@@ -1,666 +1,667 | |||||
1 | '''' |
|
1 | '''' | |
2 | Created on Set 9, 2015 |
|
2 | Created on Set 9, 2015 | |
3 |
|
3 | |||
4 | @author: roj-idl71 Karim Kuyeng |
|
4 | @author: roj-idl71 Karim Kuyeng | |
5 |
|
5 | |||
6 | @update: 2021, Joab Apaza |
|
6 | @update: 2021, Joab Apaza | |
7 | ''' |
|
7 | ''' | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import sys |
|
10 | import sys | |
11 | import glob |
|
11 | import glob | |
12 | import fnmatch |
|
12 | import fnmatch | |
13 | import datetime |
|
13 | import datetime | |
14 | import time |
|
14 | import time | |
15 | import re |
|
15 | import re | |
16 | import h5py |
|
16 | import h5py | |
17 | import numpy |
|
17 | import numpy | |
18 |
|
18 | |||
19 | try: |
|
19 | try: | |
20 | from gevent import sleep |
|
20 | from gevent import sleep | |
21 | except: |
|
21 | except: | |
22 | from time import sleep |
|
22 | from time import sleep | |
23 |
|
23 | |||
24 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader |
|
24 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader | |
25 | from schainpy.model.data.jrodata import Voltage |
|
25 | from schainpy.model.data.jrodata import Voltage | |
26 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
26 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
27 | from numpy import imag |
|
27 | from numpy import imag | |
28 | from schainpy.utils import log |
|
28 | from schainpy.utils import log | |
29 |
|
29 | |||
30 |
|
30 | |||
31 | class AMISRReader(ProcessingUnit): |
|
31 | class AMISRReader(ProcessingUnit): | |
32 | ''' |
|
32 | ''' | |
33 | classdocs |
|
33 | classdocs | |
34 | ''' |
|
34 | ''' | |
35 |
|
35 | |||
36 | def __init__(self): |
|
36 | def __init__(self): | |
37 | ''' |
|
37 | ''' | |
38 | Constructor |
|
38 | Constructor | |
39 | ''' |
|
39 | ''' | |
40 |
|
40 | |||
41 | ProcessingUnit.__init__(self) |
|
41 | ProcessingUnit.__init__(self) | |
42 |
|
42 | |||
43 | self.set = None |
|
43 | self.set = None | |
44 | self.subset = None |
|
44 | self.subset = None | |
45 | self.extension_file = '.h5' |
|
45 | self.extension_file = '.h5' | |
46 | self.dtc_str = 'dtc' |
|
46 | self.dtc_str = 'dtc' | |
47 | self.dtc_id = 0 |
|
47 | self.dtc_id = 0 | |
48 | self.status = True |
|
48 | self.status = True | |
49 | self.isConfig = False |
|
49 | self.isConfig = False | |
50 | self.dirnameList = [] |
|
50 | self.dirnameList = [] | |
51 | self.filenameList = [] |
|
51 | self.filenameList = [] | |
52 | self.fileIndex = None |
|
52 | self.fileIndex = None | |
53 | self.flagNoMoreFiles = False |
|
53 | self.flagNoMoreFiles = False | |
54 | self.flagIsNewFile = 0 |
|
54 | self.flagIsNewFile = 0 | |
55 | self.filename = '' |
|
55 | self.filename = '' | |
56 | self.amisrFilePointer = None |
|
56 | self.amisrFilePointer = None | |
57 | self.realBeamCode = [] |
|
57 | self.realBeamCode = [] | |
58 | self.beamCodeMap = None |
|
58 | self.beamCodeMap = None | |
59 | self.azimuthList = [] |
|
59 | self.azimuthList = [] | |
60 | self.elevationList = [] |
|
60 | self.elevationList = [] | |
61 | self.dataShape = None |
|
61 | self.dataShape = None | |
62 | self.flag_old_beams = False |
|
62 | self.flag_old_beams = False | |
63 |
|
63 | |||
64 |
|
64 | |||
65 | self.profileIndex = 0 |
|
65 | self.profileIndex = 0 | |
66 |
|
66 | |||
67 |
|
67 | |||
68 | self.beamCodeByFrame = None |
|
68 | self.beamCodeByFrame = None | |
69 | self.radacTimeByFrame = None |
|
69 | self.radacTimeByFrame = None | |
70 |
|
70 | |||
71 | self.dataset = None |
|
71 | self.dataset = None | |
72 |
|
72 | |||
73 | self.__firstFile = True |
|
73 | self.__firstFile = True | |
74 |
|
74 | |||
75 | self.buffer = None |
|
75 | self.buffer = None | |
76 |
|
76 | |||
77 | self.timezone = 'ut' |
|
77 | self.timezone = 'ut' | |
78 |
|
78 | |||
79 | self.__waitForNewFile = 20 |
|
79 | self.__waitForNewFile = 20 | |
80 | self.__filename_online = None |
|
80 | self.__filename_online = None | |
81 | #Is really necessary create the output object in the initializer |
|
81 | #Is really necessary create the output object in the initializer | |
82 | self.dataOut = Voltage() |
|
82 | self.dataOut = Voltage() | |
83 | self.dataOut.error=False |
|
83 | self.dataOut.error=False | |
84 | self.margin_days = 1 |
|
84 | self.margin_days = 1 | |
85 |
|
85 | |||
86 | def setup(self,path=None, |
|
86 | def setup(self,path=None, | |
87 | startDate=None, |
|
87 | startDate=None, | |
88 | endDate=None, |
|
88 | endDate=None, | |
89 | startTime=None, |
|
89 | startTime=None, | |
90 | endTime=None, |
|
90 | endTime=None, | |
91 | walk=True, |
|
91 | walk=True, | |
92 | timezone='ut', |
|
92 | timezone='ut', | |
93 | all=0, |
|
93 | all=0, | |
94 | code = None, |
|
94 | code = None, | |
95 | nCode = 0, |
|
95 | nCode = 0, | |
96 | nBaud = 0, |
|
96 | nBaud = 0, | |
97 | online=False, |
|
97 | online=False, | |
98 | old_beams=False, |
|
98 | old_beams=False, | |
99 | margin_days=1): |
|
99 | margin_days=1): | |
100 |
|
100 | |||
101 |
|
101 | |||
102 |
|
102 | |||
103 | self.timezone = timezone |
|
103 | self.timezone = timezone | |
104 | self.all = all |
|
104 | self.all = all | |
105 | self.online = online |
|
105 | self.online = online | |
106 | self.flag_old_beams = old_beams |
|
106 | self.flag_old_beams = old_beams | |
107 | self.code = code |
|
107 | self.code = code | |
108 | self.nCode = int(nCode) |
|
108 | self.nCode = int(nCode) | |
109 | self.nBaud = int(nBaud) |
|
109 | self.nBaud = int(nBaud) | |
110 | self.margin_days = margin_days |
|
110 | self.margin_days = margin_days | |
111 |
|
111 | |||
112 |
|
112 | |||
113 | #self.findFiles() |
|
113 | #self.findFiles() | |
114 | if not(online): |
|
114 | if not(online): | |
115 | #Busqueda de archivos offline |
|
115 | #Busqueda de archivos offline | |
116 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk) |
|
116 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk) | |
117 | else: |
|
117 | else: | |
118 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) |
|
118 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) | |
119 |
|
119 | |||
120 | if not(self.filenameList): |
|
120 | if not(self.filenameList): | |
121 | raise schainpy.admin.SchainWarning("There is no files into the folder: %s"%(path)) |
|
121 | raise schainpy.admin.SchainWarning("There is no files into the folder: %s"%(path)) | |
122 | sys.exit() |
|
122 | sys.exit() | |
123 |
|
123 | |||
124 | self.fileIndex = 0 |
|
124 | self.fileIndex = 0 | |
125 |
|
125 | |||
126 | self.readNextFile(online) |
|
126 | self.readNextFile(online) | |
127 |
|
127 | |||
128 | ''' |
|
128 | ''' | |
129 | Add code |
|
129 | Add code | |
130 | ''' |
|
130 | ''' | |
131 | self.isConfig = True |
|
131 | self.isConfig = True | |
132 | # print("Setup Done") |
|
132 | # print("Setup Done") | |
133 | pass |
|
133 | pass | |
134 |
|
134 | |||
135 |
|
135 | |||
136 | def readAMISRHeader(self,fp): |
|
136 | def readAMISRHeader(self,fp): | |
137 |
|
137 | |||
138 | if self.isConfig and (not self.flagNoMoreFiles): |
|
138 | if self.isConfig and (not self.flagNoMoreFiles): | |
139 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
139 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] | |
140 | if self.dataShape != newShape and newShape != None: |
|
140 | if self.dataShape != newShape and newShape != None: | |
141 | raise schainpy.admin.SchainError("NEW FILE HAS A DIFFERENT SHAPE: ") |
|
141 | raise schainpy.admin.SchainError("NEW FILE HAS A DIFFERENT SHAPE: ") | |
142 | print(self.dataShape,newShape,"\n") |
|
142 | print(self.dataShape,newShape,"\n") | |
143 | return 0 |
|
143 | return 0 | |
144 | else: |
|
144 | else: | |
145 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
145 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] | |
146 |
|
146 | |||
147 |
|
147 | |||
148 | header = 'Raw11/Data/RadacHeader' |
|
148 | header = 'Raw11/Data/RadacHeader' | |
149 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE |
|
149 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE | |
150 | if (self.startDate> datetime.date(2021, 7, 15)) or self.flag_old_beams: #Se cambiΓ³ la forma de extracciΓ³n de Apuntes el 17 o forzar con flag de reorganizaciΓ³n |
|
150 | if (self.startDate> datetime.date(2021, 7, 15)) or self.flag_old_beams: #Se cambiΓ³ la forma de extracciΓ³n de Apuntes el 17 o forzar con flag de reorganizaciΓ³n | |
151 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() |
|
151 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() | |
152 | self.trueBeams = self.beamcodeFile.split("\n") |
|
152 | self.trueBeams = self.beamcodeFile.split("\n") | |
153 | self.trueBeams.pop()#remove last |
|
153 | self.trueBeams.pop()#remove last | |
154 | [self.realBeamCode.append(x) for x in self.trueBeams if x not in self.realBeamCode] |
|
154 | [self.realBeamCode.append(x) for x in self.trueBeams if x not in self.realBeamCode] | |
155 | self.beamCode = [int(x, 16) for x in self.realBeamCode] |
|
155 | self.beamCode = [int(x, 16) for x in self.realBeamCode] | |
156 | else: |
|
156 | else: | |
157 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes |
|
157 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes | |
158 | self.beamCode = _beamCode[0,:] |
|
158 | self.beamCode = _beamCode[0,:] | |
159 |
|
159 | |||
160 | if self.beamCodeMap == None: |
|
160 | if self.beamCodeMap == None: | |
161 | self.beamCodeMap = fp['Setup/BeamcodeMap'] |
|
161 | self.beamCodeMap = fp['Setup/BeamcodeMap'] | |
162 | for beam in self.beamCode: |
|
162 | for beam in self.beamCode: | |
163 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) |
|
163 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) | |
164 | beamAziElev = beamAziElev[0].squeeze() |
|
164 | beamAziElev = beamAziElev[0].squeeze() | |
165 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) |
|
165 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) | |
166 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) |
|
166 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) | |
167 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) |
|
167 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) | |
168 | #print(self.beamCode) |
|
168 | #print(self.beamCode) | |
169 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS |
|
169 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS | |
170 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS |
|
170 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS | |
171 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS |
|
171 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS | |
172 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT |
|
172 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT | |
173 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS |
|
173 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS | |
174 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile |
|
174 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile | |
175 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS |
|
175 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS | |
176 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS |
|
176 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS | |
177 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') |
|
177 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') | |
178 | self.frequency = fp.get('Rx/Frequency') |
|
178 | self.frequency = fp.get('Rx/Frequency') | |
179 | txAus = fp.get('Raw11/Data/Pulsewidth') |
|
179 | txAus = fp.get('Raw11/Data/Pulsewidth') | |
180 |
|
180 | |||
181 |
|
181 | |||
182 | self.nblocks = self.pulseCount.shape[0] #nblocks |
|
182 | self.nblocks = self.pulseCount.shape[0] #nblocks | |
183 |
|
183 | |||
184 | self.nprofiles = self.pulseCount.shape[1] #nprofile |
|
184 | self.nprofiles = self.pulseCount.shape[1] #nprofile | |
185 | self.nsa = self.nsamplesPulse[0,0] #ngates |
|
185 | self.nsa = self.nsamplesPulse[0,0] #ngates | |
186 | self.nchannels = len(self.beamCode) |
|
186 | self.nchannels = len(self.beamCode) | |
187 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds |
|
187 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds | |
188 | #print("IPPS secs: ",self.ippSeconds) |
|
188 | #print("IPPS secs: ",self.ippSeconds) | |
189 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec |
|
189 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec | |
190 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created |
|
190 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created | |
191 |
|
191 | |||
192 | #filling radar controller header parameters |
|
192 | #filling radar controller header parameters | |
193 | self.__ippKm = self.ippSeconds *.15*1e6 # in km |
|
193 | self.__ippKm = self.ippSeconds *.15*1e6 # in km | |
194 | self.__txA = (txAus[()])*.15 #(ipp[us]*.15km/1us) in km |
|
194 | self.__txA = (txAus[()])*.15 #(ipp[us]*.15km/1us) in km | |
195 | self.__txB = 0 |
|
195 | self.__txB = 0 | |
196 | nWindows=1 |
|
196 | nWindows=1 | |
197 | self.__nSamples = self.nsa |
|
197 | self.__nSamples = self.nsa | |
198 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km |
|
198 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km | |
199 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 |
|
199 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 | |
200 | #print("amisr-ipp:",self.ippSeconds, self.__ippKm) |
|
200 | #print("amisr-ipp:",self.ippSeconds, self.__ippKm) | |
201 | #for now until understand why the code saved is different (code included even though code not in tuf file) |
|
201 | #for now until understand why the code saved is different (code included even though code not in tuf file) | |
202 | #self.__codeType = 0 |
|
202 | #self.__codeType = 0 | |
203 | # self.__nCode = None |
|
203 | # self.__nCode = None | |
204 | # self.__nBaud = None |
|
204 | # self.__nBaud = None | |
205 | self.__code = self.code |
|
205 | self.__code = self.code | |
206 | self.__codeType = 0 |
|
206 | self.__codeType = 0 | |
207 | if self.code != None: |
|
207 | if self.code != None: | |
208 | self.__codeType = 1 |
|
208 | self.__codeType = 1 | |
209 | self.__nCode = self.nCode |
|
209 | self.__nCode = self.nCode | |
210 | self.__nBaud = self.nBaud |
|
210 | self.__nBaud = self.nBaud | |
211 | #self.__code = 0 |
|
211 | #self.__code = 0 | |
212 |
|
212 | |||
213 | #filling system header parameters |
|
213 | #filling system header parameters | |
214 | self.__nSamples = self.nsa |
|
214 | self.__nSamples = self.nsa | |
215 | self.newProfiles = self.nprofiles/self.nchannels |
|
215 | self.newProfiles = self.nprofiles/self.nchannels | |
216 | self.__channelList = list(range(self.nchannels)) |
|
216 | self.__channelList = list(range(self.nchannels)) | |
217 |
|
217 | |||
218 | self.__frequency = self.frequency[0][0] |
|
218 | self.__frequency = self.frequency[0][0] | |
219 |
|
219 | |||
220 |
|
220 | |||
221 | return 1 |
|
221 | return 1 | |
222 |
|
222 | |||
223 |
|
223 | |||
224 | def createBuffers(self): |
|
224 | def createBuffers(self): | |
225 |
|
225 | |||
226 | pass |
|
226 | pass | |
227 |
|
227 | |||
228 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): |
|
228 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): | |
229 | self.path = path |
|
229 | self.path = path | |
230 | self.startDate = startDate |
|
230 | self.startDate = startDate | |
231 | self.endDate = endDate |
|
231 | self.endDate = endDate | |
232 | self.startTime = startTime |
|
232 | self.startTime = startTime | |
233 | self.endTime = endTime |
|
233 | self.endTime = endTime | |
234 | self.walk = walk |
|
234 | self.walk = walk | |
235 |
|
235 | |||
236 | def __checkPath(self): |
|
236 | def __checkPath(self): | |
237 | if os.path.exists(self.path): |
|
237 | if os.path.exists(self.path): | |
238 | self.status = 1 |
|
238 | self.status = 1 | |
239 | else: |
|
239 | else: | |
240 | self.status = 0 |
|
240 | self.status = 0 | |
241 | print('Path:%s does not exists'%self.path) |
|
241 | print('Path:%s does not exists'%self.path) | |
242 |
|
242 | |||
243 | return |
|
243 | return | |
244 |
|
244 | |||
245 |
|
245 | |||
246 | def __selDates(self, amisr_dirname_format): |
|
246 | def __selDates(self, amisr_dirname_format): | |
247 | try: |
|
247 | try: | |
248 | year = int(amisr_dirname_format[0:4]) |
|
248 | year = int(amisr_dirname_format[0:4]) | |
249 | month = int(amisr_dirname_format[4:6]) |
|
249 | month = int(amisr_dirname_format[4:6]) | |
250 | dom = int(amisr_dirname_format[6:8]) |
|
250 | dom = int(amisr_dirname_format[6:8]) | |
251 | thisDate = datetime.date(year,month,dom) |
|
251 | thisDate = datetime.date(year,month,dom) | |
252 | #margen de un dΓa extra, igual luego se filtra for fecha y hora |
|
252 | #margen de un dΓa extra, igual luego se filtra for fecha y hora | |
253 | if (thisDate>=(self.startDate - datetime.timedelta(days=self.margin_days)) and thisDate <= (self.endDate)+ datetime.timedelta(days=1)): |
|
253 | if (thisDate>=(self.startDate - datetime.timedelta(days=self.margin_days)) and thisDate <= (self.endDate)+ datetime.timedelta(days=1)): | |
254 | return amisr_dirname_format |
|
254 | return amisr_dirname_format | |
255 | except: |
|
255 | except: | |
256 | return None |
|
256 | return None | |
257 |
|
257 | |||
258 |
|
258 | |||
259 | def __findDataForDates(self,online=False): |
|
259 | def __findDataForDates(self,online=False): | |
260 |
|
260 | |||
261 | if not(self.status): |
|
261 | if not(self.status): | |
262 | return None |
|
262 | return None | |
263 |
|
263 | |||
264 | pat = '\d+.\d+' |
|
264 | pat = '\d+.\d+' | |
265 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] |
|
265 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] | |
266 | dirnameList = [x for x in dirnameList if x!=None] |
|
266 | dirnameList = [x for x in dirnameList if x!=None] | |
267 | dirnameList = [x.string for x in dirnameList] |
|
267 | dirnameList = [x.string for x in dirnameList] | |
268 | if not(online): |
|
268 | if not(online): | |
269 | dirnameList = [self.__selDates(x) for x in dirnameList] |
|
269 | dirnameList = [self.__selDates(x) for x in dirnameList] | |
270 | dirnameList = [x for x in dirnameList if x!=None] |
|
270 | dirnameList = [x for x in dirnameList if x!=None] | |
271 | if len(dirnameList)>0: |
|
271 | if len(dirnameList)>0: | |
272 | self.status = 1 |
|
272 | self.status = 1 | |
273 | self.dirnameList = dirnameList |
|
273 | self.dirnameList = dirnameList | |
274 | self.dirnameList.sort() |
|
274 | self.dirnameList.sort() | |
275 | else: |
|
275 | else: | |
276 | self.status = 0 |
|
276 | self.status = 0 | |
277 | return None |
|
277 | return None | |
278 |
|
278 | |||
279 | def __getTimeFromData(self): |
|
279 | def __getTimeFromData(self): | |
280 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) |
|
280 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) | |
281 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
281 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) | |
282 |
|
282 | |||
283 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) |
|
283 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) | |
284 | print('........................................') |
|
284 | print('........................................') | |
285 | filter_filenameList = [] |
|
285 | filter_filenameList = [] | |
286 | self.filenameList.sort() |
|
286 | self.filenameList.sort() | |
287 | total_files = len(self.filenameList) |
|
287 | total_files = len(self.filenameList) | |
288 | #for i in range(len(self.filenameList)-1): |
|
288 | #for i in range(len(self.filenameList)-1): | |
289 | for i in range(total_files): |
|
289 | for i in range(total_files): | |
290 | filename = self.filenameList[i] |
|
290 | filename = self.filenameList[i] | |
291 | #print("file-> ",filename) |
|
291 | #print("file-> ",filename) | |
292 | try: |
|
292 | try: | |
293 | fp = h5py.File(filename,'r') |
|
293 | fp = h5py.File(filename,'r') | |
294 | time_str = fp.get('Time/RadacTimeString') |
|
294 | time_str = fp.get('Time/RadacTimeString') | |
295 |
|
295 | |||
296 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
296 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] | |
297 | #startDateTimeStr_File = "2019-12-16 09:21:11" |
|
297 | #startDateTimeStr_File = "2019-12-16 09:21:11" | |
298 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
298 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
299 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
299 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
300 |
|
300 | |||
301 | #endDateTimeStr_File = "2019-12-16 11:10:11" |
|
301 | #endDateTimeStr_File = "2019-12-16 11:10:11" | |
302 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] |
|
302 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] | |
303 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
303 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
304 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
304 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
305 |
|
305 | |||
306 | fp.close() |
|
306 | fp.close() | |
307 |
|
307 | |||
308 | #print("check time", startDateTime_File) |
|
308 | #print("check time", startDateTime_File) | |
309 | if self.timezone == 'lt': |
|
309 | if self.timezone == 'lt': | |
310 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
310 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) | |
311 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) |
|
311 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) | |
312 | if (startDateTime_File >=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): |
|
312 | if (startDateTime_File >=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): | |
313 | filter_filenameList.append(filename) |
|
313 | filter_filenameList.append(filename) | |
314 |
|
314 | |||
315 | if (startDateTime_File>endDateTime_Reader): |
|
315 | if (startDateTime_File>endDateTime_Reader): | |
316 | break |
|
316 | break | |
317 | except Exception as e: |
|
317 | except Exception as e: | |
318 | log.warning("Error opening file {} -> {}".format(os.path.split(filename)[1],e)) |
|
318 | log.warning("Error opening file {} -> {}".format(os.path.split(filename)[1],e)) | |
319 |
|
319 | |||
320 | filter_filenameList.sort() |
|
320 | filter_filenameList.sort() | |
321 | self.filenameList = filter_filenameList |
|
321 | self.filenameList = filter_filenameList | |
322 |
|
322 | |||
323 | return 1 |
|
323 | return 1 | |
324 |
|
324 | |||
325 | def __filterByGlob1(self, dirName): |
|
325 | def __filterByGlob1(self, dirName): | |
326 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) |
|
326 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) | |
327 | filter_files.sort() |
|
327 | filter_files.sort() | |
328 | filterDict = {} |
|
328 | filterDict = {} | |
329 | filterDict.setdefault(dirName) |
|
329 | filterDict.setdefault(dirName) | |
330 | filterDict[dirName] = filter_files |
|
330 | filterDict[dirName] = filter_files | |
331 | return filterDict |
|
331 | return filterDict | |
332 |
|
332 | |||
333 | def __getFilenameList(self, fileListInKeys, dirList): |
|
333 | def __getFilenameList(self, fileListInKeys, dirList): | |
334 | for value in fileListInKeys: |
|
334 | for value in fileListInKeys: | |
335 | dirName = list(value.keys())[0] |
|
335 | dirName = list(value.keys())[0] | |
336 | for file in value[dirName]: |
|
336 | for file in value[dirName]: | |
337 | filename = os.path.join(dirName, file) |
|
337 | filename = os.path.join(dirName, file) | |
338 | self.filenameList.append(filename) |
|
338 | self.filenameList.append(filename) | |
339 |
|
339 | |||
340 |
|
340 | |||
341 | def __selectDataForTimes(self, online=False): |
|
341 | def __selectDataForTimes(self, online=False): | |
342 | #aun no esta implementado el filtro for tiempo |
|
342 | #aun no esta implementado el filtro for tiempo | |
343 | if not(self.status): |
|
343 | if not(self.status): | |
344 | return None |
|
344 | return None | |
345 |
|
345 | |||
346 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] |
|
346 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] | |
347 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] |
|
347 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] | |
348 | self.__getFilenameList(fileListInKeys, dirList) |
|
348 | self.__getFilenameList(fileListInKeys, dirList) | |
349 | if not(online): |
|
349 | if not(online): | |
350 | #filtro por tiempo |
|
350 | #filtro por tiempo | |
351 | if not(self.all): |
|
351 | if not(self.all): | |
352 | self.__getTimeFromData() |
|
352 | self.__getTimeFromData() | |
353 |
|
353 | |||
354 | if len(self.filenameList)>0: |
|
354 | if len(self.filenameList)>0: | |
355 | self.status = 1 |
|
355 | self.status = 1 | |
356 | self.filenameList.sort() |
|
356 | self.filenameList.sort() | |
357 | else: |
|
357 | else: | |
358 | self.status = 0 |
|
358 | self.status = 0 | |
359 | return None |
|
359 | return None | |
360 |
|
360 | |||
361 | else: |
|
361 | else: | |
362 | #get the last file - 1 |
|
362 | #get the last file - 1 | |
363 | self.filenameList = [self.filenameList[-2]] |
|
363 | self.filenameList = [self.filenameList[-2]] | |
364 | new_dirnameList = [] |
|
364 | new_dirnameList = [] | |
365 | for dirname in self.dirnameList: |
|
365 | for dirname in self.dirnameList: | |
366 | junk = numpy.array([dirname in x for x in self.filenameList]) |
|
366 | junk = numpy.array([dirname in x for x in self.filenameList]) | |
367 | junk_sum = junk.sum() |
|
367 | junk_sum = junk.sum() | |
368 | if junk_sum > 0: |
|
368 | if junk_sum > 0: | |
369 | new_dirnameList.append(dirname) |
|
369 | new_dirnameList.append(dirname) | |
370 | self.dirnameList = new_dirnameList |
|
370 | self.dirnameList = new_dirnameList | |
371 | return 1 |
|
371 | return 1 | |
372 |
|
372 | |||
373 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), |
|
373 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), | |
374 | endTime=datetime.time(23,59,59),walk=True): |
|
374 | endTime=datetime.time(23,59,59),walk=True): | |
375 |
|
375 | |||
376 | if endDate ==None: |
|
376 | if endDate ==None: | |
377 | startDate = datetime.datetime.utcnow().date() |
|
377 | startDate = datetime.datetime.utcnow().date() | |
378 | endDate = datetime.datetime.utcnow().date() |
|
378 | endDate = datetime.datetime.utcnow().date() | |
379 |
|
379 | |||
380 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) |
|
380 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) | |
381 |
|
381 | |||
382 | self.__checkPath() |
|
382 | self.__checkPath() | |
383 |
|
383 | |||
384 | self.__findDataForDates(online=True) |
|
384 | self.__findDataForDates(online=True) | |
385 |
|
385 | |||
386 | self.dirnameList = [self.dirnameList[-1]] |
|
386 | self.dirnameList = [self.dirnameList[-1]] | |
387 |
|
387 | |||
388 | self.__selectDataForTimes(online=True) |
|
388 | self.__selectDataForTimes(online=True) | |
389 |
|
389 | |||
390 | return |
|
390 | return | |
391 |
|
391 | |||
392 |
|
392 | |||
393 | def searchFilesOffLine(self, |
|
393 | def searchFilesOffLine(self, | |
394 | path, |
|
394 | path, | |
395 | startDate, |
|
395 | startDate, | |
396 | endDate, |
|
396 | endDate, | |
397 | startTime=datetime.time(0,0,0), |
|
397 | startTime=datetime.time(0,0,0), | |
398 | endTime=datetime.time(23,59,59), |
|
398 | endTime=datetime.time(23,59,59), | |
399 | walk=True): |
|
399 | walk=True): | |
400 |
|
400 | |||
401 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) |
|
401 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) | |
402 |
|
402 | |||
403 | self.__checkPath() |
|
403 | self.__checkPath() | |
404 |
|
404 | |||
405 | self.__findDataForDates() |
|
405 | self.__findDataForDates() | |
406 |
|
406 | |||
407 | self.__selectDataForTimes() |
|
407 | self.__selectDataForTimes() | |
408 |
|
408 | |||
409 | for i in range(len(self.filenameList)): |
|
409 | for i in range(len(self.filenameList)): | |
410 | print("%s" %(self.filenameList[i])) |
|
410 | print("%s" %(self.filenameList[i])) | |
411 |
|
411 | |||
412 | return |
|
412 | return | |
413 |
|
413 | |||
414 | def __setNextFileOffline(self): |
|
414 | def __setNextFileOffline(self): | |
415 |
|
415 | |||
416 | try: |
|
416 | try: | |
417 | self.filename = self.filenameList[self.fileIndex] |
|
417 | self.filename = self.filenameList[self.fileIndex] | |
418 | self.amisrFilePointer = h5py.File(self.filename,'r') |
|
418 | self.amisrFilePointer = h5py.File(self.filename,'r') | |
419 | self.fileIndex += 1 |
|
419 | self.fileIndex += 1 | |
420 | except: |
|
420 | except: | |
421 | self.flagNoMoreFiles = 1 |
|
421 | self.flagNoMoreFiles = 1 | |
422 | raise schainpy.admin.SchainError('No more files to read') |
|
422 | raise schainpy.admin.SchainError('No more files to read') | |
423 | return 0 |
|
423 | return 0 | |
424 |
|
424 | |||
425 | self.flagIsNewFile = 1 |
|
425 | self.flagIsNewFile = 1 | |
426 | print("Setting the file: %s"%self.filename) |
|
426 | print("Setting the file: %s"%self.filename) | |
427 |
|
427 | |||
428 | return 1 |
|
428 | return 1 | |
429 |
|
429 | |||
430 |
|
430 | |||
431 | def __setNextFileOnline(self): |
|
431 | def __setNextFileOnline(self): | |
432 | filename = self.filenameList[0] |
|
432 | filename = self.filenameList[0] | |
433 | if self.__filename_online != None: |
|
433 | if self.__filename_online != None: | |
434 | self.__selectDataForTimes(online=True) |
|
434 | self.__selectDataForTimes(online=True) | |
435 | filename = self.filenameList[0] |
|
435 | filename = self.filenameList[0] | |
436 | wait = 0 |
|
436 | wait = 0 | |
437 | self.__waitForNewFile=300 ## DEBUG: |
|
437 | self.__waitForNewFile=300 ## DEBUG: | |
438 | while self.__filename_online == filename: |
|
438 | while self.__filename_online == filename: | |
439 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) |
|
439 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) | |
440 | if wait == 5: |
|
440 | if wait == 5: | |
441 | self.flagNoMoreFiles = 1 |
|
441 | self.flagNoMoreFiles = 1 | |
442 | return 0 |
|
442 | return 0 | |
443 | sleep(self.__waitForNewFile) |
|
443 | sleep(self.__waitForNewFile) | |
444 | self.__selectDataForTimes(online=True) |
|
444 | self.__selectDataForTimes(online=True) | |
445 | filename = self.filenameList[0] |
|
445 | filename = self.filenameList[0] | |
446 | wait += 1 |
|
446 | wait += 1 | |
447 |
|
447 | |||
448 | self.__filename_online = filename |
|
448 | self.__filename_online = filename | |
449 |
|
449 | |||
450 | self.amisrFilePointer = h5py.File(filename,'r') |
|
450 | self.amisrFilePointer = h5py.File(filename,'r') | |
451 | self.flagIsNewFile = 1 |
|
451 | self.flagIsNewFile = 1 | |
452 | self.filename = filename |
|
452 | self.filename = filename | |
453 | print("Setting the file: %s"%self.filename) |
|
453 | print("Setting the file: %s"%self.filename) | |
454 | return 1 |
|
454 | return 1 | |
455 |
|
455 | |||
456 |
|
456 | |||
457 | def readData(self): |
|
457 | def readData(self): | |
458 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') |
|
458 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') | |
459 | re = buffer[:,:,:,0] |
|
459 | re = buffer[:,:,:,0] | |
460 | im = buffer[:,:,:,1] |
|
460 | im = buffer[:,:,:,1] | |
461 | dataset = re + im*1j |
|
461 | dataset = re + im*1j | |
462 |
|
462 | |||
463 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') |
|
463 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') | |
464 | timeset = self.radacTime[:,0] |
|
464 | timeset = self.radacTime[:,0] | |
465 |
|
465 | |||
466 | return dataset,timeset |
|
466 | return dataset,timeset | |
467 |
|
467 | |||
468 | def reshapeData(self): |
|
468 | def reshapeData(self): | |
469 | #self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa, |
|
469 | #self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa, | |
470 | channels = self.beamCodeByPulse[0,:] |
|
470 | channels = self.beamCodeByPulse[0,:] | |
471 | nchan = self.nchannels |
|
471 | nchan = self.nchannels | |
472 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader |
|
472 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader | |
473 | nblocks = self.nblocks |
|
473 | nblocks = self.nblocks | |
474 | nsamples = self.nsa |
|
474 | nsamples = self.nsa | |
475 |
|
475 | |||
476 | #Dimensions : nChannels, nProfiles, nSamples |
|
476 | #Dimensions : nChannels, nProfiles, nSamples | |
477 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") |
|
477 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") | |
478 | ############################################ |
|
478 | ############################################ | |
479 |
|
479 | |||
480 | for thisChannel in range(nchan): |
|
480 | for thisChannel in range(nchan): | |
481 | new_block[:,thisChannel,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[thisChannel])[0],:] |
|
481 | new_block[:,thisChannel,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[thisChannel])[0],:] | |
482 |
|
482 | |||
483 |
|
483 | |||
484 | new_block = numpy.transpose(new_block, (1,0,2,3)) |
|
484 | new_block = numpy.transpose(new_block, (1,0,2,3)) | |
485 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) |
|
485 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) | |
486 |
|
486 | |||
487 | return new_block |
|
487 | return new_block | |
488 |
|
488 | |||
489 | def updateIndexes(self): |
|
489 | def updateIndexes(self): | |
490 |
|
490 | |||
491 | pass |
|
491 | pass | |
492 |
|
492 | |||
493 | def fillJROHeader(self): |
|
493 | def fillJROHeader(self): | |
494 |
|
494 | |||
495 | #fill radar controller header |
|
495 | #fill radar controller header | |
496 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, |
|
496 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, | |
497 | txA=self.__txA, |
|
497 | txA=self.__txA, | |
498 | txB=0, |
|
498 | txB=0, | |
499 | nWindows=1, |
|
499 | nWindows=1, | |
500 | nHeights=self.__nSamples, |
|
500 | nHeights=self.__nSamples, | |
501 | firstHeight=self.__firstHeight, |
|
501 | firstHeight=self.__firstHeight, | |
502 | deltaHeight=self.__deltaHeight, |
|
502 | deltaHeight=self.__deltaHeight, | |
503 | codeType=self.__codeType, |
|
503 | codeType=self.__codeType, | |
504 | nCode=self.__nCode, nBaud=self.__nBaud, |
|
504 | nCode=self.__nCode, nBaud=self.__nBaud, | |
505 | code = self.__code, |
|
505 | code = self.__code, | |
506 | fClock=1) |
|
506 | fClock=1) | |
507 | #fill system header |
|
507 | #fill system header | |
508 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
508 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, | |
509 | nProfiles=self.newProfiles, |
|
509 | nProfiles=self.newProfiles, | |
510 | nChannels=len(self.__channelList), |
|
510 | nChannels=len(self.__channelList), | |
511 | adcResolution=14, |
|
511 | adcResolution=14, | |
512 | pciDioBusWidth=32) |
|
512 | pciDioBusWidth=32) | |
513 |
|
513 | |||
514 | self.dataOut.type = "Voltage" |
|
514 | self.dataOut.type = "Voltage" | |
515 | self.dataOut.data = None |
|
515 | self.dataOut.data = None | |
516 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
516 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) | |
517 | # self.dataOut.nChannels = 0 |
|
517 | # self.dataOut.nChannels = 0 | |
518 |
|
518 | |||
519 | # self.dataOut.nHeights = 0 |
|
519 | # self.dataOut.nHeights = 0 | |
520 |
|
520 | |||
521 | self.dataOut.nProfiles = self.newProfiles*self.nblocks |
|
521 | self.dataOut.nProfiles = self.newProfiles*self.nblocks | |
522 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth |
|
522 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth | |
523 | ranges = numpy.reshape(self.rangeFromFile[()],(-1)) |
|
523 | ranges = numpy.reshape(self.rangeFromFile[()],(-1)) | |
524 | self.dataOut.heightList = ranges/1000.0 #km |
|
524 | self.dataOut.heightList = ranges/1000.0 #km | |
525 | self.dataOut.channelList = self.__channelList |
|
525 | self.dataOut.channelList = self.__channelList | |
526 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
526 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights | |
527 |
|
527 | |||
528 | # self.dataOut.channelIndexList = None |
|
528 | # self.dataOut.channelIndexList = None | |
529 |
|
529 | |||
530 |
|
530 | |||
531 | self.dataOut.azimuthList = numpy.array(self.azimuthList) |
|
531 | self.dataOut.azimuthList = numpy.array(self.azimuthList) | |
532 | self.dataOut.elevationList = numpy.array(self.elevationList) |
|
532 | self.dataOut.elevationList = numpy.array(self.elevationList) | |
533 | self.dataOut.codeList = numpy.array(self.beamCode) |
|
533 | self.dataOut.codeList = numpy.array(self.beamCode) | |
534 | #print(self.dataOut.elevationList) |
|
534 | #print(self.dataOut.elevationList) | |
535 | self.dataOut.flagNoData = True |
|
535 | self.dataOut.flagNoData = True | |
536 |
|
536 | |||
537 | #Set to TRUE if the data is discontinuous |
|
537 | #Set to TRUE if the data is discontinuous | |
538 | self.dataOut.flagDiscontinuousBlock = False |
|
538 | self.dataOut.flagDiscontinuousBlock = False | |
539 |
|
539 | |||
540 | self.dataOut.utctime = None |
|
540 | self.dataOut.utctime = None | |
541 |
|
541 | |||
542 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime |
|
542 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime | |
543 | if self.timezone == 'lt': |
|
543 | if self.timezone == 'lt': | |
544 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes |
|
544 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes | |
545 | else: |
|
545 | else: | |
546 | self.dataOut.timeZone = 0 #by default time is UTC |
|
546 | self.dataOut.timeZone = 0 #by default time is UTC | |
547 |
|
547 | |||
548 | self.dataOut.dstFlag = 0 |
|
548 | self.dataOut.dstFlag = 0 | |
549 | self.dataOut.errorCount = 0 |
|
549 | self.dataOut.errorCount = 0 | |
550 | self.dataOut.nCohInt = 1 |
|
550 | self.dataOut.nCohInt = 1 | |
551 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada |
|
551 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada | |
552 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip |
|
552 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip | |
553 | self.dataOut.flagShiftFFT = False |
|
553 | self.dataOut.flagShiftFFT = False | |
554 | self.dataOut.ippSeconds = self.ippSeconds |
|
554 | self.dataOut.ippSeconds = self.ippSeconds | |
555 |
|
555 | |||
556 | #Time interval between profiles |
|
556 | #Time interval between profiles | |
557 | #self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt |
|
557 | #self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt | |
558 |
|
558 | |||
559 | self.dataOut.frequency = self.__frequency |
|
559 | self.dataOut.frequency = self.__frequency | |
560 | self.dataOut.realtime = self.online |
|
560 | self.dataOut.realtime = self.online | |
561 | pass |
|
561 | pass | |
562 |
|
562 | |||
563 | def readNextFile(self,online=False): |
|
563 | def readNextFile(self,online=False): | |
564 |
|
564 | |||
565 | if not(online): |
|
565 | if not(online): | |
566 | newFile = self.__setNextFileOffline() |
|
566 | newFile = self.__setNextFileOffline() | |
567 | else: |
|
567 | else: | |
568 | newFile = self.__setNextFileOnline() |
|
568 | newFile = self.__setNextFileOnline() | |
569 |
|
569 | |||
570 | if not(newFile): |
|
570 | if not(newFile): | |
571 | self.dataOut.error = True |
|
571 | self.dataOut.error = True | |
572 | return 0 |
|
572 | return 0 | |
573 |
|
573 | |||
574 | if not self.readAMISRHeader(self.amisrFilePointer): |
|
574 | if not self.readAMISRHeader(self.amisrFilePointer): | |
575 | self.dataOut.error = True |
|
575 | self.dataOut.error = True | |
576 | return 0 |
|
576 | return 0 | |
577 |
|
577 | |||
578 | self.createBuffers() |
|
578 | self.createBuffers() | |
579 | self.fillJROHeader() |
|
579 | self.fillJROHeader() | |
580 |
|
580 | |||
581 | #self.__firstFile = False |
|
581 | #self.__firstFile = False | |
582 |
|
582 | |||
583 |
|
583 | |||
584 |
|
584 | |||
585 | self.dataset,self.timeset = self.readData() |
|
585 | self.dataset,self.timeset = self.readData() | |
586 |
|
586 | |||
587 | if self.endDate!=None: |
|
587 | if self.endDate!=None: | |
588 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
588 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) | |
589 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') |
|
589 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') | |
590 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
590 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] | |
591 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
591 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
592 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
592 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
593 | if self.timezone == 'lt': |
|
593 | if self.timezone == 'lt': | |
594 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
594 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) | |
595 | if (startDateTime_File>endDateTime_Reader): |
|
595 | if (startDateTime_File>endDateTime_Reader): | |
596 | return 0 |
|
596 | return 0 | |
597 |
|
597 | |||
598 | self.jrodataset = self.reshapeData() |
|
598 | self.jrodataset = self.reshapeData() | |
599 | #----self.updateIndexes() |
|
599 | #----self.updateIndexes() | |
600 | self.profileIndex = 0 |
|
600 | self.profileIndex = 0 | |
601 |
|
601 | |||
602 | return 1 |
|
602 | return 1 | |
603 |
|
603 | |||
604 |
|
604 | |||
605 | def __hasNotDataInBuffer(self): |
|
605 | def __hasNotDataInBuffer(self): | |
606 | if self.profileIndex >= (self.newProfiles*self.nblocks): |
|
606 | if self.profileIndex >= (self.newProfiles*self.nblocks): | |
607 | return 1 |
|
607 | return 1 | |
608 | return 0 |
|
608 | return 0 | |
609 |
|
609 | |||
610 |
|
610 | |||
611 | def getData(self): |
|
611 | def getData(self): | |
612 |
|
612 | |||
613 | if self.flagNoMoreFiles: |
|
613 | if self.flagNoMoreFiles: | |
614 | self.dataOut.flagNoData = True |
|
614 | self.dataOut.flagNoData = True | |
615 | return 0 |
|
615 | return 0 | |
616 |
|
616 | |||
617 | if self.__hasNotDataInBuffer(): |
|
617 | if self.profileIndex >= (self.newProfiles*self.nblocks): # | |
|
618 | #if self.__hasNotDataInBuffer(): | |||
618 | if not (self.readNextFile(self.online)): |
|
619 | if not (self.readNextFile(self.online)): | |
619 | return 0 |
|
620 | return 0 | |
620 |
|
621 | |||
621 |
|
622 | |||
622 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer |
|
623 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer | |
623 | self.dataOut.flagNoData = True |
|
624 | self.dataOut.flagNoData = True | |
624 | return 0 |
|
625 | return 0 | |
625 |
|
626 | |||
626 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) |
|
627 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) | |
627 |
|
628 | |||
628 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] |
|
629 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] | |
629 |
|
630 | |||
630 | #print("R_t",self.timeset) |
|
631 | #print("R_t",self.timeset) | |
631 |
|
632 | |||
632 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] |
|
633 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] | |
633 | #verificar basic header de jro data y ver si es compatible con este valor |
|
634 | #verificar basic header de jro data y ver si es compatible con este valor | |
634 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) |
|
635 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) | |
635 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) |
|
636 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) | |
636 | indexblock = self.profileIndex/self.newProfiles |
|
637 | indexblock = self.profileIndex/self.newProfiles | |
637 | #print (indexblock, indexprof) |
|
638 | #print (indexblock, indexprof) | |
638 | diffUTC = 0 |
|
639 | diffUTC = 0 | |
639 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # |
|
640 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # | |
640 |
|
641 | |||
641 | #print("utc :",indexblock," __ ",t_comp) |
|
642 | #print("utc :",indexblock," __ ",t_comp) | |
642 | #print(numpy.shape(self.timeset)) |
|
643 | #print(numpy.shape(self.timeset)) | |
643 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp |
|
644 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp | |
644 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp |
|
645 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp | |
645 |
|
646 | |||
646 | self.dataOut.profileIndex = self.profileIndex |
|
647 | self.dataOut.profileIndex = self.profileIndex | |
647 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) |
|
648 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) | |
648 | self.dataOut.flagNoData = False |
|
649 | self.dataOut.flagNoData = False | |
649 | # if indexprof == 0: |
|
650 | # if indexprof == 0: | |
650 | # print("kamisr: ",self.dataOut.utctime) |
|
651 | # print("kamisr: ",self.dataOut.utctime) | |
651 |
|
652 | |||
652 | self.profileIndex += 1 |
|
653 | self.profileIndex += 1 | |
653 |
|
654 | |||
654 | return self.dataOut.data #retorno necesario?? |
|
655 | return self.dataOut.data #retorno necesario?? | |
655 |
|
656 | |||
656 |
|
657 | |||
657 | def run(self, **kwargs): |
|
658 | def run(self, **kwargs): | |
658 | ''' |
|
659 | ''' | |
659 | This method will be called many times so here you should put all your code |
|
660 | This method will be called many times so here you should put all your code | |
660 | ''' |
|
661 | ''' | |
661 | #print("running kamisr") |
|
662 | #print("running kamisr") | |
662 | if not self.isConfig: |
|
663 | if not self.isConfig: | |
663 | self.setup(**kwargs) |
|
664 | self.setup(**kwargs) | |
664 | self.isConfig = True |
|
665 | self.isConfig = True | |
665 |
|
666 | |||
666 | self.getData() |
|
667 | self.getData() |
@@ -1,2076 +1,2086 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 | import math |
|
15 | import math | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
18 | from schainpy.model.data.jrodata import Spectra |
|
18 | from schainpy.model.data.jrodata import Spectra | |
19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
20 | from schainpy.model.data import _noise |
|
20 | from schainpy.model.data import _noise | |
21 |
|
21 | |||
22 | from schainpy.utils import log |
|
22 | from schainpy.utils import log | |
23 | import matplotlib.pyplot as plt |
|
23 | import matplotlib.pyplot as plt | |
24 | #from scipy.optimize import curve_fit |
|
24 | #from scipy.optimize import curve_fit | |
25 |
|
25 | |||
26 | class SpectraProc(ProcessingUnit): |
|
26 | class SpectraProc(ProcessingUnit): | |
27 |
|
27 | |||
28 | def __init__(self): |
|
28 | def __init__(self): | |
29 |
|
29 | |||
30 | ProcessingUnit.__init__(self) |
|
30 | ProcessingUnit.__init__(self) | |
31 |
|
31 | |||
32 | self.buffer = None |
|
32 | self.buffer = None | |
33 | self.firstdatatime = None |
|
33 | self.firstdatatime = None | |
34 | self.profIndex = 0 |
|
34 | self.profIndex = 0 | |
35 | self.dataOut = Spectra() |
|
35 | self.dataOut = Spectra() | |
36 | self.id_min = None |
|
36 | self.id_min = None | |
37 | self.id_max = None |
|
37 | self.id_max = None | |
38 | self.setupReq = False #Agregar a todas las unidades de proc |
|
38 | self.setupReq = False #Agregar a todas las unidades de proc | |
39 |
|
39 | |||
40 | def __updateSpecFromVoltage(self): |
|
40 | def __updateSpecFromVoltage(self): | |
41 |
|
41 | |||
42 |
|
42 | |||
43 |
|
43 | |||
44 | self.dataOut.timeZone = self.dataIn.timeZone |
|
44 | self.dataOut.timeZone = self.dataIn.timeZone | |
45 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
45 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
46 | self.dataOut.errorCount = self.dataIn.errorCount |
|
46 | self.dataOut.errorCount = self.dataIn.errorCount | |
47 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
47 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
48 | try: |
|
48 | try: | |
49 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
49 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
50 | except: |
|
50 | except: | |
51 | pass |
|
51 | pass | |
52 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
52 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
53 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
53 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
54 | self.dataOut.channelList = self.dataIn.channelList |
|
54 | self.dataOut.channelList = self.dataIn.channelList | |
55 | self.dataOut.heightList = self.dataIn.heightList |
|
55 | self.dataOut.heightList = self.dataIn.heightList | |
56 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
56 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
57 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
57 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
58 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
58 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
59 | self.dataOut.utctime = self.firstdatatime |
|
59 | self.dataOut.utctime = self.firstdatatime | |
60 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
60 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
61 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
61 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
62 | self.dataOut.flagShiftFFT = False |
|
62 | self.dataOut.flagShiftFFT = False | |
63 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
63 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
64 | self.dataOut.nIncohInt = 1 |
|
64 | self.dataOut.nIncohInt = 1 | |
65 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
65 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
66 | self.dataOut.frequency = self.dataIn.frequency |
|
66 | self.dataOut.frequency = self.dataIn.frequency | |
67 | self.dataOut.realtime = self.dataIn.realtime |
|
67 | self.dataOut.realtime = self.dataIn.realtime | |
68 | self.dataOut.azimuth = self.dataIn.azimuth |
|
68 | self.dataOut.azimuth = self.dataIn.azimuth | |
69 | self.dataOut.zenith = self.dataIn.zenith |
|
69 | self.dataOut.zenith = self.dataIn.zenith | |
70 | self.dataOut.codeList = self.dataIn.codeList |
|
70 | self.dataOut.codeList = self.dataIn.codeList | |
71 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
71 | self.dataOut.azimuthList = self.dataIn.azimuthList | |
72 | self.dataOut.elevationList = self.dataIn.elevationList |
|
72 | self.dataOut.elevationList = self.dataIn.elevationList | |
73 |
|
73 | |||
74 |
|
74 | |||
75 | def __getFft(self): |
|
75 | def __getFft(self): | |
76 | """ |
|
76 | """ | |
77 | Convierte valores de Voltaje a Spectra |
|
77 | Convierte valores de Voltaje a Spectra | |
78 |
|
78 | |||
79 | Affected: |
|
79 | Affected: | |
80 | self.dataOut.data_spc |
|
80 | self.dataOut.data_spc | |
81 | self.dataOut.data_cspc |
|
81 | self.dataOut.data_cspc | |
82 | self.dataOut.data_dc |
|
82 | self.dataOut.data_dc | |
83 | self.dataOut.heightList |
|
83 | self.dataOut.heightList | |
84 | self.profIndex |
|
84 | self.profIndex | |
85 | self.buffer |
|
85 | self.buffer | |
86 | self.dataOut.flagNoData |
|
86 | self.dataOut.flagNoData | |
87 | """ |
|
87 | """ | |
88 | fft_volt = numpy.fft.fft( |
|
88 | fft_volt = numpy.fft.fft( | |
89 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
89 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
90 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
90 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
91 | dc = fft_volt[:, 0, :] |
|
91 | dc = fft_volt[:, 0, :] | |
92 |
|
92 | |||
93 | # calculo de self-spectra |
|
93 | # calculo de self-spectra | |
94 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
94 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
95 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
95 | spc = fft_volt * numpy.conjugate(fft_volt) | |
96 | spc = spc.real |
|
96 | spc = spc.real | |
97 |
|
97 | |||
98 | blocksize = 0 |
|
98 | blocksize = 0 | |
99 | blocksize += dc.size |
|
99 | blocksize += dc.size | |
100 | blocksize += spc.size |
|
100 | blocksize += spc.size | |
101 |
|
101 | |||
102 | cspc = None |
|
102 | cspc = None | |
103 | pairIndex = 0 |
|
103 | pairIndex = 0 | |
104 | if self.dataOut.pairsList != None: |
|
104 | if self.dataOut.pairsList != None: | |
105 | # calculo de cross-spectra |
|
105 | # calculo de cross-spectra | |
106 | cspc = numpy.zeros( |
|
106 | cspc = numpy.zeros( | |
107 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
107 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
108 | for pair in self.dataOut.pairsList: |
|
108 | for pair in self.dataOut.pairsList: | |
109 | if pair[0] not in self.dataOut.channelList: |
|
109 | if pair[0] not in self.dataOut.channelList: | |
110 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
110 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
111 | str(pair), str(self.dataOut.channelList))) |
|
111 | str(pair), str(self.dataOut.channelList))) | |
112 | if pair[1] not in self.dataOut.channelList: |
|
112 | if pair[1] not in self.dataOut.channelList: | |
113 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
113 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
114 | str(pair), str(self.dataOut.channelList))) |
|
114 | str(pair), str(self.dataOut.channelList))) | |
115 |
|
115 | |||
116 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
116 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
117 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
117 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
118 | pairIndex += 1 |
|
118 | pairIndex += 1 | |
119 | blocksize += cspc.size |
|
119 | blocksize += cspc.size | |
120 |
|
120 | |||
121 | self.dataOut.data_spc = spc |
|
121 | self.dataOut.data_spc = spc | |
122 | self.dataOut.data_cspc = cspc |
|
122 | self.dataOut.data_cspc = cspc | |
123 | self.dataOut.data_dc = dc |
|
123 | self.dataOut.data_dc = dc | |
124 | self.dataOut.blockSize = blocksize |
|
124 | self.dataOut.blockSize = blocksize | |
125 | self.dataOut.flagShiftFFT = False |
|
125 | self.dataOut.flagShiftFFT = False | |
126 |
|
126 | |||
127 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
127 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): | |
128 | #print("run spc proc") |
|
128 | #print("run spc proc") | |
129 | try: |
|
129 | try: | |
130 | type = self.dataIn.type.decode("utf-8") |
|
130 | type = self.dataIn.type.decode("utf-8") | |
131 | self.dataIn.type = type |
|
131 | self.dataIn.type = type | |
132 | except: |
|
132 | except: | |
133 | pass |
|
133 | pass | |
134 | if self.dataIn.type == "Spectra": |
|
134 | if self.dataIn.type == "Spectra": | |
135 |
|
135 | |||
136 | try: |
|
136 | try: | |
137 | self.dataOut.copy(self.dataIn) |
|
137 | self.dataOut.copy(self.dataIn) | |
138 |
|
138 | |||
139 | except Exception as e: |
|
139 | except Exception as e: | |
140 | print("Error dataIn ",e) |
|
140 | print("Error dataIn ",e) | |
141 |
|
141 | |||
142 | if shift_fft: |
|
142 | if shift_fft: | |
143 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
143 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
144 | shift = int(self.dataOut.nFFTPoints/2) |
|
144 | shift = int(self.dataOut.nFFTPoints/2) | |
145 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
145 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
146 |
|
146 | |||
147 | if self.dataOut.data_cspc is not None: |
|
147 | if self.dataOut.data_cspc is not None: | |
148 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
148 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
149 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
149 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
150 | if pairsList: |
|
150 | if pairsList: | |
151 | self.__selectPairs(pairsList) |
|
151 | self.__selectPairs(pairsList) | |
152 |
|
152 | |||
153 |
|
153 | |||
154 | elif self.dataIn.type == "Voltage": |
|
154 | elif self.dataIn.type == "Voltage": | |
155 |
|
155 | |||
156 | self.dataOut.flagNoData = True |
|
156 | self.dataOut.flagNoData = True | |
157 |
|
157 | |||
158 | if nFFTPoints == None: |
|
158 | if nFFTPoints == None: | |
159 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
159 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
160 |
|
160 | |||
161 | if nProfiles == None: |
|
161 | if nProfiles == None: | |
162 | nProfiles = nFFTPoints |
|
162 | nProfiles = nFFTPoints | |
163 |
|
163 | |||
164 | if ippFactor == None: |
|
164 | if ippFactor == None: | |
165 | self.dataOut.ippFactor = 1 |
|
165 | self.dataOut.ippFactor = 1 | |
166 |
|
166 | |||
167 | self.dataOut.nFFTPoints = nFFTPoints |
|
167 | self.dataOut.nFFTPoints = nFFTPoints | |
168 | #print(" volts ch,prof, h: ", self.dataIn.data.shape) |
|
168 | #print(" volts ch,prof, h: ", self.dataIn.data.shape) | |
169 | if self.buffer is None: |
|
169 | if self.buffer is None: | |
170 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
170 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
171 | nProfiles, |
|
171 | nProfiles, | |
172 | self.dataIn.nHeights), |
|
172 | self.dataIn.nHeights), | |
173 | dtype='complex') |
|
173 | dtype='complex') | |
174 |
|
174 | |||
175 | if self.dataIn.flagDataAsBlock: |
|
175 | if self.dataIn.flagDataAsBlock: | |
176 | nVoltProfiles = self.dataIn.data.shape[1] |
|
176 | nVoltProfiles = self.dataIn.data.shape[1] | |
177 |
|
177 | |||
178 | if nVoltProfiles == nProfiles: |
|
178 | if nVoltProfiles == nProfiles: | |
179 | self.buffer = self.dataIn.data.copy() |
|
179 | self.buffer = self.dataIn.data.copy() | |
180 | self.profIndex = nVoltProfiles |
|
180 | self.profIndex = nVoltProfiles | |
181 |
|
181 | |||
182 | elif nVoltProfiles < nProfiles: |
|
182 | elif nVoltProfiles < nProfiles: | |
183 |
|
183 | |||
184 | if self.profIndex == 0: |
|
184 | if self.profIndex == 0: | |
185 | self.id_min = 0 |
|
185 | self.id_min = 0 | |
186 | self.id_max = nVoltProfiles |
|
186 | self.id_max = nVoltProfiles | |
187 |
|
187 | |||
188 | self.buffer[:, self.id_min:self.id_max, |
|
188 | self.buffer[:, self.id_min:self.id_max, | |
189 | :] = self.dataIn.data |
|
189 | :] = self.dataIn.data | |
190 | self.profIndex += nVoltProfiles |
|
190 | self.profIndex += nVoltProfiles | |
191 | self.id_min += nVoltProfiles |
|
191 | self.id_min += nVoltProfiles | |
192 | self.id_max += nVoltProfiles |
|
192 | self.id_max += nVoltProfiles | |
193 | else: |
|
193 | else: | |
194 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
194 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
195 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
195 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
196 | self.dataOut.flagNoData = True |
|
196 | self.dataOut.flagNoData = True | |
197 | else: |
|
197 | else: | |
198 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
198 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
199 | self.profIndex += 1 |
|
199 | self.profIndex += 1 | |
200 |
|
200 | |||
201 | if self.firstdatatime == None: |
|
201 | if self.firstdatatime == None: | |
202 | self.firstdatatime = self.dataIn.utctime |
|
202 | self.firstdatatime = self.dataIn.utctime | |
203 |
|
203 | |||
204 | if self.profIndex == nProfiles: |
|
204 | if self.profIndex == nProfiles: | |
205 |
|
205 | |||
206 | self.__updateSpecFromVoltage() |
|
206 | self.__updateSpecFromVoltage() | |
207 |
|
207 | |||
208 | if pairsList == None: |
|
208 | if pairsList == None: | |
209 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
209 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
210 | else: |
|
210 | else: | |
211 | self.dataOut.pairsList = pairsList |
|
211 | self.dataOut.pairsList = pairsList | |
212 | self.__getFft() |
|
212 | self.__getFft() | |
213 | self.dataOut.flagNoData = False |
|
213 | self.dataOut.flagNoData = False | |
214 | self.firstdatatime = None |
|
214 | self.firstdatatime = None | |
215 | self.profIndex = 0 |
|
215 | self.profIndex = 0 | |
216 |
|
216 | |||
217 | elif self.dataIn.type == "Parameters": |
|
217 | elif self.dataIn.type == "Parameters": | |
218 |
|
218 | |||
219 | self.dataOut.data_spc = self.dataIn.data_spc |
|
219 | self.dataOut.data_spc = self.dataIn.data_spc | |
220 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
220 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
221 | self.dataOut.data_outlier = self.dataIn.data_outlier |
|
221 | self.dataOut.data_outlier = self.dataIn.data_outlier | |
222 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
222 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
223 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
223 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
224 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
224 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
225 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
225 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
226 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt |
|
226 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt | |
227 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
227 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
228 | self.dataOut.ipp = self.dataIn.ipp |
|
228 | self.dataOut.ipp = self.dataIn.ipp | |
229 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
229 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
230 | #self.dataOut.spc_noise = self.dataIn.getNoise() |
|
230 | #self.dataOut.spc_noise = self.dataIn.getNoise() | |
231 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
231 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
232 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
232 | # self.dataOut.normFactor = self.dataIn.normFactor | |
233 | if hasattr(self.dataIn, 'channelList'): |
|
233 | if hasattr(self.dataIn, 'channelList'): | |
234 | self.dataOut.channelList = self.dataIn.channelList |
|
234 | self.dataOut.channelList = self.dataIn.channelList | |
235 | if hasattr(self.dataIn, 'pairsList'): |
|
235 | if hasattr(self.dataIn, 'pairsList'): | |
236 | self.dataOut.pairsList = self.dataIn.pairsList |
|
236 | self.dataOut.pairsList = self.dataIn.pairsList | |
237 | self.dataOut.groupList = self.dataIn.pairsList |
|
237 | self.dataOut.groupList = self.dataIn.pairsList | |
238 |
|
238 | |||
239 | self.dataOut.flagNoData = False |
|
239 | self.dataOut.flagNoData = False | |
240 |
|
240 | |||
241 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
241 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
242 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
242 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
243 | else: self.dataOut.ChanDist = None |
|
243 | else: self.dataOut.ChanDist = None | |
244 |
|
244 | |||
245 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
245 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
246 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
246 | # self.dataOut.VelRange = self.dataIn.VelRange | |
247 | #else: self.dataOut.VelRange = None |
|
247 | #else: self.dataOut.VelRange = None | |
248 |
|
248 | |||
249 |
|
249 | |||
250 |
|
250 | |||
251 | else: |
|
251 | else: | |
252 | raise ValueError("The type of input object {} is not valid".format( |
|
252 | raise ValueError("The type of input object {} is not valid".format( | |
253 | self.dataIn.type)) |
|
253 | self.dataIn.type)) | |
254 |
|
254 | |||
255 |
|
255 | |||
256 | def __selectPairs(self, pairsList): |
|
256 | def __selectPairs(self, pairsList): | |
257 |
|
257 | |||
258 | if not pairsList: |
|
258 | if not pairsList: | |
259 | return |
|
259 | return | |
260 |
|
260 | |||
261 | pairs = [] |
|
261 | pairs = [] | |
262 | pairsIndex = [] |
|
262 | pairsIndex = [] | |
263 |
|
263 | |||
264 | for pair in pairsList: |
|
264 | for pair in pairsList: | |
265 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
265 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
266 | continue |
|
266 | continue | |
267 | pairs.append(pair) |
|
267 | pairs.append(pair) | |
268 | pairsIndex.append(pairs.index(pair)) |
|
268 | pairsIndex.append(pairs.index(pair)) | |
269 |
|
269 | |||
270 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
270 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
271 | self.dataOut.pairsList = pairs |
|
271 | self.dataOut.pairsList = pairs | |
272 |
|
272 | |||
273 | return |
|
273 | return | |
274 |
|
274 | |||
275 | def selectFFTs(self, minFFT, maxFFT ): |
|
275 | def selectFFTs(self, minFFT, maxFFT ): | |
276 | """ |
|
276 | """ | |
277 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
277 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
278 | minFFT<= FFT <= maxFFT |
|
278 | minFFT<= FFT <= maxFFT | |
279 | """ |
|
279 | """ | |
280 |
|
280 | |||
281 | if (minFFT > maxFFT): |
|
281 | if (minFFT > maxFFT): | |
282 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
282 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
283 |
|
283 | |||
284 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
284 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
285 | minFFT = self.dataOut.getFreqRange()[0] |
|
285 | minFFT = self.dataOut.getFreqRange()[0] | |
286 |
|
286 | |||
287 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
287 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
288 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
288 | maxFFT = self.dataOut.getFreqRange()[-1] | |
289 |
|
289 | |||
290 | minIndex = 0 |
|
290 | minIndex = 0 | |
291 | maxIndex = 0 |
|
291 | maxIndex = 0 | |
292 | FFTs = self.dataOut.getFreqRange() |
|
292 | FFTs = self.dataOut.getFreqRange() | |
293 |
|
293 | |||
294 | inda = numpy.where(FFTs >= minFFT) |
|
294 | inda = numpy.where(FFTs >= minFFT) | |
295 | indb = numpy.where(FFTs <= maxFFT) |
|
295 | indb = numpy.where(FFTs <= maxFFT) | |
296 |
|
296 | |||
297 | try: |
|
297 | try: | |
298 | minIndex = inda[0][0] |
|
298 | minIndex = inda[0][0] | |
299 | except: |
|
299 | except: | |
300 | minIndex = 0 |
|
300 | minIndex = 0 | |
301 |
|
301 | |||
302 | try: |
|
302 | try: | |
303 | maxIndex = indb[0][-1] |
|
303 | maxIndex = indb[0][-1] | |
304 | except: |
|
304 | except: | |
305 | maxIndex = len(FFTs) |
|
305 | maxIndex = len(FFTs) | |
306 |
|
306 | |||
307 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
307 | self.selectFFTsByIndex(minIndex, maxIndex) | |
308 |
|
308 | |||
309 | return 1 |
|
309 | return 1 | |
310 |
|
310 | |||
311 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
311 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
312 | newheis = numpy.where( |
|
312 | newheis = numpy.where( | |
313 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
313 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
314 |
|
314 | |||
315 | if hei_ref != None: |
|
315 | if hei_ref != None: | |
316 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
316 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
317 |
|
317 | |||
318 | minIndex = min(newheis[0]) |
|
318 | minIndex = min(newheis[0]) | |
319 | maxIndex = max(newheis[0]) |
|
319 | maxIndex = max(newheis[0]) | |
320 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
320 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
321 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
321 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
322 |
|
322 | |||
323 | # determina indices |
|
323 | # determina indices | |
324 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
324 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
325 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
325 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
326 | avg_dB = 10 * \ |
|
326 | avg_dB = 10 * \ | |
327 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
327 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
328 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
328 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
329 | beacon_heiIndexList = [] |
|
329 | beacon_heiIndexList = [] | |
330 | for val in avg_dB.tolist(): |
|
330 | for val in avg_dB.tolist(): | |
331 | if val >= beacon_dB[0]: |
|
331 | if val >= beacon_dB[0]: | |
332 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
332 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
333 |
|
333 | |||
334 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
334 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
335 | data_cspc = None |
|
335 | data_cspc = None | |
336 | if self.dataOut.data_cspc is not None: |
|
336 | if self.dataOut.data_cspc is not None: | |
337 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
337 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
338 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
338 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
339 |
|
339 | |||
340 | data_dc = None |
|
340 | data_dc = None | |
341 | if self.dataOut.data_dc is not None: |
|
341 | if self.dataOut.data_dc is not None: | |
342 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
342 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
343 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
343 | #data_dc = data_dc[:,beacon_heiIndexList] | |
344 |
|
344 | |||
345 | self.dataOut.data_spc = data_spc |
|
345 | self.dataOut.data_spc = data_spc | |
346 | self.dataOut.data_cspc = data_cspc |
|
346 | self.dataOut.data_cspc = data_cspc | |
347 | self.dataOut.data_dc = data_dc |
|
347 | self.dataOut.data_dc = data_dc | |
348 | self.dataOut.heightList = heightList |
|
348 | self.dataOut.heightList = heightList | |
349 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
349 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
350 |
|
350 | |||
351 | return 1 |
|
351 | return 1 | |
352 |
|
352 | |||
353 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
353 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
354 | """ |
|
354 | """ | |
355 |
|
355 | |||
356 | """ |
|
356 | """ | |
357 |
|
357 | |||
358 | if (minIndex < 0) or (minIndex > maxIndex): |
|
358 | if (minIndex < 0) or (minIndex > maxIndex): | |
359 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
359 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
360 |
|
360 | |||
361 | if (maxIndex >= self.dataOut.nProfiles): |
|
361 | if (maxIndex >= self.dataOut.nProfiles): | |
362 | maxIndex = self.dataOut.nProfiles-1 |
|
362 | maxIndex = self.dataOut.nProfiles-1 | |
363 |
|
363 | |||
364 | #Spectra |
|
364 | #Spectra | |
365 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
365 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
366 |
|
366 | |||
367 | data_cspc = None |
|
367 | data_cspc = None | |
368 | if self.dataOut.data_cspc is not None: |
|
368 | if self.dataOut.data_cspc is not None: | |
369 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
369 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
370 |
|
370 | |||
371 | data_dc = None |
|
371 | data_dc = None | |
372 | if self.dataOut.data_dc is not None: |
|
372 | if self.dataOut.data_dc is not None: | |
373 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
373 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
374 |
|
374 | |||
375 | self.dataOut.data_spc = data_spc |
|
375 | self.dataOut.data_spc = data_spc | |
376 | self.dataOut.data_cspc = data_cspc |
|
376 | self.dataOut.data_cspc = data_cspc | |
377 | self.dataOut.data_dc = data_dc |
|
377 | self.dataOut.data_dc = data_dc | |
378 |
|
378 | |||
379 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
379 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
380 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
380 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
381 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
381 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
382 |
|
382 | |||
383 | return 1 |
|
383 | return 1 | |
384 |
|
384 | |||
385 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
385 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
386 | # validacion de rango |
|
386 | # validacion de rango | |
387 | if minHei == None: |
|
387 | if minHei == None: | |
388 | minHei = self.dataOut.heightList[0] |
|
388 | minHei = self.dataOut.heightList[0] | |
389 |
|
389 | |||
390 | if maxHei == None: |
|
390 | if maxHei == None: | |
391 | maxHei = self.dataOut.heightList[-1] |
|
391 | maxHei = self.dataOut.heightList[-1] | |
392 |
|
392 | |||
393 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
393 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
394 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
394 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
395 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
395 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
396 | minHei = self.dataOut.heightList[0] |
|
396 | minHei = self.dataOut.heightList[0] | |
397 |
|
397 | |||
398 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
398 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
399 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
399 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
400 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
400 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
401 | maxHei = self.dataOut.heightList[-1] |
|
401 | maxHei = self.dataOut.heightList[-1] | |
402 |
|
402 | |||
403 | # validacion de velocidades |
|
403 | # validacion de velocidades | |
404 | velrange = self.dataOut.getVelRange(1) |
|
404 | velrange = self.dataOut.getVelRange(1) | |
405 |
|
405 | |||
406 | if minVel == None: |
|
406 | if minVel == None: | |
407 | minVel = velrange[0] |
|
407 | minVel = velrange[0] | |
408 |
|
408 | |||
409 | if maxVel == None: |
|
409 | if maxVel == None: | |
410 | maxVel = velrange[-1] |
|
410 | maxVel = velrange[-1] | |
411 |
|
411 | |||
412 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
412 | if (minVel < velrange[0]) or (minVel > maxVel): | |
413 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
413 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
414 | print('minVel is setting to %.2f' % (velrange[0])) |
|
414 | print('minVel is setting to %.2f' % (velrange[0])) | |
415 | minVel = velrange[0] |
|
415 | minVel = velrange[0] | |
416 |
|
416 | |||
417 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
417 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
418 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
418 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
419 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
419 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
420 | maxVel = velrange[-1] |
|
420 | maxVel = velrange[-1] | |
421 |
|
421 | |||
422 | # seleccion de indices para rango |
|
422 | # seleccion de indices para rango | |
423 | minIndex = 0 |
|
423 | minIndex = 0 | |
424 | maxIndex = 0 |
|
424 | maxIndex = 0 | |
425 | heights = self.dataOut.heightList |
|
425 | heights = self.dataOut.heightList | |
426 |
|
426 | |||
427 | inda = numpy.where(heights >= minHei) |
|
427 | inda = numpy.where(heights >= minHei) | |
428 | indb = numpy.where(heights <= maxHei) |
|
428 | indb = numpy.where(heights <= maxHei) | |
429 |
|
429 | |||
430 | try: |
|
430 | try: | |
431 | minIndex = inda[0][0] |
|
431 | minIndex = inda[0][0] | |
432 | except: |
|
432 | except: | |
433 | minIndex = 0 |
|
433 | minIndex = 0 | |
434 |
|
434 | |||
435 | try: |
|
435 | try: | |
436 | maxIndex = indb[0][-1] |
|
436 | maxIndex = indb[0][-1] | |
437 | except: |
|
437 | except: | |
438 | maxIndex = len(heights) |
|
438 | maxIndex = len(heights) | |
439 |
|
439 | |||
440 | if (minIndex < 0) or (minIndex > maxIndex): |
|
440 | if (minIndex < 0) or (minIndex > maxIndex): | |
441 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
441 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
442 | minIndex, maxIndex)) |
|
442 | minIndex, maxIndex)) | |
443 |
|
443 | |||
444 | if (maxIndex >= self.dataOut.nHeights): |
|
444 | if (maxIndex >= self.dataOut.nHeights): | |
445 | maxIndex = self.dataOut.nHeights - 1 |
|
445 | maxIndex = self.dataOut.nHeights - 1 | |
446 |
|
446 | |||
447 | # seleccion de indices para velocidades |
|
447 | # seleccion de indices para velocidades | |
448 | indminvel = numpy.where(velrange >= minVel) |
|
448 | indminvel = numpy.where(velrange >= minVel) | |
449 | indmaxvel = numpy.where(velrange <= maxVel) |
|
449 | indmaxvel = numpy.where(velrange <= maxVel) | |
450 | try: |
|
450 | try: | |
451 | minIndexVel = indminvel[0][0] |
|
451 | minIndexVel = indminvel[0][0] | |
452 | except: |
|
452 | except: | |
453 | minIndexVel = 0 |
|
453 | minIndexVel = 0 | |
454 |
|
454 | |||
455 | try: |
|
455 | try: | |
456 | maxIndexVel = indmaxvel[0][-1] |
|
456 | maxIndexVel = indmaxvel[0][-1] | |
457 | except: |
|
457 | except: | |
458 | maxIndexVel = len(velrange) |
|
458 | maxIndexVel = len(velrange) | |
459 |
|
459 | |||
460 | # seleccion del espectro |
|
460 | # seleccion del espectro | |
461 | data_spc = self.dataOut.data_spc[:, |
|
461 | data_spc = self.dataOut.data_spc[:, | |
462 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
462 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
463 | # estimacion de ruido |
|
463 | # estimacion de ruido | |
464 | noise = numpy.zeros(self.dataOut.nChannels) |
|
464 | noise = numpy.zeros(self.dataOut.nChannels) | |
465 |
|
465 | |||
466 | for channel in range(self.dataOut.nChannels): |
|
466 | for channel in range(self.dataOut.nChannels): | |
467 | daux = data_spc[channel, :, :] |
|
467 | daux = data_spc[channel, :, :] | |
468 | sortdata = numpy.sort(daux, axis=None) |
|
468 | sortdata = numpy.sort(daux, axis=None) | |
469 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
469 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
470 |
|
470 | |||
471 | self.dataOut.noise_estimation = noise.copy() |
|
471 | self.dataOut.noise_estimation = noise.copy() | |
472 |
|
472 | |||
473 | return 1 |
|
473 | return 1 | |
474 |
|
474 | |||
475 | class removeDC(Operation): |
|
475 | class removeDC(Operation): | |
476 |
|
476 | |||
477 | def run(self, dataOut, mode=2): |
|
477 | def run(self, dataOut, mode=2): | |
478 | self.dataOut = dataOut |
|
478 | self.dataOut = dataOut | |
479 | jspectra = self.dataOut.data_spc |
|
479 | jspectra = self.dataOut.data_spc | |
480 | jcspectra = self.dataOut.data_cspc |
|
480 | jcspectra = self.dataOut.data_cspc | |
481 |
|
481 | |||
482 | num_chan = jspectra.shape[0] |
|
482 | num_chan = jspectra.shape[0] | |
483 | num_hei = jspectra.shape[2] |
|
483 | num_hei = jspectra.shape[2] | |
484 |
|
484 | |||
485 | if jcspectra is not None: |
|
485 | if jcspectra is not None: | |
486 | jcspectraExist = True |
|
486 | jcspectraExist = True | |
487 | num_pairs = jcspectra.shape[0] |
|
487 | num_pairs = jcspectra.shape[0] | |
488 | else: |
|
488 | else: | |
489 | jcspectraExist = False |
|
489 | jcspectraExist = False | |
490 |
|
490 | |||
491 | freq_dc = int(jspectra.shape[1] / 2) |
|
491 | freq_dc = int(jspectra.shape[1] / 2) | |
492 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
492 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
493 | ind_vel = ind_vel.astype(int) |
|
493 | ind_vel = ind_vel.astype(int) | |
494 |
|
494 | |||
495 | if ind_vel[0] < 0: |
|
495 | if ind_vel[0] < 0: | |
496 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
496 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
497 |
|
497 | |||
498 | if mode == 1: |
|
498 | if mode == 1: | |
499 | jspectra[:, freq_dc, :] = ( |
|
499 | jspectra[:, freq_dc, :] = ( | |
500 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
500 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
501 |
|
501 | |||
502 | if jcspectraExist: |
|
502 | if jcspectraExist: | |
503 | jcspectra[:, freq_dc, :] = ( |
|
503 | jcspectra[:, freq_dc, :] = ( | |
504 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
504 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
505 |
|
505 | |||
506 | if mode == 2: |
|
506 | if mode == 2: | |
507 |
|
507 | |||
508 | vel = numpy.array([-2, -1, 1, 2]) |
|
508 | vel = numpy.array([-2, -1, 1, 2]) | |
509 | xx = numpy.zeros([4, 4]) |
|
509 | xx = numpy.zeros([4, 4]) | |
510 |
|
510 | |||
511 | for fil in range(4): |
|
511 | for fil in range(4): | |
512 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
512 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
513 |
|
513 | |||
514 | xx_inv = numpy.linalg.inv(xx) |
|
514 | xx_inv = numpy.linalg.inv(xx) | |
515 | xx_aux = xx_inv[0, :] |
|
515 | xx_aux = xx_inv[0, :] | |
516 |
|
516 | |||
517 | for ich in range(num_chan): |
|
517 | for ich in range(num_chan): | |
518 | yy = jspectra[ich, ind_vel, :] |
|
518 | yy = jspectra[ich, ind_vel, :] | |
519 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
519 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
520 |
|
520 | |||
521 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
521 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
522 | cjunkid = sum(junkid) |
|
522 | cjunkid = sum(junkid) | |
523 |
|
523 | |||
524 | if cjunkid.any(): |
|
524 | if cjunkid.any(): | |
525 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
525 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
526 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
526 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
527 |
|
527 | |||
528 | if jcspectraExist: |
|
528 | if jcspectraExist: | |
529 | for ip in range(num_pairs): |
|
529 | for ip in range(num_pairs): | |
530 | yy = jcspectra[ip, ind_vel, :] |
|
530 | yy = jcspectra[ip, ind_vel, :] | |
531 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
531 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
532 |
|
532 | |||
533 | self.dataOut.data_spc = jspectra |
|
533 | self.dataOut.data_spc = jspectra | |
534 | self.dataOut.data_cspc = jcspectra |
|
534 | self.dataOut.data_cspc = jcspectra | |
535 |
|
535 | |||
536 | return self.dataOut |
|
536 | return self.dataOut | |
537 |
|
537 | |||
538 | class getNoiseB(Operation): |
|
538 | class getNoiseB(Operation): | |
539 |
|
539 | |||
540 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') |
|
540 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') | |
541 | def __init__(self): |
|
541 | def __init__(self): | |
542 |
|
542 | |||
543 | Operation.__init__(self) |
|
543 | Operation.__init__(self) | |
544 | self.isConfig = False |
|
544 | self.isConfig = False | |
545 |
|
545 | |||
546 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
546 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): | |
547 |
|
547 | |||
548 | self.warnings = warnings |
|
548 | self.warnings = warnings | |
549 | if minHei == None: |
|
549 | if minHei == None: | |
550 | minHei = self.dataOut.heightList[0] |
|
550 | minHei = self.dataOut.heightList[0] | |
551 |
|
551 | |||
552 | if maxHei == None: |
|
552 | if maxHei == None: | |
553 | maxHei = self.dataOut.heightList[-1] |
|
553 | maxHei = self.dataOut.heightList[-1] | |
554 |
|
554 | |||
555 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
555 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
556 | if self.warnings: |
|
556 | if self.warnings: | |
557 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
557 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
558 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
558 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
559 | minHei = self.dataOut.heightList[0] |
|
559 | minHei = self.dataOut.heightList[0] | |
560 |
|
560 | |||
561 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
561 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
562 | if self.warnings: |
|
562 | if self.warnings: | |
563 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
563 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
564 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
564 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
565 | maxHei = self.dataOut.heightList[-1] |
|
565 | maxHei = self.dataOut.heightList[-1] | |
566 |
|
566 | |||
567 |
|
567 | |||
568 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
568 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia | |
569 | minIndexFFT = 0 |
|
569 | minIndexFFT = 0 | |
570 | maxIndexFFT = 0 |
|
570 | maxIndexFFT = 0 | |
571 | # validacion de velocidades |
|
571 | # validacion de velocidades | |
572 | indminPoint = None |
|
572 | indminPoint = None | |
573 | indmaxPoint = None |
|
573 | indmaxPoint = None | |
574 | if self.dataOut.type == 'Spectra': |
|
574 | if self.dataOut.type == 'Spectra': | |
575 | if minVel == None and maxVel == None : |
|
575 | if minVel == None and maxVel == None : | |
576 |
|
576 | |||
577 | freqrange = self.dataOut.getFreqRange(1) |
|
577 | freqrange = self.dataOut.getFreqRange(1) | |
578 |
|
578 | |||
579 | if minFreq == None: |
|
579 | if minFreq == None: | |
580 | minFreq = freqrange[0] |
|
580 | minFreq = freqrange[0] | |
581 |
|
581 | |||
582 | if maxFreq == None: |
|
582 | if maxFreq == None: | |
583 | maxFreq = freqrange[-1] |
|
583 | maxFreq = freqrange[-1] | |
584 |
|
584 | |||
585 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
585 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): | |
586 | if self.warnings: |
|
586 | if self.warnings: | |
587 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
587 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) | |
588 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
588 | print('minFreq is setting to %.2f' % (freqrange[0])) | |
589 | minFreq = freqrange[0] |
|
589 | minFreq = freqrange[0] | |
590 |
|
590 | |||
591 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
591 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): | |
592 | if self.warnings: |
|
592 | if self.warnings: | |
593 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
593 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) | |
594 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
594 | print('maxFreq is setting to %.2f' % (freqrange[-1])) | |
595 | maxFreq = freqrange[-1] |
|
595 | maxFreq = freqrange[-1] | |
596 |
|
596 | |||
597 | indminPoint = numpy.where(freqrange >= minFreq) |
|
597 | indminPoint = numpy.where(freqrange >= minFreq) | |
598 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
598 | indmaxPoint = numpy.where(freqrange <= maxFreq) | |
599 |
|
599 | |||
600 | else: |
|
600 | else: | |
601 |
|
601 | |||
602 | velrange = self.dataOut.getVelRange(1) |
|
602 | velrange = self.dataOut.getVelRange(1) | |
603 |
|
603 | |||
604 | if minVel == None: |
|
604 | if minVel == None: | |
605 | minVel = velrange[0] |
|
605 | minVel = velrange[0] | |
606 |
|
606 | |||
607 | if maxVel == None: |
|
607 | if maxVel == None: | |
608 | maxVel = velrange[-1] |
|
608 | maxVel = velrange[-1] | |
609 |
|
609 | |||
610 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
610 | if (minVel < velrange[0]) or (minVel > maxVel): | |
611 | if self.warnings: |
|
611 | if self.warnings: | |
612 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
612 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
613 | print('minVel is setting to %.2f' % (velrange[0])) |
|
613 | print('minVel is setting to %.2f' % (velrange[0])) | |
614 | minVel = velrange[0] |
|
614 | minVel = velrange[0] | |
615 |
|
615 | |||
616 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
616 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
617 | if self.warnings: |
|
617 | if self.warnings: | |
618 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
618 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
619 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
619 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
620 | maxVel = velrange[-1] |
|
620 | maxVel = velrange[-1] | |
621 |
|
621 | |||
622 | indminPoint = numpy.where(velrange >= minVel) |
|
622 | indminPoint = numpy.where(velrange >= minVel) | |
623 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
623 | indmaxPoint = numpy.where(velrange <= maxVel) | |
624 |
|
624 | |||
625 |
|
625 | |||
626 | # seleccion de indices para rango |
|
626 | # seleccion de indices para rango | |
627 | minIndex = 0 |
|
627 | minIndex = 0 | |
628 | maxIndex = 0 |
|
628 | maxIndex = 0 | |
629 | heights = self.dataOut.heightList |
|
629 | heights = self.dataOut.heightList | |
630 |
|
630 | |||
631 | inda = numpy.where(heights >= minHei) |
|
631 | inda = numpy.where(heights >= minHei) | |
632 | indb = numpy.where(heights <= maxHei) |
|
632 | indb = numpy.where(heights <= maxHei) | |
633 |
|
633 | |||
634 | try: |
|
634 | try: | |
635 | minIndex = inda[0][0] |
|
635 | minIndex = inda[0][0] | |
636 | except: |
|
636 | except: | |
637 | minIndex = 0 |
|
637 | minIndex = 0 | |
638 |
|
638 | |||
639 | try: |
|
639 | try: | |
640 | maxIndex = indb[0][-1] |
|
640 | maxIndex = indb[0][-1] | |
641 | except: |
|
641 | except: | |
642 | maxIndex = len(heights) |
|
642 | maxIndex = len(heights) | |
643 |
|
643 | |||
644 | if (minIndex < 0) or (minIndex > maxIndex): |
|
644 | if (minIndex < 0) or (minIndex > maxIndex): | |
645 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
645 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
646 | minIndex, maxIndex)) |
|
646 | minIndex, maxIndex)) | |
647 |
|
647 | |||
648 | if (maxIndex >= self.dataOut.nHeights): |
|
648 | if (maxIndex >= self.dataOut.nHeights): | |
649 | maxIndex = self.dataOut.nHeights - 1 |
|
649 | maxIndex = self.dataOut.nHeights - 1 | |
650 | #############################################################3 |
|
650 | #############################################################3 | |
651 | # seleccion de indices para velocidades |
|
651 | # seleccion de indices para velocidades | |
652 | if self.dataOut.type == 'Spectra': |
|
652 | if self.dataOut.type == 'Spectra': | |
653 | try: |
|
653 | try: | |
654 | minIndexFFT = indminPoint[0][0] |
|
654 | minIndexFFT = indminPoint[0][0] | |
655 | except: |
|
655 | except: | |
656 | minIndexFFT = 0 |
|
656 | minIndexFFT = 0 | |
657 |
|
657 | |||
658 | try: |
|
658 | try: | |
659 | maxIndexFFT = indmaxPoint[0][-1] |
|
659 | maxIndexFFT = indmaxPoint[0][-1] | |
660 | except: |
|
660 | except: | |
661 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
661 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) | |
662 |
|
662 | |||
663 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT |
|
663 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT | |
664 | self.isConfig = True |
|
664 | self.isConfig = True | |
665 | if offset!=None: |
|
665 | if offset!=None: | |
666 | self.offset = 10**(offset/10) |
|
666 | self.offset = 10**(offset/10) | |
667 | #print("config getNoise Done") |
|
667 | #print("config getNoiseB Done") | |
668 |
|
668 | |||
669 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
669 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): | |
670 | self.dataOut = dataOut |
|
670 | self.dataOut = dataOut | |
671 |
|
671 | |||
672 | if not self.isConfig: |
|
672 | if not self.isConfig: | |
673 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) |
|
673 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) | |
674 |
|
674 | |||
675 | self.dataOut.noise_estimation = None |
|
675 | self.dataOut.noise_estimation = None | |
676 | noise = None |
|
676 | noise = None | |
677 | if self.dataOut.type == 'Voltage': |
|
677 | if self.dataOut.type == 'Voltage': | |
678 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
678 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) | |
679 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) |
|
679 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) | |
680 | elif self.dataOut.type == 'Spectra': |
|
680 | elif self.dataOut.type == 'Spectra': | |
681 |
|
681 | #print(self.minIndex, self.maxIndex,self.minIndexFFT, self.maxIndexFFT, self.dataOut.nIncohInt) | ||
682 | noise = numpy.zeros( self.dataOut.nChannels) |
|
682 | noise = numpy.zeros( self.dataOut.nChannels) | |
|
683 | norm = 1 | |||
683 | for channel in range( self.dataOut.nChannels): |
|
684 | for channel in range( self.dataOut.nChannels): | |
684 | norm = self.dataOut.max_nIncohInt/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] |
|
685 | if not hasattr(self.dataOut.nIncohInt,'__len__'): | |
685 |
|
|
686 | norm = 1 | |
|
687 | else: | |||
|
688 | norm = self.dataOut.max_nIncohInt/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] | |||
|
689 | #print("norm nIncoh: ", norm ,self.dataOut.data_spc.shape) | |||
686 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] |
|
690 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] | |
687 | daux = numpy.multiply(daux, norm) |
|
691 | daux = numpy.multiply(daux, norm) | |
688 | #print("offset: ", self.offset, 10*numpy.log10(self.offset)) |
|
692 | #print("offset: ", self.offset, 10*numpy.log10(self.offset)) | |
689 | #noise[channel] = self.getNoiseByMean(daux)/self.offset |
|
693 | #noise[channel] = self.getNoiseByMean(daux)/self.offset | |
|
694 | #print(daux.shape, daux) | |||
690 | noise[channel] = self.getNoiseByHS(daux, self.dataOut.max_nIncohInt)/self.offset |
|
695 | noise[channel] = self.getNoiseByHS(daux, self.dataOut.max_nIncohInt)/self.offset | |
691 |
|
696 | |||
|
697 | # data = numpy.mean(daux,axis=1) | |||
|
698 | # sortdata = numpy.sort(data, axis=None) | |||
|
699 | # noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt)/self.offset | |||
|
700 | ||||
692 | #noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
701 | #noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) | |
693 | else: |
|
702 | else: | |
694 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
703 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) | |
695 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise |
|
704 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise | |
696 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) |
|
705 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) | |
697 |
|
706 | |||
698 | #print(self.dataOut.flagNoData) |
|
707 | #print(self.dataOut.flagNoData) | |
|
708 | print("getNoise Done") | |||
699 | return self.dataOut |
|
709 | return self.dataOut | |
700 |
|
710 | |||
701 | def getNoiseByMean(self,data): |
|
711 | def getNoiseByMean(self,data): | |
702 | #data debe estar ordenado |
|
712 | #data debe estar ordenado | |
703 | data = numpy.mean(data,axis=1) |
|
713 | data = numpy.mean(data,axis=1) | |
704 | sortdata = numpy.sort(data, axis=None) |
|
714 | sortdata = numpy.sort(data, axis=None) | |
705 | #sortID=data.argsort() |
|
715 | #sortID=data.argsort() | |
706 | #print(data.shape) |
|
716 | #print(data.shape) | |
707 |
|
717 | |||
708 | pnoise = None |
|
718 | pnoise = None | |
709 | j = 0 |
|
719 | j = 0 | |
710 |
|
720 | |||
711 | mean = numpy.mean(sortdata) |
|
721 | mean = numpy.mean(sortdata) | |
712 | min = numpy.min(sortdata) |
|
722 | min = numpy.min(sortdata) | |
713 | delta = mean - min |
|
723 | delta = mean - min | |
714 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes |
|
724 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes | |
715 | #print(len(indexes)) |
|
725 | #print(len(indexes)) | |
716 | if len(indexes)==0: |
|
726 | if len(indexes)==0: | |
717 | pnoise = numpy.mean(sortdata) |
|
727 | pnoise = numpy.mean(sortdata) | |
718 | else: |
|
728 | else: | |
719 | j = indexes[0] |
|
729 | j = indexes[0] | |
720 | pnoise = numpy.mean(sortdata[0:j]) |
|
730 | pnoise = numpy.mean(sortdata[0:j]) | |
721 |
|
731 | |||
722 | # from matplotlib import pyplot as plt |
|
732 | # from matplotlib import pyplot as plt | |
723 | # plt.plot(sortdata) |
|
733 | # plt.plot(sortdata) | |
724 | # plt.vlines(j,(pnoise-delta),(pnoise+delta), color='r') |
|
734 | # plt.vlines(j,(pnoise-delta),(pnoise+delta), color='r') | |
725 | # plt.show() |
|
735 | # plt.show() | |
726 | #print("noise: ", 10*numpy.log10(pnoise)) |
|
736 | #print("noise: ", 10*numpy.log10(pnoise)) | |
727 | return pnoise |
|
737 | return pnoise | |
728 |
|
738 | |||
729 | def getNoiseByHS(self,data, navg): |
|
739 | def getNoiseByHS(self,data, navg): | |
730 | #data debe estar ordenado |
|
740 | #data debe estar ordenado | |
731 | #data = numpy.mean(data,axis=1) |
|
741 | #data = numpy.mean(data,axis=1) | |
732 | sortdata = numpy.sort(data, axis=None) |
|
742 | sortdata = numpy.sort(data, axis=None) | |
733 |
|
743 | |||
734 | lenOfData = len(sortdata) |
|
744 | lenOfData = len(sortdata) | |
735 | nums_min = lenOfData*0.05 |
|
745 | nums_min = lenOfData*0.05 | |
736 |
|
746 | |||
737 | if nums_min <= 5: |
|
747 | if nums_min <= 5: | |
738 |
|
748 | |||
739 | nums_min = 5 |
|
749 | nums_min = 5 | |
740 |
|
750 | |||
741 | sump = 0. |
|
751 | sump = 0. | |
742 | sumq = 0. |
|
752 | sumq = 0. | |
743 |
|
753 | |||
744 | j = 0 |
|
754 | j = 0 | |
745 | cont = 1 |
|
755 | cont = 1 | |
746 |
|
756 | |||
747 | while((cont == 1)and(j < lenOfData)): |
|
757 | while((cont == 1)and(j < lenOfData)): | |
748 |
|
758 | |||
749 | sump += sortdata[j] |
|
759 | sump += sortdata[j] | |
750 | sumq += sortdata[j]**2 |
|
760 | sumq += sortdata[j]**2 | |
751 | #sumq -= sump**2 |
|
761 | #sumq -= sump**2 | |
752 | if j > nums_min: |
|
762 | if j > nums_min: | |
753 | rtest = float(j)/(j-1) + 1.0/0.1 |
|
763 | rtest = float(j)/(j-1) + 1.0/0.1 | |
754 | #if ((sumq*j) > (sump**2)): |
|
764 | #if ((sumq*j) > (sump**2)): | |
755 | if ((sumq*j) > (rtest*sump**2)): |
|
765 | if ((sumq*j) > (rtest*sump**2)): | |
756 | j = j - 1 |
|
766 | j = j - 1 | |
757 | sump = sump - sortdata[j] |
|
767 | sump = sump - sortdata[j] | |
758 | sumq = sumq - sortdata[j]**2 |
|
768 | sumq = sumq - sortdata[j]**2 | |
759 | cont = 0 |
|
769 | cont = 0 | |
760 |
|
770 | |||
761 | j += 1 |
|
771 | j += 1 | |
762 |
|
772 | |||
763 | lnoise = sump / j |
|
773 | lnoise = sump / j | |
764 |
|
774 | |||
765 | return lnoise |
|
775 | return lnoise | |
766 |
|
776 | |||
767 |
|
777 | |||
768 |
|
778 | |||
769 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
779 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
770 | z = (x - a1) / a2 |
|
780 | z = (x - a1) / a2 | |
771 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
781 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
772 | return y |
|
782 | return y | |
773 |
|
783 | |||
774 |
|
784 | |||
775 | class CleanRayleigh(Operation): |
|
785 | class CleanRayleigh(Operation): | |
776 |
|
786 | |||
777 | def __init__(self): |
|
787 | def __init__(self): | |
778 |
|
788 | |||
779 | Operation.__init__(self) |
|
789 | Operation.__init__(self) | |
780 | self.i=0 |
|
790 | self.i=0 | |
781 | self.isConfig = False |
|
791 | self.isConfig = False | |
782 | self.__dataReady = False |
|
792 | self.__dataReady = False | |
783 | self.__profIndex = 0 |
|
793 | self.__profIndex = 0 | |
784 | self.byTime = False |
|
794 | self.byTime = False | |
785 | self.byProfiles = False |
|
795 | self.byProfiles = False | |
786 |
|
796 | |||
787 | self.bloques = None |
|
797 | self.bloques = None | |
788 | self.bloque0 = None |
|
798 | self.bloque0 = None | |
789 |
|
799 | |||
790 | self.index = 0 |
|
800 | self.index = 0 | |
791 |
|
801 | |||
792 | self.buffer = 0 |
|
802 | self.buffer = 0 | |
793 | self.buffer2 = 0 |
|
803 | self.buffer2 = 0 | |
794 | self.buffer3 = 0 |
|
804 | self.buffer3 = 0 | |
795 |
|
805 | |||
796 |
|
806 | |||
797 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
807 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): | |
798 |
|
808 | |||
799 | self.nChannels = dataOut.nChannels |
|
809 | self.nChannels = dataOut.nChannels | |
800 | self.nProf = dataOut.nProfiles |
|
810 | self.nProf = dataOut.nProfiles | |
801 | self.nPairs = dataOut.data_cspc.shape[0] |
|
811 | self.nPairs = dataOut.data_cspc.shape[0] | |
802 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
812 | self.pairsArray = numpy.array(dataOut.pairsList) | |
803 | self.spectra = dataOut.data_spc |
|
813 | self.spectra = dataOut.data_spc | |
804 | self.cspectra = dataOut.data_cspc |
|
814 | self.cspectra = dataOut.data_cspc | |
805 | self.heights = dataOut.heightList #alturas totales |
|
815 | self.heights = dataOut.heightList #alturas totales | |
806 | self.nHeights = len(self.heights) |
|
816 | self.nHeights = len(self.heights) | |
807 | self.min_hei = min_hei |
|
817 | self.min_hei = min_hei | |
808 | self.max_hei = max_hei |
|
818 | self.max_hei = max_hei | |
809 | if (self.min_hei == None): |
|
819 | if (self.min_hei == None): | |
810 | self.min_hei = 0 |
|
820 | self.min_hei = 0 | |
811 | if (self.max_hei == None): |
|
821 | if (self.max_hei == None): | |
812 | self.max_hei = dataOut.heightList[-1] |
|
822 | self.max_hei = dataOut.heightList[-1] | |
813 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
823 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() | |
814 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
824 | self.heightsClean = self.heights[self.hval] #alturas filtradas | |
815 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
825 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas | |
816 | self.nHeightsClean = len(self.heightsClean) |
|
826 | self.nHeightsClean = len(self.heightsClean) | |
817 | self.channels = dataOut.channelList |
|
827 | self.channels = dataOut.channelList | |
818 | self.nChan = len(self.channels) |
|
828 | self.nChan = len(self.channels) | |
819 | self.nIncohInt = dataOut.nIncohInt |
|
829 | self.nIncohInt = dataOut.nIncohInt | |
820 | self.__initime = dataOut.utctime |
|
830 | self.__initime = dataOut.utctime | |
821 | self.maxAltInd = self.hval[-1]+1 |
|
831 | self.maxAltInd = self.hval[-1]+1 | |
822 | self.minAltInd = self.hval[0] |
|
832 | self.minAltInd = self.hval[0] | |
823 |
|
833 | |||
824 | self.crosspairs = dataOut.pairsList |
|
834 | self.crosspairs = dataOut.pairsList | |
825 | self.nPairs = len(self.crosspairs) |
|
835 | self.nPairs = len(self.crosspairs) | |
826 | self.normFactor = dataOut.normFactor |
|
836 | self.normFactor = dataOut.normFactor | |
827 | self.nFFTPoints = dataOut.nFFTPoints |
|
837 | self.nFFTPoints = dataOut.nFFTPoints | |
828 | self.ippSeconds = dataOut.ippSeconds |
|
838 | self.ippSeconds = dataOut.ippSeconds | |
829 | self.currentTime = self.__initime |
|
839 | self.currentTime = self.__initime | |
830 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
840 | self.pairsArray = numpy.array(dataOut.pairsList) | |
831 | self.factor_stdv = factor_stdv |
|
841 | self.factor_stdv = factor_stdv | |
832 |
|
842 | |||
833 | if n != None : |
|
843 | if n != None : | |
834 | self.byProfiles = True |
|
844 | self.byProfiles = True | |
835 | self.nIntProfiles = n |
|
845 | self.nIntProfiles = n | |
836 | else: |
|
846 | else: | |
837 | self.__integrationtime = timeInterval |
|
847 | self.__integrationtime = timeInterval | |
838 |
|
848 | |||
839 | self.__dataReady = False |
|
849 | self.__dataReady = False | |
840 | self.isConfig = True |
|
850 | self.isConfig = True | |
841 |
|
851 | |||
842 |
|
852 | |||
843 |
|
853 | |||
844 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
854 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): | |
845 | #print("runing cleanRayleigh") |
|
855 | #print("runing cleanRayleigh") | |
846 | if not self.isConfig : |
|
856 | if not self.isConfig : | |
847 |
|
857 | |||
848 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
858 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) | |
849 |
|
859 | |||
850 | tini=dataOut.utctime |
|
860 | tini=dataOut.utctime | |
851 |
|
861 | |||
852 | if self.byProfiles: |
|
862 | if self.byProfiles: | |
853 | if self.__profIndex == self.nIntProfiles: |
|
863 | if self.__profIndex == self.nIntProfiles: | |
854 | self.__dataReady = True |
|
864 | self.__dataReady = True | |
855 | else: |
|
865 | else: | |
856 | if (tini - self.__initime) >= self.__integrationtime: |
|
866 | if (tini - self.__initime) >= self.__integrationtime: | |
857 |
|
867 | |||
858 | self.__dataReady = True |
|
868 | self.__dataReady = True | |
859 | self.__initime = tini |
|
869 | self.__initime = tini | |
860 |
|
870 | |||
861 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
871 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
862 |
|
872 | |||
863 | if self.__dataReady: |
|
873 | if self.__dataReady: | |
864 |
|
874 | |||
865 | self.__profIndex = 0 |
|
875 | self.__profIndex = 0 | |
866 | jspc = self.buffer |
|
876 | jspc = self.buffer | |
867 | jcspc = self.buffer2 |
|
877 | jcspc = self.buffer2 | |
868 | #jnoise = self.buffer3 |
|
878 | #jnoise = self.buffer3 | |
869 | self.buffer = dataOut.data_spc |
|
879 | self.buffer = dataOut.data_spc | |
870 | self.buffer2 = dataOut.data_cspc |
|
880 | self.buffer2 = dataOut.data_cspc | |
871 | #self.buffer3 = dataOut.noise |
|
881 | #self.buffer3 = dataOut.noise | |
872 | self.currentTime = dataOut.utctime |
|
882 | self.currentTime = dataOut.utctime | |
873 | if numpy.any(jspc) : |
|
883 | if numpy.any(jspc) : | |
874 | #print( jspc.shape, jcspc.shape) |
|
884 | #print( jspc.shape, jcspc.shape) | |
875 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
885 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) | |
876 | try: |
|
886 | try: | |
877 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
887 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) | |
878 | except: |
|
888 | except: | |
879 | print("no cspc") |
|
889 | print("no cspc") | |
880 | self.__dataReady = False |
|
890 | self.__dataReady = False | |
881 | #print( jspc.shape, jcspc.shape) |
|
891 | #print( jspc.shape, jcspc.shape) | |
882 | dataOut.flagNoData = False |
|
892 | dataOut.flagNoData = False | |
883 | else: |
|
893 | else: | |
884 | dataOut.flagNoData = True |
|
894 | dataOut.flagNoData = True | |
885 | self.__dataReady = False |
|
895 | self.__dataReady = False | |
886 | return dataOut |
|
896 | return dataOut | |
887 | else: |
|
897 | else: | |
888 | #print( len(self.buffer)) |
|
898 | #print( len(self.buffer)) | |
889 | if numpy.any(self.buffer): |
|
899 | if numpy.any(self.buffer): | |
890 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
900 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
891 | try: |
|
901 | try: | |
892 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
902 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
893 | self.buffer3 += dataOut.data_dc |
|
903 | self.buffer3 += dataOut.data_dc | |
894 | except: |
|
904 | except: | |
895 | pass |
|
905 | pass | |
896 | else: |
|
906 | else: | |
897 | self.buffer = dataOut.data_spc |
|
907 | self.buffer = dataOut.data_spc | |
898 | self.buffer2 = dataOut.data_cspc |
|
908 | self.buffer2 = dataOut.data_cspc | |
899 | self.buffer3 = dataOut.data_dc |
|
909 | self.buffer3 = dataOut.data_dc | |
900 | #print self.index, self.fint |
|
910 | #print self.index, self.fint | |
901 | #print self.buffer2.shape |
|
911 | #print self.buffer2.shape | |
902 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
912 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO | |
903 | self.__profIndex += 1 |
|
913 | self.__profIndex += 1 | |
904 | return dataOut ## NOTE: REV |
|
914 | return dataOut ## NOTE: REV | |
905 |
|
915 | |||
906 |
|
916 | |||
907 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
917 | #index = tini.tm_hour*12+tini.tm_min/5 | |
908 | ''' |
|
918 | ''' | |
909 | #REVISAR |
|
919 | #REVISAR | |
910 | ''' |
|
920 | ''' | |
911 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
921 | # jspc = jspc/self.nFFTPoints/self.normFactor | |
912 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
922 | # jcspc = jcspc/self.nFFTPoints/self.normFactor | |
913 |
|
923 | |||
914 |
|
924 | |||
915 |
|
925 | |||
916 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
926 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
917 | dataOut.data_spc = tmp_spectra |
|
927 | dataOut.data_spc = tmp_spectra | |
918 | dataOut.data_cspc = tmp_cspectra |
|
928 | dataOut.data_cspc = tmp_cspectra | |
919 |
|
929 | |||
920 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
930 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
921 |
|
931 | |||
922 | dataOut.data_dc = self.buffer3 |
|
932 | dataOut.data_dc = self.buffer3 | |
923 | dataOut.nIncohInt *= self.nIntProfiles |
|
933 | dataOut.nIncohInt *= self.nIntProfiles | |
924 | dataOut.max_nIncohInt = self.nIntProfiles |
|
934 | dataOut.max_nIncohInt = self.nIntProfiles | |
925 | dataOut.utctime = self.currentTime #tiempo promediado |
|
935 | dataOut.utctime = self.currentTime #tiempo promediado | |
926 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
936 | #print("Time: ",time.localtime(dataOut.utctime)) | |
927 | # dataOut.data_spc = sat_spectra |
|
937 | # dataOut.data_spc = sat_spectra | |
928 | # dataOut.data_cspc = sat_cspectra |
|
938 | # dataOut.data_cspc = sat_cspectra | |
929 | self.buffer = 0 |
|
939 | self.buffer = 0 | |
930 | self.buffer2 = 0 |
|
940 | self.buffer2 = 0 | |
931 | self.buffer3 = 0 |
|
941 | self.buffer3 = 0 | |
932 |
|
942 | |||
933 | return dataOut |
|
943 | return dataOut | |
934 |
|
944 | |||
935 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
945 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): | |
936 | print("OP cleanRayleigh") |
|
946 | print("OP cleanRayleigh") | |
937 | #import matplotlib.pyplot as plt |
|
947 | #import matplotlib.pyplot as plt | |
938 | #for k in range(149): |
|
948 | #for k in range(149): | |
939 | #channelsProcssd = [] |
|
949 | #channelsProcssd = [] | |
940 | #channelA_ok = False |
|
950 | #channelA_ok = False | |
941 | #rfunc = cspectra.copy() #self.bloques |
|
951 | #rfunc = cspectra.copy() #self.bloques | |
942 | rfunc = spectra.copy() |
|
952 | rfunc = spectra.copy() | |
943 | #rfunc = cspectra |
|
953 | #rfunc = cspectra | |
944 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
954 | #val_spc = spectra*0.0 #self.bloque0*0.0 | |
945 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
955 | #val_cspc = cspectra*0.0 #self.bloques*0.0 | |
946 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
956 | #in_sat_spectra = spectra.copy() #self.bloque0 | |
947 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
957 | #in_sat_cspectra = cspectra.copy() #self.bloques | |
948 |
|
958 | |||
949 |
|
959 | |||
950 | ###ONLY FOR TEST: |
|
960 | ###ONLY FOR TEST: | |
951 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
961 | raxs = math.ceil(math.sqrt(self.nPairs)) | |
952 | if raxs == 0: |
|
962 | if raxs == 0: | |
953 | raxs = 1 |
|
963 | raxs = 1 | |
954 | caxs = math.ceil(self.nPairs/raxs) |
|
964 | caxs = math.ceil(self.nPairs/raxs) | |
955 | if self.nPairs <4: |
|
965 | if self.nPairs <4: | |
956 | raxs = 2 |
|
966 | raxs = 2 | |
957 | caxs = 2 |
|
967 | caxs = 2 | |
958 | #print(raxs, caxs) |
|
968 | #print(raxs, caxs) | |
959 | fft_rev = 14 #nFFT to plot |
|
969 | fft_rev = 14 #nFFT to plot | |
960 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
970 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot | |
961 | hei_rev = hei_rev[0] |
|
971 | hei_rev = hei_rev[0] | |
962 | #print(hei_rev) |
|
972 | #print(hei_rev) | |
963 |
|
973 | |||
964 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
974 | #print numpy.absolute(rfunc[:,0,0,14]) | |
965 |
|
975 | |||
966 | gauss_fit, covariance = None, None |
|
976 | gauss_fit, covariance = None, None | |
967 | for ih in range(self.minAltInd,self.maxAltInd): |
|
977 | for ih in range(self.minAltInd,self.maxAltInd): | |
968 | for ifreq in range(self.nFFTPoints): |
|
978 | for ifreq in range(self.nFFTPoints): | |
969 | ''' |
|
979 | ''' | |
970 | ###ONLY FOR TEST: |
|
980 | ###ONLY FOR TEST: | |
971 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
981 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
972 | fig, axs = plt.subplots(raxs, caxs) |
|
982 | fig, axs = plt.subplots(raxs, caxs) | |
973 | fig2, axs2 = plt.subplots(raxs, caxs) |
|
983 | fig2, axs2 = plt.subplots(raxs, caxs) | |
974 | col_ax = 0 |
|
984 | col_ax = 0 | |
975 | row_ax = 0 |
|
985 | row_ax = 0 | |
976 | ''' |
|
986 | ''' | |
977 | #print(self.nPairs) |
|
987 | #print(self.nPairs) | |
978 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
988 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS | |
979 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
989 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS | |
980 | # continue |
|
990 | # continue | |
981 | # if not self.crosspairs[ii][0] in channelsProcssd: |
|
991 | # if not self.crosspairs[ii][0] in channelsProcssd: | |
982 | # channelA_ok = True |
|
992 | # channelA_ok = True | |
983 | #print("pair: ",self.crosspairs[ii]) |
|
993 | #print("pair: ",self.crosspairs[ii]) | |
984 | ''' |
|
994 | ''' | |
985 | ###ONLY FOR TEST: |
|
995 | ###ONLY FOR TEST: | |
986 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
996 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): | |
987 | col_ax = 0 |
|
997 | col_ax = 0 | |
988 | row_ax += 1 |
|
998 | row_ax += 1 | |
989 | ''' |
|
999 | ''' | |
990 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
1000 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? | |
991 | #print(func2clean.shape) |
|
1001 | #print(func2clean.shape) | |
992 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
1002 | val = (numpy.isfinite(func2clean)==True).nonzero() | |
993 |
|
1003 | |||
994 | if len(val)>0: #limitador |
|
1004 | if len(val)>0: #limitador | |
995 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
1005 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
996 | if min_val <= -40 : |
|
1006 | if min_val <= -40 : | |
997 | min_val = -40 |
|
1007 | min_val = -40 | |
998 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
1008 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
999 | if max_val >= 200 : |
|
1009 | if max_val >= 200 : | |
1000 | max_val = 200 |
|
1010 | max_val = 200 | |
1001 | #print min_val, max_val |
|
1011 | #print min_val, max_val | |
1002 | step = 1 |
|
1012 | step = 1 | |
1003 | #print("Getting bins and the histogram") |
|
1013 | #print("Getting bins and the histogram") | |
1004 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
1014 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
1005 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
1015 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
1006 | #print(len(y_dist),len(binstep[:-1])) |
|
1016 | #print(len(y_dist),len(binstep[:-1])) | |
1007 | #print(row_ax,col_ax, " ..") |
|
1017 | #print(row_ax,col_ax, " ..") | |
1008 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
1018 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) | |
1009 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
1019 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
1010 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
1020 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
1011 | parg = [numpy.amax(y_dist),mean,sigma] |
|
1021 | parg = [numpy.amax(y_dist),mean,sigma] | |
1012 |
|
1022 | |||
1013 | newY = None |
|
1023 | newY = None | |
1014 |
|
1024 | |||
1015 | try : |
|
1025 | try : | |
1016 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
1026 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
1017 | mode = gauss_fit[1] |
|
1027 | mode = gauss_fit[1] | |
1018 | stdv = gauss_fit[2] |
|
1028 | stdv = gauss_fit[2] | |
1019 | #print(" FIT OK",gauss_fit) |
|
1029 | #print(" FIT OK",gauss_fit) | |
1020 | ''' |
|
1030 | ''' | |
1021 | ###ONLY FOR TEST: |
|
1031 | ###ONLY FOR TEST: | |
1022 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1032 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
1023 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
1033 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
1024 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
1034 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
1025 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
1035 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
1026 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
1036 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) | |
1027 | ''' |
|
1037 | ''' | |
1028 | except: |
|
1038 | except: | |
1029 | mode = mean |
|
1039 | mode = mean | |
1030 | stdv = sigma |
|
1040 | stdv = sigma | |
1031 | #print("FIT FAIL") |
|
1041 | #print("FIT FAIL") | |
1032 | #continue |
|
1042 | #continue | |
1033 |
|
1043 | |||
1034 |
|
1044 | |||
1035 | #print(mode,stdv) |
|
1045 | #print(mode,stdv) | |
1036 | #Removing echoes greater than mode + std_factor*stdv |
|
1046 | #Removing echoes greater than mode + std_factor*stdv | |
1037 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
1047 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
1038 | #noval tiene los indices que se van a remover |
|
1048 | #noval tiene los indices que se van a remover | |
1039 | #print("Chan ",ii," novals: ",len(noval[0])) |
|
1049 | #print("Chan ",ii," novals: ",len(noval[0])) | |
1040 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
1050 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) | |
1041 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
1051 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
1042 | #print(novall) |
|
1052 | #print(novall) | |
1043 | #print(" ",self.pairsArray[ii]) |
|
1053 | #print(" ",self.pairsArray[ii]) | |
1044 | #cross_pairs = self.pairsArray[ii] |
|
1054 | #cross_pairs = self.pairsArray[ii] | |
1045 | #Getting coherent echoes which are removed. |
|
1055 | #Getting coherent echoes which are removed. | |
1046 | # if len(novall[0]) > 0: |
|
1056 | # if len(novall[0]) > 0: | |
1047 | # |
|
1057 | # | |
1048 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
1058 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
1049 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
1059 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
1050 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
1060 | # val_cspc[novall[0],ii,ifreq,ih] = 1 | |
1051 | #print("OUT NOVALL 1") |
|
1061 | #print("OUT NOVALL 1") | |
1052 | try: |
|
1062 | try: | |
1053 | pair = (self.channels[ii],self.channels[ii + 1]) |
|
1063 | pair = (self.channels[ii],self.channels[ii + 1]) | |
1054 | except: |
|
1064 | except: | |
1055 | pair = (99,99) |
|
1065 | pair = (99,99) | |
1056 | #print("par ", pair) |
|
1066 | #print("par ", pair) | |
1057 | if ( pair in self.crosspairs): |
|
1067 | if ( pair in self.crosspairs): | |
1058 | q = self.crosspairs.index(pair) |
|
1068 | q = self.crosspairs.index(pair) | |
1059 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) |
|
1069 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) | |
1060 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
1070 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) | |
1061 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
1071 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra | |
1062 |
|
1072 | |||
1063 | #if channelA_ok: |
|
1073 | #if channelA_ok: | |
1064 | #chA = self.channels.index(cross_pairs[0]) |
|
1074 | #chA = self.channels.index(cross_pairs[0]) | |
1065 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
1075 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) | |
1066 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
1076 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |
1067 | #channelA_ok = False |
|
1077 | #channelA_ok = False | |
1068 |
|
1078 | |||
1069 | # chB = self.channels.index(cross_pairs[1]) |
|
1079 | # chB = self.channels.index(cross_pairs[1]) | |
1070 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
1080 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) | |
1071 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
1081 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B | |
1072 | # |
|
1082 | # | |
1073 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
1083 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A | |
1074 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
1084 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B | |
1075 | ''' |
|
1085 | ''' | |
1076 | ###ONLY FOR TEST: |
|
1086 | ###ONLY FOR TEST: | |
1077 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1087 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
1078 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
1088 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) | |
1079 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
1089 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
1080 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
1090 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
1081 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
1091 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
1082 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
1092 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) | |
1083 | ''' |
|
1093 | ''' | |
1084 | ''' |
|
1094 | ''' | |
1085 | ###ONLY FOR TEST: |
|
1095 | ###ONLY FOR TEST: | |
1086 | col_ax += 1 #contador de ploteo columnas |
|
1096 | col_ax += 1 #contador de ploteo columnas | |
1087 | ##print(col_ax) |
|
1097 | ##print(col_ax) | |
1088 | ###ONLY FOR TEST: |
|
1098 | ###ONLY FOR TEST: | |
1089 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1099 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
1090 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
1100 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
1091 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
1101 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" | |
1092 | fig.suptitle(title) |
|
1102 | fig.suptitle(title) | |
1093 | fig2.suptitle(title2) |
|
1103 | fig2.suptitle(title2) | |
1094 | plt.show() |
|
1104 | plt.show() | |
1095 | ''' |
|
1105 | ''' | |
1096 | ################################################################################################## |
|
1106 | ################################################################################################## | |
1097 |
|
1107 | |||
1098 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
1108 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
1099 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
1109 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan | |
1100 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
1110 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan | |
1101 | for ih in range(self.nHeights): |
|
1111 | for ih in range(self.nHeights): | |
1102 | for ifreq in range(self.nFFTPoints): |
|
1112 | for ifreq in range(self.nFFTPoints): | |
1103 | for ich in range(self.nChan): |
|
1113 | for ich in range(self.nChan): | |
1104 | tmp = spectra[:,ich,ifreq,ih] |
|
1114 | tmp = spectra[:,ich,ifreq,ih] | |
1105 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
1115 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
1106 |
|
1116 | |||
1107 | if len(valid[0]) >0 : |
|
1117 | if len(valid[0]) >0 : | |
1108 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
1118 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
1109 |
|
1119 | |||
1110 | for icr in range(self.nPairs): |
|
1120 | for icr in range(self.nPairs): | |
1111 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
1121 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
1112 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
1122 | valid = (numpy.isfinite(tmp)==True).nonzero() | |
1113 | if len(valid[0]) > 0: |
|
1123 | if len(valid[0]) > 0: | |
1114 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
1124 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
1115 |
|
1125 | |||
1116 | return out_spectra, out_cspectra |
|
1126 | return out_spectra, out_cspectra | |
1117 |
|
1127 | |||
1118 | def REM_ISOLATED_POINTS(self,array,rth): |
|
1128 | def REM_ISOLATED_POINTS(self,array,rth): | |
1119 | # import matplotlib.pyplot as plt |
|
1129 | # import matplotlib.pyplot as plt | |
1120 | if rth == None : |
|
1130 | if rth == None : | |
1121 | rth = 4 |
|
1131 | rth = 4 | |
1122 | #print("REM ISO") |
|
1132 | #print("REM ISO") | |
1123 | num_prof = len(array[0,:,0]) |
|
1133 | num_prof = len(array[0,:,0]) | |
1124 | num_hei = len(array[0,0,:]) |
|
1134 | num_hei = len(array[0,0,:]) | |
1125 | n2d = len(array[:,0,0]) |
|
1135 | n2d = len(array[:,0,0]) | |
1126 |
|
1136 | |||
1127 | for ii in range(n2d) : |
|
1137 | for ii in range(n2d) : | |
1128 | #print ii,n2d |
|
1138 | #print ii,n2d | |
1129 | tmp = array[ii,:,:] |
|
1139 | tmp = array[ii,:,:] | |
1130 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
1140 | #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
1131 |
|
1141 | |||
1132 | # fig = plt.figure(figsize=(6,5)) |
|
1142 | # fig = plt.figure(figsize=(6,5)) | |
1133 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1143 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
1134 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1144 | # ax = fig.add_axes([left, bottom, width, height]) | |
1135 | # x = range(num_prof) |
|
1145 | # x = range(num_prof) | |
1136 | # y = range(num_hei) |
|
1146 | # y = range(num_hei) | |
1137 | # cp = ax.contour(y,x,tmp) |
|
1147 | # cp = ax.contour(y,x,tmp) | |
1138 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1148 | # ax.clabel(cp, inline=True,fontsize=10) | |
1139 | # plt.show() |
|
1149 | # plt.show() | |
1140 |
|
1150 | |||
1141 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
1151 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
1142 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
1152 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |
1143 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
1153 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
1144 | indxs2 = (tmp > 0).nonzero() |
|
1154 | indxs2 = (tmp > 0).nonzero() | |
1145 |
|
1155 | |||
1146 | indxs1 = (indxs1[0]) |
|
1156 | indxs1 = (indxs1[0]) | |
1147 | indxs2 = indxs2[0] |
|
1157 | indxs2 = indxs2[0] | |
1148 | #indxs1 = numpy.array(indxs1[0]) |
|
1158 | #indxs1 = numpy.array(indxs1[0]) | |
1149 | #indxs2 = numpy.array(indxs2[0]) |
|
1159 | #indxs2 = numpy.array(indxs2[0]) | |
1150 | indxs = None |
|
1160 | indxs = None | |
1151 | #print indxs1 , indxs2 |
|
1161 | #print indxs1 , indxs2 | |
1152 | for iv in range(len(indxs2)): |
|
1162 | for iv in range(len(indxs2)): | |
1153 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
1163 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
1154 | #print len(indxs2), indv |
|
1164 | #print len(indxs2), indv | |
1155 | if len(indv[0]) > 0 : |
|
1165 | if len(indv[0]) > 0 : | |
1156 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
1166 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
1157 | # print indxs |
|
1167 | # print indxs | |
1158 | indxs = indxs[1:] |
|
1168 | indxs = indxs[1:] | |
1159 | #print(indxs, len(indxs)) |
|
1169 | #print(indxs, len(indxs)) | |
1160 | if len(indxs) < 4 : |
|
1170 | if len(indxs) < 4 : | |
1161 | array[ii,:,:] = 0. |
|
1171 | array[ii,:,:] = 0. | |
1162 | return |
|
1172 | return | |
1163 |
|
1173 | |||
1164 | xpos = numpy.mod(indxs ,num_hei) |
|
1174 | xpos = numpy.mod(indxs ,num_hei) | |
1165 | ypos = (indxs / num_hei) |
|
1175 | ypos = (indxs / num_hei) | |
1166 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
1176 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
1167 | #print sx |
|
1177 | #print sx | |
1168 | xpos = xpos[sx] |
|
1178 | xpos = xpos[sx] | |
1169 | ypos = ypos[sx] |
|
1179 | ypos = ypos[sx] | |
1170 |
|
1180 | |||
1171 | # *********************************** Cleaning isolated points ********************************** |
|
1181 | # *********************************** Cleaning isolated points ********************************** | |
1172 | ic = 0 |
|
1182 | ic = 0 | |
1173 | while True : |
|
1183 | while True : | |
1174 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
1184 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
1175 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
1185 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
1176 | #plt.plot(r) |
|
1186 | #plt.plot(r) | |
1177 | #plt.show() |
|
1187 | #plt.show() | |
1178 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
1188 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
1179 | no_coh2 = (r <= rth).nonzero() |
|
1189 | no_coh2 = (r <= rth).nonzero() | |
1180 | #print r, no_coh1, no_coh2 |
|
1190 | #print r, no_coh1, no_coh2 | |
1181 | no_coh1 = numpy.array(no_coh1[0]) |
|
1191 | no_coh1 = numpy.array(no_coh1[0]) | |
1182 | no_coh2 = numpy.array(no_coh2[0]) |
|
1192 | no_coh2 = numpy.array(no_coh2[0]) | |
1183 | no_coh = None |
|
1193 | no_coh = None | |
1184 | #print valid1 , valid2 |
|
1194 | #print valid1 , valid2 | |
1185 | for iv in range(len(no_coh2)): |
|
1195 | for iv in range(len(no_coh2)): | |
1186 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
1196 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
1187 | if len(indv[0]) > 0 : |
|
1197 | if len(indv[0]) > 0 : | |
1188 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
1198 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
1189 | no_coh = no_coh[1:] |
|
1199 | no_coh = no_coh[1:] | |
1190 | #print len(no_coh), no_coh |
|
1200 | #print len(no_coh), no_coh | |
1191 | if len(no_coh) < 4 : |
|
1201 | if len(no_coh) < 4 : | |
1192 | #print xpos[ic], ypos[ic], ic |
|
1202 | #print xpos[ic], ypos[ic], ic | |
1193 | # plt.plot(r) |
|
1203 | # plt.plot(r) | |
1194 | # plt.show() |
|
1204 | # plt.show() | |
1195 | xpos[ic] = numpy.nan |
|
1205 | xpos[ic] = numpy.nan | |
1196 | ypos[ic] = numpy.nan |
|
1206 | ypos[ic] = numpy.nan | |
1197 |
|
1207 | |||
1198 | ic = ic + 1 |
|
1208 | ic = ic + 1 | |
1199 | if (ic == len(indxs)) : |
|
1209 | if (ic == len(indxs)) : | |
1200 | break |
|
1210 | break | |
1201 | #print( xpos, ypos) |
|
1211 | #print( xpos, ypos) | |
1202 |
|
1212 | |||
1203 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1213 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
1204 | #print indxs[0] |
|
1214 | #print indxs[0] | |
1205 | if len(indxs[0]) < 4 : |
|
1215 | if len(indxs[0]) < 4 : | |
1206 | array[ii,:,:] = 0. |
|
1216 | array[ii,:,:] = 0. | |
1207 | return |
|
1217 | return | |
1208 |
|
1218 | |||
1209 | xpos = xpos[indxs[0]] |
|
1219 | xpos = xpos[indxs[0]] | |
1210 | ypos = ypos[indxs[0]] |
|
1220 | ypos = ypos[indxs[0]] | |
1211 | for i in range(0,len(ypos)): |
|
1221 | for i in range(0,len(ypos)): | |
1212 | ypos[i]=int(ypos[i]) |
|
1222 | ypos[i]=int(ypos[i]) | |
1213 | junk = tmp |
|
1223 | junk = tmp | |
1214 | tmp = junk*0.0 |
|
1224 | tmp = junk*0.0 | |
1215 |
|
1225 | |||
1216 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1226 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
1217 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1227 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
1218 |
|
1228 | |||
1219 | #print array.shape |
|
1229 | #print array.shape | |
1220 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1230 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
1221 | #print tmp.shape |
|
1231 | #print tmp.shape | |
1222 |
|
1232 | |||
1223 | # fig = plt.figure(figsize=(6,5)) |
|
1233 | # fig = plt.figure(figsize=(6,5)) | |
1224 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1234 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
1225 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1235 | # ax = fig.add_axes([left, bottom, width, height]) | |
1226 | # x = range(num_prof) |
|
1236 | # x = range(num_prof) | |
1227 | # y = range(num_hei) |
|
1237 | # y = range(num_hei) | |
1228 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
1238 | # cp = ax.contour(y,x,array[ii,:,:]) | |
1229 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1239 | # ax.clabel(cp, inline=True,fontsize=10) | |
1230 | # plt.show() |
|
1240 | # plt.show() | |
1231 | return array |
|
1241 | return array | |
1232 |
|
1242 | |||
1233 |
|
1243 | |||
1234 | class IntegrationFaradaySpectra(Operation): |
|
1244 | class IntegrationFaradaySpectra(Operation): | |
1235 |
|
1245 | |||
1236 | __profIndex = 0 |
|
1246 | __profIndex = 0 | |
1237 | __withOverapping = False |
|
1247 | __withOverapping = False | |
1238 |
|
1248 | |||
1239 | __byTime = False |
|
1249 | __byTime = False | |
1240 | __initime = None |
|
1250 | __initime = None | |
1241 | __lastdatatime = None |
|
1251 | __lastdatatime = None | |
1242 | __integrationtime = None |
|
1252 | __integrationtime = None | |
1243 |
|
1253 | |||
1244 | __buffer_spc = None |
|
1254 | __buffer_spc = None | |
1245 | __buffer_cspc = None |
|
1255 | __buffer_cspc = None | |
1246 | __buffer_dc = None |
|
1256 | __buffer_dc = None | |
1247 |
|
1257 | |||
1248 | __dataReady = False |
|
1258 | __dataReady = False | |
1249 |
|
1259 | |||
1250 | __timeInterval = None |
|
1260 | __timeInterval = None | |
1251 | n_ints = None #matriz de numero de integracions (CH,HEI) |
|
1261 | n_ints = None #matriz de numero de integracions (CH,HEI) | |
1252 | n = None |
|
1262 | n = None | |
1253 | minHei_ind = None |
|
1263 | minHei_ind = None | |
1254 | maxHei_ind = None |
|
1264 | maxHei_ind = None | |
1255 | navg = 1.0 |
|
1265 | navg = 1.0 | |
1256 | factor = 0.0 |
|
1266 | factor = 0.0 | |
1257 | dataoutliers = None # (CHANNELS, HEIGHTS) |
|
1267 | dataoutliers = None # (CHANNELS, HEIGHTS) | |
1258 |
|
1268 | |||
1259 | def __init__(self): |
|
1269 | def __init__(self): | |
1260 |
|
1270 | |||
1261 | Operation.__init__(self) |
|
1271 | Operation.__init__(self) | |
1262 |
|
1272 | |||
1263 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): |
|
1273 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): | |
1264 | """ |
|
1274 | """ | |
1265 | Set the parameters of the integration class. |
|
1275 | Set the parameters of the integration class. | |
1266 |
|
1276 | |||
1267 | Inputs: |
|
1277 | Inputs: | |
1268 |
|
1278 | |||
1269 | n : Number of coherent integrations |
|
1279 | n : Number of coherent integrations | |
1270 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1280 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1271 | overlapping : |
|
1281 | overlapping : | |
1272 |
|
1282 | |||
1273 | """ |
|
1283 | """ | |
1274 |
|
1284 | |||
1275 | self.__initime = None |
|
1285 | self.__initime = None | |
1276 | self.__lastdatatime = 0 |
|
1286 | self.__lastdatatime = 0 | |
1277 |
|
1287 | |||
1278 | self.__buffer_spc = [] |
|
1288 | self.__buffer_spc = [] | |
1279 | self.__buffer_cspc = [] |
|
1289 | self.__buffer_cspc = [] | |
1280 | self.__buffer_dc = 0 |
|
1290 | self.__buffer_dc = 0 | |
1281 |
|
1291 | |||
1282 | self.__profIndex = 0 |
|
1292 | self.__profIndex = 0 | |
1283 | self.__dataReady = False |
|
1293 | self.__dataReady = False | |
1284 | self.__byTime = False |
|
1294 | self.__byTime = False | |
1285 |
|
1295 | |||
1286 | self.factor = factor |
|
1296 | self.factor = factor | |
1287 | self.navg = avg |
|
1297 | self.navg = avg | |
1288 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1298 | #self.ByLags = dataOut.ByLags ###REDEFINIR | |
1289 | self.ByLags = False |
|
1299 | self.ByLags = False | |
1290 | self.maxProfilesInt = 1 |
|
1300 | self.maxProfilesInt = 1 | |
1291 |
|
1301 | |||
1292 | if DPL != None: |
|
1302 | if DPL != None: | |
1293 | self.DPL=DPL |
|
1303 | self.DPL=DPL | |
1294 | else: |
|
1304 | else: | |
1295 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1305 | #self.DPL=dataOut.DPL ###REDEFINIR | |
1296 | self.DPL=0 |
|
1306 | self.DPL=0 | |
1297 |
|
1307 | |||
1298 | if n is None and timeInterval is None: |
|
1308 | if n is None and timeInterval is None: | |
1299 | raise ValueError("n or timeInterval should be specified ...") |
|
1309 | raise ValueError("n or timeInterval should be specified ...") | |
1300 |
|
1310 | |||
1301 | if n is not None: |
|
1311 | if n is not None: | |
1302 | self.n = int(n) |
|
1312 | self.n = int(n) | |
1303 | else: |
|
1313 | else: | |
1304 | self.__integrationtime = int(timeInterval) |
|
1314 | self.__integrationtime = int(timeInterval) | |
1305 | self.n = None |
|
1315 | self.n = None | |
1306 | self.__byTime = True |
|
1316 | self.__byTime = True | |
1307 |
|
1317 | |||
1308 | if minHei == None: |
|
1318 | if minHei == None: | |
1309 | minHei = self.dataOut.heightList[0] |
|
1319 | minHei = self.dataOut.heightList[0] | |
1310 |
|
1320 | |||
1311 | if maxHei == None: |
|
1321 | if maxHei == None: | |
1312 | maxHei = self.dataOut.heightList[-1] |
|
1322 | maxHei = self.dataOut.heightList[-1] | |
1313 |
|
1323 | |||
1314 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1324 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
1315 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
1325 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
1316 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
1326 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
1317 | minHei = self.dataOut.heightList[0] |
|
1327 | minHei = self.dataOut.heightList[0] | |
1318 |
|
1328 | |||
1319 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1329 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
1320 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
1330 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
1321 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
1331 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
1322 | maxHei = self.dataOut.heightList[-1] |
|
1332 | maxHei = self.dataOut.heightList[-1] | |
1323 |
|
1333 | |||
1324 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) |
|
1334 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) | |
1325 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) |
|
1335 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) | |
1326 | self.minHei_ind = ind_list1[0][0] |
|
1336 | self.minHei_ind = ind_list1[0][0] | |
1327 | self.maxHei_ind = ind_list2[0][-1] |
|
1337 | self.maxHei_ind = ind_list2[0][-1] | |
1328 |
|
1338 | |||
1329 | def putData(self, data_spc, data_cspc, data_dc): |
|
1339 | def putData(self, data_spc, data_cspc, data_dc): | |
1330 | """ |
|
1340 | """ | |
1331 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1341 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1332 |
|
1342 | |||
1333 | """ |
|
1343 | """ | |
1334 |
|
1344 | |||
1335 | self.__buffer_spc.append(data_spc) |
|
1345 | self.__buffer_spc.append(data_spc) | |
1336 |
|
1346 | |||
1337 | if data_cspc is None: |
|
1347 | if data_cspc is None: | |
1338 | self.__buffer_cspc = None |
|
1348 | self.__buffer_cspc = None | |
1339 | else: |
|
1349 | else: | |
1340 | self.__buffer_cspc.append(data_cspc) |
|
1350 | self.__buffer_cspc.append(data_cspc) | |
1341 |
|
1351 | |||
1342 | if data_dc is None: |
|
1352 | if data_dc is None: | |
1343 | self.__buffer_dc = None |
|
1353 | self.__buffer_dc = None | |
1344 | else: |
|
1354 | else: | |
1345 | self.__buffer_dc += data_dc |
|
1355 | self.__buffer_dc += data_dc | |
1346 |
|
1356 | |||
1347 | self.__profIndex += 1 |
|
1357 | self.__profIndex += 1 | |
1348 |
|
1358 | |||
1349 | return |
|
1359 | return | |
1350 |
|
1360 | |||
1351 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): |
|
1361 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): | |
1352 | #data debe estar ordenado |
|
1362 | #data debe estar ordenado | |
1353 | #sortdata = numpy.sort(data, axis=None) |
|
1363 | #sortdata = numpy.sort(data, axis=None) | |
1354 | #sortID=data.argsort() |
|
1364 | #sortID=data.argsort() | |
1355 | lenOfData = len(sortdata) |
|
1365 | lenOfData = len(sortdata) | |
1356 | nums_min = lenOfData*factor |
|
1366 | nums_min = lenOfData*factor | |
1357 | if nums_min <= 5: |
|
1367 | if nums_min <= 5: | |
1358 | nums_min = 5 |
|
1368 | nums_min = 5 | |
1359 | sump = 0. |
|
1369 | sump = 0. | |
1360 | sumq = 0. |
|
1370 | sumq = 0. | |
1361 | j = 0 |
|
1371 | j = 0 | |
1362 | cont = 1 |
|
1372 | cont = 1 | |
1363 | while((cont == 1)and(j < lenOfData)): |
|
1373 | while((cont == 1)and(j < lenOfData)): | |
1364 | sump += sortdata[j] |
|
1374 | sump += sortdata[j] | |
1365 | sumq += sortdata[j]**2 |
|
1375 | sumq += sortdata[j]**2 | |
1366 | if j > nums_min: |
|
1376 | if j > nums_min: | |
1367 | rtest = float(j)/(j-1) + 1.0/navg |
|
1377 | rtest = float(j)/(j-1) + 1.0/navg | |
1368 | if ((sumq*j) > (rtest*sump**2)): |
|
1378 | if ((sumq*j) > (rtest*sump**2)): | |
1369 | j = j - 1 |
|
1379 | j = j - 1 | |
1370 | sump = sump - sortdata[j] |
|
1380 | sump = sump - sortdata[j] | |
1371 | sumq = sumq - sortdata[j]**2 |
|
1381 | sumq = sumq - sortdata[j]**2 | |
1372 | cont = 0 |
|
1382 | cont = 0 | |
1373 | j += 1 |
|
1383 | j += 1 | |
1374 | #lnoise = sump / j |
|
1384 | #lnoise = sump / j | |
1375 | #print("H S done") |
|
1385 | #print("H S done") | |
1376 | #return j,sortID |
|
1386 | #return j,sortID | |
1377 | return j |
|
1387 | return j | |
1378 |
|
1388 | |||
1379 |
|
1389 | |||
1380 | def pushData(self): |
|
1390 | def pushData(self): | |
1381 | """ |
|
1391 | """ | |
1382 | Return the sum of the last profiles and the profiles used in the sum. |
|
1392 | Return the sum of the last profiles and the profiles used in the sum. | |
1383 |
|
1393 | |||
1384 | Affected: |
|
1394 | Affected: | |
1385 |
|
1395 | |||
1386 | self.__profileIndex |
|
1396 | self.__profileIndex | |
1387 |
|
1397 | |||
1388 | """ |
|
1398 | """ | |
1389 | bufferH=None |
|
1399 | bufferH=None | |
1390 | buffer=None |
|
1400 | buffer=None | |
1391 | buffer1=None |
|
1401 | buffer1=None | |
1392 | buffer_cspc=None |
|
1402 | buffer_cspc=None | |
1393 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1403 | self.__buffer_spc=numpy.array(self.__buffer_spc) | |
1394 | try: |
|
1404 | try: | |
1395 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1405 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) | |
1396 | except : |
|
1406 | except : | |
1397 | #print("No cpsc",e) |
|
1407 | #print("No cpsc",e) | |
1398 | pass |
|
1408 | pass | |
1399 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) |
|
1409 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) | |
1400 |
|
1410 | |||
1401 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1411 | freq_dc = int(self.__buffer_spc.shape[2] / 2) | |
1402 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1412 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) | |
1403 |
|
1413 | |||
1404 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers |
|
1414 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers | |
1405 |
|
1415 | |||
1406 | for k in range(self.minHei_ind,self.maxHei_ind): |
|
1416 | for k in range(self.minHei_ind,self.maxHei_ind): | |
1407 | try: |
|
1417 | try: | |
1408 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1418 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) | |
1409 | except: |
|
1419 | except: | |
1410 | #print("No cpsc",e) |
|
1420 | #print("No cpsc",e) | |
1411 | pass |
|
1421 | pass | |
1412 | outliers_IDs_cspc=[] |
|
1422 | outliers_IDs_cspc=[] | |
1413 | cspc_outliers_exist=False |
|
1423 | cspc_outliers_exist=False | |
1414 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1424 | for i in range(self.nChannels):#dataOut.nChannels): | |
1415 |
|
1425 | |||
1416 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1426 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) | |
1417 | indexes=[] |
|
1427 | indexes=[] | |
1418 | #sortIDs=[] |
|
1428 | #sortIDs=[] | |
1419 | outliers_IDs=[] |
|
1429 | outliers_IDs=[] | |
1420 |
|
1430 | |||
1421 | for j in range(self.nProfiles): #frecuencias en el tiempo |
|
1431 | for j in range(self.nProfiles): #frecuencias en el tiempo | |
1422 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1432 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 | |
1423 | # continue |
|
1433 | # continue | |
1424 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1434 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 | |
1425 | # continue |
|
1435 | # continue | |
1426 | buffer=buffer1[:,j] |
|
1436 | buffer=buffer1[:,j] | |
1427 | sortdata = numpy.sort(buffer, axis=None) |
|
1437 | sortdata = numpy.sort(buffer, axis=None) | |
1428 |
|
1438 | |||
1429 | sortID=buffer.argsort() |
|
1439 | sortID=buffer.argsort() | |
1430 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) |
|
1440 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) | |
1431 |
|
1441 | |||
1432 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) |
|
1442 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) | |
1433 |
|
1443 | |||
1434 | # fig,ax = plt.subplots() |
|
1444 | # fig,ax = plt.subplots() | |
1435 | # ax.set_title(str(k)+" "+str(j)) |
|
1445 | # ax.set_title(str(k)+" "+str(j)) | |
1436 | # x=range(len(sortdata)) |
|
1446 | # x=range(len(sortdata)) | |
1437 | # ax.scatter(x,sortdata) |
|
1447 | # ax.scatter(x,sortdata) | |
1438 | # ax.axvline(index) |
|
1448 | # ax.axvline(index) | |
1439 | # plt.show() |
|
1449 | # plt.show() | |
1440 |
|
1450 | |||
1441 | indexes.append(index) |
|
1451 | indexes.append(index) | |
1442 | #sortIDs.append(sortID) |
|
1452 | #sortIDs.append(sortID) | |
1443 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1453 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) | |
1444 |
|
1454 | |||
1445 | #print("Outliers: ",outliers_IDs) |
|
1455 | #print("Outliers: ",outliers_IDs) | |
1446 | outliers_IDs=numpy.array(outliers_IDs) |
|
1456 | outliers_IDs=numpy.array(outliers_IDs) | |
1447 | outliers_IDs=outliers_IDs.ravel() |
|
1457 | outliers_IDs=outliers_IDs.ravel() | |
1448 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1458 | outliers_IDs=numpy.unique(outliers_IDs) | |
1449 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1459 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) | |
1450 | indexes=numpy.array(indexes) |
|
1460 | indexes=numpy.array(indexes) | |
1451 | indexmin=numpy.min(indexes) |
|
1461 | indexmin=numpy.min(indexes) | |
1452 |
|
1462 | |||
1453 |
|
1463 | |||
1454 | #print(indexmin,buffer1.shape[0], k) |
|
1464 | #print(indexmin,buffer1.shape[0], k) | |
1455 |
|
1465 | |||
1456 | # fig,ax = plt.subplots() |
|
1466 | # fig,ax = plt.subplots() | |
1457 | # ax.plot(sortdata) |
|
1467 | # ax.plot(sortdata) | |
1458 | # ax2 = ax.twinx() |
|
1468 | # ax2 = ax.twinx() | |
1459 | # x=range(len(indexes)) |
|
1469 | # x=range(len(indexes)) | |
1460 | # #plt.scatter(x,indexes) |
|
1470 | # #plt.scatter(x,indexes) | |
1461 | # ax2.scatter(x,indexes) |
|
1471 | # ax2.scatter(x,indexes) | |
1462 | # plt.show() |
|
1472 | # plt.show() | |
1463 |
|
1473 | |||
1464 | if indexmin != buffer1.shape[0]: |
|
1474 | if indexmin != buffer1.shape[0]: | |
1465 | if self.nChannels > 1: |
|
1475 | if self.nChannels > 1: | |
1466 | cspc_outliers_exist= True |
|
1476 | cspc_outliers_exist= True | |
1467 |
|
1477 | |||
1468 | lt=outliers_IDs |
|
1478 | lt=outliers_IDs | |
1469 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1479 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) | |
1470 |
|
1480 | |||
1471 | for p in list(outliers_IDs): |
|
1481 | for p in list(outliers_IDs): | |
1472 | #buffer1[p,:]=avg |
|
1482 | #buffer1[p,:]=avg | |
1473 | buffer1[p,:] = numpy.NaN |
|
1483 | buffer1[p,:] = numpy.NaN | |
1474 |
|
1484 | |||
1475 | self.dataOutliers[i,k] = len(outliers_IDs) |
|
1485 | self.dataOutliers[i,k] = len(outliers_IDs) | |
1476 |
|
1486 | |||
1477 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1487 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) | |
1478 |
|
1488 | |||
1479 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1489 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) | |
1480 |
|
1490 | |||
1481 |
|
1491 | |||
1482 |
|
1492 | |||
1483 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1493 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) | |
1484 | if cspc_outliers_exist : |
|
1494 | if cspc_outliers_exist : | |
1485 |
|
1495 | |||
1486 | lt=outliers_IDs_cspc |
|
1496 | lt=outliers_IDs_cspc | |
1487 |
|
1497 | |||
1488 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1498 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) | |
1489 | for p in list(outliers_IDs_cspc): |
|
1499 | for p in list(outliers_IDs_cspc): | |
1490 | #buffer_cspc[p,:]=avg |
|
1500 | #buffer_cspc[p,:]=avg | |
1491 | buffer_cspc[p,:] = numpy.NaN |
|
1501 | buffer_cspc[p,:] = numpy.NaN | |
1492 |
|
1502 | |||
1493 | try: |
|
1503 | try: | |
1494 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1504 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) | |
1495 | except: |
|
1505 | except: | |
1496 | #print("No cpsc",e) |
|
1506 | #print("No cpsc",e) | |
1497 | pass |
|
1507 | pass | |
1498 | #else: |
|
1508 | #else: | |
1499 | #break |
|
1509 | #break | |
1500 |
|
1510 | |||
1501 |
|
1511 | |||
1502 |
|
1512 | |||
1503 | nOutliers = len(outliers_IDs) |
|
1513 | nOutliers = len(outliers_IDs) | |
1504 | #print("Outliers n: ",self.dataOutliers,nOutliers) |
|
1514 | #print("Outliers n: ",self.dataOutliers,nOutliers) | |
1505 | buffer=None |
|
1515 | buffer=None | |
1506 | bufferH=None |
|
1516 | bufferH=None | |
1507 | buffer1=None |
|
1517 | buffer1=None | |
1508 | buffer_cspc=None |
|
1518 | buffer_cspc=None | |
1509 |
|
1519 | |||
1510 |
|
1520 | |||
1511 | buffer=None |
|
1521 | buffer=None | |
1512 |
|
1522 | |||
1513 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1523 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) | |
1514 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) |
|
1524 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) | |
1515 | try: |
|
1525 | try: | |
1516 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1526 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) | |
1517 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) |
|
1527 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) | |
1518 | except: |
|
1528 | except: | |
1519 | #print("No cpsc",e) |
|
1529 | #print("No cpsc",e) | |
1520 | pass |
|
1530 | pass | |
1521 |
|
1531 | |||
1522 |
|
1532 | |||
1523 | data_dc = self.__buffer_dc |
|
1533 | data_dc = self.__buffer_dc | |
1524 | #(CH, HEIGH) |
|
1534 | #(CH, HEIGH) | |
1525 | self.maxProfilesInt = self.__profIndex |
|
1535 | self.maxProfilesInt = self.__profIndex | |
1526 | n = self.__profIndex - self.dataOutliers # n becomes a matrix |
|
1536 | n = self.__profIndex - self.dataOutliers # n becomes a matrix | |
1527 |
|
1537 | |||
1528 | self.__buffer_spc = [] |
|
1538 | self.__buffer_spc = [] | |
1529 | self.__buffer_cspc = [] |
|
1539 | self.__buffer_cspc = [] | |
1530 | self.__buffer_dc = 0 |
|
1540 | self.__buffer_dc = 0 | |
1531 | self.__profIndex = 0 |
|
1541 | self.__profIndex = 0 | |
1532 |
|
1542 | |||
1533 | return data_spc, data_cspc, data_dc, n |
|
1543 | return data_spc, data_cspc, data_dc, n | |
1534 |
|
1544 | |||
1535 | def byProfiles(self, *args): |
|
1545 | def byProfiles(self, *args): | |
1536 |
|
1546 | |||
1537 | self.__dataReady = False |
|
1547 | self.__dataReady = False | |
1538 | avgdata_spc = None |
|
1548 | avgdata_spc = None | |
1539 | avgdata_cspc = None |
|
1549 | avgdata_cspc = None | |
1540 | avgdata_dc = None |
|
1550 | avgdata_dc = None | |
1541 |
|
1551 | |||
1542 | self.putData(*args) |
|
1552 | self.putData(*args) | |
1543 |
|
1553 | |||
1544 | if self.__profIndex == self.n: |
|
1554 | if self.__profIndex == self.n: | |
1545 |
|
1555 | |||
1546 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1556 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1547 | self.n_ints = n |
|
1557 | self.n_ints = n | |
1548 | self.__dataReady = True |
|
1558 | self.__dataReady = True | |
1549 |
|
1559 | |||
1550 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1560 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1551 |
|
1561 | |||
1552 | def byTime(self, datatime, *args): |
|
1562 | def byTime(self, datatime, *args): | |
1553 |
|
1563 | |||
1554 | self.__dataReady = False |
|
1564 | self.__dataReady = False | |
1555 | avgdata_spc = None |
|
1565 | avgdata_spc = None | |
1556 | avgdata_cspc = None |
|
1566 | avgdata_cspc = None | |
1557 | avgdata_dc = None |
|
1567 | avgdata_dc = None | |
1558 |
|
1568 | |||
1559 | self.putData(*args) |
|
1569 | self.putData(*args) | |
1560 |
|
1570 | |||
1561 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1571 | if (datatime - self.__initime) >= self.__integrationtime: | |
1562 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1572 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1563 | self.n_ints = n |
|
1573 | self.n_ints = n | |
1564 | self.__dataReady = True |
|
1574 | self.__dataReady = True | |
1565 |
|
1575 | |||
1566 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1576 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1567 |
|
1577 | |||
1568 | def integrate(self, datatime, *args): |
|
1578 | def integrate(self, datatime, *args): | |
1569 |
|
1579 | |||
1570 | if self.__profIndex == 0: |
|
1580 | if self.__profIndex == 0: | |
1571 | self.__initime = datatime |
|
1581 | self.__initime = datatime | |
1572 |
|
1582 | |||
1573 | if self.__byTime: |
|
1583 | if self.__byTime: | |
1574 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1584 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1575 | datatime, *args) |
|
1585 | datatime, *args) | |
1576 | else: |
|
1586 | else: | |
1577 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1587 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1578 |
|
1588 | |||
1579 | if not self.__dataReady: |
|
1589 | if not self.__dataReady: | |
1580 | return None, None, None, None |
|
1590 | return None, None, None, None | |
1581 |
|
1591 | |||
1582 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1592 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1583 |
|
1593 | |||
1584 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): |
|
1594 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): | |
1585 | self.dataOut = dataOut |
|
1595 | self.dataOut = dataOut | |
1586 | if n == 1: |
|
1596 | if n == 1: | |
1587 | return self.dataOut |
|
1597 | return self.dataOut | |
1588 |
|
1598 | |||
1589 |
|
1599 | |||
1590 | if self.dataOut.nChannels == 1: |
|
1600 | if self.dataOut.nChannels == 1: | |
1591 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS |
|
1601 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS | |
1592 | #print(self.dataOut.data_spc.shape, self.dataOut.data_cspc) |
|
1602 | #print(self.dataOut.data_spc.shape, self.dataOut.data_cspc) | |
1593 | if not self.isConfig: |
|
1603 | if not self.isConfig: | |
1594 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) |
|
1604 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) | |
1595 | self.isConfig = True |
|
1605 | self.isConfig = True | |
1596 |
|
1606 | |||
1597 | if not self.ByLags: |
|
1607 | if not self.ByLags: | |
1598 | self.nProfiles=self.dataOut.nProfiles |
|
1608 | self.nProfiles=self.dataOut.nProfiles | |
1599 | self.nChannels=self.dataOut.nChannels |
|
1609 | self.nChannels=self.dataOut.nChannels | |
1600 | self.nHeights=self.dataOut.nHeights |
|
1610 | self.nHeights=self.dataOut.nHeights | |
1601 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1611 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, | |
1602 | self.dataOut.data_spc, |
|
1612 | self.dataOut.data_spc, | |
1603 | self.dataOut.data_cspc, |
|
1613 | self.dataOut.data_cspc, | |
1604 | self.dataOut.data_dc) |
|
1614 | self.dataOut.data_dc) | |
1605 | else: |
|
1615 | else: | |
1606 | self.nProfiles=self.dataOut.nProfiles |
|
1616 | self.nProfiles=self.dataOut.nProfiles | |
1607 | self.nChannels=self.dataOut.nChannels |
|
1617 | self.nChannels=self.dataOut.nChannels | |
1608 | self.nHeights=self.dataOut.nHeights |
|
1618 | self.nHeights=self.dataOut.nHeights | |
1609 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1619 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, | |
1610 | self.dataOut.dataLag_spc, |
|
1620 | self.dataOut.dataLag_spc, | |
1611 | self.dataOut.dataLag_cspc, |
|
1621 | self.dataOut.dataLag_cspc, | |
1612 | self.dataOut.dataLag_dc) |
|
1622 | self.dataOut.dataLag_dc) | |
1613 | self.dataOut.flagNoData = True |
|
1623 | self.dataOut.flagNoData = True | |
1614 | if self.__dataReady: |
|
1624 | if self.__dataReady: | |
1615 |
|
1625 | |||
1616 | if not self.ByLags: |
|
1626 | if not self.ByLags: | |
1617 | if self.nChannels == 1: |
|
1627 | if self.nChannels == 1: | |
1618 | #print("f int", avgdata_spc.shape) |
|
1628 | #print("f int", avgdata_spc.shape) | |
1619 | self.dataOut.data_spc = avgdata_spc |
|
1629 | self.dataOut.data_spc = avgdata_spc | |
1620 | self.dataOut.data_cspc = avgdata_spc |
|
1630 | self.dataOut.data_cspc = avgdata_spc | |
1621 | else: |
|
1631 | else: | |
1622 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1632 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) | |
1623 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1633 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) | |
1624 | self.dataOut.data_dc = avgdata_dc |
|
1634 | self.dataOut.data_dc = avgdata_dc | |
1625 | self.dataOut.data_outlier = self.dataOutliers |
|
1635 | self.dataOut.data_outlier = self.dataOutliers | |
1626 |
|
1636 | |||
1627 | else: |
|
1637 | else: | |
1628 | self.dataOut.dataLag_spc = avgdata_spc |
|
1638 | self.dataOut.dataLag_spc = avgdata_spc | |
1629 | self.dataOut.dataLag_cspc = avgdata_cspc |
|
1639 | self.dataOut.dataLag_cspc = avgdata_cspc | |
1630 | self.dataOut.dataLag_dc = avgdata_dc |
|
1640 | self.dataOut.dataLag_dc = avgdata_dc | |
1631 |
|
1641 | |||
1632 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] |
|
1642 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] | |
1633 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1643 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] | |
1634 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1644 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] | |
1635 |
|
1645 | |||
1636 |
|
1646 | |||
1637 | self.dataOut.nIncohInt *= self.n_ints |
|
1647 | self.dataOut.nIncohInt *= self.n_ints | |
1638 | self.dataOut.max_nIncohInt = self.maxProfilesInt |
|
1648 | self.dataOut.max_nIncohInt = self.maxProfilesInt | |
1639 | #print(self.dataOut.max_nIncohInt) |
|
1649 | #print(self.dataOut.max_nIncohInt) | |
1640 | self.dataOut.utctime = avgdatatime |
|
1650 | self.dataOut.utctime = avgdatatime | |
1641 | self.dataOut.flagNoData = False |
|
1651 | self.dataOut.flagNoData = False | |
1642 | #print("Faraday Integration DONE...") |
|
1652 | #print("Faraday Integration DONE...") | |
1643 | #print(self.dataOut.flagNoData) |
|
1653 | #print(self.dataOut.flagNoData) | |
1644 | return self.dataOut |
|
1654 | return self.dataOut | |
1645 |
|
1655 | |||
1646 | class removeInterference(Operation): |
|
1656 | class removeInterference(Operation): | |
1647 |
|
1657 | |||
1648 | def removeInterference2(self): |
|
1658 | def removeInterference2(self): | |
1649 |
|
1659 | |||
1650 | cspc = self.dataOut.data_cspc |
|
1660 | cspc = self.dataOut.data_cspc | |
1651 | spc = self.dataOut.data_spc |
|
1661 | spc = self.dataOut.data_spc | |
1652 | Heights = numpy.arange(cspc.shape[2]) |
|
1662 | Heights = numpy.arange(cspc.shape[2]) | |
1653 | realCspc = numpy.abs(cspc) |
|
1663 | realCspc = numpy.abs(cspc) | |
1654 |
|
1664 | |||
1655 | for i in range(cspc.shape[0]): |
|
1665 | for i in range(cspc.shape[0]): | |
1656 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1666 | LinePower= numpy.sum(realCspc[i], axis=0) | |
1657 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1667 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
1658 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1668 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
1659 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1669 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
1660 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1670 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
1661 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1671 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
1662 |
|
1672 | |||
1663 |
|
1673 | |||
1664 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1674 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
1665 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1675 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
1666 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1676 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
1667 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1677 | cspc[i,InterferenceRange,:] = numpy.NaN | |
1668 |
|
1678 | |||
1669 | self.dataOut.data_cspc = cspc |
|
1679 | self.dataOut.data_cspc = cspc | |
1670 |
|
1680 | |||
1671 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1681 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |
1672 |
|
1682 | |||
1673 | jspectra = self.dataOut.data_spc |
|
1683 | jspectra = self.dataOut.data_spc | |
1674 | jcspectra = self.dataOut.data_cspc |
|
1684 | jcspectra = self.dataOut.data_cspc | |
1675 | jnoise = self.dataOut.getNoise() |
|
1685 | jnoise = self.dataOut.getNoise() | |
1676 | num_incoh = self.dataOut.nIncohInt |
|
1686 | num_incoh = self.dataOut.nIncohInt | |
1677 |
|
1687 | |||
1678 | num_channel = jspectra.shape[0] |
|
1688 | num_channel = jspectra.shape[0] | |
1679 | num_prof = jspectra.shape[1] |
|
1689 | num_prof = jspectra.shape[1] | |
1680 | num_hei = jspectra.shape[2] |
|
1690 | num_hei = jspectra.shape[2] | |
1681 |
|
1691 | |||
1682 | # hei_interf |
|
1692 | # hei_interf | |
1683 | if hei_interf is None: |
|
1693 | if hei_interf is None: | |
1684 | count_hei = int(num_hei / 2) |
|
1694 | count_hei = int(num_hei / 2) | |
1685 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1695 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
1686 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1696 | hei_interf = numpy.asarray(hei_interf)[0] | |
1687 | # nhei_interf |
|
1697 | # nhei_interf | |
1688 | if (nhei_interf == None): |
|
1698 | if (nhei_interf == None): | |
1689 | nhei_interf = 5 |
|
1699 | nhei_interf = 5 | |
1690 | if (nhei_interf < 1): |
|
1700 | if (nhei_interf < 1): | |
1691 | nhei_interf = 1 |
|
1701 | nhei_interf = 1 | |
1692 | if (nhei_interf > count_hei): |
|
1702 | if (nhei_interf > count_hei): | |
1693 | nhei_interf = count_hei |
|
1703 | nhei_interf = count_hei | |
1694 | if (offhei_interf == None): |
|
1704 | if (offhei_interf == None): | |
1695 | offhei_interf = 0 |
|
1705 | offhei_interf = 0 | |
1696 |
|
1706 | |||
1697 | ind_hei = list(range(num_hei)) |
|
1707 | ind_hei = list(range(num_hei)) | |
1698 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1708 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
1699 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1709 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
1700 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1710 | mask_prof = numpy.asarray(list(range(num_prof))) | |
1701 | num_mask_prof = mask_prof.size |
|
1711 | num_mask_prof = mask_prof.size | |
1702 | comp_mask_prof = [0, num_prof / 2] |
|
1712 | comp_mask_prof = [0, num_prof / 2] | |
1703 |
|
1713 | |||
1704 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1714 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
1705 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1715 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
1706 | jnoise = numpy.nan |
|
1716 | jnoise = numpy.nan | |
1707 | noise_exist = jnoise[0] < numpy.Inf |
|
1717 | noise_exist = jnoise[0] < numpy.Inf | |
1708 |
|
1718 | |||
1709 | # Subrutina de Remocion de la Interferencia |
|
1719 | # Subrutina de Remocion de la Interferencia | |
1710 | for ich in range(num_channel): |
|
1720 | for ich in range(num_channel): | |
1711 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1721 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1712 | power = jspectra[ich, mask_prof, :] |
|
1722 | power = jspectra[ich, mask_prof, :] | |
1713 | power = power[:, hei_interf] |
|
1723 | power = power[:, hei_interf] | |
1714 | power = power.sum(axis=0) |
|
1724 | power = power.sum(axis=0) | |
1715 | psort = power.ravel().argsort() |
|
1725 | psort = power.ravel().argsort() | |
1716 |
|
1726 | |||
1717 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1727 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
1718 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1728 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
1719 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1729 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1720 |
|
1730 | |||
1721 | if noise_exist: |
|
1731 | if noise_exist: | |
1722 | # tmp_noise = jnoise[ich] / num_prof |
|
1732 | # tmp_noise = jnoise[ich] / num_prof | |
1723 | tmp_noise = jnoise[ich] |
|
1733 | tmp_noise = jnoise[ich] | |
1724 | junkspc_interf = junkspc_interf - tmp_noise |
|
1734 | junkspc_interf = junkspc_interf - tmp_noise | |
1725 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1735 | #junkspc_interf[:,comp_mask_prof] = 0 | |
1726 |
|
1736 | |||
1727 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1737 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
1728 | jspc_interf = jspc_interf.transpose() |
|
1738 | jspc_interf = jspc_interf.transpose() | |
1729 | # Calculando el espectro de interferencia promedio |
|
1739 | # Calculando el espectro de interferencia promedio | |
1730 | noiseid = numpy.where( |
|
1740 | noiseid = numpy.where( | |
1731 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1741 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
1732 | noiseid = noiseid[0] |
|
1742 | noiseid = noiseid[0] | |
1733 | cnoiseid = noiseid.size |
|
1743 | cnoiseid = noiseid.size | |
1734 | interfid = numpy.where( |
|
1744 | interfid = numpy.where( | |
1735 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1745 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
1736 | interfid = interfid[0] |
|
1746 | interfid = interfid[0] | |
1737 | cinterfid = interfid.size |
|
1747 | cinterfid = interfid.size | |
1738 |
|
1748 | |||
1739 | if (cnoiseid > 0): |
|
1749 | if (cnoiseid > 0): | |
1740 | jspc_interf[noiseid] = 0 |
|
1750 | jspc_interf[noiseid] = 0 | |
1741 |
|
1751 | |||
1742 | # Expandiendo los perfiles a limpiar |
|
1752 | # Expandiendo los perfiles a limpiar | |
1743 | if (cinterfid > 0): |
|
1753 | if (cinterfid > 0): | |
1744 | new_interfid = ( |
|
1754 | new_interfid = ( | |
1745 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1755 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
1746 | new_interfid = numpy.asarray(new_interfid) |
|
1756 | new_interfid = numpy.asarray(new_interfid) | |
1747 | new_interfid = {x for x in new_interfid} |
|
1757 | new_interfid = {x for x in new_interfid} | |
1748 | new_interfid = numpy.array(list(new_interfid)) |
|
1758 | new_interfid = numpy.array(list(new_interfid)) | |
1749 | new_cinterfid = new_interfid.size |
|
1759 | new_cinterfid = new_interfid.size | |
1750 | else: |
|
1760 | else: | |
1751 | new_cinterfid = 0 |
|
1761 | new_cinterfid = 0 | |
1752 |
|
1762 | |||
1753 | for ip in range(new_cinterfid): |
|
1763 | for ip in range(new_cinterfid): | |
1754 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1764 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
1755 | jspc_interf[new_interfid[ip] |
|
1765 | jspc_interf[new_interfid[ip] | |
1756 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1766 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
1757 |
|
1767 | |||
1758 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1768 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
1759 | ind_hei] - jspc_interf # Corregir indices |
|
1769 | ind_hei] - jspc_interf # Corregir indices | |
1760 |
|
1770 | |||
1761 | # Removiendo la interferencia del punto de mayor interferencia |
|
1771 | # Removiendo la interferencia del punto de mayor interferencia | |
1762 | ListAux = jspc_interf[mask_prof].tolist() |
|
1772 | ListAux = jspc_interf[mask_prof].tolist() | |
1763 | maxid = ListAux.index(max(ListAux)) |
|
1773 | maxid = ListAux.index(max(ListAux)) | |
1764 |
|
1774 | |||
1765 | if cinterfid > 0: |
|
1775 | if cinterfid > 0: | |
1766 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1776 | for ip in range(cinterfid * (interf == 2) - 1): | |
1767 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1777 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
1768 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1778 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
1769 | cind = len(ind) |
|
1779 | cind = len(ind) | |
1770 |
|
1780 | |||
1771 | if (cind > 0): |
|
1781 | if (cind > 0): | |
1772 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1782 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
1773 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1783 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
1774 | numpy.sqrt(num_incoh)) |
|
1784 | numpy.sqrt(num_incoh)) | |
1775 |
|
1785 | |||
1776 | ind = numpy.array([-2, -1, 1, 2]) |
|
1786 | ind = numpy.array([-2, -1, 1, 2]) | |
1777 | xx = numpy.zeros([4, 4]) |
|
1787 | xx = numpy.zeros([4, 4]) | |
1778 |
|
1788 | |||
1779 | for id1 in range(4): |
|
1789 | for id1 in range(4): | |
1780 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1790 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1781 |
|
1791 | |||
1782 | xx_inv = numpy.linalg.inv(xx) |
|
1792 | xx_inv = numpy.linalg.inv(xx) | |
1783 | xx = xx_inv[:, 0] |
|
1793 | xx = xx_inv[:, 0] | |
1784 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1794 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1785 | yy = jspectra[ich, mask_prof[ind], :] |
|
1795 | yy = jspectra[ich, mask_prof[ind], :] | |
1786 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1796 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
1787 | yy.transpose(), xx) |
|
1797 | yy.transpose(), xx) | |
1788 |
|
1798 | |||
1789 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1799 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
1790 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1800 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
1791 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1801 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
1792 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1802 | (1 - 1 / numpy.sqrt(num_incoh)) | |
1793 |
|
1803 | |||
1794 | # Remocion de Interferencia en el Cross Spectra |
|
1804 | # Remocion de Interferencia en el Cross Spectra | |
1795 | if jcspectra is None: |
|
1805 | if jcspectra is None: | |
1796 | return jspectra, jcspectra |
|
1806 | return jspectra, jcspectra | |
1797 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1807 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
1798 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1808 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
1799 |
|
1809 | |||
1800 | for ip in range(num_pairs): |
|
1810 | for ip in range(num_pairs): | |
1801 |
|
1811 | |||
1802 | #------------------------------------------- |
|
1812 | #------------------------------------------- | |
1803 |
|
1813 | |||
1804 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1814 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
1805 | cspower = cspower[:, hei_interf] |
|
1815 | cspower = cspower[:, hei_interf] | |
1806 | cspower = cspower.sum(axis=0) |
|
1816 | cspower = cspower.sum(axis=0) | |
1807 |
|
1817 | |||
1808 | cspsort = cspower.ravel().argsort() |
|
1818 | cspsort = cspower.ravel().argsort() | |
1809 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1819 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
1810 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1820 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1811 | junkcspc_interf = junkcspc_interf.transpose() |
|
1821 | junkcspc_interf = junkcspc_interf.transpose() | |
1812 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1822 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
1813 |
|
1823 | |||
1814 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1824 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1815 |
|
1825 | |||
1816 | median_real = int(numpy.median(numpy.real( |
|
1826 | median_real = int(numpy.median(numpy.real( | |
1817 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1827 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1818 | median_imag = int(numpy.median(numpy.imag( |
|
1828 | median_imag = int(numpy.median(numpy.imag( | |
1819 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1829 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1820 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1830 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
1821 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1831 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
1822 | median_real, median_imag) |
|
1832 | median_real, median_imag) | |
1823 |
|
1833 | |||
1824 | for iprof in range(num_prof): |
|
1834 | for iprof in range(num_prof): | |
1825 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1835 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
1826 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1836 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
1827 |
|
1837 | |||
1828 | # Removiendo la Interferencia |
|
1838 | # Removiendo la Interferencia | |
1829 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1839 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
1830 | :, ind_hei] - jcspc_interf |
|
1840 | :, ind_hei] - jcspc_interf | |
1831 |
|
1841 | |||
1832 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1842 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1833 | maxid = ListAux.index(max(ListAux)) |
|
1843 | maxid = ListAux.index(max(ListAux)) | |
1834 |
|
1844 | |||
1835 | ind = numpy.array([-2, -1, 1, 2]) |
|
1845 | ind = numpy.array([-2, -1, 1, 2]) | |
1836 | xx = numpy.zeros([4, 4]) |
|
1846 | xx = numpy.zeros([4, 4]) | |
1837 |
|
1847 | |||
1838 | for id1 in range(4): |
|
1848 | for id1 in range(4): | |
1839 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1849 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1840 |
|
1850 | |||
1841 | xx_inv = numpy.linalg.inv(xx) |
|
1851 | xx_inv = numpy.linalg.inv(xx) | |
1842 | xx = xx_inv[:, 0] |
|
1852 | xx = xx_inv[:, 0] | |
1843 |
|
1853 | |||
1844 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1854 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1845 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1855 | yy = jcspectra[ip, mask_prof[ind], :] | |
1846 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1856 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1847 |
|
1857 | |||
1848 | # Guardar Resultados |
|
1858 | # Guardar Resultados | |
1849 | self.dataOut.data_spc = jspectra |
|
1859 | self.dataOut.data_spc = jspectra | |
1850 | self.dataOut.data_cspc = jcspectra |
|
1860 | self.dataOut.data_cspc = jcspectra | |
1851 |
|
1861 | |||
1852 | return 1 |
|
1862 | return 1 | |
1853 |
|
1863 | |||
1854 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1864 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |
1855 |
|
1865 | |||
1856 | self.dataOut = dataOut |
|
1866 | self.dataOut = dataOut | |
1857 |
|
1867 | |||
1858 | if mode == 1: |
|
1868 | if mode == 1: | |
1859 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1869 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |
1860 | elif mode == 2: |
|
1870 | elif mode == 2: | |
1861 | self.removeInterference2() |
|
1871 | self.removeInterference2() | |
1862 |
|
1872 | |||
1863 | return self.dataOut |
|
1873 | return self.dataOut | |
1864 |
|
1874 | |||
1865 |
|
1875 | |||
1866 | class IncohInt(Operation): |
|
1876 | class IncohInt(Operation): | |
1867 |
|
1877 | |||
1868 | __profIndex = 0 |
|
1878 | __profIndex = 0 | |
1869 | __withOverapping = False |
|
1879 | __withOverapping = False | |
1870 |
|
1880 | |||
1871 | __byTime = False |
|
1881 | __byTime = False | |
1872 | __initime = None |
|
1882 | __initime = None | |
1873 | __lastdatatime = None |
|
1883 | __lastdatatime = None | |
1874 | __integrationtime = None |
|
1884 | __integrationtime = None | |
1875 |
|
1885 | |||
1876 | __buffer_spc = None |
|
1886 | __buffer_spc = None | |
1877 | __buffer_cspc = None |
|
1887 | __buffer_cspc = None | |
1878 | __buffer_dc = None |
|
1888 | __buffer_dc = None | |
1879 |
|
1889 | |||
1880 | __dataReady = False |
|
1890 | __dataReady = False | |
1881 |
|
1891 | |||
1882 | __timeInterval = None |
|
1892 | __timeInterval = None | |
1883 | incohInt = 0 |
|
1893 | incohInt = 0 | |
1884 | nOutliers = 0 |
|
1894 | nOutliers = 0 | |
1885 | n = None |
|
1895 | n = None | |
1886 |
|
1896 | |||
1887 | def __init__(self): |
|
1897 | def __init__(self): | |
1888 |
|
1898 | |||
1889 | Operation.__init__(self) |
|
1899 | Operation.__init__(self) | |
1890 |
|
1900 | |||
1891 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1901 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1892 | """ |
|
1902 | """ | |
1893 | Set the parameters of the integration class. |
|
1903 | Set the parameters of the integration class. | |
1894 |
|
1904 | |||
1895 | Inputs: |
|
1905 | Inputs: | |
1896 |
|
1906 | |||
1897 | n : Number of coherent integrations |
|
1907 | n : Number of coherent integrations | |
1898 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1908 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1899 | overlapping : |
|
1909 | overlapping : | |
1900 |
|
1910 | |||
1901 | """ |
|
1911 | """ | |
1902 |
|
1912 | |||
1903 | self.__initime = None |
|
1913 | self.__initime = None | |
1904 | self.__lastdatatime = 0 |
|
1914 | self.__lastdatatime = 0 | |
1905 |
|
1915 | |||
1906 | self.__buffer_spc = 0 |
|
1916 | self.__buffer_spc = 0 | |
1907 | self.__buffer_cspc = 0 |
|
1917 | self.__buffer_cspc = 0 | |
1908 | self.__buffer_dc = 0 |
|
1918 | self.__buffer_dc = 0 | |
1909 |
|
1919 | |||
1910 | self.__profIndex = 0 |
|
1920 | self.__profIndex = 0 | |
1911 | self.__dataReady = False |
|
1921 | self.__dataReady = False | |
1912 | self.__byTime = False |
|
1922 | self.__byTime = False | |
1913 | self.incohInt = 0 |
|
1923 | self.incohInt = 0 | |
1914 | self.nOutliers = 0 |
|
1924 | self.nOutliers = 0 | |
1915 | if n is None and timeInterval is None: |
|
1925 | if n is None and timeInterval is None: | |
1916 | raise ValueError("n or timeInterval should be specified ...") |
|
1926 | raise ValueError("n or timeInterval should be specified ...") | |
1917 |
|
1927 | |||
1918 | if n is not None: |
|
1928 | if n is not None: | |
1919 | self.n = int(n) |
|
1929 | self.n = int(n) | |
1920 | else: |
|
1930 | else: | |
1921 |
|
1931 | |||
1922 | self.__integrationtime = int(timeInterval) |
|
1932 | self.__integrationtime = int(timeInterval) | |
1923 | self.n = None |
|
1933 | self.n = None | |
1924 | self.__byTime = True |
|
1934 | self.__byTime = True | |
1925 |
|
1935 | |||
1926 | def putData(self, data_spc, data_cspc, data_dc): |
|
1936 | def putData(self, data_spc, data_cspc, data_dc): | |
1927 | """ |
|
1937 | """ | |
1928 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1938 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1929 |
|
1939 | |||
1930 | """ |
|
1940 | """ | |
1931 | if data_spc.all() == numpy.nan : |
|
1941 | if data_spc.all() == numpy.nan : | |
1932 | print("nan ") |
|
1942 | print("nan ") | |
1933 | return |
|
1943 | return | |
1934 | self.__buffer_spc += data_spc |
|
1944 | self.__buffer_spc += data_spc | |
1935 |
|
1945 | |||
1936 | if data_cspc is None: |
|
1946 | if data_cspc is None: | |
1937 | self.__buffer_cspc = None |
|
1947 | self.__buffer_cspc = None | |
1938 | else: |
|
1948 | else: | |
1939 | self.__buffer_cspc += data_cspc |
|
1949 | self.__buffer_cspc += data_cspc | |
1940 |
|
1950 | |||
1941 | if data_dc is None: |
|
1951 | if data_dc is None: | |
1942 | self.__buffer_dc = None |
|
1952 | self.__buffer_dc = None | |
1943 | else: |
|
1953 | else: | |
1944 | self.__buffer_dc += data_dc |
|
1954 | self.__buffer_dc += data_dc | |
1945 |
|
1955 | |||
1946 | self.__profIndex += 1 |
|
1956 | self.__profIndex += 1 | |
1947 |
|
1957 | |||
1948 | return |
|
1958 | return | |
1949 |
|
1959 | |||
1950 | def pushData(self): |
|
1960 | def pushData(self): | |
1951 | """ |
|
1961 | """ | |
1952 | Return the sum of the last profiles and the profiles used in the sum. |
|
1962 | Return the sum of the last profiles and the profiles used in the sum. | |
1953 |
|
1963 | |||
1954 | Affected: |
|
1964 | Affected: | |
1955 |
|
1965 | |||
1956 | self.__profileIndex |
|
1966 | self.__profileIndex | |
1957 |
|
1967 | |||
1958 | """ |
|
1968 | """ | |
1959 |
|
1969 | |||
1960 | data_spc = self.__buffer_spc |
|
1970 | data_spc = self.__buffer_spc | |
1961 | data_cspc = self.__buffer_cspc |
|
1971 | data_cspc = self.__buffer_cspc | |
1962 | data_dc = self.__buffer_dc |
|
1972 | data_dc = self.__buffer_dc | |
1963 | n = self.__profIndex |
|
1973 | n = self.__profIndex | |
1964 |
|
1974 | |||
1965 | self.__buffer_spc = 0 |
|
1975 | self.__buffer_spc = 0 | |
1966 | self.__buffer_cspc = 0 |
|
1976 | self.__buffer_cspc = 0 | |
1967 | self.__buffer_dc = 0 |
|
1977 | self.__buffer_dc = 0 | |
1968 |
|
1978 | |||
1969 |
|
1979 | |||
1970 | return data_spc, data_cspc, data_dc, n |
|
1980 | return data_spc, data_cspc, data_dc, n | |
1971 |
|
1981 | |||
1972 | def byProfiles(self, *args): |
|
1982 | def byProfiles(self, *args): | |
1973 |
|
1983 | |||
1974 | self.__dataReady = False |
|
1984 | self.__dataReady = False | |
1975 | avgdata_spc = None |
|
1985 | avgdata_spc = None | |
1976 | avgdata_cspc = None |
|
1986 | avgdata_cspc = None | |
1977 | avgdata_dc = None |
|
1987 | avgdata_dc = None | |
1978 |
|
1988 | |||
1979 | self.putData(*args) |
|
1989 | self.putData(*args) | |
1980 |
|
1990 | |||
1981 | if self.__profIndex == self.n: |
|
1991 | if self.__profIndex == self.n: | |
1982 |
|
1992 | |||
1983 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1993 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1984 | self.n = n |
|
1994 | self.n = n | |
1985 | self.__dataReady = True |
|
1995 | self.__dataReady = True | |
1986 |
|
1996 | |||
1987 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1997 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1988 |
|
1998 | |||
1989 | def byTime(self, datatime, *args): |
|
1999 | def byTime(self, datatime, *args): | |
1990 |
|
2000 | |||
1991 | self.__dataReady = False |
|
2001 | self.__dataReady = False | |
1992 | avgdata_spc = None |
|
2002 | avgdata_spc = None | |
1993 | avgdata_cspc = None |
|
2003 | avgdata_cspc = None | |
1994 | avgdata_dc = None |
|
2004 | avgdata_dc = None | |
1995 |
|
2005 | |||
1996 | self.putData(*args) |
|
2006 | self.putData(*args) | |
1997 |
|
2007 | |||
1998 | if (datatime - self.__initime) >= self.__integrationtime: |
|
2008 | if (datatime - self.__initime) >= self.__integrationtime: | |
1999 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
2009 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
2000 | self.n = n |
|
2010 | self.n = n | |
2001 | self.__dataReady = True |
|
2011 | self.__dataReady = True | |
2002 |
|
2012 | |||
2003 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
2013 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
2004 |
|
2014 | |||
2005 | def integrate(self, datatime, *args): |
|
2015 | def integrate(self, datatime, *args): | |
2006 |
|
2016 | |||
2007 | if self.__profIndex == 0: |
|
2017 | if self.__profIndex == 0: | |
2008 | self.__initime = datatime |
|
2018 | self.__initime = datatime | |
2009 |
|
2019 | |||
2010 | if self.__byTime: |
|
2020 | if self.__byTime: | |
2011 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
2021 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
2012 | datatime, *args) |
|
2022 | datatime, *args) | |
2013 | else: |
|
2023 | else: | |
2014 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
2024 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
2015 |
|
2025 | |||
2016 | if not self.__dataReady: |
|
2026 | if not self.__dataReady: | |
2017 | return None, None, None, None |
|
2027 | return None, None, None, None | |
2018 |
|
2028 | |||
2019 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
2029 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
2020 |
|
2030 | |||
2021 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
2031 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
2022 | if n == 1: |
|
2032 | if n == 1: | |
2023 | return dataOut |
|
2033 | return dataOut | |
2024 |
|
2034 | |||
2025 | if dataOut.flagNoData == True: |
|
2035 | if dataOut.flagNoData == True: | |
2026 | return dataOut |
|
2036 | return dataOut | |
2027 |
|
2037 | |||
2028 | dataOut.flagNoData = True |
|
2038 | dataOut.flagNoData = True | |
2029 |
|
2039 | |||
2030 | if not self.isConfig: |
|
2040 | if not self.isConfig: | |
2031 | self.setup(n, timeInterval, overlapping) |
|
2041 | self.setup(n, timeInterval, overlapping) | |
2032 | self.isConfig = True |
|
2042 | self.isConfig = True | |
2033 |
|
2043 | |||
2034 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
2044 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
2035 | dataOut.data_spc, |
|
2045 | dataOut.data_spc, | |
2036 | dataOut.data_cspc, |
|
2046 | dataOut.data_cspc, | |
2037 | dataOut.data_dc) |
|
2047 | dataOut.data_dc) | |
2038 | self.incohInt += dataOut.nIncohInt |
|
2048 | self.incohInt += dataOut.nIncohInt | |
2039 | self.nOutliers += dataOut.data_outlier |
|
2049 | self.nOutliers += dataOut.data_outlier | |
2040 | if self.__dataReady: |
|
2050 | if self.__dataReady: | |
2041 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) |
|
2051 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) | |
2042 | dataOut.data_spc = avgdata_spc |
|
2052 | dataOut.data_spc = avgdata_spc | |
2043 | dataOut.data_cspc = avgdata_cspc |
|
2053 | dataOut.data_cspc = avgdata_cspc | |
2044 | dataOut.data_dc = avgdata_dc |
|
2054 | dataOut.data_dc = avgdata_dc | |
2045 | dataOut.nIncohInt = self.incohInt |
|
2055 | dataOut.nIncohInt = self.incohInt | |
2046 | dataOut.data_outlier = self.nOutliers |
|
2056 | dataOut.data_outlier = self.nOutliers | |
2047 | dataOut.utctime = avgdatatime |
|
2057 | dataOut.utctime = avgdatatime | |
2048 | dataOut.flagNoData = False |
|
2058 | dataOut.flagNoData = False | |
2049 | dataOut.max_nIncohInt += self.__profIndex |
|
2059 | dataOut.max_nIncohInt += self.__profIndex | |
2050 | self.incohInt = 0 |
|
2060 | self.incohInt = 0 | |
2051 | self.nOutliers = 0 |
|
2061 | self.nOutliers = 0 | |
2052 | self.__profIndex = 0 |
|
2062 | self.__profIndex = 0 | |
2053 |
|
2063 | #print("IncohInt Done") | ||
2054 | return dataOut |
|
2064 | return dataOut | |
2055 |
|
2065 | |||
2056 | class dopplerFlip(Operation): |
|
2066 | class dopplerFlip(Operation): | |
2057 |
|
2067 | |||
2058 | def run(self, dataOut): |
|
2068 | def run(self, dataOut): | |
2059 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
2069 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
2060 | self.dataOut = dataOut |
|
2070 | self.dataOut = dataOut | |
2061 | # JULIA-oblicua, indice 2 |
|
2071 | # JULIA-oblicua, indice 2 | |
2062 | # arreglo 2: (num_profiles, num_heights) |
|
2072 | # arreglo 2: (num_profiles, num_heights) | |
2063 | jspectra = self.dataOut.data_spc[2] |
|
2073 | jspectra = self.dataOut.data_spc[2] | |
2064 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
2074 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
2065 | num_profiles = jspectra.shape[0] |
|
2075 | num_profiles = jspectra.shape[0] | |
2066 | freq_dc = int(num_profiles / 2) |
|
2076 | freq_dc = int(num_profiles / 2) | |
2067 | # Flip con for |
|
2077 | # Flip con for | |
2068 | for j in range(num_profiles): |
|
2078 | for j in range(num_profiles): | |
2069 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
2079 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
2070 | # Intercambio perfil de DC con perfil inmediato anterior |
|
2080 | # Intercambio perfil de DC con perfil inmediato anterior | |
2071 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
2081 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
2072 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
2082 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
2073 | # canal modificado es re-escrito en el arreglo de canales |
|
2083 | # canal modificado es re-escrito en el arreglo de canales | |
2074 | self.dataOut.data_spc[2] = jspectra_tmp |
|
2084 | self.dataOut.data_spc[2] = jspectra_tmp | |
2075 |
|
2085 | |||
2076 | return self.dataOut |
|
2086 | return self.dataOut |
@@ -1,2369 +1,2361 | |||||
1 | import sys |
|
1 | import sys | |
2 | import numpy,math |
|
2 | import numpy,math | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |
6 | from schainpy.utils import log |
|
6 | from schainpy.utils import log | |
7 | from schainpy.model.io.utils import getHei_index |
|
7 | from schainpy.model.io.utils import getHei_index | |
8 | from time import time |
|
8 | from time import time | |
9 | #import datetime |
|
9 | #import datetime | |
10 | import numpy |
|
10 | import numpy | |
11 | #import copy |
|
11 | #import copy | |
12 | from schainpy.model.data import _noise |
|
12 | from schainpy.model.data import _noise | |
13 |
|
13 | |||
14 | class VoltageProc(ProcessingUnit): |
|
14 | class VoltageProc(ProcessingUnit): | |
15 |
|
15 | |||
16 | def __init__(self): |
|
16 | def __init__(self): | |
17 |
|
17 | |||
18 | ProcessingUnit.__init__(self) |
|
18 | ProcessingUnit.__init__(self) | |
19 |
|
19 | |||
20 | self.dataOut = Voltage() |
|
20 | self.dataOut = Voltage() | |
21 | self.flip = 1 |
|
21 | self.flip = 1 | |
22 | self.setupReq = False |
|
22 | self.setupReq = False | |
23 |
|
23 | |||
24 | def run(self): |
|
24 | def run(self): | |
25 | #print("running volt proc") |
|
25 | #print("running volt proc") | |
26 | if self.dataIn.type == 'AMISR': |
|
26 | if self.dataIn.type == 'AMISR': | |
27 | self.__updateObjFromAmisrInput() |
|
27 | self.__updateObjFromAmisrInput() | |
28 |
|
28 | |||
29 | if self.dataOut.buffer_empty: |
|
29 | if self.dataOut.buffer_empty: | |
30 | if self.dataIn.type == 'Voltage': |
|
30 | if self.dataIn.type == 'Voltage': | |
31 | self.dataOut.copy(self.dataIn) |
|
31 | self.dataOut.copy(self.dataIn) | |
32 | #print("new volts reading") |
|
32 | #print("new volts reading") | |
33 |
|
33 | |||
34 |
|
34 | |||
35 | def __updateObjFromAmisrInput(self): |
|
35 | def __updateObjFromAmisrInput(self): | |
36 |
|
36 | |||
37 | self.dataOut.timeZone = self.dataIn.timeZone |
|
37 | self.dataOut.timeZone = self.dataIn.timeZone | |
38 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
38 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
39 | self.dataOut.errorCount = self.dataIn.errorCount |
|
39 | self.dataOut.errorCount = self.dataIn.errorCount | |
40 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
40 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
41 |
|
41 | |||
42 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
42 | self.dataOut.flagNoData = self.dataIn.flagNoData | |
43 | self.dataOut.data = self.dataIn.data |
|
43 | self.dataOut.data = self.dataIn.data | |
44 | self.dataOut.utctime = self.dataIn.utctime |
|
44 | self.dataOut.utctime = self.dataIn.utctime | |
45 | self.dataOut.channelList = self.dataIn.channelList |
|
45 | self.dataOut.channelList = self.dataIn.channelList | |
46 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
46 | #self.dataOut.timeInterval = self.dataIn.timeInterval | |
47 | self.dataOut.heightList = self.dataIn.heightList |
|
47 | self.dataOut.heightList = self.dataIn.heightList | |
48 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
48 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
49 |
|
49 | |||
50 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
50 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
51 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
51 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
52 | self.dataOut.frequency = self.dataIn.frequency |
|
52 | self.dataOut.frequency = self.dataIn.frequency | |
53 |
|
53 | |||
54 | self.dataOut.azimuth = self.dataIn.azimuth |
|
54 | self.dataOut.azimuth = self.dataIn.azimuth | |
55 | self.dataOut.zenith = self.dataIn.zenith |
|
55 | self.dataOut.zenith = self.dataIn.zenith | |
56 |
|
56 | |||
57 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
57 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
58 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
58 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
59 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
59 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
60 |
|
60 | |||
61 |
|
61 | |||
62 | class selectChannels(Operation): |
|
62 | class selectChannels(Operation): | |
63 |
|
63 | |||
64 | def run(self, dataOut, channelList=None): |
|
64 | def run(self, dataOut, channelList=None): | |
65 | self.channelList = channelList |
|
65 | self.channelList = channelList | |
66 | if self.channelList == None: |
|
66 | if self.channelList == None: | |
67 | print("Missing channelList") |
|
67 | print("Missing channelList") | |
68 | return dataOut |
|
68 | return dataOut | |
69 | channelIndexList = [] |
|
69 | channelIndexList = [] | |
70 |
|
70 | |||
71 | if type(dataOut.channelList) is not list: #leer array desde HDF5 |
|
71 | if type(dataOut.channelList) is not list: #leer array desde HDF5 | |
72 | try: |
|
72 | try: | |
73 | dataOut.channelList = dataOut.channelList.tolist() |
|
73 | dataOut.channelList = dataOut.channelList.tolist() | |
74 | except Exception as e: |
|
74 | except Exception as e: | |
75 | print("Select Channels: ",e) |
|
75 | print("Select Channels: ",e) | |
76 | for channel in self.channelList: |
|
76 | for channel in self.channelList: | |
77 | if channel not in dataOut.channelList: |
|
77 | if channel not in dataOut.channelList: | |
78 | raise ValueError("Channel %d is not in %s" %(channel, str(dataOut.channelList))) |
|
78 | raise ValueError("Channel %d is not in %s" %(channel, str(dataOut.channelList))) | |
79 |
|
79 | |||
80 | index = dataOut.channelList.index(channel) |
|
80 | index = dataOut.channelList.index(channel) | |
81 | channelIndexList.append(index) |
|
81 | channelIndexList.append(index) | |
82 | dataOut = self.selectChannelsByIndex(dataOut,channelIndexList) |
|
82 | dataOut = self.selectChannelsByIndex(dataOut,channelIndexList) | |
83 | return dataOut |
|
83 | return dataOut | |
84 |
|
84 | |||
85 | def selectChannelsByIndex(self, dataOut, channelIndexList): |
|
85 | def selectChannelsByIndex(self, dataOut, channelIndexList): | |
86 | """ |
|
86 | """ | |
87 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
87 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
88 |
|
88 | |||
89 | Input: |
|
89 | Input: | |
90 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
90 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
91 |
|
91 | |||
92 | Affected: |
|
92 | Affected: | |
93 | dataOut.data |
|
93 | dataOut.data | |
94 | dataOut.channelIndexList |
|
94 | dataOut.channelIndexList | |
95 | dataOut.nChannels |
|
95 | dataOut.nChannels | |
96 | dataOut.m_ProcessingHeader.totalSpectra |
|
96 | dataOut.m_ProcessingHeader.totalSpectra | |
97 | dataOut.systemHeaderObj.numChannels |
|
97 | dataOut.systemHeaderObj.numChannels | |
98 | dataOut.m_ProcessingHeader.blockSize |
|
98 | dataOut.m_ProcessingHeader.blockSize | |
99 |
|
99 | |||
100 | Return: |
|
100 | Return: | |
101 | None |
|
101 | None | |
102 | """ |
|
102 | """ | |
103 | #print("selectChannelsByIndex") |
|
103 | #print("selectChannelsByIndex") | |
104 | # for channelIndex in channelIndexList: |
|
104 | # for channelIndex in channelIndexList: | |
105 | # if channelIndex not in dataOut.channelIndexList: |
|
105 | # if channelIndex not in dataOut.channelIndexList: | |
106 | # raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
106 | # raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) | |
107 |
|
107 | |||
108 | if dataOut.type == 'Voltage': |
|
108 | if dataOut.type == 'Voltage': | |
109 | if dataOut.flagDataAsBlock: |
|
109 | if dataOut.flagDataAsBlock: | |
110 | """ |
|
110 | """ | |
111 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
111 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
112 | """ |
|
112 | """ | |
113 | data = dataOut.data[channelIndexList,:,:] |
|
113 | data = dataOut.data[channelIndexList,:,:] | |
114 | else: |
|
114 | else: | |
115 | data = dataOut.data[channelIndexList,:] |
|
115 | data = dataOut.data[channelIndexList,:] | |
116 |
|
116 | |||
117 | dataOut.data = data |
|
117 | dataOut.data = data | |
118 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] |
|
118 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] | |
119 | dataOut.channelList = range(len(channelIndexList)) |
|
119 | dataOut.channelList = range(len(channelIndexList)) | |
120 |
|
120 | |||
121 | elif dataOut.type == 'Spectra': |
|
121 | elif dataOut.type == 'Spectra': | |
122 | if hasattr(dataOut, 'data_spc'): |
|
122 | if hasattr(dataOut, 'data_spc'): | |
123 | if dataOut.data_spc is None: |
|
123 | if dataOut.data_spc is None: | |
124 | raise ValueError("data_spc is None") |
|
124 | raise ValueError("data_spc is None") | |
125 | return dataOut |
|
125 | return dataOut | |
126 | else: |
|
126 | else: | |
127 | data_spc = dataOut.data_spc[channelIndexList, :] |
|
127 | data_spc = dataOut.data_spc[channelIndexList, :] | |
128 | dataOut.data_spc = data_spc |
|
128 | dataOut.data_spc = data_spc | |
129 |
|
129 | |||
130 | # if hasattr(dataOut, 'data_dc') :# and |
|
130 | # if hasattr(dataOut, 'data_dc') :# and | |
131 | # if dataOut.data_dc is None: |
|
131 | # if dataOut.data_dc is None: | |
132 | # raise ValueError("data_dc is None") |
|
132 | # raise ValueError("data_dc is None") | |
133 | # return dataOut |
|
133 | # return dataOut | |
134 | # else: |
|
134 | # else: | |
135 | # data_dc = dataOut.data_dc[channelIndexList, :] |
|
135 | # data_dc = dataOut.data_dc[channelIndexList, :] | |
136 | # dataOut.data_dc = data_dc |
|
136 | # dataOut.data_dc = data_dc | |
137 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] |
|
137 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] | |
138 | dataOut.channelList = channelIndexList |
|
138 | dataOut.channelList = channelIndexList | |
139 | dataOut = self.__selectPairsByChannel(dataOut,channelIndexList) |
|
139 | dataOut = self.__selectPairsByChannel(dataOut,channelIndexList) | |
140 |
|
140 | |||
141 | return dataOut |
|
141 | return dataOut | |
142 |
|
142 | |||
143 | def __selectPairsByChannel(self, dataOut, channelList=None): |
|
143 | def __selectPairsByChannel(self, dataOut, channelList=None): | |
144 | #print("__selectPairsByChannel") |
|
144 | #print("__selectPairsByChannel") | |
145 | if channelList == None: |
|
145 | if channelList == None: | |
146 | return |
|
146 | return | |
147 |
|
147 | |||
148 | pairsIndexListSelected = [] |
|
148 | pairsIndexListSelected = [] | |
149 | for pairIndex in dataOut.pairsIndexList: |
|
149 | for pairIndex in dataOut.pairsIndexList: | |
150 | # First pair |
|
150 | # First pair | |
151 | if dataOut.pairsList[pairIndex][0] not in channelList: |
|
151 | if dataOut.pairsList[pairIndex][0] not in channelList: | |
152 | continue |
|
152 | continue | |
153 | # Second pair |
|
153 | # Second pair | |
154 | if dataOut.pairsList[pairIndex][1] not in channelList: |
|
154 | if dataOut.pairsList[pairIndex][1] not in channelList: | |
155 | continue |
|
155 | continue | |
156 |
|
156 | |||
157 | pairsIndexListSelected.append(pairIndex) |
|
157 | pairsIndexListSelected.append(pairIndex) | |
158 | if not pairsIndexListSelected: |
|
158 | if not pairsIndexListSelected: | |
159 | dataOut.data_cspc = None |
|
159 | dataOut.data_cspc = None | |
160 | dataOut.pairsList = [] |
|
160 | dataOut.pairsList = [] | |
161 | return |
|
161 | return | |
162 |
|
162 | |||
163 | dataOut.data_cspc = dataOut.data_cspc[pairsIndexListSelected] |
|
163 | dataOut.data_cspc = dataOut.data_cspc[pairsIndexListSelected] | |
164 | dataOut.pairsList = [dataOut.pairsList[i] |
|
164 | dataOut.pairsList = [dataOut.pairsList[i] | |
165 | for i in pairsIndexListSelected] |
|
165 | for i in pairsIndexListSelected] | |
166 |
|
166 | |||
167 | return dataOut |
|
167 | return dataOut | |
168 |
|
168 | |||
169 | class selectHeights(Operation): |
|
169 | class selectHeights(Operation): | |
170 |
|
170 | |||
171 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
171 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |
172 | """ |
|
172 | """ | |
173 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
173 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
174 | minHei <= height <= maxHei |
|
174 | minHei <= height <= maxHei | |
175 |
|
175 | |||
176 | Input: |
|
176 | Input: | |
177 | minHei : valor minimo de altura a considerar |
|
177 | minHei : valor minimo de altura a considerar | |
178 | maxHei : valor maximo de altura a considerar |
|
178 | maxHei : valor maximo de altura a considerar | |
179 |
|
179 | |||
180 | Affected: |
|
180 | Affected: | |
181 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
181 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
182 |
|
182 | |||
183 | Return: |
|
183 | Return: | |
184 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
184 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
185 | """ |
|
185 | """ | |
186 |
|
186 | |||
187 | self.dataOut = dataOut |
|
187 | self.dataOut = dataOut | |
188 |
|
188 | |||
189 | if minHei and maxHei: |
|
189 | if minHei and maxHei: | |
190 |
|
190 | |||
191 | if (minHei < dataOut.heightList[0]): |
|
191 | if (minHei < dataOut.heightList[0]): | |
192 | minHei = dataOut.heightList[0] |
|
192 | minHei = dataOut.heightList[0] | |
193 |
|
193 | |||
194 | if (maxHei > dataOut.heightList[-1]): |
|
194 | if (maxHei > dataOut.heightList[-1]): | |
195 | maxHei = dataOut.heightList[-1] |
|
195 | maxHei = dataOut.heightList[-1] | |
196 |
|
196 | |||
197 | minIndex = 0 |
|
197 | minIndex = 0 | |
198 | maxIndex = 0 |
|
198 | maxIndex = 0 | |
199 | heights = dataOut.heightList |
|
199 | heights = dataOut.heightList | |
200 |
|
200 | |||
201 | inda = numpy.where(heights >= minHei) |
|
201 | inda = numpy.where(heights >= minHei) | |
202 | indb = numpy.where(heights <= maxHei) |
|
202 | indb = numpy.where(heights <= maxHei) | |
203 |
|
203 | |||
204 | try: |
|
204 | try: | |
205 | minIndex = inda[0][0] |
|
205 | minIndex = inda[0][0] | |
206 | except: |
|
206 | except: | |
207 | minIndex = 0 |
|
207 | minIndex = 0 | |
208 |
|
208 | |||
209 | try: |
|
209 | try: | |
210 | maxIndex = indb[0][-1] |
|
210 | maxIndex = indb[0][-1] | |
211 | except: |
|
211 | except: | |
212 | maxIndex = len(heights) |
|
212 | maxIndex = len(heights) | |
213 |
|
213 | |||
214 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
214 | self.selectHeightsByIndex(minIndex, maxIndex) | |
215 |
|
215 | |||
216 | return dataOut |
|
216 | return dataOut | |
217 |
|
217 | |||
218 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
218 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
219 | """ |
|
219 | """ | |
220 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
220 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
221 | minIndex <= index <= maxIndex |
|
221 | minIndex <= index <= maxIndex | |
222 |
|
222 | |||
223 | Input: |
|
223 | Input: | |
224 | minIndex : valor de indice minimo de altura a considerar |
|
224 | minIndex : valor de indice minimo de altura a considerar | |
225 | maxIndex : valor de indice maximo de altura a considerar |
|
225 | maxIndex : valor de indice maximo de altura a considerar | |
226 |
|
226 | |||
227 | Affected: |
|
227 | Affected: | |
228 | self.dataOut.data |
|
228 | self.dataOut.data | |
229 | self.dataOut.heightList |
|
229 | self.dataOut.heightList | |
230 |
|
230 | |||
231 | Return: |
|
231 | Return: | |
232 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
232 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
233 | """ |
|
233 | """ | |
234 |
|
234 | |||
235 | if self.dataOut.type == 'Voltage': |
|
235 | if self.dataOut.type == 'Voltage': | |
236 | if (minIndex < 0) or (minIndex > maxIndex): |
|
236 | if (minIndex < 0) or (minIndex > maxIndex): | |
237 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
237 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
238 |
|
238 | |||
239 | if (maxIndex >= self.dataOut.nHeights): |
|
239 | if (maxIndex >= self.dataOut.nHeights): | |
240 | maxIndex = self.dataOut.nHeights |
|
240 | maxIndex = self.dataOut.nHeights | |
241 |
|
241 | |||
242 | #voltage |
|
242 | #voltage | |
243 | if self.dataOut.flagDataAsBlock: |
|
243 | if self.dataOut.flagDataAsBlock: | |
244 | """ |
|
244 | """ | |
245 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
245 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
246 | """ |
|
246 | """ | |
247 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
247 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |
248 | else: |
|
248 | else: | |
249 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
249 | data = self.dataOut.data[:, minIndex:maxIndex] | |
250 |
|
250 | |||
251 | # firstHeight = self.dataOut.heightList[minIndex] |
|
251 | # firstHeight = self.dataOut.heightList[minIndex] | |
252 |
|
252 | |||
253 | self.dataOut.data = data |
|
253 | self.dataOut.data = data | |
254 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
254 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |
255 |
|
255 | |||
256 | if self.dataOut.nHeights <= 1: |
|
256 | if self.dataOut.nHeights <= 1: | |
257 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
257 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) | |
258 | elif self.dataOut.type == 'Spectra': |
|
258 | elif self.dataOut.type == 'Spectra': | |
259 | if (minIndex < 0) or (minIndex > maxIndex): |
|
259 | if (minIndex < 0) or (minIndex > maxIndex): | |
260 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
260 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |
261 | minIndex, maxIndex)) |
|
261 | minIndex, maxIndex)) | |
262 |
|
262 | |||
263 | if (maxIndex >= self.dataOut.nHeights): |
|
263 | if (maxIndex >= self.dataOut.nHeights): | |
264 | maxIndex = self.dataOut.nHeights - 1 |
|
264 | maxIndex = self.dataOut.nHeights - 1 | |
265 |
|
265 | |||
266 | # Spectra |
|
266 | # Spectra | |
267 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
267 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
268 |
|
268 | |||
269 | data_cspc = None |
|
269 | data_cspc = None | |
270 | if self.dataOut.data_cspc is not None: |
|
270 | if self.dataOut.data_cspc is not None: | |
271 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
271 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
272 |
|
272 | |||
273 | data_dc = None |
|
273 | data_dc = None | |
274 | if self.dataOut.data_dc is not None: |
|
274 | if self.dataOut.data_dc is not None: | |
275 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
275 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
276 |
|
276 | |||
277 | self.dataOut.data_spc = data_spc |
|
277 | self.dataOut.data_spc = data_spc | |
278 | self.dataOut.data_cspc = data_cspc |
|
278 | self.dataOut.data_cspc = data_cspc | |
279 | self.dataOut.data_dc = data_dc |
|
279 | self.dataOut.data_dc = data_dc | |
280 |
|
280 | |||
281 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
281 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
282 |
|
282 | |||
283 | return 1 |
|
283 | return 1 | |
284 |
|
284 | |||
285 |
|
285 | |||
286 | class filterByHeights(Operation): |
|
286 | class filterByHeights(Operation): | |
287 |
|
287 | |||
288 | def run(self, dataOut, window): |
|
288 | def run(self, dataOut, window): | |
289 |
|
289 | |||
290 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
290 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
291 |
|
291 | |||
292 | if window == None: |
|
292 | if window == None: | |
293 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
293 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
294 |
|
294 | |||
295 | newdelta = deltaHeight * window |
|
295 | newdelta = deltaHeight * window | |
296 | r = dataOut.nHeights % window |
|
296 | r = dataOut.nHeights % window | |
297 | newheights = (dataOut.nHeights-r)/window |
|
297 | newheights = (dataOut.nHeights-r)/window | |
298 |
|
298 | |||
299 | if newheights <= 1: |
|
299 | if newheights <= 1: | |
300 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
300 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |
301 |
|
301 | |||
302 | if dataOut.flagDataAsBlock: |
|
302 | if dataOut.flagDataAsBlock: | |
303 | """ |
|
303 | """ | |
304 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
304 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
305 | """ |
|
305 | """ | |
306 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
306 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] | |
307 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
307 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) | |
308 | buffer = numpy.sum(buffer,3) |
|
308 | buffer = numpy.sum(buffer,3) | |
309 |
|
309 | |||
310 | else: |
|
310 | else: | |
311 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
311 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] | |
312 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
312 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) | |
313 | buffer = numpy.sum(buffer,2) |
|
313 | buffer = numpy.sum(buffer,2) | |
314 |
|
314 | |||
315 | dataOut.data = buffer |
|
315 | dataOut.data = buffer | |
316 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
316 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |
317 | dataOut.windowOfFilter = window |
|
317 | dataOut.windowOfFilter = window | |
318 |
|
318 | |||
319 | return dataOut |
|
319 | return dataOut | |
320 |
|
320 | |||
321 |
|
321 | |||
322 | class setH0(Operation): |
|
322 | class setH0(Operation): | |
323 |
|
323 | |||
324 | def run(self, dataOut, h0, deltaHeight = None): |
|
324 | def run(self, dataOut, h0, deltaHeight = None): | |
325 |
|
325 | |||
326 | if not deltaHeight: |
|
326 | if not deltaHeight: | |
327 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
327 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
328 |
|
328 | |||
329 | nHeights = dataOut.nHeights |
|
329 | nHeights = dataOut.nHeights | |
330 |
|
330 | |||
331 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
331 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |
332 |
|
332 | |||
333 | dataOut.heightList = newHeiRange |
|
333 | dataOut.heightList = newHeiRange | |
334 |
|
334 | |||
335 | return dataOut |
|
335 | return dataOut | |
336 |
|
336 | |||
337 |
|
337 | |||
338 | class deFlip(Operation): |
|
338 | class deFlip(Operation): | |
339 |
|
339 | |||
340 | def run(self, dataOut, channelList = []): |
|
340 | def run(self, dataOut, channelList = []): | |
341 |
|
341 | |||
342 | data = dataOut.data.copy() |
|
342 | data = dataOut.data.copy() | |
343 |
|
343 | |||
344 | if dataOut.flagDataAsBlock: |
|
344 | if dataOut.flagDataAsBlock: | |
345 | flip = self.flip |
|
345 | flip = self.flip | |
346 | profileList = list(range(dataOut.nProfiles)) |
|
346 | profileList = list(range(dataOut.nProfiles)) | |
347 |
|
347 | |||
348 | if not channelList: |
|
348 | if not channelList: | |
349 | for thisProfile in profileList: |
|
349 | for thisProfile in profileList: | |
350 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
350 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |
351 | flip *= -1.0 |
|
351 | flip *= -1.0 | |
352 | else: |
|
352 | else: | |
353 | for thisChannel in channelList: |
|
353 | for thisChannel in channelList: | |
354 | if thisChannel not in dataOut.channelList: |
|
354 | if thisChannel not in dataOut.channelList: | |
355 | continue |
|
355 | continue | |
356 |
|
356 | |||
357 | for thisProfile in profileList: |
|
357 | for thisProfile in profileList: | |
358 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
358 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |
359 | flip *= -1.0 |
|
359 | flip *= -1.0 | |
360 |
|
360 | |||
361 | self.flip = flip |
|
361 | self.flip = flip | |
362 |
|
362 | |||
363 | else: |
|
363 | else: | |
364 | if not channelList: |
|
364 | if not channelList: | |
365 | data[:,:] = data[:,:]*self.flip |
|
365 | data[:,:] = data[:,:]*self.flip | |
366 | else: |
|
366 | else: | |
367 | for thisChannel in channelList: |
|
367 | for thisChannel in channelList: | |
368 | if thisChannel not in dataOut.channelList: |
|
368 | if thisChannel not in dataOut.channelList: | |
369 | continue |
|
369 | continue | |
370 |
|
370 | |||
371 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
371 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |
372 |
|
372 | |||
373 | self.flip *= -1. |
|
373 | self.flip *= -1. | |
374 |
|
374 | |||
375 | dataOut.data = data |
|
375 | dataOut.data = data | |
376 |
|
376 | |||
377 | return dataOut |
|
377 | return dataOut | |
378 |
|
378 | |||
379 |
|
379 | |||
380 | class setAttribute(Operation): |
|
380 | class setAttribute(Operation): | |
381 | ''' |
|
381 | ''' | |
382 | Set an arbitrary attribute(s) to dataOut |
|
382 | Set an arbitrary attribute(s) to dataOut | |
383 | ''' |
|
383 | ''' | |
384 |
|
384 | |||
385 | def __init__(self): |
|
385 | def __init__(self): | |
386 |
|
386 | |||
387 | Operation.__init__(self) |
|
387 | Operation.__init__(self) | |
388 | self._ready = False |
|
388 | self._ready = False | |
389 |
|
389 | |||
390 | def run(self, dataOut, **kwargs): |
|
390 | def run(self, dataOut, **kwargs): | |
391 |
|
391 | |||
392 | for key, value in kwargs.items(): |
|
392 | for key, value in kwargs.items(): | |
393 | setattr(dataOut, key, value) |
|
393 | setattr(dataOut, key, value) | |
394 |
|
394 | |||
395 | return dataOut |
|
395 | return dataOut | |
396 |
|
396 | |||
397 |
|
397 | |||
398 | @MPDecorator |
|
398 | @MPDecorator | |
399 | class printAttribute(Operation): |
|
399 | class printAttribute(Operation): | |
400 | ''' |
|
400 | ''' | |
401 | Print an arbitrary attribute of dataOut |
|
401 | Print an arbitrary attribute of dataOut | |
402 | ''' |
|
402 | ''' | |
403 |
|
403 | |||
404 | def __init__(self): |
|
404 | def __init__(self): | |
405 |
|
405 | |||
406 | Operation.__init__(self) |
|
406 | Operation.__init__(self) | |
407 |
|
407 | |||
408 | def run(self, dataOut, attributes): |
|
408 | def run(self, dataOut, attributes): | |
409 |
|
409 | |||
410 | if isinstance(attributes, str): |
|
410 | if isinstance(attributes, str): | |
411 | attributes = [attributes] |
|
411 | attributes = [attributes] | |
412 | for attr in attributes: |
|
412 | for attr in attributes: | |
413 | if hasattr(dataOut, attr): |
|
413 | if hasattr(dataOut, attr): | |
414 | log.log(getattr(dataOut, attr), attr) |
|
414 | log.log(getattr(dataOut, attr), attr) | |
415 |
|
415 | |||
416 |
|
416 | |||
417 | class interpolateHeights(Operation): |
|
417 | class interpolateHeights(Operation): | |
418 |
|
418 | |||
419 | def run(self, dataOut, topLim, botLim): |
|
419 | def run(self, dataOut, topLim, botLim): | |
420 | #69 al 72 para julia |
|
420 | #69 al 72 para julia | |
421 | #82-84 para meteoros |
|
421 | #82-84 para meteoros | |
422 | if len(numpy.shape(dataOut.data))==2: |
|
422 | if len(numpy.shape(dataOut.data))==2: | |
423 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
423 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 | |
424 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
424 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |
425 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
425 | #dataOut.data[:,botLim:limSup+1] = sampInterp | |
426 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
426 | dataOut.data[:,botLim:topLim+1] = sampInterp | |
427 | else: |
|
427 | else: | |
428 | nHeights = dataOut.data.shape[2] |
|
428 | nHeights = dataOut.data.shape[2] | |
429 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
429 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |
430 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
430 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] | |
431 | f = interpolate.interp1d(x, y, axis = 2) |
|
431 | f = interpolate.interp1d(x, y, axis = 2) | |
432 | xnew = numpy.arange(botLim,topLim+1) |
|
432 | xnew = numpy.arange(botLim,topLim+1) | |
433 | ynew = f(xnew) |
|
433 | ynew = f(xnew) | |
434 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
434 | dataOut.data[:,:,botLim:topLim+1] = ynew | |
435 |
|
435 | |||
436 | return dataOut |
|
436 | return dataOut | |
437 |
|
437 | |||
438 |
|
438 | |||
439 | class CohInt(Operation): |
|
439 | class CohInt(Operation): | |
440 |
|
440 | |||
441 | isConfig = False |
|
441 | isConfig = False | |
442 | __profIndex = 0 |
|
442 | __profIndex = 0 | |
443 | __byTime = False |
|
443 | __byTime = False | |
444 | __initime = None |
|
444 | __initime = None | |
445 | __lastdatatime = None |
|
445 | __lastdatatime = None | |
446 | __integrationtime = None |
|
446 | __integrationtime = None | |
447 | __buffer = None |
|
447 | __buffer = None | |
448 | __bufferStride = [] |
|
448 | __bufferStride = [] | |
449 | __dataReady = False |
|
449 | __dataReady = False | |
450 | __profIndexStride = 0 |
|
450 | __profIndexStride = 0 | |
451 | __dataToPutStride = False |
|
451 | __dataToPutStride = False | |
452 | n = None |
|
452 | n = None | |
453 |
|
453 | |||
454 | def __init__(self, **kwargs): |
|
454 | def __init__(self, **kwargs): | |
455 |
|
455 | |||
456 | Operation.__init__(self, **kwargs) |
|
456 | Operation.__init__(self, **kwargs) | |
457 |
|
457 | |||
458 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
458 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |
459 | """ |
|
459 | """ | |
460 | Set the parameters of the integration class. |
|
460 | Set the parameters of the integration class. | |
461 |
|
461 | |||
462 | Inputs: |
|
462 | Inputs: | |
463 |
|
463 | |||
464 | n : Number of coherent integrations |
|
464 | n : Number of coherent integrations | |
465 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
465 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
466 | overlapping : |
|
466 | overlapping : | |
467 | """ |
|
467 | """ | |
468 |
|
468 | |||
469 | self.__initime = None |
|
469 | self.__initime = None | |
470 | self.__lastdatatime = 0 |
|
470 | self.__lastdatatime = 0 | |
471 | self.__buffer = None |
|
471 | self.__buffer = None | |
472 | self.__dataReady = False |
|
472 | self.__dataReady = False | |
473 | self.byblock = byblock |
|
473 | self.byblock = byblock | |
474 | self.stride = stride |
|
474 | self.stride = stride | |
475 |
|
475 | |||
476 | if n == None and timeInterval == None: |
|
476 | if n == None and timeInterval == None: | |
477 | raise ValueError("n or timeInterval should be specified ...") |
|
477 | raise ValueError("n or timeInterval should be specified ...") | |
478 |
|
478 | |||
479 | if n != None: |
|
479 | if n != None: | |
480 | self.n = n |
|
480 | self.n = n | |
481 | self.__byTime = False |
|
481 | self.__byTime = False | |
482 | else: |
|
482 | else: | |
483 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
483 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
484 | self.n = 9999 |
|
484 | self.n = 9999 | |
485 | self.__byTime = True |
|
485 | self.__byTime = True | |
486 |
|
486 | |||
487 | if overlapping: |
|
487 | if overlapping: | |
488 | self.__withOverlapping = True |
|
488 | self.__withOverlapping = True | |
489 | self.__buffer = None |
|
489 | self.__buffer = None | |
490 | else: |
|
490 | else: | |
491 | self.__withOverlapping = False |
|
491 | self.__withOverlapping = False | |
492 | self.__buffer = 0 |
|
492 | self.__buffer = 0 | |
493 |
|
493 | |||
494 | self.__profIndex = 0 |
|
494 | self.__profIndex = 0 | |
495 |
|
495 | |||
496 | def putData(self, data): |
|
496 | def putData(self, data): | |
497 |
|
497 | |||
498 | """ |
|
498 | """ | |
499 | Add a profile to the __buffer and increase in one the __profileIndex |
|
499 | Add a profile to the __buffer and increase in one the __profileIndex | |
500 |
|
500 | |||
501 | """ |
|
501 | """ | |
502 |
|
502 | |||
503 | if not self.__withOverlapping: |
|
503 | if not self.__withOverlapping: | |
504 | self.__buffer += data.copy() |
|
504 | self.__buffer += data.copy() | |
505 | self.__profIndex += 1 |
|
505 | self.__profIndex += 1 | |
506 | return |
|
506 | return | |
507 |
|
507 | |||
508 | #Overlapping data |
|
508 | #Overlapping data | |
509 | nChannels, nHeis = data.shape |
|
509 | nChannels, nHeis = data.shape | |
510 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
510 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
511 |
|
511 | |||
512 | #If the buffer is empty then it takes the data value |
|
512 | #If the buffer is empty then it takes the data value | |
513 | if self.__buffer is None: |
|
513 | if self.__buffer is None: | |
514 | self.__buffer = data |
|
514 | self.__buffer = data | |
515 | self.__profIndex += 1 |
|
515 | self.__profIndex += 1 | |
516 | return |
|
516 | return | |
517 |
|
517 | |||
518 | #If the buffer length is lower than n then stakcing the data value |
|
518 | #If the buffer length is lower than n then stakcing the data value | |
519 | if self.__profIndex < self.n: |
|
519 | if self.__profIndex < self.n: | |
520 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
520 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
521 | self.__profIndex += 1 |
|
521 | self.__profIndex += 1 | |
522 | return |
|
522 | return | |
523 |
|
523 | |||
524 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
524 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
525 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
525 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
526 | self.__buffer[self.n-1] = data |
|
526 | self.__buffer[self.n-1] = data | |
527 | self.__profIndex = self.n |
|
527 | self.__profIndex = self.n | |
528 | return |
|
528 | return | |
529 |
|
529 | |||
530 |
|
530 | |||
531 | def pushData(self): |
|
531 | def pushData(self): | |
532 | """ |
|
532 | """ | |
533 | Return the sum of the last profiles and the profiles used in the sum. |
|
533 | Return the sum of the last profiles and the profiles used in the sum. | |
534 |
|
534 | |||
535 | Affected: |
|
535 | Affected: | |
536 |
|
536 | |||
537 | self.__profileIndex |
|
537 | self.__profileIndex | |
538 |
|
538 | |||
539 | """ |
|
539 | """ | |
540 |
|
540 | |||
541 | if not self.__withOverlapping: |
|
541 | if not self.__withOverlapping: | |
542 | data = self.__buffer |
|
542 | data = self.__buffer | |
543 | n = self.__profIndex |
|
543 | n = self.__profIndex | |
544 |
|
544 | |||
545 | self.__buffer = 0 |
|
545 | self.__buffer = 0 | |
546 | self.__profIndex = 0 |
|
546 | self.__profIndex = 0 | |
547 |
|
547 | |||
548 | return data, n |
|
548 | return data, n | |
549 |
|
549 | |||
550 | #Integration with Overlapping |
|
550 | #Integration with Overlapping | |
551 | data = numpy.sum(self.__buffer, axis=0) |
|
551 | data = numpy.sum(self.__buffer, axis=0) | |
552 | # print data |
|
552 | # print data | |
553 | # raise |
|
553 | # raise | |
554 | n = self.__profIndex |
|
554 | n = self.__profIndex | |
555 |
|
555 | |||
556 | return data, n |
|
556 | return data, n | |
557 |
|
557 | |||
558 | def byProfiles(self, data): |
|
558 | def byProfiles(self, data): | |
559 |
|
559 | |||
560 | self.__dataReady = False |
|
560 | self.__dataReady = False | |
561 | avgdata = None |
|
561 | avgdata = None | |
562 | # n = None |
|
562 | # n = None | |
563 | # print data |
|
563 | # print data | |
564 | # raise |
|
564 | # raise | |
565 | self.putData(data) |
|
565 | self.putData(data) | |
566 |
|
566 | |||
567 | if self.__profIndex == self.n: |
|
567 | if self.__profIndex == self.n: | |
568 | avgdata, n = self.pushData() |
|
568 | avgdata, n = self.pushData() | |
569 | self.__dataReady = True |
|
569 | self.__dataReady = True | |
570 |
|
570 | |||
571 | return avgdata |
|
571 | return avgdata | |
572 |
|
572 | |||
573 | def byTime(self, data, datatime): |
|
573 | def byTime(self, data, datatime): | |
574 |
|
574 | |||
575 | self.__dataReady = False |
|
575 | self.__dataReady = False | |
576 | avgdata = None |
|
576 | avgdata = None | |
577 | n = None |
|
577 | n = None | |
578 |
|
578 | |||
579 | self.putData(data) |
|
579 | self.putData(data) | |
580 |
|
580 | |||
581 | if (datatime - self.__initime) >= self.__integrationtime: |
|
581 | if (datatime - self.__initime) >= self.__integrationtime: | |
582 | avgdata, n = self.pushData() |
|
582 | avgdata, n = self.pushData() | |
583 | self.n = n |
|
583 | self.n = n | |
584 | self.__dataReady = True |
|
584 | self.__dataReady = True | |
585 |
|
585 | |||
586 | return avgdata |
|
586 | return avgdata | |
587 |
|
587 | |||
588 | def integrateByStride(self, data, datatime): |
|
588 | def integrateByStride(self, data, datatime): | |
589 | # print data |
|
589 | # print data | |
590 | if self.__profIndex == 0: |
|
590 | if self.__profIndex == 0: | |
591 | self.__buffer = [[data.copy(), datatime]] |
|
591 | self.__buffer = [[data.copy(), datatime]] | |
592 | else: |
|
592 | else: | |
593 | self.__buffer.append([data.copy(),datatime]) |
|
593 | self.__buffer.append([data.copy(),datatime]) | |
594 | self.__profIndex += 1 |
|
594 | self.__profIndex += 1 | |
595 | self.__dataReady = False |
|
595 | self.__dataReady = False | |
596 |
|
596 | |||
597 | if self.__profIndex == self.n * self.stride : |
|
597 | if self.__profIndex == self.n * self.stride : | |
598 | self.__dataToPutStride = True |
|
598 | self.__dataToPutStride = True | |
599 | self.__profIndexStride = 0 |
|
599 | self.__profIndexStride = 0 | |
600 | self.__profIndex = 0 |
|
600 | self.__profIndex = 0 | |
601 | self.__bufferStride = [] |
|
601 | self.__bufferStride = [] | |
602 | for i in range(self.stride): |
|
602 | for i in range(self.stride): | |
603 | current = self.__buffer[i::self.stride] |
|
603 | current = self.__buffer[i::self.stride] | |
604 | data = numpy.sum([t[0] for t in current], axis=0) |
|
604 | data = numpy.sum([t[0] for t in current], axis=0) | |
605 | avgdatatime = numpy.average([t[1] for t in current]) |
|
605 | avgdatatime = numpy.average([t[1] for t in current]) | |
606 | # print data |
|
606 | # print data | |
607 | self.__bufferStride.append((data, avgdatatime)) |
|
607 | self.__bufferStride.append((data, avgdatatime)) | |
608 |
|
608 | |||
609 | if self.__dataToPutStride: |
|
609 | if self.__dataToPutStride: | |
610 | self.__dataReady = True |
|
610 | self.__dataReady = True | |
611 | self.__profIndexStride += 1 |
|
611 | self.__profIndexStride += 1 | |
612 | if self.__profIndexStride == self.stride: |
|
612 | if self.__profIndexStride == self.stride: | |
613 | self.__dataToPutStride = False |
|
613 | self.__dataToPutStride = False | |
614 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
614 | # print self.__bufferStride[self.__profIndexStride - 1] | |
615 | # raise |
|
615 | # raise | |
616 | return self.__bufferStride[self.__profIndexStride - 1] |
|
616 | return self.__bufferStride[self.__profIndexStride - 1] | |
617 |
|
617 | |||
618 |
|
618 | |||
619 | return None, None |
|
619 | return None, None | |
620 |
|
620 | |||
621 | def integrate(self, data, datatime=None): |
|
621 | def integrate(self, data, datatime=None): | |
622 |
|
622 | |||
623 | if self.__initime == None: |
|
623 | if self.__initime == None: | |
624 | self.__initime = datatime |
|
624 | self.__initime = datatime | |
625 |
|
625 | |||
626 | if self.__byTime: |
|
626 | if self.__byTime: | |
627 | avgdata = self.byTime(data, datatime) |
|
627 | avgdata = self.byTime(data, datatime) | |
628 | else: |
|
628 | else: | |
629 | avgdata = self.byProfiles(data) |
|
629 | avgdata = self.byProfiles(data) | |
630 |
|
630 | |||
631 |
|
631 | |||
632 | self.__lastdatatime = datatime |
|
632 | self.__lastdatatime = datatime | |
633 |
|
633 | |||
634 | if avgdata is None: |
|
634 | if avgdata is None: | |
635 | return None, None |
|
635 | return None, None | |
636 |
|
636 | |||
637 | avgdatatime = self.__initime |
|
637 | avgdatatime = self.__initime | |
638 |
|
638 | |||
639 | deltatime = datatime - self.__lastdatatime |
|
639 | deltatime = datatime - self.__lastdatatime | |
640 |
|
640 | |||
641 | if not self.__withOverlapping: |
|
641 | if not self.__withOverlapping: | |
642 | self.__initime = datatime |
|
642 | self.__initime = datatime | |
643 | else: |
|
643 | else: | |
644 | self.__initime += deltatime |
|
644 | self.__initime += deltatime | |
645 |
|
645 | |||
646 | return avgdata, avgdatatime |
|
646 | return avgdata, avgdatatime | |
647 |
|
647 | |||
648 | def integrateByBlock(self, dataOut): |
|
648 | def integrateByBlock(self, dataOut): | |
649 |
|
649 | |||
650 | times = int(dataOut.data.shape[1]/self.n) |
|
650 | times = int(dataOut.data.shape[1]/self.n) | |
651 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
651 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |
652 |
|
652 | |||
653 | id_min = 0 |
|
653 | id_min = 0 | |
654 | id_max = self.n |
|
654 | id_max = self.n | |
655 |
|
655 | |||
656 | for i in range(times): |
|
656 | for i in range(times): | |
657 | junk = dataOut.data[:,id_min:id_max,:] |
|
657 | junk = dataOut.data[:,id_min:id_max,:] | |
658 | avgdata[:,i,:] = junk.sum(axis=1) |
|
658 | avgdata[:,i,:] = junk.sum(axis=1) | |
659 | id_min += self.n |
|
659 | id_min += self.n | |
660 | id_max += self.n |
|
660 | id_max += self.n | |
661 |
|
661 | |||
662 | timeInterval = dataOut.ippSeconds*self.n |
|
662 | timeInterval = dataOut.ippSeconds*self.n | |
663 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
663 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |
664 | self.__dataReady = True |
|
664 | self.__dataReady = True | |
665 | return avgdata, avgdatatime |
|
665 | return avgdata, avgdatatime | |
666 |
|
666 | |||
667 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
667 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |
668 |
|
668 | |||
669 | if not self.isConfig: |
|
669 | if not self.isConfig: | |
670 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
670 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |
671 | self.isConfig = True |
|
671 | self.isConfig = True | |
672 |
|
672 | |||
673 | if dataOut.flagDataAsBlock: |
|
673 | if dataOut.flagDataAsBlock: | |
674 | """ |
|
674 | """ | |
675 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
675 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
676 | """ |
|
676 | """ | |
677 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
677 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |
678 | dataOut.nProfiles /= self.n |
|
678 | dataOut.nProfiles /= self.n | |
679 | else: |
|
679 | else: | |
680 | if stride is None: |
|
680 | if stride is None: | |
681 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
681 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
682 | else: |
|
682 | else: | |
683 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
683 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |
684 |
|
684 | |||
685 |
|
685 | |||
686 | # dataOut.timeInterval *= n |
|
686 | # dataOut.timeInterval *= n | |
687 | dataOut.flagNoData = True |
|
687 | dataOut.flagNoData = True | |
688 |
|
688 | |||
689 | if self.__dataReady: |
|
689 | if self.__dataReady: | |
690 | dataOut.data = avgdata |
|
690 | dataOut.data = avgdata | |
691 | if not dataOut.flagCohInt: |
|
691 | if not dataOut.flagCohInt: | |
692 | dataOut.nCohInt *= self.n |
|
692 | dataOut.nCohInt *= self.n | |
693 | dataOut.flagCohInt = True |
|
693 | dataOut.flagCohInt = True | |
694 | dataOut.utctime = avgdatatime |
|
694 | dataOut.utctime = avgdatatime | |
695 | # print avgdata, avgdatatime |
|
695 | # print avgdata, avgdatatime | |
696 | # raise |
|
696 | # raise | |
697 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
697 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
698 | dataOut.flagNoData = False |
|
698 | dataOut.flagNoData = False | |
699 | return dataOut |
|
699 | return dataOut | |
700 |
|
700 | |||
701 | class Decoder(Operation): |
|
701 | class Decoder(Operation): | |
702 |
|
702 | |||
703 | isConfig = False |
|
703 | isConfig = False | |
704 | __profIndex = 0 |
|
704 | __profIndex = 0 | |
705 |
|
705 | |||
706 | code = None |
|
706 | code = None | |
707 |
|
707 | |||
708 | nCode = None |
|
708 | nCode = None | |
709 | nBaud = None |
|
709 | nBaud = None | |
710 |
|
710 | |||
711 | def __init__(self, **kwargs): |
|
711 | def __init__(self, **kwargs): | |
712 |
|
712 | |||
713 | Operation.__init__(self, **kwargs) |
|
713 | Operation.__init__(self, **kwargs) | |
714 |
|
714 | |||
715 | self.times = None |
|
715 | self.times = None | |
716 | self.osamp = None |
|
716 | self.osamp = None | |
717 | # self.__setValues = False |
|
717 | # self.__setValues = False | |
718 | self.isConfig = False |
|
718 | self.isConfig = False | |
719 | self.setupReq = False |
|
719 | self.setupReq = False | |
720 | def setup(self, code, osamp, dataOut): |
|
720 | def setup(self, code, osamp, dataOut): | |
721 |
|
721 | |||
722 | self.__profIndex = 0 |
|
722 | self.__profIndex = 0 | |
723 |
|
723 | |||
724 | self.code = code |
|
724 | self.code = code | |
725 |
|
725 | |||
726 | self.nCode = len(code) |
|
726 | self.nCode = len(code) | |
727 | self.nBaud = len(code[0]) |
|
727 | self.nBaud = len(code[0]) | |
728 | if (osamp != None) and (osamp >1): |
|
728 | if (osamp != None) and (osamp >1): | |
729 | self.osamp = osamp |
|
729 | self.osamp = osamp | |
730 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
730 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
731 | self.nBaud = self.nBaud*self.osamp |
|
731 | self.nBaud = self.nBaud*self.osamp | |
732 |
|
732 | |||
733 | self.__nChannels = dataOut.nChannels |
|
733 | self.__nChannels = dataOut.nChannels | |
734 | self.__nProfiles = dataOut.nProfiles |
|
734 | self.__nProfiles = dataOut.nProfiles | |
735 | self.__nHeis = dataOut.nHeights |
|
735 | self.__nHeis = dataOut.nHeights | |
736 |
|
736 | |||
737 | if self.__nHeis < self.nBaud: |
|
737 | if self.__nHeis < self.nBaud: | |
738 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
738 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) | |
739 |
|
739 | |||
740 | #Frequency |
|
740 | #Frequency | |
741 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
741 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
742 |
|
742 | |||
743 | __codeBuffer[:,0:self.nBaud] = self.code |
|
743 | __codeBuffer[:,0:self.nBaud] = self.code | |
744 |
|
744 | |||
745 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
745 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
746 |
|
746 | |||
747 | if dataOut.flagDataAsBlock: |
|
747 | if dataOut.flagDataAsBlock: | |
748 |
|
748 | |||
749 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
749 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
750 |
|
750 | |||
751 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
751 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
752 |
|
752 | |||
753 | else: |
|
753 | else: | |
754 |
|
754 | |||
755 | #Time |
|
755 | #Time | |
756 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
756 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
757 |
|
757 | |||
758 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
758 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
759 |
|
759 | |||
760 | def __convolutionInFreq(self, data): |
|
760 | def __convolutionInFreq(self, data): | |
761 |
|
761 | |||
762 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
762 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
763 |
|
763 | |||
764 | fft_data = numpy.fft.fft(data, axis=1) |
|
764 | fft_data = numpy.fft.fft(data, axis=1) | |
765 |
|
765 | |||
766 | conv = fft_data*fft_code |
|
766 | conv = fft_data*fft_code | |
767 |
|
767 | |||
768 | data = numpy.fft.ifft(conv,axis=1) |
|
768 | data = numpy.fft.ifft(conv,axis=1) | |
769 |
|
769 | |||
770 | return data |
|
770 | return data | |
771 |
|
771 | |||
772 | def __convolutionInFreqOpt(self, data): |
|
772 | def __convolutionInFreqOpt(self, data): | |
773 |
|
773 | |||
774 | raise NotImplementedError |
|
774 | raise NotImplementedError | |
775 |
|
775 | |||
776 | def __convolutionInTime(self, data): |
|
776 | def __convolutionInTime(self, data): | |
777 |
|
777 | |||
778 | code = self.code[self.__profIndex] |
|
778 | code = self.code[self.__profIndex] | |
779 | for i in range(self.__nChannels): |
|
779 | for i in range(self.__nChannels): | |
780 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
780 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |
781 |
|
781 | |||
782 | return self.datadecTime |
|
782 | return self.datadecTime | |
783 |
|
783 | |||
784 | def __convolutionByBlockInTime(self, data): |
|
784 | def __convolutionByBlockInTime(self, data): | |
785 |
|
785 | |||
786 | repetitions = int(self.__nProfiles / self.nCode) |
|
786 | repetitions = int(self.__nProfiles / self.nCode) | |
787 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
787 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
788 | junk = junk.flatten() |
|
788 | junk = junk.flatten() | |
789 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
789 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |
790 | profilesList = range(self.__nProfiles) |
|
790 | profilesList = range(self.__nProfiles) | |
791 |
|
791 | |||
792 | for i in range(self.__nChannels): |
|
792 | for i in range(self.__nChannels): | |
793 | for j in profilesList: |
|
793 | for j in profilesList: | |
794 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
794 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
795 | return self.datadecTime |
|
795 | return self.datadecTime | |
796 |
|
796 | |||
797 | def __convolutionByBlockInFreq(self, data): |
|
797 | def __convolutionByBlockInFreq(self, data): | |
798 |
|
798 | |||
799 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
799 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |
800 |
|
800 | |||
801 |
|
801 | |||
802 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
802 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
803 |
|
803 | |||
804 | fft_data = numpy.fft.fft(data, axis=2) |
|
804 | fft_data = numpy.fft.fft(data, axis=2) | |
805 |
|
805 | |||
806 | conv = fft_data*fft_code |
|
806 | conv = fft_data*fft_code | |
807 |
|
807 | |||
808 | data = numpy.fft.ifft(conv,axis=2) |
|
808 | data = numpy.fft.ifft(conv,axis=2) | |
809 |
|
809 | |||
810 | return data |
|
810 | return data | |
811 |
|
811 | |||
812 |
|
812 | |||
813 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
813 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |
814 |
|
814 | |||
815 | if dataOut.flagDecodeData: |
|
815 | if dataOut.flagDecodeData: | |
816 | print("This data is already decoded, recoding again ...") |
|
816 | print("This data is already decoded, recoding again ...") | |
817 |
|
817 | |||
818 | if not self.isConfig: |
|
818 | if not self.isConfig: | |
819 |
|
819 | |||
820 | if code is None: |
|
820 | if code is None: | |
821 | if dataOut.code is None: |
|
821 | if dataOut.code is None: | |
822 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
822 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) | |
823 |
|
823 | |||
824 | code = dataOut.code |
|
824 | code = dataOut.code | |
825 | else: |
|
825 | else: | |
826 | code = numpy.array(code).reshape(nCode,nBaud) |
|
826 | code = numpy.array(code).reshape(nCode,nBaud) | |
827 | self.setup(code, osamp, dataOut) |
|
827 | self.setup(code, osamp, dataOut) | |
828 |
|
828 | |||
829 | self.isConfig = True |
|
829 | self.isConfig = True | |
830 |
|
830 | |||
831 | if mode == 3: |
|
831 | if mode == 3: | |
832 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
832 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |
833 |
|
833 | |||
834 | if times != None: |
|
834 | if times != None: | |
835 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
835 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |
836 |
|
836 | |||
837 | if self.code is None: |
|
837 | if self.code is None: | |
838 | print("Fail decoding: Code is not defined.") |
|
838 | print("Fail decoding: Code is not defined.") | |
839 | return |
|
839 | return | |
840 |
|
840 | |||
841 | self.__nProfiles = dataOut.nProfiles |
|
841 | self.__nProfiles = dataOut.nProfiles | |
842 | datadec = None |
|
842 | datadec = None | |
843 |
|
843 | |||
844 | if mode == 3: |
|
844 | if mode == 3: | |
845 | mode = 0 |
|
845 | mode = 0 | |
846 |
|
846 | |||
847 | if dataOut.flagDataAsBlock: |
|
847 | if dataOut.flagDataAsBlock: | |
848 | """ |
|
848 | """ | |
849 | Decoding when data have been read as block, |
|
849 | Decoding when data have been read as block, | |
850 | """ |
|
850 | """ | |
851 |
|
851 | |||
852 | if mode == 0: |
|
852 | if mode == 0: | |
853 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
853 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |
854 | if mode == 1: |
|
854 | if mode == 1: | |
855 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
855 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |
856 | else: |
|
856 | else: | |
857 | """ |
|
857 | """ | |
858 | Decoding when data have been read profile by profile |
|
858 | Decoding when data have been read profile by profile | |
859 | """ |
|
859 | """ | |
860 | if mode == 0: |
|
860 | if mode == 0: | |
861 | datadec = self.__convolutionInTime(dataOut.data) |
|
861 | datadec = self.__convolutionInTime(dataOut.data) | |
862 |
|
862 | |||
863 | if mode == 1: |
|
863 | if mode == 1: | |
864 | datadec = self.__convolutionInFreq(dataOut.data) |
|
864 | datadec = self.__convolutionInFreq(dataOut.data) | |
865 |
|
865 | |||
866 | if mode == 2: |
|
866 | if mode == 2: | |
867 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
867 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |
868 |
|
868 | |||
869 | if datadec is None: |
|
869 | if datadec is None: | |
870 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
870 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) | |
871 |
|
871 | |||
872 | dataOut.code = self.code |
|
872 | dataOut.code = self.code | |
873 | dataOut.nCode = self.nCode |
|
873 | dataOut.nCode = self.nCode | |
874 | dataOut.nBaud = self.nBaud |
|
874 | dataOut.nBaud = self.nBaud | |
875 |
|
875 | |||
876 | dataOut.data = datadec |
|
876 | dataOut.data = datadec | |
877 |
|
877 | |||
878 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
878 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |
879 |
|
879 | |||
880 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
880 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |
881 |
|
881 | |||
882 | if self.__profIndex == self.nCode-1: |
|
882 | if self.__profIndex == self.nCode-1: | |
883 | self.__profIndex = 0 |
|
883 | self.__profIndex = 0 | |
884 | return dataOut |
|
884 | return dataOut | |
885 |
|
885 | |||
886 | self.__profIndex += 1 |
|
886 | self.__profIndex += 1 | |
887 |
|
887 | |||
888 | return dataOut |
|
888 | return dataOut | |
889 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
889 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
890 |
|
890 | |||
891 |
|
891 | |||
892 | class ProfileConcat(Operation): |
|
892 | class ProfileConcat(Operation): | |
893 |
|
893 | |||
894 | isConfig = False |
|
894 | isConfig = False | |
895 | buffer = None |
|
895 | buffer = None | |
896 |
|
896 | |||
897 | def __init__(self, **kwargs): |
|
897 | def __init__(self, **kwargs): | |
898 |
|
898 | |||
899 | Operation.__init__(self, **kwargs) |
|
899 | Operation.__init__(self, **kwargs) | |
900 | self.profileIndex = 0 |
|
900 | self.profileIndex = 0 | |
901 |
|
901 | |||
902 | def reset(self): |
|
902 | def reset(self): | |
903 | self.buffer = numpy.zeros_like(self.buffer) |
|
903 | self.buffer = numpy.zeros_like(self.buffer) | |
904 | self.start_index = 0 |
|
904 | self.start_index = 0 | |
905 | self.times = 1 |
|
905 | self.times = 1 | |
906 |
|
906 | |||
907 | def setup(self, data, m, n=1): |
|
907 | def setup(self, data, m, n=1): | |
908 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
908 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |
909 | self.nHeights = data.shape[1]#.nHeights |
|
909 | self.nHeights = data.shape[1]#.nHeights | |
910 | self.start_index = 0 |
|
910 | self.start_index = 0 | |
911 | self.times = 1 |
|
911 | self.times = 1 | |
912 |
|
912 | |||
913 | def concat(self, data): |
|
913 | def concat(self, data): | |
914 |
|
914 | |||
915 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
915 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |
916 | self.start_index = self.start_index + self.nHeights |
|
916 | self.start_index = self.start_index + self.nHeights | |
917 |
|
917 | |||
918 | def run(self, dataOut, m): |
|
918 | def run(self, dataOut, m): | |
919 | dataOut.flagNoData = True |
|
919 | dataOut.flagNoData = True | |
920 |
|
920 | |||
921 | if not self.isConfig: |
|
921 | if not self.isConfig: | |
922 | self.setup(dataOut.data, m, 1) |
|
922 | self.setup(dataOut.data, m, 1) | |
923 | self.isConfig = True |
|
923 | self.isConfig = True | |
924 |
|
924 | |||
925 | if dataOut.flagDataAsBlock: |
|
925 | if dataOut.flagDataAsBlock: | |
926 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
926 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
927 |
|
927 | |||
928 | else: |
|
928 | else: | |
929 | self.concat(dataOut.data) |
|
929 | self.concat(dataOut.data) | |
930 | self.times += 1 |
|
930 | self.times += 1 | |
931 | if self.times > m: |
|
931 | if self.times > m: | |
932 | dataOut.data = self.buffer |
|
932 | dataOut.data = self.buffer | |
933 | self.reset() |
|
933 | self.reset() | |
934 | dataOut.flagNoData = False |
|
934 | dataOut.flagNoData = False | |
935 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
935 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
936 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
936 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
937 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
937 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |
938 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
938 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
939 | dataOut.ippSeconds *= m |
|
939 | dataOut.ippSeconds *= m | |
940 | return dataOut |
|
940 | return dataOut | |
941 |
|
941 | |||
942 | class ProfileSelector(Operation): |
|
942 | class ProfileSelector(Operation): | |
943 |
|
943 | |||
944 | profileIndex = None |
|
944 | profileIndex = None | |
945 | # Tamanho total de los perfiles |
|
945 | # Tamanho total de los perfiles | |
946 | nProfiles = None |
|
946 | nProfiles = None | |
947 |
|
947 | |||
948 | def __init__(self, **kwargs): |
|
948 | def __init__(self, **kwargs): | |
949 |
|
949 | |||
950 | Operation.__init__(self, **kwargs) |
|
950 | Operation.__init__(self, **kwargs) | |
951 | self.profileIndex = 0 |
|
951 | self.profileIndex = 0 | |
952 |
|
952 | |||
953 | def incProfileIndex(self): |
|
953 | def incProfileIndex(self): | |
954 |
|
954 | |||
955 | self.profileIndex += 1 |
|
955 | self.profileIndex += 1 | |
956 |
|
956 | |||
957 | if self.profileIndex >= self.nProfiles: |
|
957 | if self.profileIndex >= self.nProfiles: | |
958 | self.profileIndex = 0 |
|
958 | self.profileIndex = 0 | |
959 |
|
959 | |||
960 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
960 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |
961 |
|
961 | |||
962 | if profileIndex < minIndex: |
|
962 | if profileIndex < minIndex: | |
963 | return False |
|
963 | return False | |
964 |
|
964 | |||
965 | if profileIndex > maxIndex: |
|
965 | if profileIndex > maxIndex: | |
966 | return False |
|
966 | return False | |
967 |
|
967 | |||
968 | return True |
|
968 | return True | |
969 |
|
969 | |||
970 | def isThisProfileInList(self, profileIndex, profileList): |
|
970 | def isThisProfileInList(self, profileIndex, profileList): | |
971 |
|
971 | |||
972 | if profileIndex not in profileList: |
|
972 | if profileIndex not in profileList: | |
973 | return False |
|
973 | return False | |
974 |
|
974 | |||
975 | return True |
|
975 | return True | |
976 |
|
976 | |||
977 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
977 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |
978 |
|
978 | |||
979 | """ |
|
979 | """ | |
980 | ProfileSelector: |
|
980 | ProfileSelector: | |
981 |
|
981 | |||
982 | Inputs: |
|
982 | Inputs: | |
983 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
983 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |
984 |
|
984 | |||
985 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
985 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |
986 |
|
986 | |||
987 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
987 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |
988 |
|
988 | |||
989 | """ |
|
989 | """ | |
990 |
|
990 | |||
991 | if rangeList is not None: |
|
991 | if rangeList is not None: | |
992 | if type(rangeList[0]) not in (tuple, list): |
|
992 | if type(rangeList[0]) not in (tuple, list): | |
993 | rangeList = [rangeList] |
|
993 | rangeList = [rangeList] | |
994 |
|
994 | |||
995 | dataOut.flagNoData = True |
|
995 | dataOut.flagNoData = True | |
996 |
|
996 | |||
997 | if dataOut.flagDataAsBlock: |
|
997 | if dataOut.flagDataAsBlock: | |
998 | """ |
|
998 | """ | |
999 | data dimension = [nChannels, nProfiles, nHeis] |
|
999 | data dimension = [nChannels, nProfiles, nHeis] | |
1000 | """ |
|
1000 | """ | |
1001 | if profileList != None: |
|
1001 | if profileList != None: | |
1002 | dataOut.data = dataOut.data[:,profileList,:] |
|
1002 | dataOut.data = dataOut.data[:,profileList,:] | |
1003 |
|
1003 | |||
1004 | if profileRangeList != None: |
|
1004 | if profileRangeList != None: | |
1005 | minIndex = profileRangeList[0] |
|
1005 | minIndex = profileRangeList[0] | |
1006 | maxIndex = profileRangeList[1] |
|
1006 | maxIndex = profileRangeList[1] | |
1007 | profileList = list(range(minIndex, maxIndex+1)) |
|
1007 | profileList = list(range(minIndex, maxIndex+1)) | |
1008 |
|
1008 | |||
1009 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
1009 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |
1010 |
|
1010 | |||
1011 | if rangeList != None: |
|
1011 | if rangeList != None: | |
1012 |
|
1012 | |||
1013 | profileList = [] |
|
1013 | profileList = [] | |
1014 |
|
1014 | |||
1015 | for thisRange in rangeList: |
|
1015 | for thisRange in rangeList: | |
1016 | minIndex = thisRange[0] |
|
1016 | minIndex = thisRange[0] | |
1017 | maxIndex = thisRange[1] |
|
1017 | maxIndex = thisRange[1] | |
1018 |
|
1018 | |||
1019 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
1019 | profileList.extend(list(range(minIndex, maxIndex+1))) | |
1020 |
|
1020 | |||
1021 | dataOut.data = dataOut.data[:,profileList,:] |
|
1021 | dataOut.data = dataOut.data[:,profileList,:] | |
1022 |
|
1022 | |||
1023 | dataOut.nProfiles = len(profileList) |
|
1023 | dataOut.nProfiles = len(profileList) | |
1024 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1024 | dataOut.profileIndex = dataOut.nProfiles - 1 | |
1025 | dataOut.flagNoData = False |
|
1025 | dataOut.flagNoData = False | |
1026 |
|
1026 | |||
1027 | return dataOut |
|
1027 | return dataOut | |
1028 |
|
1028 | |||
1029 | """ |
|
1029 | """ | |
1030 | data dimension = [nChannels, nHeis] |
|
1030 | data dimension = [nChannels, nHeis] | |
1031 | """ |
|
1031 | """ | |
1032 |
|
1032 | |||
1033 | if profileList != None: |
|
1033 | if profileList != None: | |
1034 |
|
1034 | |||
1035 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1035 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |
1036 |
|
1036 | |||
1037 | self.nProfiles = len(profileList) |
|
1037 | self.nProfiles = len(profileList) | |
1038 | dataOut.nProfiles = self.nProfiles |
|
1038 | dataOut.nProfiles = self.nProfiles | |
1039 | dataOut.profileIndex = self.profileIndex |
|
1039 | dataOut.profileIndex = self.profileIndex | |
1040 | dataOut.flagNoData = False |
|
1040 | dataOut.flagNoData = False | |
1041 |
|
1041 | |||
1042 | self.incProfileIndex() |
|
1042 | self.incProfileIndex() | |
1043 | return dataOut |
|
1043 | return dataOut | |
1044 |
|
1044 | |||
1045 | if profileRangeList != None: |
|
1045 | if profileRangeList != None: | |
1046 |
|
1046 | |||
1047 | minIndex = profileRangeList[0] |
|
1047 | minIndex = profileRangeList[0] | |
1048 | maxIndex = profileRangeList[1] |
|
1048 | maxIndex = profileRangeList[1] | |
1049 |
|
1049 | |||
1050 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1050 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1051 |
|
1051 | |||
1052 | self.nProfiles = maxIndex - minIndex + 1 |
|
1052 | self.nProfiles = maxIndex - minIndex + 1 | |
1053 | dataOut.nProfiles = self.nProfiles |
|
1053 | dataOut.nProfiles = self.nProfiles | |
1054 | dataOut.profileIndex = self.profileIndex |
|
1054 | dataOut.profileIndex = self.profileIndex | |
1055 | dataOut.flagNoData = False |
|
1055 | dataOut.flagNoData = False | |
1056 |
|
1056 | |||
1057 | self.incProfileIndex() |
|
1057 | self.incProfileIndex() | |
1058 | return dataOut |
|
1058 | return dataOut | |
1059 |
|
1059 | |||
1060 | if rangeList != None: |
|
1060 | if rangeList != None: | |
1061 |
|
1061 | |||
1062 | nProfiles = 0 |
|
1062 | nProfiles = 0 | |
1063 |
|
1063 | |||
1064 | for thisRange in rangeList: |
|
1064 | for thisRange in rangeList: | |
1065 | minIndex = thisRange[0] |
|
1065 | minIndex = thisRange[0] | |
1066 | maxIndex = thisRange[1] |
|
1066 | maxIndex = thisRange[1] | |
1067 |
|
1067 | |||
1068 | nProfiles += maxIndex - minIndex + 1 |
|
1068 | nProfiles += maxIndex - minIndex + 1 | |
1069 |
|
1069 | |||
1070 | for thisRange in rangeList: |
|
1070 | for thisRange in rangeList: | |
1071 |
|
1071 | |||
1072 | minIndex = thisRange[0] |
|
1072 | minIndex = thisRange[0] | |
1073 | maxIndex = thisRange[1] |
|
1073 | maxIndex = thisRange[1] | |
1074 |
|
1074 | |||
1075 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1075 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1076 |
|
1076 | |||
1077 | self.nProfiles = nProfiles |
|
1077 | self.nProfiles = nProfiles | |
1078 | dataOut.nProfiles = self.nProfiles |
|
1078 | dataOut.nProfiles = self.nProfiles | |
1079 | dataOut.profileIndex = self.profileIndex |
|
1079 | dataOut.profileIndex = self.profileIndex | |
1080 | dataOut.flagNoData = False |
|
1080 | dataOut.flagNoData = False | |
1081 |
|
1081 | |||
1082 | self.incProfileIndex() |
|
1082 | self.incProfileIndex() | |
1083 |
|
1083 | |||
1084 | break |
|
1084 | break | |
1085 |
|
1085 | |||
1086 | return dataOut |
|
1086 | return dataOut | |
1087 |
|
1087 | |||
1088 |
|
1088 | |||
1089 | if beam != None: #beam is only for AMISR data |
|
1089 | if beam != None: #beam is only for AMISR data | |
1090 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1090 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |
1091 | dataOut.flagNoData = False |
|
1091 | dataOut.flagNoData = False | |
1092 | dataOut.profileIndex = self.profileIndex |
|
1092 | dataOut.profileIndex = self.profileIndex | |
1093 |
|
1093 | |||
1094 | self.incProfileIndex() |
|
1094 | self.incProfileIndex() | |
1095 |
|
1095 | |||
1096 | return dataOut |
|
1096 | return dataOut | |
1097 |
|
1097 | |||
1098 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1098 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |
1099 |
|
1099 | |||
1100 |
|
1100 | |||
1101 | class Reshaper(Operation): |
|
1101 | class Reshaper(Operation): | |
1102 |
|
1102 | |||
1103 | def __init__(self, **kwargs): |
|
1103 | def __init__(self, **kwargs): | |
1104 |
|
1104 | |||
1105 | Operation.__init__(self, **kwargs) |
|
1105 | Operation.__init__(self, **kwargs) | |
1106 |
|
1106 | |||
1107 | self.__buffer = None |
|
1107 | self.__buffer = None | |
1108 | self.__nitems = 0 |
|
1108 | self.__nitems = 0 | |
1109 |
|
1109 | |||
1110 | def __appendProfile(self, dataOut, nTxs): |
|
1110 | def __appendProfile(self, dataOut, nTxs): | |
1111 |
|
1111 | |||
1112 | if self.__buffer is None: |
|
1112 | if self.__buffer is None: | |
1113 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1113 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |
1114 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1114 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |
1115 |
|
1115 | |||
1116 | ini = dataOut.nHeights * self.__nitems |
|
1116 | ini = dataOut.nHeights * self.__nitems | |
1117 | end = ini + dataOut.nHeights |
|
1117 | end = ini + dataOut.nHeights | |
1118 |
|
1118 | |||
1119 | self.__buffer[:, ini:end] = dataOut.data |
|
1119 | self.__buffer[:, ini:end] = dataOut.data | |
1120 |
|
1120 | |||
1121 | self.__nitems += 1 |
|
1121 | self.__nitems += 1 | |
1122 |
|
1122 | |||
1123 | return int(self.__nitems*nTxs) |
|
1123 | return int(self.__nitems*nTxs) | |
1124 |
|
1124 | |||
1125 | def __getBuffer(self): |
|
1125 | def __getBuffer(self): | |
1126 |
|
1126 | |||
1127 | if self.__nitems == int(1./self.__nTxs): |
|
1127 | if self.__nitems == int(1./self.__nTxs): | |
1128 |
|
1128 | |||
1129 | self.__nitems = 0 |
|
1129 | self.__nitems = 0 | |
1130 |
|
1130 | |||
1131 | return self.__buffer.copy() |
|
1131 | return self.__buffer.copy() | |
1132 |
|
1132 | |||
1133 | return None |
|
1133 | return None | |
1134 |
|
1134 | |||
1135 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1135 | def __checkInputs(self, dataOut, shape, nTxs): | |
1136 |
|
1136 | |||
1137 | if shape is None and nTxs is None: |
|
1137 | if shape is None and nTxs is None: | |
1138 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1138 | raise ValueError("Reshaper: shape of factor should be defined") | |
1139 |
|
1139 | |||
1140 | if nTxs: |
|
1140 | if nTxs: | |
1141 | if nTxs < 0: |
|
1141 | if nTxs < 0: | |
1142 | raise ValueError("nTxs should be greater than 0") |
|
1142 | raise ValueError("nTxs should be greater than 0") | |
1143 |
|
1143 | |||
1144 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1144 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |
1145 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1145 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) | |
1146 |
|
1146 | |||
1147 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1147 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |
1148 |
|
1148 | |||
1149 | return shape, nTxs |
|
1149 | return shape, nTxs | |
1150 |
|
1150 | |||
1151 | if len(shape) != 2 and len(shape) != 3: |
|
1151 | if len(shape) != 2 and len(shape) != 3: | |
1152 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1152 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |
1153 |
|
1153 | |||
1154 | if len(shape) == 2: |
|
1154 | if len(shape) == 2: | |
1155 | shape_tuple = [dataOut.nChannels] |
|
1155 | shape_tuple = [dataOut.nChannels] | |
1156 | shape_tuple.extend(shape) |
|
1156 | shape_tuple.extend(shape) | |
1157 | else: |
|
1157 | else: | |
1158 | shape_tuple = list(shape) |
|
1158 | shape_tuple = list(shape) | |
1159 |
|
1159 | |||
1160 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1160 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |
1161 |
|
1161 | |||
1162 | return shape_tuple, nTxs |
|
1162 | return shape_tuple, nTxs | |
1163 |
|
1163 | |||
1164 | def run(self, dataOut, shape=None, nTxs=None): |
|
1164 | def run(self, dataOut, shape=None, nTxs=None): | |
1165 |
|
1165 | |||
1166 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1166 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |
1167 |
|
1167 | |||
1168 | dataOut.flagNoData = True |
|
1168 | dataOut.flagNoData = True | |
1169 | profileIndex = None |
|
1169 | profileIndex = None | |
1170 |
|
1170 | |||
1171 | if dataOut.flagDataAsBlock: |
|
1171 | if dataOut.flagDataAsBlock: | |
1172 |
|
1172 | |||
1173 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1173 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |
1174 | dataOut.flagNoData = False |
|
1174 | dataOut.flagNoData = False | |
1175 |
|
1175 | |||
1176 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1176 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |
1177 |
|
1177 | |||
1178 | else: |
|
1178 | else: | |
1179 |
|
1179 | |||
1180 | if self.__nTxs < 1: |
|
1180 | if self.__nTxs < 1: | |
1181 |
|
1181 | |||
1182 | self.__appendProfile(dataOut, self.__nTxs) |
|
1182 | self.__appendProfile(dataOut, self.__nTxs) | |
1183 | new_data = self.__getBuffer() |
|
1183 | new_data = self.__getBuffer() | |
1184 |
|
1184 | |||
1185 | if new_data is not None: |
|
1185 | if new_data is not None: | |
1186 | dataOut.data = new_data |
|
1186 | dataOut.data = new_data | |
1187 | dataOut.flagNoData = False |
|
1187 | dataOut.flagNoData = False | |
1188 |
|
1188 | |||
1189 | profileIndex = dataOut.profileIndex*nTxs |
|
1189 | profileIndex = dataOut.profileIndex*nTxs | |
1190 |
|
1190 | |||
1191 | else: |
|
1191 | else: | |
1192 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1192 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |
1193 |
|
1193 | |||
1194 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1194 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1195 |
|
1195 | |||
1196 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1196 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |
1197 |
|
1197 | |||
1198 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1198 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |
1199 |
|
1199 | |||
1200 | dataOut.profileIndex = profileIndex |
|
1200 | dataOut.profileIndex = profileIndex | |
1201 |
|
1201 | |||
1202 | dataOut.ippSeconds /= self.__nTxs |
|
1202 | dataOut.ippSeconds /= self.__nTxs | |
1203 |
|
1203 | |||
1204 | return dataOut |
|
1204 | return dataOut | |
1205 |
|
1205 | |||
1206 | class SplitProfiles(Operation): |
|
1206 | class SplitProfiles(Operation): | |
1207 |
|
1207 | |||
1208 | def __init__(self, **kwargs): |
|
1208 | def __init__(self, **kwargs): | |
1209 |
|
1209 | |||
1210 | Operation.__init__(self, **kwargs) |
|
1210 | Operation.__init__(self, **kwargs) | |
1211 |
|
1211 | |||
1212 | def run(self, dataOut, n): |
|
1212 | def run(self, dataOut, n): | |
1213 |
|
1213 | |||
1214 | dataOut.flagNoData = True |
|
1214 | dataOut.flagNoData = True | |
1215 | profileIndex = None |
|
1215 | profileIndex = None | |
1216 |
|
1216 | |||
1217 | if dataOut.flagDataAsBlock: |
|
1217 | if dataOut.flagDataAsBlock: | |
1218 |
|
1218 | |||
1219 | #nchannels, nprofiles, nsamples |
|
1219 | #nchannels, nprofiles, nsamples | |
1220 | shape = dataOut.data.shape |
|
1220 | shape = dataOut.data.shape | |
1221 |
|
1221 | |||
1222 | if shape[2] % n != 0: |
|
1222 | if shape[2] % n != 0: | |
1223 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1223 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) | |
1224 |
|
1224 | |||
1225 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1225 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |
1226 |
|
1226 | |||
1227 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1227 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1228 | dataOut.flagNoData = False |
|
1228 | dataOut.flagNoData = False | |
1229 |
|
1229 | |||
1230 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1230 | profileIndex = int(dataOut.nProfiles/n) - 1 | |
1231 |
|
1231 | |||
1232 | else: |
|
1232 | else: | |
1233 |
|
1233 | |||
1234 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1234 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |
1235 |
|
1235 | |||
1236 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1236 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1237 |
|
1237 | |||
1238 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1238 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |
1239 |
|
1239 | |||
1240 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1240 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |
1241 |
|
1241 | |||
1242 | dataOut.profileIndex = profileIndex |
|
1242 | dataOut.profileIndex = profileIndex | |
1243 |
|
1243 | |||
1244 | dataOut.ippSeconds /= n |
|
1244 | dataOut.ippSeconds /= n | |
1245 |
|
1245 | |||
1246 | return dataOut |
|
1246 | return dataOut | |
1247 |
|
1247 | |||
1248 | class CombineProfiles(Operation): |
|
1248 | class CombineProfiles(Operation): | |
1249 | def __init__(self, **kwargs): |
|
1249 | def __init__(self, **kwargs): | |
1250 |
|
1250 | |||
1251 | Operation.__init__(self, **kwargs) |
|
1251 | Operation.__init__(self, **kwargs) | |
1252 |
|
1252 | |||
1253 | self.__remData = None |
|
1253 | self.__remData = None | |
1254 | self.__profileIndex = 0 |
|
1254 | self.__profileIndex = 0 | |
1255 |
|
1255 | |||
1256 | def run(self, dataOut, n): |
|
1256 | def run(self, dataOut, n): | |
1257 |
|
1257 | |||
1258 | dataOut.flagNoData = True |
|
1258 | dataOut.flagNoData = True | |
1259 | profileIndex = None |
|
1259 | profileIndex = None | |
1260 |
|
1260 | |||
1261 | if dataOut.flagDataAsBlock: |
|
1261 | if dataOut.flagDataAsBlock: | |
1262 |
|
1262 | |||
1263 | #nchannels, nprofiles, nsamples |
|
1263 | #nchannels, nprofiles, nsamples | |
1264 | shape = dataOut.data.shape |
|
1264 | shape = dataOut.data.shape | |
1265 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1265 | new_shape = shape[0], shape[1]/n, shape[2]*n | |
1266 |
|
1266 | |||
1267 | if shape[1] % n != 0: |
|
1267 | if shape[1] % n != 0: | |
1268 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1268 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) | |
1269 |
|
1269 | |||
1270 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1270 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1271 | dataOut.flagNoData = False |
|
1271 | dataOut.flagNoData = False | |
1272 |
|
1272 | |||
1273 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1273 | profileIndex = int(dataOut.nProfiles*n) - 1 | |
1274 |
|
1274 | |||
1275 | else: |
|
1275 | else: | |
1276 |
|
1276 | |||
1277 | #nchannels, nsamples |
|
1277 | #nchannels, nsamples | |
1278 | if self.__remData is None: |
|
1278 | if self.__remData is None: | |
1279 | newData = dataOut.data |
|
1279 | newData = dataOut.data | |
1280 | else: |
|
1280 | else: | |
1281 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1281 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |
1282 |
|
1282 | |||
1283 | self.__profileIndex += 1 |
|
1283 | self.__profileIndex += 1 | |
1284 |
|
1284 | |||
1285 | if self.__profileIndex < n: |
|
1285 | if self.__profileIndex < n: | |
1286 | self.__remData = newData |
|
1286 | self.__remData = newData | |
1287 | #continue |
|
1287 | #continue | |
1288 | return |
|
1288 | return | |
1289 |
|
1289 | |||
1290 | self.__profileIndex = 0 |
|
1290 | self.__profileIndex = 0 | |
1291 | self.__remData = None |
|
1291 | self.__remData = None | |
1292 |
|
1292 | |||
1293 | dataOut.data = newData |
|
1293 | dataOut.data = newData | |
1294 | dataOut.flagNoData = False |
|
1294 | dataOut.flagNoData = False | |
1295 |
|
1295 | |||
1296 | profileIndex = dataOut.profileIndex/n |
|
1296 | profileIndex = dataOut.profileIndex/n | |
1297 |
|
1297 | |||
1298 |
|
1298 | |||
1299 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1299 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1300 |
|
1300 | |||
1301 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1301 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |
1302 |
|
1302 | |||
1303 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1303 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1304 |
|
1304 | |||
1305 | dataOut.profileIndex = profileIndex |
|
1305 | dataOut.profileIndex = profileIndex | |
1306 |
|
1306 | |||
1307 | dataOut.ippSeconds *= n |
|
1307 | dataOut.ippSeconds *= n | |
1308 |
|
1308 | |||
1309 | return dataOut |
|
1309 | return dataOut | |
1310 |
|
1310 | |||
1311 | class PulsePairVoltage(Operation): |
|
1311 | class PulsePairVoltage(Operation): | |
1312 | ''' |
|
1312 | ''' | |
1313 | Function PulsePair(Signal Power, Velocity) |
|
1313 | Function PulsePair(Signal Power, Velocity) | |
1314 | The real component of Lag[0] provides Intensity Information |
|
1314 | The real component of Lag[0] provides Intensity Information | |
1315 | The imag component of Lag[1] Phase provides Velocity Information |
|
1315 | The imag component of Lag[1] Phase provides Velocity Information | |
1316 |
|
1316 | |||
1317 | Configuration Parameters: |
|
1317 | Configuration Parameters: | |
1318 | nPRF = Number of Several PRF |
|
1318 | nPRF = Number of Several PRF | |
1319 | theta = Degree Azimuth angel Boundaries |
|
1319 | theta = Degree Azimuth angel Boundaries | |
1320 |
|
1320 | |||
1321 | Input: |
|
1321 | Input: | |
1322 | self.dataOut |
|
1322 | self.dataOut | |
1323 | lag[N] |
|
1323 | lag[N] | |
1324 | Affected: |
|
1324 | Affected: | |
1325 | self.dataOut.spc |
|
1325 | self.dataOut.spc | |
1326 | ''' |
|
1326 | ''' | |
1327 | isConfig = False |
|
1327 | isConfig = False | |
1328 | __profIndex = 0 |
|
1328 | __profIndex = 0 | |
1329 | __initime = None |
|
1329 | __initime = None | |
1330 | __lastdatatime = None |
|
1330 | __lastdatatime = None | |
1331 | __buffer = None |
|
1331 | __buffer = None | |
1332 | noise = None |
|
1332 | noise = None | |
1333 | __dataReady = False |
|
1333 | __dataReady = False | |
1334 | n = None |
|
1334 | n = None | |
1335 | __nch = 0 |
|
1335 | __nch = 0 | |
1336 | __nHeis = 0 |
|
1336 | __nHeis = 0 | |
1337 | removeDC = False |
|
1337 | removeDC = False | |
1338 | ipp = None |
|
1338 | ipp = None | |
1339 | lambda_ = 0 |
|
1339 | lambda_ = 0 | |
1340 |
|
1340 | |||
1341 | def __init__(self,**kwargs): |
|
1341 | def __init__(self,**kwargs): | |
1342 | Operation.__init__(self,**kwargs) |
|
1342 | Operation.__init__(self,**kwargs) | |
1343 |
|
1343 | |||
1344 | def setup(self, dataOut, n = None, removeDC=False): |
|
1344 | def setup(self, dataOut, n = None, removeDC=False): | |
1345 | ''' |
|
1345 | ''' | |
1346 | n= Numero de PRF's de entrada |
|
1346 | n= Numero de PRF's de entrada | |
1347 | ''' |
|
1347 | ''' | |
1348 | self.__initime = None |
|
1348 | self.__initime = None | |
1349 | self.__lastdatatime = 0 |
|
1349 | self.__lastdatatime = 0 | |
1350 | self.__dataReady = False |
|
1350 | self.__dataReady = False | |
1351 | self.__buffer = 0 |
|
1351 | self.__buffer = 0 | |
1352 | self.__profIndex = 0 |
|
1352 | self.__profIndex = 0 | |
1353 | self.noise = None |
|
1353 | self.noise = None | |
1354 | self.__nch = dataOut.nChannels |
|
1354 | self.__nch = dataOut.nChannels | |
1355 | self.__nHeis = dataOut.nHeights |
|
1355 | self.__nHeis = dataOut.nHeights | |
1356 | self.removeDC = removeDC |
|
1356 | self.removeDC = removeDC | |
1357 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1357 | self.lambda_ = 3.0e8/(9345.0e6) | |
1358 | self.ippSec = dataOut.ippSeconds |
|
1358 | self.ippSec = dataOut.ippSeconds | |
1359 | self.nCohInt = dataOut.nCohInt |
|
1359 | self.nCohInt = dataOut.nCohInt | |
1360 |
|
1360 | |||
1361 | if n == None: |
|
1361 | if n == None: | |
1362 | raise ValueError("n should be specified.") |
|
1362 | raise ValueError("n should be specified.") | |
1363 |
|
1363 | |||
1364 | if n != None: |
|
1364 | if n != None: | |
1365 | if n<2: |
|
1365 | if n<2: | |
1366 | raise ValueError("n should be greater than 2") |
|
1366 | raise ValueError("n should be greater than 2") | |
1367 |
|
1367 | |||
1368 | self.n = n |
|
1368 | self.n = n | |
1369 | self.__nProf = n |
|
1369 | self.__nProf = n | |
1370 |
|
1370 | |||
1371 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1371 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
1372 | n, |
|
1372 | n, | |
1373 | dataOut.nHeights), |
|
1373 | dataOut.nHeights), | |
1374 | dtype='complex') |
|
1374 | dtype='complex') | |
1375 |
|
1375 | |||
1376 | def putData(self,data): |
|
1376 | def putData(self,data): | |
1377 | ''' |
|
1377 | ''' | |
1378 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1378 | Add a profile to he __buffer and increase in one the __profiel Index | |
1379 | ''' |
|
1379 | ''' | |
1380 | self.__buffer[:,self.__profIndex,:]= data |
|
1380 | self.__buffer[:,self.__profIndex,:]= data | |
1381 | self.__profIndex += 1 |
|
1381 | self.__profIndex += 1 | |
1382 | return |
|
1382 | return | |
1383 |
|
1383 | |||
1384 | def pushData(self,dataOut): |
|
1384 | def pushData(self,dataOut): | |
1385 | ''' |
|
1385 | ''' | |
1386 | Return the PULSEPAIR and the profiles used in the operation |
|
1386 | Return the PULSEPAIR and the profiles used in the operation | |
1387 | Affected : self.__profileIndex |
|
1387 | Affected : self.__profileIndex | |
1388 | ''' |
|
1388 | ''' | |
1389 | #----------------- Remove DC----------------------------------- |
|
1389 | #----------------- Remove DC----------------------------------- | |
1390 | if self.removeDC==True: |
|
1390 | if self.removeDC==True: | |
1391 | mean = numpy.mean(self.__buffer,1) |
|
1391 | mean = numpy.mean(self.__buffer,1) | |
1392 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1392 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
1393 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1393 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
1394 | self.__buffer = self.__buffer - dc |
|
1394 | self.__buffer = self.__buffer - dc | |
1395 | #------------------Calculo de Potencia ------------------------ |
|
1395 | #------------------Calculo de Potencia ------------------------ | |
1396 | pair0 = self.__buffer*numpy.conj(self.__buffer) |
|
1396 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |
1397 | pair0 = pair0.real |
|
1397 | pair0 = pair0.real | |
1398 | lag_0 = numpy.sum(pair0,1) |
|
1398 | lag_0 = numpy.sum(pair0,1) | |
1399 | #------------------Calculo de Ruido x canal-------------------- |
|
1399 | #------------------Calculo de Ruido x canal-------------------- | |
1400 | self.noise = numpy.zeros(self.__nch) |
|
1400 | self.noise = numpy.zeros(self.__nch) | |
1401 | for i in range(self.__nch): |
|
1401 | for i in range(self.__nch): | |
1402 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1402 | daux = numpy.sort(pair0[i,:,:],axis= None) | |
1403 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) |
|
1403 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |
1404 |
|
1404 | |||
1405 | self.noise = self.noise.reshape(self.__nch,1) |
|
1405 | self.noise = self.noise.reshape(self.__nch,1) | |
1406 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1406 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |
1407 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1407 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |
1408 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1408 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |
1409 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1409 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |
1410 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1410 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |
1411 | #-------------------- Power -------------------------------------------------- |
|
1411 | #-------------------- Power -------------------------------------------------- | |
1412 | data_power = lag_0/(self.n*self.nCohInt) |
|
1412 | data_power = lag_0/(self.n*self.nCohInt) | |
1413 | #------------------ Senal --------------------------------------------------- |
|
1413 | #------------------ Senal --------------------------------------------------- | |
1414 | data_intensity = pair0 - noise_buffer |
|
1414 | data_intensity = pair0 - noise_buffer | |
1415 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1415 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |
1416 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1416 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |
1417 | for i in range(self.__nch): |
|
1417 | for i in range(self.__nch): | |
1418 | for j in range(self.__nHeis): |
|
1418 | for j in range(self.__nHeis): | |
1419 | if data_intensity[i][j] < 0: |
|
1419 | if data_intensity[i][j] < 0: | |
1420 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1420 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |
1421 |
|
1421 | |||
1422 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1422 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |
1423 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1423 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |
1424 | lag_1 = numpy.sum(pair1,1) |
|
1424 | lag_1 = numpy.sum(pair1,1) | |
1425 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1425 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |
1426 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1426 | data_velocity = (self.lambda_/2.0)*data_freq | |
1427 |
|
1427 | |||
1428 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1428 | #---------------- Potencia promedio estimada de la Senal----------- | |
1429 | lag_0 = lag_0/self.n |
|
1429 | lag_0 = lag_0/self.n | |
1430 | S = lag_0-self.noise |
|
1430 | S = lag_0-self.noise | |
1431 |
|
1431 | |||
1432 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1432 | #---------------- Frecuencia Doppler promedio --------------------- | |
1433 | lag_1 = lag_1/(self.n-1) |
|
1433 | lag_1 = lag_1/(self.n-1) | |
1434 | R1 = numpy.abs(lag_1) |
|
1434 | R1 = numpy.abs(lag_1) | |
1435 |
|
1435 | |||
1436 | #---------------- Calculo del SNR---------------------------------- |
|
1436 | #---------------- Calculo del SNR---------------------------------- | |
1437 | data_snrPP = S/self.noise |
|
1437 | data_snrPP = S/self.noise | |
1438 | for i in range(self.__nch): |
|
1438 | for i in range(self.__nch): | |
1439 | for j in range(self.__nHeis): |
|
1439 | for j in range(self.__nHeis): | |
1440 | if data_snrPP[i][j] < 1.e-20: |
|
1440 | if data_snrPP[i][j] < 1.e-20: | |
1441 | data_snrPP[i][j] = 1.e-20 |
|
1441 | data_snrPP[i][j] = 1.e-20 | |
1442 |
|
1442 | |||
1443 | #----------------- Calculo del ancho espectral ---------------------- |
|
1443 | #----------------- Calculo del ancho espectral ---------------------- | |
1444 | L = S/R1 |
|
1444 | L = S/R1 | |
1445 | L = numpy.where(L<0,1,L) |
|
1445 | L = numpy.where(L<0,1,L) | |
1446 | L = numpy.log(L) |
|
1446 | L = numpy.log(L) | |
1447 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1447 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1448 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1448 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |
1449 | n = self.__profIndex |
|
1449 | n = self.__profIndex | |
1450 |
|
1450 | |||
1451 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1451 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
1452 | self.__profIndex = 0 |
|
1452 | self.__profIndex = 0 | |
1453 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1453 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n | |
1454 |
|
1454 | |||
1455 |
|
1455 | |||
1456 | def pulsePairbyProfiles(self,dataOut): |
|
1456 | def pulsePairbyProfiles(self,dataOut): | |
1457 |
|
1457 | |||
1458 | self.__dataReady = False |
|
1458 | self.__dataReady = False | |
1459 | data_power = None |
|
1459 | data_power = None | |
1460 | data_intensity = None |
|
1460 | data_intensity = None | |
1461 | data_velocity = None |
|
1461 | data_velocity = None | |
1462 | data_specwidth = None |
|
1462 | data_specwidth = None | |
1463 | data_snrPP = None |
|
1463 | data_snrPP = None | |
1464 | self.putData(data=dataOut.data) |
|
1464 | self.putData(data=dataOut.data) | |
1465 | if self.__profIndex == self.n: |
|
1465 | if self.__profIndex == self.n: | |
1466 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) |
|
1466 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |
1467 | self.__dataReady = True |
|
1467 | self.__dataReady = True | |
1468 |
|
1468 | |||
1469 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth |
|
1469 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |
1470 |
|
1470 | |||
1471 |
|
1471 | |||
1472 | def pulsePairOp(self, dataOut, datatime= None): |
|
1472 | def pulsePairOp(self, dataOut, datatime= None): | |
1473 |
|
1473 | |||
1474 | if self.__initime == None: |
|
1474 | if self.__initime == None: | |
1475 | self.__initime = datatime |
|
1475 | self.__initime = datatime | |
1476 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
1476 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |
1477 | self.__lastdatatime = datatime |
|
1477 | self.__lastdatatime = datatime | |
1478 |
|
1478 | |||
1479 | if data_power is None: |
|
1479 | if data_power is None: | |
1480 | return None, None, None,None,None,None |
|
1480 | return None, None, None,None,None,None | |
1481 |
|
1481 | |||
1482 | avgdatatime = self.__initime |
|
1482 | avgdatatime = self.__initime | |
1483 | deltatime = datatime - self.__lastdatatime |
|
1483 | deltatime = datatime - self.__lastdatatime | |
1484 | self.__initime = datatime |
|
1484 | self.__initime = datatime | |
1485 |
|
1485 | |||
1486 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime |
|
1486 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |
1487 |
|
1487 | |||
1488 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1488 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
1489 |
|
1489 | |||
1490 | if not self.isConfig: |
|
1490 | if not self.isConfig: | |
1491 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1491 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
1492 | self.isConfig = True |
|
1492 | self.isConfig = True | |
1493 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1493 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
1494 | dataOut.flagNoData = True |
|
1494 | dataOut.flagNoData = True | |
1495 |
|
1495 | |||
1496 | if self.__dataReady: |
|
1496 | if self.__dataReady: | |
1497 | dataOut.nCohInt *= self.n |
|
1497 | dataOut.nCohInt *= self.n | |
1498 | dataOut.dataPP_POW = data_intensity # S |
|
1498 | dataOut.dataPP_POW = data_intensity # S | |
1499 | dataOut.dataPP_POWER = data_power # P |
|
1499 | dataOut.dataPP_POWER = data_power # P | |
1500 | dataOut.dataPP_DOP = data_velocity |
|
1500 | dataOut.dataPP_DOP = data_velocity | |
1501 | dataOut.dataPP_SNR = data_snrPP |
|
1501 | dataOut.dataPP_SNR = data_snrPP | |
1502 | dataOut.dataPP_WIDTH = data_specwidth |
|
1502 | dataOut.dataPP_WIDTH = data_specwidth | |
1503 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1503 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1504 | dataOut.utctime = avgdatatime |
|
1504 | dataOut.utctime = avgdatatime | |
1505 | dataOut.flagNoData = False |
|
1505 | dataOut.flagNoData = False | |
1506 | return dataOut |
|
1506 | return dataOut | |
1507 |
|
1507 | |||
1508 |
|
1508 | |||
1509 |
|
1509 | |||
1510 | # import collections |
|
1510 | # import collections | |
1511 | # from scipy.stats import mode |
|
1511 | # from scipy.stats import mode | |
1512 | # |
|
1512 | # | |
1513 | # class Synchronize(Operation): |
|
1513 | # class Synchronize(Operation): | |
1514 | # |
|
1514 | # | |
1515 | # isConfig = False |
|
1515 | # isConfig = False | |
1516 | # __profIndex = 0 |
|
1516 | # __profIndex = 0 | |
1517 | # |
|
1517 | # | |
1518 | # def __init__(self, **kwargs): |
|
1518 | # def __init__(self, **kwargs): | |
1519 | # |
|
1519 | # | |
1520 | # Operation.__init__(self, **kwargs) |
|
1520 | # Operation.__init__(self, **kwargs) | |
1521 | # # self.isConfig = False |
|
1521 | # # self.isConfig = False | |
1522 | # self.__powBuffer = None |
|
1522 | # self.__powBuffer = None | |
1523 | # self.__startIndex = 0 |
|
1523 | # self.__startIndex = 0 | |
1524 | # self.__pulseFound = False |
|
1524 | # self.__pulseFound = False | |
1525 | # |
|
1525 | # | |
1526 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1526 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
1527 | # |
|
1527 | # | |
1528 | # #Read data |
|
1528 | # #Read data | |
1529 | # |
|
1529 | # | |
1530 | # powerdB = dataOut.getPower(channel = channel) |
|
1530 | # powerdB = dataOut.getPower(channel = channel) | |
1531 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1531 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
1532 | # |
|
1532 | # | |
1533 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1533 | # self.__powBuffer.extend(powerdB.flatten()) | |
1534 | # |
|
1534 | # | |
1535 | # dataArray = numpy.array(self.__powBuffer) |
|
1535 | # dataArray = numpy.array(self.__powBuffer) | |
1536 | # |
|
1536 | # | |
1537 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1537 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
1538 | # |
|
1538 | # | |
1539 | # maxValue = numpy.nanmax(filteredPower) |
|
1539 | # maxValue = numpy.nanmax(filteredPower) | |
1540 | # |
|
1540 | # | |
1541 | # if maxValue < noisedB + 10: |
|
1541 | # if maxValue < noisedB + 10: | |
1542 | # #No se encuentra ningun pulso de transmision |
|
1542 | # #No se encuentra ningun pulso de transmision | |
1543 | # return None |
|
1543 | # return None | |
1544 | # |
|
1544 | # | |
1545 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1545 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
1546 | # |
|
1546 | # | |
1547 | # if len(maxValuesIndex) < 2: |
|
1547 | # if len(maxValuesIndex) < 2: | |
1548 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1548 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
1549 | # return None |
|
1549 | # return None | |
1550 | # |
|
1550 | # | |
1551 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1551 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
1552 | # |
|
1552 | # | |
1553 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1553 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
1554 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1554 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
1555 | # |
|
1555 | # | |
1556 | # if len(pulseIndex) < 2: |
|
1556 | # if len(pulseIndex) < 2: | |
1557 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1557 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1558 | # return None |
|
1558 | # return None | |
1559 | # |
|
1559 | # | |
1560 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1560 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
1561 | # |
|
1561 | # | |
1562 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1562 | # #remover senales que se distancien menos de 10 unidades o muestras | |
1563 | # #(No deberian existir IPP menor a 10 unidades) |
|
1563 | # #(No deberian existir IPP menor a 10 unidades) | |
1564 | # |
|
1564 | # | |
1565 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1565 | # realIndex = numpy.where(spacing > 10 )[0] | |
1566 | # |
|
1566 | # | |
1567 | # if len(realIndex) < 2: |
|
1567 | # if len(realIndex) < 2: | |
1568 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1568 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1569 | # return None |
|
1569 | # return None | |
1570 | # |
|
1570 | # | |
1571 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1571 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
1572 | # realPulseIndex = pulseIndex[realIndex] |
|
1572 | # realPulseIndex = pulseIndex[realIndex] | |
1573 | # |
|
1573 | # | |
1574 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1574 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
1575 | # |
|
1575 | # | |
1576 | # print "IPP = %d samples" %period |
|
1576 | # print "IPP = %d samples" %period | |
1577 | # |
|
1577 | # | |
1578 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1578 | # self.__newNSamples = dataOut.nHeights #int(period) | |
1579 | # self.__startIndex = int(realPulseIndex[0]) |
|
1579 | # self.__startIndex = int(realPulseIndex[0]) | |
1580 | # |
|
1580 | # | |
1581 | # return 1 |
|
1581 | # return 1 | |
1582 | # |
|
1582 | # | |
1583 | # |
|
1583 | # | |
1584 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1584 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
1585 | # |
|
1585 | # | |
1586 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1586 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
1587 | # maxlen = buffer_size*nSamples) |
|
1587 | # maxlen = buffer_size*nSamples) | |
1588 | # |
|
1588 | # | |
1589 | # bufferList = [] |
|
1589 | # bufferList = [] | |
1590 | # |
|
1590 | # | |
1591 | # for i in range(nChannels): |
|
1591 | # for i in range(nChannels): | |
1592 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1592 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
1593 | # maxlen = buffer_size*nSamples) |
|
1593 | # maxlen = buffer_size*nSamples) | |
1594 | # |
|
1594 | # | |
1595 | # bufferList.append(bufferByChannel) |
|
1595 | # bufferList.append(bufferByChannel) | |
1596 | # |
|
1596 | # | |
1597 | # self.__nSamples = nSamples |
|
1597 | # self.__nSamples = nSamples | |
1598 | # self.__nChannels = nChannels |
|
1598 | # self.__nChannels = nChannels | |
1599 | # self.__bufferList = bufferList |
|
1599 | # self.__bufferList = bufferList | |
1600 | # |
|
1600 | # | |
1601 | # def run(self, dataOut, channel = 0): |
|
1601 | # def run(self, dataOut, channel = 0): | |
1602 | # |
|
1602 | # | |
1603 | # if not self.isConfig: |
|
1603 | # if not self.isConfig: | |
1604 | # nSamples = dataOut.nHeights |
|
1604 | # nSamples = dataOut.nHeights | |
1605 | # nChannels = dataOut.nChannels |
|
1605 | # nChannels = dataOut.nChannels | |
1606 | # self.setup(nSamples, nChannels) |
|
1606 | # self.setup(nSamples, nChannels) | |
1607 | # self.isConfig = True |
|
1607 | # self.isConfig = True | |
1608 | # |
|
1608 | # | |
1609 | # #Append new data to internal buffer |
|
1609 | # #Append new data to internal buffer | |
1610 | # for thisChannel in range(self.__nChannels): |
|
1610 | # for thisChannel in range(self.__nChannels): | |
1611 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1611 | # bufferByChannel = self.__bufferList[thisChannel] | |
1612 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1612 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
1613 | # |
|
1613 | # | |
1614 | # if self.__pulseFound: |
|
1614 | # if self.__pulseFound: | |
1615 | # self.__startIndex -= self.__nSamples |
|
1615 | # self.__startIndex -= self.__nSamples | |
1616 | # |
|
1616 | # | |
1617 | # #Finding Tx Pulse |
|
1617 | # #Finding Tx Pulse | |
1618 | # if not self.__pulseFound: |
|
1618 | # if not self.__pulseFound: | |
1619 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1619 | # indexFound = self.__findTxPulse(dataOut, channel) | |
1620 | # |
|
1620 | # | |
1621 | # if indexFound == None: |
|
1621 | # if indexFound == None: | |
1622 | # dataOut.flagNoData = True |
|
1622 | # dataOut.flagNoData = True | |
1623 | # return |
|
1623 | # return | |
1624 | # |
|
1624 | # | |
1625 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1625 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
1626 | # self.__pulseFound = True |
|
1626 | # self.__pulseFound = True | |
1627 | # self.__startIndex = indexFound |
|
1627 | # self.__startIndex = indexFound | |
1628 | # |
|
1628 | # | |
1629 | # #If pulse was found ... |
|
1629 | # #If pulse was found ... | |
1630 | # for thisChannel in range(self.__nChannels): |
|
1630 | # for thisChannel in range(self.__nChannels): | |
1631 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1631 | # bufferByChannel = self.__bufferList[thisChannel] | |
1632 | # #print self.__startIndex |
|
1632 | # #print self.__startIndex | |
1633 | # x = numpy.array(bufferByChannel) |
|
1633 | # x = numpy.array(bufferByChannel) | |
1634 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1634 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
1635 | # |
|
1635 | # | |
1636 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1636 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1637 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1637 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
1638 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1638 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
1639 | # |
|
1639 | # | |
1640 | # dataOut.data = self.__arrayBuffer |
|
1640 | # dataOut.data = self.__arrayBuffer | |
1641 | # |
|
1641 | # | |
1642 | # self.__startIndex += self.__newNSamples |
|
1642 | # self.__startIndex += self.__newNSamples | |
1643 | # |
|
1643 | # | |
1644 | # return |
|
1644 | # return | |
1645 | class SSheightProfiles(Operation): |
|
1645 | class SSheightProfiles(Operation): | |
1646 |
|
1646 | |||
1647 | step = None |
|
1647 | step = None | |
1648 | nsamples = None |
|
1648 | nsamples = None | |
1649 | bufferShape = None |
|
1649 | bufferShape = None | |
1650 | profileShape = None |
|
1650 | profileShape = None | |
1651 | sshProfiles = None |
|
1651 | sshProfiles = None | |
1652 | profileIndex = None |
|
1652 | profileIndex = None | |
1653 |
|
1653 | |||
1654 | def __init__(self, **kwargs): |
|
1654 | def __init__(self, **kwargs): | |
1655 |
|
1655 | |||
1656 | Operation.__init__(self, **kwargs) |
|
1656 | Operation.__init__(self, **kwargs) | |
1657 | self.isConfig = False |
|
1657 | self.isConfig = False | |
1658 |
|
1658 | |||
1659 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1659 | def setup(self,dataOut ,step = None , nsamples = None): | |
1660 |
|
1660 | |||
1661 | if step == None and nsamples == None: |
|
1661 | if step == None and nsamples == None: | |
1662 | raise ValueError("step or nheights should be specified ...") |
|
1662 | raise ValueError("step or nheights should be specified ...") | |
1663 |
|
1663 | |||
1664 | self.step = step |
|
1664 | self.step = step | |
1665 | self.nsamples = nsamples |
|
1665 | self.nsamples = nsamples | |
1666 | self.__nChannels = dataOut.nChannels |
|
1666 | self.__nChannels = dataOut.nChannels | |
1667 | self.__nProfiles = dataOut.nProfiles |
|
1667 | self.__nProfiles = dataOut.nProfiles | |
1668 | self.__nHeis = dataOut.nHeights |
|
1668 | self.__nHeis = dataOut.nHeights | |
1669 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples |
|
1669 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples | |
1670 |
|
1670 | |||
1671 | residue = (shape[1] - self.nsamples) % self.step |
|
1671 | residue = (shape[1] - self.nsamples) % self.step | |
1672 | if residue != 0: |
|
1672 | if residue != 0: | |
1673 | print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue)) |
|
1673 | print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue)) | |
1674 |
|
1674 | |||
1675 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1675 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1676 | numberProfile = self.nsamples |
|
1676 | numberProfile = self.nsamples | |
1677 | numberSamples = (shape[1] - self.nsamples)/self.step |
|
1677 | numberSamples = (shape[1] - self.nsamples)/self.step | |
1678 |
|
1678 | |||
1679 | self.bufferShape = int(shape[0]), int(numberSamples), int(numberProfile) # nchannels, nsamples , nprofiles |
|
1679 | self.bufferShape = int(shape[0]), int(numberSamples), int(numberProfile) # nchannels, nsamples , nprofiles | |
1680 | self.profileShape = int(shape[0]), int(numberProfile), int(numberSamples) # nchannels, nprofiles, nsamples |
|
1680 | self.profileShape = int(shape[0]), int(numberProfile), int(numberSamples) # nchannels, nprofiles, nsamples | |
1681 |
|
1681 | |||
1682 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1682 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) | |
1683 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1683 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) | |
1684 |
|
1684 | |||
1685 | def run(self, dataOut, step, nsamples, code = None, repeat = None): |
|
1685 | def run(self, dataOut, step, nsamples, code = None, repeat = None): | |
1686 | dataOut.flagNoData = True |
|
1686 | dataOut.flagNoData = True | |
1687 |
|
1687 | |||
1688 | profileIndex = None |
|
1688 | profileIndex = None | |
1689 | #print("nProfiles, nHeights ",dataOut.nProfiles, dataOut.nHeights) |
|
1689 | #print("nProfiles, nHeights ",dataOut.nProfiles, dataOut.nHeights) | |
1690 | #print(dataOut.getFreqRange(1)/1000.) |
|
1690 | #print(dataOut.getFreqRange(1)/1000.) | |
1691 | #exit(1) |
|
1691 | #exit(1) | |
1692 | if dataOut.flagDataAsBlock: |
|
1692 | if dataOut.flagDataAsBlock: | |
1693 | dataOut.data = numpy.average(dataOut.data,axis=1) |
|
1693 | dataOut.data = numpy.average(dataOut.data,axis=1) | |
1694 | #print("jee") |
|
1694 | #print("jee") | |
1695 | dataOut.flagDataAsBlock = False |
|
1695 | dataOut.flagDataAsBlock = False | |
1696 | if not self.isConfig: |
|
1696 | if not self.isConfig: | |
1697 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1697 | self.setup(dataOut, step=step , nsamples=nsamples) | |
1698 | #print("Setup done") |
|
1698 | #print("Setup done") | |
1699 | self.isConfig = True |
|
1699 | self.isConfig = True | |
1700 |
|
1700 | |||
1701 |
|
1701 | |||
1702 | if code is not None: |
|
1702 | if code is not None: | |
1703 | code = numpy.array(code) |
|
1703 | code = numpy.array(code) | |
1704 | code_block = code |
|
1704 | code_block = code | |
1705 |
|
1705 | |||
1706 | if repeat is not None: |
|
1706 | if repeat is not None: | |
1707 | code_block = numpy.repeat(code_block, repeats=repeat, axis=1) |
|
1707 | code_block = numpy.repeat(code_block, repeats=repeat, axis=1) | |
1708 | #print(code_block.shape) |
|
1708 | #print(code_block.shape) | |
1709 | for i in range(self.buffer.shape[1]): |
|
1709 | for i in range(self.buffer.shape[1]): | |
1710 |
|
1710 | |||
1711 | if code is not None: |
|
1711 | if code is not None: | |
1712 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]*code_block |
|
1712 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]*code_block | |
1713 |
|
1713 | |||
1714 | else: |
|
1714 | else: | |
1715 |
|
1715 | |||
1716 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:] |
|
1716 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:] | |
1717 |
|
1717 | |||
1718 | #self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights]) |
|
1718 | #self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights]) | |
1719 |
|
1719 | |||
1720 | for j in range(self.buffer.shape[0]): |
|
1720 | for j in range(self.buffer.shape[0]): | |
1721 | self.sshProfiles[j] = numpy.transpose(self.buffer[j]) |
|
1721 | self.sshProfiles[j] = numpy.transpose(self.buffer[j]) | |
1722 |
|
1722 | |||
1723 | profileIndex = self.nsamples |
|
1723 | profileIndex = self.nsamples | |
1724 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1724 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1725 | ippSeconds = (deltaHeight*1.0e-6)/(0.15) |
|
1725 | ippSeconds = (deltaHeight*1.0e-6)/(0.15) | |
1726 | #print("ippSeconds, dH: ",ippSeconds,deltaHeight) |
|
1726 | #print("ippSeconds, dH: ",ippSeconds,deltaHeight) | |
1727 | try: |
|
1727 | try: | |
1728 | if dataOut.concat_m is not None: |
|
1728 | if dataOut.concat_m is not None: | |
1729 | ippSeconds= ippSeconds/float(dataOut.concat_m) |
|
1729 | ippSeconds= ippSeconds/float(dataOut.concat_m) | |
1730 | #print "Profile concat %d"%dataOut.concat_m |
|
1730 | #print "Profile concat %d"%dataOut.concat_m | |
1731 | except: |
|
1731 | except: | |
1732 | pass |
|
1732 | pass | |
1733 |
|
1733 | |||
1734 | dataOut.data = self.sshProfiles |
|
1734 | dataOut.data = self.sshProfiles | |
1735 | dataOut.flagNoData = False |
|
1735 | dataOut.flagNoData = False | |
1736 | dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0] |
|
1736 | dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0] | |
1737 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
1737 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) | |
1738 |
|
1738 | |||
1739 | dataOut.profileIndex = profileIndex |
|
1739 | dataOut.profileIndex = profileIndex | |
1740 | dataOut.flagDataAsBlock = True |
|
1740 | dataOut.flagDataAsBlock = True | |
1741 | dataOut.ippSeconds = ippSeconds |
|
1741 | dataOut.ippSeconds = ippSeconds | |
1742 | dataOut.step = self.step |
|
1742 | dataOut.step = self.step | |
1743 | #print(numpy.shape(dataOut.data)) |
|
1743 | #print(numpy.shape(dataOut.data)) | |
1744 | #exit(1) |
|
1744 | #exit(1) | |
1745 | #print("new data shape and time:", dataOut.data.shape, dataOut.utctime) |
|
1745 | #print("new data shape and time:", dataOut.data.shape, dataOut.utctime) | |
1746 |
|
1746 | |||
1747 | return dataOut |
|
1747 | return dataOut | |
1748 | ################################################################################3############################3 |
|
1748 | ################################################################################3############################3 | |
1749 | ################################################################################3############################3 |
|
1749 | ################################################################################3############################3 | |
1750 | ################################################################################3############################3 |
|
1750 | ################################################################################3############################3 | |
1751 | ################################################################################3############################3 |
|
1751 | ################################################################################3############################3 | |
1752 |
|
1752 | |||
1753 | class SSheightProfiles2(Operation): |
|
1753 | class SSheightProfiles2(Operation): | |
1754 | ''' |
|
1754 | ''' | |
1755 | Procesa por perfiles y por bloques |
|
1755 | Procesa por perfiles y por bloques | |
1756 | ''' |
|
1756 | ''' | |
1757 |
|
1757 | |||
1758 |
|
1758 | |||
1759 | bufferShape = None |
|
1759 | bufferShape = None | |
1760 | profileShape = None |
|
1760 | profileShape = None | |
1761 | sshProfiles = None |
|
1761 | sshProfiles = None | |
1762 | profileIndex = None |
|
1762 | profileIndex = None | |
1763 | #nsamples = None |
|
1763 | #nsamples = None | |
1764 | #step = None |
|
1764 | #step = None | |
1765 | #deltaHeight = None |
|
1765 | #deltaHeight = None | |
1766 | #init_range = None |
|
1766 | #init_range = None | |
1767 | __slots__ = ('step', 'nsamples', 'deltaHeight', 'init_range', 'isConfig', '__nChannels', |
|
1767 | __slots__ = ('step', 'nsamples', 'deltaHeight', 'init_range', 'isConfig', '__nChannels', | |
1768 | '__nProfiles', '__nHeis', 'deltaHeight', 'new_nHeights') |
|
1768 | '__nProfiles', '__nHeis', 'deltaHeight', 'new_nHeights') | |
1769 |
|
1769 | |||
1770 | def __init__(self, **kwargs): |
|
1770 | def __init__(self, **kwargs): | |
1771 |
|
1771 | |||
1772 | Operation.__init__(self, **kwargs) |
|
1772 | Operation.__init__(self, **kwargs) | |
1773 | self.isConfig = False |
|
1773 | self.isConfig = False | |
1774 |
|
1774 | |||
1775 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1775 | def setup(self,dataOut ,step = None , nsamples = None): | |
1776 |
|
1776 | |||
1777 | if step == None and nsamples == None: |
|
1777 | if step == None and nsamples == None: | |
1778 | raise ValueError("step or nheights should be specified ...") |
|
1778 | raise ValueError("step or nheights should be specified ...") | |
1779 |
|
1779 | |||
1780 | self.step = step |
|
1780 | self.step = step | |
1781 | self.nsamples = nsamples |
|
1781 | self.nsamples = nsamples | |
1782 | self.__nChannels = int(dataOut.nChannels) |
|
1782 | self.__nChannels = int(dataOut.nChannels) | |
1783 | self.__nProfiles = int(dataOut.nProfiles) |
|
1783 | self.__nProfiles = int(dataOut.nProfiles) | |
1784 | self.__nHeis = int(dataOut.nHeights) |
|
1784 | self.__nHeis = int(dataOut.nHeights) | |
1785 |
|
1785 | |||
1786 | residue = (self.__nHeis - self.nsamples) % self.step |
|
1786 | residue = (self.__nHeis - self.nsamples) % self.step | |
1787 | if residue != 0: |
|
1787 | if residue != 0: | |
1788 | print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue)) |
|
1788 | print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue)) | |
1789 |
|
1789 | |||
1790 | self.deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1790 | self.deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1791 | self.init_range = dataOut.heightList[0] |
|
1791 | self.init_range = dataOut.heightList[0] | |
1792 | #numberProfile = self.nsamples |
|
1792 | #numberProfile = self.nsamples | |
1793 | numberSamples = (self.__nHeis - self.nsamples)/self.step |
|
1793 | numberSamples = (self.__nHeis - self.nsamples)/self.step | |
1794 |
|
1794 | |||
1795 | self.new_nHeights = numberSamples |
|
1795 | self.new_nHeights = numberSamples | |
1796 |
|
1796 | |||
1797 | self.bufferShape = int(self.__nChannels), int(numberSamples), int(self.nsamples) # nchannels, nsamples , nprofiles |
|
1797 | self.bufferShape = int(self.__nChannels), int(numberSamples), int(self.nsamples) # nchannels, nsamples , nprofiles | |
1798 | self.profileShape = int(self.__nChannels), int(self.nsamples), int(numberSamples) # nchannels, nprofiles, nsamples |
|
1798 | self.profileShape = int(self.__nChannels), int(self.nsamples), int(numberSamples) # nchannels, nprofiles, nsamples | |
1799 |
|
1799 | |||
1800 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1800 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) | |
1801 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1801 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) | |
1802 |
|
1802 | |||
1803 | def getNewProfiles(self, data, code=None, repeat=None): |
|
1803 | def getNewProfiles(self, data, code=None, repeat=None): | |
1804 |
|
1804 | |||
1805 | if code is not None: |
|
1805 | if code is not None: | |
1806 | code = numpy.array(code) |
|
1806 | code = numpy.array(code) | |
1807 | code_block = code |
|
1807 | code_block = code | |
1808 |
|
1808 | |||
1809 | if repeat is not None: |
|
1809 | if repeat is not None: | |
1810 | code_block = numpy.repeat(code_block, repeats=repeat, axis=1) |
|
1810 | code_block = numpy.repeat(code_block, repeats=repeat, axis=1) | |
1811 | if data.ndim == 2: |
|
1811 | if data.ndim == 2: | |
1812 | data = data.reshape(1,1,self.__nHeis ) |
|
1812 | data = data.reshape(1,1,self.__nHeis ) | |
1813 | #print("buff, data, :",self.buffer.shape, data.shape,self.sshProfiles.shape) |
|
1813 | #print("buff, data, :",self.buffer.shape, data.shape,self.sshProfiles.shape) | |
1814 | for i in range(int(self.new_nHeights)): #nuevas alturas |
|
1814 | for i in range(int(self.new_nHeights)): #nuevas alturas | |
1815 | if code is not None: |
|
1815 | if code is not None: | |
1816 | self.buffer[:,i,:] = data[:,:,i*self.step:i*self.step + self.nsamples]*code_block |
|
1816 | self.buffer[:,i,:] = data[:,:,i*self.step:i*self.step + self.nsamples]*code_block | |
1817 | else: |
|
1817 | else: | |
1818 | self.buffer[:,i,:] = data[:,:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:] |
|
1818 | self.buffer[:,i,:] = data[:,:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:] | |
1819 |
|
1819 | |||
1820 | for j in range(self.__nChannels): #en los cananles |
|
1820 | for j in range(self.__nChannels): #en los cananles | |
1821 | self.sshProfiles[j,:,:] = numpy.transpose(self.buffer[j,:,:]) |
|
1821 | self.sshProfiles[j,:,:] = numpy.transpose(self.buffer[j,:,:]) | |
1822 | #print("new profs Done") |
|
1822 | #print("new profs Done") | |
1823 |
|
1823 | |||
1824 |
|
1824 | |||
1825 |
|
1825 | |||
1826 | def run(self, dataOut, step, nsamples, code = None, repeat = None): |
|
1826 | def run(self, dataOut, step, nsamples, code = None, repeat = None): | |
1827 |
|
1827 | |||
1828 | if dataOut.flagNoData == True: |
|
1828 | if dataOut.flagNoData == True: | |
1829 | return dataOut |
|
1829 | return dataOut | |
1830 | dataOut.flagNoData = True |
|
1830 | dataOut.flagNoData = True | |
1831 | #print("init data shape:", dataOut.data.shape) |
|
1831 | #print("init data shape:", dataOut.data.shape) | |
1832 | #print("ch: {} prof: {} hs: {}".format(int(dataOut.nChannels), |
|
1832 | #print("ch: {} prof: {} hs: {}".format(int(dataOut.nChannels), | |
1833 | # int(dataOut.nProfiles),int(dataOut.nHeights))) |
|
1833 | # int(dataOut.nProfiles),int(dataOut.nHeights))) | |
1834 |
|
1834 | |||
1835 | profileIndex = None |
|
1835 | profileIndex = None | |
1836 | # if not dataOut.flagDataAsBlock: |
|
1836 | # if not dataOut.flagDataAsBlock: | |
1837 | # dataOut.nProfiles = 1 |
|
1837 | # dataOut.nProfiles = 1 | |
1838 |
|
1838 | |||
1839 | if not self.isConfig: |
|
1839 | if not self.isConfig: | |
1840 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1840 | self.setup(dataOut, step=step , nsamples=nsamples) | |
1841 | #print("Setup done") |
|
1841 | #print("Setup done") | |
1842 | self.isConfig = True |
|
1842 | self.isConfig = True | |
1843 |
|
1843 | |||
1844 | dataBlock = None |
|
1844 | dataBlock = None | |
1845 |
|
1845 | |||
1846 | nprof = 1 |
|
1846 | nprof = 1 | |
1847 | if dataOut.flagDataAsBlock: |
|
1847 | if dataOut.flagDataAsBlock: | |
1848 | nprof = int(dataOut.nProfiles) |
|
1848 | nprof = int(dataOut.nProfiles) | |
1849 |
|
1849 | |||
1850 | #print("dataOut nProfiles:", dataOut.nProfiles) |
|
1850 | #print("dataOut nProfiles:", dataOut.nProfiles) | |
1851 | for profile in range(nprof): |
|
1851 | for profile in range(nprof): | |
1852 | if dataOut.flagDataAsBlock: |
|
1852 | if dataOut.flagDataAsBlock: | |
1853 | #print("read blocks") |
|
1853 | #print("read blocks") | |
1854 | self.getNewProfiles(dataOut.data[:,profile,:], code=code, repeat=repeat) |
|
1854 | self.getNewProfiles(dataOut.data[:,profile,:], code=code, repeat=repeat) | |
1855 | else: |
|
1855 | else: | |
1856 | #print("read profiles") |
|
1856 | #print("read profiles") | |
1857 | self.getNewProfiles(dataOut.data, code=code, repeat=repeat) #only one channe |
|
1857 | self.getNewProfiles(dataOut.data, code=code, repeat=repeat) #only one channe | |
1858 | if profile == 0: |
|
1858 | if profile == 0: | |
1859 | dataBlock = self.sshProfiles.copy() |
|
1859 | dataBlock = self.sshProfiles.copy() | |
1860 | else: #by blocks |
|
1860 | else: #by blocks | |
1861 | dataBlock = numpy.concatenate((dataBlock,self.sshProfiles), axis=1) #profile axis |
|
1861 | dataBlock = numpy.concatenate((dataBlock,self.sshProfiles), axis=1) #profile axis | |
1862 | #print("by blocks: ",dataBlock.shape, self.sshProfiles.shape) |
|
1862 | #print("by blocks: ",dataBlock.shape, self.sshProfiles.shape) | |
1863 |
|
1863 | |||
1864 | profileIndex = self.nsamples |
|
1864 | profileIndex = self.nsamples | |
1865 | #deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1865 | #deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1866 | ippSeconds = (self.deltaHeight*1.0e-6)/(0.15) |
|
1866 | ippSeconds = (self.deltaHeight*1.0e-6)/(0.15) | |
1867 |
|
1867 | |||
1868 |
|
1868 | |||
1869 | dataOut.data = dataBlock |
|
1869 | dataOut.data = dataBlock | |
1870 | #print("show me: ",self.step,self.deltaHeight, dataOut.heightList, self.new_nHeights) |
|
1870 | #print("show me: ",self.step,self.deltaHeight, dataOut.heightList, self.new_nHeights) | |
1871 | dataOut.heightList = numpy.arange(int(self.new_nHeights)) *self.step*self.deltaHeight + self.init_range |
|
1871 | dataOut.heightList = numpy.arange(int(self.new_nHeights)) *self.step*self.deltaHeight + self.init_range | |
1872 |
|
1872 | |||
1873 | dataOut.ippSeconds = ippSeconds |
|
1873 | dataOut.ippSeconds = ippSeconds | |
1874 | dataOut.step = self.step |
|
1874 | dataOut.step = self.step | |
1875 | dataOut.flagNoData = False |
|
1875 | dataOut.flagNoData = False | |
1876 | if dataOut.flagDataAsBlock: |
|
1876 | if dataOut.flagDataAsBlock: | |
1877 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
1877 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) | |
1878 |
|
1878 | |||
1879 | else: |
|
1879 | else: | |
1880 | dataOut.nProfiles = int(self.nsamples) |
|
1880 | dataOut.nProfiles = int(self.nsamples) | |
1881 | dataOut.profileIndex = dataOut.nProfiles |
|
1881 | dataOut.profileIndex = dataOut.nProfiles | |
1882 | dataOut.flagDataAsBlock = True |
|
1882 | dataOut.flagDataAsBlock = True | |
1883 |
|
1883 | |||
1884 | dataBlock = None |
|
1884 | dataBlock = None | |
1885 |
|
1885 | |||
1886 | #print("new data shape:", dataOut.data.shape, dataOut.utctime) |
|
1886 | #print("new data shape:", dataOut.data.shape, dataOut.utctime) | |
1887 |
|
1887 | |||
1888 | return dataOut |
|
1888 | return dataOut | |
1889 |
|
1889 | |||
1890 |
|
1890 | |||
1891 |
|
1891 | |||
1892 |
|
1892 | |||
1893 | #import skimage.color |
|
1893 | #import skimage.color | |
1894 | #import skimage.io |
|
1894 | #import skimage.io | |
1895 | #import matplotlib.pyplot as plt |
|
1895 | #import matplotlib.pyplot as plt | |
1896 |
|
1896 | |||
1897 | class removeProfileByFaradayHS(Operation): |
|
1897 | class removeProfileByFaradayHS(Operation): | |
1898 | ''' |
|
1898 | ''' | |
1899 |
|
1899 | |||
1900 | ''' |
|
1900 | ''' | |
1901 | #isConfig = False |
|
|||
1902 | #n = None |
|
|||
1903 |
|
1901 | |||
1904 | #__dataReady = False |
|
|||
1905 | __buffer_data = [] |
|
1902 | __buffer_data = [] | |
1906 | __buffer_times = [] |
|
1903 | __buffer_times = [] | |
1907 | #__initime = None |
|
|||
1908 | #__count_exec = 0 |
|
|||
1909 | #__profIndex = 0 |
|
|||
1910 | buffer = None |
|
|||
1911 | #lenProfileOut = 1 |
|
|||
1912 |
|
1904 | |||
1913 | #init_prof = 0 |
|
1905 | buffer = None | |
1914 | #end_prof = 0 |
|
|||
1915 |
|
1906 | |||
1916 | #first_utcBlock = None |
|
|||
1917 | outliers_IDs_list = [] |
|
1907 | outliers_IDs_list = [] | |
1918 | #__dh = 0 |
|
1908 | ||
1919 |
|
1909 | |||
1920 | __slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights', |
|
1910 | __slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights', | |
1921 | '__dh','first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels', |
|
1911 | '__dh','first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels', | |
1922 | '__count_exec','__initime','__dataReady','__ipp') |
|
1912 | '__count_exec','__initime','__dataReady','__ipp') | |
1923 | def __init__(self, **kwargs): |
|
1913 | def __init__(self, **kwargs): | |
1924 |
|
1914 | |||
1925 | Operation.__init__(self, **kwargs) |
|
1915 | Operation.__init__(self, **kwargs) | |
1926 | self.isConfig = False |
|
1916 | self.isConfig = False | |
1927 |
|
1917 | |||
1928 | def setup(self,dataOut, n=None , navg=0.8, profileMargin=50,thHistOutlier=3, minHei=None, maxHei=None): |
|
1918 | def setup(self,dataOut, n=None , navg=0.8, profileMargin=50,thHistOutlier=3, minHei=None, maxHei=None): | |
1929 |
|
1919 | |||
1930 | if n == None and timeInterval == None: |
|
1920 | if n == None and timeInterval == None: | |
1931 | raise ValueError("nprofiles or timeInterval should be specified ...") |
|
1921 | raise ValueError("nprofiles or timeInterval should be specified ...") | |
1932 |
|
1922 | |||
1933 | if n != None: |
|
1923 | if n != None: | |
1934 | self.n = n |
|
1924 | self.n = n | |
1935 |
|
1925 | |||
1936 | self.navg = navg |
|
1926 | self.navg = navg | |
1937 | self.profileMargin = profileMargin |
|
1927 | self.profileMargin = profileMargin | |
1938 | self.thHistOutlier = thHistOutlier |
|
1928 | self.thHistOutlier = thHistOutlier | |
1939 | self.__profIndex = 0 |
|
1929 | self.__profIndex = 0 | |
1940 | self.buffer = None |
|
1930 | self.buffer = None | |
1941 | self._ipp = dataOut.ippSeconds |
|
1931 | self._ipp = dataOut.ippSeconds | |
1942 | self.n_prof_released = 0 |
|
1932 | self.n_prof_released = 0 | |
1943 | self.heightList = dataOut.heightList |
|
1933 | self.heightList = dataOut.heightList | |
1944 | self.init_prof = 0 |
|
1934 | self.init_prof = 0 | |
1945 | self.end_prof = 0 |
|
1935 | self.end_prof = 0 | |
1946 | self.__count_exec = 0 |
|
1936 | self.__count_exec = 0 | |
1947 | self.__profIndex = 0 |
|
1937 | self.__profIndex = 0 | |
1948 | self.first_utcBlock = None |
|
1938 | self.first_utcBlock = None | |
1949 | self.__dh = dataOut.heightList[1] - dataOut.heightList[0] |
|
1939 | self.__dh = dataOut.heightList[1] - dataOut.heightList[0] | |
1950 | minHei = minHei |
|
1940 | minHei = minHei | |
1951 | maxHei = maxHei |
|
1941 | maxHei = maxHei | |
1952 | if minHei==None : |
|
1942 | if minHei==None : | |
1953 | minHei = dataOut.heightList[0] |
|
1943 | minHei = dataOut.heightList[0] | |
1954 | if maxHei==None : |
|
1944 | if maxHei==None : | |
1955 | maxHei = dataOut.heightList[-1] |
|
1945 | maxHei = dataOut.heightList[-1] | |
1956 | self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList) |
|
1946 | self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList) | |
1957 |
|
1947 | |||
1958 | self.nChannels = dataOut.nChannels |
|
1948 | self.nChannels = dataOut.nChannels | |
1959 | self.nHeights = dataOut.nHeights |
|
1949 | self.nHeights = dataOut.nHeights | |
1960 |
|
1950 | |||
1961 | def filterSatsProfiles(self): |
|
1951 | def filterSatsProfiles(self): | |
1962 | data = self.__buffer_data |
|
1952 | data = self.__buffer_data | |
1963 | #print(data.shape) |
|
1953 | #print(data.shape) | |
1964 | nChannels, profiles, heights = data.shape |
|
1954 | nChannels, profiles, heights = data.shape | |
1965 | indexes=[] |
|
1955 | indexes=[] | |
1966 | outliers_IDs=[] |
|
1956 | outliers_IDs=[] | |
1967 | for c in range(nChannels): |
|
1957 | for c in range(nChannels): | |
1968 | for h in range(self.minHei_idx, self.maxHei_idx): |
|
1958 | for h in range(self.minHei_idx, self.maxHei_idx): | |
1969 | power = data[c,:,h] * numpy.conjugate(data[c,:,h]) |
|
1959 | power = data[c,:,h] * numpy.conjugate(data[c,:,h]) | |
1970 | power = power.real |
|
1960 | power = power.real | |
1971 | #power = (numpy.abs(data[c,:,h].real)) |
|
1961 | #power = (numpy.abs(data[c,:,h].real)) | |
1972 | sortdata = numpy.sort(power, axis=None) |
|
1962 | sortdata = numpy.sort(power, axis=None) | |
1973 | sortID=power.argsort() |
|
1963 | sortID=power.argsort() | |
1974 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) #0.75-> buen valor |
|
1964 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) #0.75-> buen valor | |
1975 |
|
1965 | |||
1976 | indexes.append(index) |
|
1966 | indexes.append(index) | |
1977 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1967 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) | |
1978 | # print(outliers_IDs) |
|
1968 | # print(outliers_IDs) | |
1979 | # fig,ax = plt.subplots() |
|
1969 | # fig,ax = plt.subplots() | |
1980 | # #ax.set_title(str(k)+" "+str(j)) |
|
1970 | # #ax.set_title(str(k)+" "+str(j)) | |
1981 | # x=range(len(sortdata)) |
|
1971 | # x=range(len(sortdata)) | |
1982 | # ax.scatter(x,sortdata) |
|
1972 | # ax.scatter(x,sortdata) | |
1983 | # ax.axvline(index) |
|
1973 | # ax.axvline(index) | |
1984 | # plt.grid() |
|
1974 | # plt.grid() | |
1985 | # plt.show() |
|
1975 | # plt.show() | |
1986 |
|
1976 | |||
|
1977 | ||||
1987 | outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) |
|
1978 | outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) | |
1988 | outliers_IDs = numpy.unique(outliers_IDs) |
|
1979 | outliers_IDs = numpy.unique(outliers_IDs) | |
1989 | outs_lines = numpy.sort(outliers_IDs) |
|
1980 | outs_lines = numpy.sort(outliers_IDs) | |
1990 | # #print("outliers Ids: ", outs_lines, outs_lines.shape) |
|
1981 | # #print("outliers Ids: ", outs_lines, outs_lines.shape) | |
1991 | #hist, bin_edges = numpy.histogram(outs_lines, bins=10, density=True) |
|
1982 | #hist, bin_edges = numpy.histogram(outs_lines, bins=10, density=True) | |
1992 |
|
1983 | |||
1993 |
|
1984 | |||
1994 | #Agrupando el histograma de outliers, |
|
1985 | #Agrupando el histograma de outliers, | |
|
1986 | #my_bins = numpy.linspace(0,int(profiles), int(profiles/100), endpoint=False) | |||
1995 | my_bins = numpy.linspace(0,9600, 96, endpoint=False) |
|
1987 | my_bins = numpy.linspace(0,9600, 96, endpoint=False) | |
1996 |
|
1988 | |||
1997 |
|
||||
1998 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) |
|
1989 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) | |
1999 | hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier |
|
1990 | hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier | |
2000 | #print(hist_outliers_indexes[0]) |
|
1991 | #print(hist_outliers_indexes[0]) | |
2001 | bins_outliers_indexes = [int(i) for i in bins[hist_outliers_indexes]] # |
|
1992 | bins_outliers_indexes = [int(i) for i in bins[hist_outliers_indexes]] # | |
2002 | #print(bins_outliers_indexes) |
|
1993 | #print(bins_outliers_indexes) | |
2003 | outlier_loc_index = [] |
|
1994 | outlier_loc_index = [] | |
2004 |
|
1995 | |||
2005 | #outlier_loc_index = [k for k in range(bins_outliers_indexes[n]-50,bins_outliers_indexes[n+1]+50) for n in range(len(bins_outliers_indexes)-1) ] |
|
1996 | ||
2006 | for n in range(len(bins_outliers_indexes)-1): |
|
1997 | # for n in range(len(bins_outliers_indexes)-1): | |
2007 |
|
|
1998 | # for k in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin): | |
2008 | for k in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin): |
|
1999 | # outlier_loc_index.append(k) | |
2009 | outlier_loc_index.append(k) |
|
2000 | ||
|
2001 | outlier_loc_index = [e for n in range(len(bins_outliers_indexes)-1) for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin) ] | |||
2010 |
|
2002 | |||
2011 | outlier_loc_index = numpy.asarray(outlier_loc_index) |
|
2003 | outlier_loc_index = numpy.asarray(outlier_loc_index) | |
2012 | #print(numpy.unique(outlier_loc_index)) |
|
2004 | #print(len(numpy.unique(outlier_loc_index)), numpy.unique(outlier_loc_index)) | |
2013 |
|
2005 | |||
2014 |
|
2006 | |||
2015 |
|
2007 | |||
2016 | # x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) |
|
2008 | # x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) | |
2017 | # fig, ax = plt.subplots(1,2,figsize=(8, 6)) |
|
2009 | # fig, ax = plt.subplots(1,2,figsize=(8, 6)) | |
2018 | # |
|
2010 | # | |
2019 | # dat = data[0,:,:].real |
|
2011 | # dat = data[0,:,:].real | |
2020 | # m = numpy.nanmean(dat) |
|
2012 | # m = numpy.nanmean(dat) | |
2021 | # o = numpy.nanstd(dat) |
|
2013 | # o = numpy.nanstd(dat) | |
2022 | # #print(m, o, x.shape, y.shape) |
|
2014 | # #print(m, o, x.shape, y.shape) | |
2023 | # c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) |
|
2015 | # c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) | |
2024 | # ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') |
|
2016 | # ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') | |
2025 | # fig.colorbar(c) |
|
2017 | # fig.colorbar(c) | |
2026 | # ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') |
|
2018 | # ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') | |
2027 | # ax[1].hist(outs_lines,bins=my_bins) |
|
2019 | # ax[1].hist(outs_lines,bins=my_bins) | |
2028 | # plt.show() |
|
2020 | # plt.show() | |
2029 |
|
2021 | |||
2030 |
|
2022 | |||
2031 | self.outliers_IDs_list = numpy.unique(outlier_loc_index) |
|
2023 | self.outliers_IDs_list = numpy.unique(outlier_loc_index) | |
2032 | return data |
|
2024 | return data | |
2033 |
|
2025 | |||
2034 | def cleanOutliersByBlock(self): |
|
2026 | def cleanOutliersByBlock(self): | |
2035 | #print(self.__buffer_data[0].shape) |
|
2027 | #print(self.__buffer_data[0].shape) | |
2036 | data = self.__buffer_data#.copy() |
|
2028 | data = self.__buffer_data#.copy() | |
2037 | #print("cleaning shape inpt: ",data.shape) |
|
2029 | #print("cleaning shape inpt: ",data.shape) | |
2038 | ''' |
|
2030 | ''' | |
2039 | self.__buffer_data = [] |
|
2031 | self.__buffer_data = [] | |
2040 |
|
2032 | |||
2041 | spectrum = numpy.fft.fft2(data, axes=(0,2)) |
|
2033 | spectrum = numpy.fft.fft2(data, axes=(0,2)) | |
2042 | #print("spc : ",spectrum.shape) |
|
2034 | #print("spc : ",spectrum.shape) | |
2043 | (nch,nsamples, nh) = spectrum.shape |
|
2035 | (nch,nsamples, nh) = spectrum.shape | |
2044 | data2 = None |
|
2036 | data2 = None | |
2045 | #print(data.shape) |
|
2037 | #print(data.shape) | |
2046 | spectrum2 = spectrum.copy() |
|
2038 | spectrum2 = spectrum.copy() | |
2047 | for ch in range(nch): |
|
2039 | for ch in range(nch): | |
2048 | dh = self.__dh |
|
2040 | dh = self.__dh | |
2049 | dt1 = (dh*1.0e-6)/(0.15) |
|
2041 | dt1 = (dh*1.0e-6)/(0.15) | |
2050 | dt2 = self.__buffer_times[1]-self.__buffer_times[0] |
|
2042 | dt2 = self.__buffer_times[1]-self.__buffer_times[0] | |
2051 | freqv = numpy.fft.fftfreq(nh, d=dt1) |
|
2043 | freqv = numpy.fft.fftfreq(nh, d=dt1) | |
2052 | freqh = numpy.fft.fftfreq(self.n, d=dt2) |
|
2044 | freqh = numpy.fft.fftfreq(self.n, d=dt2) | |
2053 | #print("spc loop: ") |
|
2045 | #print("spc loop: ") | |
2054 |
|
2046 | |||
2055 |
|
2047 | |||
2056 |
|
2048 | |||
2057 | x, y = numpy.meshgrid(numpy.sort(freqh),numpy.sort(freqv)) |
|
2049 | x, y = numpy.meshgrid(numpy.sort(freqh),numpy.sort(freqv)) | |
2058 | z = numpy.abs(spectrum[ch,:,:]) |
|
2050 | z = numpy.abs(spectrum[ch,:,:]) | |
2059 | # Find all peaks higher than the 98th percentile |
|
2051 | # Find all peaks higher than the 98th percentile | |
2060 | peaks = z < numpy.percentile(z, 98) |
|
2052 | peaks = z < numpy.percentile(z, 98) | |
2061 | #print(peaks) |
|
2053 | #print(peaks) | |
2062 | # Set those peak coefficients to zero |
|
2054 | # Set those peak coefficients to zero | |
2063 | spectrum2 = spectrum2 * peaks.astype(int) |
|
2055 | spectrum2 = spectrum2 * peaks.astype(int) | |
2064 | data2 = numpy.fft.ifft2(spectrum2) |
|
2056 | data2 = numpy.fft.ifft2(spectrum2) | |
2065 |
|
2057 | |||
2066 | dat = numpy.log10(z.T) |
|
2058 | dat = numpy.log10(z.T) | |
2067 | dat2 = numpy.log10(spectrum2.T) |
|
2059 | dat2 = numpy.log10(spectrum2.T) | |
2068 |
|
2060 | |||
2069 | # m = numpy.mean(dat) |
|
2061 | # m = numpy.mean(dat) | |
2070 | # o = numpy.std(dat) |
|
2062 | # o = numpy.std(dat) | |
2071 | # fig, ax = plt.subplots(2,1,figsize=(8, 6)) |
|
2063 | # fig, ax = plt.subplots(2,1,figsize=(8, 6)) | |
2072 | # |
|
2064 | # | |
2073 | # c = ax[0].pcolormesh(x, y, dat, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) |
|
2065 | # c = ax[0].pcolormesh(x, y, dat, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) | |
2074 | # #c = ax.pcolor( z.T , cmap ='gray', vmin = (m-2*o), vmax = (m+2*o)) |
|
2066 | # #c = ax.pcolor( z.T , cmap ='gray', vmin = (m-2*o), vmax = (m+2*o)) | |
2075 | # date_time = datetime.datetime.fromtimestamp(self.__buffer_times[0]).strftime('%Y-%m-%d %H:%M:%S.%f') |
|
2067 | # date_time = datetime.datetime.fromtimestamp(self.__buffer_times[0]).strftime('%Y-%m-%d %H:%M:%S.%f') | |
2076 | # #strftime('%Y-%m-%d %H:%M:%S') |
|
2068 | # #strftime('%Y-%m-%d %H:%M:%S') | |
2077 | # ax[0].set_title('Spectrum magnitude '+date_time) |
|
2069 | # ax[0].set_title('Spectrum magnitude '+date_time) | |
2078 | # fig.canvas.set_window_title('Spectrum magnitude {} '.format(self.n)+date_time) |
|
2070 | # fig.canvas.set_window_title('Spectrum magnitude {} '.format(self.n)+date_time) | |
2079 | # |
|
2071 | # | |
2080 | # |
|
2072 | # | |
2081 | # c = ax[1].pcolormesh(x, y, dat, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) |
|
2073 | # c = ax[1].pcolormesh(x, y, dat, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) | |
2082 | # fig.colorbar(c) |
|
2074 | # fig.colorbar(c) | |
2083 | # plt.show() |
|
2075 | # plt.show() | |
2084 |
|
2076 | |||
2085 | #print(data2.shape) |
|
2077 | #print(data2.shape) | |
2086 |
|
2078 | |||
2087 | data = data2 |
|
2079 | data = data2 | |
2088 |
|
2080 | |||
2089 | #cleanBlock = numpy.fft.ifft2(spectrum, axes=(0,2)).reshape() |
|
2081 | #cleanBlock = numpy.fft.ifft2(spectrum, axes=(0,2)).reshape() | |
2090 | ''' |
|
2082 | ''' | |
2091 | #print("cleanOutliersByBlock Done") |
|
2083 | #print("cleanOutliersByBlock Done") | |
2092 |
|
2084 | |||
2093 | return self.filterSatsProfiles() |
|
2085 | return self.filterSatsProfiles() | |
2094 |
|
2086 | |||
2095 |
|
2087 | |||
2096 |
|
2088 | |||
2097 | def fillBuffer(self, data, datatime): |
|
2089 | def fillBuffer(self, data, datatime): | |
2098 |
|
2090 | |||
2099 | if self.__profIndex == 0: |
|
2091 | if self.__profIndex == 0: | |
2100 | self.__buffer_data = data.copy() |
|
2092 | self.__buffer_data = data.copy() | |
2101 |
|
2093 | |||
2102 | else: |
|
2094 | else: | |
2103 | self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles |
|
2095 | self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles | |
2104 | self.__profIndex += 1 |
|
2096 | self.__profIndex += 1 | |
2105 | #self.__buffer_times.append(datatime) |
|
2097 | #self.__buffer_times.append(datatime) | |
2106 |
|
2098 | |||
2107 | def getData(self, data, datatime=None): |
|
2099 | def getData(self, data, datatime=None): | |
2108 |
|
2100 | |||
2109 | if self.__profIndex == 0: |
|
2101 | if self.__profIndex == 0: | |
2110 | self.__initime = datatime |
|
2102 | self.__initime = datatime | |
2111 |
|
2103 | |||
2112 |
|
2104 | |||
2113 | self.__dataReady = False |
|
2105 | self.__dataReady = False | |
2114 |
|
2106 | |||
2115 | self.fillBuffer(data, datatime) |
|
2107 | self.fillBuffer(data, datatime) | |
2116 | dataBlock = None |
|
2108 | dataBlock = None | |
2117 |
|
2109 | |||
2118 | if self.__profIndex == self.n: |
|
2110 | if self.__profIndex == self.n: | |
2119 | #print("apnd : ",data) |
|
2111 | #print("apnd : ",data) | |
2120 | #dataBlock = self.cleanOutliersByBlock() |
|
2112 | #dataBlock = self.cleanOutliersByBlock() | |
2121 | dataBlock = self.filterSatsProfiles() |
|
2113 | dataBlock = self.filterSatsProfiles() | |
2122 | self.__dataReady = True |
|
2114 | self.__dataReady = True | |
2123 |
|
2115 | |||
2124 | return dataBlock |
|
2116 | return dataBlock | |
2125 |
|
2117 | |||
2126 | if dataBlock is None: |
|
2118 | if dataBlock is None: | |
2127 | return None, None |
|
2119 | return None, None | |
2128 |
|
2120 | |||
2129 |
|
2121 | |||
2130 |
|
2122 | |||
2131 | return dataBlock |
|
2123 | return dataBlock | |
2132 |
|
2124 | |||
2133 | def releaseBlock(self): |
|
2125 | def releaseBlock(self): | |
2134 |
|
2126 | |||
2135 | if self.n % self.lenProfileOut != 0: |
|
2127 | if self.n % self.lenProfileOut != 0: | |
2136 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
2128 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) | |
2137 | return None |
|
2129 | return None | |
2138 |
|
2130 | |||
2139 | data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt |
|
2131 | data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt | |
2140 |
|
2132 | |||
2141 | self.init_prof = self.end_prof |
|
2133 | self.init_prof = self.end_prof | |
2142 | self.end_prof += self.lenProfileOut |
|
2134 | self.end_prof += self.lenProfileOut | |
2143 | #print("data release shape: ",dataOut.data.shape, self.end_prof) |
|
2135 | #print("data release shape: ",dataOut.data.shape, self.end_prof) | |
2144 | self.n_prof_released += 1 |
|
2136 | self.n_prof_released += 1 | |
2145 |
|
2137 | |||
2146 |
|
2138 | |||
2147 | #print("f_no_data ", dataOut.flagNoData) |
|
2139 | #print("f_no_data ", dataOut.flagNoData) | |
2148 | return data |
|
2140 | return data | |
2149 |
|
2141 | |||
2150 | def run(self, dataOut, n=None, navg=0.8, nProfilesOut=1, profile_margin=50,th_hist_outlier=3,minHei=None, maxHei=None): |
|
2142 | def run(self, dataOut, n=None, navg=0.8, nProfilesOut=1, profile_margin=50,th_hist_outlier=3,minHei=None, maxHei=None): | |
2151 | #print("run op buffer 2D",dataOut.ippSeconds) |
|
2143 | #print("run op buffer 2D",dataOut.ippSeconds) | |
2152 | # self.nChannels = dataOut.nChannels |
|
2144 | # self.nChannels = dataOut.nChannels | |
2153 | # self.nHeights = dataOut.nHeights |
|
2145 | # self.nHeights = dataOut.nHeights | |
2154 |
|
2146 | |||
2155 | if not self.isConfig: |
|
2147 | if not self.isConfig: | |
2156 | #print("init p idx: ", dataOut.profileIndex ) |
|
2148 | #print("init p idx: ", dataOut.profileIndex ) | |
2157 | self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin, |
|
2149 | self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin, | |
2158 | thHistOutlier=th_hist_outlier,minHei=minHei, maxHei=maxHei) |
|
2150 | thHistOutlier=th_hist_outlier,minHei=minHei, maxHei=maxHei) | |
2159 | self.isConfig = True |
|
2151 | self.isConfig = True | |
2160 |
|
2152 | |||
2161 | dataBlock = None |
|
2153 | dataBlock = None | |
2162 |
|
2154 | |||
2163 | if not dataOut.buffer_empty: #hay datos acumulados |
|
2155 | if not dataOut.buffer_empty: #hay datos acumulados | |
2164 |
|
2156 | |||
2165 | if self.init_prof == 0: |
|
2157 | if self.init_prof == 0: | |
2166 | self.n_prof_released = 0 |
|
2158 | self.n_prof_released = 0 | |
2167 | self.lenProfileOut = nProfilesOut |
|
2159 | self.lenProfileOut = nProfilesOut | |
2168 | dataOut.flagNoData = False |
|
2160 | dataOut.flagNoData = False | |
2169 | #print("tp 2 ",dataOut.data.shape) |
|
2161 | #print("tp 2 ",dataOut.data.shape) | |
2170 |
|
2162 | |||
2171 | self.init_prof = 0 |
|
2163 | self.init_prof = 0 | |
2172 | self.end_prof = self.lenProfileOut |
|
2164 | self.end_prof = self.lenProfileOut | |
2173 |
|
2165 | |||
2174 | dataOut.nProfiles = self.lenProfileOut |
|
2166 | dataOut.nProfiles = self.lenProfileOut | |
2175 | if nProfilesOut == 1: |
|
2167 | if nProfilesOut == 1: | |
2176 | dataOut.flagDataAsBlock = False |
|
2168 | dataOut.flagDataAsBlock = False | |
2177 | else: |
|
2169 | else: | |
2178 | dataOut.flagDataAsBlock = True |
|
2170 | dataOut.flagDataAsBlock = True | |
2179 | #print("prof: ",self.init_prof) |
|
2171 | #print("prof: ",self.init_prof) | |
2180 | dataOut.flagNoData = False |
|
2172 | dataOut.flagNoData = False | |
2181 | if numpy.isin(self.n_prof_released, self.outliers_IDs_list): |
|
2173 | if numpy.isin(self.n_prof_released, self.outliers_IDs_list): | |
2182 | #print("omitting: ", self.n_prof_released) |
|
2174 | #print("omitting: ", self.n_prof_released) | |
2183 | dataOut.flagNoData = True |
|
2175 | dataOut.flagNoData = True | |
2184 | dataOut.ippSeconds = self._ipp |
|
2176 | dataOut.ippSeconds = self._ipp | |
2185 | dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp |
|
2177 | dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp | |
2186 | # print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds) |
|
2178 | # print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds) | |
2187 | #dataOut.data = self.releaseBlock() |
|
2179 | #dataOut.data = self.releaseBlock() | |
2188 | #########################################################3 |
|
2180 | #########################################################3 | |
2189 | if self.n % self.lenProfileOut != 0: |
|
2181 | if self.n % self.lenProfileOut != 0: | |
2190 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
2182 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) | |
2191 | return None |
|
2183 | return None | |
2192 |
|
2184 | |||
2193 | dataOut.data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt |
|
2185 | dataOut.data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt | |
2194 |
|
2186 | |||
2195 | self.init_prof = self.end_prof |
|
2187 | self.init_prof = self.end_prof | |
2196 | self.end_prof += self.lenProfileOut |
|
2188 | self.end_prof += self.lenProfileOut | |
2197 | #print("data release shape: ",dataOut.data.shape, self.end_prof) |
|
2189 | #print("data release shape: ",dataOut.data.shape, self.end_prof) | |
2198 | self.n_prof_released += 1 |
|
2190 | self.n_prof_released += 1 | |
2199 |
|
2191 | |||
2200 | if self.end_prof >= (self.n +self.lenProfileOut): |
|
2192 | if self.end_prof >= (self.n +self.lenProfileOut): | |
2201 |
|
2193 | |||
2202 | self.init_prof = 0 |
|
2194 | self.init_prof = 0 | |
2203 | self.__profIndex = 0 |
|
2195 | self.__profIndex = 0 | |
2204 | self.buffer = None |
|
2196 | self.buffer = None | |
2205 | dataOut.buffer_empty = True |
|
2197 | dataOut.buffer_empty = True | |
2206 | self.outliers_IDs_list = [] |
|
2198 | self.outliers_IDs_list = [] | |
2207 | self.n_prof_released = 0 |
|
2199 | self.n_prof_released = 0 | |
2208 | dataOut.flagNoData = False #enviar ultimo aunque sea outlier :( |
|
2200 | dataOut.flagNoData = False #enviar ultimo aunque sea outlier :( | |
2209 | #print("cleaning...", dataOut.buffer_empty) |
|
2201 | #print("cleaning...", dataOut.buffer_empty) | |
2210 | dataOut.profileIndex = 0 #self.lenProfileOut |
|
2202 | dataOut.profileIndex = 0 #self.lenProfileOut | |
2211 | #################################################################### |
|
2203 | #################################################################### | |
2212 | return dataOut |
|
2204 | return dataOut | |
2213 |
|
2205 | |||
2214 |
|
2206 | |||
2215 | #print("tp 223 ",dataOut.data.shape) |
|
2207 | #print("tp 223 ",dataOut.data.shape) | |
2216 | dataOut.flagNoData = True |
|
2208 | dataOut.flagNoData = True | |
2217 |
|
2209 | |||
2218 |
|
2210 | |||
2219 |
|
2211 | |||
2220 | try: |
|
2212 | try: | |
2221 | #dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime) |
|
2213 | #dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime) | |
2222 | dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime) |
|
2214 | dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime) | |
2223 | self.__count_exec +=1 |
|
2215 | self.__count_exec +=1 | |
2224 | except Exception as e: |
|
2216 | except Exception as e: | |
2225 | print("Error getting profiles data",self.__count_exec ) |
|
2217 | print("Error getting profiles data",self.__count_exec ) | |
2226 | print(e) |
|
2218 | print(e) | |
2227 | sys.exit() |
|
2219 | sys.exit() | |
2228 |
|
2220 | |||
2229 | if self.__dataReady: |
|
2221 | if self.__dataReady: | |
2230 | #print("omitting: ", len(self.outliers_IDs_list)) |
|
2222 | #print("omitting: ", len(self.outliers_IDs_list)) | |
2231 | self.__count_exec = 0 |
|
2223 | self.__count_exec = 0 | |
2232 | #dataOut.data = |
|
2224 | #dataOut.data = | |
2233 | #self.buffer = numpy.flip(dataBlock, axis=1) |
|
2225 | #self.buffer = numpy.flip(dataBlock, axis=1) | |
2234 | self.buffer = dataBlock |
|
2226 | self.buffer = dataBlock | |
2235 | self.first_utcBlock = self.__initime |
|
2227 | self.first_utcBlock = self.__initime | |
2236 | dataOut.utctime = self.__initime |
|
2228 | dataOut.utctime = self.__initime | |
2237 | dataOut.nProfiles = self.__profIndex |
|
2229 | dataOut.nProfiles = self.__profIndex | |
2238 | #dataOut.flagNoData = False |
|
2230 | #dataOut.flagNoData = False | |
2239 | self.init_prof = 0 |
|
2231 | self.init_prof = 0 | |
2240 | self.__profIndex = 0 |
|
2232 | self.__profIndex = 0 | |
2241 | self.__initime = None |
|
2233 | self.__initime = None | |
2242 | dataBlock = None |
|
2234 | dataBlock = None | |
2243 | self.__buffer_times = [] |
|
2235 | self.__buffer_times = [] | |
2244 | dataOut.error = False |
|
2236 | dataOut.error = False | |
2245 | dataOut.useInputBuffer = True |
|
2237 | dataOut.useInputBuffer = True | |
2246 | dataOut.buffer_empty = False |
|
2238 | dataOut.buffer_empty = False | |
2247 | #print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights))) |
|
2239 | #print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights))) | |
2248 |
|
2240 | |||
2249 |
|
2241 | |||
2250 |
|
2242 | |||
2251 | #print(self.__count_exec) |
|
2243 | #print(self.__count_exec) | |
2252 |
|
2244 | |||
2253 | return dataOut |
|
2245 | return dataOut | |
2254 |
|
2246 | |||
2255 | class RemoveProfileSats(Operation): |
|
2247 | class RemoveProfileSats(Operation): | |
2256 | ''' |
|
2248 | ''' | |
2257 | Omite los perfiles contaminados con seΓ±al de satelites, |
|
2249 | Omite los perfiles contaminados con seΓ±al de satelites, | |
2258 | In: minHei = min_sat_range |
|
2250 | In: minHei = min_sat_range | |
2259 | max_sat_range |
|
2251 | max_sat_range | |
2260 | min_hei_ref |
|
2252 | min_hei_ref | |
2261 | max_hei_ref |
|
2253 | max_hei_ref | |
2262 | th = diference between profiles mean, ref and sats |
|
2254 | th = diference between profiles mean, ref and sats | |
2263 | Out: |
|
2255 | Out: | |
2264 | profile clean |
|
2256 | profile clean | |
2265 | ''' |
|
2257 | ''' | |
2266 |
|
2258 | |||
2267 | isConfig = False |
|
2259 | isConfig = False | |
2268 | min_sats = 0 |
|
2260 | min_sats = 0 | |
2269 | max_sats = 999999999 |
|
2261 | max_sats = 999999999 | |
2270 | min_ref= 0 |
|
2262 | min_ref= 0 | |
2271 | max_ref= 9999999999 |
|
2263 | max_ref= 9999999999 | |
2272 | needReshape = False |
|
2264 | needReshape = False | |
2273 | count = 0 |
|
2265 | count = 0 | |
2274 | thdB = 0 |
|
2266 | thdB = 0 | |
2275 | byRanges = False |
|
2267 | byRanges = False | |
2276 | min_sats = None |
|
2268 | min_sats = None | |
2277 | max_sats = None |
|
2269 | max_sats = None | |
2278 | noise = 0 |
|
2270 | noise = 0 | |
2279 |
|
2271 | |||
2280 | def __init__(self, **kwargs): |
|
2272 | def __init__(self, **kwargs): | |
2281 |
|
2273 | |||
2282 | Operation.__init__(self, **kwargs) |
|
2274 | Operation.__init__(self, **kwargs) | |
2283 | self.isConfig = False |
|
2275 | self.isConfig = False | |
2284 |
|
2276 | |||
2285 |
|
2277 | |||
2286 | def setup(self, dataOut, minHei, maxHei, minRef, maxRef, th, thdB, rangeHeiList): |
|
2278 | def setup(self, dataOut, minHei, maxHei, minRef, maxRef, th, thdB, rangeHeiList): | |
2287 |
|
2279 | |||
2288 | if rangeHeiList!=None: |
|
2280 | if rangeHeiList!=None: | |
2289 | self.byRanges = True |
|
2281 | self.byRanges = True | |
2290 | else: |
|
2282 | else: | |
2291 | if minHei==None or maxHei==None : |
|
2283 | if minHei==None or maxHei==None : | |
2292 | raise ValueError("Parameters heights are required") |
|
2284 | raise ValueError("Parameters heights are required") | |
2293 | if minRef==None or maxRef==None: |
|
2285 | if minRef==None or maxRef==None: | |
2294 | raise ValueError("Parameters heights are required") |
|
2286 | raise ValueError("Parameters heights are required") | |
2295 |
|
2287 | |||
2296 | if self.byRanges: |
|
2288 | if self.byRanges: | |
2297 | self.min_sats = [] |
|
2289 | self.min_sats = [] | |
2298 | self.max_sats = [] |
|
2290 | self.max_sats = [] | |
2299 | for min,max in rangeHeiList: |
|
2291 | for min,max in rangeHeiList: | |
2300 | a,b = getHei_index(min, max, dataOut.heightList) |
|
2292 | a,b = getHei_index(min, max, dataOut.heightList) | |
2301 | self.min_sats.append(a) |
|
2293 | self.min_sats.append(a) | |
2302 | self.max_sats.append(b) |
|
2294 | self.max_sats.append(b) | |
2303 | else: |
|
2295 | else: | |
2304 | self.min_sats, self.max_sats = getHei_index(minHei, maxHei, dataOut.heightList) |
|
2296 | self.min_sats, self.max_sats = getHei_index(minHei, maxHei, dataOut.heightList) | |
2305 | self.min_ref, self.max_ref = getHei_index(minRef, maxRef, dataOut.heightList) |
|
2297 | self.min_ref, self.max_ref = getHei_index(minRef, maxRef, dataOut.heightList) | |
2306 | self.th = th |
|
2298 | self.th = th | |
2307 | self.thdB = thdB |
|
2299 | self.thdB = thdB | |
2308 | self.isConfig = True |
|
2300 | self.isConfig = True | |
2309 |
|
2301 | |||
2310 |
|
2302 | |||
2311 | def compareRanges(self,data, minHei,maxHei): |
|
2303 | def compareRanges(self,data, minHei,maxHei): | |
2312 |
|
2304 | |||
2313 | # ref = data[0,self.min_ref:self.max_ref] * numpy.conjugate(data[0,self.min_ref:self.max_ref]) |
|
2305 | # ref = data[0,self.min_ref:self.max_ref] * numpy.conjugate(data[0,self.min_ref:self.max_ref]) | |
2314 | # p_ref = 10*numpy.log10(ref.real) |
|
2306 | # p_ref = 10*numpy.log10(ref.real) | |
2315 | # m_ref = numpy.mean(p_ref) |
|
2307 | # m_ref = numpy.mean(p_ref) | |
2316 |
|
2308 | |||
2317 | m_ref = self.noise |
|
2309 | m_ref = self.noise | |
2318 |
|
2310 | |||
2319 | sats = data[0,minHei:maxHei] * numpy.conjugate(data[0,minHei:maxHei]) |
|
2311 | sats = data[0,minHei:maxHei] * numpy.conjugate(data[0,minHei:maxHei]) | |
2320 | p_sats = 10*numpy.log10(sats.real) |
|
2312 | p_sats = 10*numpy.log10(sats.real) | |
2321 | m_sats = numpy.mean(p_sats) |
|
2313 | m_sats = numpy.mean(p_sats) | |
2322 |
|
2314 | |||
2323 | if m_sats > (m_ref + self.th): #and (m_sats > self.thdB): |
|
2315 | if m_sats > (m_ref + self.th): #and (m_sats > self.thdB): | |
2324 | #print("msats: ",m_sats," \tmRef: ", m_ref, "\t",(m_sats - m_ref)) |
|
2316 | #print("msats: ",m_sats," \tmRef: ", m_ref, "\t",(m_sats - m_ref)) | |
2325 | #print("Removing profiles...") |
|
2317 | #print("Removing profiles...") | |
2326 | return False |
|
2318 | return False | |
2327 |
|
2319 | |||
2328 | return True |
|
2320 | return True | |
2329 |
|
2321 | |||
2330 | def isProfileClean(self, data): |
|
2322 | def isProfileClean(self, data): | |
2331 | ''' |
|
2323 | ''' | |
2332 | Analiza solo 1 canal, y descarta todos... |
|
2324 | Analiza solo 1 canal, y descarta todos... | |
2333 | ''' |
|
2325 | ''' | |
2334 |
|
2326 | |||
2335 | clean = True |
|
2327 | clean = True | |
2336 |
|
2328 | |||
2337 | if self.byRanges: |
|
2329 | if self.byRanges: | |
2338 |
|
2330 | |||
2339 | for n in range(len(self.min_sats)): |
|
2331 | for n in range(len(self.min_sats)): | |
2340 | c = self.compareRanges(data,self.min_sats[n],self.max_sats[n]) |
|
2332 | c = self.compareRanges(data,self.min_sats[n],self.max_sats[n]) | |
2341 | clean = clean and c |
|
2333 | clean = clean and c | |
2342 | else: |
|
2334 | else: | |
2343 |
|
2335 | |||
2344 | clean = (self.compareRanges(data, self.min_sats,self.max_sats)) |
|
2336 | clean = (self.compareRanges(data, self.min_sats,self.max_sats)) | |
2345 |
|
2337 | |||
2346 | return clean |
|
2338 | return clean | |
2347 |
|
2339 | |||
2348 |
|
2340 | |||
2349 |
|
2341 | |||
2350 | def run(self, dataOut, minHei=None, maxHei=None, minRef=None, maxRef=None, th=5, thdB=65, rangeHeiList=None): |
|
2342 | def run(self, dataOut, minHei=None, maxHei=None, minRef=None, maxRef=None, th=5, thdB=65, rangeHeiList=None): | |
2351 | dataOut.flagNoData = True |
|
2343 | dataOut.flagNoData = True | |
2352 |
|
2344 | |||
2353 | if not self.isConfig: |
|
2345 | if not self.isConfig: | |
2354 | self.setup(dataOut, minHei, maxHei, minRef, maxRef, th, thdB, rangeHeiList) |
|
2346 | self.setup(dataOut, minHei, maxHei, minRef, maxRef, th, thdB, rangeHeiList) | |
2355 | self.isConfig = True |
|
2347 | self.isConfig = True | |
2356 | #print(self.min_sats,self.max_sats) |
|
2348 | #print(self.min_sats,self.max_sats) | |
2357 | if dataOut.flagDataAsBlock: |
|
2349 | if dataOut.flagDataAsBlock: | |
2358 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
2350 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
2359 |
|
2351 | |||
2360 | else: |
|
2352 | else: | |
2361 | self.noise =10*numpy.log10(dataOut.getNoisebyHildebrand(ymin_index=self.min_ref, ymax_index=self.max_ref)) |
|
2353 | self.noise =10*numpy.log10(dataOut.getNoisebyHildebrand(ymin_index=self.min_ref, ymax_index=self.max_ref)) | |
2362 | if not self.isProfileClean(dataOut.data): |
|
2354 | if not self.isProfileClean(dataOut.data): | |
2363 | return dataOut |
|
2355 | return dataOut | |
2364 | #dataOut.data = numpy.full((dataOut.nChannels,dataOut.nHeights),numpy.NAN) |
|
2356 | #dataOut.data = numpy.full((dataOut.nChannels,dataOut.nHeights),numpy.NAN) | |
2365 | #self.count += 1 |
|
2357 | #self.count += 1 | |
2366 |
|
2358 | |||
2367 | dataOut.flagNoData = False |
|
2359 | dataOut.flagNoData = False | |
2368 |
|
2360 | |||
2369 | return dataOut |
|
2361 | return dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now