@@ -1,494 +1,499 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | # colormap = 'jet' |
|
39 | 39 | # plot_type = 'pcolor' |
|
40 | 40 | |
|
41 | 41 | class DobleGaussianPlot(SpectraPlot): |
|
42 | 42 | ''' |
|
43 | 43 | Plot for Double Gaussian Plot |
|
44 | 44 | ''' |
|
45 | 45 | CODE = 'gaussian_fit' |
|
46 | 46 | # colormap = 'jet' |
|
47 | 47 | # plot_type = 'pcolor' |
|
48 | 48 | |
|
49 | 49 | |
|
50 | 50 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
51 | 51 | ''' |
|
52 | 52 | Plot SpectraCut with Double Gaussian Fit |
|
53 | 53 | ''' |
|
54 | 54 | CODE = 'cut_gaussian_fit' |
|
55 | 55 | |
|
56 | 56 | |
|
57 | 57 | class SpectralFitObliquePlot(SpectraPlot): |
|
58 | 58 | ''' |
|
59 | 59 | Plot for Spectral Oblique |
|
60 | 60 | ''' |
|
61 | 61 | CODE = 'spc_moments' |
|
62 | 62 | colormap = 'jet' |
|
63 | 63 | plot_type = 'pcolor' |
|
64 | 64 | |
|
65 | 65 | |
|
66 | 66 | |
|
67 | 67 | class SnrPlot(RTIPlot): |
|
68 | 68 | ''' |
|
69 | 69 | Plot for SNR Data |
|
70 | 70 | ''' |
|
71 | 71 | |
|
72 | 72 | CODE = 'snr' |
|
73 | 73 | colormap = 'jet' |
|
74 | 74 | |
|
75 | 75 | def update(self, dataOut): |
|
76 | 76 | |
|
77 | 77 | data = { |
|
78 | 78 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
79 | 79 | } |
|
80 | 80 | |
|
81 | 81 | return data, {} |
|
82 | 82 | |
|
83 | 83 | class DopplerPlot(RTIPlot): |
|
84 | 84 | ''' |
|
85 | 85 | Plot for DOPPLER Data (1st moment) |
|
86 | 86 | ''' |
|
87 | 87 | |
|
88 | 88 | CODE = 'dop' |
|
89 | 89 | colormap = 'jet' |
|
90 | 90 | |
|
91 | 91 | def update(self, dataOut): |
|
92 | 92 | |
|
93 | 93 | data = { |
|
94 | 94 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
95 | 95 | } |
|
96 | 96 | |
|
97 | 97 | return data, {} |
|
98 | 98 | |
|
99 | 99 | class DopplerEEJPlot_V0(RTIPlot): |
|
100 | 100 | ''' |
|
101 | 101 | Written by R. Flores |
|
102 | 102 | ''' |
|
103 | 103 | ''' |
|
104 | 104 | Plot for EEJ |
|
105 | 105 | ''' |
|
106 | 106 | |
|
107 | 107 | CODE = 'dop' |
|
108 | 108 | colormap = 'RdBu_r' |
|
109 | 109 | colormap = 'jet' |
|
110 | 110 | |
|
111 | 111 | def setup(self): |
|
112 | 112 | |
|
113 | 113 | self.xaxis = 'time' |
|
114 | 114 | self.ncols = 1 |
|
115 | 115 | self.nrows = len(self.data.channels) |
|
116 | 116 | self.nplots = len(self.data.channels) |
|
117 | 117 | self.ylabel = 'Range [km]' |
|
118 | 118 | self.xlabel = 'Time' |
|
119 | 119 | self.cb_label = '(m/s)' |
|
120 | 120 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
121 | 121 | self.titles = ['{} Channel {}'.format( |
|
122 | 122 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
123 | 123 | |
|
124 | 124 | def update(self, dataOut): |
|
125 | 125 | #print(self.EEJtype) |
|
126 | 126 | |
|
127 | 127 | if self.EEJtype == 1: |
|
128 | 128 | data = { |
|
129 | 129 | 'dop': dataOut.Oblique_params[:,-2,:] |
|
130 | 130 | } |
|
131 | 131 | elif self.EEJtype == 2: |
|
132 | 132 | data = { |
|
133 | 133 | 'dop': dataOut.Oblique_params[:,-1,:] |
|
134 | 134 | } |
|
135 | 135 | |
|
136 | 136 | return data, {} |
|
137 | 137 | |
|
138 | 138 | class DopplerEEJPlot(RTIPlot): |
|
139 | 139 | ''' |
|
140 | 140 | Written by R. Flores |
|
141 | 141 | ''' |
|
142 | 142 | ''' |
|
143 | 143 | Plot for Doppler Shift EEJ |
|
144 | 144 | ''' |
|
145 | 145 | |
|
146 | 146 | CODE = 'dop' |
|
147 | 147 | colormap = 'RdBu_r' |
|
148 | 148 | #colormap = 'jet' |
|
149 | 149 | |
|
150 | 150 | def setup(self): |
|
151 | 151 | |
|
152 | 152 | self.xaxis = 'time' |
|
153 | 153 | self.ncols = 1 |
|
154 | 154 | self.nrows = 2 |
|
155 | 155 | self.nplots = 2 |
|
156 | 156 | self.ylabel = 'Range [km]' |
|
157 | 157 | self.xlabel = 'Time' |
|
158 | 158 | self.cb_label = '(m/s)' |
|
159 | 159 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
160 | 160 | self.titles = ['{} EJJ Type {} /'.format( |
|
161 | 161 | self.CODE.upper(), x) for x in range(1,1+self.nrows)] |
|
162 | 162 | |
|
163 | 163 | def update(self, dataOut): |
|
164 | 164 | |
|
165 | 165 | if dataOut.mode == 11: #Double Gaussian |
|
166 | 166 | doppler = numpy.append(dataOut.Oblique_params[:,1,:],dataOut.Oblique_params[:,4,:],axis=0) |
|
167 | 167 | elif dataOut.mode == 9: #Double Skew Gaussian |
|
168 | 168 | doppler = numpy.append(dataOut.Oblique_params[:,-2,:],dataOut.Oblique_params[:,-1,:],axis=0) |
|
169 | 169 | data = { |
|
170 | 170 | 'dop': doppler |
|
171 | 171 | } |
|
172 | 172 | |
|
173 | 173 | return data, {} |
|
174 | 174 | |
|
175 | 175 | class SpcWidthEEJPlot(RTIPlot): |
|
176 | 176 | ''' |
|
177 | 177 | Written by R. Flores |
|
178 | 178 | ''' |
|
179 | 179 | ''' |
|
180 | 180 | Plot for EEJ Spectral Width |
|
181 | 181 | ''' |
|
182 | 182 | |
|
183 | 183 | CODE = 'width' |
|
184 | 184 | colormap = 'RdBu_r' |
|
185 | 185 | colormap = 'jet' |
|
186 | 186 | |
|
187 | 187 | def setup(self): |
|
188 | 188 | |
|
189 | 189 | self.xaxis = 'time' |
|
190 | 190 | self.ncols = 1 |
|
191 | 191 | self.nrows = 2 |
|
192 | 192 | self.nplots = 2 |
|
193 | 193 | self.ylabel = 'Range [km]' |
|
194 | 194 | self.xlabel = 'Time' |
|
195 | 195 | self.cb_label = '(m/s)' |
|
196 | 196 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
197 | 197 | self.titles = ['{} EJJ Type {} /'.format( |
|
198 | 198 | self.CODE.upper(), x) for x in range(1,1+self.nrows)] |
|
199 | 199 | |
|
200 | 200 | def update(self, dataOut): |
|
201 | 201 | |
|
202 | 202 | if dataOut.mode == 11: #Double Gaussian |
|
203 | 203 | width = numpy.append(dataOut.Oblique_params[:,2,:],dataOut.Oblique_params[:,5,:],axis=0) |
|
204 | 204 | elif dataOut.mode == 9: #Double Skew Gaussian |
|
205 | 205 | width = numpy.append(dataOut.Oblique_params[:,2,:],dataOut.Oblique_params[:,6,:],axis=0) |
|
206 | 206 | data = { |
|
207 | 207 | 'width': width |
|
208 | 208 | } |
|
209 | 209 | |
|
210 | 210 | return data, {} |
|
211 | 211 | |
|
212 | 212 | class PowerPlot(RTIPlot): |
|
213 | 213 | ''' |
|
214 | 214 | Plot for Power Data (0 moment) |
|
215 | 215 | ''' |
|
216 | 216 | |
|
217 | 217 | CODE = 'pow' |
|
218 | 218 | colormap = 'jet' |
|
219 | 219 | |
|
220 | 220 | def update(self, dataOut): |
|
221 | 221 | |
|
222 | 222 | data = { |
|
223 | 223 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
224 | 224 | } |
|
225 | 225 | |
|
226 | 226 | return data, {} |
|
227 | 227 | |
|
228 | 228 | class SpectralWidthPlot(RTIPlot): |
|
229 | 229 | ''' |
|
230 | 230 | Plot for Spectral Width Data (2nd moment) |
|
231 | 231 | ''' |
|
232 | 232 | |
|
233 | 233 | CODE = 'width' |
|
234 | 234 | colormap = 'jet' |
|
235 | 235 | |
|
236 | 236 | def update(self, dataOut): |
|
237 | 237 | |
|
238 | 238 | data = { |
|
239 | 239 | 'width': dataOut.data_width |
|
240 | 240 | } |
|
241 | 241 | |
|
242 | 242 | return data, {} |
|
243 | 243 | |
|
244 | 244 | class SkyMapPlot(Plot): |
|
245 | 245 | ''' |
|
246 | 246 | Plot for meteors detection data |
|
247 | 247 | ''' |
|
248 | 248 | |
|
249 | 249 | CODE = 'param' |
|
250 | 250 | |
|
251 | 251 | def setup(self): |
|
252 | 252 | |
|
253 | 253 | self.ncols = 1 |
|
254 | 254 | self.nrows = 1 |
|
255 | 255 | self.width = 7.2 |
|
256 | 256 | self.height = 7.2 |
|
257 | 257 | self.nplots = 1 |
|
258 | 258 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
259 | 259 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
260 | 260 | self.polar = True |
|
261 | 261 | self.ymin = -180 |
|
262 | 262 | self.ymax = 180 |
|
263 | 263 | self.colorbar = False |
|
264 | 264 | |
|
265 | 265 | def plot(self): |
|
266 | 266 | |
|
267 | 267 | arrayParameters = numpy.concatenate(self.data['param']) |
|
268 | 268 | error = arrayParameters[:, -1] |
|
269 | 269 | indValid = numpy.where(error == 0)[0] |
|
270 | 270 | finalMeteor = arrayParameters[indValid, :] |
|
271 | 271 | finalAzimuth = finalMeteor[:, 3] |
|
272 | 272 | finalZenith = finalMeteor[:, 4] |
|
273 | 273 | |
|
274 | 274 | x = finalAzimuth * numpy.pi / 180 |
|
275 | 275 | y = finalZenith |
|
276 | 276 | |
|
277 | 277 | ax = self.axes[0] |
|
278 | 278 | |
|
279 | 279 | if ax.firsttime: |
|
280 | 280 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
281 | 281 | else: |
|
282 | 282 | ax.plot.set_data(x, y) |
|
283 | 283 | |
|
284 | 284 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
285 | 285 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
286 | 286 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
287 | 287 | dt2, |
|
288 | 288 | len(x)) |
|
289 | 289 | self.titles[0] = title |
|
290 | 290 | |
|
291 | 291 | |
|
292 | 292 | class GenericRTIPlot(Plot): |
|
293 | 293 | ''' |
|
294 | 294 | Plot for data_xxxx object |
|
295 | 295 | ''' |
|
296 | 296 | |
|
297 | 297 | CODE = 'param' |
|
298 | 298 | colormap = 'viridis' |
|
299 | 299 | plot_type = 'pcolorbuffer' |
|
300 | 300 | |
|
301 | 301 | def setup(self): |
|
302 | 302 | self.xaxis = 'time' |
|
303 | 303 | self.ncols = 1 |
|
304 | 304 | self.nrows = self.data.shape('param')[0] |
|
305 | 305 | self.nplots = self.nrows |
|
306 | 306 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
307 | 307 | |
|
308 | 308 | if not self.xlabel: |
|
309 | 309 | self.xlabel = 'Time' |
|
310 | 310 | |
|
311 | 311 | self.ylabel = 'Range [km]' |
|
312 | 312 | if not self.titles: |
|
313 | 313 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
314 | 314 | |
|
315 | 315 | def update(self, dataOut): |
|
316 | 316 | |
|
317 | 317 | data = { |
|
318 | 318 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
319 | 319 | } |
|
320 | 320 | |
|
321 | 321 | meta = {} |
|
322 | 322 | |
|
323 | 323 | return data, meta |
|
324 | 324 | |
|
325 | 325 | def plot(self): |
|
326 | 326 | # self.data.normalize_heights() |
|
327 | 327 | self.x = self.data.times |
|
328 | 328 | self.y = self.data.yrange |
|
329 | 329 | self.z = self.data['param'] |
|
330 | 330 | |
|
331 | 331 | self.z = numpy.ma.masked_invalid(self.z) |
|
332 | 332 | |
|
333 | 333 | if self.decimation is None: |
|
334 | 334 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
335 | 335 | else: |
|
336 | 336 | x, y, z = self.fill_gaps(*self.decimate()) |
|
337 | 337 | |
|
338 | 338 | for n, ax in enumerate(self.axes): |
|
339 | 339 | |
|
340 | 340 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
341 | 341 | self.z[n]) |
|
342 | 342 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
343 | 343 | self.z[n]) |
|
344 | 344 | |
|
345 | 345 | if ax.firsttime: |
|
346 | 346 | if self.zlimits is not None: |
|
347 | 347 | self.zmin, self.zmax = self.zlimits[n] |
|
348 | 348 | |
|
349 | 349 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
350 | 350 | vmin=self.zmin, |
|
351 | 351 | vmax=self.zmax, |
|
352 | 352 | cmap=self.cmaps[n] |
|
353 | 353 | ) |
|
354 | 354 | else: |
|
355 | 355 | if self.zlimits is not None: |
|
356 | 356 | self.zmin, self.zmax = self.zlimits[n] |
|
357 | ax.plt.remove() | |
|
357 | ||
|
358 | try: | |
|
359 | ax.collections.remove(ax.collections[0]) | |
|
360 | except: | |
|
361 | pass | |
|
362 | # ax.plt.remove() | |
|
358 | 363 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
359 | 364 | vmin=self.zmin, |
|
360 | 365 | vmax=self.zmax, |
|
361 | 366 | cmap=self.cmaps[n] |
|
362 | 367 | ) |
|
363 | 368 | |
|
364 | 369 | |
|
365 | 370 | class PolarMapPlot(Plot): |
|
366 | 371 | ''' |
|
367 | 372 | Plot for weather radar |
|
368 | 373 | ''' |
|
369 | 374 | |
|
370 | 375 | CODE = 'param' |
|
371 | 376 | colormap = 'seismic' |
|
372 | 377 | |
|
373 | 378 | def setup(self): |
|
374 | 379 | self.ncols = 1 |
|
375 | 380 | self.nrows = 1 |
|
376 | 381 | self.width = 9 |
|
377 | 382 | self.height = 8 |
|
378 | 383 | self.mode = self.data.meta['mode'] |
|
379 | 384 | if self.channels is not None: |
|
380 | 385 | self.nplots = len(self.channels) |
|
381 | 386 | self.nrows = len(self.channels) |
|
382 | 387 | else: |
|
383 | 388 | self.nplots = self.data.shape(self.CODE)[0] |
|
384 | 389 | self.nrows = self.nplots |
|
385 | 390 | self.channels = list(range(self.nplots)) |
|
386 | 391 | if self.mode == 'E': |
|
387 | 392 | self.xlabel = 'Longitude' |
|
388 | 393 | self.ylabel = 'Latitude' |
|
389 | 394 | else: |
|
390 | 395 | self.xlabel = 'Range (km)' |
|
391 | 396 | self.ylabel = 'Height (km)' |
|
392 | 397 | self.bgcolor = 'white' |
|
393 | 398 | self.cb_labels = self.data.meta['units'] |
|
394 | 399 | self.lat = self.data.meta['latitude'] |
|
395 | 400 | self.lon = self.data.meta['longitude'] |
|
396 | 401 | self.xmin, self.xmax = float( |
|
397 | 402 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
398 | 403 | self.ymin, self.ymax = float( |
|
399 | 404 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
400 | 405 | # self.polar = True |
|
401 | 406 | |
|
402 | 407 | def plot(self): |
|
403 | 408 | |
|
404 | 409 | for n, ax in enumerate(self.axes): |
|
405 | 410 | data = self.data['param'][self.channels[n]] |
|
406 | 411 | |
|
407 | 412 | zeniths = numpy.linspace( |
|
408 | 413 | 0, self.data.meta['max_range'], data.shape[1]) |
|
409 | 414 | if self.mode == 'E': |
|
410 | 415 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
411 | 416 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
412 | 417 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
413 | 418 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
414 | 419 | x = km2deg(x) + self.lon |
|
415 | 420 | y = km2deg(y) + self.lat |
|
416 | 421 | else: |
|
417 | 422 | azimuths = numpy.radians(self.data.yrange) |
|
418 | 423 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
419 | 424 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
420 | 425 | self.y = zeniths |
|
421 | 426 | |
|
422 | 427 | if ax.firsttime: |
|
423 | 428 | if self.zlimits is not None: |
|
424 | 429 | self.zmin, self.zmax = self.zlimits[n] |
|
425 | 430 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
426 | 431 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
427 | 432 | vmin=self.zmin, |
|
428 | 433 | vmax=self.zmax, |
|
429 | 434 | cmap=self.cmaps[n]) |
|
430 | 435 | else: |
|
431 | 436 | if self.zlimits is not None: |
|
432 | 437 | self.zmin, self.zmax = self.zlimits[n] |
|
433 | 438 | ax.plt.remove() |
|
434 | 439 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
435 | 440 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
436 | 441 | vmin=self.zmin, |
|
437 | 442 | vmax=self.zmax, |
|
438 | 443 | cmap=self.cmaps[n]) |
|
439 | 444 | |
|
440 | 445 | if self.mode == 'A': |
|
441 | 446 | continue |
|
442 | 447 | |
|
443 | 448 | # plot district names |
|
444 | 449 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
445 | 450 | for line in f: |
|
446 | 451 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
447 | 452 | lat = float(lat) |
|
448 | 453 | lon = float(lon) |
|
449 | 454 | # ax.plot(lon, lat, '.b', ms=2) |
|
450 | 455 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
451 | 456 | va='bottom', size='8', color='black') |
|
452 | 457 | |
|
453 | 458 | # plot limites |
|
454 | 459 | limites = [] |
|
455 | 460 | tmp = [] |
|
456 | 461 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
457 | 462 | if '#' in line: |
|
458 | 463 | if tmp: |
|
459 | 464 | limites.append(tmp) |
|
460 | 465 | tmp = [] |
|
461 | 466 | continue |
|
462 | 467 | values = line.strip().split(',') |
|
463 | 468 | tmp.append((float(values[0]), float(values[1]))) |
|
464 | 469 | for points in limites: |
|
465 | 470 | ax.add_patch( |
|
466 | 471 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
467 | 472 | |
|
468 | 473 | # plot Cuencas |
|
469 | 474 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
470 | 475 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
471 | 476 | values = [line.strip().split(',') for line in f] |
|
472 | 477 | points = [(float(s[0]), float(s[1])) for s in values] |
|
473 | 478 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
474 | 479 | |
|
475 | 480 | # plot grid |
|
476 | 481 | for r in (15, 30, 45, 60): |
|
477 | 482 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
478 | 483 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
479 | 484 | ax.text( |
|
480 | 485 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
481 | 486 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
482 | 487 | '{}km'.format(r), |
|
483 | 488 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
484 | 489 | |
|
485 | 490 | if self.mode == 'E': |
|
486 | 491 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
487 | 492 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
488 | 493 | else: |
|
489 | 494 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
490 | 495 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
491 | 496 | |
|
492 | 497 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
493 | 498 | self.titles = ['{} {}'.format( |
|
494 | 499 | self.data.parameters[x], title) for x in self.channels] |
General Comments 0
You need to be logged in to leave comments.
Login now