##// END OF EJS Templates
Update PedestalInformation for continuous reading
jespinoza -
r1440:747a8eb02426
parent child
Show More
@@ -1,4833 +1,4708
1 import numpy,os,h5py
1
2 import os
3 import time
2 import math
4 import math
3 from scipy import optimize, interpolate, signal, stats, ndimage
5
4 import scipy
5 import re
6 import re
6 import datetime
7 import datetime
7 import copy
8 import copy
8 import sys
9 import sys
9 import importlib
10 import importlib
10 import itertools
11 import itertools
12
11 from multiprocessing import Pool, TimeoutError
13 from multiprocessing import Pool, TimeoutError
12 from multiprocessing.pool import ThreadPool
14 from multiprocessing.pool import ThreadPool
13 import time
15 import numpy
14
16 import glob
17 import scipy
18 import h5py
15 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
17 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
18 from scipy import asarray as ar,exp
22 from scipy import asarray as ar,exp
19 from scipy.optimize import curve_fit
23 from scipy.optimize import curve_fit
20 from schainpy.utils import log
24 from schainpy.utils import log
25 import schainpy.admin
21 import warnings
26 import warnings
22 from numpy import NaN
27 from scipy import optimize, interpolate, signal, stats, ndimage
23 from scipy.optimize.optimize import OptimizeWarning
28 from scipy.optimize.optimize import OptimizeWarning
24 warnings.filterwarnings('ignore')
29 warnings.filterwarnings('ignore')
25
30
26 from time import sleep
27
28 import matplotlib.pyplot as plt
29
31
30 SPEED_OF_LIGHT = 299792458
32 SPEED_OF_LIGHT = 299792458
31
33
32 '''solving pickling issue'''
34 '''solving pickling issue'''
33
35
34 def _pickle_method(method):
36 def _pickle_method(method):
35 func_name = method.__func__.__name__
37 func_name = method.__func__.__name__
36 obj = method.__self__
38 obj = method.__self__
37 cls = method.__self__.__class__
39 cls = method.__self__.__class__
38 return _unpickle_method, (func_name, obj, cls)
40 return _unpickle_method, (func_name, obj, cls)
39
41
40 def _unpickle_method(func_name, obj, cls):
42 def _unpickle_method(func_name, obj, cls):
41 for cls in cls.mro():
43 for cls in cls.mro():
42 try:
44 try:
43 func = cls.__dict__[func_name]
45 func = cls.__dict__[func_name]
44 except KeyError:
46 except KeyError:
45 pass
47 pass
46 else:
48 else:
47 break
49 break
48 return func.__get__(obj, cls)
50 return func.__get__(obj, cls)
49
51
50 def isNumber(str):
52 def isNumber(str):
51 try:
53 try:
52 float(str)
54 float(str)
53 return True
55 return True
54 except:
56 except:
55 return False
57 return False
56
58
57 class ParametersProc(ProcessingUnit):
59 class ParametersProc(ProcessingUnit):
58
60
59 METHODS = {}
61 METHODS = {}
60 nSeconds = None
62 nSeconds = None
61
63
62 def __init__(self):
64 def __init__(self):
63 ProcessingUnit.__init__(self)
65 ProcessingUnit.__init__(self)
64
66
65 # self.objectDict = {}
67 # self.objectDict = {}
66 self.buffer = None
68 self.buffer = None
67 self.firstdatatime = None
69 self.firstdatatime = None
68 self.profIndex = 0
70 self.profIndex = 0
69 self.dataOut = Parameters()
71 self.dataOut = Parameters()
70 self.setupReq = False #Agregar a todas las unidades de proc
72 self.setupReq = False #Agregar a todas las unidades de proc
71
73
72 def __updateObjFromInput(self):
74 def __updateObjFromInput(self):
73
75
74 self.dataOut.inputUnit = self.dataIn.type
76 self.dataOut.inputUnit = self.dataIn.type
75
77
76 self.dataOut.timeZone = self.dataIn.timeZone
78 self.dataOut.timeZone = self.dataIn.timeZone
77 self.dataOut.dstFlag = self.dataIn.dstFlag
79 self.dataOut.dstFlag = self.dataIn.dstFlag
78 self.dataOut.errorCount = self.dataIn.errorCount
80 self.dataOut.errorCount = self.dataIn.errorCount
79 self.dataOut.useLocalTime = self.dataIn.useLocalTime
81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
80
82
81 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
82 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
83 self.dataOut.channelList = self.dataIn.channelList
85 self.dataOut.channelList = self.dataIn.channelList
84 self.dataOut.heightList = self.dataIn.heightList
86 self.dataOut.heightList = self.dataIn.heightList
85 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
86 # self.dataOut.nHeights = self.dataIn.nHeights
88 # self.dataOut.nHeights = self.dataIn.nHeights
87 # self.dataOut.nChannels = self.dataIn.nChannels
89 # self.dataOut.nChannels = self.dataIn.nChannels
88 # self.dataOut.nBaud = self.dataIn.nBaud
90 # self.dataOut.nBaud = self.dataIn.nBaud
89 # self.dataOut.nCode = self.dataIn.nCode
91 # self.dataOut.nCode = self.dataIn.nCode
90 # self.dataOut.code = self.dataIn.code
92 # self.dataOut.code = self.dataIn.code
91 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
92 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
93 # self.dataOut.utctime = self.firstdatatime
95 # self.dataOut.utctime = self.firstdatatime
94 self.dataOut.utctime = self.dataIn.utctime
96 self.dataOut.utctime = self.dataIn.utctime
95 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
96 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
97 self.dataOut.nCohInt = self.dataIn.nCohInt
99 self.dataOut.nCohInt = self.dataIn.nCohInt
98 # self.dataOut.nIncohInt = 1
100 # self.dataOut.nIncohInt = 1
99 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
100 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
101 self.dataOut.timeInterval1 = self.dataIn.timeInterval
103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
102 self.dataOut.heightList = self.dataIn.heightList
104 self.dataOut.heightList = self.dataIn.heightList
103 self.dataOut.frequency = self.dataIn.frequency
105 self.dataOut.frequency = self.dataIn.frequency
104 # self.dataOut.noise = self.dataIn.noise
106 # self.dataOut.noise = self.dataIn.noise
105
107
106 def run(self):
108 def run(self):
107
109
108
110
109 #print("HOLA MUNDO SOY YO")
111 #print("HOLA MUNDO SOY YO")
110 #---------------------- Voltage Data ---------------------------
112 #---------------------- Voltage Data ---------------------------
111
113
112 if self.dataIn.type == "Voltage":
114 if self.dataIn.type == "Voltage":
113
115
114 self.__updateObjFromInput()
116 self.__updateObjFromInput()
115 self.dataOut.data_pre = self.dataIn.data.copy()
117 self.dataOut.data_pre = self.dataIn.data.copy()
116 self.dataOut.flagNoData = False
118 self.dataOut.flagNoData = False
117 self.dataOut.utctimeInit = self.dataIn.utctime
119 self.dataOut.utctimeInit = self.dataIn.utctime
118 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
119
121
120 if hasattr(self.dataIn, 'flagDataAsBlock'):
122 if hasattr(self.dataIn, 'flagDataAsBlock'):
121 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
122
124
123 if hasattr(self.dataIn, 'profileIndex'):
125 if hasattr(self.dataIn, 'profileIndex'):
124 self.dataOut.profileIndex = self.dataIn.profileIndex
126 self.dataOut.profileIndex = self.dataIn.profileIndex
125
127
126 if hasattr(self.dataIn, 'dataPP_POW'):
128 if hasattr(self.dataIn, 'dataPP_POW'):
127 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
128
130
129 if hasattr(self.dataIn, 'dataPP_POWER'):
131 if hasattr(self.dataIn, 'dataPP_POWER'):
130 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
131
133
132 if hasattr(self.dataIn, 'dataPP_DOP'):
134 if hasattr(self.dataIn, 'dataPP_DOP'):
133 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
134
136
135 if hasattr(self.dataIn, 'dataPP_SNR'):
137 if hasattr(self.dataIn, 'dataPP_SNR'):
136 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
137
139
138 if hasattr(self.dataIn, 'dataPP_WIDTH'):
140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
139 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
140 return
142 return
141
143
142 #---------------------- Spectra Data ---------------------------
144 #---------------------- Spectra Data ---------------------------
143
145
144 if self.dataIn.type == "Spectra":
146 if self.dataIn.type == "Spectra":
145 #print("que paso en spectra")
147 #print("que paso en spectra")
146 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
147 self.dataOut.data_spc = self.dataIn.data_spc
149 self.dataOut.data_spc = self.dataIn.data_spc
148 self.dataOut.data_cspc = self.dataIn.data_cspc
150 self.dataOut.data_cspc = self.dataIn.data_cspc
149 self.dataOut.nProfiles = self.dataIn.nProfiles
151 self.dataOut.nProfiles = self.dataIn.nProfiles
150 self.dataOut.nIncohInt = self.dataIn.nIncohInt
152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
151 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
152 self.dataOut.ippFactor = self.dataIn.ippFactor
154 self.dataOut.ippFactor = self.dataIn.ippFactor
153 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
154 self.dataOut.spc_noise = self.dataIn.getNoise()
156 self.dataOut.spc_noise = self.dataIn.getNoise()
155 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
156 # self.dataOut.normFactor = self.dataIn.normFactor
158 # self.dataOut.normFactor = self.dataIn.normFactor
157 self.dataOut.pairsList = self.dataIn.pairsList
159 self.dataOut.pairsList = self.dataIn.pairsList
158 self.dataOut.groupList = self.dataIn.pairsList
160 self.dataOut.groupList = self.dataIn.pairsList
159 self.dataOut.flagNoData = False
161 self.dataOut.flagNoData = False
160
162
161 if hasattr(self.dataIn, 'flagDataAsBlock'):
163 if hasattr(self.dataIn, 'flagDataAsBlock'):
162 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
163
165
164 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
165 self.dataOut.ChanDist = self.dataIn.ChanDist
167 self.dataOut.ChanDist = self.dataIn.ChanDist
166 else: self.dataOut.ChanDist = None
168 else: self.dataOut.ChanDist = None
167
169
168 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
169 # self.dataOut.VelRange = self.dataIn.VelRange
171 # self.dataOut.VelRange = self.dataIn.VelRange
170 #else: self.dataOut.VelRange = None
172 #else: self.dataOut.VelRange = None
171
173
172 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
173 self.dataOut.RadarConst = self.dataIn.RadarConst
175 self.dataOut.RadarConst = self.dataIn.RadarConst
174
176
175 if hasattr(self.dataIn, 'NPW'): #NPW
177 if hasattr(self.dataIn, 'NPW'): #NPW
176 self.dataOut.NPW = self.dataIn.NPW
178 self.dataOut.NPW = self.dataIn.NPW
177
179
178 if hasattr(self.dataIn, 'COFA'): #COFA
180 if hasattr(self.dataIn, 'COFA'): #COFA
179 self.dataOut.COFA = self.dataIn.COFA
181 self.dataOut.COFA = self.dataIn.COFA
180
182
181
183
182
184
183 #---------------------- Correlation Data ---------------------------
185 #---------------------- Correlation Data ---------------------------
184
186
185 if self.dataIn.type == "Correlation":
187 if self.dataIn.type == "Correlation":
186 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
187
189
188 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
189 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
190 self.dataOut.groupList = (acf_pairs, ccf_pairs)
192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
191
193
192 self.dataOut.abscissaList = self.dataIn.lagRange
194 self.dataOut.abscissaList = self.dataIn.lagRange
193 self.dataOut.noise = self.dataIn.noise
195 self.dataOut.noise = self.dataIn.noise
194 self.dataOut.data_snr = self.dataIn.SNR
196 self.dataOut.data_snr = self.dataIn.SNR
195 self.dataOut.flagNoData = False
197 self.dataOut.flagNoData = False
196 self.dataOut.nAvg = self.dataIn.nAvg
198 self.dataOut.nAvg = self.dataIn.nAvg
197
199
198 #---------------------- Parameters Data ---------------------------
200 #---------------------- Parameters Data ---------------------------
199
201
200 if self.dataIn.type == "Parameters":
202 if self.dataIn.type == "Parameters":
201 self.dataOut.copy(self.dataIn)
203 self.dataOut.copy(self.dataIn)
202 self.dataOut.flagNoData = False
204 self.dataOut.flagNoData = False
203 #print("yo si entre")
205 #print("yo si entre")
204
206
205 return True
207 return True
206
208
207 self.__updateObjFromInput()
209 self.__updateObjFromInput()
208 #print("yo si entre2")
210 #print("yo si entre2")
209
211
210 self.dataOut.utctimeInit = self.dataIn.utctime
212 self.dataOut.utctimeInit = self.dataIn.utctime
211 self.dataOut.paramInterval = self.dataIn.timeInterval
213 self.dataOut.paramInterval = self.dataIn.timeInterval
212 #print("soy spectra ",self.dataOut.utctimeInit)
214 #print("soy spectra ",self.dataOut.utctimeInit)
213 return
215 return
214
216
215
217
216 def target(tups):
218 def target(tups):
217
219
218 obj, args = tups
220 obj, args = tups
219
221
220 return obj.FitGau(args)
222 return obj.FitGau(args)
221
223
222 class RemoveWideGC(Operation):
224 class RemoveWideGC(Operation):
223 ''' This class remove the wide clutter and replace it with a simple interpolation points
225 ''' This class remove the wide clutter and replace it with a simple interpolation points
224 This mainly applies to CLAIRE radar
226 This mainly applies to CLAIRE radar
225
227
226 ClutterWidth : Width to look for the clutter peak
228 ClutterWidth : Width to look for the clutter peak
227
229
228 Input:
230 Input:
229
231
230 self.dataOut.data_pre : SPC and CSPC
232 self.dataOut.data_pre : SPC and CSPC
231 self.dataOut.spc_range : To select wind and rainfall velocities
233 self.dataOut.spc_range : To select wind and rainfall velocities
232
234
233 Affected:
235 Affected:
234
236
235 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
236
238
237 Written by D. ScipiΓ³n 25.02.2021
239 Written by D. ScipiΓ³n 25.02.2021
238 '''
240 '''
239 def __init__(self):
241 def __init__(self):
240 Operation.__init__(self)
242 Operation.__init__(self)
241 self.i = 0
243 self.i = 0
242 self.ich = 0
244 self.ich = 0
243 self.ir = 0
245 self.ir = 0
244
246
245 def run(self, dataOut, ClutterWidth=2.5):
247 def run(self, dataOut, ClutterWidth=2.5):
246 # print ('Entering RemoveWideGC ... ')
248 # print ('Entering RemoveWideGC ... ')
247
249
248 self.spc = dataOut.data_pre[0].copy()
250 self.spc = dataOut.data_pre[0].copy()
249 self.spc_out = dataOut.data_pre[0].copy()
251 self.spc_out = dataOut.data_pre[0].copy()
250 self.Num_Chn = self.spc.shape[0]
252 self.Num_Chn = self.spc.shape[0]
251 self.Num_Hei = self.spc.shape[2]
253 self.Num_Hei = self.spc.shape[2]
252 VelRange = dataOut.spc_range[2][:-1]
254 VelRange = dataOut.spc_range[2][:-1]
253 dv = VelRange[1]-VelRange[0]
255 dv = VelRange[1]-VelRange[0]
254
256
255 # Find the velocities that corresponds to zero
257 # Find the velocities that corresponds to zero
256 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
257
259
258 # Removing novalid data from the spectra
260 # Removing novalid data from the spectra
259 for ich in range(self.Num_Chn) :
261 for ich in range(self.Num_Chn) :
260 for ir in range(self.Num_Hei) :
262 for ir in range(self.Num_Hei) :
261 # Estimate the noise at each range
263 # Estimate the noise at each range
262 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
263
265
264 # Removing the noise floor at each range
266 # Removing the noise floor at each range
265 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
266 self.spc[ich,novalid,ir] = HSn
268 self.spc[ich,novalid,ir] = HSn
267
269
268 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
269 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
270 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
271 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
272 continue
274 continue
273 junk3 = numpy.squeeze(numpy.diff(j1index))
275 junk3 = numpy.squeeze(numpy.diff(j1index))
274 junk4 = numpy.squeeze(numpy.diff(j2index))
276 junk4 = numpy.squeeze(numpy.diff(j2index))
275
277
276 valleyindex = j2index[numpy.where(junk4>1)]
278 valleyindex = j2index[numpy.where(junk4>1)]
277 peakindex = j1index[numpy.where(junk3>1)]
279 peakindex = j1index[numpy.where(junk3>1)]
278
280
279 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
280 if numpy.size(isvalid) == 0 :
282 if numpy.size(isvalid) == 0 :
281 continue
283 continue
282 if numpy.size(isvalid) >1 :
284 if numpy.size(isvalid) >1 :
283 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
284 isvalid = isvalid[vindex]
286 isvalid = isvalid[vindex]
285
287
286 # clutter peak
288 # clutter peak
287 gcpeak = peakindex[isvalid]
289 gcpeak = peakindex[isvalid]
288 vl = numpy.where(valleyindex < gcpeak)
290 vl = numpy.where(valleyindex < gcpeak)
289 if numpy.size(vl) == 0:
291 if numpy.size(vl) == 0:
290 continue
292 continue
291 gcvl = valleyindex[vl[0][-1]]
293 gcvl = valleyindex[vl[0][-1]]
292 vr = numpy.where(valleyindex > gcpeak)
294 vr = numpy.where(valleyindex > gcpeak)
293 if numpy.size(vr) == 0:
295 if numpy.size(vr) == 0:
294 continue
296 continue
295 gcvr = valleyindex[vr[0][0]]
297 gcvr = valleyindex[vr[0][0]]
296
298
297 # Removing the clutter
299 # Removing the clutter
298 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
299 gcindex = gc_values[gcvl+1:gcvr-1]
301 gcindex = gc_values[gcvl+1:gcvr-1]
300 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
301
303
302 dataOut.data_pre[0] = self.spc_out
304 dataOut.data_pre[0] = self.spc_out
303 #print ('Leaving RemoveWideGC ... ')
305 #print ('Leaving RemoveWideGC ... ')
304 return dataOut
306 return dataOut
305
307
306 class SpectralFilters(Operation):
308 class SpectralFilters(Operation):
307 ''' This class allows to replace the novalid values with noise for each channel
309 ''' This class allows to replace the novalid values with noise for each channel
308 This applies to CLAIRE RADAR
310 This applies to CLAIRE RADAR
309
311
310 PositiveLimit : RightLimit of novalid data
312 PositiveLimit : RightLimit of novalid data
311 NegativeLimit : LeftLimit of novalid data
313 NegativeLimit : LeftLimit of novalid data
312
314
313 Input:
315 Input:
314
316
315 self.dataOut.data_pre : SPC and CSPC
317 self.dataOut.data_pre : SPC and CSPC
316 self.dataOut.spc_range : To select wind and rainfall velocities
318 self.dataOut.spc_range : To select wind and rainfall velocities
317
319
318 Affected:
320 Affected:
319
321
320 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
321
323
322 Written by D. ScipiΓ³n 29.01.2021
324 Written by D. ScipiΓ³n 29.01.2021
323 '''
325 '''
324 def __init__(self):
326 def __init__(self):
325 Operation.__init__(self)
327 Operation.__init__(self)
326 self.i = 0
328 self.i = 0
327
329
328 def run(self, dataOut, ):
330 def run(self, dataOut, ):
329
331
330 self.spc = dataOut.data_pre[0].copy()
332 self.spc = dataOut.data_pre[0].copy()
331 self.Num_Chn = self.spc.shape[0]
333 self.Num_Chn = self.spc.shape[0]
332 VelRange = dataOut.spc_range[2]
334 VelRange = dataOut.spc_range[2]
333
335
334 # novalid corresponds to data within the Negative and PositiveLimit
336 # novalid corresponds to data within the Negative and PositiveLimit
335
337
336
338
337 # Removing novalid data from the spectra
339 # Removing novalid data from the spectra
338 for i in range(self.Num_Chn):
340 for i in range(self.Num_Chn):
339 self.spc[i,novalid,:] = dataOut.noise[i]
341 self.spc[i,novalid,:] = dataOut.noise[i]
340 dataOut.data_pre[0] = self.spc
342 dataOut.data_pre[0] = self.spc
341 return dataOut
343 return dataOut
342
344
343 class GaussianFit(Operation):
345 class GaussianFit(Operation):
344
346
345 '''
347 '''
346 Function that fit of one and two generalized gaussians (gg) based
348 Function that fit of one and two generalized gaussians (gg) based
347 on the PSD shape across an "power band" identified from a cumsum of
349 on the PSD shape across an "power band" identified from a cumsum of
348 the measured spectrum - noise.
350 the measured spectrum - noise.
349
351
350 Input:
352 Input:
351 self.dataOut.data_pre : SelfSpectra
353 self.dataOut.data_pre : SelfSpectra
352
354
353 Output:
355 Output:
354 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
355
357
356 '''
358 '''
357 def __init__(self):
359 def __init__(self):
358 Operation.__init__(self)
360 Operation.__init__(self)
359 self.i=0
361 self.i=0
360
362
361
363
362 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
363 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
364 """This routine will find a couple of generalized Gaussians to a power spectrum
366 """This routine will find a couple of generalized Gaussians to a power spectrum
365 methods: generalized, squared
367 methods: generalized, squared
366 input: spc
368 input: spc
367 output:
369 output:
368 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
369 """
371 """
370 print ('Entering ',method,' double Gaussian fit')
372 print ('Entering ',method,' double Gaussian fit')
371 self.spc = dataOut.data_pre[0].copy()
373 self.spc = dataOut.data_pre[0].copy()
372 self.Num_Hei = self.spc.shape[2]
374 self.Num_Hei = self.spc.shape[2]
373 self.Num_Bin = self.spc.shape[1]
375 self.Num_Bin = self.spc.shape[1]
374 self.Num_Chn = self.spc.shape[0]
376 self.Num_Chn = self.spc.shape[0]
375
377
376 start_time = time.time()
378 start_time = time.time()
377
379
378 pool = Pool(processes=self.Num_Chn)
380 pool = Pool(processes=self.Num_Chn)
379 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
380 objs = [self for __ in range(self.Num_Chn)]
382 objs = [self for __ in range(self.Num_Chn)]
381 attrs = list(zip(objs, args))
383 attrs = list(zip(objs, args))
382 DGauFitParam = pool.map(target, attrs)
384 DGauFitParam = pool.map(target, attrs)
383 # Parameters:
385 # Parameters:
384 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
385 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
386
388
387 # Double Gaussian Curves
389 # Double Gaussian Curves
388 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
389 gau0[:] = numpy.NaN
391 gau0[:] = numpy.NaN
390 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
391 gau1[:] = numpy.NaN
393 gau1[:] = numpy.NaN
392 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
393 for iCh in range(self.Num_Chn):
395 for iCh in range(self.Num_Chn):
394 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
395 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
396 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
397 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
398 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
399 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
400 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
401 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
402 if method == 'genealized':
404 if method == 'genealized':
403 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
404 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
405 elif method == 'squared':
407 elif method == 'squared':
406 p0 = 2.
408 p0 = 2.
407 p1 = 2.
409 p1 = 2.
408 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
409 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
410 dataOut.GaussFit0 = gau0
412 dataOut.GaussFit0 = gau0
411 dataOut.GaussFit1 = gau1
413 dataOut.GaussFit1 = gau1
412
414
413 print('Leaving ',method ,' double Gaussian fit')
415 print('Leaving ',method ,' double Gaussian fit')
414 return dataOut
416 return dataOut
415
417
416 def FitGau(self, X):
418 def FitGau(self, X):
417 # print('Entering FitGau')
419 # print('Entering FitGau')
418 # Assigning the variables
420 # Assigning the variables
419 Vrange, ch, wnoise, num_intg, SNRlimit = X
421 Vrange, ch, wnoise, num_intg, SNRlimit = X
420 # Noise Limits
422 # Noise Limits
421 noisebl = wnoise * 0.9
423 noisebl = wnoise * 0.9
422 noisebh = wnoise * 1.1
424 noisebh = wnoise * 1.1
423 # Radar Velocity
425 # Radar Velocity
424 Va = max(Vrange)
426 Va = max(Vrange)
425 deltav = Vrange[1] - Vrange[0]
427 deltav = Vrange[1] - Vrange[0]
426 x = numpy.arange(self.Num_Bin)
428 x = numpy.arange(self.Num_Bin)
427
429
428 # print ('stop 0')
430 # print ('stop 0')
429
431
430 # 5 parameters, 2 Gaussians
432 # 5 parameters, 2 Gaussians
431 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
432 DGauFitParam[:] = numpy.NaN
434 DGauFitParam[:] = numpy.NaN
433
435
434 # SPCparam = []
436 # SPCparam = []
435 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
436 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
437 # SPC_ch1[:] = 0 #numpy.NaN
439 # SPC_ch1[:] = 0 #numpy.NaN
438 # SPC_ch2[:] = 0 #numpy.NaN
440 # SPC_ch2[:] = 0 #numpy.NaN
439 # print ('stop 1')
441 # print ('stop 1')
440 for ht in range(self.Num_Hei):
442 for ht in range(self.Num_Hei):
441 # print (ht)
443 # print (ht)
442 # print ('stop 2')
444 # print ('stop 2')
443 # Spectra at each range
445 # Spectra at each range
444 spc = numpy.asarray(self.spc)[ch,:,ht]
446 spc = numpy.asarray(self.spc)[ch,:,ht]
445 snr = ( spc.mean() - wnoise ) / wnoise
447 snr = ( spc.mean() - wnoise ) / wnoise
446 snrdB = 10.*numpy.log10(snr)
448 snrdB = 10.*numpy.log10(snr)
447
449
448 #print ('stop 3')
450 #print ('stop 3')
449 if snrdB < SNRlimit :
451 if snrdB < SNRlimit :
450 # snr = numpy.NaN
452 # snr = numpy.NaN
451 # SPC_ch1[:,ht] = 0#numpy.NaN
453 # SPC_ch1[:,ht] = 0#numpy.NaN
452 # SPC_ch1[:,ht] = 0#numpy.NaN
454 # SPC_ch1[:,ht] = 0#numpy.NaN
453 # SPCparam = (SPC_ch1,SPC_ch2)
455 # SPCparam = (SPC_ch1,SPC_ch2)
454 # print ('SNR less than SNRth')
456 # print ('SNR less than SNRth')
455 continue
457 continue
456 # wnoise = hildebrand_sekhon(spc,num_intg)
458 # wnoise = hildebrand_sekhon(spc,num_intg)
457 # print ('stop 2.01')
459 # print ('stop 2.01')
458 #############################################
460 #############################################
459 # normalizing spc and noise
461 # normalizing spc and noise
460 # This part differs from gg1
462 # This part differs from gg1
461 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
462 #spc = spc / spc_norm_max
464 #spc = spc / spc_norm_max
463 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
464 #############################################
466 #############################################
465
467
466 # print ('stop 2.1')
468 # print ('stop 2.1')
467 fatspectra=1.0
469 fatspectra=1.0
468 # noise per channel.... we might want to use the noise at each range
470 # noise per channel.... we might want to use the noise at each range
469
471
470 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
471 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
472 #if wnoise>1.1*pnoise: # to be tested later
474 #if wnoise>1.1*pnoise: # to be tested later
473 # wnoise=pnoise
475 # wnoise=pnoise
474 # noisebl = wnoise*0.9
476 # noisebl = wnoise*0.9
475 # noisebh = wnoise*1.1
477 # noisebh = wnoise*1.1
476 spc = spc - wnoise # signal
478 spc = spc - wnoise # signal
477
479
478 # print ('stop 2.2')
480 # print ('stop 2.2')
479 minx = numpy.argmin(spc)
481 minx = numpy.argmin(spc)
480 #spcs=spc.copy()
482 #spcs=spc.copy()
481 spcs = numpy.roll(spc,-minx)
483 spcs = numpy.roll(spc,-minx)
482 cum = numpy.cumsum(spcs)
484 cum = numpy.cumsum(spcs)
483 # tot_noise = wnoise * self.Num_Bin #64;
485 # tot_noise = wnoise * self.Num_Bin #64;
484
486
485 # print ('stop 2.3')
487 # print ('stop 2.3')
486 # snr = sum(spcs) / tot_noise
488 # snr = sum(spcs) / tot_noise
487 # snrdB = 10.*numpy.log10(snr)
489 # snrdB = 10.*numpy.log10(snr)
488 #print ('stop 3')
490 #print ('stop 3')
489 # if snrdB < SNRlimit :
491 # if snrdB < SNRlimit :
490 # snr = numpy.NaN
492 # snr = numpy.NaN
491 # SPC_ch1[:,ht] = 0#numpy.NaN
493 # SPC_ch1[:,ht] = 0#numpy.NaN
492 # SPC_ch1[:,ht] = 0#numpy.NaN
494 # SPC_ch1[:,ht] = 0#numpy.NaN
493 # SPCparam = (SPC_ch1,SPC_ch2)
495 # SPCparam = (SPC_ch1,SPC_ch2)
494 # print ('SNR less than SNRth')
496 # print ('SNR less than SNRth')
495 # continue
497 # continue
496
498
497
499
498 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
499 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
500 # print ('stop 4')
502 # print ('stop 4')
501 cummax = max(cum)
503 cummax = max(cum)
502 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
503 cumlo = cummax * epsi
505 cumlo = cummax * epsi
504 cumhi = cummax * (1-epsi)
506 cumhi = cummax * (1-epsi)
505 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
506
508
507 # print ('stop 5')
509 # print ('stop 5')
508 if len(powerindex) < 1:# case for powerindex 0
510 if len(powerindex) < 1:# case for powerindex 0
509 # print ('powerindex < 1')
511 # print ('powerindex < 1')
510 continue
512 continue
511 powerlo = powerindex[0]
513 powerlo = powerindex[0]
512 powerhi = powerindex[-1]
514 powerhi = powerindex[-1]
513 powerwidth = powerhi-powerlo
515 powerwidth = powerhi-powerlo
514 if powerwidth <= 1:
516 if powerwidth <= 1:
515 # print('powerwidth <= 1')
517 # print('powerwidth <= 1')
516 continue
518 continue
517
519
518 # print ('stop 6')
520 # print ('stop 6')
519 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
520 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
521 midpeak = (firstpeak + secondpeak)/2.
523 midpeak = (firstpeak + secondpeak)/2.
522 firstamp = spcs[int(firstpeak)]
524 firstamp = spcs[int(firstpeak)]
523 secondamp = spcs[int(secondpeak)]
525 secondamp = spcs[int(secondpeak)]
524 midamp = spcs[int(midpeak)]
526 midamp = spcs[int(midpeak)]
525
527
526 y_data = spc + wnoise
528 y_data = spc + wnoise
527
529
528 ''' single Gaussian '''
530 ''' single Gaussian '''
529 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
530 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
531 power0 = 2.
533 power0 = 2.
532 amplitude0 = midamp
534 amplitude0 = midamp
533 state0 = [shift0,width0,amplitude0,power0,wnoise]
535 state0 = [shift0,width0,amplitude0,power0,wnoise]
534 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
535 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
536 # print ('stop 7.1')
538 # print ('stop 7.1')
537 # print (bnds)
539 # print (bnds)
538
540
539 chiSq1=lsq1[1]
541 chiSq1=lsq1[1]
540
542
541 # print ('stop 8')
543 # print ('stop 8')
542 if fatspectra<1.0 and powerwidth<4:
544 if fatspectra<1.0 and powerwidth<4:
543 choice=0
545 choice=0
544 Amplitude0=lsq1[0][2]
546 Amplitude0=lsq1[0][2]
545 shift0=lsq1[0][0]
547 shift0=lsq1[0][0]
546 width0=lsq1[0][1]
548 width0=lsq1[0][1]
547 p0=lsq1[0][3]
549 p0=lsq1[0][3]
548 Amplitude1=0.
550 Amplitude1=0.
549 shift1=0.
551 shift1=0.
550 width1=0.
552 width1=0.
551 p1=0.
553 p1=0.
552 noise=lsq1[0][4]
554 noise=lsq1[0][4]
553 #return (numpy.array([shift0,width0,Amplitude0,p0]),
555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
554 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
555
557
556 # print ('stop 9')
558 # print ('stop 9')
557 ''' two Gaussians '''
559 ''' two Gaussians '''
558 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
559 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
560 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
561 width0 = powerwidth/6.
563 width0 = powerwidth/6.
562 width1 = width0
564 width1 = width0
563 power0 = 2.
565 power0 = 2.
564 power1 = power0
566 power1 = power0
565 amplitude0 = firstamp
567 amplitude0 = firstamp
566 amplitude1 = secondamp
568 amplitude1 = secondamp
567 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
568 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
569 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
570 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
571
573
572 # print ('stop 10')
574 # print ('stop 10')
573 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
574
576
575 # print ('stop 11')
577 # print ('stop 11')
576 chiSq2 = lsq2[1]
578 chiSq2 = lsq2[1]
577
579
578 # print ('stop 12')
580 # print ('stop 12')
579
581
580 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
581
583
582 # print ('stop 13')
584 # print ('stop 13')
583 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
584 if oneG:
586 if oneG:
585 choice = 0
587 choice = 0
586 else:
588 else:
587 w1 = lsq2[0][1]; w2 = lsq2[0][5]
589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
588 a1 = lsq2[0][2]; a2 = lsq2[0][6]
590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
589 p1 = lsq2[0][3]; p2 = lsq2[0][7]
591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
590 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
591 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
592 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
593
595
594 if gp1>gp2:
596 if gp1>gp2:
595 if a1>0.7*a2:
597 if a1>0.7*a2:
596 choice = 1
598 choice = 1
597 else:
599 else:
598 choice = 2
600 choice = 2
599 elif gp2>gp1:
601 elif gp2>gp1:
600 if a2>0.7*a1:
602 if a2>0.7*a1:
601 choice = 2
603 choice = 2
602 else:
604 else:
603 choice = 1
605 choice = 1
604 else:
606 else:
605 choice = numpy.argmax([a1,a2])+1
607 choice = numpy.argmax([a1,a2])+1
606 #else:
608 #else:
607 #choice=argmin([std2a,std2b])+1
609 #choice=argmin([std2a,std2b])+1
608
610
609 else: # with low SNR go to the most energetic peak
611 else: # with low SNR go to the most energetic peak
610 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
611
613
612 # print ('stop 14')
614 # print ('stop 14')
613 shift0 = lsq2[0][0]
615 shift0 = lsq2[0][0]
614 vel0 = Vrange[0] + shift0 * deltav
616 vel0 = Vrange[0] + shift0 * deltav
615 shift1 = lsq2[0][4]
617 shift1 = lsq2[0][4]
616 # vel1=Vrange[0] + shift1 * deltav
618 # vel1=Vrange[0] + shift1 * deltav
617
619
618 # max_vel = 1.0
620 # max_vel = 1.0
619 # Va = max(Vrange)
621 # Va = max(Vrange)
620 # deltav = Vrange[1]-Vrange[0]
622 # deltav = Vrange[1]-Vrange[0]
621 # print ('stop 15')
623 # print ('stop 15')
622 #first peak will be 0, second peak will be 1
624 #first peak will be 0, second peak will be 1
623 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
624 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
625 shift0 = lsq2[0][0]
627 shift0 = lsq2[0][0]
626 width0 = lsq2[0][1]
628 width0 = lsq2[0][1]
627 Amplitude0 = lsq2[0][2]
629 Amplitude0 = lsq2[0][2]
628 p0 = lsq2[0][3]
630 p0 = lsq2[0][3]
629
631
630 shift1 = lsq2[0][4]
632 shift1 = lsq2[0][4]
631 width1 = lsq2[0][5]
633 width1 = lsq2[0][5]
632 Amplitude1 = lsq2[0][6]
634 Amplitude1 = lsq2[0][6]
633 p1 = lsq2[0][7]
635 p1 = lsq2[0][7]
634 noise = lsq2[0][8]
636 noise = lsq2[0][8]
635 else:
637 else:
636 shift1 = lsq2[0][0]
638 shift1 = lsq2[0][0]
637 width1 = lsq2[0][1]
639 width1 = lsq2[0][1]
638 Amplitude1 = lsq2[0][2]
640 Amplitude1 = lsq2[0][2]
639 p1 = lsq2[0][3]
641 p1 = lsq2[0][3]
640
642
641 shift0 = lsq2[0][4]
643 shift0 = lsq2[0][4]
642 width0 = lsq2[0][5]
644 width0 = lsq2[0][5]
643 Amplitude0 = lsq2[0][6]
645 Amplitude0 = lsq2[0][6]
644 p0 = lsq2[0][7]
646 p0 = lsq2[0][7]
645 noise = lsq2[0][8]
647 noise = lsq2[0][8]
646
648
647 if Amplitude0<0.05: # in case the peak is noise
649 if Amplitude0<0.05: # in case the peak is noise
648 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
649 if Amplitude1<0.05:
651 if Amplitude1<0.05:
650 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
651
653
652 # print ('stop 16 ')
654 # print ('stop 16 ')
653 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
654 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
655 # SPCparam = (SPC_ch1,SPC_ch2)
657 # SPCparam = (SPC_ch1,SPC_ch2)
656
658
657 DGauFitParam[0,ht,0] = noise
659 DGauFitParam[0,ht,0] = noise
658 DGauFitParam[0,ht,1] = noise
660 DGauFitParam[0,ht,1] = noise
659 DGauFitParam[1,ht,0] = Amplitude0
661 DGauFitParam[1,ht,0] = Amplitude0
660 DGauFitParam[1,ht,1] = Amplitude1
662 DGauFitParam[1,ht,1] = Amplitude1
661 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
662 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
663 DGauFitParam[3,ht,0] = width0 * deltav
665 DGauFitParam[3,ht,0] = width0 * deltav
664 DGauFitParam[3,ht,1] = width1 * deltav
666 DGauFitParam[3,ht,1] = width1 * deltav
665 DGauFitParam[4,ht,0] = p0
667 DGauFitParam[4,ht,0] = p0
666 DGauFitParam[4,ht,1] = p1
668 DGauFitParam[4,ht,1] = p1
667
669
668 # print (DGauFitParam.shape)
670 # print (DGauFitParam.shape)
669 # print ('Leaving FitGau')
671 # print ('Leaving FitGau')
670 return DGauFitParam
672 return DGauFitParam
671 # return SPCparam
673 # return SPCparam
672 # return GauSPC
674 # return GauSPC
673
675
674 def y_model1(self,x,state):
676 def y_model1(self,x,state):
675 shift0, width0, amplitude0, power0, noise = state
677 shift0, width0, amplitude0, power0, noise = state
676 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
677 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
678 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
679 return model0 + model0u + model0d + noise
681 return model0 + model0u + model0d + noise
680
682
681 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
682 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
683 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
684 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
685 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
686
688
687 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
688 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
689 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
690 return model0 + model0u + model0d + model1 + model1u + model1d + noise
692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
691
693
692 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
693
695
694 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
695
697
696 def misfit2(self,state,y_data,x,num_intg):
698 def misfit2(self,state,y_data,x,num_intg):
697 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
698
700
699
701
700
702
701 class PrecipitationProc(Operation):
703 class PrecipitationProc(Operation):
702
704
703 '''
705 '''
704 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
705
707
706 Input:
708 Input:
707 self.dataOut.data_pre : SelfSpectra
709 self.dataOut.data_pre : SelfSpectra
708
710
709 Output:
711 Output:
710
712
711 self.dataOut.data_output : Reflectivity factor, rainfall Rate
713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
712
714
713
715
714 Parameters affected:
716 Parameters affected:
715 '''
717 '''
716
718
717 def __init__(self):
719 def __init__(self):
718 Operation.__init__(self)
720 Operation.__init__(self)
719 self.i=0
721 self.i=0
720
722
721 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
722 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
723
725
724 # print ('Entering PrecepitationProc ... ')
726 # print ('Entering PrecepitationProc ... ')
725
727
726 if radar == "MIRA35C" :
728 if radar == "MIRA35C" :
727
729
728 self.spc = dataOut.data_pre[0].copy()
730 self.spc = dataOut.data_pre[0].copy()
729 self.Num_Hei = self.spc.shape[2]
731 self.Num_Hei = self.spc.shape[2]
730 self.Num_Bin = self.spc.shape[1]
732 self.Num_Bin = self.spc.shape[1]
731 self.Num_Chn = self.spc.shape[0]
733 self.Num_Chn = self.spc.shape[0]
732 Ze = self.dBZeMODE2(dataOut)
734 Ze = self.dBZeMODE2(dataOut)
733
735
734 else:
736 else:
735
737
736 self.spc = dataOut.data_pre[0].copy()
738 self.spc = dataOut.data_pre[0].copy()
737
739
738 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
739 self.spc[:,:,0:7]= numpy.NaN
741 self.spc[:,:,0:7]= numpy.NaN
740
742
741 self.Num_Hei = self.spc.shape[2]
743 self.Num_Hei = self.spc.shape[2]
742 self.Num_Bin = self.spc.shape[1]
744 self.Num_Bin = self.spc.shape[1]
743 self.Num_Chn = self.spc.shape[0]
745 self.Num_Chn = self.spc.shape[0]
744
746
745 VelRange = dataOut.spc_range[2]
747 VelRange = dataOut.spc_range[2]
746
748
747 ''' Se obtiene la constante del RADAR '''
749 ''' Se obtiene la constante del RADAR '''
748
750
749 self.Pt = Pt
751 self.Pt = Pt
750 self.Gt = Gt
752 self.Gt = Gt
751 self.Gr = Gr
753 self.Gr = Gr
752 self.Lambda = Lambda
754 self.Lambda = Lambda
753 self.aL = aL
755 self.aL = aL
754 self.tauW = tauW
756 self.tauW = tauW
755 self.ThetaT = ThetaT
757 self.ThetaT = ThetaT
756 self.ThetaR = ThetaR
758 self.ThetaR = ThetaR
757 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
758 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
759 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
760
762
761 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
762 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
763 RadarConstant = 10e-26 * Numerator / Denominator #
765 RadarConstant = 10e-26 * Numerator / Denominator #
764 ExpConstant = 10**(40/10) #Constante Experimental
766 ExpConstant = 10**(40/10) #Constante Experimental
765
767
766 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
767 for i in range(self.Num_Chn):
769 for i in range(self.Num_Chn):
768 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
769 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
770
772
771 SPCmean = numpy.mean(SignalPower, 0)
773 SPCmean = numpy.mean(SignalPower, 0)
772 Pr = SPCmean[:,:]/dataOut.normFactor
774 Pr = SPCmean[:,:]/dataOut.normFactor
773
775
774 # Declaring auxiliary variables
776 # Declaring auxiliary variables
775 Range = dataOut.heightList*1000. #Range in m
777 Range = dataOut.heightList*1000. #Range in m
776 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
777 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
778 zMtrx = rMtrx+Altitude
780 zMtrx = rMtrx+Altitude
779 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
780 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
781
783
782 # height dependence to air density Foote and Du Toit (1969)
784 # height dependence to air density Foote and Du Toit (1969)
783 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
784 VMtrx = VelMtrx / delv_z #Normalized velocity
786 VMtrx = VelMtrx / delv_z #Normalized velocity
785 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
786 # Diameter is related to the fall speed of falling drops
788 # Diameter is related to the fall speed of falling drops
787 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
788 # Only valid for D>= 0.16 mm
790 # Only valid for D>= 0.16 mm
789 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
790
792
791 #Calculate Radar Reflectivity ETAn
793 #Calculate Radar Reflectivity ETAn
792 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
793 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
794 # Radar Cross Section
796 # Radar Cross Section
795 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
796 # Drop Size Distribution
798 # Drop Size Distribution
797 DSD = ETAn / sigmaD
799 DSD = ETAn / sigmaD
798 # Equivalente Reflectivy
800 # Equivalente Reflectivy
799 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
800 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
801 # RainFall Rate
803 # RainFall Rate
802 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
803
805
804 # Censoring the data
806 # Censoring the data
805 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
806 SNRth = 10**(SNRdBlimit/10) #-30dB
808 SNRth = 10**(SNRdBlimit/10) #-30dB
807 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
808 W = numpy.nanmean(dataOut.data_dop,0)
810 W = numpy.nanmean(dataOut.data_dop,0)
809 W[novalid] = numpy.NaN
811 W[novalid] = numpy.NaN
810 Ze_org[novalid] = numpy.NaN
812 Ze_org[novalid] = numpy.NaN
811 RR[novalid] = numpy.NaN
813 RR[novalid] = numpy.NaN
812
814
813 dataOut.data_output = RR[8]
815 dataOut.data_output = RR[8]
814 dataOut.data_param = numpy.ones([3,self.Num_Hei])
816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
815 dataOut.channelList = [0,1,2]
817 dataOut.channelList = [0,1,2]
816
818
817 dataOut.data_param[0]=10*numpy.log10(Ze_org)
819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
818 dataOut.data_param[1]=-W
820 dataOut.data_param[1]=-W
819 dataOut.data_param[2]=RR
821 dataOut.data_param[2]=RR
820
822
821 # print ('Leaving PrecepitationProc ... ')
823 # print ('Leaving PrecepitationProc ... ')
822 return dataOut
824 return dataOut
823
825
824 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
825
827
826 NPW = dataOut.NPW
828 NPW = dataOut.NPW
827 COFA = dataOut.COFA
829 COFA = dataOut.COFA
828
830
829 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
830 RadarConst = dataOut.RadarConst
832 RadarConst = dataOut.RadarConst
831 #frequency = 34.85*10**9
833 #frequency = 34.85*10**9
832
834
833 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
834 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
835
837
836 ETA = numpy.sum(SNR,1)
838 ETA = numpy.sum(SNR,1)
837
839
838 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
839
841
840 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
841
843
842 for r in range(self.Num_Hei):
844 for r in range(self.Num_Hei):
843
845
844 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
845 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
846
848
847 return Ze
849 return Ze
848
850
849 # def GetRadarConstant(self):
851 # def GetRadarConstant(self):
850 #
852 #
851 # """
853 # """
852 # Constants:
854 # Constants:
853 #
855 #
854 # Pt: Transmission Power dB 5kW 5000
856 # Pt: Transmission Power dB 5kW 5000
855 # Gt: Transmission Gain dB 24.7 dB 295.1209
857 # Gt: Transmission Gain dB 24.7 dB 295.1209
856 # Gr: Reception Gain dB 18.5 dB 70.7945
858 # Gr: Reception Gain dB 18.5 dB 70.7945
857 # Lambda: Wavelenght m 0.6741 m 0.6741
859 # Lambda: Wavelenght m 0.6741 m 0.6741
858 # aL: Attenuation loses dB 4dB 2.5118
860 # aL: Attenuation loses dB 4dB 2.5118
859 # tauW: Width of transmission pulse s 4us 4e-6
861 # tauW: Width of transmission pulse s 4us 4e-6
860 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
861 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
862 #
864 #
863 # """
865 # """
864 #
866 #
865 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
866 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
867 # RadarConstant = Numerator / Denominator
869 # RadarConstant = Numerator / Denominator
868 #
870 #
869 # return RadarConstant
871 # return RadarConstant
870
872
871
873
872
874
873 class FullSpectralAnalysis(Operation):
875 class FullSpectralAnalysis(Operation):
874
876
875 """
877 """
876 Function that implements Full Spectral Analysis technique.
878 Function that implements Full Spectral Analysis technique.
877
879
878 Input:
880 Input:
879 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
880 self.dataOut.groupList : Pairlist of channels
882 self.dataOut.groupList : Pairlist of channels
881 self.dataOut.ChanDist : Physical distance between receivers
883 self.dataOut.ChanDist : Physical distance between receivers
882
884
883
885
884 Output:
886 Output:
885
887
886 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
887
889
888
890
889 Parameters affected: Winds, height range, SNR
891 Parameters affected: Winds, height range, SNR
890
892
891 """
893 """
892 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
893 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
894
896
895 spc = dataOut.data_pre[0].copy()
897 spc = dataOut.data_pre[0].copy()
896 cspc = dataOut.data_pre[1]
898 cspc = dataOut.data_pre[1]
897 nHeights = spc.shape[2]
899 nHeights = spc.shape[2]
898
900
899 # first_height = 0.75 #km (ref: data header 20170822)
901 # first_height = 0.75 #km (ref: data header 20170822)
900 # resolution_height = 0.075 #km
902 # resolution_height = 0.075 #km
901 '''
903 '''
902 finding height range. check this when radar parameters are changed!
904 finding height range. check this when radar parameters are changed!
903 '''
905 '''
904 if maxheight is not None:
906 if maxheight is not None:
905 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
906 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
907 else:
909 else:
908 range_max = nHeights
910 range_max = nHeights
909 if minheight is not None:
911 if minheight is not None:
910 # range_min = int((minheight - first_height) / resolution_height) # theoretical
912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
911 range_min = int(13.26 * minheight - 5) # empirical, works better
913 range_min = int(13.26 * minheight - 5) # empirical, works better
912 if range_min < 0:
914 if range_min < 0:
913 range_min = 0
915 range_min = 0
914 else:
916 else:
915 range_min = 0
917 range_min = 0
916
918
917 pairsList = dataOut.groupList
919 pairsList = dataOut.groupList
918 if dataOut.ChanDist is not None :
920 if dataOut.ChanDist is not None :
919 ChanDist = dataOut.ChanDist
921 ChanDist = dataOut.ChanDist
920 else:
922 else:
921 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
922
924
923 # 4 variables: zonal, meridional, vertical, and average SNR
925 # 4 variables: zonal, meridional, vertical, and average SNR
924 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
925 velocityX = numpy.zeros([nHeights]) * numpy.NaN
927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
926 velocityY = numpy.zeros([nHeights]) * numpy.NaN
928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
927 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
928
930
929 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
930
932
931 '''***********************************************WIND ESTIMATION**************************************'''
933 '''***********************************************WIND ESTIMATION**************************************'''
932 for Height in range(nHeights):
934 for Height in range(nHeights):
933
935
934 if Height >= range_min and Height < range_max:
936 if Height >= range_min and Height < range_max:
935 # error_code will be useful in future analysis
937 # error_code will be useful in future analysis
936 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
937 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
938
940
939 if abs(Vzon) < 100. and abs(Vmer) < 100.:
941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
940 velocityX[Height] = Vzon
942 velocityX[Height] = Vzon
941 velocityY[Height] = -Vmer
943 velocityY[Height] = -Vmer
942 velocityZ[Height] = Vver
944 velocityZ[Height] = Vver
943
945
944 # Censoring data with SNR threshold
946 # Censoring data with SNR threshold
945 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
946
948
947 data_param[0] = velocityX
949 data_param[0] = velocityX
948 data_param[1] = velocityY
950 data_param[1] = velocityY
949 data_param[2] = velocityZ
951 data_param[2] = velocityZ
950 data_param[3] = dbSNR
952 data_param[3] = dbSNR
951 dataOut.data_param = data_param
953 dataOut.data_param = data_param
952 return dataOut
954 return dataOut
953
955
954 def moving_average(self,x, N=2):
956 def moving_average(self,x, N=2):
955 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
956 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
957
959
958 def gaus(self,xSamples,Amp,Mu,Sigma):
960 def gaus(self,xSamples,Amp,Mu,Sigma):
959 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
960
962
961 def Moments(self, ySamples, xSamples):
963 def Moments(self, ySamples, xSamples):
962 Power = numpy.nanmean(ySamples) # Power, 0th Moment
964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
963 yNorm = ySamples / numpy.nansum(ySamples)
965 yNorm = ySamples / numpy.nansum(ySamples)
964 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
965 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
966 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
967 return numpy.array([Power,RadVel,StdDev])
969 return numpy.array([Power,RadVel,StdDev])
968
970
969 def StopWindEstimation(self, error_code):
971 def StopWindEstimation(self, error_code):
970 Vzon = numpy.NaN
972 Vzon = numpy.NaN
971 Vmer = numpy.NaN
973 Vmer = numpy.NaN
972 Vver = numpy.NaN
974 Vver = numpy.NaN
973 return Vzon, Vmer, Vver, error_code
975 return Vzon, Vmer, Vver, error_code
974
976
975 def AntiAliasing(self, interval, maxstep):
977 def AntiAliasing(self, interval, maxstep):
976 """
978 """
977 function to prevent errors from aliased values when computing phaseslope
979 function to prevent errors from aliased values when computing phaseslope
978 """
980 """
979 antialiased = numpy.zeros(len(interval))
981 antialiased = numpy.zeros(len(interval))
980 copyinterval = interval.copy()
982 copyinterval = interval.copy()
981
983
982 antialiased[0] = copyinterval[0]
984 antialiased[0] = copyinterval[0]
983
985
984 for i in range(1,len(antialiased)):
986 for i in range(1,len(antialiased)):
985 step = interval[i] - interval[i-1]
987 step = interval[i] - interval[i-1]
986 if step > maxstep:
988 if step > maxstep:
987 copyinterval -= 2*numpy.pi
989 copyinterval -= 2*numpy.pi
988 antialiased[i] = copyinterval[i]
990 antialiased[i] = copyinterval[i]
989 elif step < maxstep*(-1):
991 elif step < maxstep*(-1):
990 copyinterval += 2*numpy.pi
992 copyinterval += 2*numpy.pi
991 antialiased[i] = copyinterval[i]
993 antialiased[i] = copyinterval[i]
992 else:
994 else:
993 antialiased[i] = copyinterval[i].copy()
995 antialiased[i] = copyinterval[i].copy()
994
996
995 return antialiased
997 return antialiased
996
998
997 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
998 """
1000 """
999 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1000 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1001
1003
1002 Input:
1004 Input:
1003 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1004 pairsList : Pairlist of channels
1006 pairsList : Pairlist of channels
1005 ChanDist : array of xi_ij and eta_ij
1007 ChanDist : array of xi_ij and eta_ij
1006 Height : height at which data is processed
1008 Height : height at which data is processed
1007 noise : noise in [channels] format for specific height
1009 noise : noise in [channels] format for specific height
1008 Abbsisarange : range of the frequencies or velocities
1010 Abbsisarange : range of the frequencies or velocities
1009 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1010
1012
1011 Output:
1013 Output:
1012 Vzon, Vmer, Vver : wind velocities
1014 Vzon, Vmer, Vver : wind velocities
1013 error_code : int that states where code is terminated
1015 error_code : int that states where code is terminated
1014
1016
1015 0 : no error detected
1017 0 : no error detected
1016 1 : Gaussian of mean spc exceeds widthlimit
1018 1 : Gaussian of mean spc exceeds widthlimit
1017 2 : no Gaussian of mean spc found
1019 2 : no Gaussian of mean spc found
1018 3 : SNR to low or velocity to high -> prec. e.g.
1020 3 : SNR to low or velocity to high -> prec. e.g.
1019 4 : at least one Gaussian of cspc exceeds widthlimit
1021 4 : at least one Gaussian of cspc exceeds widthlimit
1020 5 : zero out of three cspc Gaussian fits converged
1022 5 : zero out of three cspc Gaussian fits converged
1021 6 : phase slope fit could not be found
1023 6 : phase slope fit could not be found
1022 7 : arrays used to fit phase have different length
1024 7 : arrays used to fit phase have different length
1023 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1024
1026
1025 """
1027 """
1026
1028
1027 error_code = 0
1029 error_code = 0
1028
1030
1029 nChan = spc.shape[0]
1031 nChan = spc.shape[0]
1030 nProf = spc.shape[1]
1032 nProf = spc.shape[1]
1031 nPair = cspc.shape[0]
1033 nPair = cspc.shape[0]
1032
1034
1033 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1034 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1035 phase = numpy.zeros([nPair, nProf]) # phase between channels
1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1036 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1037 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1038 xFrec = AbbsisaRange[0][:-1] # frequency range
1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1039 xVel = AbbsisaRange[2][:-1] # velocity range
1041 xVel = AbbsisaRange[2][:-1] # velocity range
1040 xSamples = xFrec # the frequency range is taken
1042 xSamples = xFrec # the frequency range is taken
1041 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1042
1044
1043 # only consider velocities with in NegativeLimit and PositiveLimit
1045 # only consider velocities with in NegativeLimit and PositiveLimit
1044 if (NegativeLimit is None):
1046 if (NegativeLimit is None):
1045 NegativeLimit = numpy.min(xVel)
1047 NegativeLimit = numpy.min(xVel)
1046 if (PositiveLimit is None):
1048 if (PositiveLimit is None):
1047 PositiveLimit = numpy.max(xVel)
1049 PositiveLimit = numpy.max(xVel)
1048 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1049 xSamples_zoom = xSamples[xvalid]
1051 xSamples_zoom = xSamples[xvalid]
1050
1052
1051 '''Getting Eij and Nij'''
1053 '''Getting Eij and Nij'''
1052 Xi01, Xi02, Xi12 = ChanDist[:,0]
1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1053 Eta01, Eta02, Eta12 = ChanDist[:,1]
1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1054
1056
1055 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1056 widthlimit = 10
1058 widthlimit = 10
1057 '''************************* SPC is normalized ********************************'''
1059 '''************************* SPC is normalized ********************************'''
1058 spc_norm = spc.copy()
1060 spc_norm = spc.copy()
1059 # For each channel
1061 # For each channel
1060 for i in range(nChan):
1062 for i in range(nChan):
1061 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1062 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1063
1065
1064 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1065
1067
1066 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1067 you only fit the curve and don't need the absolute value of height for calculation,
1069 you only fit the curve and don't need the absolute value of height for calculation,
1068 only for estimation of width. for normalization of cross spectra, you need initial,
1070 only for estimation of width. for normalization of cross spectra, you need initial,
1069 unnormalized self-spectra With noise.
1071 unnormalized self-spectra With noise.
1070
1072
1071 Technically, you don't even need to normalize the self-spectra, as you only need the
1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1072 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1073 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1074 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1075 """
1077 """
1076 # initial conditions
1078 # initial conditions
1077 popt = [1e-10,0,1e-10]
1079 popt = [1e-10,0,1e-10]
1078 # Spectra average
1080 # Spectra average
1079 SPCMean = numpy.average(SPC_Samples,0)
1081 SPCMean = numpy.average(SPC_Samples,0)
1080 # Moments in frequency
1082 # Moments in frequency
1081 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1082
1084
1083 # Gauss Fit SPC in frequency domain
1085 # Gauss Fit SPC in frequency domain
1084 if dbSNR > SNRlimit: # only if SNR > SNRth
1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1085 try:
1087 try:
1086 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1087 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1088 return self.StopWindEstimation(error_code = 1)
1090 return self.StopWindEstimation(error_code = 1)
1089 FitGauss = self.gaus(xSamples_zoom,*popt)
1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1090 except :#RuntimeError:
1092 except :#RuntimeError:
1091 return self.StopWindEstimation(error_code = 2)
1093 return self.StopWindEstimation(error_code = 2)
1092 else:
1094 else:
1093 return self.StopWindEstimation(error_code = 3)
1095 return self.StopWindEstimation(error_code = 3)
1094
1096
1095 '''***************************** CSPC Normalization *************************
1097 '''***************************** CSPC Normalization *************************
1096 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1097 influence the norm which is not desired. First, a range is identified where the
1099 influence the norm which is not desired. First, a range is identified where the
1098 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1099 around it gets cut off and values replaced by mean determined by the boundary
1101 around it gets cut off and values replaced by mean determined by the boundary
1100 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1101
1103
1102 The sums are then added and multiplied by range/datapoints, because you need
1104 The sums are then added and multiplied by range/datapoints, because you need
1103 an integral and not a sum for normalization.
1105 an integral and not a sum for normalization.
1104
1106
1105 A norm is found according to Briggs 92.
1107 A norm is found according to Briggs 92.
1106 '''
1108 '''
1107 # for each pair
1109 # for each pair
1108 for i in range(nPair):
1110 for i in range(nPair):
1109 cspc_norm = cspc[i,:].copy()
1111 cspc_norm = cspc[i,:].copy()
1110 chan_index0 = pairsList[i][0]
1112 chan_index0 = pairsList[i][0]
1111 chan_index1 = pairsList[i][1]
1113 chan_index1 = pairsList[i][1]
1112 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1113 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1114
1116
1115 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1116 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1117 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1118
1120
1119 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1120 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1121
1123
1122 '''*******************************FIT GAUSS CSPC************************************'''
1124 '''*******************************FIT GAUSS CSPC************************************'''
1123 try:
1125 try:
1124 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1125 if popt01[2] > widthlimit: # CONDITION
1127 if popt01[2] > widthlimit: # CONDITION
1126 return self.StopWindEstimation(error_code = 4)
1128 return self.StopWindEstimation(error_code = 4)
1127 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1128 if popt02[2] > widthlimit: # CONDITION
1130 if popt02[2] > widthlimit: # CONDITION
1129 return self.StopWindEstimation(error_code = 4)
1131 return self.StopWindEstimation(error_code = 4)
1130 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1131 if popt12[2] > widthlimit: # CONDITION
1133 if popt12[2] > widthlimit: # CONDITION
1132 return self.StopWindEstimation(error_code = 4)
1134 return self.StopWindEstimation(error_code = 4)
1133
1135
1134 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1135 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1136 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1137 except:
1139 except:
1138 return self.StopWindEstimation(error_code = 5)
1140 return self.StopWindEstimation(error_code = 5)
1139
1141
1140
1142
1141 '''************* Getting Fij ***************'''
1143 '''************* Getting Fij ***************'''
1142 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1143 GaussCenter = popt[1]
1145 GaussCenter = popt[1]
1144 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1145 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1146
1148
1147 # Point where e^-1 is located in the gaussian
1149 # Point where e^-1 is located in the gaussian
1148 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1149 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1150 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1151 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1152
1154
1153 '''********** Taking frequency ranges from mean SPCs **********'''
1155 '''********** Taking frequency ranges from mean SPCs **********'''
1154 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1155 Range = numpy.empty(2)
1157 Range = numpy.empty(2)
1156 Range[0] = GaussCenter - GauWidth
1158 Range[0] = GaussCenter - GauWidth
1157 Range[1] = GaussCenter + GauWidth
1159 Range[1] = GaussCenter + GauWidth
1158 # Point in x-axis where the bandwidth is located (min:max)
1160 # Point in x-axis where the bandwidth is located (min:max)
1159 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1160 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1161 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1162 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1163 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1164 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1165
1167
1166 '''************************** Getting Phase Slope ***************************'''
1168 '''************************** Getting Phase Slope ***************************'''
1167 for i in range(nPair):
1169 for i in range(nPair):
1168 if len(FrecRange) > 5:
1170 if len(FrecRange) > 5:
1169 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1170 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1171 if len(FrecRange) == len(PhaseRange):
1173 if len(FrecRange) == len(PhaseRange):
1172 try:
1174 try:
1173 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1174 PhaseSlope[i] = slope
1176 PhaseSlope[i] = slope
1175 PhaseInter[i] = intercept
1177 PhaseInter[i] = intercept
1176 except:
1178 except:
1177 return self.StopWindEstimation(error_code = 6)
1179 return self.StopWindEstimation(error_code = 6)
1178 else:
1180 else:
1179 return self.StopWindEstimation(error_code = 7)
1181 return self.StopWindEstimation(error_code = 7)
1180 else:
1182 else:
1181 return self.StopWindEstimation(error_code = 8)
1183 return self.StopWindEstimation(error_code = 8)
1182
1184
1183 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1184
1186
1185 '''Getting constant C'''
1187 '''Getting constant C'''
1186 cC=(Fij*numpy.pi)**2
1188 cC=(Fij*numpy.pi)**2
1187
1189
1188 '''****** Getting constants F and G ******'''
1190 '''****** Getting constants F and G ******'''
1189 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1190 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1191 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1192 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1193 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1194 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1195 MijResults = numpy.array([MijResult1, MijResult2])
1197 MijResults = numpy.array([MijResult1, MijResult2])
1196 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1197
1199
1198 '''****** Getting constants A, B and H ******'''
1200 '''****** Getting constants A, B and H ******'''
1199 W01 = numpy.nanmax( FitGauss01 )
1201 W01 = numpy.nanmax( FitGauss01 )
1200 W02 = numpy.nanmax( FitGauss02 )
1202 W02 = numpy.nanmax( FitGauss02 )
1201 W12 = numpy.nanmax( FitGauss12 )
1203 W12 = numpy.nanmax( FitGauss12 )
1202
1204
1203 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1204 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1205 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1206 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1207
1209
1208 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1209 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1210
1212
1211 VxVy = numpy.array([[cA,cH],[cH,cB]])
1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1212 VxVyResults = numpy.array([-cF,-cG])
1214 VxVyResults = numpy.array([-cF,-cG])
1213 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1214 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1215 error_code = 0
1217 error_code = 0
1216
1218
1217 return Vzon, Vmer, Vver, error_code
1219 return Vzon, Vmer, Vver, error_code
1218
1220
1219 class SpectralMoments(Operation):
1221 class SpectralMoments(Operation):
1220
1222
1221 '''
1223 '''
1222 Function SpectralMoments()
1224 Function SpectralMoments()
1223
1225
1224 Calculates moments (power, mean, standard deviation) and SNR of the signal
1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1225
1227
1226 Type of dataIn: Spectra
1228 Type of dataIn: Spectra
1227
1229
1228 Configuration Parameters:
1230 Configuration Parameters:
1229
1231
1230 dirCosx : Cosine director in X axis
1232 dirCosx : Cosine director in X axis
1231 dirCosy : Cosine director in Y axis
1233 dirCosy : Cosine director in Y axis
1232
1234
1233 elevation :
1235 elevation :
1234 azimuth :
1236 azimuth :
1235
1237
1236 Input:
1238 Input:
1237 channelList : simple channel list to select e.g. [2,3,7]
1239 channelList : simple channel list to select e.g. [2,3,7]
1238 self.dataOut.data_pre : Spectral data
1240 self.dataOut.data_pre : Spectral data
1239 self.dataOut.abscissaList : List of frequencies
1241 self.dataOut.abscissaList : List of frequencies
1240 self.dataOut.noise : Noise level per channel
1242 self.dataOut.noise : Noise level per channel
1241
1243
1242 Affected:
1244 Affected:
1243 self.dataOut.moments : Parameters per channel
1245 self.dataOut.moments : Parameters per channel
1244 self.dataOut.data_snr : SNR per channel
1246 self.dataOut.data_snr : SNR per channel
1245
1247
1246 '''
1248 '''
1247
1249
1248 def run(self, dataOut):
1250 def run(self, dataOut):
1249
1251
1250 data = dataOut.data_pre[0]
1252 data = dataOut.data_pre[0]
1251 absc = dataOut.abscissaList[:-1]
1253 absc = dataOut.abscissaList[:-1]
1252 noise = dataOut.noise
1254 noise = dataOut.noise
1253 nChannel = data.shape[0]
1255 nChannel = data.shape[0]
1254 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1255
1257
1256 for ind in range(nChannel):
1258 for ind in range(nChannel):
1257 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1258
1260
1259 dataOut.moments = data_param[:,1:,:]
1261 dataOut.moments = data_param[:,1:,:]
1260 dataOut.data_snr = data_param[:,0]
1262 dataOut.data_snr = data_param[:,0]
1261 dataOut.data_pow = data_param[:,1]
1263 dataOut.data_pow = data_param[:,1]
1262 dataOut.data_dop = data_param[:,2]
1264 dataOut.data_dop = data_param[:,2]
1263 dataOut.data_width = data_param[:,3]
1265 dataOut.data_width = data_param[:,3]
1264 return dataOut
1266 return dataOut
1265
1267
1266 def __calculateMoments(self, oldspec, oldfreq, n0,
1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1267 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1268
1270
1269 if (nicoh is None): nicoh = 1
1271 if (nicoh is None): nicoh = 1
1270 if (graph is None): graph = 0
1272 if (graph is None): graph = 0
1271 if (smooth is None): smooth = 0
1273 if (smooth is None): smooth = 0
1272 elif (self.smooth < 3): smooth = 0
1274 elif (self.smooth < 3): smooth = 0
1273
1275
1274 if (type1 is None): type1 = 0
1276 if (type1 is None): type1 = 0
1275 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1276 if (snrth is None): snrth = -3
1278 if (snrth is None): snrth = -3
1277 if (dc is None): dc = 0
1279 if (dc is None): dc = 0
1278 if (aliasing is None): aliasing = 0
1280 if (aliasing is None): aliasing = 0
1279 if (oldfd is None): oldfd = 0
1281 if (oldfd is None): oldfd = 0
1280 if (wwauto is None): wwauto = 0
1282 if (wwauto is None): wwauto = 0
1281
1283
1282 if (n0 < 1.e-20): n0 = 1.e-20
1284 if (n0 < 1.e-20): n0 = 1.e-20
1283
1285
1284 freq = oldfreq
1286 freq = oldfreq
1285 vec_power = numpy.zeros(oldspec.shape[1])
1287 vec_power = numpy.zeros(oldspec.shape[1])
1286 vec_fd = numpy.zeros(oldspec.shape[1])
1288 vec_fd = numpy.zeros(oldspec.shape[1])
1287 vec_w = numpy.zeros(oldspec.shape[1])
1289 vec_w = numpy.zeros(oldspec.shape[1])
1288 vec_snr = numpy.zeros(oldspec.shape[1])
1290 vec_snr = numpy.zeros(oldspec.shape[1])
1289
1291
1290 # oldspec = numpy.ma.masked_invalid(oldspec)
1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1291 for ind in range(oldspec.shape[1]):
1293 for ind in range(oldspec.shape[1]):
1292
1294
1293 spec = oldspec[:,ind]
1295 spec = oldspec[:,ind]
1294 aux = spec*fwindow
1296 aux = spec*fwindow
1295 max_spec = aux.max()
1297 max_spec = aux.max()
1296 m = aux.tolist().index(max_spec)
1298 m = aux.tolist().index(max_spec)
1297
1299
1298 # Smooth
1300 # Smooth
1299 if (smooth == 0):
1301 if (smooth == 0):
1300 spec2 = spec
1302 spec2 = spec
1301 else:
1303 else:
1302 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1303
1305
1304 # Moments Estimation
1306 # Moments Estimation
1305 bb = spec2[numpy.arange(m,spec2.size)]
1307 bb = spec2[numpy.arange(m,spec2.size)]
1306 bb = (bb<n0).nonzero()
1308 bb = (bb<n0).nonzero()
1307 bb = bb[0]
1309 bb = bb[0]
1308
1310
1309 ss = spec2[numpy.arange(0,m + 1)]
1311 ss = spec2[numpy.arange(0,m + 1)]
1310 ss = (ss<n0).nonzero()
1312 ss = (ss<n0).nonzero()
1311 ss = ss[0]
1313 ss = ss[0]
1312
1314
1313 if (bb.size == 0):
1315 if (bb.size == 0):
1314 bb0 = spec.size - 1 - m
1316 bb0 = spec.size - 1 - m
1315 else:
1317 else:
1316 bb0 = bb[0] - 1
1318 bb0 = bb[0] - 1
1317 if (bb0 < 0):
1319 if (bb0 < 0):
1318 bb0 = 0
1320 bb0 = 0
1319
1321
1320 if (ss.size == 0):
1322 if (ss.size == 0):
1321 ss1 = 1
1323 ss1 = 1
1322 else:
1324 else:
1323 ss1 = max(ss) + 1
1325 ss1 = max(ss) + 1
1324
1326
1325 if (ss1 > m):
1327 if (ss1 > m):
1326 ss1 = m
1328 ss1 = m
1327
1329
1328 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1329 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1330 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1331 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1332 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1333 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1334 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1335 snr = (spec2.mean()-n0)/n0
1337 snr = (spec2.mean()-n0)/n0
1336 if (snr < 1.e-20) :
1338 if (snr < 1.e-20) :
1337 snr = 1.e-20
1339 snr = 1.e-20
1338
1340
1339 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1340 vec_power[ind] = total_power
1342 vec_power[ind] = total_power
1341 vec_fd[ind] = fd
1343 vec_fd[ind] = fd
1342 vec_w[ind] = w
1344 vec_w[ind] = w
1343 vec_snr[ind] = snr
1345 vec_snr[ind] = snr
1344
1346
1345 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1346
1348
1347 #------------------ Get SA Parameters --------------------------
1349 #------------------ Get SA Parameters --------------------------
1348
1350
1349 def GetSAParameters(self):
1351 def GetSAParameters(self):
1350 #SA en frecuencia
1352 #SA en frecuencia
1351 pairslist = self.dataOut.groupList
1353 pairslist = self.dataOut.groupList
1352 num_pairs = len(pairslist)
1354 num_pairs = len(pairslist)
1353
1355
1354 vel = self.dataOut.abscissaList
1356 vel = self.dataOut.abscissaList
1355 spectra = self.dataOut.data_pre
1357 spectra = self.dataOut.data_pre
1356 cspectra = self.dataIn.data_cspc
1358 cspectra = self.dataIn.data_cspc
1357 delta_v = vel[1] - vel[0]
1359 delta_v = vel[1] - vel[0]
1358
1360
1359 #Calculating the power spectrum
1361 #Calculating the power spectrum
1360 spc_pow = numpy.sum(spectra, 3)*delta_v
1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1361 #Normalizing Spectra
1363 #Normalizing Spectra
1362 norm_spectra = spectra/spc_pow
1364 norm_spectra = spectra/spc_pow
1363 #Calculating the norm_spectra at peak
1365 #Calculating the norm_spectra at peak
1364 max_spectra = numpy.max(norm_spectra, 3)
1366 max_spectra = numpy.max(norm_spectra, 3)
1365
1367
1366 #Normalizing Cross Spectra
1368 #Normalizing Cross Spectra
1367 norm_cspectra = numpy.zeros(cspectra.shape)
1369 norm_cspectra = numpy.zeros(cspectra.shape)
1368
1370
1369 for i in range(num_chan):
1371 for i in range(num_chan):
1370 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1371
1373
1372 max_cspectra = numpy.max(norm_cspectra,2)
1374 max_cspectra = numpy.max(norm_cspectra,2)
1373 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1374
1376
1375 for i in range(num_pairs):
1377 for i in range(num_pairs):
1376 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1377 #------------------- Get Lags ----------------------------------
1379 #------------------- Get Lags ----------------------------------
1378
1380
1379 class SALags(Operation):
1381 class SALags(Operation):
1380 '''
1382 '''
1381 Function GetMoments()
1383 Function GetMoments()
1382
1384
1383 Input:
1385 Input:
1384 self.dataOut.data_pre
1386 self.dataOut.data_pre
1385 self.dataOut.abscissaList
1387 self.dataOut.abscissaList
1386 self.dataOut.noise
1388 self.dataOut.noise
1387 self.dataOut.normFactor
1389 self.dataOut.normFactor
1388 self.dataOut.data_snr
1390 self.dataOut.data_snr
1389 self.dataOut.groupList
1391 self.dataOut.groupList
1390 self.dataOut.nChannels
1392 self.dataOut.nChannels
1391
1393
1392 Affected:
1394 Affected:
1393 self.dataOut.data_param
1395 self.dataOut.data_param
1394
1396
1395 '''
1397 '''
1396 def run(self, dataOut):
1398 def run(self, dataOut):
1397 data_acf = dataOut.data_pre[0]
1399 data_acf = dataOut.data_pre[0]
1398 data_ccf = dataOut.data_pre[1]
1400 data_ccf = dataOut.data_pre[1]
1399 normFactor_acf = dataOut.normFactor[0]
1401 normFactor_acf = dataOut.normFactor[0]
1400 normFactor_ccf = dataOut.normFactor[1]
1402 normFactor_ccf = dataOut.normFactor[1]
1401 pairs_acf = dataOut.groupList[0]
1403 pairs_acf = dataOut.groupList[0]
1402 pairs_ccf = dataOut.groupList[1]
1404 pairs_ccf = dataOut.groupList[1]
1403
1405
1404 nHeights = dataOut.nHeights
1406 nHeights = dataOut.nHeights
1405 absc = dataOut.abscissaList
1407 absc = dataOut.abscissaList
1406 noise = dataOut.noise
1408 noise = dataOut.noise
1407 SNR = dataOut.data_snr
1409 SNR = dataOut.data_snr
1408 nChannels = dataOut.nChannels
1410 nChannels = dataOut.nChannels
1409 # pairsList = dataOut.groupList
1411 # pairsList = dataOut.groupList
1410 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1411
1413
1412 for l in range(len(pairs_acf)):
1414 for l in range(len(pairs_acf)):
1413 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1414
1416
1415 for l in range(len(pairs_ccf)):
1417 for l in range(len(pairs_ccf)):
1416 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1417
1419
1418 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1419 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1420 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1421 return
1423 return
1422
1424
1423 # def __getPairsAutoCorr(self, pairsList, nChannels):
1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1424 #
1426 #
1425 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1426 #
1428 #
1427 # for l in range(len(pairsList)):
1429 # for l in range(len(pairsList)):
1428 # firstChannel = pairsList[l][0]
1430 # firstChannel = pairsList[l][0]
1429 # secondChannel = pairsList[l][1]
1431 # secondChannel = pairsList[l][1]
1430 #
1432 #
1431 # #Obteniendo pares de Autocorrelacion
1433 # #Obteniendo pares de Autocorrelacion
1432 # if firstChannel == secondChannel:
1434 # if firstChannel == secondChannel:
1433 # pairsAutoCorr[firstChannel] = int(l)
1435 # pairsAutoCorr[firstChannel] = int(l)
1434 #
1436 #
1435 # pairsAutoCorr = pairsAutoCorr.astype(int)
1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1436 #
1438 #
1437 # pairsCrossCorr = range(len(pairsList))
1439 # pairsCrossCorr = range(len(pairsList))
1438 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1439 #
1441 #
1440 # return pairsAutoCorr, pairsCrossCorr
1442 # return pairsAutoCorr, pairsCrossCorr
1441
1443
1442 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1443
1445
1444 lag0 = data_acf.shape[1]/2
1446 lag0 = data_acf.shape[1]/2
1445 #Funcion de Autocorrelacion
1447 #Funcion de Autocorrelacion
1446 mean_acf = stats.nanmean(data_acf, axis = 0)
1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1447
1449
1448 #Obtencion Indice de TauCross
1450 #Obtencion Indice de TauCross
1449 ind_ccf = data_ccf.argmax(axis = 1)
1451 ind_ccf = data_ccf.argmax(axis = 1)
1450 #Obtencion Indice de TauAuto
1452 #Obtencion Indice de TauAuto
1451 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1452 ccf_lag0 = data_ccf[:,lag0,:]
1454 ccf_lag0 = data_ccf[:,lag0,:]
1453
1455
1454 for i in range(ccf_lag0.shape[0]):
1456 for i in range(ccf_lag0.shape[0]):
1455 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1456
1458
1457 #Obtencion de TauCross y TauAuto
1459 #Obtencion de TauCross y TauAuto
1458 tau_ccf = lagRange[ind_ccf]
1460 tau_ccf = lagRange[ind_ccf]
1459 tau_acf = lagRange[ind_acf]
1461 tau_acf = lagRange[ind_acf]
1460
1462
1461 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1462
1464
1463 tau_ccf[Nan1,Nan2] = numpy.nan
1465 tau_ccf[Nan1,Nan2] = numpy.nan
1464 tau_acf[Nan1,Nan2] = numpy.nan
1466 tau_acf[Nan1,Nan2] = numpy.nan
1465 tau = numpy.vstack((tau_ccf,tau_acf))
1467 tau = numpy.vstack((tau_ccf,tau_acf))
1466
1468
1467 return tau
1469 return tau
1468
1470
1469 def __calculateLag1Phase(self, data, lagTRange):
1471 def __calculateLag1Phase(self, data, lagTRange):
1470 data1 = stats.nanmean(data, axis = 0)
1472 data1 = stats.nanmean(data, axis = 0)
1471 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1472
1474
1473 phase = numpy.angle(data1[lag1,:])
1475 phase = numpy.angle(data1[lag1,:])
1474
1476
1475 return phase
1477 return phase
1476
1478
1477 class SpectralFitting(Operation):
1479 class SpectralFitting(Operation):
1478 '''
1480 '''
1479 Function GetMoments()
1481 Function GetMoments()
1480
1482
1481 Input:
1483 Input:
1482 Output:
1484 Output:
1483 Variables modified:
1485 Variables modified:
1484 '''
1486 '''
1485
1487
1486 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1487
1489
1488
1490
1489 if path != None:
1491 if path != None:
1490 sys.path.append(path)
1492 sys.path.append(path)
1491 self.dataOut.library = importlib.import_module(file)
1493 self.dataOut.library = importlib.import_module(file)
1492
1494
1493 #To be inserted as a parameter
1495 #To be inserted as a parameter
1494 groupArray = numpy.array(groupList)
1496 groupArray = numpy.array(groupList)
1495 # groupArray = numpy.array([[0,1],[2,3]])
1497 # groupArray = numpy.array([[0,1],[2,3]])
1496 self.dataOut.groupList = groupArray
1498 self.dataOut.groupList = groupArray
1497
1499
1498 nGroups = groupArray.shape[0]
1500 nGroups = groupArray.shape[0]
1499 nChannels = self.dataIn.nChannels
1501 nChannels = self.dataIn.nChannels
1500 nHeights=self.dataIn.heightList.size
1502 nHeights=self.dataIn.heightList.size
1501
1503
1502 #Parameters Array
1504 #Parameters Array
1503 self.dataOut.data_param = None
1505 self.dataOut.data_param = None
1504
1506
1505 #Set constants
1507 #Set constants
1506 constants = self.dataOut.library.setConstants(self.dataIn)
1508 constants = self.dataOut.library.setConstants(self.dataIn)
1507 self.dataOut.constants = constants
1509 self.dataOut.constants = constants
1508 M = self.dataIn.normFactor
1510 M = self.dataIn.normFactor
1509 N = self.dataIn.nFFTPoints
1511 N = self.dataIn.nFFTPoints
1510 ippSeconds = self.dataIn.ippSeconds
1512 ippSeconds = self.dataIn.ippSeconds
1511 K = self.dataIn.nIncohInt
1513 K = self.dataIn.nIncohInt
1512 pairsArray = numpy.array(self.dataIn.pairsList)
1514 pairsArray = numpy.array(self.dataIn.pairsList)
1513
1515
1514 #List of possible combinations
1516 #List of possible combinations
1515 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1516 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1517
1519
1518 if getSNR:
1520 if getSNR:
1519 listChannels = groupArray.reshape((groupArray.size))
1521 listChannels = groupArray.reshape((groupArray.size))
1520 listChannels.sort()
1522 listChannels.sort()
1521 noise = self.dataIn.getNoise()
1523 noise = self.dataIn.getNoise()
1522 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1523
1525
1524 for i in range(nGroups):
1526 for i in range(nGroups):
1525 coord = groupArray[i,:]
1527 coord = groupArray[i,:]
1526
1528
1527 #Input data array
1529 #Input data array
1528 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1529 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1530
1532
1531 #Cross Spectra data array for Covariance Matrixes
1533 #Cross Spectra data array for Covariance Matrixes
1532 ind = 0
1534 ind = 0
1533 for pairs in listComb:
1535 for pairs in listComb:
1534 pairsSel = numpy.array([coord[x],coord[y]])
1536 pairsSel = numpy.array([coord[x],coord[y]])
1535 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1536 ind += 1
1538 ind += 1
1537 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1538 dataCross = dataCross**2/K
1540 dataCross = dataCross**2/K
1539
1541
1540 for h in range(nHeights):
1542 for h in range(nHeights):
1541
1543
1542 #Input
1544 #Input
1543 d = data[:,h]
1545 d = data[:,h]
1544
1546
1545 #Covariance Matrix
1547 #Covariance Matrix
1546 D = numpy.diag(d**2/K)
1548 D = numpy.diag(d**2/K)
1547 ind = 0
1549 ind = 0
1548 for pairs in listComb:
1550 for pairs in listComb:
1549 #Coordinates in Covariance Matrix
1551 #Coordinates in Covariance Matrix
1550 x = pairs[0]
1552 x = pairs[0]
1551 y = pairs[1]
1553 y = pairs[1]
1552 #Channel Index
1554 #Channel Index
1553 S12 = dataCross[ind,:,h]
1555 S12 = dataCross[ind,:,h]
1554 D12 = numpy.diag(S12)
1556 D12 = numpy.diag(S12)
1555 #Completing Covariance Matrix with Cross Spectras
1557 #Completing Covariance Matrix with Cross Spectras
1556 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1557 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1558 ind += 1
1560 ind += 1
1559 Dinv=numpy.linalg.inv(D)
1561 Dinv=numpy.linalg.inv(D)
1560 L=numpy.linalg.cholesky(Dinv)
1562 L=numpy.linalg.cholesky(Dinv)
1561 LT=L.T
1563 LT=L.T
1562
1564
1563 dp = numpy.dot(LT,d)
1565 dp = numpy.dot(LT,d)
1564
1566
1565 #Initial values
1567 #Initial values
1566 data_spc = self.dataIn.data_spc[coord,:,h]
1568 data_spc = self.dataIn.data_spc[coord,:,h]
1567
1569
1568 if (h>0)and(error1[3]<5):
1570 if (h>0)and(error1[3]<5):
1569 p0 = self.dataOut.data_param[i,:,h-1]
1571 p0 = self.dataOut.data_param[i,:,h-1]
1570 else:
1572 else:
1571 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1572
1574
1573 try:
1575 try:
1574 #Least Squares
1576 #Least Squares
1575 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1576 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1577 #Chi square error
1579 #Chi square error
1578 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1579 #Error with Jacobian
1581 #Error with Jacobian
1580 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1581 except:
1583 except:
1582 minp = p0*numpy.nan
1584 minp = p0*numpy.nan
1583 error0 = numpy.nan
1585 error0 = numpy.nan
1584 error1 = p0*numpy.nan
1586 error1 = p0*numpy.nan
1585
1587
1586 #Save
1588 #Save
1587 if self.dataOut.data_param is None:
1589 if self.dataOut.data_param is None:
1588 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1589 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1590
1592
1591 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1592 self.dataOut.data_param[i,:,h] = minp
1594 self.dataOut.data_param[i,:,h] = minp
1593 return
1595 return
1594
1596
1595 def __residFunction(self, p, dp, LT, constants):
1597 def __residFunction(self, p, dp, LT, constants):
1596
1598
1597 fm = self.dataOut.library.modelFunction(p, constants)
1599 fm = self.dataOut.library.modelFunction(p, constants)
1598 fmp=numpy.dot(LT,fm)
1600 fmp=numpy.dot(LT,fm)
1599
1601
1600 return dp-fmp
1602 return dp-fmp
1601
1603
1602 def __getSNR(self, z, noise):
1604 def __getSNR(self, z, noise):
1603
1605
1604 avg = numpy.average(z, axis=1)
1606 avg = numpy.average(z, axis=1)
1605 SNR = (avg.T-noise)/noise
1607 SNR = (avg.T-noise)/noise
1606 SNR = SNR.T
1608 SNR = SNR.T
1607 return SNR
1609 return SNR
1608
1610
1609 def __chisq(p,chindex,hindex):
1611 def __chisq(p,chindex,hindex):
1610 #similar to Resid but calculates CHI**2
1612 #similar to Resid but calculates CHI**2
1611 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1612 dp=numpy.dot(LT,d)
1614 dp=numpy.dot(LT,d)
1613 fmp=numpy.dot(LT,fm)
1615 fmp=numpy.dot(LT,fm)
1614 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1615 return chisq
1617 return chisq
1616
1618
1617 class WindProfiler(Operation):
1619 class WindProfiler(Operation):
1618
1620
1619 __isConfig = False
1621 __isConfig = False
1620
1622
1621 __initime = None
1623 __initime = None
1622 __lastdatatime = None
1624 __lastdatatime = None
1623 __integrationtime = None
1625 __integrationtime = None
1624
1626
1625 __buffer = None
1627 __buffer = None
1626
1628
1627 __dataReady = False
1629 __dataReady = False
1628
1630
1629 __firstdata = None
1631 __firstdata = None
1630
1632
1631 n = None
1633 n = None
1632
1634
1633 def __init__(self):
1635 def __init__(self):
1634 Operation.__init__(self)
1636 Operation.__init__(self)
1635
1637
1636 def __calculateCosDir(self, elev, azim):
1638 def __calculateCosDir(self, elev, azim):
1637 zen = (90 - elev)*numpy.pi/180
1639 zen = (90 - elev)*numpy.pi/180
1638 azim = azim*numpy.pi/180
1640 azim = azim*numpy.pi/180
1639 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1640 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1641
1643
1642 signX = numpy.sign(numpy.cos(azim))
1644 signX = numpy.sign(numpy.cos(azim))
1643 signY = numpy.sign(numpy.sin(azim))
1645 signY = numpy.sign(numpy.sin(azim))
1644
1646
1645 cosDirX = numpy.copysign(cosDirX, signX)
1647 cosDirX = numpy.copysign(cosDirX, signX)
1646 cosDirY = numpy.copysign(cosDirY, signY)
1648 cosDirY = numpy.copysign(cosDirY, signY)
1647 return cosDirX, cosDirY
1649 return cosDirX, cosDirY
1648
1650
1649 def __calculateAngles(self, theta_x, theta_y, azimuth):
1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1650
1652
1651 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1652 zenith_arr = numpy.arccos(dir_cosw)
1654 zenith_arr = numpy.arccos(dir_cosw)
1653 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1654
1656
1655 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1656 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1657
1659
1658 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1659
1661
1660 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1661
1663
1662 #
1664 #
1663 if horOnly:
1665 if horOnly:
1664 A = numpy.c_[dir_cosu,dir_cosv]
1666 A = numpy.c_[dir_cosu,dir_cosv]
1665 else:
1667 else:
1666 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1667 A = numpy.asmatrix(A)
1669 A = numpy.asmatrix(A)
1668 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1669
1671
1670 return A1
1672 return A1
1671
1673
1672 def __correctValues(self, heiRang, phi, velRadial, SNR):
1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1673 listPhi = phi.tolist()
1675 listPhi = phi.tolist()
1674 maxid = listPhi.index(max(listPhi))
1676 maxid = listPhi.index(max(listPhi))
1675 minid = listPhi.index(min(listPhi))
1677 minid = listPhi.index(min(listPhi))
1676
1678
1677 rango = list(range(len(phi)))
1679 rango = list(range(len(phi)))
1678 # rango = numpy.delete(rango,maxid)
1680 # rango = numpy.delete(rango,maxid)
1679
1681
1680 heiRang1 = heiRang*math.cos(phi[maxid])
1682 heiRang1 = heiRang*math.cos(phi[maxid])
1681 heiRangAux = heiRang*math.cos(phi[minid])
1683 heiRangAux = heiRang*math.cos(phi[minid])
1682 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1683 heiRang1 = numpy.delete(heiRang1,indOut)
1685 heiRang1 = numpy.delete(heiRang1,indOut)
1684
1686
1685 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1686 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1687
1689
1688 for i in rango:
1690 for i in rango:
1689 x = heiRang*math.cos(phi[i])
1691 x = heiRang*math.cos(phi[i])
1690 y1 = velRadial[i,:]
1692 y1 = velRadial[i,:]
1691 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1692
1694
1693 x1 = heiRang1
1695 x1 = heiRang1
1694 y11 = f1(x1)
1696 y11 = f1(x1)
1695
1697
1696 y2 = SNR[i,:]
1698 y2 = SNR[i,:]
1697 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1698 y21 = f2(x1)
1700 y21 = f2(x1)
1699
1701
1700 velRadial1[i,:] = y11
1702 velRadial1[i,:] = y11
1701 SNR1[i,:] = y21
1703 SNR1[i,:] = y21
1702
1704
1703 return heiRang1, velRadial1, SNR1
1705 return heiRang1, velRadial1, SNR1
1704
1706
1705 def __calculateVelUVW(self, A, velRadial):
1707 def __calculateVelUVW(self, A, velRadial):
1706
1708
1707 #Operacion Matricial
1709 #Operacion Matricial
1708 # velUVW = numpy.zeros((velRadial.shape[1],3))
1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1709 # for ind in range(velRadial.shape[1]):
1711 # for ind in range(velRadial.shape[1]):
1710 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1711 # velUVW = velUVW.transpose()
1713 # velUVW = velUVW.transpose()
1712 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1713 velUVW[:,:] = numpy.dot(A,velRadial)
1715 velUVW[:,:] = numpy.dot(A,velRadial)
1714
1716
1715
1717
1716 return velUVW
1718 return velUVW
1717
1719
1718 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1719
1721
1720 def techniqueDBS(self, kwargs):
1722 def techniqueDBS(self, kwargs):
1721 """
1723 """
1722 Function that implements Doppler Beam Swinging (DBS) technique.
1724 Function that implements Doppler Beam Swinging (DBS) technique.
1723
1725
1724 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1725 Direction correction (if necessary), Ranges and SNR
1727 Direction correction (if necessary), Ranges and SNR
1726
1728
1727 Output: Winds estimation (Zonal, Meridional and Vertical)
1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1728
1730
1729 Parameters affected: Winds, height range, SNR
1731 Parameters affected: Winds, height range, SNR
1730 """
1732 """
1731 velRadial0 = kwargs['velRadial']
1733 velRadial0 = kwargs['velRadial']
1732 heiRang = kwargs['heightList']
1734 heiRang = kwargs['heightList']
1733 SNR0 = kwargs['SNR']
1735 SNR0 = kwargs['SNR']
1734
1736
1735 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1736 theta_x = numpy.array(kwargs['dirCosx'])
1738 theta_x = numpy.array(kwargs['dirCosx'])
1737 theta_y = numpy.array(kwargs['dirCosy'])
1739 theta_y = numpy.array(kwargs['dirCosy'])
1738 else:
1740 else:
1739 elev = numpy.array(kwargs['elevation'])
1741 elev = numpy.array(kwargs['elevation'])
1740 azim = numpy.array(kwargs['azimuth'])
1742 azim = numpy.array(kwargs['azimuth'])
1741 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1742 azimuth = kwargs['correctAzimuth']
1744 azimuth = kwargs['correctAzimuth']
1743 if 'horizontalOnly' in kwargs:
1745 if 'horizontalOnly' in kwargs:
1744 horizontalOnly = kwargs['horizontalOnly']
1746 horizontalOnly = kwargs['horizontalOnly']
1745 else: horizontalOnly = False
1747 else: horizontalOnly = False
1746 if 'correctFactor' in kwargs:
1748 if 'correctFactor' in kwargs:
1747 correctFactor = kwargs['correctFactor']
1749 correctFactor = kwargs['correctFactor']
1748 else: correctFactor = 1
1750 else: correctFactor = 1
1749 if 'channelList' in kwargs:
1751 if 'channelList' in kwargs:
1750 channelList = kwargs['channelList']
1752 channelList = kwargs['channelList']
1751 if len(channelList) == 2:
1753 if len(channelList) == 2:
1752 horizontalOnly = True
1754 horizontalOnly = True
1753 arrayChannel = numpy.array(channelList)
1755 arrayChannel = numpy.array(channelList)
1754 param = param[arrayChannel,:,:]
1756 param = param[arrayChannel,:,:]
1755 theta_x = theta_x[arrayChannel]
1757 theta_x = theta_x[arrayChannel]
1756 theta_y = theta_y[arrayChannel]
1758 theta_y = theta_y[arrayChannel]
1757
1759
1758 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1759 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1760 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1761
1763
1762 #Calculo de Componentes de la velocidad con DBS
1764 #Calculo de Componentes de la velocidad con DBS
1763 winds = self.__calculateVelUVW(A,velRadial1)
1765 winds = self.__calculateVelUVW(A,velRadial1)
1764
1766
1765 return winds, heiRang1, SNR1
1767 return winds, heiRang1, SNR1
1766
1768
1767 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1768
1770
1769 nPairs = len(pairs_ccf)
1771 nPairs = len(pairs_ccf)
1770 posx = numpy.asarray(posx)
1772 posx = numpy.asarray(posx)
1771 posy = numpy.asarray(posy)
1773 posy = numpy.asarray(posy)
1772
1774
1773 #Rotacion Inversa para alinear con el azimuth
1775 #Rotacion Inversa para alinear con el azimuth
1774 if azimuth!= None:
1776 if azimuth!= None:
1775 azimuth = azimuth*math.pi/180
1777 azimuth = azimuth*math.pi/180
1776 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1777 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1778 else:
1780 else:
1779 posx1 = posx
1781 posx1 = posx
1780 posy1 = posy
1782 posy1 = posy
1781
1783
1782 #Calculo de Distancias
1784 #Calculo de Distancias
1783 distx = numpy.zeros(nPairs)
1785 distx = numpy.zeros(nPairs)
1784 disty = numpy.zeros(nPairs)
1786 disty = numpy.zeros(nPairs)
1785 dist = numpy.zeros(nPairs)
1787 dist = numpy.zeros(nPairs)
1786 ang = numpy.zeros(nPairs)
1788 ang = numpy.zeros(nPairs)
1787
1789
1788 for i in range(nPairs):
1790 for i in range(nPairs):
1789 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1790 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1791 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1792 ang[i] = numpy.arctan2(disty[i],distx[i])
1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1793
1795
1794 return distx, disty, dist, ang
1796 return distx, disty, dist, ang
1795 #Calculo de Matrices
1797 #Calculo de Matrices
1796 # nPairs = len(pairs)
1798 # nPairs = len(pairs)
1797 # ang1 = numpy.zeros((nPairs, 2, 1))
1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1798 # dist1 = numpy.zeros((nPairs, 2, 1))
1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1799 #
1801 #
1800 # for j in range(nPairs):
1802 # for j in range(nPairs):
1801 # dist1[j,0,0] = dist[pairs[j][0]]
1803 # dist1[j,0,0] = dist[pairs[j][0]]
1802 # dist1[j,1,0] = dist[pairs[j][1]]
1804 # dist1[j,1,0] = dist[pairs[j][1]]
1803 # ang1[j,0,0] = ang[pairs[j][0]]
1805 # ang1[j,0,0] = ang[pairs[j][0]]
1804 # ang1[j,1,0] = ang[pairs[j][1]]
1806 # ang1[j,1,0] = ang[pairs[j][1]]
1805 #
1807 #
1806 # return distx,disty, dist1,ang1
1808 # return distx,disty, dist1,ang1
1807
1809
1808
1810
1809 def __calculateVelVer(self, phase, lagTRange, _lambda):
1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1810
1812
1811 Ts = lagTRange[1] - lagTRange[0]
1813 Ts = lagTRange[1] - lagTRange[0]
1812 velW = -_lambda*phase/(4*math.pi*Ts)
1814 velW = -_lambda*phase/(4*math.pi*Ts)
1813
1815
1814 return velW
1816 return velW
1815
1817
1816 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1817 nPairs = tau1.shape[0]
1819 nPairs = tau1.shape[0]
1818 nHeights = tau1.shape[1]
1820 nHeights = tau1.shape[1]
1819 vel = numpy.zeros((nPairs,3,nHeights))
1821 vel = numpy.zeros((nPairs,3,nHeights))
1820 dist1 = numpy.reshape(dist, (dist.size,1))
1822 dist1 = numpy.reshape(dist, (dist.size,1))
1821
1823
1822 angCos = numpy.cos(ang)
1824 angCos = numpy.cos(ang)
1823 angSin = numpy.sin(ang)
1825 angSin = numpy.sin(ang)
1824
1826
1825 vel0 = dist1*tau1/(2*tau2**2)
1827 vel0 = dist1*tau1/(2*tau2**2)
1826 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1827 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1828
1830
1829 ind = numpy.where(numpy.isinf(vel))
1831 ind = numpy.where(numpy.isinf(vel))
1830 vel[ind] = numpy.nan
1832 vel[ind] = numpy.nan
1831
1833
1832 return vel
1834 return vel
1833
1835
1834 # def __getPairsAutoCorr(self, pairsList, nChannels):
1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1835 #
1837 #
1836 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1837 #
1839 #
1838 # for l in range(len(pairsList)):
1840 # for l in range(len(pairsList)):
1839 # firstChannel = pairsList[l][0]
1841 # firstChannel = pairsList[l][0]
1840 # secondChannel = pairsList[l][1]
1842 # secondChannel = pairsList[l][1]
1841 #
1843 #
1842 # #Obteniendo pares de Autocorrelacion
1844 # #Obteniendo pares de Autocorrelacion
1843 # if firstChannel == secondChannel:
1845 # if firstChannel == secondChannel:
1844 # pairsAutoCorr[firstChannel] = int(l)
1846 # pairsAutoCorr[firstChannel] = int(l)
1845 #
1847 #
1846 # pairsAutoCorr = pairsAutoCorr.astype(int)
1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1847 #
1849 #
1848 # pairsCrossCorr = range(len(pairsList))
1850 # pairsCrossCorr = range(len(pairsList))
1849 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1850 #
1852 #
1851 # return pairsAutoCorr, pairsCrossCorr
1853 # return pairsAutoCorr, pairsCrossCorr
1852
1854
1853 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1854 def techniqueSA(self, kwargs):
1856 def techniqueSA(self, kwargs):
1855
1857
1856 """
1858 """
1857 Function that implements Spaced Antenna (SA) technique.
1859 Function that implements Spaced Antenna (SA) technique.
1858
1860
1859 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1860 Direction correction (if necessary), Ranges and SNR
1862 Direction correction (if necessary), Ranges and SNR
1861
1863
1862 Output: Winds estimation (Zonal, Meridional and Vertical)
1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1863
1865
1864 Parameters affected: Winds
1866 Parameters affected: Winds
1865 """
1867 """
1866 position_x = kwargs['positionX']
1868 position_x = kwargs['positionX']
1867 position_y = kwargs['positionY']
1869 position_y = kwargs['positionY']
1868 azimuth = kwargs['azimuth']
1870 azimuth = kwargs['azimuth']
1869
1871
1870 if 'correctFactor' in kwargs:
1872 if 'correctFactor' in kwargs:
1871 correctFactor = kwargs['correctFactor']
1873 correctFactor = kwargs['correctFactor']
1872 else:
1874 else:
1873 correctFactor = 1
1875 correctFactor = 1
1874
1876
1875 groupList = kwargs['groupList']
1877 groupList = kwargs['groupList']
1876 pairs_ccf = groupList[1]
1878 pairs_ccf = groupList[1]
1877 tau = kwargs['tau']
1879 tau = kwargs['tau']
1878 _lambda = kwargs['_lambda']
1880 _lambda = kwargs['_lambda']
1879
1881
1880 #Cross Correlation pairs obtained
1882 #Cross Correlation pairs obtained
1881 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1882 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1883 # pairsSelArray = numpy.array(pairsSelected)
1885 # pairsSelArray = numpy.array(pairsSelected)
1884 # pairs = []
1886 # pairs = []
1885 #
1887 #
1886 # #Wind estimation pairs obtained
1888 # #Wind estimation pairs obtained
1887 # for i in range(pairsSelArray.shape[0]/2):
1889 # for i in range(pairsSelArray.shape[0]/2):
1888 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1889 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1890 # pairs.append((ind1,ind2))
1892 # pairs.append((ind1,ind2))
1891
1893
1892 indtau = tau.shape[0]/2
1894 indtau = tau.shape[0]/2
1893 tau1 = tau[:indtau,:]
1895 tau1 = tau[:indtau,:]
1894 tau2 = tau[indtau:-1,:]
1896 tau2 = tau[indtau:-1,:]
1895 # tau1 = tau1[pairs,:]
1897 # tau1 = tau1[pairs,:]
1896 # tau2 = tau2[pairs,:]
1898 # tau2 = tau2[pairs,:]
1897 phase1 = tau[-1,:]
1899 phase1 = tau[-1,:]
1898
1900
1899 #---------------------------------------------------------------------
1901 #---------------------------------------------------------------------
1900 #Metodo Directo
1902 #Metodo Directo
1901 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1902 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1903 winds = stats.nanmean(winds, axis=0)
1905 winds = stats.nanmean(winds, axis=0)
1904 #---------------------------------------------------------------------
1906 #---------------------------------------------------------------------
1905 #Metodo General
1907 #Metodo General
1906 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1907 # #Calculo Coeficientes de Funcion de Correlacion
1909 # #Calculo Coeficientes de Funcion de Correlacion
1908 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1909 # #Calculo de Velocidades
1911 # #Calculo de Velocidades
1910 # winds = self.calculateVelUV(F,G,A,B,H)
1912 # winds = self.calculateVelUV(F,G,A,B,H)
1911
1913
1912 #---------------------------------------------------------------------
1914 #---------------------------------------------------------------------
1913 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1914 winds = correctFactor*winds
1916 winds = correctFactor*winds
1915 return winds
1917 return winds
1916
1918
1917 def __checkTime(self, currentTime, paramInterval, outputInterval):
1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1918
1920
1919 dataTime = currentTime + paramInterval
1921 dataTime = currentTime + paramInterval
1920 deltaTime = dataTime - self.__initime
1922 deltaTime = dataTime - self.__initime
1921
1923
1922 if deltaTime >= outputInterval or deltaTime < 0:
1924 if deltaTime >= outputInterval or deltaTime < 0:
1923 self.__dataReady = True
1925 self.__dataReady = True
1924 return
1926 return
1925
1927
1926 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1927 '''
1929 '''
1928 Function that implements winds estimation technique with detected meteors.
1930 Function that implements winds estimation technique with detected meteors.
1929
1931
1930 Input: Detected meteors, Minimum meteor quantity to wind estimation
1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1931
1933
1932 Output: Winds estimation (Zonal and Meridional)
1934 Output: Winds estimation (Zonal and Meridional)
1933
1935
1934 Parameters affected: Winds
1936 Parameters affected: Winds
1935 '''
1937 '''
1936 #Settings
1938 #Settings
1937 nInt = (heightMax - heightMin)/2
1939 nInt = (heightMax - heightMin)/2
1938 nInt = int(nInt)
1940 nInt = int(nInt)
1939 winds = numpy.zeros((2,nInt))*numpy.nan
1941 winds = numpy.zeros((2,nInt))*numpy.nan
1940
1942
1941 #Filter errors
1943 #Filter errors
1942 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1943 finalMeteor = arrayMeteor[error,:]
1945 finalMeteor = arrayMeteor[error,:]
1944
1946
1945 #Meteor Histogram
1947 #Meteor Histogram
1946 finalHeights = finalMeteor[:,2]
1948 finalHeights = finalMeteor[:,2]
1947 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1948 nMeteorsPerI = hist[0]
1950 nMeteorsPerI = hist[0]
1949 heightPerI = hist[1]
1951 heightPerI = hist[1]
1950
1952
1951 #Sort of meteors
1953 #Sort of meteors
1952 indSort = finalHeights.argsort()
1954 indSort = finalHeights.argsort()
1953 finalMeteor2 = finalMeteor[indSort,:]
1955 finalMeteor2 = finalMeteor[indSort,:]
1954
1956
1955 # Calculating winds
1957 # Calculating winds
1956 ind1 = 0
1958 ind1 = 0
1957 ind2 = 0
1959 ind2 = 0
1958
1960
1959 for i in range(nInt):
1961 for i in range(nInt):
1960 nMet = nMeteorsPerI[i]
1962 nMet = nMeteorsPerI[i]
1961 ind1 = ind2
1963 ind1 = ind2
1962 ind2 = ind1 + nMet
1964 ind2 = ind1 + nMet
1963
1965
1964 meteorAux = finalMeteor2[ind1:ind2,:]
1966 meteorAux = finalMeteor2[ind1:ind2,:]
1965
1967
1966 if meteorAux.shape[0] >= meteorThresh:
1968 if meteorAux.shape[0] >= meteorThresh:
1967 vel = meteorAux[:, 6]
1969 vel = meteorAux[:, 6]
1968 zen = meteorAux[:, 4]*numpy.pi/180
1970 zen = meteorAux[:, 4]*numpy.pi/180
1969 azim = meteorAux[:, 3]*numpy.pi/180
1971 azim = meteorAux[:, 3]*numpy.pi/180
1970
1972
1971 n = numpy.cos(zen)
1973 n = numpy.cos(zen)
1972 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1973 # l = m*numpy.tan(azim)
1975 # l = m*numpy.tan(azim)
1974 l = numpy.sin(zen)*numpy.sin(azim)
1976 l = numpy.sin(zen)*numpy.sin(azim)
1975 m = numpy.sin(zen)*numpy.cos(azim)
1977 m = numpy.sin(zen)*numpy.cos(azim)
1976
1978
1977 A = numpy.vstack((l, m)).transpose()
1979 A = numpy.vstack((l, m)).transpose()
1978 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1979 windsAux = numpy.dot(A1, vel)
1981 windsAux = numpy.dot(A1, vel)
1980
1982
1981 winds[0,i] = windsAux[0]
1983 winds[0,i] = windsAux[0]
1982 winds[1,i] = windsAux[1]
1984 winds[1,i] = windsAux[1]
1983
1985
1984 return winds, heightPerI[:-1]
1986 return winds, heightPerI[:-1]
1985
1987
1986 def techniqueNSM_SA(self, **kwargs):
1988 def techniqueNSM_SA(self, **kwargs):
1987 metArray = kwargs['metArray']
1989 metArray = kwargs['metArray']
1988 heightList = kwargs['heightList']
1990 heightList = kwargs['heightList']
1989 timeList = kwargs['timeList']
1991 timeList = kwargs['timeList']
1990
1992
1991 rx_location = kwargs['rx_location']
1993 rx_location = kwargs['rx_location']
1992 groupList = kwargs['groupList']
1994 groupList = kwargs['groupList']
1993 azimuth = kwargs['azimuth']
1995 azimuth = kwargs['azimuth']
1994 dfactor = kwargs['dfactor']
1996 dfactor = kwargs['dfactor']
1995 k = kwargs['k']
1997 k = kwargs['k']
1996
1998
1997 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1998 d = dist*dfactor
2000 d = dist*dfactor
1999 #Phase calculation
2001 #Phase calculation
2000 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2001
2003
2002 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2003
2005
2004 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2005 azimuth1 = azimuth1*numpy.pi/180
2007 azimuth1 = azimuth1*numpy.pi/180
2006
2008
2007 for i in range(heightList.size):
2009 for i in range(heightList.size):
2008 h = heightList[i]
2010 h = heightList[i]
2009 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2010 metHeight = metArray1[indH,:]
2012 metHeight = metArray1[indH,:]
2011 if metHeight.shape[0] >= 2:
2013 if metHeight.shape[0] >= 2:
2012 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2013 iazim = metHeight[:,1].astype(int)
2015 iazim = metHeight[:,1].astype(int)
2014 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2015 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2016 A = numpy.asmatrix(A)
2018 A = numpy.asmatrix(A)
2017 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2018 velHor = numpy.dot(A1,velAux)
2020 velHor = numpy.dot(A1,velAux)
2019
2021
2020 velEst[i,:] = numpy.squeeze(velHor)
2022 velEst[i,:] = numpy.squeeze(velHor)
2021 return velEst
2023 return velEst
2022
2024
2023 def __getPhaseSlope(self, metArray, heightList, timeList):
2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2024 meteorList = []
2026 meteorList = []
2025 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2026 #Putting back together the meteor matrix
2028 #Putting back together the meteor matrix
2027 utctime = metArray[:,0]
2029 utctime = metArray[:,0]
2028 uniqueTime = numpy.unique(utctime)
2030 uniqueTime = numpy.unique(utctime)
2029
2031
2030 phaseDerThresh = 0.5
2032 phaseDerThresh = 0.5
2031 ippSeconds = timeList[1] - timeList[0]
2033 ippSeconds = timeList[1] - timeList[0]
2032 sec = numpy.where(timeList>1)[0][0]
2034 sec = numpy.where(timeList>1)[0][0]
2033 nPairs = metArray.shape[1] - 6
2035 nPairs = metArray.shape[1] - 6
2034 nHeights = len(heightList)
2036 nHeights = len(heightList)
2035
2037
2036 for t in uniqueTime:
2038 for t in uniqueTime:
2037 metArray1 = metArray[utctime==t,:]
2039 metArray1 = metArray[utctime==t,:]
2038 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2039 tmet = metArray1[:,1].astype(int)
2041 tmet = metArray1[:,1].astype(int)
2040 hmet = metArray1[:,2].astype(int)
2042 hmet = metArray1[:,2].astype(int)
2041
2043
2042 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2043 metPhase[:,:] = numpy.nan
2045 metPhase[:,:] = numpy.nan
2044 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2045
2047
2046 #Delete short trails
2048 #Delete short trails
2047 metBool = ~numpy.isnan(metPhase[0,:,:])
2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2048 heightVect = numpy.sum(metBool, axis = 1)
2050 heightVect = numpy.sum(metBool, axis = 1)
2049 metBool[heightVect<sec,:] = False
2051 metBool[heightVect<sec,:] = False
2050 metPhase[:,heightVect<sec,:] = numpy.nan
2052 metPhase[:,heightVect<sec,:] = numpy.nan
2051
2053
2052 #Derivative
2054 #Derivative
2053 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2054 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2055 metPhase[phDerAux] = numpy.nan
2057 metPhase[phDerAux] = numpy.nan
2056
2058
2057 #--------------------------METEOR DETECTION -----------------------------------------
2059 #--------------------------METEOR DETECTION -----------------------------------------
2058 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2059
2061
2060 for p in numpy.arange(nPairs):
2062 for p in numpy.arange(nPairs):
2061 phase = metPhase[p,:,:]
2063 phase = metPhase[p,:,:]
2062 phDer = metDer[p,:,:]
2064 phDer = metDer[p,:,:]
2063
2065
2064 for h in indMet:
2066 for h in indMet:
2065 height = heightList[h]
2067 height = heightList[h]
2066 phase1 = phase[h,:] #82
2068 phase1 = phase[h,:] #82
2067 phDer1 = phDer[h,:]
2069 phDer1 = phDer[h,:]
2068
2070
2069 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2070
2072
2071 indValid = numpy.where(~numpy.isnan(phase1))[0]
2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2072 initMet = indValid[0]
2074 initMet = indValid[0]
2073 endMet = 0
2075 endMet = 0
2074
2076
2075 for i in range(len(indValid)-1):
2077 for i in range(len(indValid)-1):
2076
2078
2077 #Time difference
2079 #Time difference
2078 inow = indValid[i]
2080 inow = indValid[i]
2079 inext = indValid[i+1]
2081 inext = indValid[i+1]
2080 idiff = inext - inow
2082 idiff = inext - inow
2081 #Phase difference
2083 #Phase difference
2082 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2083
2085
2084 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2085 sizeTrail = inow - initMet + 1
2087 sizeTrail = inow - initMet + 1
2086 if sizeTrail>3*sec: #Too short meteors
2088 if sizeTrail>3*sec: #Too short meteors
2087 x = numpy.arange(initMet,inow+1)*ippSeconds
2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2088 y = phase1[initMet:inow+1]
2090 y = phase1[initMet:inow+1]
2089 ynnan = ~numpy.isnan(y)
2091 ynnan = ~numpy.isnan(y)
2090 x = x[ynnan]
2092 x = x[ynnan]
2091 y = y[ynnan]
2093 y = y[ynnan]
2092 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2093 ylin = x*slope + intercept
2095 ylin = x*slope + intercept
2094 rsq = r_value**2
2096 rsq = r_value**2
2095 if rsq > 0.5:
2097 if rsq > 0.5:
2096 vel = slope#*height*1000/(k*d)
2098 vel = slope#*height*1000/(k*d)
2097 estAux = numpy.array([utctime,p,height, vel, rsq])
2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2098 meteorList.append(estAux)
2100 meteorList.append(estAux)
2099 initMet = inext
2101 initMet = inext
2100 metArray2 = numpy.array(meteorList)
2102 metArray2 = numpy.array(meteorList)
2101
2103
2102 return metArray2
2104 return metArray2
2103
2105
2104 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2105
2107
2106 azimuth1 = numpy.zeros(len(pairslist))
2108 azimuth1 = numpy.zeros(len(pairslist))
2107 dist = numpy.zeros(len(pairslist))
2109 dist = numpy.zeros(len(pairslist))
2108
2110
2109 for i in range(len(rx_location)):
2111 for i in range(len(rx_location)):
2110 ch0 = pairslist[i][0]
2112 ch0 = pairslist[i][0]
2111 ch1 = pairslist[i][1]
2113 ch1 = pairslist[i][1]
2112
2114
2113 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2114 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2115 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2116 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2117
2119
2118 azimuth1 -= azimuth0
2120 azimuth1 -= azimuth0
2119 return azimuth1, dist
2121 return azimuth1, dist
2120
2122
2121 def techniqueNSM_DBS(self, **kwargs):
2123 def techniqueNSM_DBS(self, **kwargs):
2122 metArray = kwargs['metArray']
2124 metArray = kwargs['metArray']
2123 heightList = kwargs['heightList']
2125 heightList = kwargs['heightList']
2124 timeList = kwargs['timeList']
2126 timeList = kwargs['timeList']
2125 azimuth = kwargs['azimuth']
2127 azimuth = kwargs['azimuth']
2126 theta_x = numpy.array(kwargs['theta_x'])
2128 theta_x = numpy.array(kwargs['theta_x'])
2127 theta_y = numpy.array(kwargs['theta_y'])
2129 theta_y = numpy.array(kwargs['theta_y'])
2128
2130
2129 utctime = metArray[:,0]
2131 utctime = metArray[:,0]
2130 cmet = metArray[:,1].astype(int)
2132 cmet = metArray[:,1].astype(int)
2131 hmet = metArray[:,3].astype(int)
2133 hmet = metArray[:,3].astype(int)
2132 SNRmet = metArray[:,4]
2134 SNRmet = metArray[:,4]
2133 vmet = metArray[:,5]
2135 vmet = metArray[:,5]
2134 spcmet = metArray[:,6]
2136 spcmet = metArray[:,6]
2135
2137
2136 nChan = numpy.max(cmet) + 1
2138 nChan = numpy.max(cmet) + 1
2137 nHeights = len(heightList)
2139 nHeights = len(heightList)
2138
2140
2139 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2140 hmet = heightList[hmet]
2142 hmet = heightList[hmet]
2141 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2142
2144
2143 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2144
2146
2145 for i in range(nHeights - 1):
2147 for i in range(nHeights - 1):
2146 hmin = heightList[i]
2148 hmin = heightList[i]
2147 hmax = heightList[i + 1]
2149 hmax = heightList[i + 1]
2148
2150
2149 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2150 indthisH = numpy.where(thisH)
2152 indthisH = numpy.where(thisH)
2151
2153
2152 if numpy.size(indthisH) > 3:
2154 if numpy.size(indthisH) > 3:
2153
2155
2154 vel_aux = vmet[thisH]
2156 vel_aux = vmet[thisH]
2155 chan_aux = cmet[thisH]
2157 chan_aux = cmet[thisH]
2156 cosu_aux = dir_cosu[chan_aux]
2158 cosu_aux = dir_cosu[chan_aux]
2157 cosv_aux = dir_cosv[chan_aux]
2159 cosv_aux = dir_cosv[chan_aux]
2158 cosw_aux = dir_cosw[chan_aux]
2160 cosw_aux = dir_cosw[chan_aux]
2159
2161
2160 nch = numpy.size(numpy.unique(chan_aux))
2162 nch = numpy.size(numpy.unique(chan_aux))
2161 if nch > 1:
2163 if nch > 1:
2162 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2163 velEst[i,:] = numpy.dot(A,vel_aux)
2165 velEst[i,:] = numpy.dot(A,vel_aux)
2164
2166
2165 return velEst
2167 return velEst
2166
2168
2167 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2168
2170
2169 param = dataOut.data_param
2171 param = dataOut.data_param
2170 if dataOut.abscissaList != None:
2172 if dataOut.abscissaList != None:
2171 absc = dataOut.abscissaList[:-1]
2173 absc = dataOut.abscissaList[:-1]
2172 # noise = dataOut.noise
2174 # noise = dataOut.noise
2173 heightList = dataOut.heightList
2175 heightList = dataOut.heightList
2174 SNR = dataOut.data_snr
2176 SNR = dataOut.data_snr
2175
2177
2176 if technique == 'DBS':
2178 if technique == 'DBS':
2177
2179
2178 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2179 kwargs['heightList'] = heightList
2181 kwargs['heightList'] = heightList
2180 kwargs['SNR'] = SNR
2182 kwargs['SNR'] = SNR
2181
2183
2182 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2183 dataOut.utctimeInit = dataOut.utctime
2185 dataOut.utctimeInit = dataOut.utctime
2184 dataOut.outputInterval = dataOut.paramInterval
2186 dataOut.outputInterval = dataOut.paramInterval
2185
2187
2186 elif technique == 'SA':
2188 elif technique == 'SA':
2187
2189
2188 #Parameters
2190 #Parameters
2189 # position_x = kwargs['positionX']
2191 # position_x = kwargs['positionX']
2190 # position_y = kwargs['positionY']
2192 # position_y = kwargs['positionY']
2191 # azimuth = kwargs['azimuth']
2193 # azimuth = kwargs['azimuth']
2192 #
2194 #
2193 # if kwargs.has_key('crosspairsList'):
2195 # if kwargs.has_key('crosspairsList'):
2194 # pairs = kwargs['crosspairsList']
2196 # pairs = kwargs['crosspairsList']
2195 # else:
2197 # else:
2196 # pairs = None
2198 # pairs = None
2197 #
2199 #
2198 # if kwargs.has_key('correctFactor'):
2200 # if kwargs.has_key('correctFactor'):
2199 # correctFactor = kwargs['correctFactor']
2201 # correctFactor = kwargs['correctFactor']
2200 # else:
2202 # else:
2201 # correctFactor = 1
2203 # correctFactor = 1
2202
2204
2203 # tau = dataOut.data_param
2205 # tau = dataOut.data_param
2204 # _lambda = dataOut.C/dataOut.frequency
2206 # _lambda = dataOut.C/dataOut.frequency
2205 # pairsList = dataOut.groupList
2207 # pairsList = dataOut.groupList
2206 # nChannels = dataOut.nChannels
2208 # nChannels = dataOut.nChannels
2207
2209
2208 kwargs['groupList'] = dataOut.groupList
2210 kwargs['groupList'] = dataOut.groupList
2209 kwargs['tau'] = dataOut.data_param
2211 kwargs['tau'] = dataOut.data_param
2210 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2211 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2212 dataOut.data_output = self.techniqueSA(kwargs)
2214 dataOut.data_output = self.techniqueSA(kwargs)
2213 dataOut.utctimeInit = dataOut.utctime
2215 dataOut.utctimeInit = dataOut.utctime
2214 dataOut.outputInterval = dataOut.timeInterval
2216 dataOut.outputInterval = dataOut.timeInterval
2215
2217
2216 elif technique == 'Meteors':
2218 elif technique == 'Meteors':
2217 dataOut.flagNoData = True
2219 dataOut.flagNoData = True
2218 self.__dataReady = False
2220 self.__dataReady = False
2219
2221
2220 if 'nHours' in kwargs:
2222 if 'nHours' in kwargs:
2221 nHours = kwargs['nHours']
2223 nHours = kwargs['nHours']
2222 else:
2224 else:
2223 nHours = 1
2225 nHours = 1
2224
2226
2225 if 'meteorsPerBin' in kwargs:
2227 if 'meteorsPerBin' in kwargs:
2226 meteorThresh = kwargs['meteorsPerBin']
2228 meteorThresh = kwargs['meteorsPerBin']
2227 else:
2229 else:
2228 meteorThresh = 6
2230 meteorThresh = 6
2229
2231
2230 if 'hmin' in kwargs:
2232 if 'hmin' in kwargs:
2231 hmin = kwargs['hmin']
2233 hmin = kwargs['hmin']
2232 else: hmin = 70
2234 else: hmin = 70
2233 if 'hmax' in kwargs:
2235 if 'hmax' in kwargs:
2234 hmax = kwargs['hmax']
2236 hmax = kwargs['hmax']
2235 else: hmax = 110
2237 else: hmax = 110
2236
2238
2237 dataOut.outputInterval = nHours*3600
2239 dataOut.outputInterval = nHours*3600
2238
2240
2239 if self.__isConfig == False:
2241 if self.__isConfig == False:
2240 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2241 #Get Initial LTC time
2243 #Get Initial LTC time
2242 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2243 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2244
2246
2245 self.__isConfig = True
2247 self.__isConfig = True
2246
2248
2247 if self.__buffer is None:
2249 if self.__buffer is None:
2248 self.__buffer = dataOut.data_param
2250 self.__buffer = dataOut.data_param
2249 self.__firstdata = copy.copy(dataOut)
2251 self.__firstdata = copy.copy(dataOut)
2250
2252
2251 else:
2253 else:
2252 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2253
2255
2254 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2255
2257
2256 if self.__dataReady:
2258 if self.__dataReady:
2257 dataOut.utctimeInit = self.__initime
2259 dataOut.utctimeInit = self.__initime
2258
2260
2259 self.__initime += dataOut.outputInterval #to erase time offset
2261 self.__initime += dataOut.outputInterval #to erase time offset
2260
2262
2261 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2262 dataOut.flagNoData = False
2264 dataOut.flagNoData = False
2263 self.__buffer = None
2265 self.__buffer = None
2264
2266
2265 elif technique == 'Meteors1':
2267 elif technique == 'Meteors1':
2266 dataOut.flagNoData = True
2268 dataOut.flagNoData = True
2267 self.__dataReady = False
2269 self.__dataReady = False
2268
2270
2269 if 'nMins' in kwargs:
2271 if 'nMins' in kwargs:
2270 nMins = kwargs['nMins']
2272 nMins = kwargs['nMins']
2271 else: nMins = 20
2273 else: nMins = 20
2272 if 'rx_location' in kwargs:
2274 if 'rx_location' in kwargs:
2273 rx_location = kwargs['rx_location']
2275 rx_location = kwargs['rx_location']
2274 else: rx_location = [(0,1),(1,1),(1,0)]
2276 else: rx_location = [(0,1),(1,1),(1,0)]
2275 if 'azimuth' in kwargs:
2277 if 'azimuth' in kwargs:
2276 azimuth = kwargs['azimuth']
2278 azimuth = kwargs['azimuth']
2277 else: azimuth = 51.06
2279 else: azimuth = 51.06
2278 if 'dfactor' in kwargs:
2280 if 'dfactor' in kwargs:
2279 dfactor = kwargs['dfactor']
2281 dfactor = kwargs['dfactor']
2280 if 'mode' in kwargs:
2282 if 'mode' in kwargs:
2281 mode = kwargs['mode']
2283 mode = kwargs['mode']
2282 if 'theta_x' in kwargs:
2284 if 'theta_x' in kwargs:
2283 theta_x = kwargs['theta_x']
2285 theta_x = kwargs['theta_x']
2284 if 'theta_y' in kwargs:
2286 if 'theta_y' in kwargs:
2285 theta_y = kwargs['theta_y']
2287 theta_y = kwargs['theta_y']
2286 else: mode = 'SA'
2288 else: mode = 'SA'
2287
2289
2288 #Borrar luego esto
2290 #Borrar luego esto
2289 if dataOut.groupList is None:
2291 if dataOut.groupList is None:
2290 dataOut.groupList = [(0,1),(0,2),(1,2)]
2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2291 groupList = dataOut.groupList
2293 groupList = dataOut.groupList
2292 C = 3e8
2294 C = 3e8
2293 freq = 50e6
2295 freq = 50e6
2294 lamb = C/freq
2296 lamb = C/freq
2295 k = 2*numpy.pi/lamb
2297 k = 2*numpy.pi/lamb
2296
2298
2297 timeList = dataOut.abscissaList
2299 timeList = dataOut.abscissaList
2298 heightList = dataOut.heightList
2300 heightList = dataOut.heightList
2299
2301
2300 if self.__isConfig == False:
2302 if self.__isConfig == False:
2301 dataOut.outputInterval = nMins*60
2303 dataOut.outputInterval = nMins*60
2302 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2303 #Get Initial LTC time
2305 #Get Initial LTC time
2304 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2305 minuteAux = initime.minute
2307 minuteAux = initime.minute
2306 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2307 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2308
2310
2309 self.__isConfig = True
2311 self.__isConfig = True
2310
2312
2311 if self.__buffer is None:
2313 if self.__buffer is None:
2312 self.__buffer = dataOut.data_param
2314 self.__buffer = dataOut.data_param
2313 self.__firstdata = copy.copy(dataOut)
2315 self.__firstdata = copy.copy(dataOut)
2314
2316
2315 else:
2317 else:
2316 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2317
2319
2318 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2319
2321
2320 if self.__dataReady:
2322 if self.__dataReady:
2321 dataOut.utctimeInit = self.__initime
2323 dataOut.utctimeInit = self.__initime
2322 self.__initime += dataOut.outputInterval #to erase time offset
2324 self.__initime += dataOut.outputInterval #to erase time offset
2323
2325
2324 metArray = self.__buffer
2326 metArray = self.__buffer
2325 if mode == 'SA':
2327 if mode == 'SA':
2326 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2327 elif mode == 'DBS':
2329 elif mode == 'DBS':
2328 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2329 dataOut.data_output = dataOut.data_output.T
2331 dataOut.data_output = dataOut.data_output.T
2330 dataOut.flagNoData = False
2332 dataOut.flagNoData = False
2331 self.__buffer = None
2333 self.__buffer = None
2332
2334
2333 return
2335 return
2334
2336
2335 class EWDriftsEstimation(Operation):
2337 class EWDriftsEstimation(Operation):
2336
2338
2337 def __init__(self):
2339 def __init__(self):
2338 Operation.__init__(self)
2340 Operation.__init__(self)
2339
2341
2340 def __correctValues(self, heiRang, phi, velRadial, SNR):
2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2341 listPhi = phi.tolist()
2343 listPhi = phi.tolist()
2342 maxid = listPhi.index(max(listPhi))
2344 maxid = listPhi.index(max(listPhi))
2343 minid = listPhi.index(min(listPhi))
2345 minid = listPhi.index(min(listPhi))
2344
2346
2345 rango = list(range(len(phi)))
2347 rango = list(range(len(phi)))
2346 # rango = numpy.delete(rango,maxid)
2348 # rango = numpy.delete(rango,maxid)
2347
2349
2348 heiRang1 = heiRang*math.cos(phi[maxid])
2350 heiRang1 = heiRang*math.cos(phi[maxid])
2349 heiRangAux = heiRang*math.cos(phi[minid])
2351 heiRangAux = heiRang*math.cos(phi[minid])
2350 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2351 heiRang1 = numpy.delete(heiRang1,indOut)
2353 heiRang1 = numpy.delete(heiRang1,indOut)
2352
2354
2353 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2354 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2355
2357
2356 for i in rango:
2358 for i in rango:
2357 x = heiRang*math.cos(phi[i])
2359 x = heiRang*math.cos(phi[i])
2358 y1 = velRadial[i,:]
2360 y1 = velRadial[i,:]
2359 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2360
2362
2361 x1 = heiRang1
2363 x1 = heiRang1
2362 y11 = f1(x1)
2364 y11 = f1(x1)
2363
2365
2364 y2 = SNR[i,:]
2366 y2 = SNR[i,:]
2365 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2366 y21 = f2(x1)
2368 y21 = f2(x1)
2367
2369
2368 velRadial1[i,:] = y11
2370 velRadial1[i,:] = y11
2369 SNR1[i,:] = y21
2371 SNR1[i,:] = y21
2370
2372
2371 return heiRang1, velRadial1, SNR1
2373 return heiRang1, velRadial1, SNR1
2372
2374
2373 def run(self, dataOut, zenith, zenithCorrection):
2375 def run(self, dataOut, zenith, zenithCorrection):
2374 heiRang = dataOut.heightList
2376 heiRang = dataOut.heightList
2375 velRadial = dataOut.data_param[:,3,:]
2377 velRadial = dataOut.data_param[:,3,:]
2376 SNR = dataOut.data_snr
2378 SNR = dataOut.data_snr
2377
2379
2378 zenith = numpy.array(zenith)
2380 zenith = numpy.array(zenith)
2379 zenith -= zenithCorrection
2381 zenith -= zenithCorrection
2380 zenith *= numpy.pi/180
2382 zenith *= numpy.pi/180
2381
2383
2382 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2383
2385
2384 alp = zenith[0]
2386 alp = zenith[0]
2385 bet = zenith[1]
2387 bet = zenith[1]
2386
2388
2387 w_w = velRadial1[0,:]
2389 w_w = velRadial1[0,:]
2388 w_e = velRadial1[1,:]
2390 w_e = velRadial1[1,:]
2389
2391
2390 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2391 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2392
2394
2393 winds = numpy.vstack((u,w))
2395 winds = numpy.vstack((u,w))
2394
2396
2395 dataOut.heightList = heiRang1
2397 dataOut.heightList = heiRang1
2396 dataOut.data_output = winds
2398 dataOut.data_output = winds
2397 dataOut.data_snr = SNR1
2399 dataOut.data_snr = SNR1
2398
2400
2399 dataOut.utctimeInit = dataOut.utctime
2401 dataOut.utctimeInit = dataOut.utctime
2400 dataOut.outputInterval = dataOut.timeInterval
2402 dataOut.outputInterval = dataOut.timeInterval
2401 return
2403 return
2402
2404
2403 #--------------- Non Specular Meteor ----------------
2405 #--------------- Non Specular Meteor ----------------
2404
2406
2405 class NonSpecularMeteorDetection(Operation):
2407 class NonSpecularMeteorDetection(Operation):
2406
2408
2407 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2408 data_acf = dataOut.data_pre[0]
2410 data_acf = dataOut.data_pre[0]
2409 data_ccf = dataOut.data_pre[1]
2411 data_ccf = dataOut.data_pre[1]
2410 pairsList = dataOut.groupList[1]
2412 pairsList = dataOut.groupList[1]
2411
2413
2412 lamb = dataOut.C/dataOut.frequency
2414 lamb = dataOut.C/dataOut.frequency
2413 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2414 paramInterval = dataOut.paramInterval
2416 paramInterval = dataOut.paramInterval
2415
2417
2416 nChannels = data_acf.shape[0]
2418 nChannels = data_acf.shape[0]
2417 nLags = data_acf.shape[1]
2419 nLags = data_acf.shape[1]
2418 nProfiles = data_acf.shape[2]
2420 nProfiles = data_acf.shape[2]
2419 nHeights = dataOut.nHeights
2421 nHeights = dataOut.nHeights
2420 nCohInt = dataOut.nCohInt
2422 nCohInt = dataOut.nCohInt
2421 sec = numpy.round(nProfiles/dataOut.paramInterval)
2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2422 heightList = dataOut.heightList
2424 heightList = dataOut.heightList
2423 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2424 utctime = dataOut.utctime
2426 utctime = dataOut.utctime
2425
2427
2426 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2427
2429
2428 #------------------------ SNR --------------------------------------
2430 #------------------------ SNR --------------------------------------
2429 power = data_acf[:,0,:,:].real
2431 power = data_acf[:,0,:,:].real
2430 noise = numpy.zeros(nChannels)
2432 noise = numpy.zeros(nChannels)
2431 SNR = numpy.zeros(power.shape)
2433 SNR = numpy.zeros(power.shape)
2432 for i in range(nChannels):
2434 for i in range(nChannels):
2433 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2434 SNR[i] = (power[i]-noise[i])/noise[i]
2436 SNR[i] = (power[i]-noise[i])/noise[i]
2435 SNRm = numpy.nanmean(SNR, axis = 0)
2437 SNRm = numpy.nanmean(SNR, axis = 0)
2436 SNRdB = 10*numpy.log10(SNR)
2438 SNRdB = 10*numpy.log10(SNR)
2437
2439
2438 if mode == 'SA':
2440 if mode == 'SA':
2439 dataOut.groupList = dataOut.groupList[1]
2441 dataOut.groupList = dataOut.groupList[1]
2440 nPairs = data_ccf.shape[0]
2442 nPairs = data_ccf.shape[0]
2441 #---------------------- Coherence and Phase --------------------------
2443 #---------------------- Coherence and Phase --------------------------
2442 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2443 # phase1 = numpy.copy(phase)
2445 # phase1 = numpy.copy(phase)
2444 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2445
2447
2446 for p in range(nPairs):
2448 for p in range(nPairs):
2447 ch0 = pairsList[p][0]
2449 ch0 = pairsList[p][0]
2448 ch1 = pairsList[p][1]
2450 ch1 = pairsList[p][1]
2449 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2450 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2451 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2452 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2453 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2454 coh = numpy.nanmax(coh1, axis = 0)
2456 coh = numpy.nanmax(coh1, axis = 0)
2455 # struc = numpy.ones((5,1))
2457 # struc = numpy.ones((5,1))
2456 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2457 #---------------------- Radial Velocity ----------------------------
2459 #---------------------- Radial Velocity ----------------------------
2458 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2459 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2460
2462
2461 if allData:
2463 if allData:
2462 boolMetFin = ~numpy.isnan(SNRm)
2464 boolMetFin = ~numpy.isnan(SNRm)
2463 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2464 else:
2466 else:
2465 #------------------------ Meteor mask ---------------------------------
2467 #------------------------ Meteor mask ---------------------------------
2466 # #SNR mask
2468 # #SNR mask
2467 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2468 #
2470 #
2469 # #Erase small objects
2471 # #Erase small objects
2470 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2471 #
2473 #
2472 # auxEEJ = numpy.sum(boolMet1,axis=0)
2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2473 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2474 # indEEJ = numpy.where(indOver)[0]
2476 # indEEJ = numpy.where(indOver)[0]
2475 # indNEEJ = numpy.where(~indOver)[0]
2477 # indNEEJ = numpy.where(~indOver)[0]
2476 #
2478 #
2477 # boolMetFin = boolMet1
2479 # boolMetFin = boolMet1
2478 #
2480 #
2479 # if indEEJ.size > 0:
2481 # if indEEJ.size > 0:
2480 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2481 #
2483 #
2482 # boolMet2 = coh > cohThresh
2484 # boolMet2 = coh > cohThresh
2483 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2484 #
2486 #
2485 # #Final Meteor mask
2487 # #Final Meteor mask
2486 # boolMetFin = boolMet1|boolMet2
2488 # boolMetFin = boolMet1|boolMet2
2487
2489
2488 #Coherence mask
2490 #Coherence mask
2489 boolMet1 = coh > 0.75
2491 boolMet1 = coh > 0.75
2490 struc = numpy.ones((30,1))
2492 struc = numpy.ones((30,1))
2491 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2492
2494
2493 #Derivative mask
2495 #Derivative mask
2494 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2495 boolMet2 = derPhase < 0.2
2497 boolMet2 = derPhase < 0.2
2496 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2497 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2498 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2499 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2500 # #Final mask
2502 # #Final mask
2501 # boolMetFin = boolMet2
2503 # boolMetFin = boolMet2
2502 boolMetFin = boolMet1&boolMet2
2504 boolMetFin = boolMet1&boolMet2
2503 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2504 #Creating data_param
2506 #Creating data_param
2505 coordMet = numpy.where(boolMetFin)
2507 coordMet = numpy.where(boolMetFin)
2506
2508
2507 tmet = coordMet[0]
2509 tmet = coordMet[0]
2508 hmet = coordMet[1]
2510 hmet = coordMet[1]
2509
2511
2510 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2511 data_param[:,0] = utctime
2513 data_param[:,0] = utctime
2512 data_param[:,1] = tmet
2514 data_param[:,1] = tmet
2513 data_param[:,2] = hmet
2515 data_param[:,2] = hmet
2514 data_param[:,3] = SNRm[tmet,hmet]
2516 data_param[:,3] = SNRm[tmet,hmet]
2515 data_param[:,4] = velRad[tmet,hmet]
2517 data_param[:,4] = velRad[tmet,hmet]
2516 data_param[:,5] = coh[tmet,hmet]
2518 data_param[:,5] = coh[tmet,hmet]
2517 data_param[:,6:] = phase[:,tmet,hmet].T
2519 data_param[:,6:] = phase[:,tmet,hmet].T
2518
2520
2519 elif mode == 'DBS':
2521 elif mode == 'DBS':
2520 dataOut.groupList = numpy.arange(nChannels)
2522 dataOut.groupList = numpy.arange(nChannels)
2521
2523
2522 #Radial Velocities
2524 #Radial Velocities
2523 phase = numpy.angle(data_acf[:,1,:,:])
2525 phase = numpy.angle(data_acf[:,1,:,:])
2524 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2525 velRad = phase*lamb/(4*numpy.pi*tSamp)
2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2526
2528
2527 #Spectral width
2529 #Spectral width
2528 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2529 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2530 acf1 = data_acf[:,1,:,:]
2532 acf1 = data_acf[:,1,:,:]
2531 acf2 = data_acf[:,2,:,:]
2533 acf2 = data_acf[:,2,:,:]
2532
2534
2533 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2534 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2535 if allData:
2537 if allData:
2536 boolMetFin = ~numpy.isnan(SNRdB)
2538 boolMetFin = ~numpy.isnan(SNRdB)
2537 else:
2539 else:
2538 #SNR
2540 #SNR
2539 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2540 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2541
2543
2542 #Radial velocity
2544 #Radial velocity
2543 boolMet2 = numpy.abs(velRad) < 20
2545 boolMet2 = numpy.abs(velRad) < 20
2544 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2545
2547
2546 #Spectral Width
2548 #Spectral Width
2547 boolMet3 = spcWidth < 30
2549 boolMet3 = spcWidth < 30
2548 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2549 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2550 boolMetFin = boolMet1&boolMet2&boolMet3
2552 boolMetFin = boolMet1&boolMet2&boolMet3
2551
2553
2552 #Creating data_param
2554 #Creating data_param
2553 coordMet = numpy.where(boolMetFin)
2555 coordMet = numpy.where(boolMetFin)
2554
2556
2555 cmet = coordMet[0]
2557 cmet = coordMet[0]
2556 tmet = coordMet[1]
2558 tmet = coordMet[1]
2557 hmet = coordMet[2]
2559 hmet = coordMet[2]
2558
2560
2559 data_param = numpy.zeros((tmet.size, 7))
2561 data_param = numpy.zeros((tmet.size, 7))
2560 data_param[:,0] = utctime
2562 data_param[:,0] = utctime
2561 data_param[:,1] = cmet
2563 data_param[:,1] = cmet
2562 data_param[:,2] = tmet
2564 data_param[:,2] = tmet
2563 data_param[:,3] = hmet
2565 data_param[:,3] = hmet
2564 data_param[:,4] = SNR[cmet,tmet,hmet].T
2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2565 data_param[:,5] = velRad[cmet,tmet,hmet].T
2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2566 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2567
2569
2568 # self.dataOut.data_param = data_int
2570 # self.dataOut.data_param = data_int
2569 if len(data_param) == 0:
2571 if len(data_param) == 0:
2570 dataOut.flagNoData = True
2572 dataOut.flagNoData = True
2571 else:
2573 else:
2572 dataOut.data_param = data_param
2574 dataOut.data_param = data_param
2573
2575
2574 def __erase_small(self, binArray, threshX, threshY):
2576 def __erase_small(self, binArray, threshX, threshY):
2575 labarray, numfeat = ndimage.measurements.label(binArray)
2577 labarray, numfeat = ndimage.measurements.label(binArray)
2576 binArray1 = numpy.copy(binArray)
2578 binArray1 = numpy.copy(binArray)
2577
2579
2578 for i in range(1,numfeat + 1):
2580 for i in range(1,numfeat + 1):
2579 auxBin = (labarray==i)
2581 auxBin = (labarray==i)
2580 auxSize = auxBin.sum()
2582 auxSize = auxBin.sum()
2581
2583
2582 x,y = numpy.where(auxBin)
2584 x,y = numpy.where(auxBin)
2583 widthX = x.max() - x.min()
2585 widthX = x.max() - x.min()
2584 widthY = y.max() - y.min()
2586 widthY = y.max() - y.min()
2585
2587
2586 #width X: 3 seg -> 12.5*3
2588 #width X: 3 seg -> 12.5*3
2587 #width Y:
2589 #width Y:
2588
2590
2589 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2590 binArray1[auxBin] = False
2592 binArray1[auxBin] = False
2591
2593
2592 return binArray1
2594 return binArray1
2593
2595
2594 #--------------- Specular Meteor ----------------
2596 #--------------- Specular Meteor ----------------
2595
2597
2596 class SMDetection(Operation):
2598 class SMDetection(Operation):
2597 '''
2599 '''
2598 Function DetectMeteors()
2600 Function DetectMeteors()
2599 Project developed with paper:
2601 Project developed with paper:
2600 HOLDSWORTH ET AL. 2004
2602 HOLDSWORTH ET AL. 2004
2601
2603
2602 Input:
2604 Input:
2603 self.dataOut.data_pre
2605 self.dataOut.data_pre
2604
2606
2605 centerReceiverIndex: From the channels, which is the center receiver
2607 centerReceiverIndex: From the channels, which is the center receiver
2606
2608
2607 hei_ref: Height reference for the Beacon signal extraction
2609 hei_ref: Height reference for the Beacon signal extraction
2608 tauindex:
2610 tauindex:
2609 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2610
2612
2611 cohDetection: Whether to user Coherent detection or not
2613 cohDetection: Whether to user Coherent detection or not
2612 cohDet_timeStep: Coherent Detection calculation time step
2614 cohDet_timeStep: Coherent Detection calculation time step
2613 cohDet_thresh: Coherent Detection phase threshold to correct phases
2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2614
2616
2615 noise_timeStep: Noise calculation time step
2617 noise_timeStep: Noise calculation time step
2616 noise_multiple: Noise multiple to define signal threshold
2618 noise_multiple: Noise multiple to define signal threshold
2617
2619
2618 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2619 multDet_rangeLimit: Multiple Detection Removal range limit in km
2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2620
2622
2621 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2622 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2623
2625
2624 hmin: Minimum Height of the meteor to use it in the further wind estimations
2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2625 hmax: Maximum Height of the meteor to use it in the further wind estimations
2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2626 azimuth: Azimuth angle correction
2628 azimuth: Azimuth angle correction
2627
2629
2628 Affected:
2630 Affected:
2629 self.dataOut.data_param
2631 self.dataOut.data_param
2630
2632
2631 Rejection Criteria (Errors):
2633 Rejection Criteria (Errors):
2632 0: No error; analysis OK
2634 0: No error; analysis OK
2633 1: SNR < SNR threshold
2635 1: SNR < SNR threshold
2634 2: angle of arrival (AOA) ambiguously determined
2636 2: angle of arrival (AOA) ambiguously determined
2635 3: AOA estimate not feasible
2637 3: AOA estimate not feasible
2636 4: Large difference in AOAs obtained from different antenna baselines
2638 4: Large difference in AOAs obtained from different antenna baselines
2637 5: echo at start or end of time series
2639 5: echo at start or end of time series
2638 6: echo less than 5 examples long; too short for analysis
2640 6: echo less than 5 examples long; too short for analysis
2639 7: echo rise exceeds 0.3s
2641 7: echo rise exceeds 0.3s
2640 8: echo decay time less than twice rise time
2642 8: echo decay time less than twice rise time
2641 9: large power level before echo
2643 9: large power level before echo
2642 10: large power level after echo
2644 10: large power level after echo
2643 11: poor fit to amplitude for estimation of decay time
2645 11: poor fit to amplitude for estimation of decay time
2644 12: poor fit to CCF phase variation for estimation of radial drift velocity
2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2645 13: height unresolvable echo: not valid height within 70 to 110 km
2647 13: height unresolvable echo: not valid height within 70 to 110 km
2646 14: height ambiguous echo: more then one possible height within 70 to 110 km
2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2647 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2648 16: oscilatory echo, indicating event most likely not an underdense echo
2650 16: oscilatory echo, indicating event most likely not an underdense echo
2649
2651
2650 17: phase difference in meteor Reestimation
2652 17: phase difference in meteor Reestimation
2651
2653
2652 Data Storage:
2654 Data Storage:
2653 Meteors for Wind Estimation (8):
2655 Meteors for Wind Estimation (8):
2654 Utc Time | Range Height
2656 Utc Time | Range Height
2655 Azimuth Zenith errorCosDir
2657 Azimuth Zenith errorCosDir
2656 VelRad errorVelRad
2658 VelRad errorVelRad
2657 Phase0 Phase1 Phase2 Phase3
2659 Phase0 Phase1 Phase2 Phase3
2658 TypeError
2660 TypeError
2659
2661
2660 '''
2662 '''
2661
2663
2662 def run(self, dataOut, hei_ref = None, tauindex = 0,
2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2663 phaseOffsets = None,
2665 phaseOffsets = None,
2664 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2665 noise_timeStep = 4, noise_multiple = 4,
2667 noise_timeStep = 4, noise_multiple = 4,
2666 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2667 phaseThresh = 20, SNRThresh = 5,
2669 phaseThresh = 20, SNRThresh = 5,
2668 hmin = 50, hmax=150, azimuth = 0,
2670 hmin = 50, hmax=150, azimuth = 0,
2669 channelPositions = None) :
2671 channelPositions = None) :
2670
2672
2671
2673
2672 #Getting Pairslist
2674 #Getting Pairslist
2673 if channelPositions is None:
2675 if channelPositions is None:
2674 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2675 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2676 meteorOps = SMOperations()
2678 meteorOps = SMOperations()
2677 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2678 heiRang = dataOut.heightList
2680 heiRang = dataOut.heightList
2679 #Get Beacon signal - No Beacon signal anymore
2681 #Get Beacon signal - No Beacon signal anymore
2680 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2681 #
2683 #
2682 # if hei_ref != None:
2684 # if hei_ref != None:
2683 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2684 #
2686 #
2685
2687
2686
2688
2687 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2688 # see if the user put in pre defined phase shifts
2690 # see if the user put in pre defined phase shifts
2689 voltsPShift = dataOut.data_pre.copy()
2691 voltsPShift = dataOut.data_pre.copy()
2690
2692
2691 # if predefinedPhaseShifts != None:
2693 # if predefinedPhaseShifts != None:
2692 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2693 #
2695 #
2694 # # elif beaconPhaseShifts:
2696 # # elif beaconPhaseShifts:
2695 # # #get hardware phase shifts using beacon signal
2697 # # #get hardware phase shifts using beacon signal
2696 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2697 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2698 #
2700 #
2699 # else:
2701 # else:
2700 # hardwarePhaseShifts = numpy.zeros(5)
2702 # hardwarePhaseShifts = numpy.zeros(5)
2701 #
2703 #
2702 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2703 # for i in range(self.dataOut.data_pre.shape[0]):
2705 # for i in range(self.dataOut.data_pre.shape[0]):
2704 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2705
2707
2706 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2707
2709
2708 #Remove DC
2710 #Remove DC
2709 voltsDC = numpy.mean(voltsPShift,1)
2711 voltsDC = numpy.mean(voltsPShift,1)
2710 voltsDC = numpy.mean(voltsDC,1)
2712 voltsDC = numpy.mean(voltsDC,1)
2711 for i in range(voltsDC.shape[0]):
2713 for i in range(voltsDC.shape[0]):
2712 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2713
2715
2714 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2715 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2716
2718
2717 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2718 #Coherent Detection
2720 #Coherent Detection
2719 if cohDetection:
2721 if cohDetection:
2720 #use coherent detection to get the net power
2722 #use coherent detection to get the net power
2721 cohDet_thresh = cohDet_thresh*numpy.pi/180
2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2722 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2723
2725
2724 #Non-coherent detection!
2726 #Non-coherent detection!
2725 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2726 #********** END OF COH/NON-COH POWER CALCULATION**********************
2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2727
2729
2728 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2729 #Get noise
2731 #Get noise
2730 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2731 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2732 #Get signal threshold
2734 #Get signal threshold
2733 signalThresh = noise_multiple*noise
2735 signalThresh = noise_multiple*noise
2734 #Meteor echoes detection
2736 #Meteor echoes detection
2735 listMeteors = self.__findMeteors(powerNet, signalThresh)
2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2736 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2737
2739
2738 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2739 #Parameters
2741 #Parameters
2740 heiRange = dataOut.heightList
2742 heiRange = dataOut.heightList
2741 rangeInterval = heiRange[1] - heiRange[0]
2743 rangeInterval = heiRange[1] - heiRange[0]
2742 rangeLimit = multDet_rangeLimit/rangeInterval
2744 rangeLimit = multDet_rangeLimit/rangeInterval
2743 timeLimit = multDet_timeLimit/dataOut.timeInterval
2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2744 #Multiple detection removals
2746 #Multiple detection removals
2745 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2746 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2747
2749
2748 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2749 #Parameters
2751 #Parameters
2750 phaseThresh = phaseThresh*numpy.pi/180
2752 phaseThresh = phaseThresh*numpy.pi/180
2751 thresh = [phaseThresh, noise_multiple, SNRThresh]
2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2752 #Meteor reestimation (Errors N 1, 6, 12, 17)
2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2753 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2754 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2755 #Estimation of decay times (Errors N 7, 8, 11)
2757 #Estimation of decay times (Errors N 7, 8, 11)
2756 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2757 #******************* END OF METEOR REESTIMATION *******************
2759 #******************* END OF METEOR REESTIMATION *******************
2758
2760
2759 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2760 #Calculating Radial Velocity (Error N 15)
2762 #Calculating Radial Velocity (Error N 15)
2761 radialStdThresh = 10
2763 radialStdThresh = 10
2762 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2763
2765
2764 if len(listMeteors4) > 0:
2766 if len(listMeteors4) > 0:
2765 #Setting New Array
2767 #Setting New Array
2766 date = dataOut.utctime
2768 date = dataOut.utctime
2767 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2768
2770
2769 #Correcting phase offset
2771 #Correcting phase offset
2770 if phaseOffsets != None:
2772 if phaseOffsets != None:
2771 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2772 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2773
2775
2774 #Second Pairslist
2776 #Second Pairslist
2775 pairsList = []
2777 pairsList = []
2776 pairx = (0,1)
2778 pairx = (0,1)
2777 pairy = (2,3)
2779 pairy = (2,3)
2778 pairsList.append(pairx)
2780 pairsList.append(pairx)
2779 pairsList.append(pairy)
2781 pairsList.append(pairy)
2780
2782
2781 jph = numpy.array([0,0,0,0])
2783 jph = numpy.array([0,0,0,0])
2782 h = (hmin,hmax)
2784 h = (hmin,hmax)
2783 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2784
2786
2785 # #Calculate AOA (Error N 3, 4)
2787 # #Calculate AOA (Error N 3, 4)
2786 # #JONES ET AL. 1998
2788 # #JONES ET AL. 1998
2787 # error = arrayParameters[:,-1]
2789 # error = arrayParameters[:,-1]
2788 # AOAthresh = numpy.pi/8
2790 # AOAthresh = numpy.pi/8
2789 # phases = -arrayParameters[:,9:13]
2791 # phases = -arrayParameters[:,9:13]
2790 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2791 #
2793 #
2792 # #Calculate Heights (Error N 13 and 14)
2794 # #Calculate Heights (Error N 13 and 14)
2793 # error = arrayParameters[:,-1]
2795 # error = arrayParameters[:,-1]
2794 # Ranges = arrayParameters[:,2]
2796 # Ranges = arrayParameters[:,2]
2795 # zenith = arrayParameters[:,5]
2797 # zenith = arrayParameters[:,5]
2796 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2797 # error = arrayParameters[:,-1]
2799 # error = arrayParameters[:,-1]
2798 #********************* END OF PARAMETERS CALCULATION **************************
2800 #********************* END OF PARAMETERS CALCULATION **************************
2799
2801
2800 #***************************+ PASS DATA TO NEXT STEP **********************
2802 #***************************+ PASS DATA TO NEXT STEP **********************
2801 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2802 dataOut.data_param = arrayParameters
2804 dataOut.data_param = arrayParameters
2803
2805
2804 if arrayParameters is None:
2806 if arrayParameters is None:
2805 dataOut.flagNoData = True
2807 dataOut.flagNoData = True
2806 else:
2808 else:
2807 dataOut.flagNoData = True
2809 dataOut.flagNoData = True
2808
2810
2809 return
2811 return
2810
2812
2811 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2812
2814
2813 minIndex = min(newheis[0])
2815 minIndex = min(newheis[0])
2814 maxIndex = max(newheis[0])
2816 maxIndex = max(newheis[0])
2815
2817
2816 voltage = voltage0[:,:,minIndex:maxIndex+1]
2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2817 nLength = voltage.shape[1]/n
2819 nLength = voltage.shape[1]/n
2818 nMin = 0
2820 nMin = 0
2819 nMax = 0
2821 nMax = 0
2820 phaseOffset = numpy.zeros((len(pairslist),n))
2822 phaseOffset = numpy.zeros((len(pairslist),n))
2821
2823
2822 for i in range(n):
2824 for i in range(n):
2823 nMax += nLength
2825 nMax += nLength
2824 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2825 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2826 phaseOffset[:,i] = phaseCCF.transpose()
2828 phaseOffset[:,i] = phaseCCF.transpose()
2827 nMin = nMax
2829 nMin = nMax
2828 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2829
2831
2830 #Remove Outliers
2832 #Remove Outliers
2831 factor = 2
2833 factor = 2
2832 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2833 dw = numpy.std(wt,axis = 1)
2835 dw = numpy.std(wt,axis = 1)
2834 dw = dw.reshape((dw.size,1))
2836 dw = dw.reshape((dw.size,1))
2835 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2836 phaseOffset[ind] = numpy.nan
2838 phaseOffset[ind] = numpy.nan
2837 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2838
2840
2839 return phaseOffset
2841 return phaseOffset
2840
2842
2841 def __shiftPhase(self, data, phaseShift):
2843 def __shiftPhase(self, data, phaseShift):
2842 #this will shift the phase of a complex number
2844 #this will shift the phase of a complex number
2843 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2844 return dataShifted
2846 return dataShifted
2845
2847
2846 def __estimatePhaseDifference(self, array, pairslist):
2848 def __estimatePhaseDifference(self, array, pairslist):
2847 nChannel = array.shape[0]
2849 nChannel = array.shape[0]
2848 nHeights = array.shape[2]
2850 nHeights = array.shape[2]
2849 numPairs = len(pairslist)
2851 numPairs = len(pairslist)
2850 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2851 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2852
2854
2853 #Correct phases
2855 #Correct phases
2854 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2855 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2856
2858
2857 if indDer[0].shape[0] > 0:
2859 if indDer[0].shape[0] > 0:
2858 for i in range(indDer[0].shape[0]):
2860 for i in range(indDer[0].shape[0]):
2859 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2860 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2861
2863
2862 # for j in range(numSides):
2864 # for j in range(numSides):
2863 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2864 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2865 #
2867 #
2866 #Linear
2868 #Linear
2867 phaseInt = numpy.zeros((numPairs,1))
2869 phaseInt = numpy.zeros((numPairs,1))
2868 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2869 for j in range(numPairs):
2871 for j in range(numPairs):
2870 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2871 phaseInt[j] = fit[1]
2873 phaseInt[j] = fit[1]
2872 #Phase Differences
2874 #Phase Differences
2873 phaseDiff = phaseInt - phaseCCF[:,2,:]
2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2874 phaseArrival = phaseInt.reshape(phaseInt.size)
2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2875
2877
2876 #Dealias
2878 #Dealias
2877 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2878 # indAlias = numpy.where(phaseArrival > numpy.pi)
2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2879 # phaseArrival[indAlias] -= 2*numpy.pi
2881 # phaseArrival[indAlias] -= 2*numpy.pi
2880 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2881 # phaseArrival[indAlias] += 2*numpy.pi
2883 # phaseArrival[indAlias] += 2*numpy.pi
2882
2884
2883 return phaseDiff, phaseArrival
2885 return phaseDiff, phaseArrival
2884
2886
2885 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2886 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2887 #find the phase shifts of each channel over 1 second intervals
2889 #find the phase shifts of each channel over 1 second intervals
2888 #only look at ranges below the beacon signal
2890 #only look at ranges below the beacon signal
2889 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2890 numBlocks = int(volts.shape[1]/numProfPerBlock)
2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2891 numHeights = volts.shape[2]
2893 numHeights = volts.shape[2]
2892 nChannel = volts.shape[0]
2894 nChannel = volts.shape[0]
2893 voltsCohDet = volts.copy()
2895 voltsCohDet = volts.copy()
2894
2896
2895 pairsarray = numpy.array(pairslist)
2897 pairsarray = numpy.array(pairslist)
2896 indSides = pairsarray[:,1]
2898 indSides = pairsarray[:,1]
2897 # indSides = numpy.array(range(nChannel))
2899 # indSides = numpy.array(range(nChannel))
2898 # indSides = numpy.delete(indSides, indCenter)
2900 # indSides = numpy.delete(indSides, indCenter)
2899 #
2901 #
2900 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2901 listBlocks = numpy.array_split(volts, numBlocks, 1)
2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2902
2904
2903 startInd = 0
2905 startInd = 0
2904 endInd = 0
2906 endInd = 0
2905
2907
2906 for i in range(numBlocks):
2908 for i in range(numBlocks):
2907 startInd = endInd
2909 startInd = endInd
2908 endInd = endInd + listBlocks[i].shape[1]
2910 endInd = endInd + listBlocks[i].shape[1]
2909
2911
2910 arrayBlock = listBlocks[i]
2912 arrayBlock = listBlocks[i]
2911 # arrayBlockCenter = listCenter[i]
2913 # arrayBlockCenter = listCenter[i]
2912
2914
2913 #Estimate the Phase Difference
2915 #Estimate the Phase Difference
2914 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2915 #Phase Difference RMS
2917 #Phase Difference RMS
2916 arrayPhaseRMS = numpy.abs(phaseDiff)
2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2917 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2918 indPhase = numpy.where(phaseRMSaux==4)
2920 indPhase = numpy.where(phaseRMSaux==4)
2919 #Shifting
2921 #Shifting
2920 if indPhase[0].shape[0] > 0:
2922 if indPhase[0].shape[0] > 0:
2921 for j in range(indSides.size):
2923 for j in range(indSides.size):
2922 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2923 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2924
2926
2925 return voltsCohDet
2927 return voltsCohDet
2926
2928
2927 def __calculateCCF(self, volts, pairslist ,laglist):
2929 def __calculateCCF(self, volts, pairslist ,laglist):
2928
2930
2929 nHeights = volts.shape[2]
2931 nHeights = volts.shape[2]
2930 nPoints = volts.shape[1]
2932 nPoints = volts.shape[1]
2931 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2932
2934
2933 for i in range(len(pairslist)):
2935 for i in range(len(pairslist)):
2934 volts1 = volts[pairslist[i][0]]
2936 volts1 = volts[pairslist[i][0]]
2935 volts2 = volts[pairslist[i][1]]
2937 volts2 = volts[pairslist[i][1]]
2936
2938
2937 for t in range(len(laglist)):
2939 for t in range(len(laglist)):
2938 idxT = laglist[t]
2940 idxT = laglist[t]
2939 if idxT >= 0:
2941 if idxT >= 0:
2940 vStacked = numpy.vstack((volts2[idxT:,:],
2942 vStacked = numpy.vstack((volts2[idxT:,:],
2941 numpy.zeros((idxT, nHeights),dtype='complex')))
2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2942 else:
2944 else:
2943 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2944 volts2[:(nPoints + idxT),:]))
2946 volts2[:(nPoints + idxT),:]))
2945 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2946
2948
2947 vStacked = None
2949 vStacked = None
2948 return voltsCCF
2950 return voltsCCF
2949
2951
2950 def __getNoise(self, power, timeSegment, timeInterval):
2952 def __getNoise(self, power, timeSegment, timeInterval):
2951 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2952 numBlocks = int(power.shape[0]/numProfPerBlock)
2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2953 numHeights = power.shape[1]
2955 numHeights = power.shape[1]
2954
2956
2955 listPower = numpy.array_split(power, numBlocks, 0)
2957 listPower = numpy.array_split(power, numBlocks, 0)
2956 noise = numpy.zeros((power.shape[0], power.shape[1]))
2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2957 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2958
2960
2959 startInd = 0
2961 startInd = 0
2960 endInd = 0
2962 endInd = 0
2961
2963
2962 for i in range(numBlocks): #split por canal
2964 for i in range(numBlocks): #split por canal
2963 startInd = endInd
2965 startInd = endInd
2964 endInd = endInd + listPower[i].shape[0]
2966 endInd = endInd + listPower[i].shape[0]
2965
2967
2966 arrayBlock = listPower[i]
2968 arrayBlock = listPower[i]
2967 noiseAux = numpy.mean(arrayBlock, 0)
2969 noiseAux = numpy.mean(arrayBlock, 0)
2968 # noiseAux = numpy.median(noiseAux)
2970 # noiseAux = numpy.median(noiseAux)
2969 # noiseAux = numpy.mean(arrayBlock)
2971 # noiseAux = numpy.mean(arrayBlock)
2970 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2971
2973
2972 noiseAux1 = numpy.mean(arrayBlock)
2974 noiseAux1 = numpy.mean(arrayBlock)
2973 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2974
2976
2975 return noise, noise1
2977 return noise, noise1
2976
2978
2977 def __findMeteors(self, power, thresh):
2979 def __findMeteors(self, power, thresh):
2978 nProf = power.shape[0]
2980 nProf = power.shape[0]
2979 nHeights = power.shape[1]
2981 nHeights = power.shape[1]
2980 listMeteors = []
2982 listMeteors = []
2981
2983
2982 for i in range(nHeights):
2984 for i in range(nHeights):
2983 powerAux = power[:,i]
2985 powerAux = power[:,i]
2984 threshAux = thresh[:,i]
2986 threshAux = thresh[:,i]
2985
2987
2986 indUPthresh = numpy.where(powerAux > threshAux)[0]
2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2987 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2988
2990
2989 j = 0
2991 j = 0
2990
2992
2991 while (j < indUPthresh.size - 2):
2993 while (j < indUPthresh.size - 2):
2992 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2993 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2994 indDNthresh = indDNthresh[indDNAux]
2996 indDNthresh = indDNthresh[indDNAux]
2995
2997
2996 if (indDNthresh.size > 0):
2998 if (indDNthresh.size > 0):
2997 indEnd = indDNthresh[0] - 1
2999 indEnd = indDNthresh[0] - 1
2998 indInit = indUPthresh[j]
3000 indInit = indUPthresh[j]
2999
3001
3000 meteor = powerAux[indInit:indEnd + 1]
3002 meteor = powerAux[indInit:indEnd + 1]
3001 indPeak = meteor.argmax() + indInit
3003 indPeak = meteor.argmax() + indInit
3002 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3003
3005
3004 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3005 j = numpy.where(indUPthresh == indEnd)[0] + 1
3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3006 else: j+=1
3008 else: j+=1
3007 else: j+=1
3009 else: j+=1
3008
3010
3009 return listMeteors
3011 return listMeteors
3010
3012
3011 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3012
3014
3013 arrayMeteors = numpy.asarray(listMeteors)
3015 arrayMeteors = numpy.asarray(listMeteors)
3014 listMeteors1 = []
3016 listMeteors1 = []
3015
3017
3016 while arrayMeteors.shape[0] > 0:
3018 while arrayMeteors.shape[0] > 0:
3017 FLAs = arrayMeteors[:,4]
3019 FLAs = arrayMeteors[:,4]
3018 maxFLA = FLAs.argmax()
3020 maxFLA = FLAs.argmax()
3019 listMeteors1.append(arrayMeteors[maxFLA,:])
3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3020
3022
3021 MeteorInitTime = arrayMeteors[maxFLA,1]
3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3022 MeteorEndTime = arrayMeteors[maxFLA,3]
3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3023 MeteorHeight = arrayMeteors[maxFLA,0]
3025 MeteorHeight = arrayMeteors[maxFLA,0]
3024
3026
3025 #Check neighborhood
3027 #Check neighborhood
3026 maxHeightIndex = MeteorHeight + rangeLimit
3028 maxHeightIndex = MeteorHeight + rangeLimit
3027 minHeightIndex = MeteorHeight - rangeLimit
3029 minHeightIndex = MeteorHeight - rangeLimit
3028 minTimeIndex = MeteorInitTime - timeLimit
3030 minTimeIndex = MeteorInitTime - timeLimit
3029 maxTimeIndex = MeteorEndTime + timeLimit
3031 maxTimeIndex = MeteorEndTime + timeLimit
3030
3032
3031 #Check Heights
3033 #Check Heights
3032 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3033 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3034 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3035
3037
3036 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3037
3039
3038 return listMeteors1
3040 return listMeteors1
3039
3041
3040 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3041 numHeights = volts.shape[2]
3043 numHeights = volts.shape[2]
3042 nChannel = volts.shape[0]
3044 nChannel = volts.shape[0]
3043
3045
3044 thresholdPhase = thresh[0]
3046 thresholdPhase = thresh[0]
3045 thresholdNoise = thresh[1]
3047 thresholdNoise = thresh[1]
3046 thresholdDB = float(thresh[2])
3048 thresholdDB = float(thresh[2])
3047
3049
3048 thresholdDB1 = 10**(thresholdDB/10)
3050 thresholdDB1 = 10**(thresholdDB/10)
3049 pairsarray = numpy.array(pairslist)
3051 pairsarray = numpy.array(pairslist)
3050 indSides = pairsarray[:,1]
3052 indSides = pairsarray[:,1]
3051
3053
3052 pairslist1 = list(pairslist)
3054 pairslist1 = list(pairslist)
3053 pairslist1.append((0,1))
3055 pairslist1.append((0,1))
3054 pairslist1.append((3,4))
3056 pairslist1.append((3,4))
3055
3057
3056 listMeteors1 = []
3058 listMeteors1 = []
3057 listPowerSeries = []
3059 listPowerSeries = []
3058 listVoltageSeries = []
3060 listVoltageSeries = []
3059 #volts has the war data
3061 #volts has the war data
3060
3062
3061 if frequency == 30e6:
3063 if frequency == 30e6:
3062 timeLag = 45*10**-3
3064 timeLag = 45*10**-3
3063 else:
3065 else:
3064 timeLag = 15*10**-3
3066 timeLag = 15*10**-3
3065 lag = numpy.ceil(timeLag/timeInterval)
3067 lag = numpy.ceil(timeLag/timeInterval)
3066
3068
3067 for i in range(len(listMeteors)):
3069 for i in range(len(listMeteors)):
3068
3070
3069 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3070 meteorAux = numpy.zeros(16)
3072 meteorAux = numpy.zeros(16)
3071
3073
3072 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3073 mHeight = listMeteors[i][0]
3075 mHeight = listMeteors[i][0]
3074 mStart = listMeteors[i][1]
3076 mStart = listMeteors[i][1]
3075 mPeak = listMeteors[i][2]
3077 mPeak = listMeteors[i][2]
3076 mEnd = listMeteors[i][3]
3078 mEnd = listMeteors[i][3]
3077
3079
3078 #get the volt data between the start and end times of the meteor
3080 #get the volt data between the start and end times of the meteor
3079 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3080 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3081
3083
3082 #3.6. Phase Difference estimation
3084 #3.6. Phase Difference estimation
3083 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3084
3086
3085 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3086 #meteorVolts0.- all Channels, all Profiles
3088 #meteorVolts0.- all Channels, all Profiles
3087 meteorVolts0 = volts[:,:,mHeight]
3089 meteorVolts0 = volts[:,:,mHeight]
3088 meteorThresh = noise[:,mHeight]*thresholdNoise
3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3089 meteorNoise = noise[:,mHeight]
3091 meteorNoise = noise[:,mHeight]
3090 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3091 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3092
3094
3093 #Times reestimation
3095 #Times reestimation
3094 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3095 if mStart1.size > 0:
3097 if mStart1.size > 0:
3096 mStart1 = mStart1[-1] + 1
3098 mStart1 = mStart1[-1] + 1
3097
3099
3098 else:
3100 else:
3099 mStart1 = mPeak
3101 mStart1 = mPeak
3100
3102
3101 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3102 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3103 if mEndDecayTime1.size == 0:
3105 if mEndDecayTime1.size == 0:
3104 mEndDecayTime1 = powerNet0.size
3106 mEndDecayTime1 = powerNet0.size
3105 else:
3107 else:
3106 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3107 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3108
3110
3109 #meteorVolts1.- all Channels, from start to end
3111 #meteorVolts1.- all Channels, from start to end
3110 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3111 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3112 if meteorVolts2.shape[1] == 0:
3114 if meteorVolts2.shape[1] == 0:
3113 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3114 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3115 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3116 ##################### END PARAMETERS REESTIMATION #########################
3118 ##################### END PARAMETERS REESTIMATION #########################
3117
3119
3118 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3119 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3120 if meteorVolts2.shape[1] > 0:
3122 if meteorVolts2.shape[1] > 0:
3121 #Phase Difference re-estimation
3123 #Phase Difference re-estimation
3122 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3123 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3124 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3125 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3126 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3127
3129
3128 #Phase Difference RMS
3130 #Phase Difference RMS
3129 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3130 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3131 #Data from Meteor
3133 #Data from Meteor
3132 mPeak1 = powerNet1.argmax() + mStart1
3134 mPeak1 = powerNet1.argmax() + mStart1
3133 mPeakPower1 = powerNet1.max()
3135 mPeakPower1 = powerNet1.max()
3134 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3135 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3136 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3137 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3138 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3139 #Vectorize
3141 #Vectorize
3140 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3141 meteorAux[7:11] = phaseDiffint[0:4]
3143 meteorAux[7:11] = phaseDiffint[0:4]
3142
3144
3143 #Rejection Criterions
3145 #Rejection Criterions
3144 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3145 meteorAux[-1] = 17
3147 meteorAux[-1] = 17
3146 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3147 meteorAux[-1] = 1
3149 meteorAux[-1] = 1
3148
3150
3149
3151
3150 else:
3152 else:
3151 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3152 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3153 PowerSeries = 0
3155 PowerSeries = 0
3154
3156
3155 listMeteors1.append(meteorAux)
3157 listMeteors1.append(meteorAux)
3156 listPowerSeries.append(PowerSeries)
3158 listPowerSeries.append(PowerSeries)
3157 listVoltageSeries.append(meteorVolts1)
3159 listVoltageSeries.append(meteorVolts1)
3158
3160
3159 return listMeteors1, listPowerSeries, listVoltageSeries
3161 return listMeteors1, listPowerSeries, listVoltageSeries
3160
3162
3161 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3162
3164
3163 threshError = 10
3165 threshError = 10
3164 #Depending if it is 30 or 50 MHz
3166 #Depending if it is 30 or 50 MHz
3165 if frequency == 30e6:
3167 if frequency == 30e6:
3166 timeLag = 45*10**-3
3168 timeLag = 45*10**-3
3167 else:
3169 else:
3168 timeLag = 15*10**-3
3170 timeLag = 15*10**-3
3169 lag = numpy.ceil(timeLag/timeInterval)
3171 lag = numpy.ceil(timeLag/timeInterval)
3170
3172
3171 listMeteors1 = []
3173 listMeteors1 = []
3172
3174
3173 for i in range(len(listMeteors)):
3175 for i in range(len(listMeteors)):
3174 meteorPower = listPower[i]
3176 meteorPower = listPower[i]
3175 meteorAux = listMeteors[i]
3177 meteorAux = listMeteors[i]
3176
3178
3177 if meteorAux[-1] == 0:
3179 if meteorAux[-1] == 0:
3178
3180
3179 try:
3181 try:
3180 indmax = meteorPower.argmax()
3182 indmax = meteorPower.argmax()
3181 indlag = indmax + lag
3183 indlag = indmax + lag
3182
3184
3183 y = meteorPower[indlag:]
3185 y = meteorPower[indlag:]
3184 x = numpy.arange(0, y.size)*timeLag
3186 x = numpy.arange(0, y.size)*timeLag
3185
3187
3186 #first guess
3188 #first guess
3187 a = y[0]
3189 a = y[0]
3188 tau = timeLag
3190 tau = timeLag
3189 #exponential fit
3191 #exponential fit
3190 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3191 y1 = self.__exponential_function(x, *popt)
3193 y1 = self.__exponential_function(x, *popt)
3192 #error estimation
3194 #error estimation
3193 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3194
3196
3195 decayTime = popt[1]
3197 decayTime = popt[1]
3196 riseTime = indmax*timeInterval
3198 riseTime = indmax*timeInterval
3197 meteorAux[11:13] = [decayTime, error]
3199 meteorAux[11:13] = [decayTime, error]
3198
3200
3199 #Table items 7, 8 and 11
3201 #Table items 7, 8 and 11
3200 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3201 meteorAux[-1] = 7
3203 meteorAux[-1] = 7
3202 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3203 meteorAux[-1] = 8
3205 meteorAux[-1] = 8
3204 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3205 meteorAux[-1] = 11
3207 meteorAux[-1] = 11
3206
3208
3207
3209
3208 except:
3210 except:
3209 meteorAux[-1] = 11
3211 meteorAux[-1] = 11
3210
3212
3211
3213
3212 listMeteors1.append(meteorAux)
3214 listMeteors1.append(meteorAux)
3213
3215
3214 return listMeteors1
3216 return listMeteors1
3215
3217
3216 #Exponential Function
3218 #Exponential Function
3217
3219
3218 def __exponential_function(self, x, a, tau):
3220 def __exponential_function(self, x, a, tau):
3219 y = a*numpy.exp(-x/tau)
3221 y = a*numpy.exp(-x/tau)
3220 return y
3222 return y
3221
3223
3222 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3223
3225
3224 pairslist1 = list(pairslist)
3226 pairslist1 = list(pairslist)
3225 pairslist1.append((0,1))
3227 pairslist1.append((0,1))
3226 pairslist1.append((3,4))
3228 pairslist1.append((3,4))
3227 numPairs = len(pairslist1)
3229 numPairs = len(pairslist1)
3228 #Time Lag
3230 #Time Lag
3229 timeLag = 45*10**-3
3231 timeLag = 45*10**-3
3230 c = 3e8
3232 c = 3e8
3231 lag = numpy.ceil(timeLag/timeInterval)
3233 lag = numpy.ceil(timeLag/timeInterval)
3232 freq = 30e6
3234 freq = 30e6
3233
3235
3234 listMeteors1 = []
3236 listMeteors1 = []
3235
3237
3236 for i in range(len(listMeteors)):
3238 for i in range(len(listMeteors)):
3237 meteorAux = listMeteors[i]
3239 meteorAux = listMeteors[i]
3238 if meteorAux[-1] == 0:
3240 if meteorAux[-1] == 0:
3239 mStart = listMeteors[i][1]
3241 mStart = listMeteors[i][1]
3240 mPeak = listMeteors[i][2]
3242 mPeak = listMeteors[i][2]
3241 mLag = mPeak - mStart + lag
3243 mLag = mPeak - mStart + lag
3242
3244
3243 #get the volt data between the start and end times of the meteor
3245 #get the volt data between the start and end times of the meteor
3244 meteorVolts = listVolts[i]
3246 meteorVolts = listVolts[i]
3245 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3246
3248
3247 #Get CCF
3249 #Get CCF
3248 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3249
3251
3250 #Method 2
3252 #Method 2
3251 slopes = numpy.zeros(numPairs)
3253 slopes = numpy.zeros(numPairs)
3252 time = numpy.array([-2,-1,1,2])*timeInterval
3254 time = numpy.array([-2,-1,1,2])*timeInterval
3253 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3254
3256
3255 #Correct phases
3257 #Correct phases
3256 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3257 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3258
3260
3259 if indDer[0].shape[0] > 0:
3261 if indDer[0].shape[0] > 0:
3260 for i in range(indDer[0].shape[0]):
3262 for i in range(indDer[0].shape[0]):
3261 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3262 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3263
3265
3264 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3265 for j in range(numPairs):
3267 for j in range(numPairs):
3266 fit = stats.linregress(time, angAllCCF[j,:])
3268 fit = stats.linregress(time, angAllCCF[j,:])
3267 slopes[j] = fit[0]
3269 slopes[j] = fit[0]
3268
3270
3269 #Remove Outlier
3271 #Remove Outlier
3270 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3271 # slopes = numpy.delete(slopes,indOut)
3273 # slopes = numpy.delete(slopes,indOut)
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3273 # slopes = numpy.delete(slopes,indOut)
3275 # slopes = numpy.delete(slopes,indOut)
3274
3276
3275 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3276 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3277 meteorAux[-2] = radialError
3279 meteorAux[-2] = radialError
3278 meteorAux[-3] = radialVelocity
3280 meteorAux[-3] = radialVelocity
3279
3281
3280 #Setting Error
3282 #Setting Error
3281 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3282 if numpy.abs(radialVelocity) > 200:
3284 if numpy.abs(radialVelocity) > 200:
3283 meteorAux[-1] = 15
3285 meteorAux[-1] = 15
3284 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3285 elif radialError > radialStdThresh:
3287 elif radialError > radialStdThresh:
3286 meteorAux[-1] = 12
3288 meteorAux[-1] = 12
3287
3289
3288 listMeteors1.append(meteorAux)
3290 listMeteors1.append(meteorAux)
3289 return listMeteors1
3291 return listMeteors1
3290
3292
3291 def __setNewArrays(self, listMeteors, date, heiRang):
3293 def __setNewArrays(self, listMeteors, date, heiRang):
3292
3294
3293 #New arrays
3295 #New arrays
3294 arrayMeteors = numpy.array(listMeteors)
3296 arrayMeteors = numpy.array(listMeteors)
3295 arrayParameters = numpy.zeros((len(listMeteors), 13))
3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3296
3298
3297 #Date inclusion
3299 #Date inclusion
3298 # date = re.findall(r'\((.*?)\)', date)
3300 # date = re.findall(r'\((.*?)\)', date)
3299 # date = date[0].split(',')
3301 # date = date[0].split(',')
3300 # date = map(int, date)
3302 # date = map(int, date)
3301 #
3303 #
3302 # if len(date)<6:
3304 # if len(date)<6:
3303 # date.append(0)
3305 # date.append(0)
3304 #
3306 #
3305 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3306 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3307 arrayDate = numpy.tile(date, (len(listMeteors)))
3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3308
3310
3309 #Meteor array
3311 #Meteor array
3310 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3311 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3312
3314
3313 #Parameters Array
3315 #Parameters Array
3314 arrayParameters[:,0] = arrayDate #Date
3316 arrayParameters[:,0] = arrayDate #Date
3315 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3316 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3317 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3318 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3319
3321
3320
3322
3321 return arrayParameters
3323 return arrayParameters
3322
3324
3323 class CorrectSMPhases(Operation):
3325 class CorrectSMPhases(Operation):
3324
3326
3325 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3326
3328
3327 arrayParameters = dataOut.data_param
3329 arrayParameters = dataOut.data_param
3328 pairsList = []
3330 pairsList = []
3329 pairx = (0,1)
3331 pairx = (0,1)
3330 pairy = (2,3)
3332 pairy = (2,3)
3331 pairsList.append(pairx)
3333 pairsList.append(pairx)
3332 pairsList.append(pairy)
3334 pairsList.append(pairy)
3333 jph = numpy.zeros(4)
3335 jph = numpy.zeros(4)
3334
3336
3335 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3336 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3337 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3338
3340
3339 meteorOps = SMOperations()
3341 meteorOps = SMOperations()
3340 if channelPositions is None:
3342 if channelPositions is None:
3341 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3342 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3343
3345
3344 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3345 h = (hmin,hmax)
3347 h = (hmin,hmax)
3346
3348
3347 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3348
3350
3349 dataOut.data_param = arrayParameters
3351 dataOut.data_param = arrayParameters
3350 return
3352 return
3351
3353
3352 class SMPhaseCalibration(Operation):
3354 class SMPhaseCalibration(Operation):
3353
3355
3354 __buffer = None
3356 __buffer = None
3355
3357
3356 __initime = None
3358 __initime = None
3357
3359
3358 __dataReady = False
3360 __dataReady = False
3359
3361
3360 __isConfig = False
3362 __isConfig = False
3361
3363
3362 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3363
3365
3364 dataTime = currentTime + paramInterval
3366 dataTime = currentTime + paramInterval
3365 deltaTime = dataTime - initTime
3367 deltaTime = dataTime - initTime
3366
3368
3367 if deltaTime >= outputInterval or deltaTime < 0:
3369 if deltaTime >= outputInterval or deltaTime < 0:
3368 return True
3370 return True
3369
3371
3370 return False
3372 return False
3371
3373
3372 def __getGammas(self, pairs, d, phases):
3374 def __getGammas(self, pairs, d, phases):
3373 gammas = numpy.zeros(2)
3375 gammas = numpy.zeros(2)
3374
3376
3375 for i in range(len(pairs)):
3377 for i in range(len(pairs)):
3376
3378
3377 pairi = pairs[i]
3379 pairi = pairs[i]
3378
3380
3379 phip3 = phases[:,pairi[0]]
3381 phip3 = phases[:,pairi[0]]
3380 d3 = d[pairi[0]]
3382 d3 = d[pairi[0]]
3381 phip2 = phases[:,pairi[1]]
3383 phip2 = phases[:,pairi[1]]
3382 d2 = d[pairi[1]]
3384 d2 = d[pairi[1]]
3383 #Calculating gamma
3385 #Calculating gamma
3384 # jdcos = alp1/(k*d1)
3386 # jdcos = alp1/(k*d1)
3385 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3386 jgamma = -phip2*d3/d2 - phip3
3388 jgamma = -phip2*d3/d2 - phip3
3387 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3388 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3389 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3390
3392
3391 #Revised distribution
3393 #Revised distribution
3392 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3393
3395
3394 #Histogram
3396 #Histogram
3395 nBins = 64
3397 nBins = 64
3396 rmin = -0.5*numpy.pi
3398 rmin = -0.5*numpy.pi
3397 rmax = 0.5*numpy.pi
3399 rmax = 0.5*numpy.pi
3398 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3399
3401
3400 meteorsY = phaseHisto[0]
3402 meteorsY = phaseHisto[0]
3401 phasesX = phaseHisto[1][:-1]
3403 phasesX = phaseHisto[1][:-1]
3402 width = phasesX[1] - phasesX[0]
3404 width = phasesX[1] - phasesX[0]
3403 phasesX += width/2
3405 phasesX += width/2
3404
3406
3405 #Gaussian aproximation
3407 #Gaussian aproximation
3406 bpeak = meteorsY.argmax()
3408 bpeak = meteorsY.argmax()
3407 peak = meteorsY.max()
3409 peak = meteorsY.max()
3408 jmin = bpeak - 5
3410 jmin = bpeak - 5
3409 jmax = bpeak + 5 + 1
3411 jmax = bpeak + 5 + 1
3410
3412
3411 if jmin<0:
3413 if jmin<0:
3412 jmin = 0
3414 jmin = 0
3413 jmax = 6
3415 jmax = 6
3414 elif jmax > meteorsY.size:
3416 elif jmax > meteorsY.size:
3415 jmin = meteorsY.size - 6
3417 jmin = meteorsY.size - 6
3416 jmax = meteorsY.size
3418 jmax = meteorsY.size
3417
3419
3418 x0 = numpy.array([peak,bpeak,50])
3420 x0 = numpy.array([peak,bpeak,50])
3419 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3420
3422
3421 #Gammas
3423 #Gammas
3422 gammas[i] = coeff[0][1]
3424 gammas[i] = coeff[0][1]
3423
3425
3424 return gammas
3426 return gammas
3425
3427
3426 def __residualFunction(self, coeffs, y, t):
3428 def __residualFunction(self, coeffs, y, t):
3427
3429
3428 return y - self.__gauss_function(t, coeffs)
3430 return y - self.__gauss_function(t, coeffs)
3429
3431
3430 def __gauss_function(self, t, coeffs):
3432 def __gauss_function(self, t, coeffs):
3431
3433
3432 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3433
3435
3434 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3435 meteorOps = SMOperations()
3437 meteorOps = SMOperations()
3436 nchan = 4
3438 nchan = 4
3437 pairx = pairsList[0] #x es 0
3439 pairx = pairsList[0] #x es 0
3438 pairy = pairsList[1] #y es 1
3440 pairy = pairsList[1] #y es 1
3439 center_xangle = 0
3441 center_xangle = 0
3440 center_yangle = 0
3442 center_yangle = 0
3441 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3442 ntimes = len(range_angle)
3444 ntimes = len(range_angle)
3443
3445
3444 nstepsx = 20
3446 nstepsx = 20
3445 nstepsy = 20
3447 nstepsy = 20
3446
3448
3447 for iz in range(ntimes):
3449 for iz in range(ntimes):
3448 min_xangle = -range_angle[iz]/2 + center_xangle
3450 min_xangle = -range_angle[iz]/2 + center_xangle
3449 max_xangle = range_angle[iz]/2 + center_xangle
3451 max_xangle = range_angle[iz]/2 + center_xangle
3450 min_yangle = -range_angle[iz]/2 + center_yangle
3452 min_yangle = -range_angle[iz]/2 + center_yangle
3451 max_yangle = range_angle[iz]/2 + center_yangle
3453 max_yangle = range_angle[iz]/2 + center_yangle
3452
3454
3453 inc_x = (max_xangle-min_xangle)/nstepsx
3455 inc_x = (max_xangle-min_xangle)/nstepsx
3454 inc_y = (max_yangle-min_yangle)/nstepsy
3456 inc_y = (max_yangle-min_yangle)/nstepsy
3455
3457
3456 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3457 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3458 penalty = numpy.zeros((nstepsx,nstepsy))
3460 penalty = numpy.zeros((nstepsx,nstepsy))
3459 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3460 jph = numpy.zeros(nchan)
3462 jph = numpy.zeros(nchan)
3461
3463
3462 # Iterations looking for the offset
3464 # Iterations looking for the offset
3463 for iy in range(int(nstepsy)):
3465 for iy in range(int(nstepsy)):
3464 for ix in range(int(nstepsx)):
3466 for ix in range(int(nstepsx)):
3465 d3 = d[pairsList[1][0]]
3467 d3 = d[pairsList[1][0]]
3466 d2 = d[pairsList[1][1]]
3468 d2 = d[pairsList[1][1]]
3467 d5 = d[pairsList[0][0]]
3469 d5 = d[pairsList[0][0]]
3468 d4 = d[pairsList[0][1]]
3470 d4 = d[pairsList[0][1]]
3469
3471
3470 alp2 = alpha_y[iy] #gamma 1
3472 alp2 = alpha_y[iy] #gamma 1
3471 alp4 = alpha_x[ix] #gamma 0
3473 alp4 = alpha_x[ix] #gamma 0
3472
3474
3473 alp3 = -alp2*d3/d2 - gammas[1]
3475 alp3 = -alp2*d3/d2 - gammas[1]
3474 alp5 = -alp4*d5/d4 - gammas[0]
3476 alp5 = -alp4*d5/d4 - gammas[0]
3475 # jph[pairy[1]] = alpha_y[iy]
3477 # jph[pairy[1]] = alpha_y[iy]
3476 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3477
3479
3478 # jph[pairx[1]] = alpha_x[ix]
3480 # jph[pairx[1]] = alpha_x[ix]
3479 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3480 jph[pairsList[0][1]] = alp4
3482 jph[pairsList[0][1]] = alp4
3481 jph[pairsList[0][0]] = alp5
3483 jph[pairsList[0][0]] = alp5
3482 jph[pairsList[1][0]] = alp3
3484 jph[pairsList[1][0]] = alp3
3483 jph[pairsList[1][1]] = alp2
3485 jph[pairsList[1][1]] = alp2
3484 jph_array[:,ix,iy] = jph
3486 jph_array[:,ix,iy] = jph
3485 # d = [2.0,2.5,2.5,2.0]
3487 # d = [2.0,2.5,2.5,2.0]
3486 #falta chequear si va a leer bien los meteoros
3488 #falta chequear si va a leer bien los meteoros
3487 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3488 error = meteorsArray1[:,-1]
3490 error = meteorsArray1[:,-1]
3489 ind1 = numpy.where(error==0)[0]
3491 ind1 = numpy.where(error==0)[0]
3490 penalty[ix,iy] = ind1.size
3492 penalty[ix,iy] = ind1.size
3491
3493
3492 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3493 phOffset = jph_array[:,i,j]
3495 phOffset = jph_array[:,i,j]
3494
3496
3495 center_xangle = phOffset[pairx[1]]
3497 center_xangle = phOffset[pairx[1]]
3496 center_yangle = phOffset[pairy[1]]
3498 center_yangle = phOffset[pairy[1]]
3497
3499
3498 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3499 phOffset = phOffset*180/numpy.pi
3501 phOffset = phOffset*180/numpy.pi
3500 return phOffset
3502 return phOffset
3501
3503
3502
3504
3503 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3504
3506
3505 dataOut.flagNoData = True
3507 dataOut.flagNoData = True
3506 self.__dataReady = False
3508 self.__dataReady = False
3507 dataOut.outputInterval = nHours*3600
3509 dataOut.outputInterval = nHours*3600
3508
3510
3509 if self.__isConfig == False:
3511 if self.__isConfig == False:
3510 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3511 #Get Initial LTC time
3513 #Get Initial LTC time
3512 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3513 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3514
3516
3515 self.__isConfig = True
3517 self.__isConfig = True
3516
3518
3517 if self.__buffer is None:
3519 if self.__buffer is None:
3518 self.__buffer = dataOut.data_param.copy()
3520 self.__buffer = dataOut.data_param.copy()
3519
3521
3520 else:
3522 else:
3521 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3522
3524
3523 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3524
3526
3525 if self.__dataReady:
3527 if self.__dataReady:
3526 dataOut.utctimeInit = self.__initime
3528 dataOut.utctimeInit = self.__initime
3527 self.__initime += dataOut.outputInterval #to erase time offset
3529 self.__initime += dataOut.outputInterval #to erase time offset
3528
3530
3529 freq = dataOut.frequency
3531 freq = dataOut.frequency
3530 c = dataOut.C #m/s
3532 c = dataOut.C #m/s
3531 lamb = c/freq
3533 lamb = c/freq
3532 k = 2*numpy.pi/lamb
3534 k = 2*numpy.pi/lamb
3533 azimuth = 0
3535 azimuth = 0
3534 h = (hmin, hmax)
3536 h = (hmin, hmax)
3535 # pairs = ((0,1),(2,3)) #Estrella
3537 # pairs = ((0,1),(2,3)) #Estrella
3536 # pairs = ((1,0),(2,3)) #T
3538 # pairs = ((1,0),(2,3)) #T
3537
3539
3538 if channelPositions is None:
3540 if channelPositions is None:
3539 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3540 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3541 meteorOps = SMOperations()
3543 meteorOps = SMOperations()
3542 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3543
3545
3544 #Checking correct order of pairs
3546 #Checking correct order of pairs
3545 pairs = []
3547 pairs = []
3546 if distances[1] > distances[0]:
3548 if distances[1] > distances[0]:
3547 pairs.append((1,0))
3549 pairs.append((1,0))
3548 else:
3550 else:
3549 pairs.append((0,1))
3551 pairs.append((0,1))
3550
3552
3551 if distances[3] > distances[2]:
3553 if distances[3] > distances[2]:
3552 pairs.append((3,2))
3554 pairs.append((3,2))
3553 else:
3555 else:
3554 pairs.append((2,3))
3556 pairs.append((2,3))
3555 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3556
3558
3557 meteorsArray = self.__buffer
3559 meteorsArray = self.__buffer
3558 error = meteorsArray[:,-1]
3560 error = meteorsArray[:,-1]
3559 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3560 ind1 = numpy.where(boolError)[0]
3562 ind1 = numpy.where(boolError)[0]
3561 meteorsArray = meteorsArray[ind1,:]
3563 meteorsArray = meteorsArray[ind1,:]
3562 meteorsArray[:,-1] = 0
3564 meteorsArray[:,-1] = 0
3563 phases = meteorsArray[:,8:12]
3565 phases = meteorsArray[:,8:12]
3564
3566
3565 #Calculate Gammas
3567 #Calculate Gammas
3566 gammas = self.__getGammas(pairs, distances, phases)
3568 gammas = self.__getGammas(pairs, distances, phases)
3567 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3568 #Calculate Phases
3570 #Calculate Phases
3569 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3570 phasesOff = phasesOff.reshape((1,phasesOff.size))
3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3571 dataOut.data_output = -phasesOff
3573 dataOut.data_output = -phasesOff
3572 dataOut.flagNoData = False
3574 dataOut.flagNoData = False
3573 self.__buffer = None
3575 self.__buffer = None
3574
3576
3575
3577
3576 return
3578 return
3577
3579
3578 class SMOperations():
3580 class SMOperations():
3579
3581
3580 def __init__(self):
3582 def __init__(self):
3581
3583
3582 return
3584 return
3583
3585
3584 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3585
3587
3586 arrayParameters = arrayParameters0.copy()
3588 arrayParameters = arrayParameters0.copy()
3587 hmin = h[0]
3589 hmin = h[0]
3588 hmax = h[1]
3590 hmax = h[1]
3589
3591
3590 #Calculate AOA (Error N 3, 4)
3592 #Calculate AOA (Error N 3, 4)
3591 #JONES ET AL. 1998
3593 #JONES ET AL. 1998
3592 AOAthresh = numpy.pi/8
3594 AOAthresh = numpy.pi/8
3593 error = arrayParameters[:,-1]
3595 error = arrayParameters[:,-1]
3594 phases = -arrayParameters[:,8:12] + jph
3596 phases = -arrayParameters[:,8:12] + jph
3595 # phases = numpy.unwrap(phases)
3597 # phases = numpy.unwrap(phases)
3596 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3597
3599
3598 #Calculate Heights (Error N 13 and 14)
3600 #Calculate Heights (Error N 13 and 14)
3599 error = arrayParameters[:,-1]
3601 error = arrayParameters[:,-1]
3600 Ranges = arrayParameters[:,1]
3602 Ranges = arrayParameters[:,1]
3601 zenith = arrayParameters[:,4]
3603 zenith = arrayParameters[:,4]
3602 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3603
3605
3604 #----------------------- Get Final data ------------------------------------
3606 #----------------------- Get Final data ------------------------------------
3605 # error = arrayParameters[:,-1]
3607 # error = arrayParameters[:,-1]
3606 # ind1 = numpy.where(error==0)[0]
3608 # ind1 = numpy.where(error==0)[0]
3607 # arrayParameters = arrayParameters[ind1,:]
3609 # arrayParameters = arrayParameters[ind1,:]
3608
3610
3609 return arrayParameters
3611 return arrayParameters
3610
3612
3611 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3612
3614
3613 arrayAOA = numpy.zeros((phases.shape[0],3))
3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3614 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3615
3617
3616 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3617 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3618 arrayAOA[:,2] = cosDirError
3620 arrayAOA[:,2] = cosDirError
3619
3621
3620 azimuthAngle = arrayAOA[:,0]
3622 azimuthAngle = arrayAOA[:,0]
3621 zenithAngle = arrayAOA[:,1]
3623 zenithAngle = arrayAOA[:,1]
3622
3624
3623 #Setting Error
3625 #Setting Error
3624 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3625 error[indError] = 0
3627 error[indError] = 0
3626 #Number 3: AOA not fesible
3628 #Number 3: AOA not fesible
3627 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3628 error[indInvalid] = 3
3630 error[indInvalid] = 3
3629 #Number 4: Large difference in AOAs obtained from different antenna baselines
3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3630 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3631 error[indInvalid] = 4
3633 error[indInvalid] = 4
3632 return arrayAOA, error
3634 return arrayAOA, error
3633
3635
3634 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3635
3637
3636 #Initializing some variables
3638 #Initializing some variables
3637 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3638 ang_aux = ang_aux.reshape(1,ang_aux.size)
3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3639
3641
3640 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3641 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3642
3644
3643
3645
3644 for i in range(2):
3646 for i in range(2):
3645 ph0 = arrayPhase[:,pairsList[i][0]]
3647 ph0 = arrayPhase[:,pairsList[i][0]]
3646 ph1 = arrayPhase[:,pairsList[i][1]]
3648 ph1 = arrayPhase[:,pairsList[i][1]]
3647 d0 = distances[pairsList[i][0]]
3649 d0 = distances[pairsList[i][0]]
3648 d1 = distances[pairsList[i][1]]
3650 d1 = distances[pairsList[i][1]]
3649
3651
3650 ph0_aux = ph0 + ph1
3652 ph0_aux = ph0 + ph1
3651 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3652 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3653 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3654 #First Estimation
3656 #First Estimation
3655 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3656
3658
3657 #Most-Accurate Second Estimation
3659 #Most-Accurate Second Estimation
3658 phi1_aux = ph0 - ph1
3660 phi1_aux = ph0 - ph1
3659 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3660 #Direction Cosine 1
3662 #Direction Cosine 1
3661 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3662
3664
3663 #Searching the correct Direction Cosine
3665 #Searching the correct Direction Cosine
3664 cosdir0_aux = cosdir0[:,i]
3666 cosdir0_aux = cosdir0[:,i]
3665 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3666 #Minimum Distance
3668 #Minimum Distance
3667 cosDiff = (cosdir1 - cosdir0_aux)**2
3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3668 indcos = cosDiff.argmin(axis = 1)
3670 indcos = cosDiff.argmin(axis = 1)
3669 #Saving Value obtained
3671 #Saving Value obtained
3670 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3671
3673
3672 return cosdir0, cosdir
3674 return cosdir0, cosdir
3673
3675
3674 def __calculateAOA(self, cosdir, azimuth):
3676 def __calculateAOA(self, cosdir, azimuth):
3675 cosdirX = cosdir[:,0]
3677 cosdirX = cosdir[:,0]
3676 cosdirY = cosdir[:,1]
3678 cosdirY = cosdir[:,1]
3677
3679
3678 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3679 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3680 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3681
3683
3682 return angles
3684 return angles
3683
3685
3684 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3685
3687
3686 Ramb = 375 #Ramb = c/(2*PRF)
3688 Ramb = 375 #Ramb = c/(2*PRF)
3687 Re = 6371 #Earth Radius
3689 Re = 6371 #Earth Radius
3688 heights = numpy.zeros(Ranges.shape)
3690 heights = numpy.zeros(Ranges.shape)
3689
3691
3690 R_aux = numpy.array([0,1,2])*Ramb
3692 R_aux = numpy.array([0,1,2])*Ramb
3691 R_aux = R_aux.reshape(1,R_aux.size)
3693 R_aux = R_aux.reshape(1,R_aux.size)
3692
3694
3693 Ranges = Ranges.reshape(Ranges.size,1)
3695 Ranges = Ranges.reshape(Ranges.size,1)
3694
3696
3695 Ri = Ranges + R_aux
3697 Ri = Ranges + R_aux
3696 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3697
3699
3698 #Check if there is a height between 70 and 110 km
3700 #Check if there is a height between 70 and 110 km
3699 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3700 ind_h = numpy.where(h_bool == 1)[0]
3702 ind_h = numpy.where(h_bool == 1)[0]
3701
3703
3702 hCorr = hi[ind_h, :]
3704 hCorr = hi[ind_h, :]
3703 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3704
3706
3705 hCorr = hi[ind_hCorr][:len(ind_h)]
3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3706 heights[ind_h] = hCorr
3708 heights[ind_h] = hCorr
3707
3709
3708 #Setting Error
3710 #Setting Error
3709 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3710 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3711 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3712 error[indError] = 0
3714 error[indError] = 0
3713 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3714 error[indInvalid2] = 14
3716 error[indInvalid2] = 14
3715 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3716 error[indInvalid1] = 13
3718 error[indInvalid1] = 13
3717
3719
3718 return heights, error
3720 return heights, error
3719
3721
3720 def getPhasePairs(self, channelPositions):
3722 def getPhasePairs(self, channelPositions):
3721 chanPos = numpy.array(channelPositions)
3723 chanPos = numpy.array(channelPositions)
3722 listOper = list(itertools.combinations(list(range(5)),2))
3724 listOper = list(itertools.combinations(list(range(5)),2))
3723
3725
3724 distances = numpy.zeros(4)
3726 distances = numpy.zeros(4)
3725 axisX = []
3727 axisX = []
3726 axisY = []
3728 axisY = []
3727 distX = numpy.zeros(3)
3729 distX = numpy.zeros(3)
3728 distY = numpy.zeros(3)
3730 distY = numpy.zeros(3)
3729 ix = 0
3731 ix = 0
3730 iy = 0
3732 iy = 0
3731
3733
3732 pairX = numpy.zeros((2,2))
3734 pairX = numpy.zeros((2,2))
3733 pairY = numpy.zeros((2,2))
3735 pairY = numpy.zeros((2,2))
3734
3736
3735 for i in range(len(listOper)):
3737 for i in range(len(listOper)):
3736 pairi = listOper[i]
3738 pairi = listOper[i]
3737
3739
3738 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3739
3741
3740 if posDif[0] == 0:
3742 if posDif[0] == 0:
3741 axisY.append(pairi)
3743 axisY.append(pairi)
3742 distY[iy] = posDif[1]
3744 distY[iy] = posDif[1]
3743 iy += 1
3745 iy += 1
3744 elif posDif[1] == 0:
3746 elif posDif[1] == 0:
3745 axisX.append(pairi)
3747 axisX.append(pairi)
3746 distX[ix] = posDif[0]
3748 distX[ix] = posDif[0]
3747 ix += 1
3749 ix += 1
3748
3750
3749 for i in range(2):
3751 for i in range(2):
3750 if i==0:
3752 if i==0:
3751 dist0 = distX
3753 dist0 = distX
3752 axis0 = axisX
3754 axis0 = axisX
3753 else:
3755 else:
3754 dist0 = distY
3756 dist0 = distY
3755 axis0 = axisY
3757 axis0 = axisY
3756
3758
3757 side = numpy.argsort(dist0)[:-1]
3759 side = numpy.argsort(dist0)[:-1]
3758 axis0 = numpy.array(axis0)[side,:]
3760 axis0 = numpy.array(axis0)[side,:]
3759 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3760 axis1 = numpy.unique(numpy.reshape(axis0,4))
3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3761 side = axis1[axis1 != chanC]
3763 side = axis1[axis1 != chanC]
3762 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3763 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3764 if diff1<0:
3766 if diff1<0:
3765 chan2 = side[0]
3767 chan2 = side[0]
3766 d2 = numpy.abs(diff1)
3768 d2 = numpy.abs(diff1)
3767 chan1 = side[1]
3769 chan1 = side[1]
3768 d1 = numpy.abs(diff2)
3770 d1 = numpy.abs(diff2)
3769 else:
3771 else:
3770 chan2 = side[1]
3772 chan2 = side[1]
3771 d2 = numpy.abs(diff2)
3773 d2 = numpy.abs(diff2)
3772 chan1 = side[0]
3774 chan1 = side[0]
3773 d1 = numpy.abs(diff1)
3775 d1 = numpy.abs(diff1)
3774
3776
3775 if i==0:
3777 if i==0:
3776 chanCX = chanC
3778 chanCX = chanC
3777 chan1X = chan1
3779 chan1X = chan1
3778 chan2X = chan2
3780 chan2X = chan2
3779 distances[0:2] = numpy.array([d1,d2])
3781 distances[0:2] = numpy.array([d1,d2])
3780 else:
3782 else:
3781 chanCY = chanC
3783 chanCY = chanC
3782 chan1Y = chan1
3784 chan1Y = chan1
3783 chan2Y = chan2
3785 chan2Y = chan2
3784 distances[2:4] = numpy.array([d1,d2])
3786 distances[2:4] = numpy.array([d1,d2])
3785 # axisXsides = numpy.reshape(axisX[ix,:],4)
3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3786 #
3788 #
3787 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3788 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3789 #
3791 #
3790 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3791 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3792 # channel25X = int(pairX[0,ind25X])
3794 # channel25X = int(pairX[0,ind25X])
3793 # channel20X = int(pairX[1,ind20X])
3795 # channel20X = int(pairX[1,ind20X])
3794 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3795 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3796 # channel25Y = int(pairY[0,ind25Y])
3798 # channel25Y = int(pairY[0,ind25Y])
3797 # channel20Y = int(pairY[1,ind20Y])
3799 # channel20Y = int(pairY[1,ind20Y])
3798
3800
3799 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3800 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3801
3803
3802 return pairslist, distances
3804 return pairslist, distances
3803 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3804 #
3806 #
3805 # arrayAOA = numpy.zeros((phases.shape[0],3))
3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3806 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3807 #
3809 #
3808 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3809 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3810 # arrayAOA[:,2] = cosDirError
3812 # arrayAOA[:,2] = cosDirError
3811 #
3813 #
3812 # azimuthAngle = arrayAOA[:,0]
3814 # azimuthAngle = arrayAOA[:,0]
3813 # zenithAngle = arrayAOA[:,1]
3815 # zenithAngle = arrayAOA[:,1]
3814 #
3816 #
3815 # #Setting Error
3817 # #Setting Error
3816 # #Number 3: AOA not fesible
3818 # #Number 3: AOA not fesible
3817 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3818 # error[indInvalid] = 3
3820 # error[indInvalid] = 3
3819 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3820 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3821 # error[indInvalid] = 4
3823 # error[indInvalid] = 4
3822 # return arrayAOA, error
3824 # return arrayAOA, error
3823 #
3825 #
3824 # def __getDirectionCosines(self, arrayPhase, pairsList):
3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3825 #
3827 #
3826 # #Initializing some variables
3828 # #Initializing some variables
3827 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3828 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3829 #
3831 #
3830 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3831 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3832 #
3834 #
3833 #
3835 #
3834 # for i in range(2):
3836 # for i in range(2):
3835 # #First Estimation
3837 # #First Estimation
3836 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3837 # #Dealias
3839 # #Dealias
3838 # indcsi = numpy.where(phi0_aux > numpy.pi)
3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3839 # phi0_aux[indcsi] -= 2*numpy.pi
3841 # phi0_aux[indcsi] -= 2*numpy.pi
3840 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3841 # phi0_aux[indcsi] += 2*numpy.pi
3843 # phi0_aux[indcsi] += 2*numpy.pi
3842 # #Direction Cosine 0
3844 # #Direction Cosine 0
3843 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3844 #
3846 #
3845 # #Most-Accurate Second Estimation
3847 # #Most-Accurate Second Estimation
3846 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3847 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3848 # #Direction Cosine 1
3850 # #Direction Cosine 1
3849 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3850 #
3852 #
3851 # #Searching the correct Direction Cosine
3853 # #Searching the correct Direction Cosine
3852 # cosdir0_aux = cosdir0[:,i]
3854 # cosdir0_aux = cosdir0[:,i]
3853 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3854 # #Minimum Distance
3856 # #Minimum Distance
3855 # cosDiff = (cosdir1 - cosdir0_aux)**2
3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3856 # indcos = cosDiff.argmin(axis = 1)
3858 # indcos = cosDiff.argmin(axis = 1)
3857 # #Saving Value obtained
3859 # #Saving Value obtained
3858 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3859 #
3861 #
3860 # return cosdir0, cosdir
3862 # return cosdir0, cosdir
3861 #
3863 #
3862 # def __calculateAOA(self, cosdir, azimuth):
3864 # def __calculateAOA(self, cosdir, azimuth):
3863 # cosdirX = cosdir[:,0]
3865 # cosdirX = cosdir[:,0]
3864 # cosdirY = cosdir[:,1]
3866 # cosdirY = cosdir[:,1]
3865 #
3867 #
3866 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3867 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3868 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3869 #
3871 #
3870 # return angles
3872 # return angles
3871 #
3873 #
3872 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3873 #
3875 #
3874 # Ramb = 375 #Ramb = c/(2*PRF)
3876 # Ramb = 375 #Ramb = c/(2*PRF)
3875 # Re = 6371 #Earth Radius
3877 # Re = 6371 #Earth Radius
3876 # heights = numpy.zeros(Ranges.shape)
3878 # heights = numpy.zeros(Ranges.shape)
3877 #
3879 #
3878 # R_aux = numpy.array([0,1,2])*Ramb
3880 # R_aux = numpy.array([0,1,2])*Ramb
3879 # R_aux = R_aux.reshape(1,R_aux.size)
3881 # R_aux = R_aux.reshape(1,R_aux.size)
3880 #
3882 #
3881 # Ranges = Ranges.reshape(Ranges.size,1)
3883 # Ranges = Ranges.reshape(Ranges.size,1)
3882 #
3884 #
3883 # Ri = Ranges + R_aux
3885 # Ri = Ranges + R_aux
3884 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3885 #
3887 #
3886 # #Check if there is a height between 70 and 110 km
3888 # #Check if there is a height between 70 and 110 km
3887 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3888 # ind_h = numpy.where(h_bool == 1)[0]
3890 # ind_h = numpy.where(h_bool == 1)[0]
3889 #
3891 #
3890 # hCorr = hi[ind_h, :]
3892 # hCorr = hi[ind_h, :]
3891 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3892 #
3894 #
3893 # hCorr = hi[ind_hCorr]
3895 # hCorr = hi[ind_hCorr]
3894 # heights[ind_h] = hCorr
3896 # heights[ind_h] = hCorr
3895 #
3897 #
3896 # #Setting Error
3898 # #Setting Error
3897 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3898 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3899 #
3901 #
3900 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3901 # error[indInvalid2] = 14
3903 # error[indInvalid2] = 14
3902 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3903 # error[indInvalid1] = 13
3905 # error[indInvalid1] = 13
3904 #
3906 #
3905 # return heights, error
3907 # return heights, error
3906
3908
3907
3909
3908 class WeatherRadar(Operation):
3910 class WeatherRadar(Operation):
3909 '''
3911 '''
3910 Function tat implements Weather Radar operations-
3912 Function tat implements Weather Radar operations-
3911 Input:
3913 Input:
3912 Output:
3914 Output:
3913 Parameters affected:
3915 Parameters affected:
3914 '''
3916 '''
3915 isConfig = False
3917 isConfig = False
3916 variableList = None
3918 variableList = None
3917
3919
3918 def __init__(self):
3920 def __init__(self):
3919 Operation.__init__(self)
3921 Operation.__init__(self)
3920
3922
3921 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3922 tauW= 0,thetaT=0,thetaR=0,Km =0):
3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3923 self.nCh = dataOut.nChannels
3925 self.nCh = dataOut.nChannels
3924 self.nHeis = dataOut.nHeights
3926 self.nHeis = dataOut.nHeights
3925 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3926 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3927 self.Range = self.Range.reshape(1,self.nHeis)
3929 self.Range = self.Range.reshape(1,self.nHeis)
3928 self.Range = numpy.tile(self.Range,[self.nCh,1])
3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3929 '''-----------1 Constante del Radar----------'''
3931 '''-----------1 Constante del Radar----------'''
3930 self.Pt = Pt
3932 self.Pt = Pt
3931 self.Gt = Gt
3933 self.Gt = Gt
3932 self.Gr = Gr
3934 self.Gr = Gr
3933 self.lambda_ = lambda_
3935 self.lambda_ = lambda_
3934 self.aL = aL
3936 self.aL = aL
3935 self.tauW = tauW
3937 self.tauW = tauW
3936 self.thetaT = thetaT
3938 self.thetaT = thetaT
3937 self.thetaR = thetaR
3939 self.thetaR = thetaR
3938 self.Km = Km
3940 self.Km = Km
3939 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3940 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3941 self.RadarConstant = Numerator/Denominator
3943 self.RadarConstant = Numerator/Denominator
3942 self.variableList= variableList
3944 self.variableList= variableList
3943
3945
3944 def setMoments(self,dataOut,i):
3946 def setMoments(self,dataOut,i):
3945
3947
3946 type = dataOut.inputUnit
3948 type = dataOut.inputUnit
3947 nCh = dataOut.nChannels
3949 nCh = dataOut.nChannels
3948 nHeis = dataOut.nHeights
3950 nHeis = dataOut.nHeights
3949 data_param = numpy.zeros((nCh,4,nHeis))
3951 data_param = numpy.zeros((nCh,4,nHeis))
3950 if type == "Voltage":
3952 if type == "Voltage":
3951 factor = dataOut.normFactor
3953 factor = dataOut.normFactor
3952 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3953 data_param[:,1,:] = dataOut.dataPP_DOP
3955 data_param[:,1,:] = dataOut.dataPP_DOP
3954 data_param[:,2,:] = dataOut.dataPP_WIDTH
3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3955 data_param[:,3,:] = dataOut.dataPP_SNR
3957 data_param[:,3,:] = dataOut.dataPP_SNR
3956 if type == "Spectra":
3958 if type == "Spectra":
3957 data_param[:,0,:] = dataOut.data_POW
3959 data_param[:,0,:] = dataOut.data_POW
3958 data_param[:,1,:] = dataOut.data_DOP
3960 data_param[:,1,:] = dataOut.data_DOP
3959 data_param[:,2,:] = dataOut.data_WIDTH
3961 data_param[:,2,:] = dataOut.data_WIDTH
3960 data_param[:,3,:] = dataOut.data_SNR
3962 data_param[:,3,:] = dataOut.data_SNR
3961
3963
3962 return data_param[:,i,:]
3964 return data_param[:,i,:]
3963
3965
3964 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3965 type = dataOut.inputUnit
3967 type = dataOut.inputUnit
3966 nHeis = dataOut.nHeights
3968 nHeis = dataOut.nHeights
3967 data_RhoHV_R = numpy.zeros((nHeis))
3969 data_RhoHV_R = numpy.zeros((nHeis))
3968 if type == "Voltage":
3970 if type == "Voltage":
3969 powa = dataOut.dataPP_POWER[0]
3971 powa = dataOut.dataPP_POWER[0]
3970 powb = dataOut.dataPP_POWER[1]
3972 powb = dataOut.dataPP_POWER[1]
3971 ccf = dataOut.dataPP_CCF
3973 ccf = dataOut.dataPP_CCF
3972 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3973 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3974 if type == "Spectra":
3976 if type == "Spectra":
3975 data_RhoHV_R = dataOut.getCoherence()
3977 data_RhoHV_R = dataOut.getCoherence()
3976
3978
3977 return data_RhoHV_R
3979 return data_RhoHV_R
3978
3980
3979 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3980 type = dataOut.inputUnit
3982 type = dataOut.inputUnit
3981 nHeis = dataOut.nHeights
3983 nHeis = dataOut.nHeights
3982 data_PhiD_P = numpy.zeros((nHeis))
3984 data_PhiD_P = numpy.zeros((nHeis))
3983 if type == "Voltage":
3985 if type == "Voltage":
3984 powa = dataOut.dataPP_POWER[0]
3986 powa = dataOut.dataPP_POWER[0]
3985 powb = dataOut.dataPP_POWER[1]
3987 powb = dataOut.dataPP_POWER[1]
3986 ccf = dataOut.dataPP_CCF
3988 ccf = dataOut.dataPP_CCF
3987 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3988 if phase:
3990 if phase:
3989 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3990 avgcoherenceComplex.real) * 180 / numpy.pi
3992 avgcoherenceComplex.real) * 180 / numpy.pi
3991 if type == "Spectra":
3993 if type == "Spectra":
3992 data_PhiD_P = dataOut.getCoherence(phase = phase)
3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3993
3995
3994 return data_PhiD_P
3996 return data_PhiD_P
3995
3997
3996 def getReflectividad_D(self,dataOut):
3998 def getReflectividad_D(self,dataOut):
3997 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
3998
4000
3999 Pr = self.setMoments(dataOut,0)
4001 Pr = self.setMoments(dataOut,0)
4000
4002
4001 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4002 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4003 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4004 for R in range(self.nHeis):
4006 for R in range(self.nHeis):
4005 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4006
4008
4007 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4008
4010
4009 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4010 Zeh = self.Z_radar
4012 Zeh = self.Z_radar
4011 dBZeh = 10*numpy.log10(Zeh)
4013 dBZeh = 10*numpy.log10(Zeh)
4012 Zdb_D = dBZeh[0] - dBZeh[1]
4014 Zdb_D = dBZeh[0] - dBZeh[1]
4013 return Zdb_D
4015 return Zdb_D
4014
4016
4015 def getRadialVelocity_V(self,dataOut):
4017 def getRadialVelocity_V(self,dataOut):
4016 velRadial_V = self.setMoments(dataOut,1)
4018 velRadial_V = self.setMoments(dataOut,1)
4017 return velRadial_V
4019 return velRadial_V
4018
4020
4019 def getAnchoEspectral_W(self,dataOut):
4021 def getAnchoEspectral_W(self,dataOut):
4020 Sigmav_W = self.setMoments(dataOut,2)
4022 Sigmav_W = self.setMoments(dataOut,2)
4021 return Sigmav_W
4023 return Sigmav_W
4022
4024
4023
4025
4024 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4025 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4026
4028
4027 if not self.isConfig:
4029 if not self.isConfig:
4028 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4029 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4030 self.isConfig = True
4032 self.isConfig = True
4031
4033
4032 for i in range(len(self.variableList)):
4034 for i in range(len(self.variableList)):
4033 if self.variableList[i]=='ReflectividadDiferencial':
4035 if self.variableList[i]=='ReflectividadDiferencial':
4034 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4035 if self.variableList[i]=='FaseDiferencial':
4037 if self.variableList[i]=='FaseDiferencial':
4036 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4037 if self.variableList[i] == "CoeficienteCorrelacion":
4039 if self.variableList[i] == "CoeficienteCorrelacion":
4038 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4039 if self.variableList[i] =="VelocidadRadial":
4041 if self.variableList[i] =="VelocidadRadial":
4040 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4041 if self.variableList[i] =="AnchoEspectral":
4043 if self.variableList[i] =="AnchoEspectral":
4042 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4043 return dataOut
4045 return dataOut
4044
4046
4045 class PedestalInformation(Operation):
4047 class PedestalInformation(Operation):
4046 path_ped = None
4047 path_adq = None
4048 samp_rate_ped= None
4049 t_Interval_p = None
4050 n_Muestras_p = None
4051 isConfig = False
4052 blocksPerfile= None
4053 f_a_p = None
4054 online = None
4055 angulo_adq = None
4056 nro_file = None
4057 nro_key_p = None
4058 tmp = None
4059
4060
4048
4061 def __init__(self):
4049 def __init__(self):
4062 Operation.__init__(self)
4050 Operation.__init__(self)
4063
4051 self.filename = False
4064
4052
4065 def getAnguloProfile(self,utc_adq,utc_ped_list):
4053 def find_file(self, timestamp):
4066 utc_adq = utc_adq
4054
4067 ##list_pedestal = list_pedestal
4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4068 utc_ped_list = utc_ped_list
4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4069 #for i in range(len(list_pedestal)):
4057
4070 # #print(i)# OJO IDENTIFICADOR DE SINCRONISMO
4058 if not os.path.exists(path):
4071 # utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=list_pedestal[i]))
4059 return False, False
4072 nro_file,utc_ped,utc_ped_1 =self.getNROFile(utc_adq,utc_ped_list)
4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4073 #print("NROFILE************************************", nro_file,utc_ped)
4061 fileList.sort()
4074 #print(nro_file)
4062 for fullname in fileList:
4075 if nro_file < 0:
4063 filename = fullname.split('/')[-1]
4076 return numpy.NaN,numpy.NaN
4064 number = int(filename[4:14])
4065 if number <= timestamp:
4066 return number, fullname
4067 return False, False
4068
4069 def find_next_file(self):
4070
4071 while True:
4072 file_size = len(self.fp['Data']['utc'])
4073 if self.utctime < self.utcfile+file_size*self.interval:
4074 break
4075 self.utcfile += file_size*self.interval
4076 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4077 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4078 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(self.utcfile))
4079 if not os.path.exists(self.filename):
4080 log.warning('Waiting for position files...', self.name)
4081
4082 if not os.path.exists(self.filename):
4083
4084 raise IOError('No new position files found in {}'.format(path))
4085 self.fp.close()
4086 self.fp = h5py.File(self.filename, 'r')
4087 log.log('Opening file: {}'.format(self.filename), self.name)
4088
4089 def get_values(self):
4090
4091 index = int((self.utctime-self.utcfile)/self.interval)
4092 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4093
4094 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4095
4096 self.path = path
4097 self.conf = conf
4098 self.samples = samples
4099 self.interval = interval
4100 self.utcfile, self.filename = self.find_file(dataOut.utctime)
4101
4102 if not self.filename:
4103 log.error('No position files found in {}'.format(path), self.name)
4104 raise IOError('No position files found in {}'.format(path))
4077 else:
4105 else:
4078 nro_key_p = int((utc_adq-utc_ped)/self.t_Interval_p)-1 # ojito al -1 estimado alex
4106 log.log('Opening file: {}'.format(self.filename), self.name)
4079 #print("nro_key_p",nro_key_p)
4107 self.fp = h5py.File(self.filename, 'r')
4080 ff_pedestal = self.list_pedestal[nro_file]
4081 #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth")
4082 angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos")
4083 angulo_ele = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="ele_pos")
4084 #-----Adicion de filtro........................
4085 vel_ele = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="ele_speed")## ele_speed
4086 '''
4087 vel_mean = numpy.mean(vel_ele)
4088 print("#############################################################")
4089 print("VEL MEAN----------------:",vel_mean)
4090 f vel_mean<7.7 or vel_mean>8.3:
4091 return numpy.NaN,numpy.NaN
4092 #------------------------------------------------------------------------------------------------------
4093 '''
4094 #print(int(self.samp_rate_ped))
4095 #print(nro_key_p)
4096 if int(self.samp_rate_ped)-1>=nro_key_p>0:
4097 #print("angulo_array :",angulo[nro_key_p])
4098 return angulo[nro_key_p],angulo_ele[nro_key_p]
4099 else:
4100 #print("-----------------------------------------------------------------")
4101 return numpy.NaN,numpy.NaN
4102
4103
4104 def getfirstFilefromPath(self,path,meta,ext):
4105 validFilelist = []
4106 #("SEARH",path)
4107 try:
4108 fileList = os.listdir(path)
4109 except:
4110 print("check path - fileList")
4111 if len(fileList)<1:
4112 return None
4113 # meta 1234 567 8-18 BCDE
4114 # H,D,PE YYYY DDD EPOC .ext
4115
4116 for thisFile in fileList:
4117 #print("HI",thisFile)
4118 if meta =="PE":
4119 try:
4120 number= int(thisFile[len(meta)+7:len(meta)+17])
4121 except:
4122 print("There is a file or folder with different format")
4123 if meta =="pos@":
4124 try:
4125 number= int(thisFile[len(meta):len(meta)+10])
4126 except:
4127 print("There is a file or folder with different format")
4128 if meta == "D":
4129 try:
4130 number= int(thisFile[8:11])
4131 except:
4132 print("There is a file or folder with different format")
4133
4134 if not isNumber(str=number):
4135 continue
4136 if (os.path.splitext(thisFile)[-1].lower() != ext.lower()):
4137 continue
4138 validFilelist.sort()
4139 validFilelist.append(thisFile)
4140
4141 if len(validFilelist)>0:
4142 validFilelist = sorted(validFilelist,key=str.lower)
4143 #print(validFilelist)
4144 return validFilelist
4145 return None
4146
4147 def gettimeutcfromDirFilename(self,path,file):
4148 dir_file= path+"/"+file
4149 fp = h5py.File(dir_file,'r')
4150 #epoc = fp['Metadata'].get('utctimeInit')[()]
4151 epoc = fp['Data'].get('utc')[()]
4152 epoc = epoc[0]
4153 #print("hola",epoc)
4154 fp.close()
4155 return epoc
4156
4157 def gettimeutcadqfromDirFilename(self,path,file):
4158 pass
4159
4160 def getDatavaluefromDirFilename(self,path,file,value):
4161 dir_file= path+"/"+file
4162 fp = h5py.File(dir_file,'r')
4163 array = fp['Data'].get(value)[()]
4164 fp.close()
4165 return array
4166
4167
4168 def getNROFile(self,utc_adq,utc_ped_list):
4169 c=0
4170 #print(utc_adq)
4171 #print(len(utc_ped_list))
4172 ###print(utc_ped_list)
4173 if utc_adq<utc_ped_list[0]:
4174 pass
4175 else:
4176 for i in range(len(utc_ped_list)):
4177 if utc_adq>utc_ped_list[i]:
4178 #print("mayor")
4179 #print("utc_ped_list",utc_ped_list[i])
4180 c +=1
4181
4182 return c-1,utc_ped_list[c-1],utc_ped_list[c]
4183
4184 def verificarNROFILE(self,dataOut,utc_ped,f_a_p,n_Muestras_p):
4185 pass
4186
4187 def setup_offline(self,dataOut,list_pedestal):
4188 pass
4189
4190 def setup_online(self,dataOut):
4191 pass
4192
4193 #def setup(self,dataOut,path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online):
4194 def setup(self,dataOut,path_ped,samp_rate_ped,t_Interval_p,wr_exp):
4195 #print("**************SETUP******************")
4196 self.__dataReady = False
4197 self.path_ped = path_ped
4198 self.samp_rate_ped= samp_rate_ped
4199 self.t_Interval_p = t_Interval_p
4200 self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="pos@",ext=".h5")
4201
4202 self.utc_ped_list= []
4203 for i in range(len(self.list_pedestal)):
4204 #print(i,self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i]))# OJO IDENTIFICADOR DE SINCRONISMO
4205 self.utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i]))
4206 #print(self.utc_ped_list)
4207 #exit(1)
4208 #print("que paso")
4209 dataOut.wr_exp = wr_exp
4210 #print("SETUP READY")
4211
4212
4213 def setNextFileP(self,dataOut):
4214 pass
4215
4216 def checkPedFile(self,path,nro_file):
4217 pass
4218
4219 def setNextFileoffline(self,dataOut):
4220 pass
4221
4222 def setNextFileonline(self):
4223 pass
4224
4225 def run(self, dataOut,path_ped,samp_rate_ped,t_Interval_p,wr_exp):
4226 #print("INTEGRATION -----")
4227 #print("PEDESTAL")
4228
4108
4109 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None):
4110
4229 if not self.isConfig:
4111 if not self.isConfig:
4230 self.setup(dataOut, path_ped,samp_rate_ped,t_Interval_p,wr_exp)
4112 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4231 self.__dataReady = True
4232 self.isConfig = True
4113 self.isConfig = True
4233 #print("config TRUE")
4114
4234 utc_adq = dataOut.utctime
4115 self.utctime = dataOut.utctime
4235 #print("utc_adq---------------",utc_adq)
4116
4236
4117 self.find_next_file()
4237 list_pedestal = self.list_pedestal
4118
4238 #print("list_pedestal",list_pedestal[:20])
4119 az, el = self.get_values()
4239 angulo,angulo_ele = self.getAnguloProfile(utc_adq=utc_adq,utc_ped_list=self.utc_ped_list)
4120 dataOut.flagNoData = False
4240 #print("angulo**********",angulo)
4121
4241 dataOut.flagNoData = False
4122 if numpy.isnan(az) or numpy.isnan(el) :
4242
4243 if numpy.isnan(angulo) or numpy.isnan(angulo_ele) :
4244 #print("PEDESTAL 3")
4245 #exit(1)
4246 dataOut.flagNoData = True
4123 dataOut.flagNoData = True
4247 return dataOut
4124 return dataOut
4248 dataOut.azimuth = angulo
4125
4249 dataOut.elevation = angulo_ele
4126 dataOut.azimuth = az
4250 #print("PEDESTAL END")
4127 dataOut.elevation = el
4251 #print(dataOut.azimuth)
4128 # print('AZ: ', az, ' EL: ', el)
4252 #print(dataOut.elevation)
4253 #exit(1)
4254 return dataOut
4129 return dataOut
4255
4130
4256 class Block360(Operation):
4131 class Block360(Operation):
4257 '''
4132 '''
4258 '''
4133 '''
4259 isConfig = False
4134 isConfig = False
4260 __profIndex = 0
4135 __profIndex = 0
4261 __initime = None
4136 __initime = None
4262 __lastdatatime = None
4137 __lastdatatime = None
4263 __buffer = None
4138 __buffer = None
4264 __dataReady = False
4139 __dataReady = False
4265 n = None
4140 n = None
4266 __nch = 0
4141 __nch = 0
4267 __nHeis = 0
4142 __nHeis = 0
4268 index = 0
4143 index = 0
4269 mode = 0
4144 mode = 0
4270
4145
4271 def __init__(self,**kwargs):
4146 def __init__(self,**kwargs):
4272 Operation.__init__(self,**kwargs)
4147 Operation.__init__(self,**kwargs)
4273
4148
4274 def setup(self, dataOut, n = None, mode = None):
4149 def setup(self, dataOut, n = None, mode = None):
4275 '''
4150 '''
4276 n= Numero de PRF's de entrada
4151 n= Numero de PRF's de entrada
4277 '''
4152 '''
4278 self.__initime = None
4153 self.__initime = None
4279 self.__lastdatatime = 0
4154 self.__lastdatatime = 0
4280 self.__dataReady = False
4155 self.__dataReady = False
4281 self.__buffer = 0
4156 self.__buffer = 0
4282 self.__buffer_1D = 0
4157 self.__buffer_1D = 0
4283 self.__profIndex = 0
4158 self.__profIndex = 0
4284 self.index = 0
4159 self.index = 0
4285 self.__nch = dataOut.nChannels
4160 self.__nch = dataOut.nChannels
4286 self.__nHeis = dataOut.nHeights
4161 self.__nHeis = dataOut.nHeights
4287 ##print("ELVALOR DE n es:", n)
4162 ##print("ELVALOR DE n es:", n)
4288 if n == None:
4163 if n == None:
4289 raise ValueError("n should be specified.")
4164 raise ValueError("n should be specified.")
4290
4165
4291 if mode == None:
4166 if mode == None:
4292 raise ValueError("mode should be specified.")
4167 raise ValueError("mode should be specified.")
4293
4168
4294 if n != None:
4169 if n != None:
4295 if n<1:
4170 if n<1:
4296 print("n should be greater than 2")
4171 print("n should be greater than 2")
4297 raise ValueError("n should be greater than 2")
4172 raise ValueError("n should be greater than 2")
4298
4173
4299 self.n = n
4174 self.n = n
4300 self.mode = mode
4175 self.mode = mode
4301 #print("self.mode",self.mode)
4176 #print("self.mode",self.mode)
4302 #print("nHeights")
4177 #print("nHeights")
4303 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4178 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4304 self.__buffer2 = numpy.zeros(n)
4179 self.__buffer2 = numpy.zeros(n)
4305 self.__buffer3 = numpy.zeros(n)
4180 self.__buffer3 = numpy.zeros(n)
4306
4181
4307
4182
4308
4183
4309
4184
4310 def putData(self,data,mode):
4185 def putData(self,data,mode):
4311 '''
4186 '''
4312 Add a profile to he __buffer and increase in one the __profiel Index
4187 Add a profile to he __buffer and increase in one the __profiel Index
4313 '''
4188 '''
4314 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4189 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4315 #print("line 4049",data.azimuth.shape,data.azimuth)
4190 #print("line 4049",data.azimuth.shape,data.azimuth)
4316 if self.mode==0:
4191 if self.mode==0:
4317 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4192 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4318 if self.mode==1:
4193 if self.mode==1:
4319 self.__buffer[:,self.__profIndex,:]= data.data_pow
4194 self.__buffer[:,self.__profIndex,:]= data.data_pow
4320 #print("me casi",self.index,data.azimuth[self.index])
4195 #print("me casi",self.index,data.azimuth[self.index])
4321 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4196 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4322 #print("magic",data.profileIndex)
4197 #print("magic",data.profileIndex)
4323 #print(data.azimuth[self.index])
4198 #print(data.azimuth[self.index])
4324 #print("index",self.index)
4199 #print("index",self.index)
4325
4200
4326 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4201 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4327 self.__buffer2[self.__profIndex] = data.azimuth
4202 self.__buffer2[self.__profIndex] = data.azimuth
4328 self.__buffer3[self.__profIndex] = data.elevation
4203 self.__buffer3[self.__profIndex] = data.elevation
4329 #print("q pasa")
4204 #print("q pasa")
4330 #####self.index+=1
4205 #####self.index+=1
4331 #print("index",self.index,data.azimuth[:10])
4206 #print("index",self.index,data.azimuth[:10])
4332 self.__profIndex += 1
4207 self.__profIndex += 1
4333 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4208 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4334
4209
4335 def pushData(self,data):
4210 def pushData(self,data):
4336 '''
4211 '''
4337 Return the PULSEPAIR and the profiles used in the operation
4212 Return the PULSEPAIR and the profiles used in the operation
4338 Affected : self.__profileIndex
4213 Affected : self.__profileIndex
4339 '''
4214 '''
4340 #print("pushData")
4215 #print("pushData")
4341
4216
4342 data_360 = self.__buffer
4217 data_360 = self.__buffer
4343 data_p = self.__buffer2
4218 data_p = self.__buffer2
4344 data_e = self.__buffer3
4219 data_e = self.__buffer3
4345 n = self.__profIndex
4220 n = self.__profIndex
4346
4221
4347 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4222 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4348 self.__buffer2 = numpy.zeros(self.n)
4223 self.__buffer2 = numpy.zeros(self.n)
4349 self.__buffer3 = numpy.zeros(self.n)
4224 self.__buffer3 = numpy.zeros(self.n)
4350 self.__profIndex = 0
4225 self.__profIndex = 0
4351 #print("pushData")
4226 #print("pushData")
4352 return data_360,n,data_p,data_e
4227 return data_360,n,data_p,data_e
4353
4228
4354
4229
4355 def byProfiles(self,dataOut):
4230 def byProfiles(self,dataOut):
4356
4231
4357 self.__dataReady = False
4232 self.__dataReady = False
4358 data_360 = None
4233 data_360 = None
4359 data_p = None
4234 data_p = None
4360 data_e = None
4235 data_e = None
4361 #print("dataOu",dataOut.dataPP_POW)
4236 #print("dataOu",dataOut.dataPP_POW)
4362 self.putData(data=dataOut,mode = self.mode)
4237 self.putData(data=dataOut,mode = self.mode)
4363 ##### print("profIndex",self.__profIndex)
4238 ##### print("profIndex",self.__profIndex)
4364 if self.__profIndex == self.n:
4239 if self.__profIndex == self.n:
4365 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4240 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4366 self.__dataReady = True
4241 self.__dataReady = True
4367
4242
4368 return data_360,data_p,data_e
4243 return data_360,data_p,data_e
4369
4244
4370
4245
4371 def blockOp(self, dataOut, datatime= None):
4246 def blockOp(self, dataOut, datatime= None):
4372 if self.__initime == None:
4247 if self.__initime == None:
4373 self.__initime = datatime
4248 self.__initime = datatime
4374 data_360,data_p,data_e = self.byProfiles(dataOut)
4249 data_360,data_p,data_e = self.byProfiles(dataOut)
4375 self.__lastdatatime = datatime
4250 self.__lastdatatime = datatime
4376
4251
4377 if data_360 is None:
4252 if data_360 is None:
4378 return None, None,None,None
4253 return None, None,None,None
4379
4254
4380
4255
4381 avgdatatime = self.__initime
4256 avgdatatime = self.__initime
4382 if self.n==1:
4257 if self.n==1:
4383 avgdatatime = datatime
4258 avgdatatime = datatime
4384 deltatime = datatime - self.__lastdatatime
4259 deltatime = datatime - self.__lastdatatime
4385 self.__initime = datatime
4260 self.__initime = datatime
4386 #print(data_360.shape,avgdatatime,data_p.shape)
4261 #print(data_360.shape,avgdatatime,data_p.shape)
4387 return data_360,avgdatatime,data_p,data_e
4262 return data_360,avgdatatime,data_p,data_e
4388
4263
4389 def run(self, dataOut,n = None,mode=None,**kwargs):
4264 def run(self, dataOut,n = None,mode=None,**kwargs):
4390 #print("BLOCK 360 HERE WE GO MOMENTOS")
4265 #print("BLOCK 360 HERE WE GO MOMENTOS")
4391 print("Block 360")
4266 print("Block 360")
4392 #exit(1)
4267 #exit(1)
4393 if not self.isConfig:
4268 if not self.isConfig:
4394 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4269 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4395 ####self.index = 0
4270 ####self.index = 0
4396 #print("comova",self.isConfig)
4271 #print("comova",self.isConfig)
4397 self.isConfig = True
4272 self.isConfig = True
4398 ####if self.index==dataOut.azimuth.shape[0]:
4273 ####if self.index==dataOut.azimuth.shape[0]:
4399 #### self.index=0
4274 #### self.index=0
4400 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4275 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4401 dataOut.flagNoData = True
4276 dataOut.flagNoData = True
4402
4277
4403 if self.__dataReady:
4278 if self.__dataReady:
4404 dataOut.data_360 = data_360 # S
4279 dataOut.data_360 = data_360 # S
4405 #print("DATA 360")
4280 #print("DATA 360")
4406 #print(dataOut.data_360)
4281 #print(dataOut.data_360)
4407 #print("---------------------------------------------------------------------------------")
4282 #print("---------------------------------------------------------------------------------")
4408 print("---------------------------DATAREADY---------------------------------------------")
4283 print("---------------------------DATAREADY---------------------------------------------")
4409 #print("---------------------------------------------------------------------------------")
4284 #print("---------------------------------------------------------------------------------")
4410 #print("data_360",dataOut.data_360.shape)
4285 #print("data_360",dataOut.data_360.shape)
4411 dataOut.data_azi = data_p
4286 dataOut.data_azi = data_p
4412 dataOut.data_ele = data_e
4287 dataOut.data_ele = data_e
4413 ###print("azi: ",dataOut.data_azi)
4288 ###print("azi: ",dataOut.data_azi)
4414 #print("ele: ",dataOut.data_ele)
4289 #print("ele: ",dataOut.data_ele)
4415 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4290 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4416 dataOut.utctime = avgdatatime
4291 dataOut.utctime = avgdatatime
4417 dataOut.flagNoData = False
4292 dataOut.flagNoData = False
4418 return dataOut
4293 return dataOut
4419
4294
4420 class Block360_vRF(Operation):
4295 class Block360_vRF(Operation):
4421 '''
4296 '''
4422 '''
4297 '''
4423 isConfig = False
4298 isConfig = False
4424 __profIndex = 0
4299 __profIndex = 0
4425 __initime = None
4300 __initime = None
4426 __lastdatatime = None
4301 __lastdatatime = None
4427 __buffer = None
4302 __buffer = None
4428 __dataReady = False
4303 __dataReady = False
4429 n = None
4304 n = None
4430 __nch = 0
4305 __nch = 0
4431 __nHeis = 0
4306 __nHeis = 0
4432 index = 0
4307 index = 0
4433 mode = 0
4308 mode = 0
4434
4309
4435 def __init__(self,**kwargs):
4310 def __init__(self,**kwargs):
4436 Operation.__init__(self,**kwargs)
4311 Operation.__init__(self,**kwargs)
4437
4312
4438 def setup(self, dataOut, n = None, mode = None):
4313 def setup(self, dataOut, n = None, mode = None):
4439 '''
4314 '''
4440 n= Numero de PRF's de entrada
4315 n= Numero de PRF's de entrada
4441 '''
4316 '''
4442 self.__initime = None
4317 self.__initime = None
4443 self.__lastdatatime = 0
4318 self.__lastdatatime = 0
4444 self.__dataReady = False
4319 self.__dataReady = False
4445 self.__buffer = 0
4320 self.__buffer = 0
4446 self.__buffer_1D = 0
4321 self.__buffer_1D = 0
4447 self.__profIndex = 0
4322 self.__profIndex = 0
4448 self.index = 0
4323 self.index = 0
4449 self.__nch = dataOut.nChannels
4324 self.__nch = dataOut.nChannels
4450 self.__nHeis = dataOut.nHeights
4325 self.__nHeis = dataOut.nHeights
4451 ##print("ELVALOR DE n es:", n)
4326 ##print("ELVALOR DE n es:", n)
4452 if n == None:
4327 if n == None:
4453 raise ValueError("n should be specified.")
4328 raise ValueError("n should be specified.")
4454
4329
4455 if mode == None:
4330 if mode == None:
4456 raise ValueError("mode should be specified.")
4331 raise ValueError("mode should be specified.")
4457
4332
4458 if n != None:
4333 if n != None:
4459 if n<1:
4334 if n<1:
4460 print("n should be greater than 2")
4335 print("n should be greater than 2")
4461 raise ValueError("n should be greater than 2")
4336 raise ValueError("n should be greater than 2")
4462
4337
4463 self.n = n
4338 self.n = n
4464 self.mode = mode
4339 self.mode = mode
4465 #print("self.mode",self.mode)
4340 #print("self.mode",self.mode)
4466 #print("nHeights")
4341 #print("nHeights")
4467 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4342 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4468 self.__buffer2 = numpy.zeros(n)
4343 self.__buffer2 = numpy.zeros(n)
4469 self.__buffer3 = numpy.zeros(n)
4344 self.__buffer3 = numpy.zeros(n)
4470
4345
4471
4346
4472
4347
4473
4348
4474 def putData(self,data,mode):
4349 def putData(self,data,mode):
4475 '''
4350 '''
4476 Add a profile to he __buffer and increase in one the __profiel Index
4351 Add a profile to he __buffer and increase in one the __profiel Index
4477 '''
4352 '''
4478 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4353 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4479 #print("line 4049",data.azimuth.shape,data.azimuth)
4354 #print("line 4049",data.azimuth.shape,data.azimuth)
4480 if self.mode==0:
4355 if self.mode==0:
4481 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4356 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4482 if self.mode==1:
4357 if self.mode==1:
4483 self.__buffer[:,self.__profIndex,:]= data.data_pow
4358 self.__buffer[:,self.__profIndex,:]= data.data_pow
4484 #print("me casi",self.index,data.azimuth[self.index])
4359 #print("me casi",self.index,data.azimuth[self.index])
4485 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4360 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4486 #print("magic",data.profileIndex)
4361 #print("magic",data.profileIndex)
4487 #print(data.azimuth[self.index])
4362 #print(data.azimuth[self.index])
4488 #print("index",self.index)
4363 #print("index",self.index)
4489
4364
4490 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4365 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4491 self.__buffer2[self.__profIndex] = data.azimuth
4366 self.__buffer2[self.__profIndex] = data.azimuth
4492 self.__buffer3[self.__profIndex] = data.elevation
4367 self.__buffer3[self.__profIndex] = data.elevation
4493 #print("q pasa")
4368 #print("q pasa")
4494 #####self.index+=1
4369 #####self.index+=1
4495 #print("index",self.index,data.azimuth[:10])
4370 #print("index",self.index,data.azimuth[:10])
4496 self.__profIndex += 1
4371 self.__profIndex += 1
4497 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4372 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4498
4373
4499 def pushData(self,data):
4374 def pushData(self,data):
4500 '''
4375 '''
4501 Return the PULSEPAIR and the profiles used in the operation
4376 Return the PULSEPAIR and the profiles used in the operation
4502 Affected : self.__profileIndex
4377 Affected : self.__profileIndex
4503 '''
4378 '''
4504 #print("pushData")
4379 #print("pushData")
4505
4380
4506 data_360 = self.__buffer
4381 data_360 = self.__buffer
4507 data_p = self.__buffer2
4382 data_p = self.__buffer2
4508 data_e = self.__buffer3
4383 data_e = self.__buffer3
4509 n = self.__profIndex
4384 n = self.__profIndex
4510
4385
4511 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4386 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4512 self.__buffer2 = numpy.zeros(self.n)
4387 self.__buffer2 = numpy.zeros(self.n)
4513 self.__buffer3 = numpy.zeros(self.n)
4388 self.__buffer3 = numpy.zeros(self.n)
4514 self.__profIndex = 0
4389 self.__profIndex = 0
4515 #print("pushData")
4390 #print("pushData")
4516 return data_360,n,data_p,data_e
4391 return data_360,n,data_p,data_e
4517
4392
4518
4393
4519 def byProfiles(self,dataOut):
4394 def byProfiles(self,dataOut):
4520
4395
4521 self.__dataReady = False
4396 self.__dataReady = False
4522 data_360 = None
4397 data_360 = None
4523 data_p = None
4398 data_p = None
4524 data_e = None
4399 data_e = None
4525 #print("dataOu",dataOut.dataPP_POW)
4400 #print("dataOu",dataOut.dataPP_POW)
4526 self.putData(data=dataOut,mode = self.mode)
4401 self.putData(data=dataOut,mode = self.mode)
4527 ##### print("profIndex",self.__profIndex)
4402 ##### print("profIndex",self.__profIndex)
4528 if self.__profIndex == self.n:
4403 if self.__profIndex == self.n:
4529 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4404 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4530 self.__dataReady = True
4405 self.__dataReady = True
4531
4406
4532 return data_360,data_p,data_e
4407 return data_360,data_p,data_e
4533
4408
4534
4409
4535 def blockOp(self, dataOut, datatime= None):
4410 def blockOp(self, dataOut, datatime= None):
4536 if self.__initime == None:
4411 if self.__initime == None:
4537 self.__initime = datatime
4412 self.__initime = datatime
4538 data_360,data_p,data_e = self.byProfiles(dataOut)
4413 data_360,data_p,data_e = self.byProfiles(dataOut)
4539 self.__lastdatatime = datatime
4414 self.__lastdatatime = datatime
4540
4415
4541 if data_360 is None:
4416 if data_360 is None:
4542 return None, None,None,None
4417 return None, None,None,None
4543
4418
4544
4419
4545 avgdatatime = self.__initime
4420 avgdatatime = self.__initime
4546 if self.n==1:
4421 if self.n==1:
4547 avgdatatime = datatime
4422 avgdatatime = datatime
4548 deltatime = datatime - self.__lastdatatime
4423 deltatime = datatime - self.__lastdatatime
4549 self.__initime = datatime
4424 self.__initime = datatime
4550 #print(data_360.shape,avgdatatime,data_p.shape)
4425 #print(data_360.shape,avgdatatime,data_p.shape)
4551 return data_360,avgdatatime,data_p,data_e
4426 return data_360,avgdatatime,data_p,data_e
4552
4427
4553 def checkcase(self,data_ele):
4428 def checkcase(self,data_ele):
4554 start = data_ele[0]
4429 start = data_ele[0]
4555 end = data_ele[-1]
4430 end = data_ele[-1]
4556 diff_angle = (end-start)
4431 diff_angle = (end-start)
4557 len_ang=len(data_ele)
4432 len_ang=len(data_ele)
4558 print("start",start)
4433 print("start",start)
4559 print("end",end)
4434 print("end",end)
4560 print("number",diff_angle)
4435 print("number",diff_angle)
4561
4436
4562 print("len_ang",len_ang)
4437 print("len_ang",len_ang)
4563
4438
4564 aux = (data_ele<0).any(axis=0)
4439 aux = (data_ele<0).any(axis=0)
4565
4440
4566 #exit(1)
4441 #exit(1)
4567 if diff_angle<0 and aux!=1: #Bajada
4442 if diff_angle<0 and aux!=1: #Bajada
4568 return 1
4443 return 1
4569 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4444 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4570 return 0
4445 return 0
4571 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4446 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4572 self.flagEraseFirstData = 1
4447 self.flagEraseFirstData = 1
4573 print("ToDO this case")
4448 print("ToDO this case")
4574 exit(1)
4449 exit(1)
4575 elif diff_angle>0: #Subida
4450 elif diff_angle>0: #Subida
4576 return 0
4451 return 0
4577
4452
4578 def run(self, dataOut,n = None,mode=None,**kwargs):
4453 def run(self, dataOut,n = None,mode=None,**kwargs):
4579 #print("BLOCK 360 HERE WE GO MOMENTOS")
4454 #print("BLOCK 360 HERE WE GO MOMENTOS")
4580 print("Block 360")
4455 print("Block 360")
4581
4456
4582 #exit(1)
4457 #exit(1)
4583 if not self.isConfig:
4458 if not self.isConfig:
4584 if n == 1:
4459 if n == 1:
4585 print("*******************Min Value is 2. Setting n = 2*******************")
4460 print("*******************Min Value is 2. Setting n = 2*******************")
4586 n = 2
4461 n = 2
4587 #exit(1)
4462 #exit(1)
4588 print(n)
4463 print(n)
4589 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4464 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4590 ####self.index = 0
4465 ####self.index = 0
4591 #print("comova",self.isConfig)
4466 #print("comova",self.isConfig)
4592 self.isConfig = True
4467 self.isConfig = True
4593 ####if self.index==dataOut.azimuth.shape[0]:
4468 ####if self.index==dataOut.azimuth.shape[0]:
4594 #### self.index=0
4469 #### self.index=0
4595 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4470 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4596 dataOut.flagNoData = True
4471 dataOut.flagNoData = True
4597
4472
4598 if self.__dataReady:
4473 if self.__dataReady:
4599 dataOut.data_360 = data_360 # S
4474 dataOut.data_360 = data_360 # S
4600 #print("DATA 360")
4475 #print("DATA 360")
4601 #print(dataOut.data_360)
4476 #print(dataOut.data_360)
4602 #print("---------------------------------------------------------------------------------")
4477 #print("---------------------------------------------------------------------------------")
4603 print("---------------------------DATAREADY---------------------------------------------")
4478 print("---------------------------DATAREADY---------------------------------------------")
4604 #print("---------------------------------------------------------------------------------")
4479 #print("---------------------------------------------------------------------------------")
4605 #print("data_360",dataOut.data_360.shape)
4480 #print("data_360",dataOut.data_360.shape)
4606 dataOut.data_azi = data_p
4481 dataOut.data_azi = data_p
4607 dataOut.data_ele = data_e
4482 dataOut.data_ele = data_e
4608 ###print("azi: ",dataOut.data_azi)
4483 ###print("azi: ",dataOut.data_azi)
4609 #print("ele: ",dataOut.data_ele)
4484 #print("ele: ",dataOut.data_ele)
4610 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4485 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4611 dataOut.utctime = avgdatatime
4486 dataOut.utctime = avgdatatime
4612
4487
4613 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4488 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4614 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4489 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4615 print("INSIDE CASE FLAG BAJADA")
4490 print("INSIDE CASE FLAG BAJADA")
4616 dataOut.flagNoData = False
4491 dataOut.flagNoData = False
4617 else:
4492 else:
4618 print("CASE SUBIDA")
4493 print("CASE SUBIDA")
4619 dataOut.flagNoData = True
4494 dataOut.flagNoData = True
4620
4495
4621 #dataOut.flagNoData = False
4496 #dataOut.flagNoData = False
4622 return dataOut
4497 return dataOut
4623
4498
4624 class Block360_vRF2(Operation):
4499 class Block360_vRF2(Operation):
4625 '''
4500 '''
4626 '''
4501 '''
4627 isConfig = False
4502 isConfig = False
4628 __profIndex = 0
4503 __profIndex = 0
4629 __initime = None
4504 __initime = None
4630 __lastdatatime = None
4505 __lastdatatime = None
4631 __buffer = None
4506 __buffer = None
4632 __dataReady = False
4507 __dataReady = False
4633 n = None
4508 n = None
4634 __nch = 0
4509 __nch = 0
4635 __nHeis = 0
4510 __nHeis = 0
4636 index = 0
4511 index = 0
4637 mode = 0
4512 mode = 0
4638
4513
4639 def __init__(self,**kwargs):
4514 def __init__(self,**kwargs):
4640 Operation.__init__(self,**kwargs)
4515 Operation.__init__(self,**kwargs)
4641
4516
4642 def setup(self, dataOut, n = None, mode = None):
4517 def setup(self, dataOut, n = None, mode = None):
4643 '''
4518 '''
4644 n= Numero de PRF's de entrada
4519 n= Numero de PRF's de entrada
4645 '''
4520 '''
4646 self.__initime = None
4521 self.__initime = None
4647 self.__lastdatatime = 0
4522 self.__lastdatatime = 0
4648 self.__dataReady = False
4523 self.__dataReady = False
4649 self.__buffer = 0
4524 self.__buffer = 0
4650 self.__buffer_1D = 0
4525 self.__buffer_1D = 0
4651 #self.__profIndex = 0
4526 #self.__profIndex = 0
4652 self.index = 0
4527 self.index = 0
4653 self.__nch = dataOut.nChannels
4528 self.__nch = dataOut.nChannels
4654 self.__nHeis = dataOut.nHeights
4529 self.__nHeis = dataOut.nHeights
4655
4530
4656 self.mode = mode
4531 self.mode = mode
4657 #print("self.mode",self.mode)
4532 #print("self.mode",self.mode)
4658 #print("nHeights")
4533 #print("nHeights")
4659 self.__buffer = []
4534 self.__buffer = []
4660 self.__buffer2 = []
4535 self.__buffer2 = []
4661 self.__buffer3 = []
4536 self.__buffer3 = []
4662
4537
4663 def putData(self,data,mode):
4538 def putData(self,data,mode):
4664 '''
4539 '''
4665 Add a profile to he __buffer and increase in one the __profiel Index
4540 Add a profile to he __buffer and increase in one the __profiel Index
4666 '''
4541 '''
4667 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4542 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4668 #print("line 4049",data.azimuth.shape,data.azimuth)
4543 #print("line 4049",data.azimuth.shape,data.azimuth)
4669 if self.mode==0:
4544 if self.mode==0:
4670 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4545 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4671 if self.mode==1:
4546 if self.mode==1:
4672 self.__buffer.append(data.data_pow)
4547 self.__buffer.append(data.data_pow)
4673 #print("me casi",self.index,data.azimuth[self.index])
4548 #print("me casi",self.index,data.azimuth[self.index])
4674 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4549 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4675 #print("magic",data.profileIndex)
4550 #print("magic",data.profileIndex)
4676 #print(data.azimuth[self.index])
4551 #print(data.azimuth[self.index])
4677 #print("index",self.index)
4552 #print("index",self.index)
4678
4553
4679 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4554 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4680 self.__buffer2.append(data.azimuth)
4555 self.__buffer2.append(data.azimuth)
4681 self.__buffer3.append(data.elevation)
4556 self.__buffer3.append(data.elevation)
4682 self.__profIndex += 1
4557 self.__profIndex += 1
4683 #print("q pasa")
4558 #print("q pasa")
4684 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4559 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4685
4560
4686 def pushData(self,data):
4561 def pushData(self,data):
4687 '''
4562 '''
4688 Return the PULSEPAIR and the profiles used in the operation
4563 Return the PULSEPAIR and the profiles used in the operation
4689 Affected : self.__profileIndex
4564 Affected : self.__profileIndex
4690 '''
4565 '''
4691 #print("pushData")
4566 #print("pushData")
4692
4567
4693 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4568 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4694 data_p = numpy.array(self.__buffer2)
4569 data_p = numpy.array(self.__buffer2)
4695 data_e = numpy.array(self.__buffer3)
4570 data_e = numpy.array(self.__buffer3)
4696 n = self.__profIndex
4571 n = self.__profIndex
4697
4572
4698 self.__buffer = []
4573 self.__buffer = []
4699 self.__buffer2 = []
4574 self.__buffer2 = []
4700 self.__buffer3 = []
4575 self.__buffer3 = []
4701 self.__profIndex = 0
4576 self.__profIndex = 0
4702 #print("pushData")
4577 #print("pushData")
4703 return data_360,n,data_p,data_e
4578 return data_360,n,data_p,data_e
4704
4579
4705
4580
4706 def byProfiles(self,dataOut):
4581 def byProfiles(self,dataOut):
4707
4582
4708 self.__dataReady = False
4583 self.__dataReady = False
4709 data_360 = None
4584 data_360 = None
4710 data_p = None
4585 data_p = None
4711 data_e = None
4586 data_e = None
4712 #print("dataOu",dataOut.dataPP_POW)
4587 #print("dataOu",dataOut.dataPP_POW)
4713
4588
4714 elevations = self.putData(data=dataOut,mode = self.mode)
4589 elevations = self.putData(data=dataOut,mode = self.mode)
4715 ##### print("profIndex",self.__profIndex)
4590 ##### print("profIndex",self.__profIndex)
4716
4591
4717
4592
4718 if self.__profIndex > 1:
4593 if self.__profIndex > 1:
4719 case_flag = self.checkcase(elevations)
4594 case_flag = self.checkcase(elevations)
4720
4595
4721 if case_flag == 0: #Subida
4596 if case_flag == 0: #Subida
4722 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4597 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4723 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4598 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4724 self.__buffer.pop(0) #Erase first data
4599 self.__buffer.pop(0) #Erase first data
4725 self.__buffer2.pop(0)
4600 self.__buffer2.pop(0)
4726 self.__buffer3.pop(0)
4601 self.__buffer3.pop(0)
4727 self.__profIndex -= 1
4602 self.__profIndex -= 1
4728 else: #Cuando ha estado de bajada y ha vuelto a subir
4603 else: #Cuando ha estado de bajada y ha vuelto a subir
4729 #print("else",self.__buffer3)
4604 #print("else",self.__buffer3)
4730 self.__buffer.pop() #Erase last data
4605 self.__buffer.pop() #Erase last data
4731 self.__buffer2.pop()
4606 self.__buffer2.pop()
4732 self.__buffer3.pop()
4607 self.__buffer3.pop()
4733 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4608 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4734 #print(data_360.shape)
4609 #print(data_360.shape)
4735 #print(data_e.shape)
4610 #print(data_e.shape)
4736 #exit(1)
4611 #exit(1)
4737 self.__dataReady = True
4612 self.__dataReady = True
4738 '''
4613 '''
4739 elif elevations[-1]<0.:
4614 elif elevations[-1]<0.:
4740 if len(self.__buffer) == 2:
4615 if len(self.__buffer) == 2:
4741 self.__buffer.pop(0) #Erase first data
4616 self.__buffer.pop(0) #Erase first data
4742 self.__buffer2.pop(0)
4617 self.__buffer2.pop(0)
4743 self.__buffer3.pop(0)
4618 self.__buffer3.pop(0)
4744 self.__profIndex -= 1
4619 self.__profIndex -= 1
4745 else:
4620 else:
4746 self.__buffer.pop() #Erase last data
4621 self.__buffer.pop() #Erase last data
4747 self.__buffer2.pop()
4622 self.__buffer2.pop()
4748 self.__buffer3.pop()
4623 self.__buffer3.pop()
4749 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4624 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4750 self.__dataReady = True
4625 self.__dataReady = True
4751 '''
4626 '''
4752
4627
4753
4628
4754 '''
4629 '''
4755 if self.__profIndex == self.n:
4630 if self.__profIndex == self.n:
4756 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4631 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4757 self.__dataReady = True
4632 self.__dataReady = True
4758 '''
4633 '''
4759
4634
4760 return data_360,data_p,data_e
4635 return data_360,data_p,data_e
4761
4636
4762
4637
4763 def blockOp(self, dataOut, datatime= None):
4638 def blockOp(self, dataOut, datatime= None):
4764 if self.__initime == None:
4639 if self.__initime == None:
4765 self.__initime = datatime
4640 self.__initime = datatime
4766 data_360,data_p,data_e = self.byProfiles(dataOut)
4641 data_360,data_p,data_e = self.byProfiles(dataOut)
4767 self.__lastdatatime = datatime
4642 self.__lastdatatime = datatime
4768
4643
4769 if data_360 is None:
4644 if data_360 is None:
4770 return None, None,None,None
4645 return None, None,None,None
4771
4646
4772
4647
4773 avgdatatime = self.__initime
4648 avgdatatime = self.__initime
4774 if self.n==1:
4649 if self.n==1:
4775 avgdatatime = datatime
4650 avgdatatime = datatime
4776 deltatime = datatime - self.__lastdatatime
4651 deltatime = datatime - self.__lastdatatime
4777 self.__initime = datatime
4652 self.__initime = datatime
4778 #print(data_360.shape,avgdatatime,data_p.shape)
4653 #print(data_360.shape,avgdatatime,data_p.shape)
4779 return data_360,avgdatatime,data_p,data_e
4654 return data_360,avgdatatime,data_p,data_e
4780
4655
4781 def checkcase(self,data_ele):
4656 def checkcase(self,data_ele):
4782 print(data_ele)
4657 print(data_ele)
4783 start = data_ele[-2]
4658 start = data_ele[-2]
4784 end = data_ele[-1]
4659 end = data_ele[-1]
4785 diff_angle = (end-start)
4660 diff_angle = (end-start)
4786 len_ang=len(data_ele)
4661 len_ang=len(data_ele)
4787
4662
4788 if diff_angle > 0: #Subida
4663 if diff_angle > 0: #Subida
4789 return 0
4664 return 0
4790
4665
4791 def run(self, dataOut,n = None,mode=None,**kwargs):
4666 def run(self, dataOut,n = None,mode=None,**kwargs):
4792 #print("BLOCK 360 HERE WE GO MOMENTOS")
4667 #print("BLOCK 360 HERE WE GO MOMENTOS")
4793 print("Block 360")
4668 print("Block 360")
4794
4669
4795 #exit(1)
4670 #exit(1)
4796 if not self.isConfig:
4671 if not self.isConfig:
4797
4672
4798 print(n)
4673 print(n)
4799 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4674 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4800 ####self.index = 0
4675 ####self.index = 0
4801 #print("comova",self.isConfig)
4676 #print("comova",self.isConfig)
4802 self.isConfig = True
4677 self.isConfig = True
4803 ####if self.index==dataOut.azimuth.shape[0]:
4678 ####if self.index==dataOut.azimuth.shape[0]:
4804 #### self.index=0
4679 #### self.index=0
4805
4680
4806 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4681 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4807
4682
4808
4683
4809
4684
4810
4685
4811 dataOut.flagNoData = True
4686 dataOut.flagNoData = True
4812
4687
4813 if self.__dataReady:
4688 if self.__dataReady:
4814 dataOut.data_360 = data_360 # S
4689 dataOut.data_360 = data_360 # S
4815 #print("DATA 360")
4690 #print("DATA 360")
4816 #print(dataOut.data_360)
4691 #print(dataOut.data_360)
4817 #print("---------------------------------------------------------------------------------")
4692 #print("---------------------------------------------------------------------------------")
4818 print("---------------------------DATAREADY---------------------------------------------")
4693 print("---------------------------DATAREADY---------------------------------------------")
4819 #print("---------------------------------------------------------------------------------")
4694 #print("---------------------------------------------------------------------------------")
4820 #print("data_360",dataOut.data_360.shape)
4695 #print("data_360",dataOut.data_360.shape)
4821 print(data_e)
4696 print(data_e)
4822 #exit(1)
4697 #exit(1)
4823 dataOut.data_azi = data_p
4698 dataOut.data_azi = data_p
4824 dataOut.data_ele = data_e
4699 dataOut.data_ele = data_e
4825 ###print("azi: ",dataOut.data_azi)
4700 ###print("azi: ",dataOut.data_azi)
4826 #print("ele: ",dataOut.data_ele)
4701 #print("ele: ",dataOut.data_ele)
4827 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4702 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4828 dataOut.utctime = avgdatatime
4703 dataOut.utctime = avgdatatime
4829
4704
4830
4705
4831
4706
4832 dataOut.flagNoData = False
4707 dataOut.flagNoData = False
4833 return dataOut
4708 return dataOut
General Comments 0
You need to be logged in to leave comments. Login now