The requested changes are too big and content was truncated. Show full diff
@@ -1,2588 +1,2589 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
5 | 5 | |
|
6 | 6 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
7 | 7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
8 | 8 | from schainpy.utils import log |
|
9 | 9 | # libreria wradlib |
|
10 | 10 | import wradlib as wrl |
|
11 | 11 | |
|
12 | 12 | EARTH_RADIUS = 6.3710e3 |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | def ll2xy(lat1, lon1, lat2, lon2): |
|
16 | 16 | |
|
17 | 17 | p = 0.017453292519943295 |
|
18 | 18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
19 | 19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
20 | 20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
21 | 21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
22 | 22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
23 | 23 | theta = -theta + numpy.pi/2 |
|
24 | 24 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
25 | 25 | |
|
26 | 26 | |
|
27 | 27 | def km2deg(km): |
|
28 | 28 | ''' |
|
29 | 29 | Convert distance in km to degrees |
|
30 | 30 | ''' |
|
31 | 31 | |
|
32 | 32 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
33 | 33 | |
|
34 | 34 | |
|
35 | 35 | |
|
36 | 36 | class SpectralMomentsPlot(SpectraPlot): |
|
37 | 37 | ''' |
|
38 | 38 | Plot for Spectral Moments |
|
39 | 39 | ''' |
|
40 | 40 | CODE = 'spc_moments' |
|
41 | 41 | # colormap = 'jet' |
|
42 | 42 | # plot_type = 'pcolor' |
|
43 | 43 | |
|
44 | 44 | class DobleGaussianPlot(SpectraPlot): |
|
45 | 45 | ''' |
|
46 | 46 | Plot for Double Gaussian Plot |
|
47 | 47 | ''' |
|
48 | 48 | CODE = 'gaussian_fit' |
|
49 | 49 | # colormap = 'jet' |
|
50 | 50 | # plot_type = 'pcolor' |
|
51 | 51 | |
|
52 | 52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
53 | 53 | ''' |
|
54 | 54 | Plot SpectraCut with Double Gaussian Fit |
|
55 | 55 | ''' |
|
56 | 56 | CODE = 'cut_gaussian_fit' |
|
57 | 57 | |
|
58 | 58 | class SnrPlot(RTIPlot): |
|
59 | 59 | ''' |
|
60 | 60 | Plot for SNR Data |
|
61 | 61 | ''' |
|
62 | 62 | |
|
63 | 63 | CODE = 'snr' |
|
64 | 64 | colormap = 'jet' |
|
65 | 65 | |
|
66 | 66 | def update(self, dataOut): |
|
67 | 67 | |
|
68 | 68 | data = { |
|
69 | 69 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
70 | 70 | } |
|
71 | 71 | |
|
72 | 72 | return data, {} |
|
73 | 73 | |
|
74 | 74 | class DopplerPlot(RTIPlot): |
|
75 | 75 | ''' |
|
76 | 76 | Plot for DOPPLER Data (1st moment) |
|
77 | 77 | ''' |
|
78 | 78 | |
|
79 | 79 | CODE = 'dop' |
|
80 | 80 | colormap = 'jet' |
|
81 | 81 | |
|
82 | 82 | def update(self, dataOut): |
|
83 | 83 | |
|
84 | 84 | data = { |
|
85 | 85 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
86 | 86 | } |
|
87 | 87 | |
|
88 | 88 | return data, {} |
|
89 | 89 | |
|
90 | 90 | class PowerPlot(RTIPlot): |
|
91 | 91 | ''' |
|
92 | 92 | Plot for Power Data (0 moment) |
|
93 | 93 | ''' |
|
94 | 94 | |
|
95 | 95 | CODE = 'pow' |
|
96 | 96 | colormap = 'jet' |
|
97 | 97 | |
|
98 | 98 | def update(self, dataOut): |
|
99 | 99 | data = { |
|
100 | 100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
101 | 101 | } |
|
102 | 102 | return data, {} |
|
103 | 103 | |
|
104 | 104 | class SpectralWidthPlot(RTIPlot): |
|
105 | 105 | ''' |
|
106 | 106 | Plot for Spectral Width Data (2nd moment) |
|
107 | 107 | ''' |
|
108 | 108 | |
|
109 | 109 | CODE = 'width' |
|
110 | 110 | colormap = 'jet' |
|
111 | 111 | |
|
112 | 112 | def update(self, dataOut): |
|
113 | 113 | |
|
114 | 114 | data = { |
|
115 | 115 | 'width': dataOut.data_width |
|
116 | 116 | } |
|
117 | 117 | |
|
118 | 118 | return data, {} |
|
119 | 119 | |
|
120 | 120 | class SkyMapPlot(Plot): |
|
121 | 121 | ''' |
|
122 | 122 | Plot for meteors detection data |
|
123 | 123 | ''' |
|
124 | 124 | |
|
125 | 125 | CODE = 'param' |
|
126 | 126 | |
|
127 | 127 | def setup(self): |
|
128 | 128 | |
|
129 | 129 | self.ncols = 1 |
|
130 | 130 | self.nrows = 1 |
|
131 | 131 | self.width = 7.2 |
|
132 | 132 | self.height = 7.2 |
|
133 | 133 | self.nplots = 1 |
|
134 | 134 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
135 | 135 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
136 | 136 | self.polar = True |
|
137 | 137 | self.ymin = -180 |
|
138 | 138 | self.ymax = 180 |
|
139 | 139 | self.colorbar = False |
|
140 | 140 | |
|
141 | 141 | def plot(self): |
|
142 | 142 | |
|
143 | 143 | arrayParameters = numpy.concatenate(self.data['param']) |
|
144 | 144 | error = arrayParameters[:, -1] |
|
145 | 145 | indValid = numpy.where(error == 0)[0] |
|
146 | 146 | finalMeteor = arrayParameters[indValid, :] |
|
147 | 147 | finalAzimuth = finalMeteor[:, 3] |
|
148 | 148 | finalZenith = finalMeteor[:, 4] |
|
149 | 149 | |
|
150 | 150 | x = finalAzimuth * numpy.pi / 180 |
|
151 | 151 | y = finalZenith |
|
152 | 152 | |
|
153 | 153 | ax = self.axes[0] |
|
154 | 154 | |
|
155 | 155 | if ax.firsttime: |
|
156 | 156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
157 | 157 | else: |
|
158 | 158 | ax.plot.set_data(x, y) |
|
159 | 159 | |
|
160 | 160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
161 | 161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
162 | 162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
163 | 163 | dt2, |
|
164 | 164 | len(x)) |
|
165 | 165 | self.titles[0] = title |
|
166 | 166 | |
|
167 | 167 | |
|
168 | 168 | class GenericRTIPlot(Plot): |
|
169 | 169 | ''' |
|
170 | 170 | Plot for data_xxxx object |
|
171 | 171 | ''' |
|
172 | 172 | |
|
173 | 173 | CODE = 'param' |
|
174 | 174 | colormap = 'viridis' |
|
175 | 175 | plot_type = 'pcolorbuffer' |
|
176 | 176 | |
|
177 | 177 | def setup(self): |
|
178 | 178 | self.xaxis = 'time' |
|
179 | 179 | self.ncols = 1 |
|
180 | 180 | self.nrows = self.data.shape('param')[0] |
|
181 | 181 | self.nplots = self.nrows |
|
182 | 182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
183 | 183 | |
|
184 | 184 | if not self.xlabel: |
|
185 | 185 | self.xlabel = 'Time' |
|
186 | 186 | |
|
187 | 187 | self.ylabel = 'Range [km]' |
|
188 | 188 | if not self.titles: |
|
189 | 189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
190 | 190 | |
|
191 | 191 | def update(self, dataOut): |
|
192 | 192 | |
|
193 | 193 | data = { |
|
194 | 194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
195 | 195 | } |
|
196 | 196 | |
|
197 | 197 | meta = {} |
|
198 | 198 | |
|
199 | 199 | return data, meta |
|
200 | 200 | |
|
201 | 201 | def plot(self): |
|
202 | 202 | # self.data.normalize_heights() |
|
203 | 203 | self.x = self.data.times |
|
204 | 204 | self.y = self.data.yrange |
|
205 | 205 | self.z = self.data['param'] |
|
206 | 206 | self.z = 10*numpy.log10(self.z) |
|
207 | 207 | self.z = numpy.ma.masked_invalid(self.z) |
|
208 | 208 | |
|
209 | 209 | if self.decimation is None: |
|
210 | 210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
211 | 211 | else: |
|
212 | 212 | x, y, z = self.fill_gaps(*self.decimate()) |
|
213 | 213 | |
|
214 | 214 | for n, ax in enumerate(self.axes): |
|
215 | 215 | |
|
216 | 216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
217 | 217 | self.z[n]) |
|
218 | 218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
219 | 219 | self.z[n]) |
|
220 | 220 | |
|
221 | 221 | if ax.firsttime: |
|
222 | 222 | if self.zlimits is not None: |
|
223 | 223 | self.zmin, self.zmax = self.zlimits[n] |
|
224 | 224 | |
|
225 | 225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
226 | 226 | vmin=self.zmin, |
|
227 | 227 | vmax=self.zmax, |
|
228 | 228 | cmap=self.cmaps[n] |
|
229 | 229 | ) |
|
230 | 230 | else: |
|
231 | 231 | if self.zlimits is not None: |
|
232 | 232 | self.zmin, self.zmax = self.zlimits[n] |
|
233 | 233 | ax.collections.remove(ax.collections[0]) |
|
234 | 234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
235 | 235 | vmin=self.zmin, |
|
236 | 236 | vmax=self.zmax, |
|
237 | 237 | cmap=self.cmaps[n] |
|
238 | 238 | ) |
|
239 | 239 | |
|
240 | 240 | |
|
241 | 241 | class PolarMapPlot(Plot): |
|
242 | 242 | ''' |
|
243 | 243 | Plot for weather radar |
|
244 | 244 | ''' |
|
245 | 245 | |
|
246 | 246 | CODE = 'param' |
|
247 | 247 | colormap = 'seismic' |
|
248 | 248 | |
|
249 | 249 | def setup(self): |
|
250 | 250 | self.ncols = 1 |
|
251 | 251 | self.nrows = 1 |
|
252 | 252 | self.width = 9 |
|
253 | 253 | self.height = 8 |
|
254 | 254 | self.mode = self.data.meta['mode'] |
|
255 | 255 | if self.channels is not None: |
|
256 | 256 | self.nplots = len(self.channels) |
|
257 | 257 | self.nrows = len(self.channels) |
|
258 | 258 | else: |
|
259 | 259 | self.nplots = self.data.shape(self.CODE)[0] |
|
260 | 260 | self.nrows = self.nplots |
|
261 | 261 | self.channels = list(range(self.nplots)) |
|
262 | 262 | if self.mode == 'E': |
|
263 | 263 | self.xlabel = 'Longitude' |
|
264 | 264 | self.ylabel = 'Latitude' |
|
265 | 265 | else: |
|
266 | 266 | self.xlabel = 'Range (km)' |
|
267 | 267 | self.ylabel = 'Height (km)' |
|
268 | 268 | self.bgcolor = 'white' |
|
269 | 269 | self.cb_labels = self.data.meta['units'] |
|
270 | 270 | self.lat = self.data.meta['latitude'] |
|
271 | 271 | self.lon = self.data.meta['longitude'] |
|
272 | 272 | self.xmin, self.xmax = float( |
|
273 | 273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
274 | 274 | self.ymin, self.ymax = float( |
|
275 | 275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
276 | 276 | # self.polar = True |
|
277 | 277 | |
|
278 | 278 | def plot(self): |
|
279 | 279 | |
|
280 | 280 | for n, ax in enumerate(self.axes): |
|
281 | 281 | data = self.data['param'][self.channels[n]] |
|
282 | 282 | |
|
283 | 283 | zeniths = numpy.linspace( |
|
284 | 284 | 0, self.data.meta['max_range'], data.shape[1]) |
|
285 | 285 | if self.mode == 'E': |
|
286 | 286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
287 | 287 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
288 | 288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
289 | 289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
290 | 290 | x = km2deg(x) + self.lon |
|
291 | 291 | y = km2deg(y) + self.lat |
|
292 | 292 | else: |
|
293 | 293 | azimuths = numpy.radians(self.data.yrange) |
|
294 | 294 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
295 | 295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
296 | 296 | self.y = zeniths |
|
297 | 297 | |
|
298 | 298 | if ax.firsttime: |
|
299 | 299 | if self.zlimits is not None: |
|
300 | 300 | self.zmin, self.zmax = self.zlimits[n] |
|
301 | 301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | 302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
303 | 303 | vmin=self.zmin, |
|
304 | 304 | vmax=self.zmax, |
|
305 | 305 | cmap=self.cmaps[n]) |
|
306 | 306 | else: |
|
307 | 307 | if self.zlimits is not None: |
|
308 | 308 | self.zmin, self.zmax = self.zlimits[n] |
|
309 | 309 | ax.collections.remove(ax.collections[0]) |
|
310 | 310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
311 | 311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
312 | 312 | vmin=self.zmin, |
|
313 | 313 | vmax=self.zmax, |
|
314 | 314 | cmap=self.cmaps[n]) |
|
315 | 315 | |
|
316 | 316 | if self.mode == 'A': |
|
317 | 317 | continue |
|
318 | 318 | |
|
319 | 319 | # plot district names |
|
320 | 320 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
321 | 321 | for line in f: |
|
322 | 322 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
323 | 323 | lat = float(lat) |
|
324 | 324 | lon = float(lon) |
|
325 | 325 | # ax.plot(lon, lat, '.b', ms=2) |
|
326 | 326 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
327 | 327 | va='bottom', size='8', color='black') |
|
328 | 328 | |
|
329 | 329 | # plot limites |
|
330 | 330 | limites = [] |
|
331 | 331 | tmp = [] |
|
332 | 332 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
333 | 333 | if '#' in line: |
|
334 | 334 | if tmp: |
|
335 | 335 | limites.append(tmp) |
|
336 | 336 | tmp = [] |
|
337 | 337 | continue |
|
338 | 338 | values = line.strip().split(',') |
|
339 | 339 | tmp.append((float(values[0]), float(values[1]))) |
|
340 | 340 | for points in limites: |
|
341 | 341 | ax.add_patch( |
|
342 | 342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
343 | 343 | |
|
344 | 344 | # plot Cuencas |
|
345 | 345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
346 | 346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
347 | 347 | values = [line.strip().split(',') for line in f] |
|
348 | 348 | points = [(float(s[0]), float(s[1])) for s in values] |
|
349 | 349 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
350 | 350 | |
|
351 | 351 | # plot grid |
|
352 | 352 | for r in (15, 30, 45, 60): |
|
353 | 353 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
354 | 354 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
355 | 355 | ax.text( |
|
356 | 356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
357 | 357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
358 | 358 | '{}km'.format(r), |
|
359 | 359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
360 | 360 | |
|
361 | 361 | if self.mode == 'E': |
|
362 | 362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
363 | 363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
364 | 364 | else: |
|
365 | 365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
366 | 366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
367 | 367 | |
|
368 | 368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
369 | 369 | self.titles = ['{} {}'.format( |
|
370 | 370 | self.data.parameters[x], title) for x in self.channels] |
|
371 | 371 | |
|
372 | 372 | class WeatherPlot(Plot): |
|
373 | 373 | CODE = 'weather' |
|
374 | 374 | plot_name = 'weather' |
|
375 | 375 | plot_type = 'ppistyle' |
|
376 | 376 | buffering = False |
|
377 | 377 | |
|
378 | 378 | def setup(self): |
|
379 | 379 | self.ncols = 1 |
|
380 | 380 | self.nrows = 1 |
|
381 | 381 | self.width =8 |
|
382 | 382 | self.height =8 |
|
383 | 383 | self.nplots= 1 |
|
384 | 384 | self.ylabel= 'Range [Km]' |
|
385 | 385 | self.titles= ['Weather'] |
|
386 | 386 | self.colorbar=False |
|
387 | 387 | self.ini =0 |
|
388 | 388 | self.len_azi =0 |
|
389 | 389 | self.buffer_ini = None |
|
390 | 390 | self.buffer_azi = None |
|
391 | 391 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
392 | 392 | self.flag =0 |
|
393 | 393 | self.indicador= 0 |
|
394 | 394 | self.last_data_azi = None |
|
395 | 395 | self.val_mean = None |
|
396 | 396 | |
|
397 | 397 | def update(self, dataOut): |
|
398 | 398 | |
|
399 | 399 | data = {} |
|
400 | 400 | meta = {} |
|
401 | 401 | if hasattr(dataOut, 'dataPP_POWER'): |
|
402 | 402 | factor = 1 |
|
403 | 403 | if hasattr(dataOut, 'nFFTPoints'): |
|
404 | 404 | factor = dataOut.normFactor |
|
405 | 405 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) |
|
406 | 406 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
407 | 407 | data['azi'] = dataOut.data_azi |
|
408 | 408 | data['ele'] = dataOut.data_ele |
|
409 | 409 | return data, meta |
|
410 | 410 | |
|
411 | 411 | def get2List(self,angulos): |
|
412 | 412 | list1=[] |
|
413 | 413 | list2=[] |
|
414 | 414 | for i in reversed(range(len(angulos))): |
|
415 | 415 | diff_ = angulos[i]-angulos[i-1] |
|
416 | 416 | if diff_ >1.5: |
|
417 | 417 | list1.append(i-1) |
|
418 | 418 | list2.append(diff_) |
|
419 | 419 | return list(reversed(list1)),list(reversed(list2)) |
|
420 | 420 | |
|
421 | 421 | def fixData360(self,list_,ang_): |
|
422 | 422 | if list_[0]==-1: |
|
423 | 423 | vec = numpy.where(ang_<ang_[0]) |
|
424 | 424 | ang_[vec] = ang_[vec]+360 |
|
425 | 425 | return ang_ |
|
426 | 426 | return ang_ |
|
427 | 427 | |
|
428 | 428 | def fixData360HL(self,angulos): |
|
429 | 429 | vec = numpy.where(angulos>=360) |
|
430 | 430 | angulos[vec]=angulos[vec]-360 |
|
431 | 431 | return angulos |
|
432 | 432 | |
|
433 | 433 | def search_pos(self,pos,list_): |
|
434 | 434 | for i in range(len(list_)): |
|
435 | 435 | if pos == list_[i]: |
|
436 | 436 | return True,i |
|
437 | 437 | i=None |
|
438 | 438 | return False,i |
|
439 | 439 | |
|
440 | 440 | def fixDataComp(self,ang_,list1_,list2_): |
|
441 | 441 | size = len(ang_) |
|
442 | 442 | size2 = 0 |
|
443 | 443 | for i in range(len(list2_)): |
|
444 | 444 | size2=size2+round(list2_[i])-1 |
|
445 | 445 | new_size= size+size2 |
|
446 | 446 | ang_new = numpy.zeros(new_size) |
|
447 | 447 | ang_new2 = numpy.zeros(new_size) |
|
448 | 448 | |
|
449 | 449 | tmp = 0 |
|
450 | 450 | c = 0 |
|
451 | 451 | for i in range(len(ang_)): |
|
452 | 452 | ang_new[tmp +c] = ang_[i] |
|
453 | 453 | ang_new2[tmp+c] = ang_[i] |
|
454 | 454 | condition , value = self.search_pos(i,list1_) |
|
455 | 455 | if condition: |
|
456 | 456 | pos = tmp + c + 1 |
|
457 | 457 | for k in range(round(list2_[value])-1): |
|
458 | 458 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
459 | 459 | ang_new2[pos+k] = numpy.nan |
|
460 | 460 | tmp = pos +k |
|
461 | 461 | c = 0 |
|
462 | 462 | c=c+1 |
|
463 | 463 | return ang_new,ang_new2 |
|
464 | 464 | |
|
465 | 465 | def globalCheckPED(self,angulos): |
|
466 | 466 | l1,l2 = self.get2List(angulos) |
|
467 | 467 | if len(l1)>0: |
|
468 | 468 | angulos2 = self.fixData360(list_=l1,ang_=angulos) |
|
469 | 469 | l1,l2 = self.get2List(angulos2) |
|
470 | 470 | |
|
471 | 471 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) |
|
472 | 472 | ang1_ = self.fixData360HL(ang1_) |
|
473 | 473 | ang2_ = self.fixData360HL(ang2_) |
|
474 | 474 | else: |
|
475 | 475 | ang1_= angulos |
|
476 | 476 | ang2_= angulos |
|
477 | 477 | return ang1_,ang2_ |
|
478 | 478 | |
|
479 | 479 | def analizeDATA(self,data_azi): |
|
480 | 480 | list1 = [] |
|
481 | 481 | list2 = [] |
|
482 | 482 | dat = data_azi |
|
483 | 483 | for i in reversed(range(1,len(dat))): |
|
484 | 484 | if dat[i]>dat[i-1]: |
|
485 | 485 | diff = int(dat[i])-int(dat[i-1]) |
|
486 | 486 | else: |
|
487 | 487 | diff = 360+int(dat[i])-int(dat[i-1]) |
|
488 | 488 | if diff > 1: |
|
489 | 489 | list1.append(i-1) |
|
490 | 490 | list2.append(diff-1) |
|
491 | 491 | return list1,list2 |
|
492 | 492 | |
|
493 | 493 | def fixDATANEW(self,data_azi,data_weather): |
|
494 | 494 | list1,list2 = self.analizeDATA(data_azi) |
|
495 | 495 | if len(list1)== 0: |
|
496 | 496 | return data_azi,data_weather |
|
497 | 497 | else: |
|
498 | 498 | resize = 0 |
|
499 | 499 | for i in range(len(list2)): |
|
500 | 500 | resize= resize + list2[i] |
|
501 | 501 | new_data_azi = numpy.resize(data_azi,resize) |
|
502 | 502 | new_data_weather= numpy.resize(date_weather,resize) |
|
503 | 503 | |
|
504 | 504 | for i in range(len(list2)): |
|
505 | 505 | j=0 |
|
506 | 506 | position=list1[i]+1 |
|
507 | 507 | for j in range(list2[i]): |
|
508 | 508 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 |
|
509 | 509 | return new_data_azi |
|
510 | 510 | |
|
511 | 511 | def fixDATA(self,data_azi): |
|
512 | 512 | data=data_azi |
|
513 | 513 | for i in range(len(data)): |
|
514 | 514 | if numpy.isnan(data[i]): |
|
515 | 515 | data[i]=data[i-1]+1 |
|
516 | 516 | return data |
|
517 | 517 | |
|
518 | 518 | def replaceNAN(self,data_weather,data_azi,val): |
|
519 | 519 | data= data_azi |
|
520 | 520 | data_T= data_weather |
|
521 | 521 | if data.shape[0]> data_T.shape[0]: |
|
522 | 522 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
523 | 523 | c = 0 |
|
524 | 524 | for i in range(len(data)): |
|
525 | 525 | if numpy.isnan(data[i]): |
|
526 | 526 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
527 | 527 | else: |
|
528 | 528 | data_N[i,:]=data_T[c,:] |
|
529 | 529 | c=c+1 |
|
530 | 530 | return data_N |
|
531 | 531 | else: |
|
532 | 532 | for i in range(len(data)): |
|
533 | 533 | if numpy.isnan(data[i]): |
|
534 | 534 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
535 | 535 | return data_T |
|
536 | 536 | |
|
537 | 537 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
538 | 538 | if self.ini==0: |
|
539 | 539 | #------- |
|
540 | 540 | n = (360/res)-len(data_azi) |
|
541 | 541 | #--------------------- new ------------------------- |
|
542 | 542 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) |
|
543 | 543 | #------------------------ |
|
544 | 544 | start = data_azi_new[-1] + res |
|
545 | 545 | end = data_azi_new[0] - res |
|
546 | 546 | #------ new |
|
547 | 547 | self.last_data_azi = end |
|
548 | 548 | if start>end: |
|
549 | 549 | end = end + 360 |
|
550 | 550 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
551 | 551 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
552 | 552 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) |
|
553 | 553 | # RADAR |
|
554 | 554 | val_mean = numpy.mean(data_weather[:,-1]) |
|
555 | 555 | self.val_mean = val_mean |
|
556 | 556 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
557 | 557 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
558 | 558 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
559 | 559 | else: |
|
560 | 560 | # azimuth |
|
561 | 561 | flag=0 |
|
562 | 562 | start_azi = self.res_azi[0] |
|
563 | 563 | #-----------new------------ |
|
564 | 564 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) |
|
565 | 565 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
566 | 566 | #-------------------------- |
|
567 | 567 | start = data_azi[0] |
|
568 | 568 | end = data_azi[-1] |
|
569 | 569 | self.last_data_azi= end |
|
570 | 570 | if start< start_azi: |
|
571 | 571 | start = start +360 |
|
572 | 572 | if end <start_azi: |
|
573 | 573 | end = end +360 |
|
574 | 574 | |
|
575 | 575 | pos_ini = int((start-start_azi)/res) |
|
576 | 576 | len_azi = len(data_azi) |
|
577 | 577 | if (360-pos_ini)<len_azi: |
|
578 | 578 | if pos_ini+1==360: |
|
579 | 579 | pos_ini=0 |
|
580 | 580 | else: |
|
581 | 581 | flag=1 |
|
582 | 582 | dif= 360-pos_ini |
|
583 | 583 | comp= len_azi-dif |
|
584 | 584 | #----------------- |
|
585 | 585 | if flag==0: |
|
586 | 586 | # AZIMUTH |
|
587 | 587 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
588 | 588 | # RADAR |
|
589 | 589 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
590 | 590 | else: |
|
591 | 591 | # AZIMUTH |
|
592 | 592 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
593 | 593 | self.res_azi[0:comp] = data_azi[dif:] |
|
594 | 594 | # RADAR |
|
595 | 595 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
596 | 596 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
597 | 597 | flag=0 |
|
598 | 598 | data_azi = self.res_azi |
|
599 | 599 | data_weather = self.res_weather |
|
600 | 600 | |
|
601 | 601 | return data_weather,data_azi |
|
602 | 602 | |
|
603 | 603 | def plot(self): |
|
604 | 604 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
605 | 605 | data = self.data[-1] |
|
606 | 606 | r = self.data.yrange |
|
607 | 607 | delta_height = r[1]-r[0] |
|
608 | 608 | r_mask = numpy.where(r>=0)[0] |
|
609 | 609 | r = numpy.arange(len(r_mask))*delta_height |
|
610 | 610 | self.y = 2*r |
|
611 | 611 | # RADAR |
|
612 | 612 | #data_weather = data['weather'] |
|
613 | 613 | # PEDESTAL |
|
614 | 614 | #data_azi = data['azi'] |
|
615 | 615 | res = 1 |
|
616 | 616 | # STEP |
|
617 | 617 | step = (360/(res*data['weather'].shape[0])) |
|
618 | 618 | |
|
619 | 619 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) |
|
620 | 620 | self.res_ele = numpy.mean(data['ele']) |
|
621 | 621 | ################# PLOTEO ################### |
|
622 | 622 | for i,ax in enumerate(self.axes): |
|
623 | 623 | self.zmin = self.zmin if self.zmin else 20 |
|
624 | 624 | self.zmax = self.zmax if self.zmax else 80 |
|
625 | 625 | if ax.firsttime: |
|
626 | 626 | plt.clf() |
|
627 | 627 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax) |
|
628 | 628 | else: |
|
629 | 629 | plt.clf() |
|
630 | 630 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax) |
|
631 | 631 | caax = cgax.parasites[0] |
|
632 | 632 | paax = cgax.parasites[1] |
|
633 | 633 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
634 | 634 | caax.set_xlabel('x_range [km]') |
|
635 | 635 | caax.set_ylabel('y_range [km]') |
|
636 | 636 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " EL: "+str(round(self.res_ele, 1)), transform=caax.transAxes, va='bottom',ha='right') |
|
637 | 637 | |
|
638 | 638 | self.ini= self.ini+1 |
|
639 | 639 | |
|
640 | 640 | |
|
641 | 641 | class WeatherRHIPlot(Plot): |
|
642 | 642 | CODE = 'weather' |
|
643 | 643 | plot_name = 'weather' |
|
644 | 644 | plot_type = 'rhistyle' |
|
645 | 645 | buffering = False |
|
646 | 646 | data_ele_tmp = None |
|
647 | 647 | |
|
648 | 648 | def setup(self): |
|
649 | 649 | print("********************") |
|
650 | 650 | print("********************") |
|
651 | 651 | print("********************") |
|
652 | 652 | print("SETUP WEATHER PLOT") |
|
653 | 653 | self.ncols = 1 |
|
654 | 654 | self.nrows = 1 |
|
655 | 655 | self.nplots= 1 |
|
656 | 656 | self.ylabel= 'Range [Km]' |
|
657 | 657 | self.titles= ['Weather'] |
|
658 | 658 | if self.channels is not None: |
|
659 | 659 | self.nplots = len(self.channels) |
|
660 | 660 | self.nrows = len(self.channels) |
|
661 | 661 | else: |
|
662 | 662 | self.nplots = self.data.shape(self.CODE)[0] |
|
663 | 663 | self.nrows = self.nplots |
|
664 | 664 | self.channels = list(range(self.nplots)) |
|
665 | 665 | print("channels",self.channels) |
|
666 | 666 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
667 | 667 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
668 | 668 | print("self.titles",self.titles) |
|
669 | 669 | self.colorbar=False |
|
670 | 670 | self.width =12 |
|
671 | 671 | self.height =8 |
|
672 | 672 | self.ini =0 |
|
673 | 673 | self.len_azi =0 |
|
674 | 674 | self.buffer_ini = None |
|
675 | 675 | self.buffer_ele = None |
|
676 | 676 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
677 | 677 | self.flag =0 |
|
678 | 678 | self.indicador= 0 |
|
679 | 679 | self.last_data_ele = None |
|
680 | 680 | self.val_mean = None |
|
681 | 681 | |
|
682 | 682 | def update(self, dataOut): |
|
683 | 683 | |
|
684 | 684 | data = {} |
|
685 | 685 | meta = {} |
|
686 | 686 | if hasattr(dataOut, 'dataPP_POWER'): |
|
687 | 687 | factor = 1 |
|
688 | 688 | if hasattr(dataOut, 'nFFTPoints'): |
|
689 | 689 | factor = dataOut.normFactor |
|
690 | 690 | print("dataOut",dataOut.data_360.shape) |
|
691 | 691 | # |
|
692 | 692 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
693 | 693 | # |
|
694 | 694 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
695 | 695 | data['azi'] = dataOut.data_azi |
|
696 | 696 | data['ele'] = dataOut.data_ele |
|
697 | 697 | #print("UPDATE") |
|
698 | 698 | #print("data[weather]",data['weather'].shape) |
|
699 | 699 | #print("data[azi]",data['azi']) |
|
700 | 700 | return data, meta |
|
701 | 701 | |
|
702 | 702 | def get2List(self,angulos): |
|
703 | 703 | list1=[] |
|
704 | 704 | list2=[] |
|
705 | 705 | for i in reversed(range(len(angulos))): |
|
706 | 706 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
707 | 707 | diff_ = angulos[i]-angulos[i-1] |
|
708 | 708 | if abs(diff_) >1.5: |
|
709 | 709 | list1.append(i-1) |
|
710 | 710 | list2.append(diff_) |
|
711 | 711 | return list(reversed(list1)),list(reversed(list2)) |
|
712 | 712 | |
|
713 | 713 | def fixData90(self,list_,ang_): |
|
714 | 714 | if list_[0]==-1: |
|
715 | 715 | vec = numpy.where(ang_<ang_[0]) |
|
716 | 716 | ang_[vec] = ang_[vec]+90 |
|
717 | 717 | return ang_ |
|
718 | 718 | return ang_ |
|
719 | 719 | |
|
720 | 720 | def fixData90HL(self,angulos): |
|
721 | 721 | vec = numpy.where(angulos>=90) |
|
722 | 722 | angulos[vec]=angulos[vec]-90 |
|
723 | 723 | return angulos |
|
724 | 724 | |
|
725 | 725 | |
|
726 | 726 | def search_pos(self,pos,list_): |
|
727 | 727 | for i in range(len(list_)): |
|
728 | 728 | if pos == list_[i]: |
|
729 | 729 | return True,i |
|
730 | 730 | i=None |
|
731 | 731 | return False,i |
|
732 | 732 | |
|
733 | 733 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
734 | 734 | size = len(ang_) |
|
735 | 735 | size2 = 0 |
|
736 | 736 | for i in range(len(list2_)): |
|
737 | 737 | size2=size2+round(abs(list2_[i]))-1 |
|
738 | 738 | new_size= size+size2 |
|
739 | 739 | ang_new = numpy.zeros(new_size) |
|
740 | 740 | ang_new2 = numpy.zeros(new_size) |
|
741 | 741 | |
|
742 | 742 | tmp = 0 |
|
743 | 743 | c = 0 |
|
744 | 744 | for i in range(len(ang_)): |
|
745 | 745 | ang_new[tmp +c] = ang_[i] |
|
746 | 746 | ang_new2[tmp+c] = ang_[i] |
|
747 | 747 | condition , value = self.search_pos(i,list1_) |
|
748 | 748 | if condition: |
|
749 | 749 | pos = tmp + c + 1 |
|
750 | 750 | for k in range(round(abs(list2_[value]))-1): |
|
751 | 751 | if tipo_case==0 or tipo_case==3:#subida |
|
752 | 752 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
753 | 753 | ang_new2[pos+k] = numpy.nan |
|
754 | 754 | elif tipo_case==1 or tipo_case==2:#bajada |
|
755 | 755 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
756 | 756 | ang_new2[pos+k] = numpy.nan |
|
757 | 757 | |
|
758 | 758 | tmp = pos +k |
|
759 | 759 | c = 0 |
|
760 | 760 | c=c+1 |
|
761 | 761 | return ang_new,ang_new2 |
|
762 | 762 | |
|
763 | 763 | def globalCheckPED(self,angulos,tipo_case): |
|
764 | 764 | l1,l2 = self.get2List(angulos) |
|
765 | 765 | ##print("l1",l1) |
|
766 | 766 | ##print("l2",l2) |
|
767 | 767 | if len(l1)>0: |
|
768 | 768 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
769 | 769 | #l1,l2 = self.get2List(angulos2) |
|
770 | 770 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
771 | 771 | #ang1_ = self.fixData90HL(ang1_) |
|
772 | 772 | #ang2_ = self.fixData90HL(ang2_) |
|
773 | 773 | else: |
|
774 | 774 | ang1_= angulos |
|
775 | 775 | ang2_= angulos |
|
776 | 776 | return ang1_,ang2_ |
|
777 | 777 | |
|
778 | 778 | |
|
779 | 779 | def replaceNAN(self,data_weather,data_ele,val): |
|
780 | 780 | data= data_ele |
|
781 | 781 | data_T= data_weather |
|
782 | 782 | if data.shape[0]> data_T.shape[0]: |
|
783 | 783 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
784 | 784 | c = 0 |
|
785 | 785 | for i in range(len(data)): |
|
786 | 786 | if numpy.isnan(data[i]): |
|
787 | 787 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
788 | 788 | else: |
|
789 | 789 | data_N[i,:]=data_T[c,:] |
|
790 | 790 | c=c+1 |
|
791 | 791 | return data_N |
|
792 | 792 | else: |
|
793 | 793 | for i in range(len(data)): |
|
794 | 794 | if numpy.isnan(data[i]): |
|
795 | 795 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
796 | 796 | return data_T |
|
797 | 797 | |
|
798 | 798 | def check_case(self,data_ele,ang_max,ang_min): |
|
799 | 799 | start = data_ele[0] |
|
800 | 800 | end = data_ele[-1] |
|
801 | 801 | number = (end-start) |
|
802 | 802 | len_ang=len(data_ele) |
|
803 | 803 | print("start",start) |
|
804 | 804 | print("end",end) |
|
805 | 805 | print("number",number) |
|
806 | 806 | |
|
807 | 807 | print("len_ang",len_ang) |
|
808 | 808 | |
|
809 | 809 | #exit(1) |
|
810 | 810 | |
|
811 | 811 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
812 | 812 | return 0 |
|
813 | 813 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
814 | 814 | # return 1 |
|
815 | 815 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
816 | 816 | return 1 |
|
817 | 817 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
818 | 818 | return 2 |
|
819 | 819 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
820 | 820 | return 3 |
|
821 | 821 | |
|
822 | 822 | |
|
823 | 823 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): |
|
824 | 824 | ang_max= ang_max |
|
825 | 825 | ang_min= ang_min |
|
826 | 826 | data_weather=data_weather |
|
827 | 827 | val_ch=val_ch |
|
828 | 828 | ##print("*********************DATA WEATHER**************************************") |
|
829 | 829 | ##print(data_weather) |
|
830 | 830 | if self.ini==0: |
|
831 | 831 | ''' |
|
832 | 832 | print("**********************************************") |
|
833 | 833 | print("**********************************************") |
|
834 | 834 | print("***************ini**************") |
|
835 | 835 | print("**********************************************") |
|
836 | 836 | print("**********************************************") |
|
837 | 837 | ''' |
|
838 | 838 | #print("data_ele",data_ele) |
|
839 | 839 | #---------------------------------------------------------- |
|
840 | 840 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
841 | 841 | print("check_case",tipo_case) |
|
842 | 842 | #exit(1) |
|
843 | 843 | #--------------------- new ------------------------- |
|
844 | 844 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
845 | 845 | |
|
846 | 846 | #-------------------------CAMBIOS RHI--------------------------------- |
|
847 | 847 | start= ang_min |
|
848 | 848 | end = ang_max |
|
849 | 849 | n= (ang_max-ang_min)/res |
|
850 | 850 | #------ new |
|
851 | 851 | self.start_data_ele = data_ele_new[0] |
|
852 | 852 | self.end_data_ele = data_ele_new[-1] |
|
853 | 853 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
854 | 854 | n1= round(self.start_data_ele)- start |
|
855 | 855 | n2= end - round(self.end_data_ele) |
|
856 | 856 | print(self.start_data_ele) |
|
857 | 857 | print(self.end_data_ele) |
|
858 | 858 | if n1>0: |
|
859 | 859 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
860 | 860 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
861 | 861 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
862 | 862 | print("ele1_nan",ele1_nan.shape) |
|
863 | 863 | print("data_ele_old",data_ele_old.shape) |
|
864 | 864 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
865 | 865 | if n2>0: |
|
866 | 866 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
867 | 867 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
868 | 868 | data_ele = numpy.hstack((data_ele,ele2)) |
|
869 | 869 | print("ele2_nan",ele2_nan.shape) |
|
870 | 870 | print("data_ele_old",data_ele_old.shape) |
|
871 | 871 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
872 | 872 | |
|
873 | 873 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
874 | 874 | data_ele_new = data_ele_new[::-1] # reversa |
|
875 | 875 | data_ele_old = data_ele_old[::-1]# reversa |
|
876 | 876 | data_weather = data_weather[::-1,:]# reversa |
|
877 | 877 | vec= numpy.where(data_ele_new<ang_max) |
|
878 | 878 | data_ele_new = data_ele_new[vec] |
|
879 | 879 | data_ele_old = data_ele_old[vec] |
|
880 | 880 | data_weather = data_weather[vec[0]] |
|
881 | 881 | vec2= numpy.where(0<data_ele_new) |
|
882 | 882 | data_ele_new = data_ele_new[vec2] |
|
883 | 883 | data_ele_old = data_ele_old[vec2] |
|
884 | 884 | data_weather = data_weather[vec2[0]] |
|
885 | 885 | self.start_data_ele = data_ele_new[0] |
|
886 | 886 | self.end_data_ele = data_ele_new[-1] |
|
887 | 887 | |
|
888 | 888 | n1= round(self.start_data_ele)- start |
|
889 | 889 | n2= end - round(self.end_data_ele)-1 |
|
890 | 890 | print(self.start_data_ele) |
|
891 | 891 | print(self.end_data_ele) |
|
892 | 892 | if n1>0: |
|
893 | 893 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
894 | 894 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
895 | 895 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
896 | 896 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
897 | 897 | if n2>0: |
|
898 | 898 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
899 | 899 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
900 | 900 | data_ele = numpy.hstack((data_ele,ele2)) |
|
901 | 901 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
902 | 902 | # RADAR |
|
903 | 903 | # NOTA data_ele y data_weather es la variable que retorna |
|
904 | 904 | val_mean = numpy.mean(data_weather[:,-1]) |
|
905 | 905 | self.val_mean = val_mean |
|
906 | 906 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
907 | 907 | self.data_ele_tmp[val_ch]= data_ele_old |
|
908 | 908 | else: |
|
909 | 909 | #print("**********************************************") |
|
910 | 910 | #print("****************VARIABLE**********************") |
|
911 | 911 | #-------------------------CAMBIOS RHI--------------------------------- |
|
912 | 912 | #--------------------------------------------------------------------- |
|
913 | 913 | ##print("INPUT data_ele",data_ele) |
|
914 | 914 | flag=0 |
|
915 | 915 | start_ele = self.res_ele[0] |
|
916 | 916 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
917 | 917 | #print("TIPO DE DATA",tipo_case) |
|
918 | 918 | #-----------new------------ |
|
919 | 919 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
920 | 920 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
921 | 921 | |
|
922 | 922 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
923 | 923 | |
|
924 | 924 | if tipo_case==0 : # SUBIDA |
|
925 | 925 | vec = numpy.where(data_ele<ang_max) |
|
926 | 926 | data_ele = data_ele[vec] |
|
927 | 927 | data_ele_old = data_ele_old[vec] |
|
928 | 928 | data_weather = data_weather[vec[0]] |
|
929 | 929 | |
|
930 | 930 | vec2 = numpy.where(0<data_ele) |
|
931 | 931 | data_ele= data_ele[vec2] |
|
932 | 932 | data_ele_old= data_ele_old[vec2] |
|
933 | 933 | ##print(data_ele_new) |
|
934 | 934 | data_weather= data_weather[vec2[0]] |
|
935 | 935 | |
|
936 | 936 | new_i_ele = int(round(data_ele[0])) |
|
937 | 937 | new_f_ele = int(round(data_ele[-1])) |
|
938 | 938 | #print(new_i_ele) |
|
939 | 939 | #print(new_f_ele) |
|
940 | 940 | #print(data_ele,len(data_ele)) |
|
941 | 941 | #print(data_ele_old,len(data_ele_old)) |
|
942 | 942 | if new_i_ele< 2: |
|
943 | 943 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
944 | 944 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
945 | 945 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
946 | 946 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
947 | 947 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
948 | 948 | data_ele = self.res_ele |
|
949 | 949 | data_weather = self.res_weather[val_ch] |
|
950 | 950 | |
|
951 | 951 | elif tipo_case==1 : #BAJADA |
|
952 | 952 | data_ele = data_ele[::-1] # reversa |
|
953 | 953 | data_ele_old = data_ele_old[::-1]# reversa |
|
954 | 954 | data_weather = data_weather[::-1,:]# reversa |
|
955 | 955 | vec= numpy.where(data_ele<ang_max) |
|
956 | 956 | data_ele = data_ele[vec] |
|
957 | 957 | data_ele_old = data_ele_old[vec] |
|
958 | 958 | data_weather = data_weather[vec[0]] |
|
959 | 959 | vec2= numpy.where(0<data_ele) |
|
960 | 960 | data_ele = data_ele[vec2] |
|
961 | 961 | data_ele_old = data_ele_old[vec2] |
|
962 | 962 | data_weather = data_weather[vec2[0]] |
|
963 | 963 | |
|
964 | 964 | |
|
965 | 965 | new_i_ele = int(round(data_ele[0])) |
|
966 | 966 | new_f_ele = int(round(data_ele[-1])) |
|
967 | 967 | #print(data_ele) |
|
968 | 968 | #print(ang_max) |
|
969 | 969 | #print(data_ele_old) |
|
970 | 970 | if new_i_ele <= 1: |
|
971 | 971 | new_i_ele = 1 |
|
972 | 972 | if round(data_ele[-1])>=ang_max-1: |
|
973 | 973 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
974 | 974 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
975 | 975 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
976 | 976 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
977 | 977 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
978 | 978 | data_ele = self.res_ele |
|
979 | 979 | data_weather = self.res_weather[val_ch] |
|
980 | 980 | |
|
981 | 981 | elif tipo_case==2: #bajada |
|
982 | 982 | vec = numpy.where(data_ele<ang_max) |
|
983 | 983 | data_ele = data_ele[vec] |
|
984 | 984 | data_weather= data_weather[vec[0]] |
|
985 | 985 | |
|
986 | 986 | len_vec = len(vec) |
|
987 | 987 | data_ele_new = data_ele[::-1] # reversa |
|
988 | 988 | data_weather = data_weather[::-1,:] |
|
989 | 989 | new_i_ele = int(data_ele_new[0]) |
|
990 | 990 | new_f_ele = int(data_ele_new[-1]) |
|
991 | 991 | |
|
992 | 992 | n1= new_i_ele- ang_min |
|
993 | 993 | n2= ang_max - new_f_ele-1 |
|
994 | 994 | if n1>0: |
|
995 | 995 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
996 | 996 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
997 | 997 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
998 | 998 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
999 | 999 | if n2>0: |
|
1000 | 1000 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1001 | 1001 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1002 | 1002 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1003 | 1003 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1004 | 1004 | |
|
1005 | 1005 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1006 | 1006 | self.res_ele = data_ele |
|
1007 | 1007 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1008 | 1008 | data_ele = self.res_ele |
|
1009 | 1009 | data_weather = self.res_weather[val_ch] |
|
1010 | 1010 | |
|
1011 | 1011 | elif tipo_case==3:#subida |
|
1012 | 1012 | vec = numpy.where(0<data_ele) |
|
1013 | 1013 | data_ele= data_ele[vec] |
|
1014 | 1014 | data_ele_new = data_ele |
|
1015 | 1015 | data_ele_old= data_ele_old[vec] |
|
1016 | 1016 | data_weather= data_weather[vec[0]] |
|
1017 | 1017 | pos_ini = numpy.argmin(data_ele) |
|
1018 | 1018 | if pos_ini>0: |
|
1019 | 1019 | len_vec= len(data_ele) |
|
1020 | 1020 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1021 | 1021 | #print(vec3) |
|
1022 | 1022 | data_ele= data_ele[vec3] |
|
1023 | 1023 | data_ele_new = data_ele |
|
1024 | 1024 | data_ele_old= data_ele_old[vec3] |
|
1025 | 1025 | data_weather= data_weather[vec3] |
|
1026 | 1026 | |
|
1027 | 1027 | new_i_ele = int(data_ele_new[0]) |
|
1028 | 1028 | new_f_ele = int(data_ele_new[-1]) |
|
1029 | 1029 | n1= new_i_ele- ang_min |
|
1030 | 1030 | n2= ang_max - new_f_ele-1 |
|
1031 | 1031 | if n1>0: |
|
1032 | 1032 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1033 | 1033 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1034 | 1034 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1035 | 1035 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1036 | 1036 | if n2>0: |
|
1037 | 1037 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1038 | 1038 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1039 | 1039 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1040 | 1040 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1041 | 1041 | |
|
1042 | 1042 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1043 | 1043 | self.res_ele = data_ele |
|
1044 | 1044 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1045 | 1045 | data_ele = self.res_ele |
|
1046 | 1046 | data_weather = self.res_weather[val_ch] |
|
1047 | 1047 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1048 | 1048 | return data_weather,data_ele |
|
1049 | 1049 | |
|
1050 | 1050 | |
|
1051 | 1051 | def plot(self): |
|
1052 | 1052 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1053 | 1053 | data = self.data[-1] |
|
1054 | 1054 | r = self.data.yrange |
|
1055 | 1055 | delta_height = r[1]-r[0] |
|
1056 | 1056 | r_mask = numpy.where(r>=0)[0] |
|
1057 | 1057 | ##print("delta_height",delta_height) |
|
1058 | 1058 | #print("r_mask",r_mask,len(r_mask)) |
|
1059 | 1059 | r = numpy.arange(len(r_mask))*delta_height |
|
1060 | 1060 | self.y = 2*r |
|
1061 | 1061 | res = 1 |
|
1062 | 1062 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1063 | 1063 | ang_max = self.ang_max |
|
1064 | 1064 | ang_min = self.ang_min |
|
1065 | 1065 | var_ang =ang_max - ang_min |
|
1066 | 1066 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1067 | 1067 | ###print("step",step) |
|
1068 | 1068 | #-------------------------------------------------------- |
|
1069 | 1069 | ##print('weather',data['weather'].shape) |
|
1070 | 1070 | ##print('ele',data['ele'].shape) |
|
1071 | 1071 | |
|
1072 | 1072 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1073 | 1073 | ###self.res_azi = numpy.mean(data['azi']) |
|
1074 | 1074 | ###print("self.res_ele",self.res_ele) |
|
1075 | 1075 | plt.clf() |
|
1076 | 1076 | subplots = [121, 122] |
|
1077 | 1077 | cg={'angular_spacing': 20.} |
|
1078 | 1078 | if self.ini==0: |
|
1079 | 1079 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1080 | 1080 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1081 | 1081 | print("SHAPE",self.data_ele_tmp.shape) |
|
1082 | 1082 | |
|
1083 | 1083 | for i,ax in enumerate(self.axes): |
|
1084 | 1084 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1085 | 1085 | self.res_azi = numpy.mean(data['azi']) |
|
1086 | 1086 | if i==0: |
|
1087 | 1087 | print("*****************************************************************************to plot**************************",self.res_weather[i].shape) |
|
1088 | 1088 | self.zmin = self.zmin if self.zmin else 20 |
|
1089 | 1089 | self.zmax = self.zmax if self.zmax else 80 |
|
1090 | 1090 | if ax.firsttime: |
|
1091 | 1091 | #plt.clf() |
|
1092 | 1092 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax) |
|
1093 | 1093 | #fig=self.figures[0] |
|
1094 | 1094 | else: |
|
1095 | 1095 | #plt.clf() |
|
1096 | 1096 | if i==0: |
|
1097 | 1097 | print(self.res_weather[i]) |
|
1098 | 1098 | print(self.res_ele) |
|
1099 | 1099 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax) |
|
1100 | 1100 | caax = cgax.parasites[0] |
|
1101 | 1101 | paax = cgax.parasites[1] |
|
1102 | 1102 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1103 | 1103 | caax.set_xlabel('x_range [km]') |
|
1104 | 1104 | caax.set_ylabel('y_range [km]') |
|
1105 | 1105 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1106 | 1106 | print("***************************self.ini****************************",self.ini) |
|
1107 | 1107 | self.ini= self.ini+1 |
|
1108 | 1108 | |
|
1109 | 1109 | class Weather_vRF_Plot(Plot): |
|
1110 | 1110 | CODE = 'PPI' |
|
1111 | 1111 | plot_name = 'PPI' |
|
1112 | 1112 | #plot_type = 'ppistyle' |
|
1113 | 1113 | buffering = False |
|
1114 | 1114 | |
|
1115 | 1115 | def setup(self): |
|
1116 | 1116 | |
|
1117 | 1117 | self.ncols = 1 |
|
1118 | 1118 | self.nrows = 1 |
|
1119 | 1119 | self.width =8 |
|
1120 | 1120 | self.height =8 |
|
1121 | 1121 | self.nplots= 1 |
|
1122 | 1122 | self.ylabel= 'Range [Km]' |
|
1123 | 1123 | self.titles= ['PPI'] |
|
1124 | 1124 | self.polar = True |
|
1125 | 1125 | if self.channels is not None: |
|
1126 | 1126 | self.nplots = len(self.channels) |
|
1127 | 1127 | self.nrows = len(self.channels) |
|
1128 | 1128 | else: |
|
1129 | 1129 | self.nplots = self.data.shape(self.CODE)[0] |
|
1130 | 1130 | self.nrows = self.nplots |
|
1131 | 1131 | self.channels = list(range(self.nplots)) |
|
1132 | 1132 | |
|
1133 | 1133 | if self.CODE == 'POWER': |
|
1134 | 1134 | self.cb_label = r'Power (dB)' |
|
1135 | 1135 | elif self.CODE == 'DOPPLER': |
|
1136 | 1136 | self.cb_label = r'Velocity (m/s)' |
|
1137 | 1137 | self.colorbar=True |
|
1138 | 1138 | self.width =8 |
|
1139 | 1139 | self.height =8 |
|
1140 | 1140 | self.ini =0 |
|
1141 | 1141 | self.len_azi =0 |
|
1142 | 1142 | self.buffer_ini = None |
|
1143 | 1143 | self.buffer_ele = None |
|
1144 | 1144 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1145 | 1145 | self.flag =0 |
|
1146 | 1146 | self.indicador= 0 |
|
1147 | 1147 | self.last_data_ele = None |
|
1148 | 1148 | self.val_mean = None |
|
1149 | 1149 | |
|
1150 | 1150 | def update(self, dataOut): |
|
1151 | 1151 | |
|
1152 | 1152 | data = {} |
|
1153 | 1153 | meta = {} |
|
1154 | 1154 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1155 | 1155 | factor = 1 |
|
1156 | 1156 | if hasattr(dataOut, 'nFFTPoints'): |
|
1157 | 1157 | factor = dataOut.normFactor |
|
1158 | 1158 | |
|
1159 | 1159 | if 'pow' in self.attr_data[0].lower(): |
|
1160 | 1160 | data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) |
|
1161 | 1161 | else: |
|
1162 | 1162 | data['data'] = getattr(dataOut, self.attr_data[0])/(factor) |
|
1163 | 1163 | |
|
1164 | 1164 | data['azi'] = dataOut.data_azi |
|
1165 | 1165 | data['ele'] = dataOut.data_ele |
|
1166 | 1166 | |
|
1167 | 1167 | return data, meta |
|
1168 | 1168 | |
|
1169 | 1169 | def plot(self): |
|
1170 | 1170 | data = self.data[-1] |
|
1171 | 1171 | r = self.data.yrange |
|
1172 | 1172 | delta_height = r[1]-r[0] |
|
1173 | 1173 | r_mask = numpy.where(r>=0)[0] |
|
1174 | 1174 | self.r_mask = r_mask |
|
1175 | 1175 | r = numpy.arange(len(r_mask))*delta_height |
|
1176 | 1176 | self.y = 2*r |
|
1177 | 1177 | res = 1 |
|
1178 | 1178 | |
|
1179 |
var_ang =ang_max - |
|
|
1180 | step = (int(var_ang)/(res*data['data'].shape[0])) | |
|
1179 | #var_ang = ang_max - ang_min | |
|
1180 | #step = (int(var_ang)/(res*data['data'].shape[0])) | |
|
1181 | 1181 | |
|
1182 | 1182 | z = data['data'][self.channels[0]][:,r_mask] |
|
1183 | 1183 | |
|
1184 | 1184 | self.titles = [] |
|
1185 | 1185 | |
|
1186 | 1186 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
1187 | 1187 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
1188 | 1188 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
1189 | 1189 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
1190 | 1190 | self.ang_min = self.ang_min if self.ang_min else 0 |
|
1191 |
self.ang_max = self.ang_max if self.ang_max else |
|
|
1191 | self.ang_max = self.ang_max if self.ang_max else 360 | |
|
1192 | 1192 | |
|
1193 | 1193 | subplots = [121, 122] |
|
1194 | 1194 | |
|
1195 | 1195 | r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) ) |
|
1196 | 1196 | |
|
1197 | 1197 | for i,ax in enumerate(self.axes): |
|
1198 | 1198 | |
|
1199 | 1199 | if ax.firsttime: |
|
1200 | 1200 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
1201 | 1201 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
1202 | 1202 | |
|
1203 | 1203 | else: |
|
1204 | 1204 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
1205 | 1205 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
1206 | 1206 | |
|
1207 | 1207 | if len(self.channels) !=1: |
|
1208 | 1208 | self.titles = ['{} Ele: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['ele']),2)), x) for x in range(self.nrows)] |
|
1209 | 1209 | else: |
|
1210 | 1210 | self.titles = ['{} Ele: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['ele']),2)), self.channels[0])] |
|
1211 | 1211 | |
|
1212 | 1212 | class WeatherRHI_vRF2_Plot(Plot): |
|
1213 | 1213 | CODE = 'weather' |
|
1214 | 1214 | plot_name = 'weather' |
|
1215 | 1215 | plot_type = 'rhistyle' |
|
1216 | 1216 | buffering = False |
|
1217 | 1217 | data_ele_tmp = None |
|
1218 | 1218 | |
|
1219 | 1219 | def setup(self): |
|
1220 | 1220 | print("********************") |
|
1221 | 1221 | print("********************") |
|
1222 | 1222 | print("********************") |
|
1223 | 1223 | print("SETUP WEATHER PLOT") |
|
1224 | 1224 | self.ncols = 1 |
|
1225 | 1225 | self.nrows = 1 |
|
1226 | 1226 | self.nplots= 1 |
|
1227 | 1227 | self.ylabel= 'Range [Km]' |
|
1228 | 1228 | self.titles= ['Weather'] |
|
1229 | 1229 | if self.channels is not None: |
|
1230 | 1230 | self.nplots = len(self.channels) |
|
1231 | 1231 | self.nrows = len(self.channels) |
|
1232 | 1232 | else: |
|
1233 | 1233 | self.nplots = self.data.shape(self.CODE)[0] |
|
1234 | 1234 | self.nrows = self.nplots |
|
1235 | 1235 | self.channels = list(range(self.nplots)) |
|
1236 | 1236 | print("channels",self.channels) |
|
1237 | 1237 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1238 | 1238 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1239 | 1239 | print("self.titles",self.titles) |
|
1240 | 1240 | self.colorbar=False |
|
1241 | 1241 | self.width =8 |
|
1242 | 1242 | self.height =8 |
|
1243 | 1243 | self.ini =0 |
|
1244 | 1244 | self.len_azi =0 |
|
1245 | 1245 | self.buffer_ini = None |
|
1246 | 1246 | self.buffer_ele = None |
|
1247 | 1247 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1248 | 1248 | self.flag =0 |
|
1249 | 1249 | self.indicador= 0 |
|
1250 | 1250 | self.last_data_ele = None |
|
1251 | 1251 | self.val_mean = None |
|
1252 | 1252 | |
|
1253 | 1253 | def update(self, dataOut): |
|
1254 | 1254 | |
|
1255 | 1255 | data = {} |
|
1256 | 1256 | meta = {} |
|
1257 | 1257 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1258 | 1258 | factor = 1 |
|
1259 | 1259 | if hasattr(dataOut, 'nFFTPoints'): |
|
1260 | 1260 | factor = dataOut.normFactor |
|
1261 | 1261 | print("dataOut",dataOut.data_360.shape) |
|
1262 | 1262 | # |
|
1263 | 1263 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1264 | 1264 | # |
|
1265 | 1265 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1266 | 1266 | data['azi'] = dataOut.data_azi |
|
1267 | 1267 | data['ele'] = dataOut.data_ele |
|
1268 | 1268 | data['case_flag'] = dataOut.case_flag |
|
1269 | 1269 | #print("UPDATE") |
|
1270 | 1270 | #print("data[weather]",data['weather'].shape) |
|
1271 | 1271 | #print("data[azi]",data['azi']) |
|
1272 | 1272 | return data, meta |
|
1273 | 1273 | |
|
1274 | 1274 | def get2List(self,angulos): |
|
1275 | 1275 | list1=[] |
|
1276 | 1276 | list2=[] |
|
1277 | 1277 | for i in reversed(range(len(angulos))): |
|
1278 | 1278 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1279 | 1279 | diff_ = angulos[i]-angulos[i-1] |
|
1280 | 1280 | if abs(diff_) >1.5: |
|
1281 | 1281 | list1.append(i-1) |
|
1282 | 1282 | list2.append(diff_) |
|
1283 | 1283 | return list(reversed(list1)),list(reversed(list2)) |
|
1284 | 1284 | |
|
1285 | 1285 | def fixData90(self,list_,ang_): |
|
1286 | 1286 | if list_[0]==-1: |
|
1287 | 1287 | vec = numpy.where(ang_<ang_[0]) |
|
1288 | 1288 | ang_[vec] = ang_[vec]+90 |
|
1289 | 1289 | return ang_ |
|
1290 | 1290 | return ang_ |
|
1291 | 1291 | |
|
1292 | 1292 | def fixData90HL(self,angulos): |
|
1293 | 1293 | vec = numpy.where(angulos>=90) |
|
1294 | 1294 | angulos[vec]=angulos[vec]-90 |
|
1295 | 1295 | return angulos |
|
1296 | 1296 | |
|
1297 | 1297 | |
|
1298 | 1298 | def search_pos(self,pos,list_): |
|
1299 | 1299 | for i in range(len(list_)): |
|
1300 | 1300 | if pos == list_[i]: |
|
1301 | 1301 | return True,i |
|
1302 | 1302 | i=None |
|
1303 | 1303 | return False,i |
|
1304 | 1304 | |
|
1305 | 1305 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1306 | 1306 | size = len(ang_) |
|
1307 | 1307 | size2 = 0 |
|
1308 | 1308 | for i in range(len(list2_)): |
|
1309 | 1309 | size2=size2+round(abs(list2_[i]))-1 |
|
1310 | 1310 | new_size= size+size2 |
|
1311 | 1311 | ang_new = numpy.zeros(new_size) |
|
1312 | 1312 | ang_new2 = numpy.zeros(new_size) |
|
1313 | 1313 | |
|
1314 | 1314 | tmp = 0 |
|
1315 | 1315 | c = 0 |
|
1316 | 1316 | for i in range(len(ang_)): |
|
1317 | 1317 | ang_new[tmp +c] = ang_[i] |
|
1318 | 1318 | ang_new2[tmp+c] = ang_[i] |
|
1319 | 1319 | condition , value = self.search_pos(i,list1_) |
|
1320 | 1320 | if condition: |
|
1321 | 1321 | pos = tmp + c + 1 |
|
1322 | 1322 | for k in range(round(abs(list2_[value]))-1): |
|
1323 | 1323 | if tipo_case==0 or tipo_case==3:#subida |
|
1324 | 1324 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1325 | 1325 | ang_new2[pos+k] = numpy.nan |
|
1326 | 1326 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1327 | 1327 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1328 | 1328 | ang_new2[pos+k] = numpy.nan |
|
1329 | 1329 | |
|
1330 | 1330 | tmp = pos +k |
|
1331 | 1331 | c = 0 |
|
1332 | 1332 | c=c+1 |
|
1333 | 1333 | return ang_new,ang_new2 |
|
1334 | 1334 | |
|
1335 | 1335 | def globalCheckPED(self,angulos,tipo_case): |
|
1336 | 1336 | l1,l2 = self.get2List(angulos) |
|
1337 | 1337 | ##print("l1",l1) |
|
1338 | 1338 | ##print("l2",l2) |
|
1339 | 1339 | if len(l1)>0: |
|
1340 | 1340 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1341 | 1341 | #l1,l2 = self.get2List(angulos2) |
|
1342 | 1342 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1343 | 1343 | #ang1_ = self.fixData90HL(ang1_) |
|
1344 | 1344 | #ang2_ = self.fixData90HL(ang2_) |
|
1345 | 1345 | else: |
|
1346 | 1346 | ang1_= angulos |
|
1347 | 1347 | ang2_= angulos |
|
1348 | 1348 | return ang1_,ang2_ |
|
1349 | 1349 | |
|
1350 | 1350 | |
|
1351 | 1351 | def replaceNAN(self,data_weather,data_ele,val): |
|
1352 | 1352 | data= data_ele |
|
1353 | 1353 | data_T= data_weather |
|
1354 | 1354 | if data.shape[0]> data_T.shape[0]: |
|
1355 | 1355 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1356 | 1356 | c = 0 |
|
1357 | 1357 | for i in range(len(data)): |
|
1358 | 1358 | if numpy.isnan(data[i]): |
|
1359 | 1359 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1360 | 1360 | else: |
|
1361 | 1361 | data_N[i,:]=data_T[c,:] |
|
1362 | 1362 | c=c+1 |
|
1363 | 1363 | return data_N |
|
1364 | 1364 | else: |
|
1365 | 1365 | for i in range(len(data)): |
|
1366 | 1366 | if numpy.isnan(data[i]): |
|
1367 | 1367 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1368 | 1368 | return data_T |
|
1369 | 1369 | |
|
1370 | 1370 | def check_case(self,data_ele,ang_max,ang_min): |
|
1371 | 1371 | start = data_ele[0] |
|
1372 | 1372 | end = data_ele[-1] |
|
1373 | 1373 | number = (end-start) |
|
1374 | 1374 | len_ang=len(data_ele) |
|
1375 | 1375 | print("start",start) |
|
1376 | 1376 | print("end",end) |
|
1377 | 1377 | print("number",number) |
|
1378 | 1378 | |
|
1379 | 1379 | print("len_ang",len_ang) |
|
1380 | 1380 | |
|
1381 | 1381 | #exit(1) |
|
1382 | 1382 | |
|
1383 | 1383 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
1384 | 1384 | return 0 |
|
1385 | 1385 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1386 | 1386 | # return 1 |
|
1387 | 1387 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1388 | 1388 | return 1 |
|
1389 | 1389 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
1390 | 1390 | return 2 |
|
1391 | 1391 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
1392 | 1392 | return 3 |
|
1393 | 1393 | |
|
1394 | 1394 | |
|
1395 | 1395 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1396 | 1396 | ang_max= ang_max |
|
1397 | 1397 | ang_min= ang_min |
|
1398 | 1398 | data_weather=data_weather |
|
1399 | 1399 | val_ch=val_ch |
|
1400 | 1400 | ##print("*********************DATA WEATHER**************************************") |
|
1401 | 1401 | ##print(data_weather) |
|
1402 | 1402 | if self.ini==0: |
|
1403 | 1403 | ''' |
|
1404 | 1404 | print("**********************************************") |
|
1405 | 1405 | print("**********************************************") |
|
1406 | 1406 | print("***************ini**************") |
|
1407 | 1407 | print("**********************************************") |
|
1408 | 1408 | print("**********************************************") |
|
1409 | 1409 | ''' |
|
1410 | 1410 | #print("data_ele",data_ele) |
|
1411 | 1411 | #---------------------------------------------------------- |
|
1412 | 1412 | tipo_case = case_flag[-1] |
|
1413 | 1413 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1414 | 1414 | print("check_case",tipo_case) |
|
1415 | 1415 | #exit(1) |
|
1416 | 1416 | #--------------------- new ------------------------- |
|
1417 | 1417 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1418 | 1418 | |
|
1419 | 1419 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1420 | 1420 | start= ang_min |
|
1421 | 1421 | end = ang_max |
|
1422 | 1422 | n= (ang_max-ang_min)/res |
|
1423 | 1423 | #------ new |
|
1424 | 1424 | self.start_data_ele = data_ele_new[0] |
|
1425 | 1425 | self.end_data_ele = data_ele_new[-1] |
|
1426 | 1426 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
1427 | 1427 | n1= round(self.start_data_ele)- start |
|
1428 | 1428 | n2= end - round(self.end_data_ele) |
|
1429 | 1429 | print(self.start_data_ele) |
|
1430 | 1430 | print(self.end_data_ele) |
|
1431 | 1431 | if n1>0: |
|
1432 | 1432 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1433 | 1433 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1434 | 1434 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1435 | 1435 | print("ele1_nan",ele1_nan.shape) |
|
1436 | 1436 | print("data_ele_old",data_ele_old.shape) |
|
1437 | 1437 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1438 | 1438 | if n2>0: |
|
1439 | 1439 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1440 | 1440 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1441 | 1441 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1442 | 1442 | print("ele2_nan",ele2_nan.shape) |
|
1443 | 1443 | print("data_ele_old",data_ele_old.shape) |
|
1444 | 1444 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1445 | 1445 | |
|
1446 | 1446 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
1447 | 1447 | data_ele_new = data_ele_new[::-1] # reversa |
|
1448 | 1448 | data_ele_old = data_ele_old[::-1]# reversa |
|
1449 | 1449 | data_weather = data_weather[::-1,:]# reversa |
|
1450 | 1450 | vec= numpy.where(data_ele_new<ang_max) |
|
1451 | 1451 | data_ele_new = data_ele_new[vec] |
|
1452 | 1452 | data_ele_old = data_ele_old[vec] |
|
1453 | 1453 | data_weather = data_weather[vec[0]] |
|
1454 | 1454 | vec2= numpy.where(0<data_ele_new) |
|
1455 | 1455 | data_ele_new = data_ele_new[vec2] |
|
1456 | 1456 | data_ele_old = data_ele_old[vec2] |
|
1457 | 1457 | data_weather = data_weather[vec2[0]] |
|
1458 | 1458 | self.start_data_ele = data_ele_new[0] |
|
1459 | 1459 | self.end_data_ele = data_ele_new[-1] |
|
1460 | 1460 | |
|
1461 | 1461 | n1= round(self.start_data_ele)- start |
|
1462 | 1462 | n2= end - round(self.end_data_ele)-1 |
|
1463 | 1463 | print(self.start_data_ele) |
|
1464 | 1464 | print(self.end_data_ele) |
|
1465 | 1465 | if n1>0: |
|
1466 | 1466 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1467 | 1467 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1468 | 1468 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1469 | 1469 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1470 | 1470 | if n2>0: |
|
1471 | 1471 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1472 | 1472 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1473 | 1473 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1474 | 1474 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1475 | 1475 | # RADAR |
|
1476 | 1476 | # NOTA data_ele y data_weather es la variable que retorna |
|
1477 | 1477 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1478 | 1478 | self.val_mean = val_mean |
|
1479 | 1479 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1480 | 1480 | print("eleold",data_ele_old) |
|
1481 | 1481 | print(self.data_ele_tmp[val_ch]) |
|
1482 | 1482 | print(data_ele_old.shape[0]) |
|
1483 | 1483 | print(self.data_ele_tmp[val_ch].shape[0]) |
|
1484 | 1484 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): |
|
1485 | 1485 | import sys |
|
1486 | 1486 | print("EXIT",self.ini) |
|
1487 | 1487 | |
|
1488 | 1488 | sys.exit(1) |
|
1489 | 1489 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1490 | 1490 | else: |
|
1491 | 1491 | #print("**********************************************") |
|
1492 | 1492 | #print("****************VARIABLE**********************") |
|
1493 | 1493 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1494 | 1494 | #--------------------------------------------------------------------- |
|
1495 | 1495 | ##print("INPUT data_ele",data_ele) |
|
1496 | 1496 | flag=0 |
|
1497 | 1497 | start_ele = self.res_ele[0] |
|
1498 | 1498 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1499 | 1499 | tipo_case = case_flag[-1] |
|
1500 | 1500 | #print("TIPO DE DATA",tipo_case) |
|
1501 | 1501 | #-----------new------------ |
|
1502 | 1502 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
1503 | 1503 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1504 | 1504 | |
|
1505 | 1505 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
1506 | 1506 | |
|
1507 | 1507 | if tipo_case==0 : # SUBIDA |
|
1508 | 1508 | vec = numpy.where(data_ele<ang_max) |
|
1509 | 1509 | data_ele = data_ele[vec] |
|
1510 | 1510 | data_ele_old = data_ele_old[vec] |
|
1511 | 1511 | data_weather = data_weather[vec[0]] |
|
1512 | 1512 | |
|
1513 | 1513 | vec2 = numpy.where(0<data_ele) |
|
1514 | 1514 | data_ele= data_ele[vec2] |
|
1515 | 1515 | data_ele_old= data_ele_old[vec2] |
|
1516 | 1516 | ##print(data_ele_new) |
|
1517 | 1517 | data_weather= data_weather[vec2[0]] |
|
1518 | 1518 | |
|
1519 | 1519 | new_i_ele = int(round(data_ele[0])) |
|
1520 | 1520 | new_f_ele = int(round(data_ele[-1])) |
|
1521 | 1521 | #print(new_i_ele) |
|
1522 | 1522 | #print(new_f_ele) |
|
1523 | 1523 | #print(data_ele,len(data_ele)) |
|
1524 | 1524 | #print(data_ele_old,len(data_ele_old)) |
|
1525 | 1525 | if new_i_ele< 2: |
|
1526 | 1526 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1527 | 1527 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1528 | 1528 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
1529 | 1529 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
1530 | 1530 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
1531 | 1531 | data_ele = self.res_ele |
|
1532 | 1532 | data_weather = self.res_weather[val_ch] |
|
1533 | 1533 | |
|
1534 | 1534 | elif tipo_case==1 : #BAJADA |
|
1535 | 1535 | data_ele = data_ele[::-1] # reversa |
|
1536 | 1536 | data_ele_old = data_ele_old[::-1]# reversa |
|
1537 | 1537 | data_weather = data_weather[::-1,:]# reversa |
|
1538 | 1538 | vec= numpy.where(data_ele<ang_max) |
|
1539 | 1539 | data_ele = data_ele[vec] |
|
1540 | 1540 | data_ele_old = data_ele_old[vec] |
|
1541 | 1541 | data_weather = data_weather[vec[0]] |
|
1542 | 1542 | vec2= numpy.where(0<data_ele) |
|
1543 | 1543 | data_ele = data_ele[vec2] |
|
1544 | 1544 | data_ele_old = data_ele_old[vec2] |
|
1545 | 1545 | data_weather = data_weather[vec2[0]] |
|
1546 | 1546 | |
|
1547 | 1547 | |
|
1548 | 1548 | new_i_ele = int(round(data_ele[0])) |
|
1549 | 1549 | new_f_ele = int(round(data_ele[-1])) |
|
1550 | 1550 | #print(data_ele) |
|
1551 | 1551 | #print(ang_max) |
|
1552 | 1552 | #print(data_ele_old) |
|
1553 | 1553 | if new_i_ele <= 1: |
|
1554 | 1554 | new_i_ele = 1 |
|
1555 | 1555 | if round(data_ele[-1])>=ang_max-1: |
|
1556 | 1556 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1557 | 1557 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1558 | 1558 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
1559 | 1559 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
1560 | 1560 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
1561 | 1561 | data_ele = self.res_ele |
|
1562 | 1562 | data_weather = self.res_weather[val_ch] |
|
1563 | 1563 | |
|
1564 | 1564 | elif tipo_case==2: #bajada |
|
1565 | 1565 | vec = numpy.where(data_ele<ang_max) |
|
1566 | 1566 | data_ele = data_ele[vec] |
|
1567 | 1567 | data_weather= data_weather[vec[0]] |
|
1568 | 1568 | |
|
1569 | 1569 | len_vec = len(vec) |
|
1570 | 1570 | data_ele_new = data_ele[::-1] # reversa |
|
1571 | 1571 | data_weather = data_weather[::-1,:] |
|
1572 | 1572 | new_i_ele = int(data_ele_new[0]) |
|
1573 | 1573 | new_f_ele = int(data_ele_new[-1]) |
|
1574 | 1574 | |
|
1575 | 1575 | n1= new_i_ele- ang_min |
|
1576 | 1576 | n2= ang_max - new_f_ele-1 |
|
1577 | 1577 | if n1>0: |
|
1578 | 1578 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1579 | 1579 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1580 | 1580 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1581 | 1581 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1582 | 1582 | if n2>0: |
|
1583 | 1583 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1584 | 1584 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1585 | 1585 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1586 | 1586 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1587 | 1587 | |
|
1588 | 1588 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1589 | 1589 | self.res_ele = data_ele |
|
1590 | 1590 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1591 | 1591 | data_ele = self.res_ele |
|
1592 | 1592 | data_weather = self.res_weather[val_ch] |
|
1593 | 1593 | |
|
1594 | 1594 | elif tipo_case==3:#subida |
|
1595 | 1595 | vec = numpy.where(0<data_ele) |
|
1596 | 1596 | data_ele= data_ele[vec] |
|
1597 | 1597 | data_ele_new = data_ele |
|
1598 | 1598 | data_ele_old= data_ele_old[vec] |
|
1599 | 1599 | data_weather= data_weather[vec[0]] |
|
1600 | 1600 | pos_ini = numpy.argmin(data_ele) |
|
1601 | 1601 | if pos_ini>0: |
|
1602 | 1602 | len_vec= len(data_ele) |
|
1603 | 1603 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1604 | 1604 | #print(vec3) |
|
1605 | 1605 | data_ele= data_ele[vec3] |
|
1606 | 1606 | data_ele_new = data_ele |
|
1607 | 1607 | data_ele_old= data_ele_old[vec3] |
|
1608 | 1608 | data_weather= data_weather[vec3] |
|
1609 | 1609 | |
|
1610 | 1610 | new_i_ele = int(data_ele_new[0]) |
|
1611 | 1611 | new_f_ele = int(data_ele_new[-1]) |
|
1612 | 1612 | n1= new_i_ele- ang_min |
|
1613 | 1613 | n2= ang_max - new_f_ele-1 |
|
1614 | 1614 | if n1>0: |
|
1615 | 1615 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1616 | 1616 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1617 | 1617 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1618 | 1618 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1619 | 1619 | if n2>0: |
|
1620 | 1620 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1621 | 1621 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1622 | 1622 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1623 | 1623 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1624 | 1624 | |
|
1625 | 1625 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1626 | 1626 | self.res_ele = data_ele |
|
1627 | 1627 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1628 | 1628 | data_ele = self.res_ele |
|
1629 | 1629 | data_weather = self.res_weather[val_ch] |
|
1630 | 1630 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1631 | 1631 | return data_weather,data_ele |
|
1632 | 1632 | |
|
1633 | 1633 | |
|
1634 | 1634 | def plot(self): |
|
1635 | 1635 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1636 | 1636 | data = self.data[-1] |
|
1637 | 1637 | r = self.data.yrange |
|
1638 | 1638 | delta_height = r[1]-r[0] |
|
1639 | 1639 | r_mask = numpy.where(r>=0)[0] |
|
1640 | 1640 | ##print("delta_height",delta_height) |
|
1641 | 1641 | #print("r_mask",r_mask,len(r_mask)) |
|
1642 | 1642 | r = numpy.arange(len(r_mask))*delta_height |
|
1643 | 1643 | self.y = 2*r |
|
1644 | 1644 | res = 1 |
|
1645 | 1645 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1646 | 1646 | ang_max = self.ang_max |
|
1647 | 1647 | ang_min = self.ang_min |
|
1648 | 1648 | var_ang =ang_max - ang_min |
|
1649 | 1649 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1650 | 1650 | ###print("step",step) |
|
1651 | 1651 | #-------------------------------------------------------- |
|
1652 | 1652 | ##print('weather',data['weather'].shape) |
|
1653 | 1653 | ##print('ele',data['ele'].shape) |
|
1654 | 1654 | |
|
1655 | 1655 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1656 | 1656 | ###self.res_azi = numpy.mean(data['azi']) |
|
1657 | 1657 | ###print("self.res_ele",self.res_ele) |
|
1658 | 1658 | plt.clf() |
|
1659 | 1659 | subplots = [121, 122] |
|
1660 | 1660 | try: |
|
1661 | 1661 | if self.data[-2]['ele'].max()<data['ele'].max(): |
|
1662 | 1662 | self.ini=0 |
|
1663 | 1663 | except: |
|
1664 | 1664 | pass |
|
1665 | 1665 | if self.ini==0: |
|
1666 | 1666 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1667 | 1667 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1668 | 1668 | print("SHAPE",self.data_ele_tmp.shape) |
|
1669 | 1669 | |
|
1670 | 1670 | for i,ax in enumerate(self.axes): |
|
1671 | 1671 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1672 | 1672 | self.res_azi = numpy.mean(data['azi']) |
|
1673 | 1673 | |
|
1674 | 1674 | if ax.firsttime: |
|
1675 | 1675 | #plt.clf() |
|
1676 | 1676 | print("Frist Plot") |
|
1677 | 1677 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1678 | 1678 | #fig=self.figures[0] |
|
1679 | 1679 | else: |
|
1680 | 1680 | #plt.clf() |
|
1681 | 1681 | print("ELSE PLOT") |
|
1682 | 1682 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1683 | 1683 | caax = cgax.parasites[0] |
|
1684 | 1684 | paax = cgax.parasites[1] |
|
1685 | 1685 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1686 | 1686 | caax.set_xlabel('x_range [km]') |
|
1687 | 1687 | caax.set_ylabel('y_range [km]') |
|
1688 | 1688 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1689 | 1689 | print("***************************self.ini****************************",self.ini) |
|
1690 | 1690 | self.ini= self.ini+1 |
|
1691 | 1691 | |
|
1692 | 1692 | class WeatherRHI_vRF_Plot(Plot): |
|
1693 | 1693 | CODE = 'weather' |
|
1694 | 1694 | plot_name = 'weather' |
|
1695 | 1695 | plot_type = 'rhistyle' |
|
1696 | 1696 | buffering = False |
|
1697 | 1697 | data_ele_tmp = None |
|
1698 | 1698 | |
|
1699 | 1699 | def setup(self): |
|
1700 | 1700 | print("********************") |
|
1701 | 1701 | print("********************") |
|
1702 | 1702 | print("********************") |
|
1703 | 1703 | print("SETUP WEATHER PLOT") |
|
1704 | 1704 | self.ncols = 1 |
|
1705 | 1705 | self.nrows = 1 |
|
1706 | 1706 | self.nplots= 1 |
|
1707 | 1707 | self.ylabel= 'Range [Km]' |
|
1708 | 1708 | self.titles= ['Weather'] |
|
1709 | 1709 | if self.channels is not None: |
|
1710 | 1710 | self.nplots = len(self.channels) |
|
1711 | 1711 | self.nrows = len(self.channels) |
|
1712 | 1712 | else: |
|
1713 | 1713 | self.nplots = self.data.shape(self.CODE)[0] |
|
1714 | 1714 | self.nrows = self.nplots |
|
1715 | 1715 | self.channels = list(range(self.nplots)) |
|
1716 | 1716 | print("channels",self.channels) |
|
1717 | 1717 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1718 | 1718 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1719 | 1719 | print("self.titles",self.titles) |
|
1720 | 1720 | self.colorbar=False |
|
1721 | 1721 | self.width =8 |
|
1722 | 1722 | self.height =8 |
|
1723 | 1723 | self.ini =0 |
|
1724 | 1724 | self.len_azi =0 |
|
1725 | 1725 | self.buffer_ini = None |
|
1726 | 1726 | self.buffer_ele = None |
|
1727 | 1727 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1728 | 1728 | self.flag =0 |
|
1729 | 1729 | self.indicador= 0 |
|
1730 | 1730 | self.last_data_ele = None |
|
1731 | 1731 | self.val_mean = None |
|
1732 | 1732 | |
|
1733 | 1733 | def update(self, dataOut): |
|
1734 | 1734 | |
|
1735 | 1735 | data = {} |
|
1736 | 1736 | meta = {} |
|
1737 | 1737 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1738 | 1738 | factor = 1 |
|
1739 | 1739 | if hasattr(dataOut, 'nFFTPoints'): |
|
1740 | 1740 | factor = dataOut.normFactor |
|
1741 | 1741 | print("dataOut",dataOut.data_360.shape) |
|
1742 | 1742 | # |
|
1743 | 1743 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1744 | 1744 | # |
|
1745 | 1745 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1746 | 1746 | data['azi'] = dataOut.data_azi |
|
1747 | 1747 | data['ele'] = dataOut.data_ele |
|
1748 | 1748 | data['case_flag'] = dataOut.case_flag |
|
1749 | 1749 | #print("UPDATE") |
|
1750 | 1750 | #print("data[weather]",data['weather'].shape) |
|
1751 | 1751 | #print("data[azi]",data['azi']) |
|
1752 | 1752 | return data, meta |
|
1753 | 1753 | |
|
1754 | 1754 | def get2List(self,angulos): |
|
1755 | 1755 | list1=[] |
|
1756 | 1756 | list2=[] |
|
1757 | 1757 | #print(angulos) |
|
1758 | 1758 | #exit(1) |
|
1759 | 1759 | for i in reversed(range(len(angulos))): |
|
1760 | 1760 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1761 | 1761 | diff_ = angulos[i]-angulos[i-1] |
|
1762 | 1762 | if abs(diff_) >1.5: |
|
1763 | 1763 | list1.append(i-1) |
|
1764 | 1764 | list2.append(diff_) |
|
1765 | 1765 | return list(reversed(list1)),list(reversed(list2)) |
|
1766 | 1766 | |
|
1767 | 1767 | def fixData90(self,list_,ang_): |
|
1768 | 1768 | if list_[0]==-1: |
|
1769 | 1769 | vec = numpy.where(ang_<ang_[0]) |
|
1770 | 1770 | ang_[vec] = ang_[vec]+90 |
|
1771 | 1771 | return ang_ |
|
1772 | 1772 | return ang_ |
|
1773 | 1773 | |
|
1774 | 1774 | def fixData90HL(self,angulos): |
|
1775 | 1775 | vec = numpy.where(angulos>=90) |
|
1776 | 1776 | angulos[vec]=angulos[vec]-90 |
|
1777 | 1777 | return angulos |
|
1778 | 1778 | |
|
1779 | 1779 | |
|
1780 | 1780 | def search_pos(self,pos,list_): |
|
1781 | 1781 | for i in range(len(list_)): |
|
1782 | 1782 | if pos == list_[i]: |
|
1783 | 1783 | return True,i |
|
1784 | 1784 | i=None |
|
1785 | 1785 | return False,i |
|
1786 | 1786 | |
|
1787 | 1787 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1788 | 1788 | size = len(ang_) |
|
1789 | 1789 | size2 = 0 |
|
1790 | 1790 | for i in range(len(list2_)): |
|
1791 | 1791 | size2=size2+round(abs(list2_[i]))-1 |
|
1792 | 1792 | new_size= size+size2 |
|
1793 | 1793 | ang_new = numpy.zeros(new_size) |
|
1794 | 1794 | ang_new2 = numpy.zeros(new_size) |
|
1795 | 1795 | |
|
1796 | 1796 | tmp = 0 |
|
1797 | 1797 | c = 0 |
|
1798 | 1798 | for i in range(len(ang_)): |
|
1799 | 1799 | ang_new[tmp +c] = ang_[i] |
|
1800 | 1800 | ang_new2[tmp+c] = ang_[i] |
|
1801 | 1801 | condition , value = self.search_pos(i,list1_) |
|
1802 | 1802 | if condition: |
|
1803 | 1803 | pos = tmp + c + 1 |
|
1804 | 1804 | for k in range(round(abs(list2_[value]))-1): |
|
1805 | 1805 | if tipo_case==0 or tipo_case==3:#subida |
|
1806 | 1806 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1807 | 1807 | ang_new2[pos+k] = numpy.nan |
|
1808 | 1808 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1809 | 1809 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1810 | 1810 | ang_new2[pos+k] = numpy.nan |
|
1811 | 1811 | |
|
1812 | 1812 | tmp = pos +k |
|
1813 | 1813 | c = 0 |
|
1814 | 1814 | c=c+1 |
|
1815 | 1815 | return ang_new,ang_new2 |
|
1816 | 1816 | |
|
1817 | 1817 | def globalCheckPED(self,angulos,tipo_case): |
|
1818 | 1818 | l1,l2 = self.get2List(angulos) |
|
1819 | 1819 | print("l1",l1) |
|
1820 | 1820 | print("l2",l2) |
|
1821 | 1821 | if len(l1)>0: |
|
1822 | 1822 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1823 | 1823 | #l1,l2 = self.get2List(angulos2) |
|
1824 | 1824 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1825 | 1825 | #ang1_ = self.fixData90HL(ang1_) |
|
1826 | 1826 | #ang2_ = self.fixData90HL(ang2_) |
|
1827 | 1827 | else: |
|
1828 | 1828 | ang1_= angulos |
|
1829 | 1829 | ang2_= angulos |
|
1830 | 1830 | return ang1_,ang2_ |
|
1831 | 1831 | |
|
1832 | 1832 | |
|
1833 | 1833 | def replaceNAN(self,data_weather,data_ele,val): |
|
1834 | 1834 | data= data_ele |
|
1835 | 1835 | data_T= data_weather |
|
1836 | 1836 | #print(data.shape[0]) |
|
1837 | 1837 | #print(data_T.shape[0]) |
|
1838 | 1838 | #exit(1) |
|
1839 | 1839 | if data.shape[0]> data_T.shape[0]: |
|
1840 | 1840 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1841 | 1841 | c = 0 |
|
1842 | 1842 | for i in range(len(data)): |
|
1843 | 1843 | if numpy.isnan(data[i]): |
|
1844 | 1844 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1845 | 1845 | else: |
|
1846 | 1846 | data_N[i,:]=data_T[c,:] |
|
1847 | 1847 | c=c+1 |
|
1848 | 1848 | return data_N |
|
1849 | 1849 | else: |
|
1850 | 1850 | for i in range(len(data)): |
|
1851 | 1851 | if numpy.isnan(data[i]): |
|
1852 | 1852 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1853 | 1853 | return data_T |
|
1854 | 1854 | |
|
1855 | 1855 | |
|
1856 | 1856 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1857 | 1857 | ang_max= ang_max |
|
1858 | 1858 | ang_min= ang_min |
|
1859 | 1859 | data_weather=data_weather |
|
1860 | 1860 | val_ch=val_ch |
|
1861 | 1861 | ##print("*********************DATA WEATHER**************************************") |
|
1862 | 1862 | ##print(data_weather) |
|
1863 | 1863 | |
|
1864 | 1864 | ''' |
|
1865 | 1865 | print("**********************************************") |
|
1866 | 1866 | print("**********************************************") |
|
1867 | 1867 | print("***************ini**************") |
|
1868 | 1868 | print("**********************************************") |
|
1869 | 1869 | print("**********************************************") |
|
1870 | 1870 | ''' |
|
1871 | 1871 | #print("data_ele",data_ele) |
|
1872 | 1872 | #---------------------------------------------------------- |
|
1873 | 1873 | |
|
1874 | 1874 | #exit(1) |
|
1875 | 1875 | tipo_case = case_flag[-1] |
|
1876 | 1876 | print("tipo_case",tipo_case) |
|
1877 | 1877 | #--------------------- new ------------------------- |
|
1878 | 1878 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1879 | 1879 | |
|
1880 | 1880 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1881 | 1881 | |
|
1882 | 1882 | vec = numpy.where(data_ele<ang_max) |
|
1883 | 1883 | data_ele = data_ele[vec] |
|
1884 | 1884 | data_weather= data_weather[vec[0]] |
|
1885 | 1885 | |
|
1886 | 1886 | len_vec = len(vec) |
|
1887 | 1887 | data_ele_new = data_ele[::-1] # reversa |
|
1888 | 1888 | data_weather = data_weather[::-1,:] |
|
1889 | 1889 | new_i_ele = int(data_ele_new[0]) |
|
1890 | 1890 | new_f_ele = int(data_ele_new[-1]) |
|
1891 | 1891 | |
|
1892 | 1892 | n1= new_i_ele- ang_min |
|
1893 | 1893 | n2= ang_max - new_f_ele-1 |
|
1894 | 1894 | if n1>0: |
|
1895 | 1895 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1896 | 1896 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1897 | 1897 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1898 | 1898 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1899 | 1899 | if n2>0: |
|
1900 | 1900 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1901 | 1901 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1902 | 1902 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1903 | 1903 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1904 | 1904 | |
|
1905 | 1905 | |
|
1906 | 1906 | print("ele shape",data_ele.shape) |
|
1907 | 1907 | print(data_ele) |
|
1908 | 1908 | |
|
1909 | 1909 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1910 | 1910 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1911 | 1911 | self.val_mean = val_mean |
|
1912 | 1912 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1913 | 1913 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1914 | 1914 | |
|
1915 | 1915 | |
|
1916 | 1916 | print("data_weather shape",data_weather.shape) |
|
1917 | 1917 | print(data_weather) |
|
1918 | 1918 | #exit(1) |
|
1919 | 1919 | return data_weather,data_ele |
|
1920 | 1920 | |
|
1921 | 1921 | |
|
1922 | 1922 | def plot(self): |
|
1923 | 1923 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1924 | 1924 | data = self.data[-1] |
|
1925 | 1925 | r = self.data.yrange |
|
1926 | 1926 | delta_height = r[1]-r[0] |
|
1927 | 1927 | r_mask = numpy.where(r>=0)[0] |
|
1928 | 1928 | ##print("delta_height",delta_height) |
|
1929 | 1929 | #print("r_mask",r_mask,len(r_mask)) |
|
1930 | 1930 | r = numpy.arange(len(r_mask))*delta_height |
|
1931 | 1931 | self.y = 2*r |
|
1932 | 1932 | res = 1 |
|
1933 | 1933 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1934 | 1934 | ang_max = self.ang_max |
|
1935 | 1935 | ang_min = self.ang_min |
|
1936 | 1936 | var_ang =ang_max - ang_min |
|
1937 | 1937 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1938 | 1938 | ###print("step",step) |
|
1939 | 1939 | #-------------------------------------------------------- |
|
1940 | 1940 | ##print('weather',data['weather'].shape) |
|
1941 | 1941 | ##print('ele',data['ele'].shape) |
|
1942 | 1942 | |
|
1943 | 1943 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1944 | 1944 | ###self.res_azi = numpy.mean(data['azi']) |
|
1945 | 1945 | ###print("self.res_ele",self.res_ele) |
|
1946 | 1946 | plt.clf() |
|
1947 | 1947 | subplots = [121, 122] |
|
1948 | 1948 | if self.ini==0: |
|
1949 | 1949 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1950 | 1950 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1951 | 1951 | print("SHAPE",self.data_ele_tmp.shape) |
|
1952 | 1952 | |
|
1953 | 1953 | for i,ax in enumerate(self.axes): |
|
1954 | 1954 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1955 | 1955 | self.res_azi = numpy.mean(data['azi']) |
|
1956 | 1956 | |
|
1957 | 1957 | print(self.res_ele) |
|
1958 | 1958 | #exit(1) |
|
1959 | 1959 | if ax.firsttime: |
|
1960 | 1960 | #plt.clf() |
|
1961 | 1961 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1962 | 1962 | #fig=self.figures[0] |
|
1963 | 1963 | else: |
|
1964 | 1964 | |
|
1965 | 1965 | #plt.clf() |
|
1966 | 1966 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1967 | 1967 | caax = cgax.parasites[0] |
|
1968 | 1968 | paax = cgax.parasites[1] |
|
1969 | 1969 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1970 | 1970 | caax.set_xlabel('x_range [km]') |
|
1971 | 1971 | caax.set_ylabel('y_range [km]') |
|
1972 | 1972 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1973 | 1973 | print("***************************self.ini****************************",self.ini) |
|
1974 | 1974 | self.ini= self.ini+1 |
|
1975 | 1975 | |
|
1976 | 1976 | class WeatherRHI_vRF3_Plot(Plot): |
|
1977 | 1977 | CODE = 'weather' |
|
1978 | 1978 | plot_name = 'weather' |
|
1979 | 1979 | plot_type = 'rhistyle' |
|
1980 | 1980 | buffering = False |
|
1981 | 1981 | data_ele_tmp = None |
|
1982 | 1982 | |
|
1983 | 1983 | def setup(self): |
|
1984 | 1984 | print("********************") |
|
1985 | 1985 | print("********************") |
|
1986 | 1986 | print("********************") |
|
1987 | 1987 | print("SETUP WEATHER PLOT") |
|
1988 | 1988 | self.ncols = 1 |
|
1989 | 1989 | self.nrows = 1 |
|
1990 | 1990 | self.nplots= 1 |
|
1991 | 1991 | self.ylabel= 'Range [Km]' |
|
1992 | 1992 | self.titles= ['Weather'] |
|
1993 | 1993 | if self.channels is not None: |
|
1994 | 1994 | self.nplots = len(self.channels) |
|
1995 | 1995 | self.nrows = len(self.channels) |
|
1996 | 1996 | else: |
|
1997 | 1997 | self.nplots = self.data.shape(self.CODE)[0] |
|
1998 | 1998 | self.nrows = self.nplots |
|
1999 | 1999 | self.channels = list(range(self.nplots)) |
|
2000 | 2000 | print("channels",self.channels) |
|
2001 | 2001 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
2002 | 2002 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
2003 | 2003 | print("self.titles",self.titles) |
|
2004 | 2004 | self.colorbar=False |
|
2005 | 2005 | self.width =8 |
|
2006 | 2006 | self.height =8 |
|
2007 | 2007 | self.ini =0 |
|
2008 | 2008 | self.len_azi =0 |
|
2009 | 2009 | self.buffer_ini = None |
|
2010 | 2010 | self.buffer_ele = None |
|
2011 | 2011 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
2012 | 2012 | self.flag =0 |
|
2013 | 2013 | self.indicador= 0 |
|
2014 | 2014 | self.last_data_ele = None |
|
2015 | 2015 | self.val_mean = None |
|
2016 | 2016 | |
|
2017 | 2017 | def update(self, dataOut): |
|
2018 | 2018 | |
|
2019 | 2019 | data = {} |
|
2020 | 2020 | meta = {} |
|
2021 | 2021 | if hasattr(dataOut, 'dataPP_POWER'): |
|
2022 | 2022 | factor = 1 |
|
2023 | 2023 | if hasattr(dataOut, 'nFFTPoints'): |
|
2024 | 2024 | factor = dataOut.normFactor |
|
2025 | 2025 | print("dataOut",dataOut.data_360.shape) |
|
2026 | 2026 | # |
|
2027 | 2027 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
2028 | 2028 | # |
|
2029 | 2029 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
2030 | 2030 | data['azi'] = dataOut.data_azi |
|
2031 | 2031 | data['ele'] = dataOut.data_ele |
|
2032 | 2032 | #data['case_flag'] = dataOut.case_flag |
|
2033 | 2033 | #print("UPDATE") |
|
2034 | 2034 | #print("data[weather]",data['weather'].shape) |
|
2035 | 2035 | #print("data[azi]",data['azi']) |
|
2036 | 2036 | return data, meta |
|
2037 | 2037 | |
|
2038 | 2038 | def get2List(self,angulos): |
|
2039 | 2039 | list1=[] |
|
2040 | 2040 | list2=[] |
|
2041 | 2041 | for i in reversed(range(len(angulos))): |
|
2042 | 2042 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
2043 | 2043 | diff_ = angulos[i]-angulos[i-1] |
|
2044 | 2044 | if abs(diff_) >1.5: |
|
2045 | 2045 | list1.append(i-1) |
|
2046 | 2046 | list2.append(diff_) |
|
2047 | 2047 | return list(reversed(list1)),list(reversed(list2)) |
|
2048 | 2048 | |
|
2049 | 2049 | def fixData90(self,list_,ang_): |
|
2050 | 2050 | if list_[0]==-1: |
|
2051 | 2051 | vec = numpy.where(ang_<ang_[0]) |
|
2052 | 2052 | ang_[vec] = ang_[vec]+90 |
|
2053 | 2053 | return ang_ |
|
2054 | 2054 | return ang_ |
|
2055 | 2055 | |
|
2056 | 2056 | def fixData90HL(self,angulos): |
|
2057 | 2057 | vec = numpy.where(angulos>=90) |
|
2058 | 2058 | angulos[vec]=angulos[vec]-90 |
|
2059 | 2059 | return angulos |
|
2060 | 2060 | |
|
2061 | 2061 | |
|
2062 | 2062 | def search_pos(self,pos,list_): |
|
2063 | 2063 | for i in range(len(list_)): |
|
2064 | 2064 | if pos == list_[i]: |
|
2065 | 2065 | return True,i |
|
2066 | 2066 | i=None |
|
2067 | 2067 | return False,i |
|
2068 | 2068 | |
|
2069 | 2069 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
2070 | 2070 | size = len(ang_) |
|
2071 | 2071 | size2 = 0 |
|
2072 | 2072 | for i in range(len(list2_)): |
|
2073 | 2073 | size2=size2+round(abs(list2_[i]))-1 |
|
2074 | 2074 | new_size= size+size2 |
|
2075 | 2075 | ang_new = numpy.zeros(new_size) |
|
2076 | 2076 | ang_new2 = numpy.zeros(new_size) |
|
2077 | 2077 | |
|
2078 | 2078 | tmp = 0 |
|
2079 | 2079 | c = 0 |
|
2080 | 2080 | for i in range(len(ang_)): |
|
2081 | 2081 | ang_new[tmp +c] = ang_[i] |
|
2082 | 2082 | ang_new2[tmp+c] = ang_[i] |
|
2083 | 2083 | condition , value = self.search_pos(i,list1_) |
|
2084 | 2084 | if condition: |
|
2085 | 2085 | pos = tmp + c + 1 |
|
2086 | 2086 | for k in range(round(abs(list2_[value]))-1): |
|
2087 | 2087 | if tipo_case==0 or tipo_case==3:#subida |
|
2088 | 2088 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
2089 | 2089 | ang_new2[pos+k] = numpy.nan |
|
2090 | 2090 | elif tipo_case==1 or tipo_case==2:#bajada |
|
2091 | 2091 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
2092 | 2092 | ang_new2[pos+k] = numpy.nan |
|
2093 | 2093 | |
|
2094 | 2094 | tmp = pos +k |
|
2095 | 2095 | c = 0 |
|
2096 | 2096 | c=c+1 |
|
2097 | 2097 | return ang_new,ang_new2 |
|
2098 | 2098 | |
|
2099 | 2099 | def globalCheckPED(self,angulos,tipo_case): |
|
2100 | 2100 | l1,l2 = self.get2List(angulos) |
|
2101 | 2101 | ##print("l1",l1) |
|
2102 | 2102 | ##print("l2",l2) |
|
2103 | 2103 | if len(l1)>0: |
|
2104 | 2104 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
2105 | 2105 | #l1,l2 = self.get2List(angulos2) |
|
2106 | 2106 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
2107 | 2107 | #ang1_ = self.fixData90HL(ang1_) |
|
2108 | 2108 | #ang2_ = self.fixData90HL(ang2_) |
|
2109 | 2109 | else: |
|
2110 | 2110 | ang1_= angulos |
|
2111 | 2111 | ang2_= angulos |
|
2112 | 2112 | return ang1_,ang2_ |
|
2113 | 2113 | |
|
2114 | 2114 | |
|
2115 | 2115 | def replaceNAN(self,data_weather,data_ele,val): |
|
2116 | 2116 | data= data_ele |
|
2117 | 2117 | data_T= data_weather |
|
2118 | 2118 | |
|
2119 | 2119 | if data.shape[0]> data_T.shape[0]: |
|
2120 | 2120 | print("IF") |
|
2121 | 2121 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
2122 | 2122 | c = 0 |
|
2123 | 2123 | for i in range(len(data)): |
|
2124 | 2124 | if numpy.isnan(data[i]): |
|
2125 | 2125 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
2126 | 2126 | else: |
|
2127 | 2127 | data_N[i,:]=data_T[c,:] |
|
2128 | 2128 | c=c+1 |
|
2129 | 2129 | return data_N |
|
2130 | 2130 | else: |
|
2131 | 2131 | print("else") |
|
2132 | 2132 | for i in range(len(data)): |
|
2133 | 2133 | if numpy.isnan(data[i]): |
|
2134 | 2134 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
2135 | 2135 | return data_T |
|
2136 | 2136 | |
|
2137 | 2137 | def check_case(self,data_ele,ang_max,ang_min): |
|
2138 | 2138 | start = data_ele[0] |
|
2139 | 2139 | end = data_ele[-1] |
|
2140 | 2140 | number = (end-start) |
|
2141 | 2141 | len_ang=len(data_ele) |
|
2142 | 2142 | print("start",start) |
|
2143 | 2143 | print("end",end) |
|
2144 | 2144 | print("number",number) |
|
2145 | 2145 | |
|
2146 | 2146 | print("len_ang",len_ang) |
|
2147 | 2147 | |
|
2148 | 2148 | #exit(1) |
|
2149 | 2149 | |
|
2150 | 2150 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
2151 | 2151 | return 0 |
|
2152 | 2152 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
2153 | 2153 | # return 1 |
|
2154 | 2154 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
2155 | 2155 | return 1 |
|
2156 | 2156 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
2157 | 2157 | return 2 |
|
2158 | 2158 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
2159 | 2159 | return 3 |
|
2160 | 2160 | |
|
2161 | 2161 | |
|
2162 | 2162 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
2163 | 2163 | ang_max= ang_max |
|
2164 | 2164 | ang_min= ang_min |
|
2165 | 2165 | data_weather=data_weather |
|
2166 | 2166 | val_ch=val_ch |
|
2167 | 2167 | ##print("*********************DATA WEATHER**************************************") |
|
2168 | 2168 | ##print(data_weather) |
|
2169 | 2169 | if self.ini==0: |
|
2170 | 2170 | |
|
2171 | 2171 | #--------------------- new ------------------------- |
|
2172 | 2172 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
2173 | 2173 | |
|
2174 | 2174 | #-------------------------CAMBIOS RHI--------------------------------- |
|
2175 | 2175 | start= ang_min |
|
2176 | 2176 | end = ang_max |
|
2177 | 2177 | n= (ang_max-ang_min)/res |
|
2178 | 2178 | #------ new |
|
2179 | 2179 | self.start_data_ele = data_ele_new[0] |
|
2180 | 2180 | self.end_data_ele = data_ele_new[-1] |
|
2181 | 2181 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
2182 | 2182 | n1= round(self.start_data_ele)- start |
|
2183 | 2183 | n2= end - round(self.end_data_ele) |
|
2184 | 2184 | print(self.start_data_ele) |
|
2185 | 2185 | print(self.end_data_ele) |
|
2186 | 2186 | if n1>0: |
|
2187 | 2187 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
2188 | 2188 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
2189 | 2189 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
2190 | 2190 | print("ele1_nan",ele1_nan.shape) |
|
2191 | 2191 | print("data_ele_old",data_ele_old.shape) |
|
2192 | 2192 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
2193 | 2193 | if n2>0: |
|
2194 | 2194 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
2195 | 2195 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
2196 | 2196 | data_ele = numpy.hstack((data_ele,ele2)) |
|
2197 | 2197 | print("ele2_nan",ele2_nan.shape) |
|
2198 | 2198 | print("data_ele_old",data_ele_old.shape) |
|
2199 | 2199 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
2200 | 2200 | |
|
2201 | 2201 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
2202 | 2202 | data_ele_new = data_ele_new[::-1] # reversa |
|
2203 | 2203 | data_ele_old = data_ele_old[::-1]# reversa |
|
2204 | 2204 | data_weather = data_weather[::-1,:]# reversa |
|
2205 | 2205 | vec= numpy.where(data_ele_new<ang_max) |
|
2206 | 2206 | data_ele_new = data_ele_new[vec] |
|
2207 | 2207 | data_ele_old = data_ele_old[vec] |
|
2208 | 2208 | data_weather = data_weather[vec[0]] |
|
2209 | 2209 | vec2= numpy.where(0<data_ele_new) |
|
2210 | 2210 | data_ele_new = data_ele_new[vec2] |
|
2211 | 2211 | data_ele_old = data_ele_old[vec2] |
|
2212 | 2212 | data_weather = data_weather[vec2[0]] |
|
2213 | 2213 | self.start_data_ele = data_ele_new[0] |
|
2214 | 2214 | self.end_data_ele = data_ele_new[-1] |
|
2215 | 2215 | |
|
2216 | 2216 | n1= round(self.start_data_ele)- start |
|
2217 | 2217 | n2= end - round(self.end_data_ele)-1 |
|
2218 | 2218 | print(self.start_data_ele) |
|
2219 | 2219 | print(self.end_data_ele) |
|
2220 | 2220 | if n1>0: |
|
2221 | 2221 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
2222 | 2222 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
2223 | 2223 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
2224 | 2224 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
2225 | 2225 | if n2>0: |
|
2226 | 2226 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
2227 | 2227 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
2228 | 2228 | data_ele = numpy.hstack((data_ele,ele2)) |
|
2229 | 2229 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
2230 | 2230 | # RADAR |
|
2231 | 2231 | # NOTA data_ele y data_weather es la variable que retorna |
|
2232 | 2232 | val_mean = numpy.mean(data_weather[:,-1]) |
|
2233 | 2233 | self.val_mean = val_mean |
|
2234 | 2234 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
2235 | 2235 | print("eleold",data_ele_old) |
|
2236 | 2236 | print(self.data_ele_tmp[val_ch]) |
|
2237 | 2237 | print(data_ele_old.shape[0]) |
|
2238 | 2238 | print(self.data_ele_tmp[val_ch].shape[0]) |
|
2239 | 2239 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): |
|
2240 | 2240 | import sys |
|
2241 | 2241 | print("EXIT",self.ini) |
|
2242 | 2242 | |
|
2243 | 2243 | sys.exit(1) |
|
2244 | 2244 | self.data_ele_tmp[val_ch]= data_ele_old |
|
2245 | 2245 | else: |
|
2246 | 2246 | #print("**********************************************") |
|
2247 | 2247 | #print("****************VARIABLE**********************") |
|
2248 | 2248 | #-------------------------CAMBIOS RHI--------------------------------- |
|
2249 | 2249 | #--------------------------------------------------------------------- |
|
2250 | 2250 | ##print("INPUT data_ele",data_ele) |
|
2251 | 2251 | flag=0 |
|
2252 | 2252 | start_ele = self.res_ele[0] |
|
2253 | 2253 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
2254 | 2254 | tipo_case = case_flag[-1] |
|
2255 | 2255 | #print("TIPO DE DATA",tipo_case) |
|
2256 | 2256 | #-----------new------------ |
|
2257 | 2257 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
2258 | 2258 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
2259 | 2259 | |
|
2260 | 2260 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
2261 | 2261 | |
|
2262 | 2262 | if tipo_case==0 : # SUBIDA |
|
2263 | 2263 | vec = numpy.where(data_ele<ang_max) |
|
2264 | 2264 | data_ele = data_ele[vec] |
|
2265 | 2265 | data_ele_old = data_ele_old[vec] |
|
2266 | 2266 | data_weather = data_weather[vec[0]] |
|
2267 | 2267 | |
|
2268 | 2268 | vec2 = numpy.where(0<data_ele) |
|
2269 | 2269 | data_ele= data_ele[vec2] |
|
2270 | 2270 | data_ele_old= data_ele_old[vec2] |
|
2271 | 2271 | ##print(data_ele_new) |
|
2272 | 2272 | data_weather= data_weather[vec2[0]] |
|
2273 | 2273 | |
|
2274 | 2274 | new_i_ele = int(round(data_ele[0])) |
|
2275 | 2275 | new_f_ele = int(round(data_ele[-1])) |
|
2276 | 2276 | #print(new_i_ele) |
|
2277 | 2277 | #print(new_f_ele) |
|
2278 | 2278 | #print(data_ele,len(data_ele)) |
|
2279 | 2279 | #print(data_ele_old,len(data_ele_old)) |
|
2280 | 2280 | if new_i_ele< 2: |
|
2281 | 2281 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
2282 | 2282 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
2283 | 2283 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
2284 | 2284 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
2285 | 2285 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
2286 | 2286 | data_ele = self.res_ele |
|
2287 | 2287 | data_weather = self.res_weather[val_ch] |
|
2288 | 2288 | |
|
2289 | 2289 | elif tipo_case==1 : #BAJADA |
|
2290 | 2290 | data_ele = data_ele[::-1] # reversa |
|
2291 | 2291 | data_ele_old = data_ele_old[::-1]# reversa |
|
2292 | 2292 | data_weather = data_weather[::-1,:]# reversa |
|
2293 | 2293 | vec= numpy.where(data_ele<ang_max) |
|
2294 | 2294 | data_ele = data_ele[vec] |
|
2295 | 2295 | data_ele_old = data_ele_old[vec] |
|
2296 | 2296 | data_weather = data_weather[vec[0]] |
|
2297 | 2297 | vec2= numpy.where(0<data_ele) |
|
2298 | 2298 | data_ele = data_ele[vec2] |
|
2299 | 2299 | data_ele_old = data_ele_old[vec2] |
|
2300 | 2300 | data_weather = data_weather[vec2[0]] |
|
2301 | 2301 | |
|
2302 | 2302 | |
|
2303 | 2303 | new_i_ele = int(round(data_ele[0])) |
|
2304 | 2304 | new_f_ele = int(round(data_ele[-1])) |
|
2305 | 2305 | #print(data_ele) |
|
2306 | 2306 | #print(ang_max) |
|
2307 | 2307 | #print(data_ele_old) |
|
2308 | 2308 | if new_i_ele <= 1: |
|
2309 | 2309 | new_i_ele = 1 |
|
2310 | 2310 | if round(data_ele[-1])>=ang_max-1: |
|
2311 | 2311 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
2312 | 2312 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
2313 | 2313 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
2314 | 2314 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
2315 | 2315 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
2316 | 2316 | data_ele = self.res_ele |
|
2317 | 2317 | data_weather = self.res_weather[val_ch] |
|
2318 | 2318 | |
|
2319 | 2319 | elif tipo_case==2: #bajada |
|
2320 | 2320 | vec = numpy.where(data_ele<ang_max) |
|
2321 | 2321 | data_ele = data_ele[vec] |
|
2322 | 2322 | data_weather= data_weather[vec[0]] |
|
2323 | 2323 | |
|
2324 | 2324 | len_vec = len(vec) |
|
2325 | 2325 | data_ele_new = data_ele[::-1] # reversa |
|
2326 | 2326 | data_weather = data_weather[::-1,:] |
|
2327 | 2327 | new_i_ele = int(data_ele_new[0]) |
|
2328 | 2328 | new_f_ele = int(data_ele_new[-1]) |
|
2329 | 2329 | |
|
2330 | 2330 | n1= new_i_ele- ang_min |
|
2331 | 2331 | n2= ang_max - new_f_ele-1 |
|
2332 | 2332 | if n1>0: |
|
2333 | 2333 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
2334 | 2334 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
2335 | 2335 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
2336 | 2336 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
2337 | 2337 | if n2>0: |
|
2338 | 2338 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
2339 | 2339 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
2340 | 2340 | data_ele = numpy.hstack((data_ele,ele2)) |
|
2341 | 2341 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
2342 | 2342 | |
|
2343 | 2343 | self.data_ele_tmp[val_ch] = data_ele_old |
|
2344 | 2344 | self.res_ele = data_ele |
|
2345 | 2345 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
2346 | 2346 | data_ele = self.res_ele |
|
2347 | 2347 | data_weather = self.res_weather[val_ch] |
|
2348 | 2348 | |
|
2349 | 2349 | elif tipo_case==3:#subida |
|
2350 | 2350 | vec = numpy.where(0<data_ele) |
|
2351 | 2351 | data_ele= data_ele[vec] |
|
2352 | 2352 | data_ele_new = data_ele |
|
2353 | 2353 | data_ele_old= data_ele_old[vec] |
|
2354 | 2354 | data_weather= data_weather[vec[0]] |
|
2355 | 2355 | pos_ini = numpy.argmin(data_ele) |
|
2356 | 2356 | if pos_ini>0: |
|
2357 | 2357 | len_vec= len(data_ele) |
|
2358 | 2358 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
2359 | 2359 | #print(vec3) |
|
2360 | 2360 | data_ele= data_ele[vec3] |
|
2361 | 2361 | data_ele_new = data_ele |
|
2362 | 2362 | data_ele_old= data_ele_old[vec3] |
|
2363 | 2363 | data_weather= data_weather[vec3] |
|
2364 | 2364 | |
|
2365 | 2365 | new_i_ele = int(data_ele_new[0]) |
|
2366 | 2366 | new_f_ele = int(data_ele_new[-1]) |
|
2367 | 2367 | n1= new_i_ele- ang_min |
|
2368 | 2368 | n2= ang_max - new_f_ele-1 |
|
2369 | 2369 | if n1>0: |
|
2370 | 2370 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
2371 | 2371 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
2372 | 2372 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
2373 | 2373 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
2374 | 2374 | if n2>0: |
|
2375 | 2375 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
2376 | 2376 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
2377 | 2377 | data_ele = numpy.hstack((data_ele,ele2)) |
|
2378 | 2378 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
2379 | 2379 | |
|
2380 | 2380 | self.data_ele_tmp[val_ch] = data_ele_old |
|
2381 | 2381 | self.res_ele = data_ele |
|
2382 | 2382 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
2383 | 2383 | data_ele = self.res_ele |
|
2384 | 2384 | data_weather = self.res_weather[val_ch] |
|
2385 | 2385 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
2386 | 2386 | return data_weather,data_ele |
|
2387 | 2387 | |
|
2388 | 2388 | def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min): |
|
2389 | 2389 | |
|
2390 | 2390 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1) |
|
2391 | 2391 | |
|
2392 | 2392 | data_ele = data_ele_old.copy() |
|
2393 | 2393 | |
|
2394 | 2394 | diff_1 = ang_max - data_ele[0] |
|
2395 | 2395 | angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan |
|
2396 | 2396 | |
|
2397 | 2397 | diff_2 = data_ele[-1]-ang_min |
|
2398 | 2398 | angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan |
|
2399 | 2399 | |
|
2400 | 2400 | angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan)) |
|
2401 | 2401 | |
|
2402 | 2402 | print(angles_filled) |
|
2403 | 2403 | |
|
2404 | 2404 | data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan |
|
2405 | 2405 | data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan |
|
2406 | 2406 | |
|
2407 | 2407 | data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0) |
|
2408 | 2408 | #val_mean = numpy.mean(data_weather[:,-1]) |
|
2409 | 2409 | #self.val_mean = val_mean |
|
2410 | 2410 | print(data_filled) |
|
2411 | 2411 | data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan) |
|
2412 | 2412 | |
|
2413 | 2413 | print(data_filled) |
|
2414 | 2414 | print(data_filled.shape) |
|
2415 | 2415 | print(angles_filled.shape) |
|
2416 | 2416 | |
|
2417 | 2417 | return data_filled,angles_filled |
|
2418 | 2418 | |
|
2419 | 2419 | def plot(self): |
|
2420 | 2420 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
2421 | 2421 | data = self.data[-1] |
|
2422 | 2422 | r = self.data.yrange |
|
2423 | 2423 | delta_height = r[1]-r[0] |
|
2424 | 2424 | r_mask = numpy.where(r>=0)[0] |
|
2425 | 2425 | self.r_mask =r_mask |
|
2426 | 2426 | ##print("delta_height",delta_height) |
|
2427 | 2427 | #print("r_mask",r_mask,len(r_mask)) |
|
2428 | 2428 | r = numpy.arange(len(r_mask))*delta_height |
|
2429 | 2429 | self.y = 2*r |
|
2430 | 2430 | res = 1 |
|
2431 | 2431 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
2432 | 2432 | ang_max = self.ang_max |
|
2433 | 2433 | ang_min = self.ang_min |
|
2434 | 2434 | var_ang =ang_max - ang_min |
|
2435 | 2435 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
2436 | 2436 | ###print("step",step) |
|
2437 | 2437 | #-------------------------------------------------------- |
|
2438 | 2438 | ##print('weather',data['weather'].shape) |
|
2439 | 2439 | ##print('ele',data['ele'].shape) |
|
2440 | 2440 | |
|
2441 | 2441 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
2442 | 2442 | ###self.res_azi = numpy.mean(data['azi']) |
|
2443 | 2443 | ###print("self.res_ele",self.res_ele) |
|
2444 | 2444 | |
|
2445 | 2445 | plt.clf() |
|
2446 | 2446 | subplots = [121, 122] |
|
2447 | 2447 | #if self.ini==0: |
|
2448 | 2448 | #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
2449 | 2449 | #print("SHAPE",self.data_ele_tmp.shape) |
|
2450 | 2450 | |
|
2451 | 2451 | for i,ax in enumerate(self.axes): |
|
2452 | 2452 | res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min) |
|
2453 | 2453 | self.res_azi = numpy.mean(data['azi']) |
|
2454 | 2454 | |
|
2455 | 2455 | if ax.firsttime: |
|
2456 | 2456 | #plt.clf() |
|
2457 | 2457 | print("Frist Plot") |
|
2458 | 2458 | print(data['weather'][i][:,r_mask].shape) |
|
2459 | 2459 | print(data['ele'].shape) |
|
2460 | 2460 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
2461 | 2461 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
2462 | 2462 | gh = cgax.get_grid_helper() |
|
2463 | 2463 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) |
|
2464 | 2464 | gh.grid_finder.grid_locator1 = FixedLocator(locs) |
|
2465 | 2465 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) |
|
2466 | 2466 | |
|
2467 | 2467 | |
|
2468 | 2468 | #fig=self.figures[0] |
|
2469 | 2469 | else: |
|
2470 | 2470 | #plt.clf() |
|
2471 | 2471 | print("ELSE PLOT") |
|
2472 | 2472 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
2473 | 2473 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
2474 | 2474 | gh = cgax.get_grid_helper() |
|
2475 | 2475 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) |
|
2476 | 2476 | gh.grid_finder.grid_locator1 = FixedLocator(locs) |
|
2477 | 2477 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) |
|
2478 | 2478 | |
|
2479 | 2479 | caax = cgax.parasites[0] |
|
2480 | 2480 | paax = cgax.parasites[1] |
|
2481 | 2481 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
2482 | 2482 | caax.set_xlabel('x_range [km]') |
|
2483 | 2483 | caax.set_ylabel('y_range [km]') |
|
2484 | 2484 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
2485 | 2485 | print("***************************self.ini****************************",self.ini) |
|
2486 | 2486 | self.ini= self.ini+1 |
|
2487 | 2487 | |
|
2488 | 2488 | class WeatherRHI_vRF4_Plot(Plot): |
|
2489 | 2489 | CODE = 'RHI' |
|
2490 | 2490 | plot_name = 'RHI' |
|
2491 | 2491 | #plot_type = 'rhistyle' |
|
2492 | 2492 | buffering = False |
|
2493 | 2493 | |
|
2494 | 2494 | def setup(self): |
|
2495 | 2495 | |
|
2496 | 2496 | self.ncols = 1 |
|
2497 | 2497 | self.nrows = 1 |
|
2498 | 2498 | self.nplots= 1 |
|
2499 | 2499 | self.ylabel= 'Range [Km]' |
|
2500 | 2500 | self.titles= ['RHI'] |
|
2501 | 2501 | self.polar = True |
|
2502 | self.grid = True | |
|
2502 | 2503 | if self.channels is not None: |
|
2503 | 2504 | self.nplots = len(self.channels) |
|
2504 | 2505 | self.nrows = len(self.channels) |
|
2505 | 2506 | else: |
|
2506 | 2507 | self.nplots = self.data.shape(self.CODE)[0] |
|
2507 | 2508 | self.nrows = self.nplots |
|
2508 | 2509 | self.channels = list(range(self.nplots)) |
|
2509 | 2510 | |
|
2510 | 2511 | if self.CODE == 'Power': |
|
2511 | 2512 | self.cb_label = r'Power (dB)' |
|
2512 | 2513 | elif self.CODE == 'Doppler': |
|
2513 | 2514 | self.cb_label = r'Velocity (m/s)' |
|
2514 | 2515 | self.colorbar=True |
|
2515 | 2516 | self.width =8 |
|
2516 | 2517 | self.height =8 |
|
2517 | 2518 | self.ini =0 |
|
2518 | 2519 | self.len_azi =0 |
|
2519 | 2520 | self.buffer_ini = None |
|
2520 | 2521 | self.buffer_ele = None |
|
2521 | 2522 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
2522 | 2523 | self.flag =0 |
|
2523 | 2524 | self.indicador= 0 |
|
2524 | 2525 | self.last_data_ele = None |
|
2525 | 2526 | self.val_mean = None |
|
2526 | 2527 | |
|
2527 | 2528 | def update(self, dataOut): |
|
2528 | 2529 | |
|
2529 | 2530 | data = {} |
|
2530 | 2531 | meta = {} |
|
2531 | 2532 | if hasattr(dataOut, 'dataPP_POWER'): |
|
2532 | 2533 | factor = 1 |
|
2533 | 2534 | if hasattr(dataOut, 'nFFTPoints'): |
|
2534 | 2535 | factor = dataOut.normFactor |
|
2535 | 2536 | |
|
2536 | 2537 | if 'pow' in self.attr_data[0].lower(): |
|
2537 | 2538 | data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) |
|
2538 | 2539 | else: |
|
2539 | 2540 | data['data'] = getattr(dataOut, self.attr_data[0])/(factor) |
|
2540 | 2541 | |
|
2541 | 2542 | data['azi'] = dataOut.data_azi |
|
2542 | 2543 | data['ele'] = dataOut.data_ele |
|
2543 | 2544 | |
|
2544 | 2545 | return data, meta |
|
2545 | 2546 | |
|
2546 | 2547 | def plot(self): |
|
2547 | 2548 | data = self.data[-1] |
|
2548 | 2549 | r = self.data.yrange |
|
2549 | 2550 | delta_height = r[1]-r[0] |
|
2550 | 2551 | r_mask = numpy.where(r>=0)[0] |
|
2551 | 2552 | self.r_mask =r_mask |
|
2552 | 2553 | r = numpy.arange(len(r_mask))*delta_height |
|
2553 | 2554 | self.y = 2*r |
|
2554 | 2555 | res = 1 |
|
2555 | ang_max = self.ang_max | |
|
2556 | ang_min = self.ang_min | |
|
2557 | var_ang =ang_max - ang_min | |
|
2558 | step = (int(var_ang)/(res*data['data'].shape[0])) | |
|
2556 | #ang_max = self.ang_max | |
|
2557 | #ang_min = self.ang_min | |
|
2558 | #var_ang =ang_max - ang_min | |
|
2559 | #step = (int(var_ang)/(res*data['data'].shape[0])) | |
|
2559 | 2560 | |
|
2560 | 2561 | z = data['data'][self.channels[0]][:,r_mask] |
|
2561 | 2562 | |
|
2562 | 2563 | self.titles = [] |
|
2563 | 2564 | |
|
2564 | 2565 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
2565 | 2566 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
2566 | 2567 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
2567 | 2568 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
2568 | 2569 | self.ang_min = self.ang_min if self.ang_min else 0 |
|
2569 |
self.ang_max = self.ang_max if self.ang_max else |
|
|
2570 | self.ang_max = self.ang_max if self.ang_max else 90 | |
|
2570 | 2571 | |
|
2571 | 2572 | subplots = [121, 122] |
|
2572 | 2573 | |
|
2573 | 2574 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) ) |
|
2574 | 2575 | |
|
2575 | 2576 | for i,ax in enumerate(self.axes): |
|
2576 | 2577 | |
|
2577 | 2578 | if ax.firsttime: |
|
2578 | 2579 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
2579 | 2580 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
2580 | 2581 | |
|
2581 | 2582 | else: |
|
2582 | 2583 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
2583 | 2584 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
2584 | 2585 | |
|
2585 | 2586 | if len(self.channels) !=1: |
|
2586 | 2587 | self.titles = ['RHI {} AZ: {} Channel {}'.format(self.labels[x], str(round(numpy.mean(data['azi']),1)), x) for x in range(self.nrows)] |
|
2587 | 2588 | else: |
|
2588 | 2589 | self.titles = ['RHI {} AZ: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['azi']),1)), self.channels[0])] |
@@ -1,838 +1,834 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 3, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | # SUBCHANNELS EN VEZ DE CHANNELS |
|
7 | 7 | # BENCHMARKS -> PROBLEMAS CON ARCHIVOS GRANDES -> INCONSTANTE EN EL TIEMPO |
|
8 | 8 | # ACTUALIZACION DE VERSION |
|
9 | 9 | # HEADERS |
|
10 | 10 | # MODULO DE ESCRITURA |
|
11 | 11 | # METADATA |
|
12 | 12 | |
|
13 | 13 | import os |
|
14 | 14 | import time |
|
15 | 15 | import datetime |
|
16 | 16 | import numpy |
|
17 | 17 | import timeit |
|
18 | 18 | from fractions import Fraction |
|
19 | 19 | from time import time |
|
20 | 20 | from time import sleep |
|
21 | 21 | |
|
22 | 22 | import schainpy.admin |
|
23 | 23 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader |
|
24 | 24 | from schainpy.model.data.jrodata import Voltage |
|
25 | 25 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
26 | 26 | |
|
27 | 27 | import pickle |
|
28 | 28 | try: |
|
29 | 29 | import digital_rf |
|
30 | 30 | except: |
|
31 | 31 | pass |
|
32 | 32 | |
|
33 | 33 | |
|
34 | 34 | class DigitalRFReader(ProcessingUnit): |
|
35 | 35 | ''' |
|
36 | 36 | classdocs |
|
37 | 37 | ''' |
|
38 | 38 | |
|
39 | 39 | def __init__(self): |
|
40 | 40 | ''' |
|
41 | 41 | Constructor |
|
42 | 42 | ''' |
|
43 | 43 | |
|
44 | 44 | ProcessingUnit.__init__(self) |
|
45 | 45 | |
|
46 | 46 | self.dataOut = Voltage() |
|
47 | 47 | self.__printInfo = True |
|
48 | 48 | self.__flagDiscontinuousBlock = False |
|
49 | 49 | self.__bufferIndex = 9999999 |
|
50 | 50 | self.__codeType = 0 |
|
51 | 51 | self.__ippKm = None |
|
52 | 52 | self.__nCode = None |
|
53 | 53 | self.__nBaud = None |
|
54 | 54 | self.__code = None |
|
55 | 55 | self.dtype = None |
|
56 | 56 | self.oldAverage = None |
|
57 | 57 | self.path = None |
|
58 | 58 | |
|
59 | 59 | def close(self): |
|
60 | 60 | print('Average of writing to digital rf format is ', self.oldAverage * 1000) |
|
61 | 61 | return |
|
62 | 62 | |
|
63 | 63 | def __getCurrentSecond(self): |
|
64 | 64 | |
|
65 | 65 | return self.__thisUnixSample / self.__sample_rate |
|
66 | 66 | |
|
67 | 67 | thisSecond = property(__getCurrentSecond, "I'm the 'thisSecond' property.") |
|
68 | 68 | |
|
69 | 69 | def __setFileHeader(self): |
|
70 | 70 | ''' |
|
71 | 71 | In this method will be initialized every parameter of dataOut object (header, no data) |
|
72 | 72 | ''' |
|
73 | 73 | ippSeconds = 1.0 * self.__nSamples / self.__sample_rate |
|
74 | 74 | if not self.getByBlock: |
|
75 | 75 | nProfiles = 1.0 / ippSeconds # Number of profiles in one second |
|
76 | 76 | else: |
|
77 | 77 | nProfiles = self.nProfileBlocks # Number of profiles in one block |
|
78 | 78 | |
|
79 | 79 | try: |
|
80 | 80 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( |
|
81 | 81 | self.__radarControllerHeader) |
|
82 | 82 | except: |
|
83 | 83 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( |
|
84 | 84 | txA=0, |
|
85 | 85 | txB=0, |
|
86 | 86 | nWindows=1, |
|
87 | 87 | nHeights=self.__nSamples, |
|
88 | 88 | firstHeight=self.__firstHeigth, |
|
89 | 89 | deltaHeight=self.__deltaHeigth, |
|
90 | 90 | codeType=self.__codeType, |
|
91 | 91 | nCode=self.__nCode, nBaud=self.__nBaud, |
|
92 | 92 | code=self.__code) |
|
93 | 93 | |
|
94 | 94 | try: |
|
95 | 95 | self.dataOut.systemHeaderObj = SystemHeader(self.__systemHeader) |
|
96 | 96 | except: |
|
97 | 97 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
98 | 98 | nProfiles=nProfiles, |
|
99 | 99 | nChannels=len( |
|
100 | 100 | self.__channelList), |
|
101 | 101 | adcResolution=14) |
|
102 | 102 | self.dataOut.type = "Voltage" |
|
103 | 103 | |
|
104 | 104 | self.dataOut.data = None |
|
105 | 105 | |
|
106 | 106 | self.dataOut.dtype = self.dtype |
|
107 | 107 | |
|
108 | 108 | # self.dataOut.nChannels = 0 |
|
109 | 109 | |
|
110 | 110 | # self.dataOut.nHeights = 0 |
|
111 | 111 | |
|
112 | 112 | self.dataOut.nProfiles = int(nProfiles) |
|
113 | 113 | |
|
114 | 114 | self.dataOut.heightList = self.__firstHeigth + \ |
|
115 | 115 | numpy.arange(self.__nSamples, dtype=numpy.float) * \ |
|
116 | 116 | self.__deltaHeigth |
|
117 | 117 | |
|
118 | 118 | #self.dataOut.channelList = list(range(self.__num_subchannels)) |
|
119 | 119 | self.dataOut.channelList = list(range(len(self.__channelList))) |
|
120 | 120 | if not self.getByBlock: |
|
121 | 121 | |
|
122 | 122 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
123 | 123 | else: |
|
124 | 124 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights*self.nProfileBlocks |
|
125 | 125 | |
|
126 | 126 | # self.dataOut.channelIndexList = None |
|
127 | 127 | |
|
128 | 128 | self.dataOut.flagNoData = True |
|
129 | 129 | if not self.getByBlock: |
|
130 | 130 | self.dataOut.flagDataAsBlock = False |
|
131 | 131 | else: |
|
132 | 132 | self.dataOut.flagDataAsBlock = True |
|
133 | 133 | # Set to TRUE if the data is discontinuous |
|
134 | 134 | self.dataOut.flagDiscontinuousBlock = False |
|
135 | 135 | |
|
136 | 136 | self.dataOut.utctime = None |
|
137 | 137 | |
|
138 | 138 | # timezone like jroheader, difference in minutes between UTC and localtime |
|
139 | 139 | self.dataOut.timeZone = self.__timezone / 60 |
|
140 | 140 | |
|
141 | 141 | self.dataOut.dstFlag = 0 |
|
142 | 142 | |
|
143 | 143 | self.dataOut.errorCount = 0 |
|
144 | 144 | |
|
145 | 145 | try: |
|
146 | 146 | self.dataOut.nCohInt = self.fixed_metadata_dict.get( |
|
147 | 147 | 'nCohInt', self.nCohInt) |
|
148 | 148 | |
|
149 | 149 | # asumo que la data esta decodificada |
|
150 | 150 | self.dataOut.flagDecodeData = self.fixed_metadata_dict.get( |
|
151 | 151 | 'flagDecodeData', self.flagDecodeData) |
|
152 | 152 | |
|
153 | 153 | # asumo que la data esta sin flip |
|
154 | 154 | self.dataOut.flagDeflipData = self.fixed_metadata_dict['flagDeflipData'] |
|
155 | 155 | |
|
156 | 156 | self.dataOut.flagShiftFFT = self.fixed_metadata_dict['flagShiftFFT'] |
|
157 | 157 | |
|
158 | 158 | self.dataOut.useLocalTime = self.fixed_metadata_dict['useLocalTime'] |
|
159 | 159 | except: |
|
160 | 160 | pass |
|
161 | 161 | |
|
162 | 162 | self.dataOut.ippSeconds = ippSeconds |
|
163 | 163 | |
|
164 | 164 | # Time interval between profiles |
|
165 | 165 | # self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt |
|
166 | 166 | |
|
167 | 167 | self.dataOut.frequency = self.__frequency |
|
168 | 168 | |
|
169 | 169 | self.dataOut.realtime = self.__online |
|
170 | 170 | |
|
171 | 171 | def findDatafiles(self, path, startDate=None, endDate=None): |
|
172 | 172 | |
|
173 | 173 | if not os.path.isdir(path): |
|
174 | 174 | return [] |
|
175 | 175 | |
|
176 | 176 | try: |
|
177 | 177 | digitalReadObj = digital_rf.DigitalRFReader( |
|
178 | 178 | path, load_all_metadata=True) |
|
179 | 179 | except: |
|
180 | 180 | digitalReadObj = digital_rf.DigitalRFReader(path) |
|
181 | 181 | |
|
182 | 182 | channelNameList = digitalReadObj.get_channels() |
|
183 | 183 | |
|
184 | 184 | if not channelNameList: |
|
185 | 185 | return [] |
|
186 | 186 | |
|
187 | 187 | metadata_dict = digitalReadObj.get_rf_file_metadata(channelNameList[0]) |
|
188 | 188 | |
|
189 | 189 | sample_rate = metadata_dict['sample_rate'][0] |
|
190 | 190 | |
|
191 | 191 | this_metadata_file = digitalReadObj.get_metadata(channelNameList[0]) |
|
192 | 192 | |
|
193 | 193 | try: |
|
194 | 194 | timezone = this_metadata_file['timezone'].value |
|
195 | 195 | except: |
|
196 | 196 | timezone = 0 |
|
197 | 197 | |
|
198 | 198 | startUTCSecond, endUTCSecond = digitalReadObj.get_bounds( |
|
199 | 199 | channelNameList[0]) / sample_rate - timezone |
|
200 | 200 | |
|
201 | 201 | startDatetime = datetime.datetime.utcfromtimestamp(startUTCSecond) |
|
202 | 202 | endDatatime = datetime.datetime.utcfromtimestamp(endUTCSecond) |
|
203 | 203 | |
|
204 | 204 | if not startDate: |
|
205 | 205 | startDate = startDatetime.date() |
|
206 | 206 | |
|
207 | 207 | if not endDate: |
|
208 | 208 | endDate = endDatatime.date() |
|
209 | 209 | |
|
210 | 210 | dateList = [] |
|
211 | 211 | |
|
212 | 212 | thisDatetime = startDatetime |
|
213 | 213 | |
|
214 | 214 | while(thisDatetime <= endDatatime): |
|
215 | 215 | |
|
216 | 216 | thisDate = thisDatetime.date() |
|
217 | 217 | |
|
218 | 218 | if thisDate < startDate: |
|
219 | 219 | continue |
|
220 | 220 | |
|
221 | 221 | if thisDate > endDate: |
|
222 | 222 | break |
|
223 | 223 | |
|
224 | 224 | dateList.append(thisDate) |
|
225 | 225 | thisDatetime += datetime.timedelta(1) |
|
226 | 226 | |
|
227 | 227 | return dateList |
|
228 | 228 | |
|
229 | 229 | def setup(self, path=None, |
|
230 | 230 | startDate=None, |
|
231 | 231 | endDate=None, |
|
232 | 232 | startTime=datetime.time(0, 0, 0), |
|
233 | 233 | endTime=datetime.time(23, 59, 59), |
|
234 | 234 | channelList=None, |
|
235 | 235 | nSamples=None, |
|
236 | 236 | online=False, |
|
237 | 237 | delay=60, |
|
238 | 238 | buffer_size=1024, |
|
239 | 239 | ippKm=None, |
|
240 | 240 | nCohInt=1, |
|
241 | 241 | nCode=1, |
|
242 | 242 | nBaud=1, |
|
243 | 243 | flagDecodeData=False, |
|
244 | 244 | code=numpy.ones((1, 1), dtype=numpy.int), |
|
245 | 245 | getByBlock=0, |
|
246 | 246 | nProfileBlocks=1, |
|
247 | 247 | **kwargs): |
|
248 | 248 | ''' |
|
249 | 249 | In this method we should set all initial parameters. |
|
250 | 250 | |
|
251 | 251 | Inputs: |
|
252 | 252 | path |
|
253 | 253 | startDate |
|
254 | 254 | endDate |
|
255 | 255 | startTime |
|
256 | 256 | endTime |
|
257 | 257 | set |
|
258 | 258 | expLabel |
|
259 | 259 | ext |
|
260 | 260 | online |
|
261 | 261 | delay |
|
262 | 262 | ''' |
|
263 | 263 | self.path = path |
|
264 | 264 | self.nCohInt = nCohInt |
|
265 | 265 | self.flagDecodeData = flagDecodeData |
|
266 | 266 | self.i = 0 |
|
267 | 267 | |
|
268 | 268 | self.getByBlock = getByBlock |
|
269 | 269 | self.nProfileBlocks = nProfileBlocks |
|
270 | 270 | if not os.path.isdir(path): |
|
271 | 271 | raise ValueError("[Reading] Directory %s does not exist" % path) |
|
272 | 272 | |
|
273 | 273 | try: |
|
274 | 274 | self.digitalReadObj = digital_rf.DigitalRFReader( |
|
275 | 275 | path, load_all_metadata=True) |
|
276 | 276 | except: |
|
277 | 277 | self.digitalReadObj = digital_rf.DigitalRFReader(path) |
|
278 | 278 | |
|
279 | 279 | channelNameList = self.digitalReadObj.get_channels() |
|
280 | 280 | |
|
281 | 281 | if not channelNameList: |
|
282 | 282 | raise ValueError("[Reading] Directory %s does not have any files" % path) |
|
283 | 283 | |
|
284 | 284 | if not channelList: |
|
285 | 285 | channelList = list(range(len(channelNameList))) |
|
286 | 286 | |
|
287 | 287 | ########## Reading metadata ###################### |
|
288 | 288 | |
|
289 | 289 | top_properties = self.digitalReadObj.get_properties( |
|
290 | 290 | channelNameList[channelList[0]]) |
|
291 | 291 | |
|
292 | 292 | self.__num_subchannels = top_properties['num_subchannels'] |
|
293 | 293 | self.__sample_rate = 1.0 * \ |
|
294 | 294 | top_properties['sample_rate_numerator'] / \ |
|
295 | 295 | top_properties['sample_rate_denominator'] |
|
296 | 296 | # self.__samples_per_file = top_properties['samples_per_file'][0] |
|
297 | 297 | self.__deltaHeigth = 1e6 * 0.15 / self.__sample_rate # why 0.15? |
|
298 | 298 | |
|
299 | 299 | this_metadata_file = self.digitalReadObj.get_digital_metadata( |
|
300 | 300 | channelNameList[channelList[0]]) |
|
301 | 301 | metadata_bounds = this_metadata_file.get_bounds() |
|
302 | 302 | self.fixed_metadata_dict = this_metadata_file.read( |
|
303 | 303 | metadata_bounds[0])[metadata_bounds[0]] # GET FIRST HEADER |
|
304 | 304 | |
|
305 | 305 | try: |
|
306 | 306 | self.__processingHeader = self.fixed_metadata_dict['processingHeader'] |
|
307 | 307 | self.__radarControllerHeader = self.fixed_metadata_dict['radarControllerHeader'] |
|
308 | 308 | self.__systemHeader = self.fixed_metadata_dict['systemHeader'] |
|
309 | 309 | self.dtype = pickle.loads(self.fixed_metadata_dict['dtype']) |
|
310 | 310 | except: |
|
311 | 311 | pass |
|
312 | 312 | |
|
313 | 313 | self.__frequency = None |
|
314 | 314 | |
|
315 | 315 | self.__frequency = self.fixed_metadata_dict.get('frequency', 1) |
|
316 | 316 | |
|
317 | 317 | self.__timezone = self.fixed_metadata_dict.get('timezone', 18000) |
|
318 | 318 | |
|
319 | 319 | try: |
|
320 | 320 | nSamples = self.fixed_metadata_dict['nSamples'] |
|
321 | 321 | except: |
|
322 | 322 | nSamples = None |
|
323 | 323 | |
|
324 | 324 | self.__firstHeigth = 0 |
|
325 | 325 | |
|
326 | 326 | try: |
|
327 | 327 | codeType = self.__radarControllerHeader['codeType'] |
|
328 | 328 | except: |
|
329 | 329 | codeType = 0 |
|
330 | 330 | |
|
331 | 331 | try: |
|
332 | 332 | if codeType: |
|
333 | 333 | nCode = self.__radarControllerHeader['nCode'] |
|
334 | 334 | nBaud = self.__radarControllerHeader['nBaud'] |
|
335 | 335 | code = self.__radarControllerHeader['code'] |
|
336 | 336 | except: |
|
337 | 337 | pass |
|
338 | 338 | |
|
339 | 339 | if not ippKm: |
|
340 | 340 | try: |
|
341 | 341 | # seconds to km |
|
342 | 342 | ippKm = self.__radarControllerHeader['ipp'] |
|
343 | 343 | except: |
|
344 | 344 | ippKm = None |
|
345 | 345 | #################################################### |
|
346 | 346 | self.__ippKm = ippKm |
|
347 | 347 | startUTCSecond = None |
|
348 | 348 | endUTCSecond = None |
|
349 | 349 | |
|
350 | 350 | if startDate: |
|
351 | 351 | startDatetime = datetime.datetime.combine(startDate, startTime) |
|
352 | 352 | startUTCSecond = ( |
|
353 | 353 | startDatetime - datetime.datetime(1970, 1, 1)).total_seconds() + self.__timezone |
|
354 | 354 | |
|
355 | 355 | if endDate: |
|
356 | 356 | endDatetime = datetime.datetime.combine(endDate, endTime) |
|
357 | 357 | endUTCSecond = (endDatetime - datetime.datetime(1970, |
|
358 | 358 | 1, 1)).total_seconds() + self.__timezone |
|
359 | 359 | |
|
360 | 360 | |
|
361 | print(startUTCSecond,endUTCSecond) | |
|
361 | #print(startUTCSecond,endUTCSecond) | |
|
362 | 362 | start_index, end_index = self.digitalReadObj.get_bounds( |
|
363 | 363 | channelNameList[channelList[0]]) |
|
364 | 364 | |
|
365 | print("*****",start_index,end_index) | |
|
366 | print(metadata_bounds) | |
|
365 | #print("*****",start_index,end_index) | |
|
367 | 366 | if not startUTCSecond: |
|
368 | 367 | startUTCSecond = start_index / self.__sample_rate |
|
369 | 368 | |
|
370 | 369 | if start_index > startUTCSecond * self.__sample_rate: |
|
371 | 370 | startUTCSecond = start_index / self.__sample_rate |
|
372 | 371 | |
|
373 | 372 | if not endUTCSecond: |
|
374 | 373 | endUTCSecond = end_index / self.__sample_rate |
|
375 | print("1",endUTCSecond) | |
|
376 | print(self.__sample_rate) | |
|
377 | 374 | if end_index < endUTCSecond * self.__sample_rate: |
|
378 | 375 | endUTCSecond = end_index / self.__sample_rate #Check UTC and LT time |
|
379 | print("2",endUTCSecond) | |
|
380 | 376 | if not nSamples: |
|
381 | 377 | if not ippKm: |
|
382 | 378 | raise ValueError("[Reading] nSamples or ippKm should be defined") |
|
383 | 379 | nSamples = int(ippKm / (1e6 * 0.15 / self.__sample_rate)) |
|
384 | 380 | |
|
385 | 381 | channelBoundList = [] |
|
386 | 382 | channelNameListFiltered = [] |
|
387 | 383 | |
|
388 | 384 | for thisIndexChannel in channelList: |
|
389 | 385 | thisChannelName = channelNameList[thisIndexChannel] |
|
390 | 386 | start_index, end_index = self.digitalReadObj.get_bounds( |
|
391 | 387 | thisChannelName) |
|
392 | 388 | channelBoundList.append((start_index, end_index)) |
|
393 | 389 | channelNameListFiltered.append(thisChannelName) |
|
394 | 390 | |
|
395 | 391 | self.profileIndex = 0 |
|
396 | 392 | self.i = 0 |
|
397 | 393 | self.__delay = delay |
|
398 | 394 | |
|
399 | 395 | self.__codeType = codeType |
|
400 | 396 | self.__nCode = nCode |
|
401 | 397 | self.__nBaud = nBaud |
|
402 | 398 | self.__code = code |
|
403 | 399 | |
|
404 | 400 | self.__datapath = path |
|
405 | 401 | self.__online = online |
|
406 | 402 | self.__channelList = channelList |
|
407 | 403 | self.__channelNameList = channelNameListFiltered |
|
408 | 404 | self.__channelBoundList = channelBoundList |
|
409 | 405 | self.__nSamples = nSamples |
|
410 | 406 | if self.getByBlock: |
|
411 | 407 | nSamples = nSamples*nProfileBlocks |
|
412 | 408 | |
|
413 | 409 | |
|
414 | 410 | self.__samples_to_read = int(nSamples) # FIJO: AHORA 40 |
|
415 | 411 | self.__nChannels = len(self.__channelList) |
|
416 | 412 | #print("------------------------------------------") |
|
417 | 413 | #print("self.__samples_to_read",self.__samples_to_read) |
|
418 | 414 | #print("self.__nSamples",self.__nSamples) |
|
419 | 415 | # son iguales y el buffer_index da 0 |
|
420 | 416 | self.__startUTCSecond = startUTCSecond |
|
421 | 417 | self.__endUTCSecond = endUTCSecond |
|
422 | 418 | |
|
423 | 419 | self.__timeInterval = 1.0 * self.__samples_to_read / \ |
|
424 | 420 | self.__sample_rate # Time interval |
|
425 | 421 | |
|
426 | 422 | if online: |
|
427 | 423 | # self.__thisUnixSample = int(endUTCSecond*self.__sample_rate - 4*self.__samples_to_read) |
|
428 | 424 | startUTCSecond = numpy.floor(endUTCSecond) |
|
429 | 425 | |
|
430 | 426 | # por que en el otro metodo lo primero q se hace es sumar samplestoread |
|
431 | 427 | self.__thisUnixSample = int(startUTCSecond * self.__sample_rate) - self.__samples_to_read |
|
432 | 428 | |
|
433 | 429 | #self.__data_buffer = numpy.zeros( |
|
434 | 430 | # (self.__num_subchannels, self.__samples_to_read), dtype=numpy.complex) |
|
435 | 431 | self.__data_buffer = numpy.zeros((int(len(channelList)), self.__samples_to_read), dtype=numpy.complex) |
|
436 | 432 | |
|
437 | 433 | |
|
438 | 434 | self.__setFileHeader() |
|
439 | 435 | self.isConfig = True |
|
440 | 436 | |
|
441 | 437 | print("[Reading] Digital RF Data was found from %s to %s " % ( |
|
442 | 438 | datetime.datetime.utcfromtimestamp( |
|
443 | 439 | self.__startUTCSecond - self.__timezone), |
|
444 | 440 | datetime.datetime.utcfromtimestamp( |
|
445 | 441 | self.__endUTCSecond - self.__timezone) |
|
446 | 442 | )) |
|
447 | 443 | |
|
448 | 444 | print("[Reading] Starting process from %s to %s" % (datetime.datetime.utcfromtimestamp(startUTCSecond - self.__timezone), |
|
449 | 445 | datetime.datetime.utcfromtimestamp( |
|
450 | 446 | endUTCSecond - self.__timezone) |
|
451 | 447 | )) |
|
452 | 448 | self.oldAverage = None |
|
453 | 449 | self.count = 0 |
|
454 | 450 | self.executionTime = 0 |
|
455 | 451 | |
|
456 | 452 | def __reload(self): |
|
457 | 453 | |
|
458 | 454 | # print "%s not in range [%s, %s]" %( |
|
459 | 455 | # datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
460 | 456 | # datetime.datetime.utcfromtimestamp(self.__startUTCSecond - self.__timezone), |
|
461 | 457 | # datetime.datetime.utcfromtimestamp(self.__endUTCSecond - self.__timezone) |
|
462 | 458 | # ) |
|
463 | 459 | print("[Reading] reloading metadata ...") |
|
464 | 460 | |
|
465 | 461 | try: |
|
466 | 462 | self.digitalReadObj.reload(complete_update=True) |
|
467 | 463 | except: |
|
468 | 464 | self.digitalReadObj = digital_rf.DigitalRFReader(self.path) |
|
469 | 465 | |
|
470 | 466 | start_index, end_index = self.digitalReadObj.get_bounds( |
|
471 | 467 | self.__channelNameList[self.__channelList[0]]) |
|
472 | 468 | |
|
473 | 469 | if start_index > self.__startUTCSecond * self.__sample_rate: |
|
474 | 470 | self.__startUTCSecond = 1.0 * start_index / self.__sample_rate |
|
475 | 471 | |
|
476 | 472 | if end_index > self.__endUTCSecond * self.__sample_rate: |
|
477 | 473 | self.__endUTCSecond = 1.0 * end_index / self.__sample_rate |
|
478 | 474 | print() |
|
479 | 475 | print("[Reading] New timerange found [%s, %s] " % ( |
|
480 | 476 | datetime.datetime.utcfromtimestamp( |
|
481 | 477 | self.__startUTCSecond - self.__timezone), |
|
482 | 478 | datetime.datetime.utcfromtimestamp( |
|
483 | 479 | self.__endUTCSecond - self.__timezone) |
|
484 | 480 | )) |
|
485 | 481 | |
|
486 | 482 | return True |
|
487 | 483 | |
|
488 | 484 | return False |
|
489 | 485 | |
|
490 | 486 | def timeit(self, toExecute): |
|
491 | 487 | t0 = time.time() |
|
492 | 488 | toExecute() |
|
493 | 489 | self.executionTime = time.time() - t0 |
|
494 | 490 | if self.oldAverage is None: |
|
495 | 491 | self.oldAverage = self.executionTime |
|
496 | 492 | self.oldAverage = (self.executionTime + self.count * |
|
497 | 493 | self.oldAverage) / (self.count + 1.0) |
|
498 | 494 | self.count = self.count + 1.0 |
|
499 | 495 | return |
|
500 | 496 | |
|
501 | 497 | def __readNextBlock(self, seconds=30, volt_scale=1): |
|
502 | 498 | ''' |
|
503 | 499 | ''' |
|
504 | 500 | |
|
505 | 501 | # Set the next data |
|
506 | 502 | self.__flagDiscontinuousBlock = False |
|
507 | 503 | self.__thisUnixSample += self.__samples_to_read |
|
508 | 504 | |
|
509 | 505 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: |
|
510 | 506 | print ("[Reading] There are no more data into selected time-range") |
|
511 | 507 | if self.__online: |
|
512 | 508 | sleep(3) |
|
513 | 509 | self.__reload() |
|
514 | 510 | else: |
|
515 | 511 | return False |
|
516 | 512 | |
|
517 | 513 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: |
|
518 | 514 | return False |
|
519 | 515 | self.__thisUnixSample -= self.__samples_to_read |
|
520 | 516 | |
|
521 | 517 | indexChannel = 0 |
|
522 | 518 | |
|
523 | 519 | dataOk = False |
|
524 | 520 | |
|
525 | 521 | for thisChannelName in self.__channelNameList: # TODO VARIOS CHANNELS? |
|
526 | 522 | for indexSubchannel in range(self.__num_subchannels): |
|
527 | 523 | try: |
|
528 | 524 | t0 = time() |
|
529 | 525 | result = self.digitalReadObj.read_vector_c81d(self.__thisUnixSample, |
|
530 | 526 | self.__samples_to_read, |
|
531 | 527 | thisChannelName, sub_channel=indexSubchannel) |
|
532 | 528 | self.executionTime = time() - t0 |
|
533 | 529 | if self.oldAverage is None: |
|
534 | 530 | self.oldAverage = self.executionTime |
|
535 | 531 | self.oldAverage = ( |
|
536 | 532 | self.executionTime + self.count * self.oldAverage) / (self.count + 1.0) |
|
537 | 533 | self.count = self.count + 1.0 |
|
538 | 534 | |
|
539 | 535 | except IOError as e: |
|
540 | 536 | # read next profile |
|
541 | 537 | self.__flagDiscontinuousBlock = True |
|
542 | 538 | print("[Reading] %s" % datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), e) |
|
543 | 539 | break |
|
544 | 540 | |
|
545 | 541 | if result.shape[0] != self.__samples_to_read: |
|
546 | 542 | self.__flagDiscontinuousBlock = True |
|
547 | 543 | print("[Reading] %s: Too few samples were found, just %d/%d samples" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
548 | 544 | result.shape[0], |
|
549 | 545 | self.__samples_to_read)) |
|
550 | 546 | break |
|
551 | 547 | |
|
552 | 548 | self.__data_buffer[indexChannel, :] = result * volt_scale |
|
553 | 549 | indexChannel+=1 |
|
554 | 550 | |
|
555 | 551 | dataOk = True |
|
556 | 552 | |
|
557 | 553 | self.__utctime = self.__thisUnixSample / self.__sample_rate |
|
558 | 554 | |
|
559 | 555 | if not dataOk: |
|
560 | 556 | return False |
|
561 | 557 | |
|
562 | 558 | print("[Reading] %s: %d samples <> %f sec" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
563 | 559 | self.__samples_to_read, |
|
564 | 560 | self.__timeInterval)) |
|
565 | 561 | |
|
566 | 562 | self.__bufferIndex = 0 |
|
567 | 563 | |
|
568 | 564 | return True |
|
569 | 565 | |
|
570 | 566 | def __isBufferEmpty(self): |
|
571 | 567 | |
|
572 | 568 | return self.__bufferIndex > self.__samples_to_read - self.__nSamples # 40960 - 40 |
|
573 | 569 | |
|
574 | 570 | def getData(self, seconds=30, nTries=5): |
|
575 | 571 | ''' |
|
576 | 572 | This method gets the data from files and put the data into the dataOut object |
|
577 | 573 | |
|
578 | 574 | In addition, increase el the buffer counter in one. |
|
579 | 575 | |
|
580 | 576 | Return: |
|
581 | 577 | data : retorna un perfil de voltages (alturas * canales) copiados desde el |
|
582 | 578 | buffer. Si no hay mas archivos a leer retorna None. |
|
583 | 579 | |
|
584 | 580 | Affected: |
|
585 | 581 | self.dataOut |
|
586 | 582 | self.profileIndex |
|
587 | 583 | self.flagDiscontinuousBlock |
|
588 | 584 | self.flagIsNewBlock |
|
589 | 585 | ''' |
|
590 | 586 | #print("getdata") |
|
591 | 587 | err_counter = 0 |
|
592 | 588 | self.dataOut.flagNoData = True |
|
593 | 589 | |
|
594 | 590 | |
|
595 | 591 | if self.__isBufferEmpty(): |
|
596 | 592 | #print("hi") |
|
597 | 593 | self.__flagDiscontinuousBlock = False |
|
598 | 594 | |
|
599 | 595 | while True: |
|
600 | 596 | if self.__readNextBlock(): |
|
601 | 597 | break |
|
602 | 598 | if self.__thisUnixSample > self.__endUTCSecond * self.__sample_rate: |
|
603 | 599 | raise schainpy.admin.SchainError('Error') |
|
604 | 600 | return |
|
605 | 601 | |
|
606 | 602 | if self.__flagDiscontinuousBlock: |
|
607 | 603 | raise schainpy.admin.SchainError('discontinuous block found') |
|
608 | 604 | return |
|
609 | 605 | |
|
610 | 606 | if not self.__online: |
|
611 | 607 | raise schainpy.admin.SchainError('Online?') |
|
612 | 608 | return |
|
613 | 609 | |
|
614 | 610 | err_counter += 1 |
|
615 | 611 | if err_counter > nTries: |
|
616 | 612 | raise schainpy.admin.SchainError('Max retrys reach') |
|
617 | 613 | return |
|
618 | 614 | |
|
619 | 615 | print('[Reading] waiting %d seconds to read a new block' % seconds) |
|
620 | 616 | sleep(seconds) |
|
621 | 617 | |
|
622 | 618 | |
|
623 | 619 | if not self.getByBlock: |
|
624 | 620 | |
|
625 | 621 | #print("self.__bufferIndex",self.__bufferIndex)# este valor siempre es cero aparentemente |
|
626 | 622 | self.dataOut.data = self.__data_buffer[:, self.__bufferIndex:self.__bufferIndex + self.__nSamples] |
|
627 | 623 | self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate |
|
628 | 624 | self.dataOut.flagNoData = False |
|
629 | 625 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock |
|
630 | 626 | self.dataOut.profileIndex = self.profileIndex |
|
631 | 627 | |
|
632 | 628 | self.__bufferIndex += self.__nSamples |
|
633 | 629 | self.profileIndex += 1 |
|
634 | 630 | |
|
635 | 631 | if self.profileIndex == self.dataOut.nProfiles: |
|
636 | 632 | self.profileIndex = 0 |
|
637 | 633 | else: |
|
638 | 634 | # ojo debo anadir el readNextBLock y el __isBufferEmpty( |
|
639 | 635 | self.dataOut.flagNoData = False |
|
640 | 636 | buffer = self.__data_buffer[:,self.__bufferIndex:self.__bufferIndex + self.__samples_to_read] |
|
641 | 637 | buffer = buffer.reshape((self.__nChannels, self.nProfileBlocks, int(self.__samples_to_read/self.nProfileBlocks))) |
|
642 | 638 | self.dataOut.nProfileBlocks = self.nProfileBlocks |
|
643 | 639 | self.dataOut.data = buffer |
|
644 | 640 | self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate |
|
645 | 641 | self.profileIndex += self.__samples_to_read |
|
646 | 642 | self.__bufferIndex += self.__samples_to_read |
|
647 | 643 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock |
|
648 | 644 | return True |
|
649 | 645 | |
|
650 | 646 | |
|
651 | 647 | def printInfo(self): |
|
652 | 648 | ''' |
|
653 | 649 | ''' |
|
654 | 650 | if self.__printInfo == False: |
|
655 | 651 | return |
|
656 | 652 | |
|
657 | 653 | # self.systemHeaderObj.printInfo() |
|
658 | 654 | # self.radarControllerHeaderObj.printInfo() |
|
659 | 655 | |
|
660 | 656 | self.__printInfo = False |
|
661 | 657 | |
|
662 | 658 | def printNumberOfBlock(self): |
|
663 | 659 | ''' |
|
664 | 660 | ''' |
|
665 | 661 | return |
|
666 | 662 | # print self.profileIndex |
|
667 | 663 | |
|
668 | 664 | def run(self, **kwargs): |
|
669 | 665 | ''' |
|
670 | 666 | This method will be called many times so here you should put all your code |
|
671 | 667 | ''' |
|
672 | 668 | |
|
673 | 669 | if not self.isConfig: |
|
674 | 670 | self.setup(**kwargs) |
|
675 | 671 | |
|
676 | 672 | self.getData(seconds=self.__delay) |
|
677 | 673 | |
|
678 | 674 | return |
|
679 | 675 | |
|
680 | 676 | @MPDecorator |
|
681 | 677 | class DigitalRFWriter(Operation): |
|
682 | 678 | ''' |
|
683 | 679 | classdocs |
|
684 | 680 | ''' |
|
685 | 681 | |
|
686 | 682 | def __init__(self, **kwargs): |
|
687 | 683 | ''' |
|
688 | 684 | Constructor |
|
689 | 685 | ''' |
|
690 | 686 | Operation.__init__(self, **kwargs) |
|
691 | 687 | self.metadata_dict = {} |
|
692 | 688 | self.dataOut = None |
|
693 | 689 | self.dtype = None |
|
694 | 690 | self.oldAverage = 0 |
|
695 | 691 | |
|
696 | 692 | def setHeader(self): |
|
697 | 693 | |
|
698 | 694 | self.metadata_dict['frequency'] = self.dataOut.frequency |
|
699 | 695 | self.metadata_dict['timezone'] = self.dataOut.timeZone |
|
700 | 696 | self.metadata_dict['dtype'] = pickle.dumps(self.dataOut.dtype) |
|
701 | 697 | self.metadata_dict['nProfiles'] = self.dataOut.nProfiles |
|
702 | 698 | self.metadata_dict['heightList'] = self.dataOut.heightList |
|
703 | 699 | self.metadata_dict['channelList'] = self.dataOut.channelList |
|
704 | 700 | self.metadata_dict['flagDecodeData'] = self.dataOut.flagDecodeData |
|
705 | 701 | self.metadata_dict['flagDeflipData'] = self.dataOut.flagDeflipData |
|
706 | 702 | self.metadata_dict['flagShiftFFT'] = self.dataOut.flagShiftFFT |
|
707 | 703 | self.metadata_dict['useLocalTime'] = self.dataOut.useLocalTime |
|
708 | 704 | self.metadata_dict['nCohInt'] = self.dataOut.nCohInt |
|
709 | 705 | self.metadata_dict['type'] = self.dataOut.type |
|
710 | 706 | self.metadata_dict['flagDataAsBlock']= getattr( |
|
711 | 707 | self.dataOut, 'flagDataAsBlock', None) # chequear |
|
712 | 708 | |
|
713 | 709 | def setup(self, dataOut, path, frequency, fileCadence, dirCadence, metadataCadence, set=0, metadataFile='metadata', ext='.h5'): |
|
714 | 710 | ''' |
|
715 | 711 | In this method we should set all initial parameters. |
|
716 | 712 | Input: |
|
717 | 713 | dataOut: Input data will also be outputa data |
|
718 | 714 | ''' |
|
719 | 715 | self.setHeader() |
|
720 | 716 | self.__ippSeconds = dataOut.ippSeconds |
|
721 | 717 | self.__deltaH = dataOut.getDeltaH() |
|
722 | 718 | self.__sample_rate = 1e6 * 0.15 / self.__deltaH |
|
723 | 719 | self.__dtype = dataOut.dtype |
|
724 | 720 | if len(dataOut.dtype) == 2: |
|
725 | 721 | self.__dtype = dataOut.dtype[0] |
|
726 | 722 | self.__nSamples = dataOut.systemHeaderObj.nSamples |
|
727 | 723 | self.__nProfiles = dataOut.nProfiles |
|
728 | 724 | |
|
729 | 725 | if self.dataOut.type != 'Voltage': |
|
730 | 726 | raise 'Digital RF cannot be used with this data type' |
|
731 | 727 | self.arr_data = numpy.ones((1, dataOut.nFFTPoints * len( |
|
732 | 728 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) |
|
733 | 729 | else: |
|
734 | 730 | self.arr_data = numpy.ones((self.__nSamples, len( |
|
735 | 731 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) |
|
736 | 732 | |
|
737 | 733 | file_cadence_millisecs = 1000 |
|
738 | 734 | |
|
739 | 735 | sample_rate_fraction = Fraction(self.__sample_rate).limit_denominator() |
|
740 | 736 | sample_rate_numerator = int(sample_rate_fraction.numerator) |
|
741 | 737 | sample_rate_denominator = int(sample_rate_fraction.denominator) |
|
742 | 738 | start_global_index = dataOut.utctime * self.__sample_rate |
|
743 | 739 | |
|
744 | 740 | uuid = 'prueba' |
|
745 | 741 | compression_level = 0 |
|
746 | 742 | checksum = False |
|
747 | 743 | is_complex = True |
|
748 | 744 | num_subchannels = len(dataOut.channelList) |
|
749 | 745 | is_continuous = True |
|
750 | 746 | marching_periods = False |
|
751 | 747 | |
|
752 | 748 | self.digitalWriteObj = digital_rf.DigitalRFWriter(path, self.__dtype, dirCadence, |
|
753 | 749 | fileCadence, start_global_index, |
|
754 | 750 | sample_rate_numerator, sample_rate_denominator, uuid, compression_level, checksum, |
|
755 | 751 | is_complex, num_subchannels, is_continuous, marching_periods) |
|
756 | 752 | metadata_dir = os.path.join(path, 'metadata') |
|
757 | 753 | os.system('mkdir %s' % (metadata_dir)) |
|
758 | 754 | self.digitalMetadataWriteObj = digital_rf.DigitalMetadataWriter(metadata_dir, dirCadence, 1, # 236, file_cadence_millisecs / 1000 |
|
759 | 755 | sample_rate_numerator, sample_rate_denominator, |
|
760 | 756 | metadataFile) |
|
761 | 757 | self.isConfig = True |
|
762 | 758 | self.currentSample = 0 |
|
763 | 759 | self.oldAverage = 0 |
|
764 | 760 | self.count = 0 |
|
765 | 761 | return |
|
766 | 762 | |
|
767 | 763 | def writeMetadata(self): |
|
768 | 764 | start_idx = self.__sample_rate * self.dataOut.utctime |
|
769 | 765 | |
|
770 | 766 | self.metadata_dict['processingHeader'] = self.dataOut.processingHeaderObj.getAsDict( |
|
771 | 767 | ) |
|
772 | 768 | self.metadata_dict['radarControllerHeader'] = self.dataOut.radarControllerHeaderObj.getAsDict( |
|
773 | 769 | ) |
|
774 | 770 | self.metadata_dict['systemHeader'] = self.dataOut.systemHeaderObj.getAsDict( |
|
775 | 771 | ) |
|
776 | 772 | self.digitalMetadataWriteObj.write(start_idx, self.metadata_dict) |
|
777 | 773 | return |
|
778 | 774 | |
|
779 | 775 | def timeit(self, toExecute): |
|
780 | 776 | t0 = time() |
|
781 | 777 | toExecute() |
|
782 | 778 | self.executionTime = time() - t0 |
|
783 | 779 | if self.oldAverage is None: |
|
784 | 780 | self.oldAverage = self.executionTime |
|
785 | 781 | self.oldAverage = (self.executionTime + self.count * |
|
786 | 782 | self.oldAverage) / (self.count + 1.0) |
|
787 | 783 | self.count = self.count + 1.0 |
|
788 | 784 | return |
|
789 | 785 | |
|
790 | 786 | def writeData(self): |
|
791 | 787 | if self.dataOut.type != 'Voltage': |
|
792 | 788 | raise 'Digital RF cannot be used with this data type' |
|
793 | 789 | for channel in self.dataOut.channelList: |
|
794 | 790 | for i in range(self.dataOut.nFFTPoints): |
|
795 | 791 | self.arr_data[1][channel * self.dataOut.nFFTPoints + |
|
796 | 792 | i]['r'] = self.dataOut.data[channel][i].real |
|
797 | 793 | self.arr_data[1][channel * self.dataOut.nFFTPoints + |
|
798 | 794 | i]['i'] = self.dataOut.data[channel][i].imag |
|
799 | 795 | else: |
|
800 | 796 | for i in range(self.dataOut.systemHeaderObj.nSamples): |
|
801 | 797 | for channel in self.dataOut.channelList: |
|
802 | 798 | self.arr_data[i][channel]['r'] = self.dataOut.data[channel][i].real |
|
803 | 799 | self.arr_data[i][channel]['i'] = self.dataOut.data[channel][i].imag |
|
804 | 800 | |
|
805 | 801 | def f(): return self.digitalWriteObj.rf_write(self.arr_data) |
|
806 | 802 | self.timeit(f) |
|
807 | 803 | |
|
808 | 804 | return |
|
809 | 805 | |
|
810 | 806 | def run(self, dataOut, frequency=49.92e6, path=None, fileCadence=1000, dirCadence=36000, metadataCadence=1, **kwargs): |
|
811 | 807 | ''' |
|
812 | 808 | This method will be called many times so here you should put all your code |
|
813 | 809 | Inputs: |
|
814 | 810 | dataOut: object with the data |
|
815 | 811 | ''' |
|
816 | 812 | # print dataOut.__dict__ |
|
817 | 813 | self.dataOut = dataOut |
|
818 | 814 | if not self.isConfig: |
|
819 | 815 | self.setup(dataOut, path, frequency, fileCadence, |
|
820 | 816 | dirCadence, metadataCadence, **kwargs) |
|
821 | 817 | self.writeMetadata() |
|
822 | 818 | |
|
823 | 819 | self.writeData() |
|
824 | 820 | |
|
825 | 821 | ## self.currentSample += 1 |
|
826 | 822 | # if self.dataOut.flagDataAsBlock or self.currentSample == 1: |
|
827 | 823 | # self.writeMetadata() |
|
828 | 824 | ## if self.currentSample == self.__nProfiles: self.currentSample = 0 |
|
829 | 825 | |
|
830 | 826 | return dataOut# en la version 2.7 no aparece este return |
|
831 | 827 | |
|
832 | 828 | def close(self): |
|
833 | 829 | print('[Writing] - Closing files ') |
|
834 | 830 | print('Average of writing to digital rf format is ', self.oldAverage * 1000) |
|
835 | 831 | try: |
|
836 | 832 | self.digitalWriteObj.close() |
|
837 | 833 | except: |
|
838 | 834 | pass |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now