiles |
|
1043 | 1043 | dataOut.profileIndex = self.profileIndex |
|
1044 | 1044 | dataOut.flagNoData = False |
|
1045 | 1045 | |
|
1046 | 1046 | self.incProfileIndex() |
|
1047 | 1047 | |
|
1048 | 1048 | break |
|
1049 | 1049 | |
|
1050 | 1050 | return dataOut |
|
1051 | 1051 | |
|
1052 | 1052 | |
|
1053 | 1053 | if beam != None: #beam is only for AMISR data |
|
1054 | 1054 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1055 | 1055 | dataOut.flagNoData = False |
|
1056 | 1056 | dataOut.profileIndex = self.profileIndex |
|
1057 | 1057 | |
|
1058 | 1058 | self.incProfileIndex() |
|
1059 | 1059 | |
|
1060 | 1060 | return dataOut |
|
1061 | 1061 | |
|
1062 | 1062 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1063 | 1063 | |
|
1064 | 1064 | |
|
1065 | 1065 | class Reshaper(Operation): |
|
1066 | 1066 | |
|
1067 | 1067 | def __init__(self, **kwargs): |
|
1068 | 1068 | |
|
1069 | 1069 | Operation.__init__(self, **kwargs) |
|
1070 | 1070 | |
|
1071 | 1071 | self.__buffer = None |
|
1072 | 1072 | self.__nitems = 0 |
|
1073 | 1073 | |
|
1074 | 1074 | def __appendProfile(self, dataOut, nTxs): |
|
1075 | 1075 | |
|
1076 | 1076 | if self.__buffer is None: |
|
1077 | 1077 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1078 | 1078 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1079 | 1079 | |
|
1080 | 1080 | ini = dataOut.nHeights * self.__nitems |
|
1081 | 1081 | end = ini + dataOut.nHeights |
|
1082 | 1082 | |
|
1083 | 1083 | self.__buffer[:, ini:end] = dataOut.data |
|
1084 | 1084 | |
|
1085 | 1085 | self.__nitems += 1 |
|
1086 | 1086 | |
|
1087 | 1087 | return int(self.__nitems*nTxs) |
|
1088 | 1088 | |
|
1089 | 1089 | def __getBuffer(self): |
|
1090 | 1090 | |
|
1091 | 1091 | if self.__nitems == int(1./self.__nTxs): |
|
1092 | 1092 | |
|
1093 | 1093 | self.__nitems = 0 |
|
1094 | 1094 | |
|
1095 | 1095 | return self.__buffer.copy() |
|
1096 | 1096 | |
|
1097 | 1097 | return None |
|
1098 | 1098 | |
|
1099 | 1099 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1100 | 1100 | |
|
1101 | 1101 | if shape is None and nTxs is None: |
|
1102 | 1102 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1103 | 1103 | |
|
1104 | 1104 | if nTxs: |
|
1105 | 1105 | if nTxs < 0: |
|
1106 | 1106 | raise ValueError("nTxs should be greater than 0") |
|
1107 | 1107 | |
|
1108 | 1108 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1109 | 1109 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1110 | 1110 | |
|
1111 | 1111 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1112 | 1112 | |
|
1113 | 1113 | return shape, nTxs |
|
1114 | 1114 | |
|
1115 | 1115 | if len(shape) != 2 and len(shape) != 3: |
|
1116 | 1116 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1117 | 1117 | |
|
1118 | 1118 | if len(shape) == 2: |
|
1119 | 1119 | shape_tuple = [dataOut.nChannels] |
|
1120 | 1120 | shape_tuple.extend(shape) |
|
1121 | 1121 | else: |
|
1122 | 1122 | shape_tuple = list(shape) |
|
1123 | 1123 | |
|
1124 | 1124 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1125 | 1125 | |
|
1126 | 1126 | return shape_tuple, nTxs |
|
1127 | 1127 | |
|
1128 | 1128 | def run(self, dataOut, shape=None, nTxs=None): |
|
1129 | 1129 | |
|
1130 | 1130 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1131 | 1131 | |
|
1132 | 1132 | dataOut.flagNoData = True |
|
1133 | 1133 | profileIndex = None |
|
1134 | 1134 | |
|
1135 | 1135 | if dataOut.flagDataAsBlock: |
|
1136 | 1136 | |
|
1137 | 1137 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1138 | 1138 | dataOut.flagNoData = False |
|
1139 | 1139 | |
|
1140 | 1140 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1141 | 1141 | |
|
1142 | 1142 | else: |
|
1143 | 1143 | |
|
1144 | 1144 | if self.__nTxs < 1: |
|
1145 | 1145 | |
|
1146 | 1146 | self.__appendProfile(dataOut, self.__nTxs) |
|
1147 | 1147 | new_data = self.__getBuffer() |
|
1148 | 1148 | |
|
1149 | 1149 | if new_data is not None: |
|
1150 | 1150 | dataOut.data = new_data |
|
1151 | 1151 | dataOut.flagNoData = False |
|
1152 | 1152 | |
|
1153 | 1153 | profileIndex = dataOut.profileIndex*nTxs |
|
1154 | 1154 | |
|
1155 | 1155 | else: |
|
1156 | 1156 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1157 | 1157 | |
|
1158 | 1158 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1159 | 1159 | |
|
1160 | 1160 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1161 | 1161 | |
|
1162 | 1162 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1163 | 1163 | |
|
1164 | 1164 | dataOut.profileIndex = profileIndex |
|
1165 | 1165 | |
|
1166 | 1166 | dataOut.ippSeconds /= self.__nTxs |
|
1167 | 1167 | |
|
1168 | 1168 | return dataOut |
|
1169 | 1169 | |
|
1170 | 1170 | class SplitProfiles(Operation): |
|
1171 | 1171 | |
|
1172 | 1172 | def __init__(self, **kwargs): |
|
1173 | 1173 | |
|
1174 | 1174 | Operation.__init__(self, **kwargs) |
|
1175 | 1175 | |
|
1176 | 1176 | def run(self, dataOut, n): |
|
1177 | 1177 | |
|
1178 | 1178 | dataOut.flagNoData = True |
|
1179 | 1179 | profileIndex = None |
|
1180 | 1180 | |
|
1181 | 1181 | if dataOut.flagDataAsBlock: |
|
1182 | 1182 | |
|
1183 | 1183 | #nchannels, nprofiles, nsamples |
|
1184 | 1184 | shape = dataOut.data.shape |
|
1185 | 1185 | |
|
1186 | 1186 | if shape[2] % n != 0: |
|
1187 | 1187 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1188 | 1188 | |
|
1189 | 1189 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1190 | 1190 | |
|
1191 | 1191 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1192 | 1192 | dataOut.flagNoData = False |
|
1193 | 1193 | |
|
1194 | 1194 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1195 | 1195 | |
|
1196 | 1196 | else: |
|
1197 | 1197 | |
|
1198 | 1198 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1199 | 1199 | |
|
1200 | 1200 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1201 | 1201 | |
|
1202 | 1202 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1203 | 1203 | |
|
1204 | 1204 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1205 | 1205 | |
|
1206 | 1206 | dataOut.profileIndex = profileIndex |
|
1207 | 1207 | |
|
1208 | 1208 | dataOut.ippSeconds /= n |
|
1209 | 1209 | |
|
1210 | 1210 | return dataOut |
|
1211 | 1211 | |
|
1212 | 1212 | class CombineProfiles(Operation): |
|
1213 | 1213 | def __init__(self, **kwargs): |
|
1214 | 1214 | |
|
1215 | 1215 | Operation.__init__(self, **kwargs) |
|
1216 | 1216 | |
|
1217 | 1217 | self.__remData = None |
|
1218 | 1218 | self.__profileIndex = 0 |
|
1219 | 1219 | |
|
1220 | 1220 | def run(self, dataOut, n): |
|
1221 | 1221 | |
|
1222 | 1222 | dataOut.flagNoData = True |
|
1223 | 1223 | profileIndex = None |
|
1224 | 1224 | |
|
1225 | 1225 | if dataOut.flagDataAsBlock: |
|
1226 | 1226 | |
|
1227 | 1227 | #nchannels, nprofiles, nsamples |
|
1228 | 1228 | shape = dataOut.data.shape |
|
1229 | 1229 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1230 | 1230 | |
|
1231 | 1231 | if shape[1] % n != 0: |
|
1232 | 1232 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1233 | 1233 | |
|
1234 | 1234 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1235 | 1235 | dataOut.flagNoData = False |
|
1236 | 1236 | |
|
1237 | 1237 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1238 | 1238 | |
|
1239 | 1239 | else: |
|
1240 | 1240 | |
|
1241 | 1241 | #nchannels, nsamples |
|
1242 | 1242 | if self.__remData is None: |
|
1243 | 1243 | newData = dataOut.data |
|
1244 | 1244 | else: |
|
1245 | 1245 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1246 | 1246 | |
|
1247 | 1247 | self.__profileIndex += 1 |
|
1248 | 1248 | |
|
1249 | 1249 | if self.__profileIndex < n: |
|
1250 | 1250 | self.__remData = newData |
|
1251 | 1251 | #continue |
|
1252 | 1252 | return |
|
1253 | 1253 | |
|
1254 | 1254 | self.__profileIndex = 0 |
|
1255 | 1255 | self.__remData = None |
|
1256 | 1256 | |
|
1257 | 1257 | dataOut.data = newData |
|
1258 | 1258 | dataOut.flagNoData = False |
|
1259 | 1259 | |
|
1260 | 1260 | profileIndex = dataOut.profileIndex/n |
|
1261 | 1261 | |
|
1262 | 1262 | |
|
1263 | 1263 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1264 | 1264 | |
|
1265 | 1265 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1266 | 1266 | |
|
1267 | 1267 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1268 | 1268 | |
|
1269 | 1269 | dataOut.profileIndex = profileIndex |
|
1270 | 1270 | |
|
1271 | 1271 | dataOut.ippSeconds *= n |
|
1272 | 1272 | |
|
1273 | 1273 | return dataOut |
|
1274 | 1274 | |
|
1275 | 1275 | class PulsePairVoltage(Operation): |
|
1276 | 1276 | ''' |
|
1277 | 1277 | Function PulsePair(Signal Power, Velocity) |
|
1278 | 1278 | The real component of Lag[0] provides Intensity Information |
|
1279 | 1279 | The imag component of Lag[1] Phase provides Velocity Information |
|
1280 | 1280 | |
|
1281 | 1281 | Configuration Parameters: |
|
1282 | 1282 | nPRF = Number of Several PRF |
|
1283 | 1283 | theta = Degree Azimuth angel Boundaries |
|
1284 | 1284 | |
|
1285 | 1285 | Input: |
|
1286 | 1286 | self.dataOut |
|
1287 | 1287 | lag[N] |
|
1288 | 1288 | Affected: |
|
1289 | 1289 | self.dataOut.spc |
|
1290 | 1290 | ''' |
|
1291 | 1291 | isConfig = False |
|
1292 | 1292 | __profIndex = 0 |
|
1293 | 1293 | __initime = None |
|
1294 | 1294 | __lastdatatime = None |
|
1295 | 1295 | __buffer = None |
|
1296 | 1296 | noise = None |
|
1297 | 1297 | __dataReady = False |
|
1298 | 1298 | n = None |
|
1299 | 1299 | __nch = 0 |
|
1300 | 1300 | __nHeis = 0 |
|
1301 | 1301 | removeDC = False |
|
1302 | 1302 | ipp = None |
|
1303 | 1303 | lambda_ = 0 |
|
1304 | 1304 | |
|
1305 | 1305 | def __init__(self,**kwargs): |
|
1306 | 1306 | Operation.__init__(self,**kwargs) |
|
1307 | 1307 | |
|
1308 | 1308 | def setup(self, dataOut, n = None, removeDC=False): |
|
1309 | 1309 | ''' |
|
1310 | 1310 | n= Numero de PRF's de entrada |
|
1311 | 1311 | ''' |
|
1312 | 1312 | self.__initime = None |
|
1313 | 1313 | self.__lastdatatime = 0 |
|
1314 | 1314 | self.__dataReady = False |
|
1315 | 1315 | self.__buffer = 0 |
|
1316 | 1316 | self.__profIndex = 0 |
|
1317 | 1317 | self.noise = None |
|
1318 | 1318 | self.__nch = dataOut.nChannels |
|
1319 | 1319 | self.__nHeis = dataOut.nHeights |
|
1320 | 1320 | self.removeDC = removeDC |
|
1321 | 1321 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1322 | 1322 | self.ippSec = dataOut.ippSeconds |
|
1323 | 1323 | self.nCohInt = dataOut.nCohInt |
|
1324 | 1324 | print("IPPseconds",dataOut.ippSeconds) |
|
1325 | 1325 | |
|
1326 | 1326 | print("ELVALOR DE n es:", n) |
|
1327 | 1327 | if n == None: |
|
1328 | 1328 | raise ValueError("n should be specified.") |
|
1329 | 1329 | |
|
1330 | 1330 | if n != None: |
|
1331 | 1331 | if n<2: |
|
1332 | 1332 | raise ValueError("n should be greater than 2") |
|
1333 | 1333 | |
|
1334 | 1334 | self.n = n |
|
1335 | 1335 | self.__nProf = n |
|
1336 | 1336 | |
|
1337 | 1337 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1338 | 1338 | n, |
|
1339 | 1339 | dataOut.nHeights), |
|
1340 | 1340 | dtype='complex') |
|
1341 | self.noise = numpy.zeros([self.__nch,self.__nHeis]) | |
|
1342 | for i in range(self.__nch): | |
|
1343 | self.noise[i]=dataOut.getNoise(channel=i) | |
|
1341 | #self.noise = numpy.zeros([self.__nch,self.__nHeis]) | |
|
1342 | #for i in range(self.__nch): | |
|
1343 | # self.noise[i]=dataOut.getNoise(channel=i) | |
|
1344 | 1344 | |
|
1345 | 1345 | def putData(self,data): |
|
1346 | 1346 | ''' |
|
1347 | 1347 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1348 | 1348 | ''' |
|
1349 | 1349 | self.__buffer[:,self.__profIndex,:]= data |
|
1350 | 1350 | self.__profIndex += 1 |
|
1351 | 1351 | return |
|
1352 | 1352 | |
|
1353 | def pushData(self): | |
|
1353 | def pushData(self,dataOut): | |
|
1354 | 1354 | ''' |
|
1355 | 1355 | Return the PULSEPAIR and the profiles used in the operation |
|
1356 | 1356 | Affected : self.__profileIndex |
|
1357 | 1357 | ''' |
|
1358 | ||
|
1359 | 1358 | if self.removeDC==True: |
|
1360 | 1359 | mean = numpy.mean(self.__buffer,1) |
|
1361 | 1360 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1362 | 1361 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1363 | 1362 | self.__buffer = self.__buffer - dc |
|
1364 | 1363 | |
|
1365 | 1364 | lag_0 = numpy.sum(self.__buffer*numpy.conj(self.__buffer),1) |
|
1366 | 1365 | data_intensity = lag_0/(self.n*self.nCohInt)#*self.nCohInt) |
|
1367 | 1366 | |
|
1368 | 1367 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1369 | 1368 | lag_1 = numpy.sum(pair1,1) |
|
1370 | 1369 | #angle = numpy.angle(numpy.sum(pair1,1))*180/(math.pi) |
|
1371 | 1370 | data_velocity = (-1.0*self.lambda_/(4*math.pi*self.ippSec))*numpy.angle(lag_1)#self.ippSec*self.nCohInt |
|
1372 | 1371 | |
|
1372 | self.noise = numpy.zeros([self.__nch,self.__nHeis]) | |
|
1373 | for i in range(self.__nch): | |
|
1374 | self.noise[i]=dataOut.getNoise(channel=i) | |
|
1375 | ||
|
1373 | 1376 | lag_0 = lag_0.real/(self.n) |
|
1374 | 1377 | lag_1 = lag_1/(self.n-1) |
|
1375 | 1378 | R1 = numpy.abs(lag_1) |
|
1376 | 1379 | S = (lag_0-self.noise) |
|
1377 | #k = R1/S | |
|
1378 | #k = 1-k | |
|
1379 | #k =numpy.absolute(k) | |
|
1380 | #k =numpy.sqrt(k) | |
|
1380 | ||
|
1381 | data_snrPP = S/self.noise | |
|
1382 | data_snrPP = numpy.where(data_snrPP<0,1,data_snrPP) | |
|
1383 | ||
|
1381 | 1384 | L = S/R1 |
|
1382 | #print("L",L[0]) | |
|
1383 | 1385 | L = numpy.where(L<0,1,L) |
|
1384 | 1386 | L = numpy.log(L) |
|
1387 | ||
|
1385 | 1388 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1389 | ||
|
1386 | 1390 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*tmp*numpy.sign(L) |
|
1387 | 1391 | #data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*k |
|
1388 | 1392 | n = self.__profIndex |
|
1389 | 1393 | |
|
1390 | 1394 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1391 | 1395 | self.__profIndex = 0 |
|
1392 | return data_intensity,data_velocity,data_specwidth,n | |
|
1396 | return data_intensity,data_velocity,data_snrPP,data_specwidth,n | |
|
1393 | 1397 | |
|
1394 | def pulsePairbyProfiles(self,data): | |
|
1398 | def pulsePairbyProfiles(self,dataOut): | |
|
1395 | 1399 | |
|
1396 | 1400 | self.__dataReady = False |
|
1397 | 1401 | data_intensity = None |
|
1398 | 1402 | data_velocity = None |
|
1399 | 1403 | data_specwidth = None |
|
1400 | self.putData(data) | |
|
1404 | data_snrPP = None | |
|
1405 | self.putData(data=dataOut.data) | |
|
1401 | 1406 | if self.__profIndex == self.n: |
|
1402 | 1407 | #self.noise = numpy.zeros([self.__nch,self.__nHeis]) |
|
1403 | 1408 | #for i in range(self.__nch): |
|
1404 | 1409 | # self.noise[i]=data.getNoise(channel=i) |
|
1405 | 1410 | #print(self.noise.shape) |
|
1406 | data_intensity, data_velocity,data_specwidth, n = self.pushData() | |
|
1411 | data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |
|
1407 | 1412 | self.__dataReady = True |
|
1408 | 1413 | |
|
1409 | return data_intensity, data_velocity,data_specwidth | |
|
1414 | return data_intensity, data_velocity,data_snrPP,data_specwidth | |
|
1410 | 1415 | |
|
1411 | def pulsePairOp(self, data, datatime= None): | |
|
1416 | def pulsePairOp(self, dataOut, datatime= None): | |
|
1412 | 1417 | |
|
1413 | 1418 | if self.__initime == None: |
|
1414 | 1419 | self.__initime = datatime |
|
1415 | ||
|
1416 | data_intensity, data_velocity,data_specwidth = self.pulsePairbyProfiles(data) | |
|
1420 | #print("hola") | |
|
1421 | data_intensity, data_velocity,data_snrPP,data_specwidth = self.pulsePairbyProfiles(dataOut) | |
|
1417 | 1422 | self.__lastdatatime = datatime |
|
1418 | 1423 | |
|
1419 | 1424 | if data_intensity is None: |
|
1420 |
return None, None,None, |
|
|
1425 | return None, None,None,None,None | |
|
1421 | 1426 | |
|
1422 | 1427 | avgdatatime = self.__initime |
|
1423 | 1428 | deltatime = datatime - self.__lastdatatime |
|
1424 | 1429 | self.__initime = datatime |
|
1425 | 1430 | |
|
1426 | return data_intensity, data_velocity,data_specwidth,avgdatatime | |
|
1431 | return data_intensity, data_velocity,data_snrPP,data_specwidth,avgdatatime | |
|
1427 | 1432 | |
|
1428 | 1433 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1429 | 1434 | |
|
1430 | 1435 | if not self.isConfig: |
|
1431 | 1436 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1432 | 1437 | self.isConfig = True |
|
1433 |
data_intensity, data_velocity,data_specwidth, avgdatatime = self.pulsePairOp(dataOut |
|
|
1438 | data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
|
1434 | 1439 | dataOut.flagNoData = True |
|
1435 | 1440 | |
|
1436 | 1441 | if self.__dataReady: |
|
1437 | 1442 | dataOut.nCohInt *= self.n |
|
1438 | 1443 | dataOut.data_intensity = data_intensity #valor para intensidad |
|
1439 | 1444 | dataOut.data_velocity = data_velocity #valor para velocidad |
|
1445 | dataOut.data_snrPP = data_snrPP # valor para snr | |
|
1440 | 1446 | dataOut.data_specwidth = data_specwidth |
|
1441 | 1447 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1442 | 1448 | dataOut.utctime = avgdatatime |
|
1443 | 1449 | dataOut.flagNoData = False |
|
1444 | 1450 | return dataOut |
|
1445 | 1451 | |
|
1446 | 1452 | |
|
1447 | 1453 | # import collections |
|
1448 | 1454 | # from scipy.stats import mode |
|
1449 | 1455 | # |
|
1450 | 1456 | # class Synchronize(Operation): |
|
1451 | 1457 | # |
|
1452 | 1458 | # isConfig = False |
|
1453 | 1459 | # __profIndex = 0 |
|
1454 | 1460 | # |
|
1455 | 1461 | # def __init__(self, **kwargs): |
|
1456 | 1462 | # |
|
1457 | 1463 | # Operation.__init__(self, **kwargs) |
|
1458 | 1464 | # # self.isConfig = False |
|
1459 | 1465 | # self.__powBuffer = None |
|
1460 | 1466 | # self.__startIndex = 0 |
|
1461 | 1467 | # self.__pulseFound = False |
|
1462 | 1468 | # |
|
1463 | 1469 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1464 | 1470 | # |
|
1465 | 1471 | # #Read data |
|
1466 | 1472 | # |
|
1467 | 1473 | # powerdB = dataOut.getPower(channel = channel) |
|
1468 | 1474 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1469 | 1475 | # |
|
1470 | 1476 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1471 | 1477 | # |
|
1472 | 1478 | # dataArray = numpy.array(self.__powBuffer) |
|
1473 | 1479 | # |
|
1474 | 1480 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1475 | 1481 | # |
|
1476 | 1482 | # maxValue = numpy.nanmax(filteredPower) |
|
1477 | 1483 | # |
|
1478 | 1484 | # if maxValue < noisedB + 10: |
|
1479 | 1485 | # #No se encuentra ningun pulso de transmision |
|
1480 | 1486 | # return None |
|
1481 | 1487 | # |
|
1482 | 1488 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1483 | 1489 | # |
|
1484 | 1490 | # if len(maxValuesIndex) < 2: |
|
1485 | 1491 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1486 | 1492 | # return None |
|
1487 | 1493 | # |
|
1488 | 1494 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1489 | 1495 | # |
|
1490 | 1496 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1491 | 1497 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1492 | 1498 | # |
|
1493 | 1499 | # if len(pulseIndex) < 2: |
|
1494 | 1500 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1495 | 1501 | # return None |
|
1496 | 1502 | # |
|
1497 | 1503 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1498 | 1504 | # |
|
1499 | 1505 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1500 | 1506 | # #(No deberian existir IPP menor a 10 unidades) |
|
1501 | 1507 | # |
|
1502 | 1508 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1503 | 1509 | # |
|
1504 | 1510 | # if len(realIndex) < 2: |
|
1505 | 1511 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1506 | 1512 | # return None |
|
1507 | 1513 | # |
|
1508 | 1514 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1509 | 1515 | # realPulseIndex = pulseIndex[realIndex] |
|
1510 | 1516 | # |
|
1511 | 1517 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1512 | 1518 | # |
|
1513 | 1519 | # print "IPP = %d samples" %period |
|
1514 | 1520 | # |
|
1515 | 1521 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1516 | 1522 | # self.__startIndex = int(realPulseIndex[0]) |
|
1517 | 1523 | # |
|
1518 | 1524 | # return 1 |
|
1519 | 1525 | # |
|
1520 | 1526 | # |
|
1521 | 1527 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1522 | 1528 | # |
|
1523 | 1529 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1524 | 1530 | # maxlen = buffer_size*nSamples) |
|
1525 | 1531 | # |
|
1526 | 1532 | # bufferList = [] |
|
1527 | 1533 | # |
|
1528 | 1534 | # for i in range(nChannels): |
|
1529 | 1535 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1530 | 1536 | # maxlen = buffer_size*nSamples) |
|
1531 | 1537 | # |
|
1532 | 1538 | # bufferList.append(bufferByChannel) |
|
1533 | 1539 | # |
|
1534 | 1540 | # self.__nSamples = nSamples |
|
1535 | 1541 | # self.__nChannels = nChannels |
|
1536 | 1542 | # self.__bufferList = bufferList |
|
1537 | 1543 | # |
|
1538 | 1544 | # def run(self, dataOut, channel = 0): |
|
1539 | 1545 | # |
|
1540 | 1546 | # if not self.isConfig: |
|
1541 | 1547 | # nSamples = dataOut.nHeights |
|
1542 | 1548 | # nChannels = dataOut.nChannels |
|
1543 | 1549 | # self.setup(nSamples, nChannels) |
|
1544 | 1550 | # self.isConfig = True |
|
1545 | 1551 | # |
|
1546 | 1552 | # #Append new data to internal buffer |
|
1547 | 1553 | # for thisChannel in range(self.__nChannels): |
|
1548 | 1554 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1549 | 1555 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1550 | 1556 | # |
|
1551 | 1557 | # if self.__pulseFound: |
|
1552 | 1558 | # self.__startIndex -= self.__nSamples |
|
1553 | 1559 | # |
|
1554 | 1560 | # #Finding Tx Pulse |
|
1555 | 1561 | # if not self.__pulseFound: |
|
1556 | 1562 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1557 | 1563 | # |
|
1558 | 1564 | # if indexFound == None: |
|
1559 | 1565 | # dataOut.flagNoData = True |
|
1560 | 1566 | # return |
|
1561 | 1567 | # |
|
1562 | 1568 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1563 | 1569 | # self.__pulseFound = True |
|
1564 | 1570 | # self.__startIndex = indexFound |
|
1565 | 1571 | # |
|
1566 | 1572 | # #If pulse was found ... |
|
1567 | 1573 | # for thisChannel in range(self.__nChannels): |
|
1568 | 1574 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1569 | 1575 | # #print self.__startIndex |
|
1570 | 1576 | # x = numpy.array(bufferByChannel) |
|
1571 | 1577 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1572 | 1578 | # |
|
1573 | 1579 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1574 | 1580 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1575 | 1581 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1576 | 1582 | # |
|
1577 | 1583 | # dataOut.data = self.__arrayBuffer |
|
1578 | 1584 | # |
|
1579 | 1585 | # self.__startIndex += self.__newNSamples |
|
1580 | 1586 | # |
|
1581 | 1587 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now