The requested changes are too big and content was truncated. Show full diff
@@ -1,1136 +1,1154 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
|
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader,ProcessingHeader | |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | ||
|
22 | SPEED_OF_LIGHT = 3e8 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | ''' |
|
80 | 80 | lenOfData = len(sortdata) |
|
81 | 81 | nums_min = lenOfData*0.5 |
|
82 | 82 | |
|
83 | 83 | if nums_min <= 5: |
|
84 | 84 | |
|
85 | 85 | nums_min = 5 |
|
86 | 86 | |
|
87 | 87 | sump = 0. |
|
88 | 88 | sumq = 0. |
|
89 | 89 | |
|
90 | 90 | j = 0 |
|
91 | 91 | cont = 1 |
|
92 | 92 | |
|
93 | 93 | while((cont == 1)and(j < lenOfData)): |
|
94 | 94 | |
|
95 | 95 | sump += sortdata[j] |
|
96 | 96 | sumq += sortdata[j]**2 |
|
97 | 97 | |
|
98 | 98 | if j > nums_min: |
|
99 | 99 | rtest = float(j)/(j-1) + 1.0/navg |
|
100 | 100 | if ((sumq*j) > (rtest*sump**2)): |
|
101 | 101 | j = j - 1 |
|
102 | 102 | sump = sump - sortdata[j] |
|
103 | 103 | sumq = sumq - sortdata[j]**2 |
|
104 | 104 | cont = 0 |
|
105 | 105 | |
|
106 | 106 | j += 1 |
|
107 | 107 | |
|
108 | 108 | lnoise = sump / j |
|
109 | 109 | return lnoise |
|
110 | 110 | ''' |
|
111 | 111 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
112 | 112 | |
|
113 | 113 | |
|
114 | 114 | class Beam: |
|
115 | 115 | |
|
116 | 116 | def __init__(self): |
|
117 | 117 | self.codeList = [] |
|
118 | 118 | self.azimuthList = [] |
|
119 | 119 | self.zenithList = [] |
|
120 | 120 | |
|
121 | 121 | |
|
122 | 122 | |
|
123 | 123 | class GenericData(object): |
|
124 | 124 | |
|
125 | 125 | flagNoData = True |
|
126 | 126 | |
|
127 | 127 | def copy(self, inputObj=None): |
|
128 | 128 | |
|
129 | 129 | if inputObj == None: |
|
130 | 130 | return copy.deepcopy(self) |
|
131 | 131 | |
|
132 | 132 | for key in list(inputObj.__dict__.keys()): |
|
133 | 133 | |
|
134 | 134 | attribute = inputObj.__dict__[key] |
|
135 | 135 | |
|
136 | 136 | # If this attribute is a tuple or list |
|
137 | 137 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
138 | 138 | self.__dict__[key] = attribute[:] |
|
139 | 139 | continue |
|
140 | 140 | |
|
141 | 141 | # If this attribute is another object or instance |
|
142 | 142 | if hasattr(attribute, '__dict__'): |
|
143 | 143 | self.__dict__[key] = attribute.copy() |
|
144 | 144 | continue |
|
145 | 145 | |
|
146 | 146 | self.__dict__[key] = inputObj.__dict__[key] |
|
147 | 147 | |
|
148 | 148 | def deepcopy(self): |
|
149 | 149 | |
|
150 | 150 | return copy.deepcopy(self) |
|
151 | 151 | |
|
152 | 152 | def isEmpty(self): |
|
153 | 153 | |
|
154 | 154 | return self.flagNoData |
|
155 | 155 | |
|
156 | 156 | def isReady(self): |
|
157 | 157 | |
|
158 | 158 | return not self.flagNoData |
|
159 | 159 | |
|
160 | 160 | |
|
161 | 161 | class JROData(GenericData): |
|
162 | 162 | |
|
163 | 163 | useInputBuffer = False |
|
164 | 164 | buffer_empty = True |
|
165 | 165 | |
|
166 | 166 | systemHeaderObj = SystemHeader() |
|
167 | 167 | radarControllerHeaderObj = RadarControllerHeader() |
|
168 | 168 | type = None |
|
169 | 169 | datatype = None # dtype but in string |
|
170 | 170 | nProfiles = None |
|
171 | 171 | heightList = None |
|
172 | 172 | channelList = None |
|
173 | 173 | flagDiscontinuousBlock = False |
|
174 | 174 | useLocalTime = False |
|
175 | 175 | utctime = None |
|
176 | 176 | timeZone = None |
|
177 | 177 | dstFlag = None |
|
178 | 178 | errorCount = None |
|
179 | 179 | blocksize = None |
|
180 | 180 | flagDecodeData = False # asumo q la data no esta decodificada |
|
181 | 181 | flagDeflipData = False # asumo q la data no esta sin flip |
|
182 | 182 | flagShiftFFT = False |
|
183 | 183 | nCohInt = None |
|
184 | 184 | windowOfFilter = 1 |
|
185 | 185 | C = 3e8 |
|
186 | 186 | frequency = 49.92e6 |
|
187 | 187 | realtime = False |
|
188 | 188 | beacon_heiIndexList = None |
|
189 | 189 | last_block = None |
|
190 | 190 | blocknow = None |
|
191 | 191 | azimuth = None |
|
192 | 192 | zenith = None |
|
193 | beam = Beam() | |
|
193 | ||
|
194 | 194 | profileIndex = None |
|
195 | 195 | error = None |
|
196 | 196 | data = None |
|
197 | 197 | nmodes = None |
|
198 | 198 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
199 | 199 | codeList = [] |
|
200 | 200 | azimuthList = [] |
|
201 | 201 | elevationList = [] |
|
202 | 202 | last_noise = None |
|
203 |
|
|
|
203 | __ipp = None | |
|
204 | __ippSeconds = None | |
|
204 | 205 | sampled_heightsFFT = None |
|
205 | 206 | pulseLength_TxA = None |
|
206 | 207 | deltaHeight = None |
|
208 | code = None | |
|
209 | nCode = None | |
|
210 | nBaud = None | |
|
211 | unitsDescription = "The units of the parameters are according to the International System of units (Seconds, Meter, Hertz, ...), except \ | |
|
212 | the parameters related to distances such as heightList, or heightResolution wich are in Km" | |
|
213 | ||
|
207 | 214 | |
|
208 | 215 | def __str__(self): |
|
209 | 216 | |
|
210 | 217 | return '{} - {}'.format(self.type, self.datatime()) |
|
211 | 218 | |
|
212 | 219 | def getNoise(self): |
|
213 | 220 | |
|
214 | 221 | raise NotImplementedError |
|
215 | 222 | |
|
216 | 223 | @property |
|
217 | 224 | def nChannels(self): |
|
218 | 225 | |
|
219 | 226 | return len(self.channelList) |
|
220 | 227 | |
|
221 | 228 | @property |
|
222 | 229 | def channelIndexList(self): |
|
223 | 230 | |
|
224 | 231 | return list(range(self.nChannels)) |
|
225 | 232 | |
|
226 | 233 | @property |
|
227 | 234 | def nHeights(self): |
|
228 | 235 | |
|
229 | 236 | return len(self.heightList) |
|
230 | 237 | |
|
231 | 238 | def getDeltaH(self): |
|
232 | 239 | |
|
233 | 240 | return self.heightList[1] - self.heightList[0] |
|
234 | 241 | |
|
235 | 242 | @property |
|
236 | 243 | def ltctime(self): |
|
237 | 244 | |
|
238 | 245 | if self.useLocalTime: |
|
239 | 246 | return self.utctime - self.timeZone * 60 |
|
240 | 247 | |
|
241 | 248 | return self.utctime |
|
242 | 249 | |
|
243 | 250 | @property |
|
244 | 251 | def datatime(self): |
|
245 | 252 | |
|
246 | 253 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
247 | 254 | return datatimeValue |
|
248 | 255 | |
|
249 | 256 | def getTimeRange(self): |
|
250 | 257 | |
|
251 | 258 | datatime = [] |
|
252 | 259 | |
|
253 | 260 | datatime.append(self.ltctime) |
|
254 | 261 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
255 | 262 | |
|
256 | 263 | datatime = numpy.array(datatime) |
|
257 | 264 | |
|
258 | 265 | return datatime |
|
259 | 266 | |
|
260 | 267 | def getFmaxTimeResponse(self): |
|
261 | 268 | |
|
262 | 269 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
263 | 270 | |
|
264 | 271 | PRF = 1. / (period * self.nCohInt) |
|
265 | 272 | |
|
266 | 273 | fmax = PRF |
|
267 | 274 | |
|
268 | 275 | return fmax |
|
269 | 276 | |
|
270 | 277 | def getFmax(self): |
|
271 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
|
278 | PRF = 1. / (self.__ippSeconds * self.nCohInt) | |
|
272 | 279 | |
|
273 | 280 | fmax = PRF |
|
274 | 281 | return fmax |
|
275 | 282 | |
|
276 | 283 | def getVmax(self): |
|
277 | 284 | |
|
278 | 285 | _lambda = self.C / self.frequency |
|
279 | 286 | |
|
280 | 287 | vmax = self.getFmax() * _lambda / 2 |
|
281 | 288 | |
|
282 | 289 | return vmax |
|
283 | 290 | |
|
284 | 291 | @property |
|
285 | 292 | def ippSeconds(self): |
|
286 | 293 | ''' |
|
287 | 294 | ''' |
|
288 | return self.radarControllerHeaderObj.ippSeconds | |
|
295 | #return self.radarControllerHeaderObj.ippSeconds | |
|
296 | return self.__ippSeconds | |
|
289 | 297 | |
|
290 | 298 | @ippSeconds.setter |
|
291 | 299 | def ippSeconds(self, ippSeconds): |
|
292 | 300 | ''' |
|
293 | 301 | ''' |
|
294 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
|
295 | ||
|
296 | @property | |
|
297 | def code(self): | |
|
298 | ''' | |
|
299 | ''' | |
|
300 | return self.radarControllerHeaderObj.code | |
|
301 | ||
|
302 | @code.setter | |
|
303 | def code(self, code): | |
|
304 | ''' | |
|
305 | ''' | |
|
306 | self.radarControllerHeaderObj.code = code | |
|
302 | #self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
|
303 | self.__ippSeconds = ippSeconds | |
|
304 | self.__ipp = ippSeconds*SPEED_OF_LIGHT/2000.0 | |
|
307 | 305 | |
|
308 | @property | |
|
309 | def nCode(self): | |
|
310 | ''' | |
|
311 | ''' | |
|
312 | return self.radarControllerHeaderObj.nCode | |
|
313 | ||
|
314 | @nCode.setter | |
|
315 | def nCode(self, ncode): | |
|
316 | ''' | |
|
317 | ''' | |
|
318 | self.radarControllerHeaderObj.nCode = ncode | |
|
319 | ||
|
320 | @property | |
|
321 | def nBaud(self): | |
|
322 | ''' | |
|
323 | ''' | |
|
324 | return self.radarControllerHeaderObj.nBaud | |
|
325 | 306 | |
|
326 | @nBaud.setter | |
|
327 |
|
|
|
328 | ''' | |
|
329 |
|
|
|
330 |
self.radarControllerHeaderObj. |
|
|
307 | # @property | |
|
308 | # def code(self): | |
|
309 | # ''' | |
|
310 | # ''' | |
|
311 | # return self.radarControllerHeaderObj.code | |
|
312 | # | |
|
313 | # @code.setter | |
|
314 | # def code(self, code): | |
|
315 | # ''' | |
|
316 | # ''' | |
|
317 | # self.radarControllerHeaderObj.code = code | |
|
318 | # | |
|
319 | # @property | |
|
320 | # def nCode(self): | |
|
321 | # ''' | |
|
322 | # ''' | |
|
323 | # return self.radarControllerHeaderObj.nCode | |
|
324 | # | |
|
325 | # @nCode.setter | |
|
326 | # def nCode(self, ncode): | |
|
327 | # ''' | |
|
328 | # ''' | |
|
329 | # self.radarControllerHeaderObj.nCode = ncode | |
|
330 | # | |
|
331 | # @property | |
|
332 | # def nBaud(self): | |
|
333 | # ''' | |
|
334 | # ''' | |
|
335 | # return self.radarControllerHeaderObj.nBaud | |
|
336 | # | |
|
337 | # @nBaud.setter | |
|
338 | # def nBaud(self, nbaud): | |
|
339 | # ''' | |
|
340 | # ''' | |
|
341 | # self.radarControllerHeaderObj.nBaud = nbaud | |
|
331 | 342 | |
|
332 | 343 | @property |
|
333 | 344 | def ipp(self): |
|
334 | 345 | ''' |
|
335 | 346 | ''' |
|
336 |
return self. |
|
|
347 | return self.__ipp | |
|
348 | #return self.radarControllerHeaderObj.ipp | |
|
337 | 349 | |
|
338 | 350 | @ipp.setter |
|
339 | 351 | def ipp(self, ipp): |
|
340 | 352 | ''' |
|
341 | 353 | ''' |
|
342 |
self. |
|
|
354 | self.__ipp = ipp | |
|
355 | #self.radarControllerHeaderObj.ipp = ipp | |
|
343 | 356 | |
|
344 | 357 | @property |
|
345 | 358 | def metadata(self): |
|
346 | 359 | ''' |
|
347 | 360 | ''' |
|
348 | 361 | |
|
349 | 362 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
350 | 363 | |
|
351 | 364 | |
|
352 | 365 | class Voltage(JROData): |
|
353 | 366 | |
|
354 | 367 | dataPP_POW = None |
|
355 | 368 | dataPP_DOP = None |
|
356 | 369 | dataPP_WIDTH = None |
|
357 | 370 | dataPP_SNR = None |
|
358 | 371 | |
|
359 | 372 | def __init__(self): |
|
360 | 373 | ''' |
|
361 | 374 | Constructor |
|
362 | 375 | ''' |
|
363 | 376 | |
|
364 | 377 | self.useLocalTime = True |
|
365 | 378 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
366 | 379 | self.systemHeaderObj = SystemHeader() |
|
380 | self.processingHeaderObj = ProcessingHeader() | |
|
367 | 381 | self.type = "Voltage" |
|
368 | 382 | self.data = None |
|
369 | 383 | self.nProfiles = None |
|
370 | 384 | self.heightList = None |
|
371 | 385 | self.channelList = None |
|
372 | 386 | self.flagNoData = True |
|
373 | 387 | self.flagDiscontinuousBlock = False |
|
374 | 388 | self.utctime = None |
|
375 | 389 | self.timeZone = 0 |
|
376 | 390 | self.dstFlag = None |
|
377 | 391 | self.errorCount = None |
|
378 | 392 | self.nCohInt = None |
|
379 | 393 | self.blocksize = None |
|
380 | 394 | self.flagCohInt = False |
|
381 | 395 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
382 | 396 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
383 | 397 | self.flagShiftFFT = False |
|
384 | 398 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
385 | 399 | self.profileIndex = 0 |
|
386 | 400 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
387 | 401 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
388 | 402 | |
|
389 | 403 | def getNoisebyHildebrand(self, channel=None, ymin_index=None, ymax_index=None): |
|
390 | 404 | """ |
|
391 | 405 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
392 | 406 | |
|
393 | 407 | Return: |
|
394 | 408 | noiselevel |
|
395 | 409 | """ |
|
396 | 410 | |
|
397 | 411 | if channel != None: |
|
398 | 412 | data = self.data[channel,ymin_index:ymax_index] |
|
399 | 413 | nChannels = 1 |
|
400 | 414 | else: |
|
401 | 415 | data = self.data[:,ymin_index:ymax_index] |
|
402 | 416 | nChannels = self.nChannels |
|
403 | 417 | |
|
404 | 418 | noise = numpy.zeros(nChannels) |
|
405 | 419 | power = data * numpy.conjugate(data) |
|
406 | 420 | |
|
407 | 421 | for thisChannel in range(nChannels): |
|
408 | 422 | if nChannels == 1: |
|
409 | 423 | daux = power[:].real |
|
410 | 424 | else: |
|
411 | 425 | daux = power[thisChannel, :].real |
|
412 | 426 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
413 | 427 | |
|
414 | 428 | return noise |
|
415 | 429 | |
|
416 | 430 | def getNoise(self, type=1, channel=None,ymin_index=None, ymax_index=None): |
|
417 | 431 | |
|
418 | 432 | if type == 1: |
|
419 | 433 | noise = self.getNoisebyHildebrand(channel,ymin_index, ymax_index) |
|
420 | 434 | |
|
421 | 435 | return noise |
|
422 | 436 | |
|
423 | 437 | def getPower(self, channel=None): |
|
424 | 438 | |
|
425 | 439 | if channel != None: |
|
426 | 440 | data = self.data[channel] |
|
427 | 441 | else: |
|
428 | 442 | data = self.data |
|
429 | 443 | |
|
430 | 444 | power = data * numpy.conjugate(data) |
|
431 | 445 | powerdB = 10 * numpy.log10(power.real) |
|
432 | 446 | powerdB = numpy.squeeze(powerdB) |
|
433 | 447 | |
|
434 | 448 | return powerdB |
|
435 | 449 | |
|
436 | 450 | @property |
|
437 | 451 | def timeInterval(self): |
|
438 | 452 | |
|
439 | 453 | return self.ippSeconds * self.nCohInt |
|
440 | 454 | |
|
441 | 455 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
442 | 456 | |
|
443 | 457 | |
|
444 | 458 | class Spectra(JROData): |
|
445 | 459 | |
|
446 | 460 | data_outlier = None |
|
447 | 461 | |
|
448 | 462 | def __init__(self): |
|
449 | 463 | ''' |
|
450 | 464 | Constructor |
|
451 | 465 | ''' |
|
452 | 466 | |
|
453 | 467 | self.data_dc = None |
|
454 | 468 | self.data_spc = None |
|
455 | 469 | self.data_cspc = None |
|
456 | 470 | self.useLocalTime = True |
|
457 | 471 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
458 | 472 | self.systemHeaderObj = SystemHeader() |
|
473 | self.processingHeaderObj = ProcessingHeader() | |
|
459 | 474 | self.type = "Spectra" |
|
460 | 475 | self.timeZone = 0 |
|
461 | 476 | self.nProfiles = None |
|
462 | 477 | self.heightList = None |
|
463 | 478 | self.channelList = None |
|
464 | 479 | self.pairsList = None |
|
465 | 480 | self.flagNoData = True |
|
466 | 481 | self.flagDiscontinuousBlock = False |
|
467 | 482 | self.utctime = None |
|
468 | 483 | self.nCohInt = None |
|
469 | 484 | self.nIncohInt = None |
|
470 | 485 | self.blocksize = None |
|
471 | 486 | self.nFFTPoints = None |
|
472 | 487 | self.wavelength = None |
|
473 | 488 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
474 | 489 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
475 | 490 | self.flagShiftFFT = False |
|
476 | 491 | self.ippFactor = 1 |
|
477 | 492 | self.beacon_heiIndexList = [] |
|
478 | 493 | self.noise_estimation = None |
|
479 | 494 | self.codeList = [] |
|
480 | 495 | self.azimuthList = [] |
|
481 | 496 | self.elevationList = [] |
|
482 | 497 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
483 | 498 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
484 | 499 | |
|
485 | 500 | |
|
486 | 501 | |
|
487 | 502 | |
|
488 | 503 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
489 | 504 | """ |
|
490 | 505 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
491 | 506 | |
|
492 | 507 | Return: |
|
493 | 508 | noiselevel |
|
494 | 509 | """ |
|
495 | 510 | # if hasattr(self.nIncohInt, "__len__"): #nIncohInt is a matrix |
|
496 | 511 | # |
|
497 | 512 | # heis = self.data_spc.shape[2] |
|
498 | 513 | # |
|
499 | 514 | # noise = numpy.zeros((self.nChannels, heis)) |
|
500 | 515 | # for hei in range(heis): |
|
501 | 516 | # for channel in range(self.nChannels): |
|
502 | 517 | # daux = self.data_spc[channel, xmin_index:xmax_index, hei] |
|
503 | 518 | # |
|
504 | 519 | # noise[channel,hei] = hildebrand_sekhon(daux, self.nIncohInt[channel,hei]) |
|
505 | 520 | # |
|
506 | 521 | # else: |
|
507 | 522 | # noise = numpy.zeros(self.nChannels) |
|
508 | 523 | # for channel in range(self.nChannels): |
|
509 | 524 | # daux = self.data_spc[channel,xmin_index:xmax_index, ymin_index:ymax_index] |
|
510 | 525 | # |
|
511 | 526 | # noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
512 | 527 | noise = numpy.zeros(self.nChannels) |
|
513 | 528 | |
|
514 | 529 | for channel in range(self.nChannels): |
|
515 | 530 | daux = self.data_spc[channel,xmin_index:xmax_index, ymin_index:ymax_index] |
|
516 | 531 | |
|
517 | 532 | noise[channel] = hildebrand_sekhon(daux, self.max_nIncohInt[channel]) |
|
518 | 533 | |
|
519 | 534 | return noise |
|
520 | 535 | |
|
521 | 536 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
522 | 537 | |
|
523 | 538 | if self.noise_estimation is not None: |
|
524 | 539 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
525 | 540 | return self.noise_estimation |
|
526 | 541 | else: |
|
527 | 542 | noise = self.getNoisebyHildebrand( |
|
528 | 543 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
529 | 544 | return noise |
|
530 | 545 | |
|
531 | 546 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
532 | 547 | |
|
533 | 548 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
534 | 549 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
535 | 550 | |
|
536 | 551 | return freqrange |
|
537 | 552 | |
|
538 | 553 | def getAcfRange(self, extrapoints=0): |
|
539 | 554 | |
|
540 | 555 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
541 | 556 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
542 | 557 | |
|
543 | 558 | return freqrange |
|
544 | 559 | |
|
545 | 560 | def getFreqRange(self, extrapoints=0): |
|
546 | 561 | |
|
547 | 562 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
548 | 563 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
549 | 564 | |
|
550 | 565 | return freqrange |
|
551 | 566 | |
|
552 | 567 | def getVelRange(self, extrapoints=0): |
|
553 | 568 | |
|
554 | 569 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
555 | 570 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
556 | 571 | |
|
557 | 572 | if self.nmodes: |
|
558 | 573 | return velrange/self.nmodes |
|
559 | 574 | else: |
|
560 | 575 | return velrange |
|
561 | 576 | |
|
562 | 577 | @property |
|
563 | 578 | def nPairs(self): |
|
564 | 579 | |
|
565 | 580 | return len(self.pairsList) |
|
566 | 581 | |
|
567 | 582 | @property |
|
568 | 583 | def pairsIndexList(self): |
|
569 | 584 | |
|
570 | 585 | return list(range(self.nPairs)) |
|
571 | 586 | |
|
572 | 587 | @property |
|
573 | 588 | def normFactor(self): |
|
574 | 589 | |
|
575 | 590 | pwcode = 1 |
|
576 | 591 | |
|
577 | 592 | if self.flagDecodeData: |
|
578 | 593 | pwcode = numpy.sum(self.code[0]**2) |
|
579 | 594 | #print(self.flagDecodeData, pwcode) |
|
580 | 595 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
581 | 596 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
582 | 597 | |
|
583 | 598 | |
|
584 | 599 | return normFactor |
|
585 | 600 | |
|
586 | 601 | @property |
|
587 | 602 | def flag_cspc(self): |
|
588 | 603 | |
|
589 | 604 | if self.data_cspc is None: |
|
590 | 605 | return True |
|
591 | 606 | |
|
592 | 607 | return False |
|
593 | 608 | |
|
594 | 609 | @property |
|
595 | 610 | def flag_dc(self): |
|
596 | 611 | |
|
597 | 612 | if self.data_dc is None: |
|
598 | 613 | return True |
|
599 | 614 | |
|
600 | 615 | return False |
|
601 | 616 | |
|
602 | 617 | @property |
|
603 | 618 | def timeInterval(self): |
|
604 | 619 | |
|
605 | 620 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
606 | 621 | if self.nmodes: |
|
607 | 622 | return self.nmodes*timeInterval |
|
608 | 623 | else: |
|
609 | 624 | return timeInterval |
|
610 | 625 | |
|
611 | 626 | def getPower(self): |
|
612 | 627 | |
|
613 | 628 | factor = self.normFactor |
|
614 | 629 | power = numpy.zeros( (self.nChannels,self.nHeights) ) |
|
615 | 630 | for ch in range(self.nChannels): |
|
616 | 631 | z = None |
|
617 | 632 | if hasattr(factor,'shape'): |
|
618 | 633 | if factor.ndim > 1: |
|
619 | 634 | z = self.data_spc[ch]/factor[ch] |
|
620 | 635 | else: |
|
621 | 636 | z = self.data_spc[ch]/factor |
|
622 | 637 | else: |
|
623 | 638 | z = self.data_spc[ch]/factor |
|
624 | 639 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
625 | 640 | avg = numpy.average(z, axis=0) |
|
626 | 641 | power[ch] = 10 * numpy.log10(avg) |
|
627 | 642 | return power |
|
628 | 643 | |
|
629 | 644 | @property |
|
630 | 645 | def max_nIncohInt(self): |
|
631 | 646 | |
|
632 | 647 | ints = numpy.zeros(self.nChannels) |
|
633 | 648 | for ch in range(self.nChannels): |
|
634 | 649 | if hasattr(self.nIncohInt,'shape'): |
|
635 | 650 | if self.nIncohInt.ndim > 1: |
|
636 | 651 | ints[ch,] = self.nIncohInt[ch].max() |
|
637 | 652 | else: |
|
638 | 653 | ints[ch,] = self.nIncohInt |
|
639 | 654 | self.nIncohInt = int(self.nIncohInt) |
|
640 | 655 | else: |
|
641 | 656 | ints[ch,] = self.nIncohInt |
|
642 | 657 | |
|
643 | 658 | return ints |
|
644 | 659 | |
|
645 | 660 | |
|
646 | 661 | def getCoherence(self, pairsList=None, phase=False): |
|
647 | 662 | |
|
648 | 663 | z = [] |
|
649 | 664 | if pairsList is None: |
|
650 | 665 | pairsIndexList = self.pairsIndexList |
|
651 | 666 | else: |
|
652 | 667 | pairsIndexList = [] |
|
653 | 668 | for pair in pairsList: |
|
654 | 669 | if pair not in self.pairsList: |
|
655 | 670 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
656 | 671 | pair)) |
|
657 | 672 | pairsIndexList.append(self.pairsList.index(pair)) |
|
658 | 673 | for i in range(len(pairsIndexList)): |
|
659 | 674 | pair = self.pairsList[pairsIndexList[i]] |
|
660 | 675 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
661 | 676 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
662 | 677 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
663 | 678 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
664 | 679 | if phase: |
|
665 | 680 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
666 | 681 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
667 | 682 | else: |
|
668 | 683 | data = numpy.abs(avgcoherenceComplex) |
|
669 | 684 | |
|
670 | 685 | z.append(data) |
|
671 | 686 | |
|
672 | 687 | return numpy.array(z) |
|
673 | 688 | |
|
674 | 689 | def setValue(self, value): |
|
675 | 690 | |
|
676 | 691 | print("This property should not be initialized", value) |
|
677 | 692 | |
|
678 | 693 | return |
|
679 | 694 | |
|
680 | 695 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
681 | 696 | |
|
682 | 697 | |
|
683 | 698 | class SpectraHeis(Spectra): |
|
684 | 699 | |
|
685 | 700 | def __init__(self): |
|
686 | 701 | |
|
687 | 702 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
688 | 703 | self.systemHeaderObj = SystemHeader() |
|
689 | 704 | self.type = "SpectraHeis" |
|
690 | 705 | self.nProfiles = None |
|
691 | 706 | self.heightList = None |
|
692 | 707 | self.channelList = None |
|
693 | 708 | self.flagNoData = True |
|
694 | 709 | self.flagDiscontinuousBlock = False |
|
695 | 710 | self.utctime = None |
|
696 | 711 | self.blocksize = None |
|
697 | 712 | self.profileIndex = 0 |
|
698 | 713 | self.nCohInt = 1 |
|
699 | 714 | self.nIncohInt = 1 |
|
700 | 715 | |
|
701 | 716 | @property |
|
702 | 717 | def normFactor(self): |
|
703 | 718 | pwcode = 1 |
|
704 | 719 | if self.flagDecodeData: |
|
705 | 720 | pwcode = numpy.sum(self.code[0]**2) |
|
706 | 721 | |
|
707 | 722 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
708 | 723 | |
|
709 | 724 | return normFactor |
|
710 | 725 | |
|
711 | 726 | @property |
|
712 | 727 | def timeInterval(self): |
|
713 | 728 | |
|
714 | 729 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
715 | 730 | |
|
716 | 731 | |
|
717 | 732 | class Fits(JROData): |
|
718 | 733 | |
|
719 | 734 | def __init__(self): |
|
720 | 735 | |
|
721 | 736 | self.type = "Fits" |
|
722 | 737 | self.nProfiles = None |
|
723 | 738 | self.heightList = None |
|
724 | 739 | self.channelList = None |
|
725 | 740 | self.flagNoData = True |
|
726 | 741 | self.utctime = None |
|
727 | 742 | self.nCohInt = 1 |
|
728 | 743 | self.nIncohInt = 1 |
|
729 | 744 | self.useLocalTime = True |
|
730 | 745 | self.profileIndex = 0 |
|
731 | 746 | self.timeZone = 0 |
|
732 | 747 | |
|
733 | 748 | def getTimeRange(self): |
|
734 | 749 | |
|
735 | 750 | datatime = [] |
|
736 | 751 | |
|
737 | 752 | datatime.append(self.ltctime) |
|
738 | 753 | datatime.append(self.ltctime + self.timeInterval) |
|
739 | 754 | |
|
740 | 755 | datatime = numpy.array(datatime) |
|
741 | 756 | |
|
742 | 757 | return datatime |
|
743 | 758 | |
|
744 | 759 | def getChannelIndexList(self): |
|
745 | 760 | |
|
746 | 761 | return list(range(self.nChannels)) |
|
747 | 762 | |
|
748 | 763 | def getNoise(self, type=1): |
|
749 | 764 | |
|
750 | 765 | |
|
751 | 766 | if type == 1: |
|
752 | 767 | noise = self.getNoisebyHildebrand() |
|
753 | 768 | |
|
754 | 769 | if type == 2: |
|
755 | 770 | noise = self.getNoisebySort() |
|
756 | 771 | |
|
757 | 772 | if type == 3: |
|
758 | 773 | noise = self.getNoisebyWindow() |
|
759 | 774 | |
|
760 | 775 | return noise |
|
761 | 776 | |
|
762 | 777 | @property |
|
763 | 778 | def timeInterval(self): |
|
764 | 779 | |
|
765 | 780 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
766 | 781 | |
|
767 | 782 | return timeInterval |
|
768 | 783 | |
|
769 | 784 | @property |
|
770 | 785 | def ippSeconds(self): |
|
771 | 786 | ''' |
|
772 | 787 | ''' |
|
773 | 788 | return self.ipp_sec |
|
774 | 789 | |
|
775 | 790 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
776 | 791 | |
|
777 | 792 | |
|
778 | 793 | class Correlation(JROData): |
|
779 | 794 | |
|
780 | 795 | def __init__(self): |
|
781 | 796 | ''' |
|
782 | 797 | Constructor |
|
783 | 798 | ''' |
|
784 | 799 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
785 | 800 | self.systemHeaderObj = SystemHeader() |
|
786 | 801 | self.type = "Correlation" |
|
787 | 802 | self.data = None |
|
788 | 803 | self.dtype = None |
|
789 | 804 | self.nProfiles = None |
|
790 | 805 | self.heightList = None |
|
791 | 806 | self.channelList = None |
|
792 | 807 | self.flagNoData = True |
|
793 | 808 | self.flagDiscontinuousBlock = False |
|
794 | 809 | self.utctime = None |
|
795 | 810 | self.timeZone = 0 |
|
796 | 811 | self.dstFlag = None |
|
797 | 812 | self.errorCount = None |
|
798 | 813 | self.blocksize = None |
|
799 | 814 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
800 | 815 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
801 | 816 | self.pairsList = None |
|
802 | 817 | self.nPoints = None |
|
803 | 818 | |
|
804 | 819 | def getPairsList(self): |
|
805 | 820 | |
|
806 | 821 | return self.pairsList |
|
807 | 822 | |
|
808 | 823 | def getNoise(self, mode=2): |
|
809 | 824 | |
|
810 | 825 | indR = numpy.where(self.lagR == 0)[0][0] |
|
811 | 826 | indT = numpy.where(self.lagT == 0)[0][0] |
|
812 | 827 | |
|
813 | 828 | jspectra0 = self.data_corr[:, :, indR, :] |
|
814 | 829 | jspectra = copy.copy(jspectra0) |
|
815 | 830 | |
|
816 | 831 | num_chan = jspectra.shape[0] |
|
817 | 832 | num_hei = jspectra.shape[2] |
|
818 | 833 | |
|
819 | 834 | freq_dc = jspectra.shape[1] / 2 |
|
820 | 835 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
821 | 836 | |
|
822 | 837 | if ind_vel[0] < 0: |
|
823 | 838 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
824 | 839 | range(0, 1))] + self.num_prof |
|
825 | 840 | |
|
826 | 841 | if mode == 1: |
|
827 | 842 | jspectra[:, freq_dc, :] = ( |
|
828 | 843 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
829 | 844 | |
|
830 | 845 | if mode == 2: |
|
831 | 846 | |
|
832 | 847 | vel = numpy.array([-2, -1, 1, 2]) |
|
833 | 848 | xx = numpy.zeros([4, 4]) |
|
834 | 849 | |
|
835 | 850 | for fil in range(4): |
|
836 | 851 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
837 | 852 | |
|
838 | 853 | xx_inv = numpy.linalg.inv(xx) |
|
839 | 854 | xx_aux = xx_inv[0, :] |
|
840 | 855 | |
|
841 | 856 | for ich in range(num_chan): |
|
842 | 857 | yy = jspectra[ich, ind_vel, :] |
|
843 | 858 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
844 | 859 | |
|
845 | 860 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
846 | 861 | cjunkid = sum(junkid) |
|
847 | 862 | |
|
848 | 863 | if cjunkid.any(): |
|
849 | 864 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
850 | 865 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
851 | 866 | |
|
852 | 867 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
853 | 868 | |
|
854 | 869 | return noise |
|
855 | 870 | |
|
856 | 871 | @property |
|
857 | 872 | def timeInterval(self): |
|
858 | 873 | |
|
859 | 874 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
860 | 875 | |
|
861 | 876 | def splitFunctions(self): |
|
862 | 877 | |
|
863 | 878 | pairsList = self.pairsList |
|
864 | 879 | ccf_pairs = [] |
|
865 | 880 | acf_pairs = [] |
|
866 | 881 | ccf_ind = [] |
|
867 | 882 | acf_ind = [] |
|
868 | 883 | for l in range(len(pairsList)): |
|
869 | 884 | chan0 = pairsList[l][0] |
|
870 | 885 | chan1 = pairsList[l][1] |
|
871 | 886 | |
|
872 | 887 | # Obteniendo pares de Autocorrelacion |
|
873 | 888 | if chan0 == chan1: |
|
874 | 889 | acf_pairs.append(chan0) |
|
875 | 890 | acf_ind.append(l) |
|
876 | 891 | else: |
|
877 | 892 | ccf_pairs.append(pairsList[l]) |
|
878 | 893 | ccf_ind.append(l) |
|
879 | 894 | |
|
880 | 895 | data_acf = self.data_cf[acf_ind] |
|
881 | 896 | data_ccf = self.data_cf[ccf_ind] |
|
882 | 897 | |
|
883 | 898 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
884 | 899 | |
|
885 | 900 | @property |
|
886 | 901 | def normFactor(self): |
|
887 | 902 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
888 | 903 | acf_pairs = numpy.array(acf_pairs) |
|
889 | 904 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
890 | 905 | |
|
891 | 906 | for p in range(self.nPairs): |
|
892 | 907 | pair = self.pairsList[p] |
|
893 | 908 | |
|
894 | 909 | ch0 = pair[0] |
|
895 | 910 | ch1 = pair[1] |
|
896 | 911 | |
|
897 | 912 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
898 | 913 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
899 | 914 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
900 | 915 | |
|
901 | 916 | return normFactor |
|
902 | 917 | |
|
903 | 918 | |
|
904 | 919 | class Parameters(Spectra): |
|
905 | 920 | |
|
906 | 921 | radarControllerHeaderTxt=None #header Controller like text |
|
907 | 922 | groupList = None # List of Pairs, Groups, etc |
|
908 | 923 | data_param = None # Parameters obtained |
|
909 | 924 | data_pre = None # Data Pre Parametrization |
|
910 | 925 | data_SNR = None # Signal to Noise Ratio |
|
911 | 926 | data_outlier = None |
|
912 | 927 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
913 | 928 | utctimeInit = None # Initial UTC time |
|
914 | 929 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
915 | 930 | useLocalTime = True |
|
916 | 931 | # Fitting |
|
917 | 932 | data_error = None # Error of the estimation |
|
918 | 933 | constants = None |
|
919 | 934 | library = None |
|
920 | 935 | # Output signal |
|
921 | 936 | outputInterval = None # Time interval to calculate output signal in seconds |
|
922 | 937 | data_output = None # Out signal |
|
923 | 938 | nAvg = None |
|
924 | 939 | noise_estimation = None |
|
925 | 940 | GauSPC = None # Fit gaussian SPC |
|
926 | 941 | |
|
942 | ||
|
943 | ||
|
927 | 944 | def __init__(self): |
|
928 | 945 | ''' |
|
929 | 946 | Constructor |
|
930 | 947 | ''' |
|
931 | 948 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
932 | 949 | self.systemHeaderObj = SystemHeader() |
|
950 | self.processingHeaderObj = ProcessingHeader() | |
|
933 | 951 | self.type = "Parameters" |
|
934 | 952 | self.timeZone = 0 |
|
935 | 953 | |
|
936 | 954 | def getTimeRange1(self, interval): |
|
937 | 955 | |
|
938 | 956 | datatime = [] |
|
939 | 957 | |
|
940 | 958 | if self.useLocalTime: |
|
941 | 959 | time1 = self.utctimeInit - self.timeZone * 60 |
|
942 | 960 | else: |
|
943 | 961 | time1 = self.utctimeInit |
|
944 | 962 | |
|
945 | 963 | datatime.append(time1) |
|
946 | 964 | datatime.append(time1 + interval) |
|
947 | 965 | datatime = numpy.array(datatime) |
|
948 | 966 | |
|
949 | 967 | return datatime |
|
950 | 968 | |
|
951 | 969 | @property |
|
952 | 970 | def timeInterval(self): |
|
953 | 971 | |
|
954 | 972 | if hasattr(self, 'timeInterval1'): |
|
955 | 973 | return self.timeInterval1 |
|
956 | 974 | else: |
|
957 | 975 | return self.paramInterval |
|
958 | 976 | |
|
959 | 977 | def setValue(self, value): |
|
960 | 978 | |
|
961 | 979 | print("This property should not be initialized") |
|
962 | 980 | |
|
963 | 981 | return |
|
964 | 982 | |
|
965 | 983 | def getNoise(self): |
|
966 | 984 | |
|
967 | 985 | return self.spc_noise |
|
968 | 986 | |
|
969 | 987 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
970 | 988 | |
|
971 | 989 | |
|
972 | 990 | class PlotterData(object): |
|
973 | 991 | ''' |
|
974 | 992 | Object to hold data to be plotted |
|
975 | 993 | ''' |
|
976 | 994 | |
|
977 | 995 | MAXNUMX = 200 |
|
978 | 996 | MAXNUMY = 200 |
|
979 | 997 | |
|
980 | 998 | def __init__(self, code, exp_code, localtime=True): |
|
981 | 999 | |
|
982 | 1000 | self.key = code |
|
983 | 1001 | self.exp_code = exp_code |
|
984 | 1002 | self.ready = False |
|
985 | 1003 | self.flagNoData = False |
|
986 | 1004 | self.localtime = localtime |
|
987 | 1005 | self.data = {} |
|
988 | 1006 | self.meta = {} |
|
989 | 1007 | self.__heights = [] |
|
990 | 1008 | |
|
991 | 1009 | def __str__(self): |
|
992 | 1010 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
993 | 1011 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
994 | 1012 | |
|
995 | 1013 | def __len__(self): |
|
996 | 1014 | return len(self.data) |
|
997 | 1015 | |
|
998 | 1016 | def __getitem__(self, key): |
|
999 | 1017 | if isinstance(key, int): |
|
1000 | 1018 | return self.data[self.times[key]] |
|
1001 | 1019 | elif isinstance(key, str): |
|
1002 | 1020 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
1003 | 1021 | if ret.ndim > 1: |
|
1004 | 1022 | ret = numpy.swapaxes(ret, 0, 1) |
|
1005 | 1023 | return ret |
|
1006 | 1024 | |
|
1007 | 1025 | def __contains__(self, key): |
|
1008 | 1026 | return key in self.data[self.min_time] |
|
1009 | 1027 | |
|
1010 | 1028 | def setup(self): |
|
1011 | 1029 | ''' |
|
1012 | 1030 | Configure object |
|
1013 | 1031 | ''' |
|
1014 | 1032 | self.type = '' |
|
1015 | 1033 | self.ready = False |
|
1016 | 1034 | del self.data |
|
1017 | 1035 | self.data = {} |
|
1018 | 1036 | self.__heights = [] |
|
1019 | 1037 | self.__all_heights = set() |
|
1020 | 1038 | |
|
1021 | 1039 | def shape(self, key): |
|
1022 | 1040 | ''' |
|
1023 | 1041 | Get the shape of the one-element data for the given key |
|
1024 | 1042 | ''' |
|
1025 | 1043 | |
|
1026 | 1044 | if len(self.data[self.min_time][key]): |
|
1027 | 1045 | return self.data[self.min_time][key].shape |
|
1028 | 1046 | return (0,) |
|
1029 | 1047 | |
|
1030 | 1048 | def update(self, data, tm, meta={}): |
|
1031 | 1049 | ''' |
|
1032 | 1050 | Update data object with new dataOut |
|
1033 | 1051 | ''' |
|
1034 | 1052 | |
|
1035 | 1053 | self.data[tm] = data |
|
1036 | 1054 | |
|
1037 | 1055 | for key, value in meta.items(): |
|
1038 | 1056 | setattr(self, key, value) |
|
1039 | 1057 | |
|
1040 | 1058 | def normalize_heights(self): |
|
1041 | 1059 | ''' |
|
1042 | 1060 | Ensure same-dimension of the data for different heighList |
|
1043 | 1061 | ''' |
|
1044 | 1062 | |
|
1045 | 1063 | H = numpy.array(list(self.__all_heights)) |
|
1046 | 1064 | H.sort() |
|
1047 | 1065 | for key in self.data: |
|
1048 | 1066 | shape = self.shape(key)[:-1] + H.shape |
|
1049 | 1067 | for tm, obj in list(self.data[key].items()): |
|
1050 | 1068 | h = self.__heights[self.times.tolist().index(tm)] |
|
1051 | 1069 | if H.size == h.size: |
|
1052 | 1070 | continue |
|
1053 | 1071 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1054 | 1072 | dummy = numpy.zeros(shape) + numpy.nan |
|
1055 | 1073 | if len(shape) == 2: |
|
1056 | 1074 | dummy[:, index] = obj |
|
1057 | 1075 | else: |
|
1058 | 1076 | dummy[index] = obj |
|
1059 | 1077 | self.data[key][tm] = dummy |
|
1060 | 1078 | |
|
1061 | 1079 | self.__heights = [H for tm in self.times] |
|
1062 | 1080 | |
|
1063 | 1081 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1064 | 1082 | ''' |
|
1065 | 1083 | Convert data to json |
|
1066 | 1084 | ''' |
|
1067 | 1085 | |
|
1068 | 1086 | meta = {} |
|
1069 | 1087 | meta['xrange'] = [] |
|
1070 | 1088 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1071 | 1089 | tmp = self.data[tm][self.key] |
|
1072 | 1090 | shape = tmp.shape |
|
1073 | 1091 | if len(shape) == 2: |
|
1074 | 1092 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1075 | 1093 | elif len(shape) == 3: |
|
1076 | 1094 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1077 | 1095 | data = self.roundFloats( |
|
1078 | 1096 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1079 | 1097 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1080 | 1098 | else: |
|
1081 | 1099 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1082 | 1100 | |
|
1083 | 1101 | ret = { |
|
1084 | 1102 | 'plot': plot_name, |
|
1085 | 1103 | 'code': self.exp_code, |
|
1086 | 1104 | 'time': float(tm), |
|
1087 | 1105 | 'data': data, |
|
1088 | 1106 | } |
|
1089 | 1107 | meta['type'] = plot_type |
|
1090 | 1108 | meta['interval'] = float(self.interval) |
|
1091 | 1109 | meta['localtime'] = self.localtime |
|
1092 | 1110 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1093 | 1111 | meta.update(self.meta) |
|
1094 | 1112 | ret['metadata'] = meta |
|
1095 | 1113 | return json.dumps(ret) |
|
1096 | 1114 | |
|
1097 | 1115 | @property |
|
1098 | 1116 | def times(self): |
|
1099 | 1117 | ''' |
|
1100 | 1118 | Return the list of times of the current data |
|
1101 | 1119 | ''' |
|
1102 | 1120 | |
|
1103 | 1121 | ret = [t for t in self.data] |
|
1104 | 1122 | ret.sort() |
|
1105 | 1123 | return numpy.array(ret) |
|
1106 | 1124 | |
|
1107 | 1125 | @property |
|
1108 | 1126 | def min_time(self): |
|
1109 | 1127 | ''' |
|
1110 | 1128 | Return the minimun time value |
|
1111 | 1129 | ''' |
|
1112 | 1130 | |
|
1113 | 1131 | return self.times[0] |
|
1114 | 1132 | |
|
1115 | 1133 | @property |
|
1116 | 1134 | def max_time(self): |
|
1117 | 1135 | ''' |
|
1118 | 1136 | Return the maximun time value |
|
1119 | 1137 | ''' |
|
1120 | 1138 | |
|
1121 | 1139 | return self.times[-1] |
|
1122 | 1140 | |
|
1123 | 1141 | # @property |
|
1124 | 1142 | # def heights(self): |
|
1125 | 1143 | # ''' |
|
1126 | 1144 | # Return the list of heights of the current data |
|
1127 | 1145 | # ''' |
|
1128 | 1146 | |
|
1129 | 1147 | # return numpy.array(self.__heights[-1]) |
|
1130 | 1148 | |
|
1131 | 1149 | @staticmethod |
|
1132 | 1150 | def roundFloats(obj): |
|
1133 | 1151 | if isinstance(obj, list): |
|
1134 | 1152 | return list(map(PlotterData.roundFloats, obj)) |
|
1135 | 1153 | elif isinstance(obj, float): |
|
1136 | 1154 | return round(obj, 2) |
@@ -1,915 +1,948 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROHeaderIO.py 151 2012-10-31 19:00:51Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | import sys |
|
7 | 7 | import numpy |
|
8 | 8 | import copy |
|
9 | 9 | import datetime |
|
10 | 10 | import inspect |
|
11 | 11 | from schainpy.utils import log |
|
12 | 12 | |
|
13 | 13 | SPEED_OF_LIGHT = 299792458 |
|
14 | 14 | SPEED_OF_LIGHT = 3e8 |
|
15 | 15 | |
|
16 | 16 | BASIC_STRUCTURE = numpy.dtype([ |
|
17 | 17 | ('nSize', '<u4'), |
|
18 | 18 | ('nVersion', '<u2'), |
|
19 | 19 | ('nDataBlockId', '<u4'), |
|
20 | 20 | ('nUtime', '<u4'), |
|
21 | 21 | ('nMilsec', '<u2'), |
|
22 | 22 | ('nTimezone', '<i2'), |
|
23 | 23 | ('nDstflag', '<i2'), |
|
24 | 24 | ('nErrorCount', '<u4') |
|
25 | 25 | ]) |
|
26 | 26 | |
|
27 | 27 | SYSTEM_STRUCTURE = numpy.dtype([ |
|
28 | 28 | ('nSize', '<u4'), |
|
29 | 29 | ('nNumSamples', '<u4'), |
|
30 | 30 | ('nNumProfiles', '<u4'), |
|
31 | 31 | ('nNumChannels', '<u4'), |
|
32 | 32 | ('nADCResolution', '<u4'), |
|
33 | 33 | ('nPCDIOBusWidth', '<u4'), |
|
34 | 34 | ]) |
|
35 | 35 | |
|
36 | 36 | RADAR_STRUCTURE = numpy.dtype([ |
|
37 | 37 | ('nSize', '<u4'), |
|
38 | 38 | ('nExpType', '<u4'), |
|
39 | 39 | ('nNTx', '<u4'), |
|
40 | 40 | ('fIpp', '<f4'), |
|
41 | 41 | ('fTxA', '<f4'), |
|
42 | 42 | ('fTxB', '<f4'), |
|
43 | 43 | ('nNumWindows', '<u4'), |
|
44 | 44 | ('nNumTaus', '<u4'), |
|
45 | 45 | ('nCodeType', '<u4'), |
|
46 | 46 | ('nLine6Function', '<u4'), |
|
47 | 47 | ('nLine5Function', '<u4'), |
|
48 | 48 | ('fClock', '<f4'), |
|
49 | 49 | ('nPrePulseBefore', '<u4'), |
|
50 | 50 | ('nPrePulseAfter', '<u4'), |
|
51 | 51 | ('sRangeIPP', '<a20'), |
|
52 | 52 | ('sRangeTxA', '<a20'), |
|
53 | 53 | ('sRangeTxB', '<a20'), |
|
54 | 54 | ]) |
|
55 | 55 | |
|
56 | 56 | SAMPLING_STRUCTURE = numpy.dtype( |
|
57 | 57 | [('h0', '<f4'), ('dh', '<f4'), ('nsa', '<u4')]) |
|
58 | 58 | |
|
59 | 59 | |
|
60 | 60 | PROCESSING_STRUCTURE = numpy.dtype([ |
|
61 | 61 | ('nSize', '<u4'), |
|
62 | 62 | ('nDataType', '<u4'), |
|
63 | 63 | ('nSizeOfDataBlock', '<u4'), |
|
64 | 64 | ('nProfilesperBlock', '<u4'), |
|
65 | 65 | ('nDataBlocksperFile', '<u4'), |
|
66 | 66 | ('nNumWindows', '<u4'), |
|
67 | 67 | ('nProcessFlags', '<u4'), |
|
68 | 68 | ('nCoherentIntegrations', '<u4'), |
|
69 | 69 | ('nIncoherentIntegrations', '<u4'), |
|
70 | 70 | ('nTotalSpectra', '<u4') |
|
71 | 71 | ]) |
|
72 | 72 | |
|
73 | 73 | |
|
74 | 74 | class Header(object): |
|
75 | 75 | |
|
76 | 76 | def __init__(self): |
|
77 | 77 | raise NotImplementedError |
|
78 | 78 | |
|
79 | 79 | def copy(self): |
|
80 | 80 | return copy.deepcopy(self) |
|
81 | 81 | |
|
82 | 82 | def read(self): |
|
83 | 83 | |
|
84 | 84 | raise NotImplementedError |
|
85 | 85 | |
|
86 | 86 | def write(self): |
|
87 | 87 | |
|
88 | 88 | raise NotImplementedError |
|
89 | 89 | |
|
90 | 90 | def getAllowedArgs(self): |
|
91 | 91 | args = inspect.getargspec(self.__init__).args |
|
92 | 92 | try: |
|
93 | 93 | args.remove('self') |
|
94 | 94 | except: |
|
95 | 95 | pass |
|
96 | 96 | return args |
|
97 | 97 | |
|
98 | 98 | def getAsDict(self): |
|
99 | 99 | args = self.getAllowedArgs() |
|
100 | 100 | asDict = {} |
|
101 | 101 | for x in args: |
|
102 | 102 | asDict[x] = self[x] |
|
103 | 103 | return asDict |
|
104 | 104 | |
|
105 | 105 | def __getitem__(self, name): |
|
106 | 106 | return getattr(self, name) |
|
107 | 107 | |
|
108 | 108 | def printInfo(self): |
|
109 | 109 | |
|
110 | 110 | message = "#" * 50 + "\n" |
|
111 | 111 | message += self.__class__.__name__.upper() + "\n" |
|
112 | 112 | message += "#" * 50 + "\n" |
|
113 | 113 | |
|
114 | 114 | keyList = list(self.__dict__.keys()) |
|
115 | 115 | keyList.sort() |
|
116 | 116 | |
|
117 | 117 | for key in keyList: |
|
118 | 118 | message += "%s = %s" % (key, self.__dict__[key]) + "\n" |
|
119 | 119 | |
|
120 | 120 | if "size" not in keyList: |
|
121 | 121 | attr = getattr(self, "size") |
|
122 | 122 | |
|
123 | 123 | if attr: |
|
124 | 124 | message += "%s = %s" % ("size", attr) + "\n" |
|
125 | 125 | |
|
126 | 126 | print(message) |
|
127 | 127 | |
|
128 | 128 | |
|
129 | 129 | class BasicHeader(Header): |
|
130 | 130 | |
|
131 | 131 | size = None |
|
132 | 132 | version = None |
|
133 | 133 | dataBlock = None |
|
134 | 134 | utc = None |
|
135 | 135 | ltc = None |
|
136 | 136 | miliSecond = None |
|
137 | 137 | timeZone = None |
|
138 | 138 | dstFlag = None |
|
139 | 139 | errorCount = None |
|
140 | 140 | datatime = None |
|
141 | 141 | structure = BASIC_STRUCTURE |
|
142 | 142 | __LOCALTIME = None |
|
143 | 143 | |
|
144 | 144 | def __init__(self, useLocalTime=True): |
|
145 | 145 | |
|
146 | 146 | self.size = 24 |
|
147 | 147 | self.version = 0 |
|
148 | 148 | self.dataBlock = 0 |
|
149 | 149 | self.utc = 0 |
|
150 | 150 | self.miliSecond = 0 |
|
151 | 151 | self.timeZone = 0 |
|
152 | 152 | self.dstFlag = 0 |
|
153 | 153 | self.errorCount = 0 |
|
154 | 154 | |
|
155 | 155 | self.useLocalTime = useLocalTime |
|
156 | 156 | |
|
157 | 157 | def read(self, fp): |
|
158 | 158 | |
|
159 | 159 | self.length = 0 |
|
160 | 160 | try: |
|
161 | 161 | if hasattr(fp, 'read'): |
|
162 | 162 | header = numpy.fromfile(fp, BASIC_STRUCTURE, 1) |
|
163 | 163 | else: |
|
164 | 164 | header = numpy.fromstring(fp, BASIC_STRUCTURE, 1) |
|
165 | 165 | except Exception as e: |
|
166 | 166 | print("BasicHeader: ") |
|
167 | 167 | print(e) |
|
168 | 168 | return 0 |
|
169 | 169 | |
|
170 | 170 | self.size = int(header['nSize'][0]) |
|
171 | 171 | self.version = int(header['nVersion'][0]) |
|
172 | 172 | self.dataBlock = int(header['nDataBlockId'][0]) |
|
173 | 173 | self.utc = int(header['nUtime'][0]) |
|
174 | 174 | self.miliSecond = int(header['nMilsec'][0]) |
|
175 | 175 | self.timeZone = int(header['nTimezone'][0]) |
|
176 | 176 | self.dstFlag = int(header['nDstflag'][0]) |
|
177 | 177 | self.errorCount = int(header['nErrorCount'][0]) |
|
178 | 178 | |
|
179 | 179 | if self.size < 24: |
|
180 | 180 | return 0 |
|
181 | 181 | |
|
182 | 182 | self.length = header.nbytes |
|
183 | 183 | return 1 |
|
184 | 184 | |
|
185 | 185 | def write(self, fp): |
|
186 | 186 | |
|
187 | 187 | headerTuple = (self.size, self.version, self.dataBlock, self.utc, |
|
188 | 188 | self.miliSecond, self.timeZone, self.dstFlag, self.errorCount) |
|
189 | 189 | header = numpy.array(headerTuple, BASIC_STRUCTURE) |
|
190 | 190 | header.tofile(fp) |
|
191 | 191 | |
|
192 | 192 | return 1 |
|
193 | 193 | |
|
194 | 194 | def get_ltc(self): |
|
195 | 195 | |
|
196 | 196 | return self.utc - self.timeZone * 60 |
|
197 | 197 | |
|
198 | 198 | def set_ltc(self, value): |
|
199 | 199 | |
|
200 | 200 | self.utc = value + self.timeZone * 60 |
|
201 | 201 | |
|
202 | 202 | def get_datatime(self): |
|
203 | 203 | |
|
204 | 204 | return datetime.datetime.utcfromtimestamp(self.ltc) |
|
205 | 205 | |
|
206 | 206 | ltc = property(get_ltc, set_ltc) |
|
207 | 207 | datatime = property(get_datatime) |
|
208 | 208 | |
|
209 | 209 | |
|
210 | 210 | class SystemHeader(Header): |
|
211 | 211 | |
|
212 | 212 | size = None |
|
213 | 213 | nSamples = None |
|
214 | 214 | nProfiles = None |
|
215 | 215 | nChannels = None |
|
216 | 216 | adcResolution = None |
|
217 | 217 | pciDioBusWidth = None |
|
218 | 218 | structure = SYSTEM_STRUCTURE |
|
219 | 219 | |
|
220 | 220 | def __init__(self, nSamples=0, nProfiles=0, nChannels=0, adcResolution=14, pciDioBusWidth=0): |
|
221 | 221 | |
|
222 | 222 | self.size = 24 |
|
223 | 223 | self.nSamples = nSamples |
|
224 | 224 | self.nProfiles = nProfiles |
|
225 | 225 | self.nChannels = nChannels |
|
226 | 226 | self.adcResolution = adcResolution |
|
227 | 227 | self.pciDioBusWidth = pciDioBusWidth |
|
228 | 228 | |
|
229 | 229 | def read(self, fp): |
|
230 | 230 | self.length = 0 |
|
231 | 231 | try: |
|
232 | 232 | startFp = fp.tell() |
|
233 | 233 | except Exception as e: |
|
234 | 234 | startFp = None |
|
235 | 235 | pass |
|
236 | 236 | |
|
237 | 237 | try: |
|
238 | 238 | if hasattr(fp, 'read'): |
|
239 | 239 | header = numpy.fromfile(fp, SYSTEM_STRUCTURE, 1) |
|
240 | 240 | else: |
|
241 | 241 | header = numpy.fromstring(fp, SYSTEM_STRUCTURE, 1) |
|
242 | 242 | except Exception as e: |
|
243 | 243 | print("System Header: " + str(e)) |
|
244 | 244 | return 0 |
|
245 | 245 | |
|
246 | 246 | self.size = header['nSize'][0] |
|
247 | 247 | self.nSamples = header['nNumSamples'][0] |
|
248 | 248 | self.nProfiles = header['nNumProfiles'][0] |
|
249 | 249 | self.nChannels = header['nNumChannels'][0] |
|
250 | 250 | self.adcResolution = header['nADCResolution'][0] |
|
251 | 251 | self.pciDioBusWidth = header['nPCDIOBusWidth'][0] |
|
252 | 252 | |
|
253 | 253 | if startFp is not None: |
|
254 | 254 | endFp = self.size + startFp |
|
255 | 255 | |
|
256 | 256 | if fp.tell() > endFp: |
|
257 | 257 | sys.stderr.write( |
|
258 | 258 | "Warning %s: Size value read from System Header is lower than it has to be\n" % fp.name) |
|
259 | 259 | return 0 |
|
260 | 260 | |
|
261 | 261 | if fp.tell() < endFp: |
|
262 | 262 | sys.stderr.write( |
|
263 | 263 | "Warning %s: Size value read from System Header size is greater than it has to be\n" % fp.name) |
|
264 | 264 | return 0 |
|
265 | 265 | |
|
266 | 266 | self.length = header.nbytes |
|
267 | 267 | return 1 |
|
268 | 268 | |
|
269 | 269 | def write(self, fp): |
|
270 | 270 | |
|
271 | 271 | headerTuple = (self.size, self.nSamples, self.nProfiles, |
|
272 | 272 | self.nChannels, self.adcResolution, self.pciDioBusWidth) |
|
273 | 273 | header = numpy.array(headerTuple, SYSTEM_STRUCTURE) |
|
274 | 274 | header.tofile(fp) |
|
275 | 275 | |
|
276 | 276 | return 1 |
|
277 | 277 | |
|
278 | 278 | |
|
279 | 279 | class RadarControllerHeader(Header): |
|
280 | 280 | |
|
281 | 281 | expType = None |
|
282 | dtype = "" | |
|
282 | 283 | nTx = None |
|
283 | 284 | ipp = None |
|
284 | 285 | txA = None |
|
285 | 286 | txB = None |
|
286 | 287 | nWindows = None |
|
287 | 288 | numTaus = None |
|
288 | 289 | codeType = None |
|
289 | 290 | line6Function = None |
|
290 | 291 | line5Function = None |
|
291 | 292 | fClock = None |
|
292 | 293 | prePulseBefore = None |
|
293 | 294 | prePulseAfter = None |
|
294 | rangeIpp = None | |
|
295 | rangeIpp = None #variables innecesarias? | |
|
295 | 296 | rangeTxA = None |
|
296 | 297 | rangeTxB = None |
|
297 | 298 | structure = RADAR_STRUCTURE |
|
298 | 299 | __size = None |
|
300 | ################################################ | |
|
301 | ippSeconds = None | |
|
302 | frequency = None | |
|
303 | sampleRate = None | |
|
304 | nOsamp = None | |
|
305 | channelList = [] | |
|
306 | azimuthList = [] | |
|
307 | elevationList =[] | |
|
308 | codeList = [] | |
|
309 | nChannels = 1 | |
|
310 | heightList = [] | |
|
311 | heightResolution = None | |
|
312 | ||
|
299 | 313 | |
|
300 | 314 | def __init__(self, expType=2, nTx=1, |
|
301 | 315 | ipp=None, txA=0, txB=0, |
|
302 | 316 | nWindows=None, nHeights=None, firstHeight=None, deltaHeight=None, |
|
303 | 317 | numTaus=0, line6Function=0, line5Function=0, fClock=None, |
|
304 | 318 | prePulseBefore=0, prePulseAfter=0, |
|
305 | codeType=0, nCode=0, nBaud=0, code=[], | |
|
306 | flip1=0, flip2=0): | |
|
319 | codeType=0, nCode=0, nBaud=0, code=[],nOsamp = None, frequency = None,sampleRate=None, | |
|
320 | flip1=0, flip2=0, nChannels=1): | |
|
307 | 321 | |
|
308 | 322 | # self.size = 116 |
|
309 | 323 | self.expType = expType |
|
310 | 324 | self.nTx = nTx |
|
311 | 325 | self.ipp = ipp |
|
312 | 326 | self.txA = txA |
|
313 | 327 | self.txB = txB |
|
314 | 328 | self.rangeIpp = ipp |
|
315 | 329 | self.rangeTxA = txA |
|
316 | 330 | self.rangeTxB = txB |
|
317 | ||
|
331 | self.frequency = frequency | |
|
332 | self.sampleRate = sampleRate | |
|
318 | 333 | self.nWindows = nWindows |
|
319 | 334 | self.numTaus = numTaus |
|
320 | 335 | self.codeType = codeType |
|
321 | 336 | self.line6Function = line6Function |
|
322 | 337 | self.line5Function = line5Function |
|
323 | 338 | self.fClock = fClock |
|
324 | 339 | self.prePulseBefore = prePulseBefore |
|
325 | 340 | self.prePulseAfter = prePulseAfter |
|
326 | 341 | |
|
327 | 342 | self.nHeights = nHeights |
|
328 | 343 | self.firstHeight = firstHeight |
|
329 | 344 | self.deltaHeight = deltaHeight |
|
330 | 345 | self.samplesWin = nHeights |
|
331 | 346 | |
|
332 | 347 | self.nCode = nCode |
|
333 | 348 | self.nBaud = nBaud |
|
334 | 349 | self.code = code |
|
350 | self.nOsamp = nOsamp | |
|
335 | 351 | self.flip1 = flip1 |
|
336 | 352 | self.flip2 = flip2 |
|
337 | 353 | |
|
338 | 354 | self.code_size = int(numpy.ceil(self.nBaud / 32.)) * self.nCode * 4 |
|
339 | 355 | # self.dynamic = numpy.array([],numpy.dtype('byte')) |
|
340 | 356 | |
|
341 | 357 | if self.fClock is None and self.deltaHeight is not None: |
|
342 | 358 | self.fClock = 0.15 / (deltaHeight * 1e-6) # 0.15Km / (height * 1u) |
|
343 | 359 | |
|
344 | 360 | def read(self, fp): |
|
345 | 361 | self.length = 0 |
|
346 | 362 | try: |
|
347 | 363 | startFp = fp.tell() |
|
348 | 364 | except Exception as e: |
|
349 | 365 | startFp = None |
|
350 | 366 | pass |
|
351 | 367 | |
|
352 | 368 | try: |
|
353 | 369 | if hasattr(fp, 'read'): |
|
354 | 370 | header = numpy.fromfile(fp, RADAR_STRUCTURE, 1) |
|
355 | 371 | else: |
|
356 | 372 | header = numpy.fromstring(fp, RADAR_STRUCTURE, 1) |
|
357 | 373 | self.length += header.nbytes |
|
358 | 374 | except Exception as e: |
|
359 | 375 | print("RadarControllerHeader: " + str(e)) |
|
360 | 376 | return 0 |
|
361 | 377 | |
|
362 | 378 | size = int(header['nSize'][0]) |
|
363 | 379 | self.expType = int(header['nExpType'][0]) |
|
364 | 380 | self.nTx = int(header['nNTx'][0]) |
|
365 | 381 | self.ipp = float(header['fIpp'][0]) |
|
366 | 382 | self.txA = float(header['fTxA'][0]) |
|
367 | 383 | self.txB = float(header['fTxB'][0]) |
|
368 | 384 | self.nWindows = int(header['nNumWindows'][0]) |
|
369 | 385 | self.numTaus = int(header['nNumTaus'][0]) |
|
370 | 386 | self.codeType = int(header['nCodeType'][0]) |
|
371 | 387 | self.line6Function = int(header['nLine6Function'][0]) |
|
372 | 388 | self.line5Function = int(header['nLine5Function'][0]) |
|
373 | 389 | self.fClock = float(header['fClock'][0]) |
|
374 | 390 | self.prePulseBefore = int(header['nPrePulseBefore'][0]) |
|
375 | 391 | self.prePulseAfter = int(header['nPrePulseAfter'][0]) |
|
376 | 392 | self.rangeIpp = header['sRangeIPP'][0] |
|
377 | 393 | self.rangeTxA = header['sRangeTxA'][0] |
|
378 | 394 | self.rangeTxB = header['sRangeTxB'][0] |
|
379 | 395 | |
|
380 | 396 | try: |
|
381 | 397 | if hasattr(fp, 'read'): |
|
382 | 398 | samplingWindow = numpy.fromfile( |
|
383 | 399 | fp, SAMPLING_STRUCTURE, self.nWindows) |
|
384 | 400 | else: |
|
385 | 401 | samplingWindow = numpy.fromstring( |
|
386 | 402 | fp[self.length:], SAMPLING_STRUCTURE, self.nWindows) |
|
387 | 403 | self.length += samplingWindow.nbytes |
|
388 | 404 | except Exception as e: |
|
389 | 405 | print("RadarControllerHeader: " + str(e)) |
|
390 | 406 | return 0 |
|
391 | 407 | self.nHeights = int(numpy.sum(samplingWindow['nsa'])) |
|
392 | 408 | self.firstHeight = samplingWindow['h0'] |
|
393 | 409 | self.deltaHeight = samplingWindow['dh'] |
|
394 | 410 | self.samplesWin = samplingWindow['nsa'] |
|
395 | 411 | |
|
396 | 412 | try: |
|
397 | 413 | if hasattr(fp, 'read'): |
|
398 | 414 | self.Taus = numpy.fromfile(fp, '<f4', self.numTaus) |
|
399 | 415 | else: |
|
400 | 416 | self.Taus = numpy.fromstring( |
|
401 | 417 | fp[self.length:], '<f4', self.numTaus) |
|
402 | 418 | self.length += self.Taus.nbytes |
|
403 | 419 | except Exception as e: |
|
404 | 420 | print("RadarControllerHeader: " + str(e)) |
|
405 | 421 | return 0 |
|
406 | 422 | |
|
407 | 423 | self.code_size = 0 |
|
408 | 424 | if self.codeType != 0: |
|
409 | 425 | |
|
410 | 426 | try: |
|
411 | 427 | if hasattr(fp, 'read'): |
|
412 | 428 | self.nCode = numpy.fromfile(fp, '<u4', 1)[0] |
|
413 | 429 | self.length += self.nCode.nbytes |
|
414 | 430 | self.nBaud = numpy.fromfile(fp, '<u4', 1)[0] |
|
415 | 431 | self.length += self.nBaud.nbytes |
|
416 | 432 | else: |
|
417 | 433 | self.nCode = numpy.fromstring( |
|
418 | 434 | fp[self.length:], '<u4', 1)[0] |
|
419 | 435 | self.length += self.nCode.nbytes |
|
420 | 436 | self.nBaud = numpy.fromstring( |
|
421 | 437 | fp[self.length:], '<u4', 1)[0] |
|
422 | 438 | self.length += self.nBaud.nbytes |
|
423 | 439 | except Exception as e: |
|
424 | 440 | print("RadarControllerHeader: " + str(e)) |
|
425 | 441 | return 0 |
|
426 | 442 | code = numpy.empty([self.nCode, self.nBaud], dtype='i1') |
|
427 | 443 | |
|
428 | 444 | for ic in range(self.nCode): |
|
429 | 445 | try: |
|
430 | 446 | if hasattr(fp, 'read'): |
|
431 | 447 | temp = numpy.fromfile(fp, 'u4', int( |
|
432 | 448 | numpy.ceil(self.nBaud / 32.))) |
|
433 | 449 | else: |
|
434 | 450 | temp = numpy.fromstring( |
|
435 | 451 | fp, 'u4', int(numpy.ceil(self.nBaud / 32.))) |
|
436 | 452 | self.length += temp.nbytes |
|
437 | 453 | except Exception as e: |
|
438 | 454 | print("RadarControllerHeader: " + str(e)) |
|
439 | 455 | return 0 |
|
440 | 456 | |
|
441 | 457 | for ib in range(self.nBaud - 1, -1, -1): |
|
442 | 458 | code[ic, ib] = temp[int(ib / 32)] % 2 |
|
443 | 459 | temp[int(ib / 32)] = temp[int(ib / 32)] / 2 |
|
444 | 460 | |
|
445 | 461 | self.code = 2.0 * code - 1.0 |
|
446 | 462 | self.code_size = int(numpy.ceil(self.nBaud / 32.)) * self.nCode * 4 |
|
447 | 463 | |
|
448 | 464 | # if self.line5Function == RCfunction.FLIP: |
|
449 | 465 | # self.flip1 = numpy.fromfile(fp,'<u4',1) |
|
450 | 466 | # |
|
451 | 467 | # if self.line6Function == RCfunction.FLIP: |
|
452 | 468 | # self.flip2 = numpy.fromfile(fp,'<u4',1) |
|
453 | 469 | if startFp is not None: |
|
454 | 470 | endFp = size + startFp |
|
455 | 471 | |
|
456 | 472 | if fp.tell() != endFp: |
|
457 | 473 | # fp.seek(endFp) |
|
458 | 474 | print("%s: Radar Controller Header size is not consistent: from data [%d] != from header field [%d]" % (fp.name, fp.tell() - startFp, size)) |
|
459 | 475 | # return 0 |
|
460 | 476 | |
|
461 | 477 | if fp.tell() > endFp: |
|
462 | 478 | sys.stderr.write( |
|
463 | 479 | "Warning %s: Size value read from Radar Controller header is lower than it has to be\n" % fp.name) |
|
464 | 480 | # return 0 |
|
465 | 481 | |
|
466 | 482 | if fp.tell() < endFp: |
|
467 | 483 | sys.stderr.write( |
|
468 | 484 | "Warning %s: Size value read from Radar Controller header is greater than it has to be\n" % fp.name) |
|
469 | 485 | |
|
470 | 486 | return 1 |
|
471 | 487 | |
|
472 | 488 | def toString(self): |
|
473 | 489 | #attrs = dir(self) |
|
474 | 490 | s = "" |
|
475 | 491 | for attribute, value in self.__dict__.items(): |
|
476 | 492 | if value!=None and value!= 0: |
|
477 | 493 | s += '{:18s}'.format(str(attribute)) +'\t'+str(value)+'\n' |
|
478 | 494 | #s += str(att) +'\t'+str(getattr(self, att))+'\n' |
|
479 | 495 | return s |
|
480 | 496 | |
|
481 | 497 | def write(self, fp): |
|
482 | 498 | |
|
483 | 499 | headerTuple = (self.size, |
|
484 | 500 | self.expType, |
|
485 | 501 | self.nTx, |
|
486 | 502 | self.ipp, |
|
487 | 503 | self.txA, |
|
488 | 504 | self.txB, |
|
489 | 505 | self.nWindows, |
|
490 | 506 | self.numTaus, |
|
491 | 507 | self.codeType, |
|
492 | 508 | self.line6Function, |
|
493 | 509 | self.line5Function, |
|
494 | 510 | self.fClock, |
|
495 | 511 | self.prePulseBefore, |
|
496 | 512 | self.prePulseAfter, |
|
497 | 513 | self.rangeIpp, |
|
498 | 514 | self.rangeTxA, |
|
499 | 515 | self.rangeTxB) |
|
500 | 516 | |
|
501 | 517 | header = numpy.array(headerTuple, RADAR_STRUCTURE) |
|
502 | 518 | header.tofile(fp) |
|
503 | 519 | |
|
504 | 520 | sampleWindowTuple = ( |
|
505 | 521 | self.firstHeight, self.deltaHeight, self.samplesWin) |
|
506 | 522 | samplingWindow = numpy.array(sampleWindowTuple, SAMPLING_STRUCTURE) |
|
507 | 523 | samplingWindow.tofile(fp) |
|
508 | 524 | |
|
509 | 525 | if self.numTaus > 0: |
|
510 | 526 | self.Taus.tofile(fp) |
|
511 | 527 | |
|
512 | 528 | if self.codeType != 0: |
|
513 | 529 | nCode = numpy.array(self.nCode, '<u4') |
|
514 | 530 | nCode.tofile(fp) |
|
515 | 531 | nBaud = numpy.array(self.nBaud, '<u4') |
|
516 | 532 | nBaud.tofile(fp) |
|
517 | 533 | code1 = (self.code + 1.0) / 2. |
|
518 | 534 | |
|
519 | 535 | for ic in range(self.nCode): |
|
520 | 536 | tempx = numpy.zeros(int(numpy.ceil(self.nBaud / 32.))) |
|
521 | 537 | start = 0 |
|
522 | 538 | end = 32 |
|
523 | 539 | for i in range(len(tempx)): |
|
524 | 540 | code_selected = code1[ic, start:end] |
|
525 | 541 | for j in range(len(code_selected) - 1, -1, -1): |
|
526 | 542 | if code_selected[j] == 1: |
|
527 | 543 | tempx[i] = tempx[i] + \ |
|
528 | 544 | 2**(len(code_selected) - 1 - j) |
|
529 | 545 | start = start + 32 |
|
530 | 546 | end = end + 32 |
|
531 | 547 | |
|
532 | 548 | tempx = tempx.astype('u4') |
|
533 | 549 | tempx.tofile(fp) |
|
534 | 550 | |
|
535 | 551 | # if self.line5Function == RCfunction.FLIP: |
|
536 | 552 | # self.flip1.tofile(fp) |
|
537 | 553 | # |
|
538 | 554 | # if self.line6Function == RCfunction.FLIP: |
|
539 | 555 | # self.flip2.tofile(fp) |
|
540 | 556 | |
|
541 | 557 | return 1 |
|
542 | 558 | |
|
543 | 559 | def get_ippSeconds(self): |
|
544 | 560 | ''' |
|
545 | 561 | ''' |
|
546 | 562 | ippSeconds = 2.0 * 1000 * self.ipp / SPEED_OF_LIGHT |
|
547 | 563 | |
|
548 | 564 | return ippSeconds |
|
549 | 565 | |
|
550 | 566 | def set_ippSeconds(self, ippSeconds): |
|
551 | 567 | ''' |
|
552 | 568 | ''' |
|
553 | 569 | |
|
554 | 570 | self.ipp = ippSeconds * SPEED_OF_LIGHT / (2.0 * 1000) |
|
555 | 571 | |
|
556 | 572 | return |
|
557 | 573 | |
|
558 | 574 | def get_size(self): |
|
559 | 575 | |
|
560 | 576 | self.__size = 116 + 12 * self.nWindows + 4 * self.numTaus |
|
561 | 577 | |
|
562 | 578 | if self.codeType != 0: |
|
563 | 579 | self.__size += 4 + 4 + 4 * self.nCode * \ |
|
564 | 580 | numpy.ceil(self.nBaud / 32.) |
|
565 | 581 | |
|
566 | 582 | return self.__size |
|
567 | 583 | |
|
568 | 584 | def set_size(self, value): |
|
569 | 585 | |
|
570 | 586 | raise IOError("size is a property and it cannot be set, just read") |
|
571 | 587 | |
|
572 | 588 | return |
|
573 | 589 | |
|
574 | 590 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
575 | 591 | size = property(get_size, set_size) |
|
576 | 592 | |
|
577 | 593 | |
|
578 | 594 | class ProcessingHeader(Header): |
|
579 | 595 | |
|
580 | 596 | # size = None |
|
597 | ||
|
581 | 598 | dtype = None |
|
582 | 599 | blockSize = None |
|
583 | 600 | profilesPerBlock = None |
|
584 | 601 | dataBlocksPerFile = None |
|
585 | 602 | nWindows = None |
|
586 | 603 | processFlags = None |
|
587 | 604 | nCohInt = None |
|
588 | 605 | nIncohInt = None |
|
589 | 606 | totalSpectra = None |
|
590 | 607 | structure = PROCESSING_STRUCTURE |
|
591 | 608 | flag_dc = None |
|
592 | 609 | flag_cspc = None |
|
610 | ######################################################### | |
|
611 | nFFTPoints = None | |
|
612 | nSamplesFFT = None | |
|
613 | channelList = [] | |
|
614 | azimuthList = [] | |
|
615 | elevationList =[] | |
|
616 | codeList = [] | |
|
617 | nChannels = 1 | |
|
618 | heightList = [] | |
|
619 | ipp = None | |
|
620 | ippSeconds = None | |
|
621 | timeIncohInt = None | |
|
622 | ################# | |
|
623 | rangeIpp = None | |
|
624 | heightResolution = None | |
|
593 | 625 | |
|
594 | 626 | def __init__(self, dtype=0, blockSize=0, profilesPerBlock=0, dataBlocksPerFile=0, nWindows=0, processFlags=0, nCohInt=0, |
|
595 | 627 | nIncohInt=0, totalSpectra=0, nHeights=0, firstHeight=0, deltaHeight=0, samplesWin=0, spectraComb=0, nCode=0, |
|
596 | 628 | code=0, nBaud=None, shif_fft=False, flag_dc=False, flag_cspc=False, flag_decode=False, flag_deflip=False |
|
597 | 629 | ): |
|
598 | 630 | |
|
599 | 631 | # self.size = 0 |
|
600 | 632 | self.dtype = dtype |
|
601 | 633 | self.blockSize = blockSize |
|
602 | 634 | self.profilesPerBlock = 0 |
|
603 | 635 | self.dataBlocksPerFile = 0 |
|
604 | 636 | self.nWindows = 0 |
|
605 | 637 | self.processFlags = 0 |
|
606 | 638 | self.nCohInt = 0 |
|
607 | 639 | self.nIncohInt = 0 |
|
608 | 640 | self.totalSpectra = 0 |
|
609 | 641 | |
|
610 | 642 | self.nHeights = 0 |
|
611 | 643 | self.firstHeight = 0 |
|
612 | 644 | self.deltaHeight = 0 |
|
613 | 645 | self.samplesWin = 0 |
|
614 | 646 | self.spectraComb = 0 |
|
615 | 647 | self.nCode = None |
|
616 | 648 | self.code = None |
|
617 | 649 | self.nBaud = None |
|
618 | 650 | |
|
619 | 651 | self.shif_fft = False |
|
620 | 652 | self.flag_dc = False |
|
621 | 653 | self.flag_cspc = False |
|
622 | 654 | self.flag_decode = False |
|
623 | 655 | self.flag_deflip = False |
|
624 | 656 | self.length = 0 |
|
625 | 657 | |
|
658 | ||
|
626 | 659 | def read(self, fp): |
|
627 | 660 | self.length = 0 |
|
628 | 661 | try: |
|
629 | 662 | startFp = fp.tell() |
|
630 | 663 | except Exception as e: |
|
631 | 664 | startFp = None |
|
632 | 665 | pass |
|
633 | 666 | |
|
634 | 667 | try: |
|
635 | 668 | if hasattr(fp, 'read'): |
|
636 | 669 | header = numpy.fromfile(fp, PROCESSING_STRUCTURE, 1) |
|
637 | 670 | else: |
|
638 | 671 | header = numpy.fromstring(fp, PROCESSING_STRUCTURE, 1) |
|
639 | 672 | self.length += header.nbytes |
|
640 | 673 | except Exception as e: |
|
641 | 674 | print("ProcessingHeader: " + str(e)) |
|
642 | 675 | return 0 |
|
643 | 676 | |
|
644 | 677 | size = int(header['nSize'][0]) |
|
645 | 678 | self.dtype = int(header['nDataType'][0]) |
|
646 | 679 | self.blockSize = int(header['nSizeOfDataBlock'][0]) |
|
647 | 680 | self.profilesPerBlock = int(header['nProfilesperBlock'][0]) |
|
648 | 681 | self.dataBlocksPerFile = int(header['nDataBlocksperFile'][0]) |
|
649 | 682 | self.nWindows = int(header['nNumWindows'][0]) |
|
650 | 683 | self.processFlags = header['nProcessFlags'] |
|
651 | 684 | self.nCohInt = int(header['nCoherentIntegrations'][0]) |
|
652 | 685 | self.nIncohInt = int(header['nIncoherentIntegrations'][0]) |
|
653 | 686 | self.totalSpectra = int(header['nTotalSpectra'][0]) |
|
654 | 687 | |
|
655 | 688 | try: |
|
656 | 689 | if hasattr(fp, 'read'): |
|
657 | 690 | samplingWindow = numpy.fromfile( |
|
658 | 691 | fp, SAMPLING_STRUCTURE, self.nWindows) |
|
659 | 692 | else: |
|
660 | 693 | samplingWindow = numpy.fromstring( |
|
661 | 694 | fp[self.length:], SAMPLING_STRUCTURE, self.nWindows) |
|
662 | 695 | self.length += samplingWindow.nbytes |
|
663 | 696 | except Exception as e: |
|
664 | 697 | print("ProcessingHeader: " + str(e)) |
|
665 | 698 | return 0 |
|
666 | 699 | |
|
667 | 700 | self.nHeights = int(numpy.sum(samplingWindow['nsa'])) |
|
668 | 701 | self.firstHeight = float(samplingWindow['h0'][0]) |
|
669 | 702 | self.deltaHeight = float(samplingWindow['dh'][0]) |
|
670 | 703 | self.samplesWin = samplingWindow['nsa'][0] |
|
671 | 704 | |
|
672 | 705 | try: |
|
673 | 706 | if hasattr(fp, 'read'): |
|
674 | 707 | self.spectraComb = numpy.fromfile( |
|
675 | 708 | fp, 'u1', 2 * self.totalSpectra) |
|
676 | 709 | else: |
|
677 | 710 | self.spectraComb = numpy.fromstring( |
|
678 | 711 | fp[self.length:], 'u1', 2 * self.totalSpectra) |
|
679 | 712 | self.length += self.spectraComb.nbytes |
|
680 | 713 | except Exception as e: |
|
681 | 714 | print("ProcessingHeader: " + str(e)) |
|
682 | 715 | return 0 |
|
683 | 716 | |
|
684 | 717 | if ((self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE) == PROCFLAG.DEFINE_PROCESS_CODE): |
|
685 | 718 | self.nCode = int(numpy.fromfile(fp, '<u4', 1)) |
|
686 | 719 | self.nBaud = int(numpy.fromfile(fp, '<u4', 1)) |
|
687 | 720 | self.code = numpy.fromfile( |
|
688 | 721 | fp, '<f4', self.nCode * self.nBaud).reshape(self.nCode, self.nBaud) |
|
689 | 722 | |
|
690 | 723 | if ((self.processFlags & PROCFLAG.EXP_NAME_ESP) == PROCFLAG.EXP_NAME_ESP): |
|
691 | 724 | exp_name_len = int(numpy.fromfile(fp, '<u4', 1)) |
|
692 | 725 | exp_name = numpy.fromfile(fp, 'u1', exp_name_len + 1) |
|
693 | 726 | |
|
694 | 727 | if ((self.processFlags & PROCFLAG.SHIFT_FFT_DATA) == PROCFLAG.SHIFT_FFT_DATA): |
|
695 | 728 | self.shif_fft = True |
|
696 | 729 | else: |
|
697 | 730 | self.shif_fft = False |
|
698 | 731 | |
|
699 | 732 | if ((self.processFlags & PROCFLAG.SAVE_CHANNELS_DC) == PROCFLAG.SAVE_CHANNELS_DC): |
|
700 | 733 | self.flag_dc = True |
|
701 | 734 | else: |
|
702 | 735 | self.flag_dc = False |
|
703 | 736 | |
|
704 | 737 | if ((self.processFlags & PROCFLAG.DECODE_DATA) == PROCFLAG.DECODE_DATA): |
|
705 | 738 | self.flag_decode = True |
|
706 | 739 | else: |
|
707 | 740 | self.flag_decode = False |
|
708 | 741 | |
|
709 | 742 | if ((self.processFlags & PROCFLAG.DEFLIP_DATA) == PROCFLAG.DEFLIP_DATA): |
|
710 | 743 | self.flag_deflip = True |
|
711 | 744 | else: |
|
712 | 745 | self.flag_deflip = False |
|
713 | 746 | |
|
714 | 747 | nChannels = 0 |
|
715 | 748 | nPairs = 0 |
|
716 | 749 | pairList = [] |
|
717 | 750 | |
|
718 | 751 | for i in range(0, self.totalSpectra * 2, 2): |
|
719 | 752 | if self.spectraComb[i] == self.spectraComb[i + 1]: |
|
720 | 753 | nChannels = nChannels + 1 # par de canales iguales |
|
721 | 754 | else: |
|
722 | 755 | nPairs = nPairs + 1 # par de canales diferentes |
|
723 | 756 | pairList.append((self.spectraComb[i], self.spectraComb[i + 1])) |
|
724 | 757 | |
|
725 | 758 | self.flag_cspc = False |
|
726 | 759 | if nPairs > 0: |
|
727 | 760 | self.flag_cspc = True |
|
728 | 761 | |
|
729 | 762 | if startFp is not None: |
|
730 | 763 | endFp = size + startFp |
|
731 | 764 | if fp.tell() > endFp: |
|
732 | 765 | sys.stderr.write( |
|
733 | 766 | "Warning: Processing header size is lower than it has to be") |
|
734 | 767 | return 0 |
|
735 | 768 | |
|
736 | 769 | if fp.tell() < endFp: |
|
737 | 770 | sys.stderr.write( |
|
738 | 771 | "Warning: Processing header size is greater than it is considered") |
|
739 | 772 | |
|
740 | 773 | return 1 |
|
741 | 774 | |
|
742 | 775 | def write(self, fp): |
|
743 | 776 | # Clear DEFINE_PROCESS_CODE |
|
744 | 777 | self.processFlags = self.processFlags & (~PROCFLAG.DEFINE_PROCESS_CODE) |
|
745 | 778 | |
|
746 | 779 | headerTuple = (self.size, |
|
747 | 780 | self.dtype, |
|
748 | 781 | self.blockSize, |
|
749 | 782 | self.profilesPerBlock, |
|
750 | 783 | self.dataBlocksPerFile, |
|
751 | 784 | self.nWindows, |
|
752 | 785 | self.processFlags, |
|
753 | 786 | self.nCohInt, |
|
754 | 787 | self.nIncohInt, |
|
755 | 788 | self.totalSpectra) |
|
756 | 789 | |
|
757 | 790 | header = numpy.array(headerTuple, PROCESSING_STRUCTURE) |
|
758 | 791 | header.tofile(fp) |
|
759 | 792 | |
|
760 | 793 | if self.nWindows != 0: |
|
761 | 794 | sampleWindowTuple = ( |
|
762 | 795 | self.firstHeight, self.deltaHeight, self.samplesWin) |
|
763 | 796 | samplingWindow = numpy.array(sampleWindowTuple, SAMPLING_STRUCTURE) |
|
764 | 797 | samplingWindow.tofile(fp) |
|
765 | 798 | |
|
766 | 799 | if self.totalSpectra != 0: |
|
767 | 800 | # spectraComb = numpy.array([],numpy.dtype('u1')) |
|
768 | 801 | spectraComb = self.spectraComb |
|
769 | 802 | spectraComb.tofile(fp) |
|
770 | 803 | |
|
771 | 804 | # if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE: |
|
772 | 805 | # nCode = numpy.array([self.nCode], numpy.dtype('u4')) #Probar con un dato que almacene codigo, hasta el momento no se hizo la prueba |
|
773 | 806 | # nCode.tofile(fp) |
|
774 | 807 | # |
|
775 | 808 | # nBaud = numpy.array([self.nBaud], numpy.dtype('u4')) |
|
776 | 809 | # nBaud.tofile(fp) |
|
777 | 810 | # |
|
778 | 811 | # code = self.code.reshape(self.nCode*self.nBaud) |
|
779 | 812 | # code = code.astype(numpy.dtype('<f4')) |
|
780 | 813 | # code.tofile(fp) |
|
781 | 814 | |
|
782 | 815 | return 1 |
|
783 | 816 | |
|
784 | 817 | def get_size(self): |
|
785 | 818 | |
|
786 | 819 | self.__size = 40 + 12 * self.nWindows + 2 * self.totalSpectra |
|
787 | 820 | |
|
788 | 821 | # if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE: |
|
789 | 822 | # self.__size += 4 + 4 + 4*self.nCode*numpy.ceil(self.nBaud/32.) |
|
790 | 823 | # self.__size += 4 + 4 + 4 * self.nCode * self.nBaud |
|
791 | 824 | |
|
792 | 825 | return self.__size |
|
793 | 826 | |
|
794 | 827 | def set_size(self, value): |
|
795 | 828 | |
|
796 | 829 | raise IOError("size is a property and it cannot be set, just read") |
|
797 | 830 | |
|
798 | 831 | return |
|
799 | 832 | |
|
800 | 833 | size = property(get_size, set_size) |
|
801 | 834 | |
|
802 | 835 | |
|
803 | 836 | class RCfunction: |
|
804 | 837 | NONE = 0 |
|
805 | 838 | FLIP = 1 |
|
806 | 839 | CODE = 2 |
|
807 | 840 | SAMPLING = 3 |
|
808 | 841 | LIN6DIV256 = 4 |
|
809 | 842 | SYNCHRO = 5 |
|
810 | 843 | |
|
811 | 844 | |
|
812 | 845 | class nCodeType: |
|
813 | 846 | NONE = 0 |
|
814 | 847 | USERDEFINE = 1 |
|
815 | 848 | BARKER2 = 2 |
|
816 | 849 | BARKER3 = 3 |
|
817 | 850 | BARKER4 = 4 |
|
818 | 851 | BARKER5 = 5 |
|
819 | 852 | BARKER7 = 6 |
|
820 | 853 | BARKER11 = 7 |
|
821 | 854 | BARKER13 = 8 |
|
822 | 855 | AC128 = 9 |
|
823 | 856 | COMPLEMENTARYCODE2 = 10 |
|
824 | 857 | COMPLEMENTARYCODE4 = 11 |
|
825 | 858 | COMPLEMENTARYCODE8 = 12 |
|
826 | 859 | COMPLEMENTARYCODE16 = 13 |
|
827 | 860 | COMPLEMENTARYCODE32 = 14 |
|
828 | 861 | COMPLEMENTARYCODE64 = 15 |
|
829 | 862 | COMPLEMENTARYCODE128 = 16 |
|
830 | 863 | CODE_BINARY28 = 17 |
|
831 | 864 | |
|
832 | 865 | |
|
833 | 866 | class PROCFLAG: |
|
834 | 867 | |
|
835 | 868 | COHERENT_INTEGRATION = numpy.uint32(0x00000001) |
|
836 | 869 | DECODE_DATA = numpy.uint32(0x00000002) |
|
837 | 870 | SPECTRA_CALC = numpy.uint32(0x00000004) |
|
838 | 871 | INCOHERENT_INTEGRATION = numpy.uint32(0x00000008) |
|
839 | 872 | POST_COHERENT_INTEGRATION = numpy.uint32(0x00000010) |
|
840 | 873 | SHIFT_FFT_DATA = numpy.uint32(0x00000020) |
|
841 | 874 | |
|
842 | 875 | DATATYPE_CHAR = numpy.uint32(0x00000040) |
|
843 | 876 | DATATYPE_SHORT = numpy.uint32(0x00000080) |
|
844 | 877 | DATATYPE_LONG = numpy.uint32(0x00000100) |
|
845 | 878 | DATATYPE_INT64 = numpy.uint32(0x00000200) |
|
846 | 879 | DATATYPE_FLOAT = numpy.uint32(0x00000400) |
|
847 | 880 | DATATYPE_DOUBLE = numpy.uint32(0x00000800) |
|
848 | 881 | |
|
849 | 882 | DATAARRANGE_CONTIGUOUS_CH = numpy.uint32(0x00001000) |
|
850 | 883 | DATAARRANGE_CONTIGUOUS_H = numpy.uint32(0x00002000) |
|
851 | 884 | DATAARRANGE_CONTIGUOUS_P = numpy.uint32(0x00004000) |
|
852 | 885 | |
|
853 | 886 | SAVE_CHANNELS_DC = numpy.uint32(0x00008000) |
|
854 | 887 | DEFLIP_DATA = numpy.uint32(0x00010000) |
|
855 | 888 | DEFINE_PROCESS_CODE = numpy.uint32(0x00020000) |
|
856 | 889 | |
|
857 | 890 | ACQ_SYS_NATALIA = numpy.uint32(0x00040000) |
|
858 | 891 | ACQ_SYS_ECHOTEK = numpy.uint32(0x00080000) |
|
859 | 892 | ACQ_SYS_ADRXD = numpy.uint32(0x000C0000) |
|
860 | 893 | ACQ_SYS_JULIA = numpy.uint32(0x00100000) |
|
861 | 894 | ACQ_SYS_XXXXXX = numpy.uint32(0x00140000) |
|
862 | 895 | |
|
863 | 896 | EXP_NAME_ESP = numpy.uint32(0x00200000) |
|
864 | 897 | CHANNEL_NAMES_ESP = numpy.uint32(0x00400000) |
|
865 | 898 | |
|
866 | 899 | OPERATION_MASK = numpy.uint32(0x0000003F) |
|
867 | 900 | DATATYPE_MASK = numpy.uint32(0x00000FC0) |
|
868 | 901 | DATAARRANGE_MASK = numpy.uint32(0x00007000) |
|
869 | 902 | ACQ_SYS_MASK = numpy.uint32(0x001C0000) |
|
870 | 903 | |
|
871 | 904 | |
|
872 | 905 | dtype0 = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
873 | 906 | dtype1 = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
874 | 907 | dtype2 = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
875 | 908 | dtype3 = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
876 | 909 | dtype4 = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
877 | 910 | dtype5 = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
878 | 911 | |
|
879 | 912 | NUMPY_DTYPE_LIST = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5] |
|
880 | 913 | |
|
881 | 914 | PROCFLAG_DTYPE_LIST = [PROCFLAG.DATATYPE_CHAR, |
|
882 | 915 | PROCFLAG.DATATYPE_SHORT, |
|
883 | 916 | PROCFLAG.DATATYPE_LONG, |
|
884 | 917 | PROCFLAG.DATATYPE_INT64, |
|
885 | 918 | PROCFLAG.DATATYPE_FLOAT, |
|
886 | 919 | PROCFLAG.DATATYPE_DOUBLE] |
|
887 | 920 | |
|
888 | 921 | DTYPE_WIDTH = [1, 2, 4, 8, 4, 8] |
|
889 | 922 | |
|
890 | 923 | |
|
891 | 924 | def get_dtype_index(numpy_dtype): |
|
892 | 925 | |
|
893 | 926 | index = None |
|
894 | 927 | |
|
895 | 928 | for i in range(len(NUMPY_DTYPE_LIST)): |
|
896 | 929 | if numpy_dtype == NUMPY_DTYPE_LIST[i]: |
|
897 | 930 | index = i |
|
898 | 931 | break |
|
899 | 932 | |
|
900 | 933 | return index |
|
901 | 934 | |
|
902 | 935 | |
|
903 | 936 | def get_numpy_dtype(index): |
|
904 | 937 | |
|
905 | 938 | return NUMPY_DTYPE_LIST[index] |
|
906 | 939 | |
|
907 | 940 | |
|
908 | 941 | def get_procflag_dtype(index): |
|
909 | 942 | |
|
910 | 943 | return PROCFLAG_DTYPE_LIST[index] |
|
911 | 944 | |
|
912 | 945 | |
|
913 | 946 | def get_dtype_width(index): |
|
914 | 947 | |
|
915 | 948 | return DTYPE_WIDTH[index] |
@@ -1,1234 +1,1241 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | from itertools import combinations |
|
14 | 14 | from matplotlib.ticker import LinearLocator |
|
15 | 15 | |
|
16 | 16 | class SpectraPlot(Plot): |
|
17 | 17 | ''' |
|
18 | 18 | Plot for Spectra data |
|
19 | 19 | ''' |
|
20 | 20 | |
|
21 | 21 | CODE = 'spc' |
|
22 | 22 | colormap = 'jet' |
|
23 | 23 | plot_type = 'pcolor' |
|
24 | 24 | buffering = False |
|
25 | 25 | channelList = [] |
|
26 | 26 | elevationList = [] |
|
27 | 27 | azimuthList = [] |
|
28 | 28 | |
|
29 | 29 | def setup(self): |
|
30 | 30 | |
|
31 | 31 | self.nplots = len(self.data.channels) |
|
32 | 32 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
33 | 33 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
34 | 34 | self.height = 3.4 * self.nrows |
|
35 | 35 | |
|
36 | 36 | self.cb_label = 'dB' |
|
37 | 37 | if self.showprofile: |
|
38 | 38 | self.width = 5.2 * self.ncols |
|
39 | 39 | else: |
|
40 | 40 | self.width = 4.2* self.ncols |
|
41 | 41 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
42 | 42 | self.ylabel = 'Range [km]' |
|
43 | 43 | |
|
44 | 44 | |
|
45 | 45 | def update_list(self,dataOut): |
|
46 | 46 | if len(self.channelList) == 0: |
|
47 | 47 | self.channelList = dataOut.channelList |
|
48 | 48 | if len(self.elevationList) == 0: |
|
49 | 49 | self.elevationList = dataOut.elevationList |
|
50 | 50 | if len(self.azimuthList) == 0: |
|
51 | 51 | self.azimuthList = dataOut.azimuthList |
|
52 | 52 | |
|
53 | 53 | def update(self, dataOut): |
|
54 | 54 | |
|
55 | 55 | self.update_list(dataOut) |
|
56 | 56 | data = {} |
|
57 | 57 | meta = {} |
|
58 | 58 | |
|
59 | 59 | #data['rti'] = dataOut.getPower() |
|
60 | 60 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
61 | 61 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
65 | 65 | for ch in range(dataOut.nChannels): |
|
66 | 66 | if hasattr(dataOut.normFactor,'ndim'): |
|
67 | 67 | if dataOut.normFactor.ndim > 1: |
|
68 | 68 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
69 | 69 | |
|
70 | 70 | else: |
|
71 | 71 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
72 | 72 | else: |
|
73 | 73 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
74 | 74 | |
|
75 | 75 | |
|
76 | 76 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
77 | 77 | spc = 10*numpy.log10(z) |
|
78 | 78 | |
|
79 | 79 | data['spc'] = spc |
|
80 | print(spc[0].shape) | |
|
80 | #print(spc[0].shape) | |
|
81 | 81 | data['rti'] = spc.mean(axis=1) |
|
82 | 82 | data['noise'] = noise |
|
83 | 83 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
84 | 84 | if self.CODE == 'spc_moments': |
|
85 | 85 | data['moments'] = dataOut.moments |
|
86 | 86 | |
|
87 | 87 | return data, meta |
|
88 | 88 | |
|
89 | 89 | def plot(self): |
|
90 | 90 | if self.xaxis == "frequency": |
|
91 | 91 | x = self.data.xrange[0] |
|
92 | 92 | self.xlabel = "Frequency (kHz)" |
|
93 | 93 | elif self.xaxis == "time": |
|
94 | 94 | x = self.data.xrange[1] |
|
95 | 95 | self.xlabel = "Time (ms)" |
|
96 | 96 | else: |
|
97 | 97 | x = self.data.xrange[2] |
|
98 | 98 | self.xlabel = "Velocity (m/s)" |
|
99 | 99 | |
|
100 | 100 | if self.CODE == 'spc_moments': |
|
101 | 101 | x = self.data.xrange[2] |
|
102 | 102 | self.xlabel = "Velocity (m/s)" |
|
103 | 103 | |
|
104 | 104 | self.titles = [] |
|
105 | 105 | y = self.data.yrange |
|
106 | 106 | self.y = y |
|
107 | 107 | |
|
108 | 108 | data = self.data[-1] |
|
109 | 109 | z = data['spc'] |
|
110 | 110 | #print(z.shape, x.shape, y.shape) |
|
111 | 111 | for n, ax in enumerate(self.axes): |
|
112 | 112 | noise = self.data['noise'][n][0] |
|
113 | 113 | #print(noise) |
|
114 | 114 | if self.CODE == 'spc_moments': |
|
115 | 115 | mean = data['moments'][n, 1] |
|
116 | 116 | if ax.firsttime: |
|
117 | 117 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
118 | 118 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
119 | 119 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
120 | 120 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
121 | 121 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
122 | 122 | vmin=self.zmin, |
|
123 | 123 | vmax=self.zmax, |
|
124 | 124 | cmap=plt.get_cmap(self.colormap) |
|
125 | 125 | ) |
|
126 | 126 | |
|
127 | 127 | if self.showprofile: |
|
128 | 128 | ax.plt_profile = self.pf_axes[n].plot( |
|
129 | 129 | data['rti'][n], y)[0] |
|
130 | 130 | # ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
131 | 131 | # color="k", linestyle="dashed", lw=1)[0] |
|
132 | 132 | if self.CODE == 'spc_moments': |
|
133 | 133 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
134 | 134 | else: |
|
135 | 135 | ax.plt.set_array(z[n].T.ravel()) |
|
136 | 136 | if self.showprofile: |
|
137 | 137 | ax.plt_profile.set_data(data['rti'][n], y) |
|
138 | 138 | #ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
139 | 139 | if self.CODE == 'spc_moments': |
|
140 | 140 | ax.plt_mean.set_data(mean, y) |
|
141 | 141 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: |
|
142 | 142 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) |
|
143 | 143 | else: |
|
144 | 144 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
145 | 145 | |
|
146 | 146 | |
|
147 | 147 | class CrossSpectraPlot(Plot): |
|
148 | 148 | |
|
149 | 149 | CODE = 'cspc' |
|
150 | 150 | colormap = 'jet' |
|
151 | 151 | plot_type = 'pcolor' |
|
152 | 152 | zmin_coh = None |
|
153 | 153 | zmax_coh = None |
|
154 | 154 | zmin_phase = None |
|
155 | 155 | zmax_phase = None |
|
156 | 156 | realChannels = None |
|
157 | 157 | crossPairs = None |
|
158 | 158 | |
|
159 | 159 | def setup(self): |
|
160 | 160 | |
|
161 | 161 | self.ncols = 4 |
|
162 | 162 | self.nplots = len(self.data.pairs) * 2 |
|
163 | 163 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
164 | 164 | self.width = 3.1 * self.ncols |
|
165 | 165 | self.height = 2.6 * self.nrows |
|
166 | 166 | self.ylabel = 'Range [km]' |
|
167 | 167 | self.showprofile = False |
|
168 | 168 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
169 | 169 | |
|
170 | 170 | def update(self, dataOut): |
|
171 | 171 | |
|
172 | 172 | data = {} |
|
173 | 173 | meta = {} |
|
174 | 174 | |
|
175 | 175 | spc = dataOut.data_spc |
|
176 | 176 | cspc = dataOut.data_cspc |
|
177 | 177 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
178 | 178 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
179 | 179 | meta['pairs'] = rawPairs |
|
180 | 180 | |
|
181 | 181 | if self.crossPairs == None: |
|
182 | 182 | self.crossPairs = dataOut.pairsList |
|
183 | 183 | |
|
184 | 184 | tmp = [] |
|
185 | 185 | |
|
186 | 186 | for n, pair in enumerate(meta['pairs']): |
|
187 | 187 | |
|
188 | 188 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
189 | 189 | coh = numpy.abs(out) |
|
190 | 190 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
191 | 191 | tmp.append(coh) |
|
192 | 192 | tmp.append(phase) |
|
193 | 193 | |
|
194 | 194 | data['cspc'] = numpy.array(tmp) |
|
195 | 195 | |
|
196 | 196 | return data, meta |
|
197 | 197 | |
|
198 | 198 | def plot(self): |
|
199 | 199 | |
|
200 | 200 | if self.xaxis == "frequency": |
|
201 | 201 | x = self.data.xrange[0] |
|
202 | 202 | self.xlabel = "Frequency (kHz)" |
|
203 | 203 | elif self.xaxis == "time": |
|
204 | 204 | x = self.data.xrange[1] |
|
205 | 205 | self.xlabel = "Time (ms)" |
|
206 | 206 | else: |
|
207 | 207 | x = self.data.xrange[2] |
|
208 | 208 | self.xlabel = "Velocity (m/s)" |
|
209 | 209 | |
|
210 | 210 | self.titles = [] |
|
211 | 211 | |
|
212 | 212 | y = self.data.yrange |
|
213 | 213 | self.y = y |
|
214 | 214 | |
|
215 | 215 | data = self.data[-1] |
|
216 | 216 | cspc = data['cspc'] |
|
217 | 217 | |
|
218 | 218 | for n in range(len(self.data.pairs)): |
|
219 | 219 | |
|
220 | 220 | pair = self.crossPairs[n] |
|
221 | 221 | |
|
222 | 222 | coh = cspc[n*2] |
|
223 | 223 | phase = cspc[n*2+1] |
|
224 | 224 | ax = self.axes[2 * n] |
|
225 | 225 | |
|
226 | 226 | if ax.firsttime: |
|
227 | 227 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
228 | 228 | vmin=self.zmin_coh, |
|
229 | 229 | vmax=self.zmax_coh, |
|
230 | 230 | cmap=plt.get_cmap(self.colormap_coh) |
|
231 | 231 | ) |
|
232 | 232 | else: |
|
233 | 233 | ax.plt.set_array(coh.T.ravel()) |
|
234 | 234 | self.titles.append( |
|
235 | 235 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
236 | 236 | |
|
237 | 237 | ax = self.axes[2 * n + 1] |
|
238 | 238 | if ax.firsttime: |
|
239 | 239 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
240 | 240 | vmin=-180, |
|
241 | 241 | vmax=180, |
|
242 | 242 | cmap=plt.get_cmap(self.colormap_phase) |
|
243 | 243 | ) |
|
244 | 244 | else: |
|
245 | 245 | ax.plt.set_array(phase.T.ravel()) |
|
246 | 246 | |
|
247 | 247 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
248 | 248 | |
|
249 | 249 | |
|
250 | 250 | class RTIPlot(Plot): |
|
251 | 251 | ''' |
|
252 | 252 | Plot for RTI data |
|
253 | 253 | ''' |
|
254 | 254 | |
|
255 | 255 | CODE = 'rti' |
|
256 | 256 | colormap = 'jet' |
|
257 | 257 | plot_type = 'pcolorbuffer' |
|
258 | 258 | titles = None |
|
259 | 259 | channelList = [] |
|
260 | 260 | elevationList = [] |
|
261 | 261 | azimuthList = [] |
|
262 | 262 | |
|
263 | 263 | def setup(self): |
|
264 | 264 | self.xaxis = 'time' |
|
265 | 265 | self.ncols = 1 |
|
266 | 266 | #print("dataChannels ",self.data.channels) |
|
267 | 267 | self.nrows = len(self.data.channels) |
|
268 | 268 | self.nplots = len(self.data.channels) |
|
269 | 269 | self.ylabel = 'Range [km]' |
|
270 | 270 | self.xlabel = 'Time' |
|
271 | 271 | self.cb_label = 'dB' |
|
272 | 272 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
273 | 273 | self.titles = ['{} Channel {}'.format( |
|
274 | 274 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
275 | 275 | |
|
276 | 276 | def update_list(self,dataOut): |
|
277 | 277 | |
|
278 | 278 | if len(self.channelList) == 0: |
|
279 | 279 | self.channelList = dataOut.channelList |
|
280 | 280 | if len(self.elevationList) == 0: |
|
281 | 281 | self.elevationList = dataOut.elevationList |
|
282 | 282 | if len(self.azimuthList) == 0: |
|
283 | 283 | self.azimuthList = dataOut.azimuthList |
|
284 | 284 | |
|
285 | 285 | |
|
286 | 286 | def update(self, dataOut): |
|
287 | 287 | if len(self.channelList) == 0: |
|
288 | 288 | self.update_list(dataOut) |
|
289 | 289 | data = {} |
|
290 | 290 | meta = {} |
|
291 | 291 | |
|
292 | 292 | data['rti'] = dataOut.getPower() |
|
293 | 293 | |
|
294 | 294 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
295 | 295 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
296 | 296 | data['noise'] = noise |
|
297 | 297 | |
|
298 | 298 | return data, meta |
|
299 | 299 | |
|
300 | 300 | def plot(self): |
|
301 | 301 | |
|
302 | 302 | self.x = self.data.times |
|
303 | 303 | self.y = self.data.yrange |
|
304 | 304 | #print(" x, y: ",self.x, self.y) |
|
305 | 305 | self.z = self.data[self.CODE] |
|
306 | 306 | self.z = numpy.array(self.z, dtype=float) |
|
307 | 307 | self.z = numpy.ma.masked_invalid(self.z) |
|
308 | 308 | |
|
309 | 309 | try: |
|
310 | 310 | if self.channelList != None: |
|
311 | 311 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
312 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
|
312 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
|
313 | 313 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
314 | 314 | else: |
|
315 | self.titles = ['{} Channel {}'.format( | |
|
315 | self.titles = ['{} Channel {}'.format( | |
|
316 | 316 | self.CODE.upper(), x) for x in self.channelList] |
|
317 | 317 | except: |
|
318 | 318 | if self.channelList.any() != None: |
|
319 | ||
|
320 | self.titles = ['{} Channel {}'.format( | |
|
321 | self.CODE.upper(), x) for x in self.channelList] | |
|
319 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
|
320 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
|
321 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
|
322 | else: | |
|
323 | self.titles = ['{} Channel {}'.format( | |
|
324 | self.CODE.upper(), x) for x in self.channelList] | |
|
322 | 325 | |
|
323 | 326 | if self.decimation is None: |
|
324 | 327 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
325 | 328 | else: |
|
326 | 329 | x, y, z = self.fill_gaps(*self.decimate()) |
|
327 | 330 | |
|
328 | 331 | #dummy_var = self.axes #Extrañamente esto actualiza el valor axes |
|
329 | 332 | for n, ax in enumerate(self.axes): |
|
330 | 333 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
331 | 334 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
332 | 335 | data = self.data[-1] |
|
333 | 336 | |
|
334 | 337 | if ax.firsttime: |
|
335 | 338 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
336 | 339 | vmin=self.zmin, |
|
337 | 340 | vmax=self.zmax, |
|
338 | 341 | cmap=plt.get_cmap(self.colormap) |
|
339 | 342 | ) |
|
340 | 343 | if self.showprofile: |
|
341 | 344 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
342 | 345 | if "noise" in self.data: |
|
343 | 346 | |
|
344 | 347 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
345 | 348 | color="k", linestyle="dashed", lw=1)[0] |
|
346 | 349 | else: |
|
347 | 350 | ax.collections.remove(ax.collections[0]) |
|
348 | 351 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
349 | 352 | vmin=self.zmin, |
|
350 | 353 | vmax=self.zmax, |
|
351 | 354 | cmap=plt.get_cmap(self.colormap) |
|
352 | 355 | ) |
|
353 | 356 | if self.showprofile: |
|
354 | 357 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
355 | 358 | if "noise" in self.data: |
|
356 | 359 | ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
357 | 360 | |
|
358 | 361 | |
|
359 | 362 | class CoherencePlot(RTIPlot): |
|
360 | 363 | ''' |
|
361 | 364 | Plot for Coherence data |
|
362 | 365 | ''' |
|
363 | 366 | |
|
364 | 367 | CODE = 'coh' |
|
365 | 368 | |
|
366 | 369 | def setup(self): |
|
367 | 370 | self.xaxis = 'time' |
|
368 | 371 | self.ncols = 1 |
|
369 | 372 | self.nrows = len(self.data.pairs) |
|
370 | 373 | self.nplots = len(self.data.pairs) |
|
371 | 374 | self.ylabel = 'Range [km]' |
|
372 | 375 | self.xlabel = 'Time' |
|
373 | 376 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
374 | 377 | if self.CODE == 'coh': |
|
375 | 378 | self.cb_label = '' |
|
376 | 379 | self.titles = [ |
|
377 | 380 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
378 | 381 | else: |
|
379 | 382 | self.cb_label = 'Degrees' |
|
380 | 383 | self.titles = [ |
|
381 | 384 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
382 | 385 | |
|
383 | 386 | def update(self, dataOut): |
|
384 | 387 | self.update_list(dataOut) |
|
385 | 388 | data = {} |
|
386 | 389 | meta = {} |
|
387 | 390 | data['coh'] = dataOut.getCoherence() |
|
388 | 391 | meta['pairs'] = dataOut.pairsList |
|
389 | 392 | |
|
390 | 393 | |
|
391 | 394 | return data, meta |
|
392 | 395 | |
|
393 | 396 | class PhasePlot(CoherencePlot): |
|
394 | 397 | ''' |
|
395 | 398 | Plot for Phase map data |
|
396 | 399 | ''' |
|
397 | 400 | |
|
398 | 401 | CODE = 'phase' |
|
399 | 402 | colormap = 'seismic' |
|
400 | 403 | |
|
401 | 404 | def update(self, dataOut): |
|
402 | 405 | |
|
403 | 406 | data = {} |
|
404 | 407 | meta = {} |
|
405 | 408 | data['phase'] = dataOut.getCoherence(phase=True) |
|
406 | 409 | meta['pairs'] = dataOut.pairsList |
|
407 | 410 | |
|
408 | 411 | return data, meta |
|
409 | 412 | |
|
410 | 413 | class NoisePlot(Plot): |
|
411 | 414 | ''' |
|
412 | 415 | Plot for noise |
|
413 | 416 | ''' |
|
414 | 417 | |
|
415 | 418 | CODE = 'noise' |
|
416 | 419 | plot_type = 'scatterbuffer' |
|
417 | 420 | |
|
418 | 421 | def setup(self): |
|
419 | 422 | self.xaxis = 'time' |
|
420 | 423 | self.ncols = 1 |
|
421 | 424 | self.nrows = 1 |
|
422 | 425 | self.nplots = 1 |
|
423 | 426 | self.ylabel = 'Intensity [dB]' |
|
424 | 427 | self.xlabel = 'Time' |
|
425 | 428 | self.titles = ['Noise'] |
|
426 | 429 | self.colorbar = False |
|
427 | 430 | self.plots_adjust.update({'right': 0.85 }) |
|
428 | 431 | #if not self.titles: |
|
429 | 432 | self.titles = ['Noise Plot'] |
|
430 | 433 | |
|
431 | 434 | def update(self, dataOut): |
|
432 | 435 | |
|
433 | 436 | data = {} |
|
434 | 437 | meta = {} |
|
435 | 438 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
436 | 439 | noise = 10*numpy.log10(dataOut.getNoise()) |
|
437 | 440 | noise = noise.reshape(dataOut.nChannels, 1) |
|
438 | 441 | data['noise'] = noise |
|
439 | 442 | meta['yrange'] = numpy.array([]) |
|
440 | 443 | |
|
441 | 444 | return data, meta |
|
442 | 445 | |
|
443 | 446 | def plot(self): |
|
444 | 447 | |
|
445 | 448 | x = self.data.times |
|
446 | 449 | xmin = self.data.min_time |
|
447 | 450 | xmax = xmin + self.xrange * 60 * 60 |
|
448 | 451 | Y = self.data['noise'] |
|
449 | 452 | |
|
450 | 453 | if self.axes[0].firsttime: |
|
451 | 454 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 |
|
452 | 455 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
453 | 456 | for ch in self.data.channels: |
|
454 | 457 | y = Y[ch] |
|
455 | 458 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
456 | 459 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
457 | 460 | else: |
|
458 | 461 | for ch in self.data.channels: |
|
459 | 462 | y = Y[ch] |
|
460 | 463 | self.axes[0].lines[ch].set_data(x, y) |
|
461 | 464 | |
|
462 | 465 | |
|
463 | 466 | class PowerProfilePlot(Plot): |
|
464 | 467 | |
|
465 | 468 | CODE = 'pow_profile' |
|
466 | 469 | plot_type = 'scatter' |
|
467 | 470 | |
|
468 | 471 | def setup(self): |
|
469 | 472 | |
|
470 | 473 | self.ncols = 1 |
|
471 | 474 | self.nrows = 1 |
|
472 | 475 | self.nplots = 1 |
|
473 | 476 | self.height = 4 |
|
474 | 477 | self.width = 3 |
|
475 | 478 | self.ylabel = 'Range [km]' |
|
476 | 479 | self.xlabel = 'Intensity [dB]' |
|
477 | 480 | self.titles = ['Power Profile'] |
|
478 | 481 | self.colorbar = False |
|
479 | 482 | |
|
480 | 483 | def update(self, dataOut): |
|
481 | 484 | |
|
482 | 485 | data = {} |
|
483 | 486 | meta = {} |
|
484 | 487 | data[self.CODE] = dataOut.getPower() |
|
485 | 488 | |
|
486 | 489 | return data, meta |
|
487 | 490 | |
|
488 | 491 | def plot(self): |
|
489 | 492 | |
|
490 | 493 | y = self.data.yrange |
|
491 | 494 | self.y = y |
|
492 | 495 | |
|
493 | 496 | x = self.data[-1][self.CODE] |
|
494 | 497 | |
|
495 | 498 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
496 | 499 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
497 | 500 | |
|
498 | 501 | if self.axes[0].firsttime: |
|
499 | 502 | for ch in self.data.channels: |
|
500 | 503 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
501 | 504 | plt.legend() |
|
502 | 505 | else: |
|
503 | 506 | for ch in self.data.channels: |
|
504 | 507 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
505 | 508 | |
|
506 | 509 | |
|
507 | 510 | class SpectraCutPlot(Plot): |
|
508 | 511 | |
|
509 | 512 | CODE = 'spc_cut' |
|
510 | 513 | plot_type = 'scatter' |
|
511 | 514 | buffering = False |
|
512 | 515 | heights = [] |
|
513 | 516 | channelList = [] |
|
514 | 517 | maintitle = "Spectra Cuts" |
|
515 | 518 | flag_setIndex = False |
|
516 | 519 | |
|
517 | 520 | def setup(self): |
|
518 | 521 | |
|
519 | 522 | self.nplots = len(self.data.channels) |
|
520 | 523 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
521 | 524 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
522 | 525 | self.width = 4.5 * self.ncols + 2.5 |
|
523 | 526 | self.height = 4.8 * self.nrows |
|
524 | 527 | self.ylabel = 'Power [dB]' |
|
525 | 528 | self.colorbar = False |
|
526 | 529 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08}) |
|
527 | 530 | |
|
528 | 531 | if len(self.selectedHeightsList) > 0: |
|
529 | 532 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) |
|
530 | 533 | |
|
531 | 534 | |
|
532 | 535 | |
|
533 | 536 | def update(self, dataOut): |
|
534 | 537 | if len(self.channelList) == 0: |
|
535 | 538 | self.channelList = dataOut.channelList |
|
536 | 539 | |
|
537 | 540 | self.heights = dataOut.heightList |
|
538 | 541 | #print("sels: ",self.selectedHeightsList) |
|
539 | 542 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: |
|
540 | 543 | |
|
541 | 544 | for sel_height in self.selectedHeightsList: |
|
542 | 545 | index_list = numpy.where(self.heights >= sel_height) |
|
543 | 546 | index_list = index_list[0] |
|
544 | 547 | self.height_index.append(index_list[0]) |
|
545 | 548 | #print("sels i:"", self.height_index) |
|
546 | 549 | self.flag_setIndex = True |
|
547 | 550 | #print(self.height_index) |
|
548 | 551 | data = {} |
|
549 | 552 | meta = {} |
|
550 | 553 | |
|
551 | 554 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints |
|
552 | 555 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
553 | 556 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
554 | 557 | |
|
555 | 558 | |
|
556 | 559 | z = [] |
|
557 | 560 | for ch in range(dataOut.nChannels): |
|
558 | 561 | if hasattr(dataOut.normFactor,'shape'): |
|
559 | 562 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
560 | 563 | else: |
|
561 | 564 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
562 | 565 | |
|
563 | 566 | z = numpy.asarray(z) |
|
564 | 567 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
565 | 568 | spc = 10*numpy.log10(z) |
|
566 | 569 | |
|
567 | 570 | |
|
568 | 571 | data['spc'] = spc - noise |
|
569 | 572 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
570 | 573 | |
|
571 | 574 | return data, meta |
|
572 | 575 | |
|
573 | 576 | def plot(self): |
|
574 | 577 | if self.xaxis == "frequency": |
|
575 | 578 | x = self.data.xrange[0][1:] |
|
576 | 579 | self.xlabel = "Frequency (kHz)" |
|
577 | 580 | elif self.xaxis == "time": |
|
578 | 581 | x = self.data.xrange[1] |
|
579 | 582 | self.xlabel = "Time (ms)" |
|
580 | 583 | else: |
|
581 | 584 | x = self.data.xrange[2] |
|
582 | 585 | self.xlabel = "Velocity (m/s)" |
|
583 | 586 | |
|
584 | 587 | self.titles = [] |
|
585 | 588 | |
|
586 | 589 | y = self.data.yrange |
|
587 | 590 | z = self.data[-1]['spc'] |
|
588 | 591 | #print(z.shape) |
|
589 | 592 | if len(self.height_index) > 0: |
|
590 | 593 | index = self.height_index |
|
591 | 594 | else: |
|
592 | 595 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
593 | 596 | #print("inde x ", index, self.axes) |
|
594 | 597 | |
|
595 | 598 | for n, ax in enumerate(self.axes): |
|
596 | 599 | |
|
597 | 600 | if ax.firsttime: |
|
598 | 601 | |
|
599 | 602 | |
|
600 | 603 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
601 | 604 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
602 | 605 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
603 | 606 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
604 | 607 | |
|
605 | 608 | |
|
606 | 609 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
607 | 610 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
608 | 611 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) |
|
609 | 612 | ax.minorticks_on() |
|
610 | 613 | ax.grid(which='major', axis='both') |
|
611 | 614 | ax.grid(which='minor', axis='x') |
|
612 | 615 | else: |
|
613 | 616 | for i, line in enumerate(ax.plt): |
|
614 | 617 | line.set_data(x, z[n, :, index[i]]) |
|
615 | 618 | |
|
616 | 619 | |
|
617 | 620 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
618 | 621 | plt.suptitle(self.maintitle, fontsize=10) |
|
619 | 622 | |
|
620 | 623 | |
|
621 | 624 | class BeaconPhase(Plot): |
|
622 | 625 | |
|
623 | 626 | __isConfig = None |
|
624 | 627 | __nsubplots = None |
|
625 | 628 | |
|
626 | 629 | PREFIX = 'beacon_phase' |
|
627 | 630 | |
|
628 | 631 | def __init__(self): |
|
629 | 632 | Plot.__init__(self) |
|
630 | 633 | self.timerange = 24*60*60 |
|
631 | 634 | self.isConfig = False |
|
632 | 635 | self.__nsubplots = 1 |
|
633 | 636 | self.counter_imagwr = 0 |
|
634 | 637 | self.WIDTH = 800 |
|
635 | 638 | self.HEIGHT = 400 |
|
636 | 639 | self.WIDTHPROF = 120 |
|
637 | 640 | self.HEIGHTPROF = 0 |
|
638 | 641 | self.xdata = None |
|
639 | 642 | self.ydata = None |
|
640 | 643 | |
|
641 | 644 | self.PLOT_CODE = BEACON_CODE |
|
642 | 645 | |
|
643 | 646 | self.FTP_WEI = None |
|
644 | 647 | self.EXP_CODE = None |
|
645 | 648 | self.SUB_EXP_CODE = None |
|
646 | 649 | self.PLOT_POS = None |
|
647 | 650 | |
|
648 | 651 | self.filename_phase = None |
|
649 | 652 | |
|
650 | 653 | self.figfile = None |
|
651 | 654 | |
|
652 | 655 | self.xmin = None |
|
653 | 656 | self.xmax = None |
|
654 | 657 | |
|
655 | 658 | def getSubplots(self): |
|
656 | 659 | |
|
657 | 660 | ncol = 1 |
|
658 | 661 | nrow = 1 |
|
659 | 662 | |
|
660 | 663 | return nrow, ncol |
|
661 | 664 | |
|
662 | 665 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
663 | 666 | |
|
664 | 667 | self.__showprofile = showprofile |
|
665 | 668 | self.nplots = nplots |
|
666 | 669 | |
|
667 | 670 | ncolspan = 7 |
|
668 | 671 | colspan = 6 |
|
669 | 672 | self.__nsubplots = 2 |
|
670 | 673 | |
|
671 | 674 | self.createFigure(id = id, |
|
672 | 675 | wintitle = wintitle, |
|
673 | 676 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
674 | 677 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
675 | 678 | show=show) |
|
676 | 679 | |
|
677 | 680 | nrow, ncol = self.getSubplots() |
|
678 | 681 | |
|
679 | 682 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
680 | 683 | |
|
681 | 684 | def save_phase(self, filename_phase): |
|
682 | 685 | f = open(filename_phase,'w+') |
|
683 | 686 | f.write('\n\n') |
|
684 | 687 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
685 | 688 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
686 | 689 | f.close() |
|
687 | 690 | |
|
688 | 691 | def save_data(self, filename_phase, data, data_datetime): |
|
689 | 692 | f=open(filename_phase,'a') |
|
690 | 693 | timetuple_data = data_datetime.timetuple() |
|
691 | 694 | day = str(timetuple_data.tm_mday) |
|
692 | 695 | month = str(timetuple_data.tm_mon) |
|
693 | 696 | year = str(timetuple_data.tm_year) |
|
694 | 697 | hour = str(timetuple_data.tm_hour) |
|
695 | 698 | minute = str(timetuple_data.tm_min) |
|
696 | 699 | second = str(timetuple_data.tm_sec) |
|
697 | 700 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
698 | 701 | f.close() |
|
699 | 702 | |
|
700 | 703 | def plot(self): |
|
701 | 704 | log.warning('TODO: Not yet implemented...') |
|
702 | 705 | |
|
703 | 706 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
704 | 707 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
705 | 708 | timerange=None, |
|
706 | 709 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
707 | 710 | server=None, folder=None, username=None, password=None, |
|
708 | 711 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
709 | 712 | |
|
710 | 713 | if dataOut.flagNoData: |
|
711 | 714 | return dataOut |
|
712 | 715 | |
|
713 | 716 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
714 | 717 | return |
|
715 | 718 | |
|
716 | 719 | if pairsList == None: |
|
717 | 720 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
718 | 721 | else: |
|
719 | 722 | pairsIndexList = [] |
|
720 | 723 | for pair in pairsList: |
|
721 | 724 | if pair not in dataOut.pairsList: |
|
722 | 725 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
723 | 726 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
724 | 727 | |
|
725 | 728 | if pairsIndexList == []: |
|
726 | 729 | return |
|
727 | 730 | |
|
728 | 731 | # if len(pairsIndexList) > 4: |
|
729 | 732 | # pairsIndexList = pairsIndexList[0:4] |
|
730 | 733 | |
|
731 | 734 | hmin_index = None |
|
732 | 735 | hmax_index = None |
|
733 | 736 | |
|
734 | 737 | if hmin != None and hmax != None: |
|
735 | 738 | indexes = numpy.arange(dataOut.nHeights) |
|
736 | 739 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
737 | 740 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
738 | 741 | |
|
739 | 742 | if hmin_list.any(): |
|
740 | 743 | hmin_index = hmin_list[0] |
|
741 | 744 | |
|
742 | 745 | if hmax_list.any(): |
|
743 | 746 | hmax_index = hmax_list[-1]+1 |
|
744 | 747 | |
|
745 | 748 | x = dataOut.getTimeRange() |
|
746 | 749 | |
|
747 | 750 | thisDatetime = dataOut.datatime |
|
748 | 751 | |
|
749 | 752 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
750 | 753 | xlabel = "Local Time" |
|
751 | 754 | ylabel = "Phase (degrees)" |
|
752 | 755 | |
|
753 | 756 | update_figfile = False |
|
754 | 757 | |
|
755 | 758 | nplots = len(pairsIndexList) |
|
756 | 759 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
757 | 760 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
758 | 761 | for i in range(nplots): |
|
759 | 762 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
760 | 763 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
761 | 764 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
762 | 765 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
763 | 766 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
764 | 767 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
765 | 768 | |
|
766 | 769 | if dataOut.beacon_heiIndexList: |
|
767 | 770 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
768 | 771 | else: |
|
769 | 772 | phase_beacon[i] = numpy.average(phase) |
|
770 | 773 | |
|
771 | 774 | if not self.isConfig: |
|
772 | 775 | |
|
773 | 776 | nplots = len(pairsIndexList) |
|
774 | 777 | |
|
775 | 778 | self.setup(id=id, |
|
776 | 779 | nplots=nplots, |
|
777 | 780 | wintitle=wintitle, |
|
778 | 781 | showprofile=showprofile, |
|
779 | 782 | show=show) |
|
780 | 783 | |
|
781 | 784 | if timerange != None: |
|
782 | 785 | self.timerange = timerange |
|
783 | 786 | |
|
784 | 787 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
785 | 788 | |
|
786 | 789 | if ymin == None: ymin = 0 |
|
787 | 790 | if ymax == None: ymax = 360 |
|
788 | 791 | |
|
789 | 792 | self.FTP_WEI = ftp_wei |
|
790 | 793 | self.EXP_CODE = exp_code |
|
791 | 794 | self.SUB_EXP_CODE = sub_exp_code |
|
792 | 795 | self.PLOT_POS = plot_pos |
|
793 | 796 | |
|
794 | 797 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
795 | 798 | self.isConfig = True |
|
796 | 799 | self.figfile = figfile |
|
797 | 800 | self.xdata = numpy.array([]) |
|
798 | 801 | self.ydata = numpy.array([]) |
|
799 | 802 | |
|
800 | 803 | update_figfile = True |
|
801 | 804 | |
|
802 | 805 | #open file beacon phase |
|
803 | 806 | path = '%s%03d' %(self.PREFIX, self.id) |
|
804 | 807 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
805 | 808 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
806 | 809 | #self.save_phase(self.filename_phase) |
|
807 | 810 | |
|
808 | 811 | |
|
809 | 812 | #store data beacon phase |
|
810 | 813 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
811 | 814 | |
|
812 | 815 | self.setWinTitle(title) |
|
813 | 816 | |
|
814 | 817 | |
|
815 | 818 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
816 | 819 | |
|
817 | 820 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
818 | 821 | |
|
819 | 822 | axes = self.axesList[0] |
|
820 | 823 | |
|
821 | 824 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
822 | 825 | |
|
823 | 826 | if len(self.ydata)==0: |
|
824 | 827 | self.ydata = phase_beacon.reshape(-1,1) |
|
825 | 828 | else: |
|
826 | 829 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
827 | 830 | |
|
828 | 831 | |
|
829 | 832 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
830 | 833 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
831 | 834 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
832 | 835 | XAxisAsTime=True, grid='both' |
|
833 | 836 | ) |
|
834 | 837 | |
|
835 | 838 | self.draw() |
|
836 | 839 | |
|
837 | 840 | if dataOut.ltctime >= self.xmax: |
|
838 | 841 | self.counter_imagwr = wr_period |
|
839 | 842 | self.isConfig = False |
|
840 | 843 | update_figfile = True |
|
841 | 844 | |
|
842 | 845 | self.save(figpath=figpath, |
|
843 | 846 | figfile=figfile, |
|
844 | 847 | save=save, |
|
845 | 848 | ftp=ftp, |
|
846 | 849 | wr_period=wr_period, |
|
847 | 850 | thisDatetime=thisDatetime, |
|
848 | 851 | update_figfile=update_figfile) |
|
849 | 852 | |
|
850 | 853 | return dataOut |
|
851 | 854 | |
|
852 | 855 | class NoiselessSpectraPlot(Plot): |
|
853 | 856 | ''' |
|
854 | 857 | Plot for Spectra data, subtracting |
|
855 | 858 | the noise in all channels, using for |
|
856 | 859 | amisr-14 data |
|
857 | 860 | ''' |
|
858 | 861 | |
|
859 | 862 | CODE = 'noiseless_spc' |
|
860 | 863 | colormap = 'jet' |
|
861 | 864 | plot_type = 'pcolor' |
|
862 | 865 | buffering = False |
|
863 | 866 | channelList = [] |
|
864 | 867 | last_noise = None |
|
865 | 868 | |
|
866 | 869 | def setup(self): |
|
867 | 870 | |
|
868 | 871 | self.nplots = len(self.data.channels) |
|
869 | 872 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
870 | 873 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
871 | 874 | self.height = 3.5 * self.nrows |
|
872 | 875 | |
|
873 | 876 | self.cb_label = 'dB' |
|
874 | 877 | if self.showprofile: |
|
875 | 878 | self.width = 5.8 * self.ncols |
|
876 | 879 | else: |
|
877 | 880 | self.width = 4.8* self.ncols |
|
878 | 881 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12}) |
|
879 | 882 | |
|
880 | 883 | self.ylabel = 'Range [km]' |
|
881 | 884 | |
|
882 | 885 | |
|
883 | 886 | def update_list(self,dataOut): |
|
884 | 887 | if len(self.channelList) == 0: |
|
885 | 888 | self.channelList = dataOut.channelList |
|
886 | 889 | |
|
887 | 890 | def update(self, dataOut): |
|
888 | 891 | |
|
889 | 892 | self.update_list(dataOut) |
|
890 | 893 | data = {} |
|
891 | 894 | meta = {} |
|
892 | 895 | |
|
893 | 896 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints |
|
894 | 897 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
895 | 898 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
896 | 899 | |
|
897 | 900 | z = [] |
|
898 | 901 | for ch in range(dataOut.nChannels): |
|
899 | 902 | if hasattr(dataOut.normFactor,'shape'): |
|
900 | 903 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
901 | 904 | else: |
|
902 | 905 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
903 | 906 | |
|
904 | 907 | z = numpy.asarray(z) |
|
905 | 908 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
906 | 909 | spc = 10*numpy.log10(z) |
|
907 | 910 | |
|
908 | 911 | |
|
909 | 912 | data['spc'] = spc - noise |
|
910 | 913 | #print(spc.shape) |
|
911 | 914 | data['rti'] = spc.mean(axis=1) |
|
912 | 915 | data['noise'] = noise |
|
913 | 916 | |
|
914 | 917 | |
|
915 | 918 | |
|
916 | 919 | # data['noise'] = noise |
|
917 | 920 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
918 | 921 | |
|
919 | 922 | return data, meta |
|
920 | 923 | |
|
921 | 924 | def plot(self): |
|
922 | 925 | if self.xaxis == "frequency": |
|
923 | 926 | x = self.data.xrange[0] |
|
924 | 927 | self.xlabel = "Frequency (kHz)" |
|
925 | 928 | elif self.xaxis == "time": |
|
926 | 929 | x = self.data.xrange[1] |
|
927 | 930 | self.xlabel = "Time (ms)" |
|
928 | 931 | else: |
|
929 | 932 | x = self.data.xrange[2] |
|
930 | 933 | self.xlabel = "Velocity (m/s)" |
|
931 | 934 | |
|
932 | 935 | self.titles = [] |
|
933 | 936 | y = self.data.yrange |
|
934 | 937 | self.y = y |
|
935 | 938 | |
|
936 | 939 | data = self.data[-1] |
|
937 | 940 | z = data['spc'] |
|
938 | 941 | |
|
939 | 942 | for n, ax in enumerate(self.axes): |
|
940 | 943 | #noise = data['noise'][n] |
|
941 | 944 | |
|
942 | 945 | if ax.firsttime: |
|
943 | 946 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
944 | 947 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
945 | 948 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
946 | 949 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
947 | 950 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
948 | 951 | vmin=self.zmin, |
|
949 | 952 | vmax=self.zmax, |
|
950 | 953 | cmap=plt.get_cmap(self.colormap) |
|
951 | 954 | ) |
|
952 | 955 | |
|
953 | 956 | if self.showprofile: |
|
954 | 957 | ax.plt_profile = self.pf_axes[n].plot( |
|
955 | 958 | data['rti'][n], y)[0] |
|
956 | 959 | |
|
957 | 960 | |
|
958 | 961 | else: |
|
959 | 962 | ax.plt.set_array(z[n].T.ravel()) |
|
960 | 963 | if self.showprofile: |
|
961 | 964 | ax.plt_profile.set_data(data['rti'][n], y) |
|
962 | 965 | |
|
963 | 966 | |
|
964 | 967 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
965 | 968 | |
|
966 | 969 | |
|
967 | 970 | class NoiselessRTIPlot(Plot): |
|
968 | 971 | ''' |
|
969 | 972 | Plot for RTI data |
|
970 | 973 | ''' |
|
971 | 974 | |
|
972 | 975 | CODE = 'noiseless_rti' |
|
973 | 976 | colormap = 'jet' |
|
974 | 977 | plot_type = 'pcolorbuffer' |
|
975 | 978 | titles = None |
|
976 | 979 | channelList = [] |
|
977 | 980 | elevationList = [] |
|
978 | 981 | azimuthList = [] |
|
979 | 982 | last_noise = None |
|
980 | 983 | |
|
981 | 984 | def setup(self): |
|
982 | 985 | self.xaxis = 'time' |
|
983 | 986 | self.ncols = 1 |
|
984 | 987 | #print("dataChannels ",self.data.channels) |
|
985 | 988 | self.nrows = len(self.data.channels) |
|
986 | 989 | self.nplots = len(self.data.channels) |
|
987 | 990 | self.ylabel = 'Range [km]' |
|
988 | 991 | self.xlabel = 'Time' |
|
989 | 992 | self.cb_label = 'dB' |
|
990 | 993 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
991 | 994 | self.titles = ['{} Channel {}'.format( |
|
992 | 995 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
993 | 996 | |
|
994 | 997 | def update_list(self,dataOut): |
|
995 | 998 | if len(self.channelList) == 0: |
|
996 | 999 | self.channelList = dataOut.channelList |
|
997 | 1000 | if len(self.elevationList) == 0: |
|
998 | 1001 | self.elevationList = dataOut.elevationList |
|
999 | 1002 | if len(self.azimuthList) == 0: |
|
1000 | 1003 | self.azimuthList = dataOut.azimuthList |
|
1001 | 1004 | |
|
1002 | 1005 | def update(self, dataOut): |
|
1003 | 1006 | if len(self.channelList) == 0: |
|
1004 | 1007 | self.update_list(dataOut) |
|
1008 | ||
|
1005 | 1009 | data = {} |
|
1006 | 1010 | meta = {} |
|
1007 | 1011 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) |
|
1008 | 1012 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt) |
|
1009 | 1013 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1010 | 1014 | |
|
1011 | 1015 | |
|
1012 | 1016 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1013 | 1017 | |
|
1014 | 1018 | data['noise'] = n0 |
|
1015 | 1019 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1016 | 1020 | |
|
1017 | 1021 | data['noiseless_rti'] = dataOut.getPower() - noise |
|
1018 | 1022 | |
|
1019 | 1023 | return data, meta |
|
1020 | 1024 | |
|
1021 | 1025 | def plot(self): |
|
1022 | 1026 | |
|
1023 | 1027 | self.x = self.data.times |
|
1024 | 1028 | self.y = self.data.yrange |
|
1025 | 1029 | self.z = self.data['noiseless_rti'] |
|
1026 | 1030 | self.z = numpy.array(self.z, dtype=float) |
|
1027 | 1031 | self.z = numpy.ma.masked_invalid(self.z) |
|
1028 | 1032 | |
|
1029 | 1033 | |
|
1030 | 1034 | try: |
|
1031 | 1035 | if self.channelList != None: |
|
1032 | 1036 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1033 | 1037 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1034 | 1038 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1035 | 1039 | else: |
|
1036 | 1040 | self.titles = ['{} Channel {}'.format( |
|
1037 | 1041 | self.CODE.upper(), x) for x in self.channelList] |
|
1038 | 1042 | except: |
|
1039 | 1043 | if self.channelList.any() != None: |
|
1040 | ||
|
1041 | self.titles = ['{} Channel {}'.format( | |
|
1042 | self.CODE.upper(), x) for x in self.channelList] | |
|
1044 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
|
1045 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
|
1046 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
|
1047 | else: | |
|
1048 | self.titles = ['{} Channel {}'.format( | |
|
1049 | self.CODE.upper(), x) for x in self.channelList] | |
|
1043 | 1050 | |
|
1044 | 1051 | |
|
1045 | 1052 | if self.decimation is None: |
|
1046 | 1053 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1047 | 1054 | else: |
|
1048 | 1055 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1049 | 1056 | dummy_var = self.axes #Extrañamente esto actualiza el valor axes |
|
1050 | 1057 | #print("plot shapes ", z.shape, x.shape, y.shape) |
|
1051 | 1058 | for n, ax in enumerate(self.axes): |
|
1052 | 1059 | |
|
1053 | 1060 | |
|
1054 | 1061 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
1055 | 1062 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
1056 | 1063 | data = self.data[-1] |
|
1057 | 1064 | if ax.firsttime: |
|
1058 | 1065 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1059 | 1066 | vmin=self.zmin, |
|
1060 | 1067 | vmax=self.zmax, |
|
1061 | 1068 | cmap=plt.get_cmap(self.colormap) |
|
1062 | 1069 | ) |
|
1063 | 1070 | if self.showprofile: |
|
1064 | 1071 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
1065 | 1072 | |
|
1066 | 1073 | else: |
|
1067 | 1074 | ax.collections.remove(ax.collections[0]) |
|
1068 | 1075 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1069 | 1076 | vmin=self.zmin, |
|
1070 | 1077 | vmax=self.zmax, |
|
1071 | 1078 | cmap=plt.get_cmap(self.colormap) |
|
1072 | 1079 | ) |
|
1073 | 1080 | if self.showprofile: |
|
1074 | 1081 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
1075 | 1082 | # if "noise" in self.data: |
|
1076 | 1083 | # #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
1077 | 1084 | # ax.plot_noise.set_data(data['noise'][n], self.y) |
|
1078 | 1085 | |
|
1079 | 1086 | |
|
1080 | 1087 | class OutliersRTIPlot(Plot): |
|
1081 | 1088 | ''' |
|
1082 | 1089 | Plot for data_xxxx object |
|
1083 | 1090 | ''' |
|
1084 | 1091 | |
|
1085 | 1092 | CODE = 'outlier_rtc' # Range Time Counts |
|
1086 | 1093 | colormap = 'cool' |
|
1087 | 1094 | plot_type = 'pcolorbuffer' |
|
1088 | 1095 | |
|
1089 | 1096 | def setup(self): |
|
1090 | 1097 | self.xaxis = 'time' |
|
1091 | 1098 | self.ncols = 1 |
|
1092 | 1099 | self.nrows = self.data.shape('outlier_rtc')[0] |
|
1093 | 1100 | self.nplots = self.nrows |
|
1094 | 1101 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1095 | 1102 | |
|
1096 | 1103 | |
|
1097 | 1104 | if not self.xlabel: |
|
1098 | 1105 | self.xlabel = 'Time' |
|
1099 | 1106 | |
|
1100 | 1107 | self.ylabel = 'Height [km]' |
|
1101 | 1108 | if not self.titles: |
|
1102 | 1109 | self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)] |
|
1103 | 1110 | |
|
1104 | 1111 | def update(self, dataOut): |
|
1105 | 1112 | |
|
1106 | 1113 | data = {} |
|
1107 | 1114 | data['outlier_rtc'] = dataOut.data_outlier |
|
1108 | 1115 | |
|
1109 | 1116 | meta = {} |
|
1110 | 1117 | |
|
1111 | 1118 | return data, meta |
|
1112 | 1119 | |
|
1113 | 1120 | def plot(self): |
|
1114 | 1121 | # self.data.normalize_heights() |
|
1115 | 1122 | self.x = self.data.times |
|
1116 | 1123 | self.y = self.data.yrange |
|
1117 | 1124 | self.z = self.data['outlier_rtc'] |
|
1118 | 1125 | |
|
1119 | 1126 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1120 | 1127 | |
|
1121 | 1128 | if self.decimation is None: |
|
1122 | 1129 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1123 | 1130 | else: |
|
1124 | 1131 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1125 | 1132 | |
|
1126 | 1133 | for n, ax in enumerate(self.axes): |
|
1127 | 1134 | |
|
1128 | 1135 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1129 | 1136 | self.z[n]) |
|
1130 | 1137 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1131 | 1138 | self.z[n]) |
|
1132 | 1139 | data = self.data[-1] |
|
1133 | 1140 | if ax.firsttime: |
|
1134 | 1141 | if self.zlimits is not None: |
|
1135 | 1142 | self.zmin, self.zmax = self.zlimits[n] |
|
1136 | 1143 | |
|
1137 | 1144 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1138 | 1145 | vmin=self.zmin, |
|
1139 | 1146 | vmax=self.zmax, |
|
1140 | 1147 | cmap=self.cmaps[n] |
|
1141 | 1148 | ) |
|
1142 | 1149 | if self.showprofile: |
|
1143 | 1150 | ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0] |
|
1144 | 1151 | self.pf_axes[n].set_xlabel('') |
|
1145 | 1152 | else: |
|
1146 | 1153 | if self.zlimits is not None: |
|
1147 | 1154 | self.zmin, self.zmax = self.zlimits[n] |
|
1148 | 1155 | ax.collections.remove(ax.collections[0]) |
|
1149 | 1156 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1150 | 1157 | vmin=self.zmin, |
|
1151 | 1158 | vmax=self.zmax, |
|
1152 | 1159 | cmap=self.cmaps[n] |
|
1153 | 1160 | ) |
|
1154 | 1161 | if self.showprofile: |
|
1155 | 1162 | ax.plot_profile.set_data(data['outlier_rtc'][n], self.y) |
|
1156 | 1163 | self.pf_axes[n].set_xlabel('') |
|
1157 | 1164 | |
|
1158 | 1165 | class NIncohIntRTIPlot(Plot): |
|
1159 | 1166 | ''' |
|
1160 | 1167 | Plot for data_xxxx object |
|
1161 | 1168 | ''' |
|
1162 | 1169 | |
|
1163 | 1170 | CODE = 'integrations_rtc' # Range Time Counts |
|
1164 | 1171 | colormap = 'BuGn' |
|
1165 | 1172 | plot_type = 'pcolorbuffer' |
|
1166 | 1173 | |
|
1167 | 1174 | def setup(self): |
|
1168 | 1175 | self.xaxis = 'time' |
|
1169 | 1176 | self.ncols = 1 |
|
1170 | 1177 | self.nrows = self.data.shape('integrations_rtc')[0] |
|
1171 | 1178 | self.nplots = self.nrows |
|
1172 | 1179 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1173 | 1180 | |
|
1174 | 1181 | |
|
1175 | 1182 | if not self.xlabel: |
|
1176 | 1183 | self.xlabel = 'Time' |
|
1177 | 1184 | |
|
1178 | 1185 | self.ylabel = 'Height [km]' |
|
1179 | 1186 | if not self.titles: |
|
1180 | 1187 | self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)] |
|
1181 | 1188 | |
|
1182 | 1189 | def update(self, dataOut): |
|
1183 | 1190 | |
|
1184 | 1191 | data = {} |
|
1185 | 1192 | data['integrations_rtc'] = dataOut.nIncohInt |
|
1186 | 1193 | |
|
1187 | 1194 | meta = {} |
|
1188 | 1195 | |
|
1189 | 1196 | return data, meta |
|
1190 | 1197 | |
|
1191 | 1198 | def plot(self): |
|
1192 | 1199 | # self.data.normalize_heights() |
|
1193 | 1200 | self.x = self.data.times |
|
1194 | 1201 | self.y = self.data.yrange |
|
1195 | 1202 | self.z = self.data['integrations_rtc'] |
|
1196 | 1203 | |
|
1197 | 1204 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1198 | 1205 | |
|
1199 | 1206 | if self.decimation is None: |
|
1200 | 1207 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1201 | 1208 | else: |
|
1202 | 1209 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1203 | 1210 | |
|
1204 | 1211 | for n, ax in enumerate(self.axes): |
|
1205 | 1212 | |
|
1206 | 1213 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1207 | 1214 | self.z[n]) |
|
1208 | 1215 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1209 | 1216 | self.z[n]) |
|
1210 | 1217 | data = self.data[-1] |
|
1211 | 1218 | if ax.firsttime: |
|
1212 | 1219 | if self.zlimits is not None: |
|
1213 | 1220 | self.zmin, self.zmax = self.zlimits[n] |
|
1214 | 1221 | |
|
1215 | 1222 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1216 | 1223 | vmin=self.zmin, |
|
1217 | 1224 | vmax=self.zmax, |
|
1218 | 1225 | cmap=self.cmaps[n] |
|
1219 | 1226 | ) |
|
1220 | 1227 | if self.showprofile: |
|
1221 | 1228 | ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0] |
|
1222 | 1229 | self.pf_axes[n].set_xlabel('') |
|
1223 | 1230 | else: |
|
1224 | 1231 | if self.zlimits is not None: |
|
1225 | 1232 | self.zmin, self.zmax = self.zlimits[n] |
|
1226 | 1233 | ax.collections.remove(ax.collections[0]) |
|
1227 | 1234 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1228 | 1235 | vmin=self.zmin, |
|
1229 | 1236 | vmax=self.zmax, |
|
1230 | 1237 | cmap=self.cmaps[n] |
|
1231 | 1238 | ) |
|
1232 | 1239 | if self.showprofile: |
|
1233 | 1240 | ax.plot_profile.set_data(data['integrations_rtc'][n], self.y) |
|
1234 | 1241 | self.pf_axes[n].set_xlabel('') |
@@ -1,698 +1,725 | |||
|
1 | 1 | '''' |
|
2 | 2 | Created on Set 9, 2015 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 Karim Kuyeng |
|
5 | 5 | |
|
6 | 6 | @update: 2021, Joab Apaza |
|
7 | 7 | ''' |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import sys |
|
11 | 11 | import glob |
|
12 | 12 | import fnmatch |
|
13 | 13 | import datetime |
|
14 | 14 | import time |
|
15 | 15 | import re |
|
16 | 16 | import h5py |
|
17 | 17 | import numpy |
|
18 | 18 | |
|
19 | 19 | try: |
|
20 | 20 | from gevent import sleep |
|
21 | 21 | except: |
|
22 | 22 | from time import sleep |
|
23 | 23 | |
|
24 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader | |
|
24 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader,ProcessingHeader | |
|
25 | 25 | from schainpy.model.data.jrodata import Voltage |
|
26 | 26 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
27 | 27 | from numpy import imag |
|
28 | 28 | from schainpy.utils import log |
|
29 | 29 | |
|
30 | 30 | |
|
31 | 31 | class AMISRReader(ProcessingUnit): |
|
32 | 32 | ''' |
|
33 | 33 | classdocs |
|
34 | 34 | ''' |
|
35 | 35 | |
|
36 | 36 | def __init__(self): |
|
37 | 37 | ''' |
|
38 | 38 | Constructor |
|
39 | 39 | ''' |
|
40 | 40 | |
|
41 | 41 | ProcessingUnit.__init__(self) |
|
42 | 42 | |
|
43 | 43 | self.set = None |
|
44 | 44 | self.subset = None |
|
45 | 45 | self.extension_file = '.h5' |
|
46 | 46 | self.dtc_str = 'dtc' |
|
47 | 47 | self.dtc_id = 0 |
|
48 | 48 | self.status = True |
|
49 | 49 | self.isConfig = False |
|
50 | 50 | self.dirnameList = [] |
|
51 | 51 | self.filenameList = [] |
|
52 | 52 | self.fileIndex = None |
|
53 | 53 | self.flagNoMoreFiles = False |
|
54 | 54 | self.flagIsNewFile = 0 |
|
55 | 55 | self.filename = '' |
|
56 | 56 | self.amisrFilePointer = None |
|
57 | 57 | |
|
58 | 58 | self.beamCodeMap = None |
|
59 | 59 | self.azimuthList = [] |
|
60 | 60 | self.elevationList = [] |
|
61 | 61 | self.dataShape = None |
|
62 | 62 | self.flag_old_beams = False |
|
63 | 63 | |
|
64 | 64 | |
|
65 | 65 | self.profileIndex = 0 |
|
66 | 66 | |
|
67 | 67 | |
|
68 | 68 | self.beamCodeByFrame = None |
|
69 | 69 | self.radacTimeByFrame = None |
|
70 | 70 | |
|
71 | 71 | self.dataset = None |
|
72 | 72 | |
|
73 | 73 | self.__firstFile = True |
|
74 | 74 | |
|
75 | 75 | self.buffer = None |
|
76 | 76 | |
|
77 | 77 | self.timezone = 'ut' |
|
78 | 78 | |
|
79 | 79 | self.__waitForNewFile = 20 |
|
80 | 80 | self.__filename_online = None |
|
81 | 81 | #Is really necessary create the output object in the initializer |
|
82 | 82 | self.dataOut = Voltage() |
|
83 | 83 | self.dataOut.error=False |
|
84 | 84 | self.margin_days = 1 |
|
85 | 85 | |
|
86 | 86 | def setup(self,path=None, |
|
87 | 87 | startDate=None, |
|
88 | 88 | endDate=None, |
|
89 | 89 | startTime=None, |
|
90 | 90 | endTime=None, |
|
91 | 91 | walk=True, |
|
92 | 92 | timezone='ut', |
|
93 | 93 | all=0, |
|
94 | 94 | code = None, |
|
95 | 95 | nCode = 1, |
|
96 | 96 | nBaud = 0, |
|
97 | nOsamp = None, | |
|
97 | 98 | online=False, |
|
98 | 99 | old_beams=False, |
|
99 | 100 | margin_days=1, |
|
100 |
nFFT = |
|
|
101 | nFFT = None, | |
|
101 | 102 | nChannels = None, |
|
102 | 103 | ): |
|
103 | 104 | |
|
104 | 105 | |
|
105 | 106 | |
|
106 | 107 | self.timezone = timezone |
|
107 | 108 | self.all = all |
|
108 | 109 | self.online = online |
|
109 | 110 | self.flag_old_beams = old_beams |
|
110 | 111 | self.code = code |
|
111 | 112 | self.nCode = int(nCode) |
|
112 | 113 | self.nBaud = int(nBaud) |
|
114 | self.nOsamp = int(nOsamp) | |
|
113 | 115 | self.margin_days = margin_days |
|
114 | 116 | self.__sampleRate = None |
|
115 | 117 | |
|
116 | 118 | self.nFFT = nFFT |
|
117 | 119 | self.nChannels = nChannels |
|
118 | 120 | |
|
119 | 121 | #self.findFiles() |
|
120 | 122 | if not(online): |
|
121 | 123 | #Busqueda de archivos offline |
|
122 | 124 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk) |
|
123 | 125 | else: |
|
124 | 126 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) |
|
125 | 127 | |
|
126 | 128 | if not(self.filenameList): |
|
127 | 129 | raise schainpy.admin.SchainWarning("There is no files into the folder: %s"%(path)) |
|
128 | 130 | #sys.exit(0) |
|
129 | 131 | self.dataOut.error = True |
|
130 | 132 | |
|
131 | 133 | self.fileIndex = 0 |
|
132 | 134 | |
|
133 | 135 | self.readNextFile(online) |
|
134 | 136 | |
|
135 | 137 | ''' |
|
136 | 138 | Add code |
|
137 | 139 | ''' |
|
138 | 140 | self.isConfig = True |
|
139 | 141 | # print("Setup Done") |
|
140 | 142 | pass |
|
141 | 143 | |
|
142 | 144 | |
|
143 | 145 | def readAMISRHeader(self,fp): |
|
144 | 146 | |
|
145 | 147 | if self.isConfig and (not self.flagNoMoreFiles): |
|
146 | 148 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
147 | 149 | if self.dataShape != newShape and newShape != None: |
|
148 | 150 | raise schainpy.admin.SchainError("NEW FILE HAS A DIFFERENT SHAPE: ") |
|
149 | 151 | print(self.dataShape,newShape,"\n") |
|
150 | 152 | return 0 |
|
151 | 153 | else: |
|
152 | 154 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
153 | 155 | |
|
154 | 156 | |
|
155 | 157 | header = 'Raw11/Data/RadacHeader' |
|
156 | 158 | if self.nChannels == None: |
|
157 |
expFile = fp['Setup/Experiment |
|
|
159 | expFile = fp['Setup/Experimentfile'][()].decode() | |
|
158 | 160 | linesExp = expFile.split("\n") |
|
159 | 161 | a = [line for line in linesExp if "nbeamcodes" in line] |
|
160 | 162 | self.nChannels = int(a[0][11:]) |
|
161 | 163 | |
|
162 | 164 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE |
|
163 | 165 | if (self.startDate > datetime.date(2021, 7, 15)) or self.flag_old_beams: #Se cambió la forma de extracción de Apuntes el 17 o forzar con flag de reorganización |
|
164 | 166 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() |
|
165 | 167 | self.trueBeams = self.beamcodeFile.split("\n") |
|
166 | 168 | self.trueBeams.pop()#remove last |
|
169 | if self.nFFT == None: | |
|
170 | log.error("FFT or number of repetitions per channels is needed",self.name) | |
|
167 | 171 | beams_idx = [k*self.nFFT for k in range(self.nChannels)] |
|
168 | 172 | beams = [self.trueBeams[b] for b in beams_idx] |
|
169 | 173 | self.beamCode = [int(x, 16) for x in beams] |
|
170 | 174 | |
|
171 | 175 | else: |
|
172 | 176 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes |
|
173 | 177 | self.beamCode = _beamCode[0,:] |
|
174 | 178 | |
|
175 | 179 | if self.beamCodeMap == None: |
|
176 | 180 | self.beamCodeMap = fp['Setup/BeamcodeMap'] |
|
177 | 181 | for beam in self.beamCode: |
|
178 | 182 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) |
|
179 | 183 | beamAziElev = beamAziElev[0].squeeze() |
|
180 | 184 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) |
|
181 | 185 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) |
|
182 | 186 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) |
|
183 | 187 | #print(self.beamCode) |
|
184 | 188 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS |
|
185 | 189 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS |
|
186 | 190 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS |
|
187 | 191 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT |
|
188 | 192 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS |
|
189 | 193 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile |
|
190 | 194 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS |
|
191 | 195 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS |
|
192 | 196 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') |
|
193 | 197 | self.frequency = fp.get('Rx/Frequency') |
|
194 | txAus = fp.get('Raw11/Data/Pulsewidth') | |
|
198 | txAus = fp.get('Raw11/Data/Pulsewidth') #seconds | |
|
195 | 199 | self.baud = fp.get('Raw11/Data/TxBaud') |
|
196 | 200 | sampleRate = fp.get('Rx/SampleRate') |
|
197 | 201 | self.__sampleRate = sampleRate[()] |
|
198 | 202 | self.nblocks = self.pulseCount.shape[0] #nblocks |
|
199 | 203 | self.profPerBlockRAW = self.pulseCount.shape[1] #profiles per block in raw data |
|
200 | 204 | self.nprofiles = self.pulseCount.shape[1] #nprofile |
|
201 | 205 | self.nsa = self.nsamplesPulse[0,0] #ngates |
|
202 | 206 | self.nchannels = len(self.beamCode) |
|
203 | 207 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds |
|
204 | 208 | #print("IPPS secs: ",self.ippSeconds) |
|
205 | 209 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec |
|
206 | 210 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created |
|
207 | 211 | |
|
208 | 212 | #filling radar controller header parameters |
|
209 | 213 | self.__ippKm = self.ippSeconds *.15*1e6 # in km |
|
210 |
self.__txA = |
|
|
214 | #self.__txA = txAus[()]*.15 #(ipp[us]*.15km/1us) in km | |
|
215 | self.__txA = txAus[()] #seconds | |
|
216 | self.__txAKm = self.__txA*1e6*.15 | |
|
211 | 217 | self.__txB = 0 |
|
212 | 218 | nWindows=1 |
|
213 | 219 | self.__nSamples = self.nsa |
|
214 | 220 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km |
|
215 | 221 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 |
|
216 | 222 | #print("amisr-ipp:",self.ippSeconds, self.__ippKm) |
|
217 | 223 | #for now until understand why the code saved is different (code included even though code not in tuf file) |
|
218 | 224 | #self.__codeType = 0 |
|
219 | 225 | # self.__nCode = None |
|
220 | 226 | # self.__nBaud = None |
|
221 | 227 | self.__code = self.code |
|
222 | 228 | self.__codeType = 0 |
|
223 | 229 | if self.code != None: |
|
224 | 230 | self.__codeType = 1 |
|
225 | 231 | self.__nCode = self.nCode |
|
226 | 232 | self.__nBaud = self.nBaud |
|
233 | self.__baudTX = self.__txA/(self.nBaud) | |
|
227 | 234 | #self.__code = 0 |
|
228 | 235 | |
|
229 | 236 | #filling system header parameters |
|
230 | 237 | self.__nSamples = self.nsa |
|
231 | 238 | self.newProfiles = self.nprofiles/self.nchannels |
|
232 | 239 | self.__channelList = [n for n in range(self.nchannels)] |
|
233 | 240 | |
|
234 | 241 | self.__frequency = self.frequency[0][0] |
|
235 | 242 | |
|
236 | 243 | |
|
237 | 244 | return 1 |
|
238 | 245 | |
|
239 | 246 | |
|
240 | 247 | def createBuffers(self): |
|
241 | 248 | |
|
242 | 249 | pass |
|
243 | 250 | |
|
244 | 251 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): |
|
245 | 252 | self.path = path |
|
246 | 253 | self.startDate = startDate |
|
247 | 254 | self.endDate = endDate |
|
248 | 255 | self.startTime = startTime |
|
249 | 256 | self.endTime = endTime |
|
250 | 257 | self.walk = walk |
|
251 | 258 | |
|
252 | 259 | def __checkPath(self): |
|
253 | 260 | if os.path.exists(self.path): |
|
254 | 261 | self.status = 1 |
|
255 | 262 | else: |
|
256 | 263 | self.status = 0 |
|
257 | 264 | print('Path:%s does not exists'%self.path) |
|
258 | 265 | |
|
259 | 266 | return |
|
260 | 267 | |
|
261 | 268 | |
|
262 | 269 | def __selDates(self, amisr_dirname_format): |
|
263 | 270 | try: |
|
264 | 271 | year = int(amisr_dirname_format[0:4]) |
|
265 | 272 | month = int(amisr_dirname_format[4:6]) |
|
266 | 273 | dom = int(amisr_dirname_format[6:8]) |
|
267 | 274 | thisDate = datetime.date(year,month,dom) |
|
268 | 275 | #margen de un día extra, igual luego se filtra for fecha y hora |
|
269 | 276 | if (thisDate>=(self.startDate - datetime.timedelta(days=self.margin_days)) and thisDate <= (self.endDate)+ datetime.timedelta(days=1)): |
|
270 | 277 | return amisr_dirname_format |
|
271 | 278 | except: |
|
272 | 279 | return None |
|
273 | 280 | |
|
274 | 281 | |
|
275 | 282 | def __findDataForDates(self,online=False): |
|
276 | 283 | |
|
277 | 284 | if not(self.status): |
|
278 | 285 | return None |
|
279 | 286 | |
|
280 | 287 | pat = '\d+.\d+' |
|
281 | 288 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] |
|
282 | 289 | dirnameList = [x for x in dirnameList if x!=None] |
|
283 | 290 | dirnameList = [x.string for x in dirnameList] |
|
284 | 291 | if not(online): |
|
285 | 292 | dirnameList = [self.__selDates(x) for x in dirnameList] |
|
286 | 293 | dirnameList = [x for x in dirnameList if x!=None] |
|
287 | 294 | if len(dirnameList)>0: |
|
288 | 295 | self.status = 1 |
|
289 | 296 | self.dirnameList = dirnameList |
|
290 | 297 | self.dirnameList.sort() |
|
291 | 298 | else: |
|
292 | 299 | self.status = 0 |
|
293 | 300 | return None |
|
294 | 301 | |
|
295 | 302 | def __getTimeFromData(self): |
|
296 | 303 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) |
|
297 | 304 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
298 | 305 | |
|
299 | 306 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) |
|
300 | 307 | print('........................................') |
|
301 | 308 | filter_filenameList = [] |
|
302 | 309 | self.filenameList.sort() |
|
303 | 310 | total_files = len(self.filenameList) |
|
304 | 311 | #for i in range(len(self.filenameList)-1): |
|
305 | 312 | for i in range(total_files): |
|
306 | 313 | filename = self.filenameList[i] |
|
307 | 314 | #print("file-> ",filename) |
|
308 | 315 | try: |
|
309 | 316 | fp = h5py.File(filename,'r') |
|
310 | 317 | time_str = fp.get('Time/RadacTimeString') |
|
311 | 318 | |
|
312 | 319 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
313 | 320 | #startDateTimeStr_File = "2019-12-16 09:21:11" |
|
314 | 321 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
315 | 322 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
316 | 323 | |
|
317 | 324 | #endDateTimeStr_File = "2019-12-16 11:10:11" |
|
318 | 325 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] |
|
319 | 326 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
320 | 327 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
321 | 328 | |
|
322 | 329 | fp.close() |
|
323 | 330 | |
|
324 | 331 | #print("check time", startDateTime_File) |
|
325 | 332 | if self.timezone == 'lt': |
|
326 | 333 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
327 | 334 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) |
|
328 | 335 | if (startDateTime_File >=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): |
|
329 | 336 | filter_filenameList.append(filename) |
|
330 | 337 | |
|
331 | 338 | if (startDateTime_File>endDateTime_Reader): |
|
332 | 339 | break |
|
333 | 340 | except Exception as e: |
|
334 | 341 | log.warning("Error opening file {} -> {}".format(os.path.split(filename)[1],e)) |
|
335 | 342 | |
|
336 | 343 | filter_filenameList.sort() |
|
337 | 344 | self.filenameList = filter_filenameList |
|
338 | 345 | |
|
339 | 346 | return 1 |
|
340 | 347 | |
|
341 | 348 | def __filterByGlob1(self, dirName): |
|
342 | 349 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) |
|
343 | 350 | filter_files.sort() |
|
344 | 351 | filterDict = {} |
|
345 | 352 | filterDict.setdefault(dirName) |
|
346 | 353 | filterDict[dirName] = filter_files |
|
347 | 354 | return filterDict |
|
348 | 355 | |
|
349 | 356 | def __getFilenameList(self, fileListInKeys, dirList): |
|
350 | 357 | for value in fileListInKeys: |
|
351 | 358 | dirName = list(value.keys())[0] |
|
352 | 359 | for file in value[dirName]: |
|
353 | 360 | filename = os.path.join(dirName, file) |
|
354 | 361 | self.filenameList.append(filename) |
|
355 | 362 | |
|
356 | 363 | |
|
357 | 364 | def __selectDataForTimes(self, online=False): |
|
358 | 365 | #aun no esta implementado el filtro for tiempo |
|
359 | 366 | if not(self.status): |
|
360 | 367 | return None |
|
361 | 368 | |
|
362 | 369 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] |
|
363 | 370 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] |
|
364 | 371 | self.__getFilenameList(fileListInKeys, dirList) |
|
365 | 372 | if not(online): |
|
366 | 373 | #filtro por tiempo |
|
367 | 374 | if not(self.all): |
|
368 | 375 | self.__getTimeFromData() |
|
369 | 376 | |
|
370 | 377 | if len(self.filenameList)>0: |
|
371 | 378 | self.status = 1 |
|
372 | 379 | self.filenameList.sort() |
|
373 | 380 | else: |
|
374 | 381 | self.status = 0 |
|
375 | 382 | return None |
|
376 | 383 | |
|
377 | 384 | else: |
|
378 | 385 | #get the last file - 1 |
|
379 | 386 | self.filenameList = [self.filenameList[-2]] |
|
380 | 387 | new_dirnameList = [] |
|
381 | 388 | for dirname in self.dirnameList: |
|
382 | 389 | junk = numpy.array([dirname in x for x in self.filenameList]) |
|
383 | 390 | junk_sum = junk.sum() |
|
384 | 391 | if junk_sum > 0: |
|
385 | 392 | new_dirnameList.append(dirname) |
|
386 | 393 | self.dirnameList = new_dirnameList |
|
387 | 394 | return 1 |
|
388 | 395 | |
|
389 | 396 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), |
|
390 | 397 | endTime=datetime.time(23,59,59),walk=True): |
|
391 | 398 | |
|
392 | 399 | if endDate ==None: |
|
393 | 400 | startDate = datetime.datetime.utcnow().date() |
|
394 | 401 | endDate = datetime.datetime.utcnow().date() |
|
395 | 402 | |
|
396 | 403 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) |
|
397 | 404 | |
|
398 | 405 | self.__checkPath() |
|
399 | 406 | |
|
400 | 407 | self.__findDataForDates(online=True) |
|
401 | 408 | |
|
402 | 409 | self.dirnameList = [self.dirnameList[-1]] |
|
403 | 410 | |
|
404 | 411 | self.__selectDataForTimes(online=True) |
|
405 | 412 | |
|
406 | 413 | return |
|
407 | 414 | |
|
408 | 415 | |
|
409 | 416 | def searchFilesOffLine(self, |
|
410 | 417 | path, |
|
411 | 418 | startDate, |
|
412 | 419 | endDate, |
|
413 | 420 | startTime=datetime.time(0,0,0), |
|
414 | 421 | endTime=datetime.time(23,59,59), |
|
415 | 422 | walk=True): |
|
416 | 423 | |
|
417 | 424 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) |
|
418 | 425 | |
|
419 | 426 | self.__checkPath() |
|
420 | 427 | |
|
421 | 428 | self.__findDataForDates() |
|
422 | 429 | |
|
423 | 430 | self.__selectDataForTimes() |
|
424 | 431 | |
|
425 | 432 | for i in range(len(self.filenameList)): |
|
426 | 433 | print("%s" %(self.filenameList[i])) |
|
427 | 434 | |
|
428 | 435 | return |
|
429 | 436 | |
|
430 | 437 | def __setNextFileOffline(self): |
|
431 | 438 | |
|
432 | 439 | try: |
|
433 | 440 | self.filename = self.filenameList[self.fileIndex] |
|
434 | 441 | self.amisrFilePointer = h5py.File(self.filename,'r') |
|
435 | 442 | self.fileIndex += 1 |
|
436 | 443 | except: |
|
437 | 444 | self.flagNoMoreFiles = 1 |
|
438 | 445 | raise schainpy.admin.SchainError('No more files to read') |
|
439 | 446 | return 0 |
|
440 | 447 | |
|
441 | 448 | self.flagIsNewFile = 1 |
|
442 | 449 | print("Setting the file: %s"%self.filename) |
|
443 | 450 | |
|
444 | 451 | return 1 |
|
445 | 452 | |
|
446 | 453 | |
|
447 | 454 | def __setNextFileOnline(self): |
|
448 | 455 | filename = self.filenameList[0] |
|
449 | 456 | if self.__filename_online != None: |
|
450 | 457 | self.__selectDataForTimes(online=True) |
|
451 | 458 | filename = self.filenameList[0] |
|
452 | 459 | wait = 0 |
|
453 | 460 | self.__waitForNewFile=300 ## DEBUG: |
|
454 | 461 | while self.__filename_online == filename: |
|
455 | 462 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) |
|
456 | 463 | if wait == 5: |
|
457 | 464 | self.flagNoMoreFiles = 1 |
|
458 | 465 | return 0 |
|
459 | 466 | sleep(self.__waitForNewFile) |
|
460 | 467 | self.__selectDataForTimes(online=True) |
|
461 | 468 | filename = self.filenameList[0] |
|
462 | 469 | wait += 1 |
|
463 | 470 | |
|
464 | 471 | self.__filename_online = filename |
|
465 | 472 | |
|
466 | 473 | self.amisrFilePointer = h5py.File(filename,'r') |
|
467 | 474 | self.flagIsNewFile = 1 |
|
468 | 475 | self.filename = filename |
|
469 | 476 | print("Setting the file: %s"%self.filename) |
|
470 | 477 | return 1 |
|
471 | 478 | |
|
472 | 479 | |
|
473 | 480 | def readData(self): |
|
474 | 481 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') |
|
475 | 482 | re = buffer[:,:,:,0] |
|
476 | 483 | im = buffer[:,:,:,1] |
|
477 | 484 | dataset = re + im*1j |
|
478 | 485 | |
|
479 | 486 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') |
|
480 | 487 | timeset = self.radacTime[:,0] |
|
481 | 488 | |
|
482 | 489 | return dataset,timeset |
|
483 | 490 | |
|
484 | 491 | def reshapeData(self): |
|
485 | 492 | #print(self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa) |
|
486 | 493 | channels = self.beamCodeByPulse[0,:] |
|
487 | 494 | nchan = self.nchannels |
|
488 | 495 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader |
|
489 | 496 | nblocks = self.nblocks |
|
490 | 497 | nsamples = self.nsa |
|
491 | 498 | #print("Channels: ",self.nChannels) |
|
492 | 499 | #Dimensions : nChannels, nProfiles, nSamples |
|
493 | 500 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") |
|
494 | 501 | ############################################ |
|
495 | 502 | profPerCH = int(self.profPerBlockRAW / (self.nFFT* self.nChannels)) |
|
496 | ||
|
503 | #profPerCH = int(self.profPerBlockRAW / self.nChannels) | |
|
497 | 504 | for thisChannel in range(nchan): |
|
498 | 505 | |
|
499 | idx_ch = [thisChannel+(k*nchan*self.nFFT) for k in range(profPerCH)] | |
|
506 | ||
|
507 | idx_ch = [self.nFFT*(thisChannel + nchan*k) for k in range(profPerCH)] | |
|
508 | #print(idx_ch) | |
|
500 | 509 | if self.nFFT > 1: |
|
501 | 510 | aux = [numpy.arange(i, i+self.nFFT) for i in idx_ch] |
|
502 | 511 | idx_ch = None |
|
503 | 512 | idx_ch =aux |
|
504 | 513 | idx_ch = numpy.array(idx_ch, dtype=int).flatten() |
|
505 | 514 | else: |
|
506 | 515 | idx_ch = numpy.array(idx_ch, dtype=int) |
|
507 | 516 | |
|
508 | 517 | #print(thisChannel,profPerCH,idx_ch) |
|
509 | 518 | #print(numpy.where(channels==self.beamCode[thisChannel])[0]) |
|
510 | 519 | #new_block[:,thisChannel,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[thisChannel])[0],:] |
|
511 | 520 | new_block[:,thisChannel,:,:] = self.dataset[:,idx_ch,:] |
|
512 | 521 | |
|
513 | 522 | new_block = numpy.transpose(new_block, (1,0,2,3)) |
|
514 | 523 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) |
|
515 | 524 | |
|
516 | 525 | return new_block |
|
517 | 526 | |
|
518 | 527 | def updateIndexes(self): |
|
519 | 528 | |
|
520 | 529 | pass |
|
521 | 530 | |
|
522 | 531 | def fillJROHeader(self): |
|
523 | 532 | |
|
524 | 533 | #fill radar controller header |
|
525 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, | |
|
526 | txA=self.__txA, | |
|
527 | txB=0, | |
|
528 | nWindows=1, | |
|
529 | nHeights=self.__nSamples, | |
|
530 | firstHeight=self.__firstHeight, | |
|
531 | deltaHeight=self.__deltaHeight, | |
|
532 | codeType=self.__codeType, | |
|
533 | nCode=self.__nCode, nBaud=self.__nBaud, | |
|
534 | code = self.__code, | |
|
535 | fClock=self.__sampleRate) | |
|
534 | ||
|
536 | 535 | #fill system header |
|
537 | 536 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
538 | 537 | nProfiles=self.newProfiles, |
|
539 | 538 | nChannels=len(self.__channelList), |
|
540 | 539 | adcResolution=14, |
|
541 | 540 | pciDioBusWidth=32) |
|
542 | 541 | |
|
543 | 542 | self.dataOut.type = "Voltage" |
|
544 | 543 | self.dataOut.data = None |
|
545 | 544 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
546 | 545 | # self.dataOut.nChannels = 0 |
|
547 | 546 | |
|
548 | 547 | # self.dataOut.nHeights = 0 |
|
549 | 548 | |
|
550 | 549 | self.dataOut.nProfiles = self.newProfiles*self.nblocks |
|
551 | 550 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth |
|
552 | 551 | ranges = numpy.reshape(self.rangeFromFile[()],(-1)) |
|
553 | 552 | self.dataOut.heightList = ranges/1000.0 #km |
|
554 | 553 | self.dataOut.channelList = self.__channelList |
|
554 | ||
|
555 | 555 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
556 | 556 | |
|
557 | 557 | # self.dataOut.channelIndexList = None |
|
558 | 558 | |
|
559 | 559 | |
|
560 | 560 | self.dataOut.azimuthList = numpy.array(self.azimuthList) |
|
561 | 561 | self.dataOut.elevationList = numpy.array(self.elevationList) |
|
562 | 562 | self.dataOut.codeList = numpy.array(self.beamCode) |
|
563 | ||
|
564 | ||
|
565 | ||
|
566 | ||
|
563 | 567 | #print(self.dataOut.elevationList) |
|
564 | 568 | self.dataOut.flagNoData = True |
|
565 | 569 | |
|
566 | 570 | #Set to TRUE if the data is discontinuous |
|
567 | 571 | self.dataOut.flagDiscontinuousBlock = False |
|
568 | 572 | |
|
569 | 573 | self.dataOut.utctime = None |
|
570 | 574 | |
|
571 | 575 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime |
|
572 | 576 | if self.timezone == 'lt': |
|
573 | 577 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes |
|
574 | 578 | else: |
|
575 | 579 | self.dataOut.timeZone = 0 #by default time is UTC |
|
576 | 580 | |
|
577 | 581 | self.dataOut.dstFlag = 0 |
|
578 | 582 | self.dataOut.errorCount = 0 |
|
579 | 583 | self.dataOut.nCohInt = 1 |
|
580 | 584 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada |
|
581 | 585 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip |
|
582 | 586 | self.dataOut.flagShiftFFT = False |
|
583 | 587 | self.dataOut.ippSeconds = self.ippSeconds |
|
584 |
self.dataOut. |
|
|
585 | self.dataOut.pulseLength_TxA = self.__txA/0.15 | |
|
586 | self.dataOut.deltaHeight = self.__deltaHeight | |
|
587 | #Time interval between profiles | |
|
588 | #self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt | |
|
588 | self.dataOut.ipp = self.__ippKm | |
|
589 | ||
|
589 | 590 | |
|
590 | 591 | self.dataOut.frequency = self.__frequency |
|
591 | 592 | self.dataOut.realtime = self.online |
|
593 | ||
|
594 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, | |
|
595 | txA=self.__txAKm, | |
|
596 | txB=0, | |
|
597 | nWindows=1, | |
|
598 | nHeights=self.__nSamples, | |
|
599 | firstHeight=self.__firstHeight, | |
|
600 | codeType=self.__codeType, | |
|
601 | nCode=self.__nCode, nBaud=self.__nBaud, | |
|
602 | code = self.__code, | |
|
603 | nOsamp=self.nOsamp, | |
|
604 | frequency = self.__frequency, | |
|
605 | sampleRate= self.__sampleRate, | |
|
606 | fClock=self.__sampleRate) | |
|
607 | ||
|
608 | ||
|
609 | self.dataOut.radarControllerHeaderObj.heightList = ranges/1000.0 #km | |
|
610 | self.dataOut.radarControllerHeaderObj.heightResolution = self.__deltaHeight | |
|
611 | self.dataOut.radarControllerHeaderObj.rangeIpp = self.__ippKm #km | |
|
612 | self.dataOut.radarControllerHeaderObj.rangeTxA = self.__txA*1e6*.15 #km | |
|
613 | self.dataOut.radarControllerHeaderObj.nChannels = self.nchannels | |
|
614 | self.dataOut.radarControllerHeaderObj.channelList = self.__channelList | |
|
615 | self.dataOut.radarControllerHeaderObj.azimuthList = self.azimuthList | |
|
616 | self.dataOut.radarControllerHeaderObj.elevationList = self.elevationList | |
|
617 | self.dataOut.radarControllerHeaderObj.dtype = "Voltage" | |
|
618 | self.dataOut.ippSeconds = self.ippSeconds | |
|
592 | 619 | pass |
|
593 | 620 | |
|
594 | 621 | def readNextFile(self,online=False): |
|
595 | 622 | |
|
596 | 623 | if not(online): |
|
597 | 624 | newFile = self.__setNextFileOffline() |
|
598 | 625 | else: |
|
599 | 626 | newFile = self.__setNextFileOnline() |
|
600 | 627 | |
|
601 | 628 | if not(newFile): |
|
602 | 629 | self.dataOut.error = True |
|
603 | 630 | return 0 |
|
604 | 631 | |
|
605 | 632 | if not self.readAMISRHeader(self.amisrFilePointer): |
|
606 | 633 | self.dataOut.error = True |
|
607 | 634 | return 0 |
|
608 | 635 | |
|
609 | 636 | self.createBuffers() |
|
610 | 637 | self.fillJROHeader() |
|
611 | 638 | |
|
612 | 639 | #self.__firstFile = False |
|
613 | 640 | |
|
614 | 641 | |
|
615 | 642 | |
|
616 | 643 | self.dataset,self.timeset = self.readData() |
|
617 | 644 | |
|
618 | 645 | if self.endDate!=None: |
|
619 | 646 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
620 | 647 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') |
|
621 | 648 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
622 | 649 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
623 | 650 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
624 | 651 | if self.timezone == 'lt': |
|
625 | 652 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
626 | 653 | if (startDateTime_File>endDateTime_Reader): |
|
627 | 654 | return 0 |
|
628 | 655 | |
|
629 | 656 | self.jrodataset = self.reshapeData() |
|
630 | 657 | #----self.updateIndexes() |
|
631 | 658 | self.profileIndex = 0 |
|
632 | 659 | |
|
633 | 660 | return 1 |
|
634 | 661 | |
|
635 | 662 | |
|
636 | 663 | def __hasNotDataInBuffer(self): |
|
637 | 664 | if self.profileIndex >= (self.newProfiles*self.nblocks): |
|
638 | 665 | return 1 |
|
639 | 666 | return 0 |
|
640 | 667 | |
|
641 | 668 | |
|
642 | 669 | def getData(self): |
|
643 | 670 | |
|
644 | 671 | if self.flagNoMoreFiles: |
|
645 | 672 | self.dataOut.flagNoData = True |
|
646 | 673 | return 0 |
|
647 | 674 | |
|
648 | 675 | if self.profileIndex >= (self.newProfiles*self.nblocks): # |
|
649 | 676 | #if self.__hasNotDataInBuffer(): |
|
650 | 677 | if not (self.readNextFile(self.online)): |
|
651 | 678 | return 0 |
|
652 | 679 | |
|
653 | 680 | |
|
654 | 681 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer |
|
655 | 682 | self.dataOut.flagNoData = True |
|
656 | 683 | return 0 |
|
657 | 684 | |
|
658 | 685 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) |
|
659 | 686 | |
|
660 | 687 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] |
|
661 | 688 | |
|
662 | 689 | #print("R_t",self.timeset) |
|
663 | 690 | |
|
664 | 691 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] |
|
665 | 692 | #verificar basic header de jro data y ver si es compatible con este valor |
|
666 | 693 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) |
|
667 | 694 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) |
|
668 | 695 | indexblock = self.profileIndex/self.newProfiles |
|
669 | 696 | #print (indexblock, indexprof) |
|
670 | 697 | diffUTC = 0 |
|
671 | 698 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # |
|
672 | 699 | |
|
673 | 700 | #print("utc :",indexblock," __ ",t_comp) |
|
674 | 701 | #print(numpy.shape(self.timeset)) |
|
675 | 702 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp |
|
676 | 703 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp |
|
677 | 704 | |
|
678 | 705 | self.dataOut.profileIndex = self.profileIndex |
|
679 | 706 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) |
|
680 | 707 | self.dataOut.flagNoData = False |
|
681 | 708 | # if indexprof == 0: |
|
682 | 709 | # print("kamisr: ",self.dataOut.utctime) |
|
683 | 710 | |
|
684 | 711 | self.profileIndex += 1 |
|
685 | 712 | |
|
686 | 713 | return self.dataOut.data #retorno necesario?? |
|
687 | 714 | |
|
688 | 715 | |
|
689 | 716 | def run(self, **kwargs): |
|
690 | 717 | ''' |
|
691 | 718 | This method will be called many times so here you should put all your code |
|
692 | 719 | ''' |
|
693 | 720 | #print("running kamisr") |
|
694 | 721 | if not self.isConfig: |
|
695 | 722 | self.setup(**kwargs) |
|
696 | 723 | self.isConfig = True |
|
697 | 724 | |
|
698 | 725 | self.getData() |
@@ -1,687 +1,809 | |||
|
1 | 1 | import os |
|
2 | 2 | import time |
|
3 | 3 | import datetime |
|
4 | 4 | |
|
5 | 5 | import numpy |
|
6 | 6 | import h5py |
|
7 | 7 | |
|
8 | 8 | import schainpy.admin |
|
9 | 9 | from schainpy.model.data.jrodata import * |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class HDFReader(Reader, ProcessingUnit): |
|
16 | 16 | """Processing unit to read HDF5 format files |
|
17 | 17 | |
|
18 | 18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
19 | 19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
20 | 20 | attributes. |
|
21 | 21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
22 | 22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
23 | 23 | |
|
24 | 24 | Parameters: |
|
25 | 25 | ----------- |
|
26 | 26 | path : str |
|
27 | 27 | Path where files are located. |
|
28 | 28 | startDate : date |
|
29 | 29 | Start date of the files |
|
30 | 30 | endDate : list |
|
31 | 31 | End date of the files |
|
32 | 32 | startTime : time |
|
33 | 33 | Start time of the files |
|
34 | 34 | endTime : time |
|
35 | 35 | End time of the files |
|
36 | 36 | description : dict, optional |
|
37 | 37 | Dictionary with the description of the HDF5 file |
|
38 | 38 | extras : dict, optional |
|
39 | 39 | Dictionary with extra metadata to be be added to `dataOut` |
|
40 | 40 | |
|
41 | 41 | Examples |
|
42 | 42 | -------- |
|
43 | 43 | |
|
44 | 44 | desc = { |
|
45 | 45 | 'Data': { |
|
46 | 46 | 'data_output': ['u', 'v', 'w'], |
|
47 | 47 | 'utctime': 'timestamps', |
|
48 | 48 | } , |
|
49 | 49 | 'Metadata': { |
|
50 | 50 | 'heightList': 'heights' |
|
51 | 51 | } |
|
52 | 52 | } |
|
53 | 53 | |
|
54 | 54 | desc = { |
|
55 | 55 | 'Data': { |
|
56 | 56 | 'data_output': 'winds', |
|
57 | 57 | 'utctime': 'timestamps' |
|
58 | 58 | }, |
|
59 | 59 | 'Metadata': { |
|
60 | 60 | 'heightList': 'heights' |
|
61 | 61 | } |
|
62 | 62 | } |
|
63 | 63 | |
|
64 | 64 | extras = { |
|
65 | 65 | 'timeZone': 300 |
|
66 | 66 | } |
|
67 | 67 | |
|
68 | 68 | reader = project.addReadUnit( |
|
69 | 69 | name='HDFReader', |
|
70 | 70 | path='/path/to/files', |
|
71 | 71 | startDate='2019/01/01', |
|
72 | 72 | endDate='2019/01/31', |
|
73 | 73 | startTime='00:00:00', |
|
74 | 74 | endTime='23:59:59', |
|
75 | 75 | # description=json.dumps(desc), |
|
76 | 76 | # extras=json.dumps(extras), |
|
77 | 77 | ) |
|
78 | 78 | |
|
79 | 79 | """ |
|
80 | 80 | |
|
81 | 81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
82 | 82 | |
|
83 | 83 | def __init__(self): |
|
84 | 84 | ProcessingUnit.__init__(self) |
|
85 | 85 | |
|
86 | 86 | self.ext = ".hdf5" |
|
87 | 87 | self.optchar = "D" |
|
88 | 88 | self.meta = {} |
|
89 | 89 | self.data = {} |
|
90 | 90 | self.open_file = h5py.File |
|
91 | 91 | self.open_mode = 'r' |
|
92 | 92 | self.description = {} |
|
93 | 93 | self.extras = {} |
|
94 | 94 | self.filefmt = "*%Y%j***" |
|
95 | 95 | self.folderfmt = "*%Y%j" |
|
96 | 96 | self.utcoffset = 0 |
|
97 | ||
|
97 | self.flagUpdateDataOut = False | |
|
98 | 98 | self.dataOut = Parameters() |
|
99 | 99 | self.dataOut.error=False ## NOTE: Importante definir esto antes inicio |
|
100 | 100 | self.dataOut.flagNoData = True |
|
101 | 101 | |
|
102 | 102 | def setup(self, **kwargs): |
|
103 | 103 | |
|
104 | 104 | self.set_kwargs(**kwargs) |
|
105 | 105 | if not self.ext.startswith('.'): |
|
106 | 106 | self.ext = '.{}'.format(self.ext) |
|
107 | 107 | |
|
108 | 108 | if self.online: |
|
109 | 109 | log.log("Searching files in online mode...", self.name) |
|
110 | 110 | |
|
111 | 111 | for nTries in range(self.nTries): |
|
112 | 112 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
113 | 113 | self.endDate, self.expLabel, self.ext, self.walk, |
|
114 | 114 | self.filefmt, self.folderfmt) |
|
115 | 115 | pathname, filename = os.path.split(fullpath) |
|
116 | 116 | |
|
117 | 117 | try: |
|
118 | 118 | fullpath = next(fullpath) |
|
119 | 119 | |
|
120 | 120 | except: |
|
121 | 121 | fullpath = None |
|
122 | 122 | |
|
123 | 123 | if fullpath: |
|
124 | 124 | break |
|
125 | 125 | |
|
126 | 126 | log.warning( |
|
127 | 127 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
128 | 128 | self.delay, self.path, nTries + 1), |
|
129 | 129 | self.name) |
|
130 | 130 | time.sleep(self.delay) |
|
131 | 131 | |
|
132 | 132 | if not(fullpath): |
|
133 | 133 | raise schainpy.admin.SchainError( |
|
134 | 134 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
135 | 135 | |
|
136 | 136 | pathname, filename = os.path.split(fullpath) |
|
137 | 137 | self.year = int(filename[1:5]) |
|
138 | 138 | self.doy = int(filename[5:8]) |
|
139 | 139 | self.set = int(filename[8:11]) - 1 |
|
140 | 140 | else: |
|
141 | 141 | log.log("Searching files in {}".format(self.path), self.name) |
|
142 | 142 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
143 | 143 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
144 | 144 | |
|
145 | 145 | self.setNextFile() |
|
146 | 146 | |
|
147 | 147 | |
|
148 | 148 | |
|
149 | 149 | |
|
150 | # def readFirstHeader(self): | |
|
151 | # '''Read metadata and data''' | |
|
152 | # | |
|
153 | # self.__readMetadata2() | |
|
154 | # self.__readData() | |
|
155 | # self.__setBlockList() | |
|
156 | # | |
|
157 | # for attr in self.meta: | |
|
158 | # setattr(self.dataOut, attr, self.meta[attr]) | |
|
159 | # self.blockIndex = 0 | |
|
160 | # | |
|
161 | # return | |
|
162 | ||
|
150 | 163 | def readFirstHeader(self): |
|
151 | 164 | '''Read metadata and data''' |
|
152 | 165 | |
|
153 | self.__readMetadata() | |
|
166 | self.__readMetadata2() | |
|
154 | 167 | self.__readData() |
|
155 | 168 | self.__setBlockList() |
|
156 | ||
|
157 | 169 | for attr in self.meta: |
|
158 | setattr(self.dataOut, attr, self.meta[attr]) | |
|
170 | if "processingHeaderObj" in attr: | |
|
171 | self.flagUpdateDataOut=True | |
|
172 | at = attr.split('.') | |
|
173 | if len(at) > 1: | |
|
174 | setattr(eval("self.dataOut."+at[0]),at[1], self.meta[attr]) | |
|
175 | else: | |
|
176 | setattr(self.dataOut, attr, self.meta[attr]) | |
|
159 | 177 | self.blockIndex = 0 |
|
160 | 178 | |
|
179 | if self.flagUpdateDataOut: | |
|
180 | self.updateDataOut() | |
|
181 | ||
|
161 | 182 | return |
|
162 | 183 | |
|
184 | def updateDataOut(self): | |
|
185 | self.dataOut.azimuthList = self.dataOut.processingHeaderObj.azimuthList | |
|
186 | self.dataOut.elevationList = self.dataOut.processingHeaderObj.elevationList | |
|
187 | self.dataOut.heightList = self.dataOut.processingHeaderObj.heightList | |
|
188 | self.dataOut.ippSeconds = self.dataOut.processingHeaderObj.ipp | |
|
189 | self.dataOut.elevationList = self.dataOut.processingHeaderObj.elevationList | |
|
190 | self.dataOut.channelList = self.dataOut.processingHeaderObj.channelList | |
|
191 | self.dataOut.nCohInt = self.dataOut.processingHeaderObj.nCohInt | |
|
192 | self.dataOut.nFFTPoints = self.dataOut.processingHeaderObj.nFFTPoints | |
|
193 | self.flagUpdateDataOut = False | |
|
194 | self.dataOut.frequency = self.dataOut.radarControllerHeaderObj.frequency | |
|
195 | #self.dataOut.heightList = self.dataOut.processingHeaderObj.heightList | |
|
196 | ||
|
197 | ||
|
198 | return | |
|
199 | ||
|
200 | ||
|
163 | 201 | def __setBlockList(self): |
|
164 | 202 | ''' |
|
165 | 203 | Selects the data within the times defined |
|
166 | 204 | |
|
167 | 205 | self.fp |
|
168 | 206 | self.startTime |
|
169 | 207 | self.endTime |
|
170 | 208 | self.blockList |
|
171 | 209 | self.blocksPerFile |
|
172 | 210 | |
|
173 | 211 | ''' |
|
174 | 212 | |
|
175 | 213 | startTime = self.startTime |
|
176 | 214 | endTime = self.endTime |
|
177 | 215 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
178 | 216 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
179 | 217 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
180 | 218 | self.startFileDatetime = thisDatetime |
|
181 | 219 | thisDate = thisDatetime.date() |
|
182 | 220 | thisTime = thisDatetime.time() |
|
183 | 221 | |
|
184 | 222 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
185 | 223 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
186 | 224 | |
|
187 | 225 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
188 | 226 | |
|
189 | 227 | self.blockList = ind |
|
190 | 228 | self.blocksPerFile = len(ind) |
|
191 | 229 | self.blocksPerFile = len(thisUtcTime) |
|
192 | 230 | return |
|
193 | 231 | |
|
194 | 232 | def __readMetadata(self): |
|
195 | 233 | ''' |
|
196 | 234 | Reads Metadata |
|
197 | 235 | ''' |
|
198 | 236 | |
|
199 | 237 | meta = {} |
|
200 | 238 | |
|
201 | 239 | if self.description: |
|
202 | 240 | for key, value in self.description['Metadata'].items(): |
|
203 | 241 | meta[key] = self.fp[value][()] |
|
204 | 242 | else: |
|
205 | 243 | grp = self.fp['Metadata'] |
|
206 | 244 | for name in grp: |
|
207 | 245 | meta[name] = grp[name][()] |
|
208 | 246 | |
|
209 | 247 | if self.extras: |
|
210 | 248 | for key, value in self.extras.items(): |
|
211 | 249 | meta[key] = value |
|
212 | 250 | self.meta = meta |
|
213 | 251 | |
|
214 | 252 | return |
|
215 | 253 | |
|
216 | 254 | |
|
255 | def __readMetadata2(self): | |
|
256 | ''' | |
|
257 | Reads Metadata | |
|
258 | ''' | |
|
259 | ||
|
260 | meta = {} | |
|
261 | ||
|
262 | if self.description: | |
|
263 | for key, value in self.description['Metadata'].items(): | |
|
264 | meta[key] = self.fp[value][()] | |
|
265 | else: | |
|
266 | grp = self.fp['Metadata'] | |
|
267 | for item in grp.values(): | |
|
268 | name = item.name | |
|
269 | if isinstance(item, h5py.Dataset): | |
|
270 | name = name.split("/")[-1] | |
|
271 | meta[name] = item[()] | |
|
272 | else: | |
|
273 | grp2 = self.fp[name] | |
|
274 | Obj = name.split("/")[-1] | |
|
275 | ||
|
276 | for item2 in grp2.values(): | |
|
277 | name2 = Obj+"."+item2.name.split("/")[-1] | |
|
278 | meta[name2] = item2[()] | |
|
279 | ||
|
280 | if self.extras: | |
|
281 | for key, value in self.extras.items(): | |
|
282 | meta[key] = value | |
|
283 | self.meta = meta | |
|
284 | #print(meta) | |
|
285 | return | |
|
286 | ||
|
217 | 287 | |
|
218 | 288 | def checkForRealPath(self, nextFile, nextDay): |
|
219 | 289 | |
|
220 | 290 | # print("check FRP") |
|
221 | 291 | # dt = self.startFileDatetime + datetime.timedelta(1) |
|
222 | 292 | # filename = '{}.{}{}'.format(self.path, dt.strftime('%Y%m%d'), self.ext) |
|
223 | 293 | # fullfilename = os.path.join(self.path, filename) |
|
224 | 294 | # print("check Path ",fullfilename,filename) |
|
225 | 295 | # if os.path.exists(fullfilename): |
|
226 | 296 | # return fullfilename, filename |
|
227 | 297 | # return None, filename |
|
228 | 298 | return None,None |
|
229 | 299 | |
|
230 | 300 | def __readData(self): |
|
231 | 301 | |
|
232 | 302 | data = {} |
|
233 | 303 | |
|
234 | 304 | if self.description: |
|
235 | 305 | for key, value in self.description['Data'].items(): |
|
236 | 306 | if isinstance(value, str): |
|
237 | 307 | if isinstance(self.fp[value], h5py.Dataset): |
|
238 | 308 | data[key] = self.fp[value][()] |
|
239 | 309 | elif isinstance(self.fp[value], h5py.Group): |
|
240 | 310 | array = [] |
|
241 | 311 | for ch in self.fp[value]: |
|
242 | 312 | array.append(self.fp[value][ch][()]) |
|
243 | 313 | data[key] = numpy.array(array) |
|
244 | 314 | elif isinstance(value, list): |
|
245 | 315 | array = [] |
|
246 | 316 | for ch in value: |
|
247 | 317 | array.append(self.fp[ch][()]) |
|
248 | 318 | data[key] = numpy.array(array) |
|
249 | 319 | else: |
|
250 | 320 | grp = self.fp['Data'] |
|
251 | 321 | for name in grp: |
|
252 | 322 | if isinstance(grp[name], h5py.Dataset): |
|
253 | 323 | array = grp[name][()] |
|
254 | 324 | elif isinstance(grp[name], h5py.Group): |
|
255 | 325 | array = [] |
|
256 | 326 | for ch in grp[name]: |
|
257 | 327 | array.append(grp[name][ch][()]) |
|
258 | 328 | array = numpy.array(array) |
|
259 | 329 | else: |
|
260 | 330 | log.warning('Unknown type: {}'.format(name)) |
|
261 | 331 | |
|
262 | 332 | if name in self.description: |
|
263 | 333 | key = self.description[name] |
|
264 | 334 | else: |
|
265 | 335 | key = name |
|
266 | 336 | data[key] = array |
|
267 | 337 | |
|
268 | 338 | self.data = data |
|
269 | 339 | return |
|
270 | 340 | |
|
271 | 341 | def getData(self): |
|
272 | 342 | if not self.isDateTimeInRange(self.startFileDatetime, self.startDate, self.endDate, self.startTime, self.endTime): |
|
273 | 343 | self.dataOut.flagNoData = True |
|
274 | 344 | self.blockIndex = self.blocksPerFile |
|
275 | 345 | self.dataOut.error = True # TERMINA EL PROGRAMA |
|
276 | 346 | return |
|
277 | 347 | for attr in self.data: |
|
278 | 348 | |
|
279 | 349 | if self.data[attr].ndim == 1: |
|
280 | 350 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
281 | 351 | else: |
|
282 | 352 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
283 | 353 | |
|
284 | 354 | |
|
285 | 355 | self.blockIndex += 1 |
|
286 | 356 | |
|
287 | 357 | if self.blockIndex == 1: |
|
288 | 358 | log.log("Block No. {}/{} -> {}".format( |
|
289 | 359 | self.blockIndex, |
|
290 | 360 | self.blocksPerFile, |
|
291 | 361 | self.dataOut.datatime.ctime()), self.name) |
|
292 | 362 | else: |
|
293 | 363 | log.log("Block No. {}/{} ".format( |
|
294 | 364 | self.blockIndex, |
|
295 | 365 | self.blocksPerFile),self.name) |
|
296 | 366 | |
|
297 | 367 | if self.blockIndex == self.blocksPerFile: |
|
298 | 368 | self.setNextFile() |
|
299 | 369 | |
|
300 | 370 | self.dataOut.flagNoData = False |
|
301 | 371 | |
|
302 | 372 | |
|
303 | 373 | def run(self, **kwargs): |
|
304 | 374 | |
|
305 | 375 | if not(self.isConfig): |
|
306 | 376 | self.setup(**kwargs) |
|
307 | 377 | self.isConfig = True |
|
308 | 378 | |
|
309 | 379 | self.getData() |
|
310 | 380 | |
|
311 | 381 | @MPDecorator |
|
312 | 382 | class HDFWriter(Operation): |
|
313 | 383 | """Operation to write HDF5 files. |
|
314 | 384 | |
|
315 | 385 | The HDF5 file contains by default two groups Data and Metadata where |
|
316 | 386 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
317 | 387 | parameters, data attributes are normaly time dependent where the metadata |
|
318 | 388 | are not. |
|
319 | 389 | It is possible to customize the structure of the HDF5 file with the |
|
320 | 390 | optional description parameter see the examples. |
|
321 | 391 | |
|
322 | 392 | Parameters: |
|
323 | 393 | ----------- |
|
324 | 394 | path : str |
|
325 | 395 | Path where files will be saved. |
|
326 | 396 | blocksPerFile : int |
|
327 | 397 | Number of blocks per file |
|
328 | 398 | metadataList : list |
|
329 | 399 | List of the dataOut attributes that will be saved as metadata |
|
330 | 400 | dataList : int |
|
331 | 401 | List of the dataOut attributes that will be saved as data |
|
332 | 402 | setType : bool |
|
333 | 403 | If True the name of the files corresponds to the timestamp of the data |
|
334 | 404 | description : dict, optional |
|
335 | 405 | Dictionary with the desired description of the HDF5 file |
|
336 | 406 | |
|
337 | 407 | Examples |
|
338 | 408 | -------- |
|
339 | 409 | |
|
340 | 410 | desc = { |
|
341 | 411 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
342 | 412 | 'utctime': 'timestamps', |
|
343 | 413 | 'heightList': 'heights' |
|
344 | 414 | } |
|
345 | 415 | desc = { |
|
346 | 416 | 'data_output': ['z', 'w', 'v'], |
|
347 | 417 | 'utctime': 'timestamps', |
|
348 | 418 | 'heightList': 'heights' |
|
349 | 419 | } |
|
350 | 420 | desc = { |
|
351 | 421 | 'Data': { |
|
352 | 422 | 'data_output': 'winds', |
|
353 | 423 | 'utctime': 'timestamps' |
|
354 | 424 | }, |
|
355 | 425 | 'Metadata': { |
|
356 | 426 | 'heightList': 'heights' |
|
357 | 427 | } |
|
358 | 428 | } |
|
359 | 429 | |
|
360 | 430 | writer = proc_unit.addOperation(name='HDFWriter') |
|
361 | 431 | writer.addParameter(name='path', value='/path/to/file') |
|
362 | 432 | writer.addParameter(name='blocksPerFile', value='32') |
|
363 | 433 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
364 | 434 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
365 | 435 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
366 | 436 | |
|
367 | 437 | """ |
|
368 | 438 | |
|
369 | 439 | ext = ".hdf5" |
|
370 | 440 | optchar = "D" |
|
371 | 441 | filename = None |
|
372 | 442 | path = None |
|
373 | 443 | setFile = None |
|
374 | 444 | fp = None |
|
375 | 445 | firsttime = True |
|
376 | 446 | #Configurations |
|
377 | 447 | blocksPerFile = None |
|
378 | 448 | blockIndex = None |
|
379 | 449 | dataOut = None #eval ?????? |
|
380 | 450 | #Data Arrays |
|
381 | 451 | dataList = None |
|
382 | 452 | metadataList = None |
|
383 | 453 | currentDay = None |
|
384 | 454 | lastTime = None |
|
385 | 455 | timeZone = "ut" |
|
386 | 456 | hourLimit = 3 |
|
387 | 457 | breakDays = True |
|
388 | 458 | |
|
389 | 459 | def __init__(self): |
|
390 | 460 | |
|
391 | 461 | Operation.__init__(self) |
|
392 | 462 | |
|
393 | 463 | |
|
394 | 464 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, |
|
395 | 465 | description={},timeZone = "ut",hourLimit = 3, breakDays=True): |
|
396 | 466 | self.path = path |
|
397 | 467 | self.blocksPerFile = blocksPerFile |
|
398 | 468 | self.metadataList = metadataList |
|
399 | 469 | self.dataList = [s.strip() for s in dataList] |
|
400 | 470 | self.setType = setType |
|
401 | 471 | self.description = description |
|
402 | 472 | self.timeZone = timeZone |
|
403 | 473 | self.hourLimit = hourLimit |
|
404 | 474 | self.breakDays = breakDays |
|
405 | 475 | |
|
406 | 476 | if self.metadataList is None: |
|
407 | 477 | self.metadataList = self.dataOut.metadata_list |
|
408 | 478 | |
|
479 | self.metadataList = list(set(self.metadataList)) | |
|
480 | ||
|
409 | 481 | tableList = [] |
|
410 | 482 | dsList = [] |
|
411 | 483 | |
|
412 | 484 | for i in range(len(self.dataList)): |
|
413 | 485 | dsDict = {} |
|
414 | 486 | if hasattr(self.dataOut, self.dataList[i]): |
|
415 | 487 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
416 | 488 | dsDict['variable'] = self.dataList[i] |
|
417 | 489 | else: |
|
418 | 490 | log.warning('Attribute {} not found in dataOut'.format(self.dataList[i]),self.name) |
|
419 | 491 | continue |
|
420 | 492 | |
|
421 | 493 | if dataAux is None: |
|
422 | 494 | continue |
|
423 | 495 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
424 | 496 | dsDict['nDim'] = 0 |
|
425 | 497 | else: |
|
426 | 498 | dsDict['nDim'] = len(dataAux.shape) |
|
427 | 499 | dsDict['shape'] = dataAux.shape |
|
428 | 500 | dsDict['dsNumber'] = dataAux.shape[0] |
|
429 | 501 | dsDict['dtype'] = dataAux.dtype |
|
430 | 502 | |
|
431 | 503 | dsList.append(dsDict) |
|
432 | 504 | |
|
433 | 505 | self.blockIndex = 0 |
|
434 | 506 | self.dsList = dsList |
|
435 | 507 | self.currentDay = self.dataOut.datatime.date() |
|
436 | 508 | |
|
437 | 509 | |
|
438 | 510 | def timeFlag(self): |
|
439 | 511 | currentTime = self.dataOut.utctime |
|
440 | 512 | timeTuple = None |
|
441 | 513 | if self.timeZone == "lt": |
|
442 | 514 | timeTuple = time.localtime(currentTime) |
|
443 | 515 | else : |
|
444 | 516 | timeTuple = time.gmtime(currentTime) |
|
445 | 517 | |
|
446 | 518 | dataDay = timeTuple.tm_yday |
|
447 | 519 | |
|
448 | 520 | if self.lastTime is None: |
|
449 | 521 | self.lastTime = currentTime |
|
450 | 522 | self.currentDay = dataDay |
|
451 | 523 | return False |
|
452 | 524 | |
|
453 | 525 | timeDiff = currentTime - self.lastTime |
|
454 | 526 | |
|
455 | 527 | #Si el dia es diferente o si la diferencia entre un dato y otro supera self.hourLimit |
|
456 | 528 | if (dataDay != self.currentDay) and self.breakDays: |
|
457 | 529 | self.currentDay = dataDay |
|
458 | 530 | return True |
|
459 | 531 | elif timeDiff > self.hourLimit*60*60: |
|
460 | 532 | self.lastTime = currentTime |
|
461 | 533 | return True |
|
462 | 534 | else: |
|
463 | 535 | self.lastTime = currentTime |
|
464 | 536 | return False |
|
465 | 537 | |
|
466 | 538 | def run(self, dataOut,**kwargs): |
|
467 | 539 | |
|
468 | 540 | self.dataOut = dataOut |
|
469 | 541 | #print(self.dataOut.radarControllerHeaderObj.toString()) |
|
470 | 542 | if not(self.isConfig): |
|
471 | 543 | self.setup(**kwargs) |
|
472 | 544 | |
|
473 | 545 | self.isConfig = True |
|
474 | 546 | self.setNextFile() |
|
475 | 547 | |
|
476 | 548 | self.putData() |
|
477 | 549 | |
|
478 | 550 | #return self.dataOut |
|
479 | 551 | |
|
480 | 552 | def setNextFile(self): |
|
481 | 553 | |
|
482 | 554 | ext = self.ext |
|
483 | 555 | path = self.path |
|
484 | 556 | setFile = self.setFile |
|
485 | 557 | timeTuple = None |
|
486 | 558 | if self.timeZone == "lt": |
|
487 | 559 | timeTuple = time.localtime(self.dataOut.utctime) |
|
488 | 560 | elif self.timeZone == "ut": |
|
489 | 561 | timeTuple = time.gmtime(self.dataOut.utctime) |
|
490 | 562 | #print("path: ",timeTuple) |
|
491 | 563 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
492 | 564 | fullpath = os.path.join(path, subfolder) |
|
493 | 565 | |
|
494 | 566 | if os.path.exists(fullpath): |
|
495 | 567 | filesList = os.listdir(fullpath) |
|
496 | 568 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
497 | 569 | if len( filesList ) > 0: |
|
498 | 570 | filesList = sorted(filesList, key=str.lower) |
|
499 | 571 | filen = filesList[-1] |
|
500 | 572 | # el filename debera tener el siguiente formato |
|
501 | 573 | # 0 1234 567 89A BCDE (hex) |
|
502 | 574 | # x YYYY DDD SSS .ext |
|
503 | 575 | if isNumber(filen[8:11]): |
|
504 | 576 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
505 | 577 | else: |
|
506 | 578 | setFile = -1 |
|
507 | 579 | else: |
|
508 | 580 | setFile = -1 #inicializo mi contador de seteo |
|
509 | 581 | else: |
|
510 | 582 | os.makedirs(fullpath) |
|
511 | 583 | setFile = -1 #inicializo mi contador de seteo |
|
512 | 584 | |
|
513 | 585 | if self.setType is None: |
|
514 | 586 | setFile += 1 |
|
515 | 587 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
516 | 588 | timeTuple.tm_year, |
|
517 | 589 | timeTuple.tm_yday, |
|
518 | 590 | setFile, |
|
519 | 591 | ext ) |
|
520 | 592 | else: |
|
521 | 593 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
522 | 594 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
523 | 595 | timeTuple.tm_year, |
|
524 | 596 | timeTuple.tm_yday, |
|
525 | 597 | setFile, |
|
526 | 598 | ext ) |
|
527 | 599 | |
|
528 | 600 | self.filename = os.path.join( path, subfolder, file ) |
|
529 | 601 | |
|
530 | 602 | |
|
531 | 603 | |
|
532 | 604 | def getLabel(self, name, x=None): |
|
533 | 605 | |
|
534 | 606 | if x is None: |
|
535 | 607 | if 'Data' in self.description: |
|
536 | 608 | data = self.description['Data'] |
|
537 | 609 | if 'Metadata' in self.description: |
|
538 | 610 | data.update(self.description['Metadata']) |
|
539 | 611 | else: |
|
540 | 612 | data = self.description |
|
541 | 613 | if name in data: |
|
542 | 614 | if isinstance(data[name], str): |
|
543 | 615 | return data[name] |
|
544 | 616 | elif isinstance(data[name], list): |
|
545 | 617 | return None |
|
546 | 618 | elif isinstance(data[name], dict): |
|
547 | 619 | for key, value in data[name].items(): |
|
548 | 620 | return key |
|
549 | 621 | return name |
|
550 | 622 | else: |
|
551 | 623 | if 'Metadata' in self.description: |
|
552 | 624 | meta = self.description['Metadata'] |
|
553 | 625 | else: |
|
554 | 626 | meta = self.description |
|
555 | 627 | if name in meta: |
|
556 | 628 | if isinstance(meta[name], list): |
|
557 | 629 | return meta[name][x] |
|
558 | 630 | elif isinstance(meta[name], dict): |
|
559 | 631 | for key, value in meta[name].items(): |
|
560 | 632 | return value[x] |
|
561 | 633 | if 'cspc' in name: |
|
562 | 634 | return 'pair{:02d}'.format(x) |
|
563 | 635 | else: |
|
564 | 636 | return 'channel{:02d}'.format(x) |
|
565 | 637 | |
|
566 | 638 | def writeMetadata(self, fp): |
|
567 | 639 | |
|
568 | 640 | if self.description: |
|
569 | 641 | if 'Metadata' in self.description: |
|
570 | 642 | grp = fp.create_group('Metadata') |
|
571 | 643 | else: |
|
572 | 644 | grp = fp |
|
573 | 645 | else: |
|
574 | 646 | grp = fp.create_group('Metadata') |
|
575 | 647 | |
|
576 | 648 | for i in range(len(self.metadataList)): |
|
577 | 649 | attribute = self.metadataList[i] |
|
578 | 650 | if not hasattr(self.dataOut,attribute ): |
|
579 | 651 | log.warning('Metadata: `{}` not found'.format(attribute), self.name) |
|
580 | 652 | continue |
|
581 | 653 | value = getattr(self.dataOut, attribute) |
|
582 | 654 | if isinstance(value, bool): |
|
583 | 655 | if value is True: |
|
584 | 656 | value = 1 |
|
585 | 657 | else: |
|
586 | 658 | value = 0 |
|
587 | 659 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
588 | 660 | return |
|
589 | 661 | |
|
662 | def writeMetadata2(self, fp): | |
|
663 | ||
|
664 | if self.description: | |
|
665 | if 'Metadata' in self.description: | |
|
666 | grp = fp.create_group('Metadata') | |
|
667 | else: | |
|
668 | grp = fp | |
|
669 | else: | |
|
670 | grp = fp.create_group('Metadata') | |
|
671 | ||
|
672 | ||
|
673 | for i in range(len(self.metadataList)): | |
|
674 | ||
|
675 | attribute = self.metadataList[i] | |
|
676 | attr = attribute.split('.') | |
|
677 | if len(attr) > 1: | |
|
678 | if not hasattr(eval("self.dataOut."+attr[0]),attr[1]): | |
|
679 | log.warning('Metadata: {}.{} not found'.format(attr[0],attr[1]), self.name) | |
|
680 | continue | |
|
681 | value = getattr(eval("self.dataOut."+attr[0]),attr[1]) | |
|
682 | if isinstance(value, bool): | |
|
683 | if value is True: | |
|
684 | value = 1 | |
|
685 | else: | |
|
686 | value = 0 | |
|
687 | if isinstance(value,type(None)): | |
|
688 | log.warning("Invalid value detected, {} is None".format(attribute), self.name) | |
|
689 | value = 0 | |
|
690 | grp2 = None | |
|
691 | if not 'Metadata/'+attr[0] in fp: | |
|
692 | grp2 = fp.create_group('Metadata/'+attr[0]) | |
|
693 | else: | |
|
694 | grp2 = fp['Metadata/'+attr[0]] | |
|
695 | #print("attribute: ", attribute, value) | |
|
696 | grp2.create_dataset(attr[1], data=value) | |
|
697 | ||
|
698 | else: | |
|
699 | if not hasattr(self.dataOut, attr[0] ): | |
|
700 | log.warning('Metadata: `{}` not found'.format(attribute), self.name) | |
|
701 | continue | |
|
702 | value = getattr(self.dataOut, attr[0]) | |
|
703 | if isinstance(value, bool): | |
|
704 | if value is True: | |
|
705 | value = 1 | |
|
706 | else: | |
|
707 | value = 0 | |
|
708 | grp.create_dataset(self.getLabel(attribute), data=value) | |
|
709 | ||
|
710 | return | |
|
711 | ||
|
590 | 712 | def writeData(self, fp): |
|
591 | 713 | |
|
592 | 714 | if self.description: |
|
593 | 715 | if 'Data' in self.description: |
|
594 | 716 | grp = fp.create_group('Data') |
|
595 | 717 | else: |
|
596 | 718 | grp = fp |
|
597 | 719 | else: |
|
598 | 720 | grp = fp.create_group('Data') |
|
599 | 721 | |
|
600 | 722 | dtsets = [] |
|
601 | 723 | data = [] |
|
602 | 724 | |
|
603 | 725 | for dsInfo in self.dsList: |
|
604 | 726 | if dsInfo['nDim'] == 0: |
|
605 | 727 | ds = grp.create_dataset( |
|
606 | 728 | self.getLabel(dsInfo['variable']), |
|
607 | 729 | (self.blocksPerFile, ), |
|
608 | 730 | chunks=True, |
|
609 | 731 | dtype=numpy.float64) |
|
610 | 732 | dtsets.append(ds) |
|
611 | 733 | data.append((dsInfo['variable'], -1)) |
|
612 | 734 | else: |
|
613 | 735 | label = self.getLabel(dsInfo['variable']) |
|
614 | 736 | if label is not None: |
|
615 | 737 | sgrp = grp.create_group(label) |
|
616 | 738 | else: |
|
617 | 739 | sgrp = grp |
|
618 | 740 | for i in range(dsInfo['dsNumber']): |
|
619 | 741 | ds = sgrp.create_dataset( |
|
620 | 742 | self.getLabel(dsInfo['variable'], i), |
|
621 | 743 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
622 | 744 | chunks=True, |
|
623 | 745 | dtype=dsInfo['dtype']) |
|
624 | 746 | dtsets.append(ds) |
|
625 | 747 | data.append((dsInfo['variable'], i)) |
|
626 | 748 | fp.flush() |
|
627 | 749 | |
|
628 | 750 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
629 | 751 | |
|
630 | 752 | self.ds = dtsets |
|
631 | 753 | self.data = data |
|
632 | 754 | self.firsttime = True |
|
633 | 755 | |
|
634 | 756 | return |
|
635 | 757 | |
|
636 | 758 | def putData(self): |
|
637 | 759 | |
|
638 | 760 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
639 | 761 | self.closeFile() |
|
640 | 762 | self.setNextFile() |
|
641 | 763 | self.dataOut.flagNoData = False |
|
642 | 764 | self.blockIndex = 0 |
|
643 | 765 | return |
|
644 | 766 | |
|
645 | 767 | |
|
646 | 768 | |
|
647 | 769 | if self.blockIndex == 0: |
|
648 | 770 | #Escribir metadata Aqui??? |
|
649 | 771 | #Setting HDF5 File |
|
650 | 772 | self.fp = h5py.File(self.filename, 'w') |
|
651 | 773 | #write metadata |
|
652 | self.writeMetadata(self.fp) | |
|
774 | self.writeMetadata2(self.fp) | |
|
653 | 775 | #Write data |
|
654 | 776 | self.writeData(self.fp) |
|
655 | 777 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) |
|
656 | 778 | elif (self.blockIndex % 10 ==0): |
|
657 | 779 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) |
|
658 | 780 | else: |
|
659 | 781 | |
|
660 | 782 | log.log('Block No. {}/{}'.format(self.blockIndex+1, self.blocksPerFile), self.name) |
|
661 | 783 | |
|
662 | 784 | for i, ds in enumerate(self.ds): |
|
663 | 785 | attr, ch = self.data[i] |
|
664 | 786 | if ch == -1: |
|
665 | 787 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
666 | 788 | else: |
|
667 | 789 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
668 | 790 | |
|
669 | 791 | self.blockIndex += 1 |
|
670 | 792 | |
|
671 | 793 | self.fp.flush() |
|
672 | 794 | self.dataOut.flagNoData = True |
|
673 | 795 | |
|
674 | 796 | |
|
675 | 797 | def closeFile(self): |
|
676 | 798 | |
|
677 | 799 | if self.blockIndex != self.blocksPerFile: |
|
678 | 800 | for ds in self.ds: |
|
679 | 801 | ds.resize(self.blockIndex, axis=0) |
|
680 | 802 | |
|
681 | 803 | if self.fp: |
|
682 | 804 | self.fp.flush() |
|
683 | 805 | self.fp.close() |
|
684 | 806 | |
|
685 | 807 | def close(self): |
|
686 | 808 | |
|
687 | 809 | self.closeFile() |
@@ -1,523 +1,661 | |||
|
1 | 1 | """ |
|
2 | 2 | Utilities for IO modules |
|
3 | 3 | @modified: Joab Apaza |
|
4 | 4 | @email: roj-op01@igp.gob.pe, joab.apaza32@gmail.com |
|
5 | 5 | |
|
6 | 6 | """ |
|
7 | 7 | ################################################################################ |
|
8 | 8 | ################################################################################ |
|
9 | 9 | import os |
|
10 | 10 | from datetime import datetime |
|
11 | 11 | import numpy |
|
12 | 12 | |
|
13 | 13 | from schainpy.model.data.jrodata import Parameters |
|
14 | 14 | import itertools |
|
15 | 15 | import numpy |
|
16 | 16 | import h5py |
|
17 | 17 | import re |
|
18 | 18 | import time |
|
19 | 19 | ################################################################################ |
|
20 | 20 | ################################################################################ |
|
21 | 21 | ################################################################################ |
|
22 | 22 | def folder_in_range(folder, start_date, end_date, pattern): |
|
23 | 23 | """ |
|
24 | 24 | Check whether folder is bettwen start_date and end_date |
|
25 | 25 | |
|
26 | 26 | Args: |
|
27 | 27 | folder (str): Folder to check |
|
28 | 28 | start_date (date): Initial date |
|
29 | 29 | end_date (date): Final date |
|
30 | 30 | pattern (str): Datetime format of the folder |
|
31 | 31 | Returns: |
|
32 | 32 | bool: True for success, False otherwise |
|
33 | 33 | """ |
|
34 | 34 | try: |
|
35 | 35 | dt = datetime.strptime(folder, pattern) |
|
36 | 36 | except: |
|
37 | 37 | raise ValueError('Folder {} does not match {} format'.format(folder, pattern)) |
|
38 | 38 | return start_date <= dt.date() <= end_date |
|
39 | 39 | |
|
40 | 40 | ################################################################################ |
|
41 | 41 | ################################################################################ |
|
42 | 42 | ################################################################################ |
|
43 | 43 | def getHei_index( minHei, maxHei, heightList): |
|
44 | 44 | if (minHei < heightList[0]): |
|
45 | 45 | minHei = heightList[0] |
|
46 | 46 | |
|
47 | 47 | if (maxHei > heightList[-1]): |
|
48 | 48 | maxHei = heightList[-1] |
|
49 | 49 | |
|
50 | 50 | minIndex = 0 |
|
51 | 51 | maxIndex = 0 |
|
52 | 52 | heights = numpy.asarray(heightList) |
|
53 | 53 | |
|
54 | 54 | inda = numpy.where(heights >= minHei) |
|
55 | 55 | indb = numpy.where(heights <= maxHei) |
|
56 | 56 | |
|
57 | 57 | try: |
|
58 | 58 | minIndex = inda[0][0] |
|
59 | 59 | except: |
|
60 | 60 | minIndex = 0 |
|
61 | 61 | |
|
62 | 62 | try: |
|
63 | 63 | maxIndex = indb[0][-1] |
|
64 | 64 | except: |
|
65 | 65 | maxIndex = len(heightList) |
|
66 | 66 | return minIndex,maxIndex |
|
67 | 67 | |
|
68 | 68 | ################################################################################ |
|
69 | 69 | ################################################################################ |
|
70 | 70 | ################################################################################ |
|
71 | 71 | class MergeH5(object): |
|
72 | 72 | """Processing unit to read HDF5 format files |
|
73 | 73 | |
|
74 | 74 | This unit reads HDF5 files created with `HDFWriter` operation when channels area |
|
75 | 75 | processed by separated. Then merge all channels in a single files. |
|
76 | 76 | |
|
77 | 77 | "example" |
|
78 | 78 | nChannels = 4 |
|
79 | 79 | pathOut = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/merged" |
|
80 | 80 | p0 = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/d2022240_Ch0" |
|
81 | 81 | p1 = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/d2022240_Ch1" |
|
82 | 82 | p2 = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/d2022240_Ch2" |
|
83 | 83 | p3 = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/d2022240_Ch3" |
|
84 | 84 | list = ['data_spc','data_cspc','nIncohInt','utctime'] |
|
85 | 85 | merger = MergeH5(nChannels,pathOut,list, p0, p1,p2,p3) |
|
86 | 86 | merger.run() |
|
87 | 87 | |
|
88 | 88 | """ |
|
89 | 89 | |
|
90 | 90 | # #__attrs__ = ['paths', 'nChannels'] |
|
91 | 91 | isConfig = False |
|
92 | 92 | inPaths = None |
|
93 | 93 | nChannels = None |
|
94 | 94 | ch_dataIn = [] |
|
95 | 95 | |
|
96 | 96 | channelList = [] |
|
97 | 97 | |
|
98 | 98 | def __init__(self,nChannels, pOut, dataList, *args): |
|
99 | 99 | |
|
100 | 100 | self.inPaths = [p for p in args] |
|
101 | 101 | #print(self.inPaths) |
|
102 | 102 | if len(self.inPaths) != nChannels: |
|
103 | 103 | print("ERROR, number of channels different from iput paths {} != {}".format(nChannels, len(args))) |
|
104 | 104 | return |
|
105 | 105 | |
|
106 | 106 | self.pathOut = pOut |
|
107 | 107 | self.dataList = dataList |
|
108 | 108 | self.nChannels = len(self.inPaths) |
|
109 | 109 | self.ch_dataIn = [Parameters() for p in args] |
|
110 | 110 | self.dataOut = Parameters() |
|
111 | 111 | self.channelList = [n for n in range(nChannels)] |
|
112 | 112 | self.blocksPerFile = None |
|
113 | 113 | self.date = None |
|
114 | 114 | self.ext = ".hdf5$" |
|
115 | 115 | self.dataList = dataList |
|
116 | 116 | self.optchar = "D" |
|
117 | 117 | self.meta = {} |
|
118 | 118 | self.data = {} |
|
119 | 119 | self.open_file = h5py.File |
|
120 | 120 | self.open_mode = 'r' |
|
121 | 121 | self.description = {} |
|
122 | 122 | self.extras = {} |
|
123 | 123 | self.filefmt = "*%Y%j***" |
|
124 | 124 | self.folderfmt = "*%Y%j" |
|
125 | 125 | |
|
126 | self.flag_spc = False | |
|
127 | self.flag_pow = False | |
|
128 | self.flag_snr = False | |
|
129 | self.flag_nIcoh = False | |
|
130 | self.flagProcessingHeader = False | |
|
131 | self.flagControllerHeader = False | |
|
126 | 132 | |
|
127 | 133 | def setup(self): |
|
128 | 134 | |
|
129 | 135 | |
|
130 | 136 | # if not self.ext.startswith('.'): |
|
131 | 137 | # self.ext = '.{}'.format(self.ext) |
|
132 | 138 | |
|
133 | 139 | self.filenameList = self.searchFiles(self.inPaths, None) |
|
134 | 140 | self.nfiles = len(self.filenameList[0]) |
|
135 | 141 | |
|
136 | 142 | |
|
137 | 143 | |
|
138 | 144 | def searchFiles(self, paths, date, walk=True): |
|
139 | 145 | # self.paths = path |
|
140 | 146 | #self.date = startDate |
|
141 | 147 | #self.walk = walk |
|
142 | 148 | filenameList = [[] for n in range(self.nChannels)] |
|
143 | 149 | ch = 0 |
|
144 | 150 | for path in paths: |
|
145 | 151 | if os.path.exists(path): |
|
146 | 152 | print("Searching files in {}".format(path)) |
|
147 | 153 | filenameList[ch] = self.getH5files(path, walk) |
|
148 | 154 | print("Found: ") |
|
149 | 155 | for f in filenameList[ch]: |
|
150 | 156 | print(f) |
|
151 | 157 | else: |
|
152 | 158 | self.status = 0 |
|
153 | 159 | print('Path:%s does not exists'%path) |
|
154 | 160 | return 0 |
|
155 | 161 | ch+=1 |
|
156 | 162 | return filenameList |
|
157 | 163 | |
|
158 | 164 | def getH5files(self, path, walk): |
|
159 | 165 | |
|
160 | 166 | dirnameList = [] |
|
161 | 167 | pat = '(\d)+.'+self.ext |
|
162 | 168 | if walk: |
|
163 | 169 | for root, dirs, files in os.walk(path): |
|
164 | 170 | for dir in dirs: |
|
165 | 171 | #print(os.path.join(root,dir)) |
|
166 | 172 | files = [re.search(pat,x) for x in os.listdir(os.path.join(root,dir))] |
|
167 | 173 | #print(files) |
|
168 | 174 | files = [x for x in files if x!=None] |
|
169 | 175 | files = [x.string for x in files] |
|
170 | 176 | files = [os.path.join(root,dir,x) for x in files if x!=None] |
|
171 | 177 | files.sort() |
|
172 | 178 | |
|
173 | 179 | dirnameList += files |
|
174 | 180 | return dirnameList |
|
175 | 181 | else: |
|
176 | 182 | |
|
177 | 183 | dirnameList = [re.search(pat,x) for x in os.listdir(path)] |
|
178 | 184 | dirnameList = [x for x in dirnameList if x!=None] |
|
179 | 185 | dirnameList = [x.string for x in dirnameList] |
|
180 | 186 | dirnameList = [x for x in dirnameList if x!=None] |
|
181 | 187 | dirnameList.sort() |
|
182 | 188 | |
|
183 | 189 | return dirnameList |
|
184 | 190 | |
|
185 | 191 | |
|
186 | 192 | def readFile(self,fp,ch): |
|
187 | 193 | |
|
188 | 194 | '''Read metadata and data''' |
|
189 | 195 | |
|
190 | self.readMetadata(fp) | |
|
196 | self.readMetadata(fp,ch) | |
|
197 | #print(self.metadataList) | |
|
191 | 198 | data = self.readData(fp) |
|
192 | 199 | |
|
193 | 200 | |
|
194 | 201 | for attr in self.meta: |
|
195 | setattr(self.ch_dataIn[ch], attr, self.meta[attr]) | |
|
202 | ||
|
203 | if "processingHeaderObj" in attr: | |
|
204 | self.flagProcessingHeader=True | |
|
205 | ||
|
206 | if "radarControllerHeaderObj" in attr: | |
|
207 | self.flagControllerHeader=True | |
|
208 | ||
|
209 | at = attr.split('.') | |
|
210 | #print("AT ", at) | |
|
211 | if len(at) > 1: | |
|
212 | setattr(eval("self.ch_dataIn[ch]."+at[0]),at[1], self.meta[attr]) | |
|
213 | else: | |
|
214 | setattr(self.ch_dataIn[ch], attr, self.meta[attr]) | |
|
196 | 215 | |
|
197 | 216 | self.fill_dataIn(data, self.ch_dataIn[ch]) |
|
198 | 217 | |
|
199 | 218 | |
|
200 | 219 | return |
|
201 | 220 | |
|
202 | 221 | |
|
203 | def readMetadata(self, fp): | |
|
222 | def readMetadata(self, fp, ch): | |
|
204 | 223 | ''' |
|
205 | 224 | Reads Metadata |
|
206 | 225 | ''' |
|
207 | 226 | meta = {} |
|
208 | 227 | self.metadataList = [] |
|
209 | 228 | grp = fp['Metadata'] |
|
210 |
for |
|
|
211 |
|
|
|
212 | self.metadataList.append(name) | |
|
229 | for item in grp.values(): | |
|
230 | name = item.name | |
|
231 | ||
|
232 | if isinstance(item, h5py.Dataset): | |
|
233 | name = name.split("/")[-1] | |
|
234 | if 'List' in name: | |
|
235 | meta[name] = item[()].tolist() | |
|
236 | else: | |
|
237 | meta[name] = item[()] | |
|
238 | self.metadataList.append(name) | |
|
239 | else: | |
|
240 | grp2 = fp[name] | |
|
241 | Obj = name.split("/")[-1] | |
|
242 | #print(Obj) | |
|
243 | for item2 in grp2.values(): | |
|
244 | name2 = Obj+"."+item2.name.split("/")[-1] | |
|
245 | if 'List' in name2: | |
|
246 | meta[name2] = item2[()].tolist() | |
|
247 | else: | |
|
248 | meta[name2] = item2[()] | |
|
249 | self.metadataList.append(name2) | |
|
250 | ||
|
251 | ||
|
213 | 252 | |
|
214 | for k in meta: | |
|
215 | if ('List' in k): | |
|
216 | meta[k] = meta[k].tolist() | |
|
217 | 253 | if not self.meta: |
|
218 | self.meta = meta | |
|
219 | self.meta["channelList"] =[n for n in range(self.nChannels)] | |
|
254 | self.meta = meta.copy() | |
|
255 | for key in list(self.meta.keys()): | |
|
256 | if "channelList" in key: | |
|
257 | self.meta["channelList"] =[n for n in range(self.nChannels)] | |
|
258 | if "processingHeaderObj" in key: | |
|
259 | self.meta["processingHeaderObj.channelList"] =[n for n in range(self.nChannels)] | |
|
260 | if "radarControllerHeaderObj" in key: | |
|
261 | self.meta["radarControllerHeaderObj.channelList"] =[n for n in range(self.nChannels)] | |
|
220 | 262 | return 1 |
|
263 | ||
|
221 | 264 | else: |
|
222 | if len(self.meta) == len(meta): | |
|
223 | for k in meta: | |
|
224 | if 'List' in k and 'channel' not in k and "height" not in k: | |
|
225 | self.meta[k] += meta[k] | |
|
226 | 265 | |
|
227 | return 1 | |
|
228 | else: | |
|
229 | return 0 | |
|
266 | for k in list(self.meta.keys()): | |
|
267 | if 'List' in k and 'channel' not in k and "height" not in k and "radarControllerHeaderObj" not in k: | |
|
268 | self.meta[k] += meta[k] | |
|
269 | ||
|
270 | #print("Metadata: ",self.meta) | |
|
271 | return 1 | |
|
272 | ||
|
230 | 273 | |
|
231 | 274 | |
|
232 | 275 | |
|
233 | 276 | def fill_dataIn(self,data, dataIn): |
|
234 | 277 | |
|
235 | 278 | for attr in data: |
|
236 | 279 | if data[attr].ndim == 1: |
|
237 | 280 | setattr(dataIn, attr, data[attr][:]) |
|
238 | 281 | else: |
|
239 | 282 | setattr(dataIn, attr, numpy.squeeze(data[attr][:,:])) |
|
240 | print("shape in", dataIn.data_spc.shape, len(dataIn.data_spc)) | |
|
241 | if dataIn.data_spc.ndim > 3: | |
|
242 |
|
|
|
243 |
|
|
|
283 | #print("shape in", dataIn.data_spc.shape, len(dataIn.data_spc)) | |
|
284 | if self.flag_spc: | |
|
285 | if dataIn.data_spc.ndim > 3: | |
|
286 | dataIn.data_spc = dataIn.data_spc[0] | |
|
287 | #print("shape in", dataIn.data_spc.shape) | |
|
244 | 288 | |
|
245 | 289 | |
|
246 | 290 | |
|
247 | 291 | def getBlocksPerFile(self): |
|
248 | 292 | b = numpy.zeros(self.nChannels) |
|
249 | 293 | for i in range(self.nChannels): |
|
250 | b[i] = self.ch_dataIn[i].data_spc.shape[0] #number of blocks | |
|
294 | if self.flag_spc: | |
|
295 | b[i] = self.ch_dataIn[i].data_spc.shape[0] #number of blocks | |
|
296 | elif self.flag_pow: | |
|
297 | b[i] = self.ch_dataIn[i].data_pow.shape[0] #number of blocks | |
|
298 | elif self.flag_snr: | |
|
299 | b[i] = self.ch_dataIn[i].data_snr.shape[0] #number of blocks | |
|
251 | 300 | |
|
252 | 301 | self.blocksPerFile = int(b.min()) |
|
253 | 302 | iresh_ch = numpy.where(b > self.blocksPerFile)[0] |
|
254 | 303 | if len(iresh_ch) > 0: |
|
255 | 304 | for ich in iresh_ch: |
|
256 | 305 | for i in range(len(self.dataList)): |
|
257 | 306 | if hasattr(self.ch_dataIn[ich], self.dataList[i]): |
|
258 | 307 | # print("reshaping ", self.dataList[i]) |
|
259 | 308 | # print(getattr(self.ch_dataIn[ich], self.dataList[i]).shape) |
|
260 | 309 | dataAux = getattr(self.ch_dataIn[ich], self.dataList[i]) |
|
261 | 310 | setattr(self.ch_dataIn[ich], self.dataList[i], None) |
|
262 | 311 | setattr(self.ch_dataIn[ich], self.dataList[i], dataAux[0:self.blocksPerFile]) |
|
263 | 312 | # print(getattr(self.ch_dataIn[ich], self.dataList[i]).shape) |
|
264 | 313 | else: |
|
265 | 314 | return |
|
266 | 315 | |
|
267 | 316 | |
|
268 | 317 | def getLabel(self, name, x=None): |
|
269 | 318 | |
|
270 | 319 | if x is None: |
|
271 | 320 | if 'Data' in self.description: |
|
272 | 321 | data = self.description['Data'] |
|
273 | 322 | if 'Metadata' in self.description: |
|
274 | 323 | data.update(self.description['Metadata']) |
|
275 | 324 | else: |
|
276 | 325 | data = self.description |
|
277 | 326 | if name in data: |
|
278 | 327 | if isinstance(data[name], str): |
|
279 | 328 | return data[name] |
|
280 | 329 | elif isinstance(data[name], list): |
|
281 | 330 | return None |
|
282 | 331 | elif isinstance(data[name], dict): |
|
283 | 332 | for key, value in data[name].items(): |
|
284 | 333 | return key |
|
285 | 334 | return name |
|
286 | 335 | else: |
|
287 | 336 | if 'Metadata' in self.description: |
|
288 | 337 | meta = self.description['Metadata'] |
|
289 | 338 | else: |
|
290 | 339 | meta = self.description |
|
291 | 340 | if name in meta: |
|
292 | 341 | if isinstance(meta[name], list): |
|
293 | 342 | return meta[name][x] |
|
294 | 343 | elif isinstance(meta[name], dict): |
|
295 | 344 | for key, value in meta[name].items(): |
|
296 | 345 | return value[x] |
|
297 | 346 | |
|
298 | 347 | if 'cspc' in name: |
|
299 | 348 | return 'pair{:02d}'.format(x) |
|
300 | 349 | else: |
|
301 | 350 | return 'channel{:02d}'.format(x) |
|
302 | 351 | |
|
303 | 352 | def readData(self, fp): |
|
304 | 353 | #print("read fp: ", fp) |
|
305 | 354 | data = {} |
|
306 | 355 | |
|
307 | 356 | grp = fp['Data'] |
|
308 | 357 | |
|
309 | 358 | for name in grp: |
|
359 | if "spc" in name: | |
|
360 | self.flag_spc = True | |
|
361 | if "pow" in name: | |
|
362 | self.flag_pow = True | |
|
363 | if "snr" in name: | |
|
364 | self.flag_snr = True | |
|
310 | 365 | if isinstance(grp[name], h5py.Dataset): |
|
311 | 366 | array = grp[name][()] |
|
312 | 367 | elif isinstance(grp[name], h5py.Group): |
|
313 | 368 | array = [] |
|
314 | 369 | for ch in grp[name]: |
|
315 | 370 | array.append(grp[name][ch][()]) |
|
316 | 371 | array = numpy.array(array) |
|
317 | 372 | else: |
|
318 | 373 | print('Unknown type: {}'.format(name)) |
|
319 | 374 | data[name] = array |
|
320 | 375 | |
|
321 | 376 | return data |
|
322 | 377 | |
|
323 | 378 | def getDataOut(self): |
|
324 | 379 | |
|
325 | 380 | self.dataOut = self.ch_dataIn[0].copy() #dataIn #blocks, fft, hei for metadata |
|
326 | if self.dataOut.data_spc.ndim < 3: | |
|
327 | return 0 | |
|
381 | if self.flagProcessingHeader: | |
|
382 | self.dataOut.processingHeaderObj = self.ch_dataIn[0].processingHeaderObj.copy() | |
|
383 | self.dataOut.heightList = self.dataOut.processingHeaderObj.heightList | |
|
384 | self.dataOut.ippSeconds = self.dataOut.processingHeaderObj.ipp | |
|
385 | self.dataOut.channelList = self.dataOut.processingHeaderObj.channelList | |
|
386 | self.dataOut.nCohInt = self.dataOut.processingHeaderObj.nCohInt | |
|
387 | self.dataOut.nFFTPoints = self.dataOut.processingHeaderObj.nFFTPoints | |
|
388 | ||
|
389 | if self.flagControllerHeader: | |
|
390 | self.dataOut.radarControllerHeaderObj = self.ch_dataIn[0].radarControllerHeaderObj.copy() | |
|
391 | self.dataOut.frequency = self.dataOut.radarControllerHeaderObj.frequency | |
|
392 | #-------------------------------------------------------------------- | |
|
393 | ||
|
394 | ||
|
395 | #-------------------------------------------------------------------- | |
|
396 | if self.flag_spc: | |
|
397 | if self.dataOut.data_spc.ndim < 3: | |
|
398 | print("shape spc in: ",self.dataOut.data_spc.shape ) | |
|
399 | return 0 | |
|
400 | if self.flag_pow: | |
|
401 | if self.dataOut.data_pow.ndim < 2: | |
|
402 | print("shape pow in: ",self.dataOut.data_pow.shape ) | |
|
403 | return 0 | |
|
404 | if self.flag_snr: | |
|
405 | if self.dataOut.data_snr.ndim < 2: | |
|
406 | print("shape snr in: ",self.dataOut.data_snr.shape ) | |
|
407 | return 0 | |
|
408 | ||
|
328 | 409 | self.dataOut.data_spc = None |
|
410 | self.dataOut.data_cspc = None | |
|
411 | self.dataOut.data_pow = None | |
|
412 | self.dataOut.data_snr = None | |
|
329 | 413 | self.dataOut.utctim = None |
|
330 | 414 | self.dataOut.nIncohInt = None |
|
331 | #print(self.ch_dataIn[0].data_spc.shape) | |
|
332 | spc = [data.data_spc for data in self.ch_dataIn] | |
|
333 | self.dataOut.data_spc = numpy.stack(spc, axis=1) #blocks, ch, fft, hei | |
|
415 | #-------------------------------------------------------------------- | |
|
416 | if self.flag_spc: | |
|
417 | spc = [data.data_spc for data in self.ch_dataIn] | |
|
418 | self.dataOut.data_spc = numpy.stack(spc, axis=1) #blocks, ch, fft, hei | |
|
419 | #-------------------------------------------------------------------- | |
|
420 | if self.flag_pow: | |
|
421 | pow = [data.data_pow for data in self.ch_dataIn] | |
|
422 | self.dataOut.data_pow = numpy.stack(pow, axis=1) #blocks, ch, fft, hei | |
|
423 | #-------------------------------------------------------------------- | |
|
424 | if self.flag_snr: | |
|
425 | snr = [data.data_snr for data in self.ch_dataIn] | |
|
426 | self.dataOut.data_snr = numpy.stack(snr, axis=1) #blocks, ch, fft, hei | |
|
427 | ||
|
428 | #-------------------------------------------------------------------- | |
|
334 | 429 | time = [data.utctime for data in self.ch_dataIn] |
|
335 | 430 | time = numpy.asarray(time).mean(axis=0) |
|
336 | #time = numpy.reshape(time, (len(time),1)) | |
|
337 | 431 | time = numpy.squeeze(time) |
|
338 | 432 | self.dataOut.utctime = time |
|
339 | ints = [data.nIncohInt for data in self.ch_dataIn] | |
|
340 | self.dataOut.nIncohInt = numpy.stack(ints, axis=1) | |
|
341 | ||
|
342 | ||
|
343 | if self.dataOut.nIncohInt.ndim > 3: | |
|
344 |
|
|
|
345 |
self.dataOut.nIncohInt |
|
|
346 |
self.dataOut.nIncohInt = |
|
|
347 | ||
|
433 | #-------------------------------------------------------------------- | |
|
434 | if self.flag_nIcoh: | |
|
435 | ints = [data.nIncohInt for data in self.ch_dataIn] | |
|
436 | self.dataOut.nIncohInt = numpy.stack(ints, axis=1) | |
|
437 | ||
|
438 | if self.dataOut.nIncohInt.ndim > 3: | |
|
439 | aux = self.dataOut.nIncohInt | |
|
440 | self.dataOut.nIncohInt = None | |
|
441 | self.dataOut.nIncohInt = aux[0] | |
|
442 | ||
|
443 | if self.dataOut.nIncohInt.ndim < 3: | |
|
444 | nIncohInt = numpy.repeat(self.dataOut.nIncohInt, self.dataOut.nHeights).reshape(self.blocksPerFile,self.nChannels, self.dataOut.nHeights) | |
|
445 | #nIncohInt = numpy.reshape(nIncohInt, (self.blocksPerFile,self.nChannels, self.dataOut.nHeights)) | |
|
446 | self.dataOut.nIncohInt = None | |
|
447 | self.dataOut.nIncohInt = nIncohInt | |
|
448 | ||
|
449 | if (self.dataOut.nIncohInt.shape)[0]==self.nChannels: ## ch,blocks, hei | |
|
450 | self.dataOut.nIncohInt = numpy.swapaxes(self.dataOut.nIncohInt, 0, 1) ## blocks,ch, hei | |
|
451 | #-------------------------------------------------------------------- | |
|
452 | #print("utcTime: ", time.shape) | |
|
453 | #print("data_spc ",self.dataOut.data_spc.shape) | |
|
454 | if "data_cspc" in self.dataList: | |
|
455 | pairsList = [pair for pair in itertools.combinations(self.channelList, 2)] | |
|
456 | #print("PairsList: ", pairsList) | |
|
457 | self.dataOut.pairsList = pairsList | |
|
458 | cspc = [] | |
|
348 | 459 | |
|
349 | if self.dataOut.nIncohInt.ndim < 3: | |
|
350 | nIncohInt = numpy.repeat(self.dataOut.nIncohInt, self.dataOut.nHeights).reshape(self.blocksPerFile,self.nChannels, self.dataOut.nHeights) | |
|
351 | #nIncohInt = numpy.reshape(nIncohInt, (self.blocksPerFile,self.nChannels, self.dataOut.nHeights)) | |
|
352 | self.dataOut.nIncohInt = None | |
|
353 | self.dataOut.nIncohInt = nIncohInt | |
|
460 | for i, j in pairsList: | |
|
461 | cspc.append(self.ch_dataIn[i].data_spc*numpy.conjugate(self.ch_dataIn[j].data_spc)) #blocks, fft, hei | |
|
354 | 462 | |
|
355 | if (self.dataOut.nIncohInt.shape)[0]==self.nChannels: ## ch,blocks, hei | |
|
356 | self.dataOut.nIncohInt = numpy.swapaxes(self.dataOut.nIncohInt, 0, 1) ## blocks,ch, hei | |
|
463 | cspc = numpy.asarray(cspc) # # pairs, blocks, fft, hei | |
|
464 | #print("cspc: ",cspc.shape) | |
|
465 | self.dataOut.data_cspc = numpy.swapaxes(cspc, 0, 1) ## blocks, pairs, fft, hei | |
|
466 | #print("dataOut.data_cspc: ",self.dataOut.data_cspc.shape) | |
|
467 | #if "data_pow" in self.dataList: | |
|
357 | 468 | |
|
358 | #print("utcTime: ", time.shape) | |
|
359 | #print("data_spc ",self.dataOut.data_spc.shape) | |
|
360 | pairsList = [pair for pair in itertools.combinations(self.channelList, 2)] | |
|
361 | #print("PairsList: ", pairsList) | |
|
362 | self.dataOut.pairsList = pairsList | |
|
363 | cspc = [] | |
|
364 | ||
|
365 | for i, j in pairsList: | |
|
366 | cspc.append(self.ch_dataIn[i].data_spc*numpy.conjugate(self.ch_dataIn[j].data_spc)) #blocks, fft, hei | |
|
367 | ||
|
368 | cspc = numpy.asarray(cspc) # # pairs, blocks, fft, hei | |
|
369 | #print("cspc: ",cspc.shape) | |
|
370 | self.dataOut.data_cspc = numpy.swapaxes(cspc, 0, 1) ## blocks, pairs, fft, hei | |
|
371 | #print("dataOut.data_cspc: ",self.dataOut.data_cspc.shape) | |
|
372 | 469 | return 1 |
|
373 | 470 | |
|
471 | # def writeMetadata(self, fp): | |
|
472 | # | |
|
473 | # | |
|
474 | # grp = fp.create_group('Metadata') | |
|
475 | # | |
|
476 | # for i in range(len(self.metadataList)): | |
|
477 | # if not hasattr(self.dataOut, self.metadataList[i]): | |
|
478 | # print('Metadata: `{}` not found'.format(self.metadataList[i])) | |
|
479 | # continue | |
|
480 | # value = getattr(self.dataOut, self.metadataList[i]) | |
|
481 | # if isinstance(value, bool): | |
|
482 | # if value is True: | |
|
483 | # value = 1 | |
|
484 | # else: | |
|
485 | # value = 0 | |
|
486 | # grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) | |
|
487 | # return | |
|
374 | 488 | def writeMetadata(self, fp): |
|
375 | 489 | |
|
376 | 490 | |
|
377 | 491 | grp = fp.create_group('Metadata') |
|
378 | 492 | |
|
379 | 493 | for i in range(len(self.metadataList)): |
|
380 |
|
|
|
381 | print('Metadata: `{}` not found'.format(self.metadataList[i])) | |
|
382 |
|
|
|
383 | value = getattr(self.dataOut, self.metadataList[i]) | |
|
384 | if isinstance(value, bool): | |
|
385 |
|
|
|
386 | value = 1 | |
|
494 | attribute = self.metadataList[i] | |
|
495 | attr = attribute.split('.') | |
|
496 | if '' in attr: | |
|
497 | attr.remove('') | |
|
498 | #print(attr) | |
|
499 | if len(attr) > 1: | |
|
500 | if not hasattr(eval("self.dataOut."+attr[0]),attr[1]): | |
|
501 | print('Metadata: {}.{} not found'.format(attr[0],attr[1])) | |
|
502 | continue | |
|
503 | value = getattr(eval("self.dataOut."+attr[0]),attr[1]) | |
|
504 | if isinstance(value, bool): | |
|
505 | if value is True: | |
|
506 | value = 1 | |
|
507 | else: | |
|
508 | value = 0 | |
|
509 | grp2 = None | |
|
510 | if not 'Metadata/'+attr[0] in fp: | |
|
511 | grp2 = fp.create_group('Metadata/'+attr[0]) | |
|
387 | 512 | else: |
|
388 |
|
|
|
389 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) | |
|
513 | grp2 = fp['Metadata/'+attr[0]] | |
|
514 | ||
|
515 | grp2.create_dataset(attr[1], data=value) | |
|
516 | ||
|
517 | else: | |
|
518 | if not hasattr(self.dataOut, attr[0] ): | |
|
519 | print('Metadata: `{}` not found'.format(attribute)) | |
|
520 | continue | |
|
521 | value = getattr(self.dataOut, attr[0]) | |
|
522 | if isinstance(value, bool): | |
|
523 | if value is True: | |
|
524 | value = 1 | |
|
525 | else: | |
|
526 | value = 0 | |
|
527 | grp.create_dataset(self.getLabel(attribute), data=value) | |
|
390 | 528 | return |
|
391 | 529 | |
|
392 | 530 | def getDsList(self): |
|
393 | 531 | |
|
394 | 532 | dsList =[] |
|
395 | 533 | for i in range(len(self.dataList)): |
|
396 | 534 | dsDict = {} |
|
397 | 535 | if hasattr(self.dataOut, self.dataList[i]): |
|
398 | 536 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
399 | 537 | dsDict['variable'] = self.dataList[i] |
|
400 | 538 | else: |
|
401 | 539 | print('Attribute {} not found in dataOut'.format(self.dataList[i])) |
|
402 | 540 | continue |
|
403 | 541 | |
|
404 | 542 | if dataAux is None: |
|
405 | 543 | continue |
|
406 | 544 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
407 | 545 | dsDict['nDim'] = 0 |
|
408 | 546 | else: |
|
409 | 547 | |
|
410 | 548 | dsDict['nDim'] = len(dataAux.shape) -1 |
|
411 | 549 | dsDict['shape'] = dataAux.shape |
|
412 | 550 | |
|
413 | 551 | if len(dsDict['shape'])>=2: |
|
414 | 552 | dsDict['dsNumber'] = dataAux.shape[1] |
|
415 | 553 | else: |
|
416 | 554 | dsDict['dsNumber'] = 1 |
|
417 | 555 | dsDict['dtype'] = dataAux.dtype |
|
418 | 556 | # if len(dataAux.shape) == 4: |
|
419 | 557 | # dsDict['nDim'] = len(dataAux.shape) -1 |
|
420 | 558 | # dsDict['shape'] = dataAux.shape |
|
421 | 559 | # dsDict['dsNumber'] = dataAux.shape[1] |
|
422 | 560 | # dsDict['dtype'] = dataAux.dtype |
|
423 | 561 | # else: |
|
424 | 562 | # dsDict['nDim'] = len(dataAux.shape) |
|
425 | 563 | # dsDict['shape'] = dataAux.shape |
|
426 | 564 | # dsDict['dsNumber'] = dataAux.shape[0] |
|
427 | 565 | # dsDict['dtype'] = dataAux.dtype |
|
428 | 566 | |
|
429 | 567 | dsList.append(dsDict) |
|
430 | 568 | #print(dsList) |
|
431 | 569 | self.dsList = dsList |
|
432 | 570 | |
|
433 | 571 | def clean_dataIn(self): |
|
434 | 572 | for ch in range(self.nChannels): |
|
435 | 573 | self.ch_dataIn[ch].data_spc = None |
|
436 | 574 | self.ch_dataIn[ch].utctime = None |
|
437 | 575 | self.ch_dataIn[ch].nIncohInt = None |
|
438 | 576 | self.meta ={} |
|
439 | 577 | self.blocksPerFile = None |
|
440 | 578 | |
|
441 | 579 | def writeData(self, outFilename): |
|
442 | 580 | |
|
443 | 581 | self.getDsList() |
|
444 | 582 | |
|
445 | 583 | fp = h5py.File(outFilename, 'w') |
|
446 | 584 | self.writeMetadata(fp) |
|
447 | 585 | grp = fp.create_group('Data') |
|
448 | 586 | |
|
449 | 587 | dtsets = [] |
|
450 | 588 | data = [] |
|
451 | 589 | for dsInfo in self.dsList: |
|
452 | 590 | if dsInfo['nDim'] == 0: |
|
453 | 591 | ds = grp.create_dataset( |
|
454 | 592 | self.getLabel(dsInfo['variable']),(self.blocksPerFile, ),chunks=True,dtype=numpy.float64) |
|
455 | 593 | dtsets.append(ds) |
|
456 | 594 | data.append((dsInfo['variable'], -1)) |
|
457 | 595 | else: |
|
458 | 596 | label = self.getLabel(dsInfo['variable']) |
|
459 | 597 | if label is not None: |
|
460 | 598 | sgrp = grp.create_group(label) |
|
461 | 599 | else: |
|
462 | 600 | sgrp = grp |
|
463 | 601 | k = -1*(dsInfo['nDim'] - 1) |
|
464 | 602 | #print(k, dsInfo['shape'], dsInfo['shape'][k:]) |
|
465 | 603 | for i in range(dsInfo['dsNumber']): |
|
466 | 604 | ds = sgrp.create_dataset( |
|
467 | 605 | self.getLabel(dsInfo['variable'], i),(self.blocksPerFile, ) + dsInfo['shape'][k:], |
|
468 | 606 | chunks=True, |
|
469 | 607 | dtype=dsInfo['dtype']) |
|
470 | 608 | dtsets.append(ds) |
|
471 | 609 | data.append((dsInfo['variable'], i)) |
|
472 | 610 | |
|
473 | 611 | #print("\n",dtsets) |
|
474 | 612 | |
|
475 | 613 | print('Creating merged file: {}'.format(fp.filename)) |
|
476 | 614 | |
|
477 | 615 | for i, ds in enumerate(dtsets): |
|
478 | 616 | attr, ch = data[i] |
|
479 | 617 | if ch == -1: |
|
480 | 618 | ds[:] = getattr(self.dataOut, attr) |
|
481 | 619 | else: |
|
482 | 620 | #print(ds, getattr(self.dataOut, attr)[ch].shape) |
|
483 | 621 | aux = getattr(self.dataOut, attr)# block, ch, ... |
|
484 | 622 | aux = numpy.swapaxes(aux,0,1) # ch, blocks, ... |
|
485 | 623 | #print(ds.shape, aux.shape) |
|
486 | 624 | #ds[:] = getattr(self.dataOut, attr)[ch] |
|
487 | 625 | ds[:] = aux[ch] |
|
488 | 626 | |
|
489 | 627 | fp.flush() |
|
490 | 628 | fp.close() |
|
491 | 629 | self.clean_dataIn() |
|
492 | 630 | return |
|
493 | 631 | |
|
494 | 632 | |
|
495 | 633 | |
|
496 | 634 | def run(self): |
|
497 | 635 | |
|
498 | 636 | if not(self.isConfig): |
|
499 | 637 | self.setup() |
|
500 | 638 | self.isConfig = True |
|
501 | 639 | |
|
502 | 640 | for nf in range(self.nfiles): |
|
503 | 641 | name = None |
|
504 | 642 | for ch in range(self.nChannels): |
|
505 | 643 | name = self.filenameList[ch][nf] |
|
506 | 644 | filename = os.path.join(self.inPaths[ch], name) |
|
507 | 645 | fp = h5py.File(filename, 'r') |
|
508 | 646 | #print("Opening file: ",filename) |
|
509 | 647 | self.readFile(fp,ch) |
|
510 | 648 | fp.close() |
|
511 | 649 | |
|
512 | 650 | if self.blocksPerFile == None: |
|
513 | 651 | self.getBlocksPerFile() |
|
514 | 652 | print("blocks per file: ", self.blocksPerFile) |
|
515 | 653 | |
|
516 | 654 | if not self.getDataOut(): |
|
517 | 655 | print("Error getting DataOut invalid number of blocks") |
|
518 | 656 | return |
|
519 | 657 | name = name[-16:] |
|
520 | 658 | #print("Final name out: ", name) |
|
521 | 659 | outFile = os.path.join(self.pathOut, name) |
|
522 | 660 | #print("Outfile: ", outFile) |
|
523 | 661 | self.writeData(outFile) |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,2164 +1,2191 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | import math |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
18 | 18 | from schainpy.model.data.jrodata import Spectra |
|
19 | 19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
20 | 20 | from schainpy.model.data import _noise |
|
21 | 21 | |
|
22 | 22 | from schainpy.utils import log |
|
23 | 23 | import matplotlib.pyplot as plt |
|
24 | 24 | #from scipy.optimize import curve_fit |
|
25 | 25 | from schainpy.model.io.utilsIO import getHei_index |
|
26 | 26 | |
|
27 | 27 | class SpectraProc(ProcessingUnit): |
|
28 | 28 | |
|
29 | 29 | def __init__(self): |
|
30 | 30 | |
|
31 | 31 | ProcessingUnit.__init__(self) |
|
32 | 32 | |
|
33 | 33 | self.buffer = None |
|
34 | 34 | self.firstdatatime = None |
|
35 | 35 | self.profIndex = 0 |
|
36 | 36 | self.dataOut = Spectra() |
|
37 | 37 | self.id_min = None |
|
38 | 38 | self.id_max = None |
|
39 | 39 | self.setupReq = False #Agregar a todas las unidades de proc |
|
40 | self.nsamplesFFT = 0 | |
|
40 | 41 | |
|
41 | 42 | def __updateSpecFromVoltage(self): |
|
42 | 43 | |
|
43 | 44 | |
|
44 | 45 | |
|
45 | 46 | self.dataOut.timeZone = self.dataIn.timeZone |
|
46 | 47 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
47 | 48 | self.dataOut.errorCount = self.dataIn.errorCount |
|
48 | 49 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
49 | try: | |
|
50 |
|
|
|
51 | except: | |
|
52 | pass | |
|
50 | ||
|
51 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
|
53 | 52 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
53 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
|
54 | self.dataOut.ipp = self.dataIn.ipp | |
|
54 | 55 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
55 | 56 | self.dataOut.channelList = self.dataIn.channelList |
|
56 | 57 | self.dataOut.heightList = self.dataIn.heightList |
|
57 | 58 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
58 | 59 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
59 | 60 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
60 | 61 | self.dataOut.utctime = self.firstdatatime |
|
61 | 62 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
62 | 63 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
63 | 64 | self.dataOut.flagShiftFFT = False |
|
64 | 65 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
65 | 66 | self.dataOut.nIncohInt = 1 |
|
66 | self.dataOut.radar_ipp = self.dataIn.radar_ipp | |
|
67 | self.dataOut.sampled_heightsFFT = self.dataIn.sampled_heightsFFT | |
|
68 | self.dataOut.pulseLength_TxA = self.dataIn.pulseLength_TxA | |
|
69 | 67 | self.dataOut.deltaHeight = self.dataIn.deltaHeight |
|
70 | 68 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
71 | 69 | self.dataOut.frequency = self.dataIn.frequency |
|
72 | 70 | self.dataOut.realtime = self.dataIn.realtime |
|
73 | 71 | self.dataOut.azimuth = self.dataIn.azimuth |
|
74 | 72 | self.dataOut.zenith = self.dataIn.zenith |
|
75 | 73 | self.dataOut.codeList = self.dataIn.codeList |
|
76 | 74 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
77 | 75 | self.dataOut.elevationList = self.dataIn.elevationList |
|
78 | 76 | |
|
79 | 77 | |
|
80 | 78 | def __getFft(self): |
|
81 | 79 | # print("fft donw") |
|
82 | 80 | """ |
|
83 | 81 | Convierte valores de Voltaje a Spectra |
|
84 | 82 | |
|
85 | 83 | Affected: |
|
86 | 84 | self.dataOut.data_spc |
|
87 | 85 | self.dataOut.data_cspc |
|
88 | 86 | self.dataOut.data_dc |
|
89 | 87 | self.dataOut.heightList |
|
90 | 88 | self.profIndex |
|
91 | 89 | self.buffer |
|
92 | 90 | self.dataOut.flagNoData |
|
93 | 91 | """ |
|
94 | 92 | fft_volt = numpy.fft.fft( |
|
95 | 93 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
96 | 94 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
97 | 95 | dc = fft_volt[:, 0, :] |
|
98 | 96 | |
|
99 | 97 | # calculo de self-spectra |
|
100 | 98 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
101 | 99 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
102 | 100 | spc = spc.real |
|
103 | 101 | |
|
104 | 102 | blocksize = 0 |
|
105 | 103 | blocksize += dc.size |
|
106 | 104 | blocksize += spc.size |
|
107 | 105 | |
|
108 | 106 | cspc = None |
|
109 | 107 | pairIndex = 0 |
|
110 | 108 | if self.dataOut.pairsList != None: |
|
111 | 109 | # calculo de cross-spectra |
|
112 | 110 | cspc = numpy.zeros( |
|
113 | 111 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
114 | 112 | for pair in self.dataOut.pairsList: |
|
115 | 113 | if pair[0] not in self.dataOut.channelList: |
|
116 | 114 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
117 | 115 | str(pair), str(self.dataOut.channelList))) |
|
118 | 116 | if pair[1] not in self.dataOut.channelList: |
|
119 | 117 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
120 | 118 | str(pair), str(self.dataOut.channelList))) |
|
121 | 119 | |
|
122 | 120 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
123 | 121 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
124 | 122 | pairIndex += 1 |
|
125 | 123 | blocksize += cspc.size |
|
126 | 124 | |
|
127 | 125 | self.dataOut.data_spc = spc |
|
128 | 126 | self.dataOut.data_cspc = cspc |
|
129 | 127 | self.dataOut.data_dc = dc |
|
130 | 128 | self.dataOut.blockSize = blocksize |
|
131 | 129 | self.dataOut.flagShiftFFT = False |
|
132 | 130 | |
|
133 | 131 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, zeroPad=False): |
|
134 | #print("run spc proc") | |
|
132 | ||
|
135 | 133 | |
|
136 | 134 | try: |
|
137 | 135 | type = self.dataIn.type.decode("utf-8") |
|
138 | 136 | self.dataIn.type = type |
|
139 | 137 | except: |
|
140 | 138 | pass |
|
141 | 139 | if self.dataIn.type == "Spectra": |
|
142 | 140 | |
|
143 | 141 | try: |
|
144 | 142 | self.dataOut.copy(self.dataIn) |
|
143 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
|
144 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
|
145 | 145 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
146 | 146 | #self.dataOut.nHeights = len(self.dataOut.heightList) |
|
147 | 147 | except Exception as e: |
|
148 | 148 | print("Error dataIn ",e) |
|
149 | 149 | |
|
150 | ||
|
151 | ||
|
150 | 152 | if shift_fft: |
|
151 | 153 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
152 | 154 | shift = int(self.dataOut.nFFTPoints/2) |
|
153 | 155 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
154 | 156 | |
|
155 | 157 | if self.dataOut.data_cspc is not None: |
|
156 | 158 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
157 | 159 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
158 | 160 | if pairsList: |
|
159 | 161 | self.__selectPairs(pairsList) |
|
160 | 162 | |
|
161 | 163 | |
|
162 | 164 | elif self.dataIn.type == "Voltage": |
|
163 | 165 | |
|
164 | 166 | self.dataOut.flagNoData = True |
|
165 | ||
|
167 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
|
168 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
|
166 | 169 | if nFFTPoints == None: |
|
167 | 170 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
168 | 171 | |
|
169 | 172 | if nProfiles == None: |
|
170 | 173 | nProfiles = nFFTPoints |
|
171 | 174 | |
|
172 | 175 | if ippFactor == None: |
|
173 | 176 | self.dataOut.ippFactor = 1 |
|
174 | 177 | |
|
175 | 178 | self.dataOut.nFFTPoints = nFFTPoints |
|
176 | 179 | #print(" volts ch,prof, h: ", self.dataIn.data.shape) |
|
177 | 180 | if self.buffer is None: |
|
178 | 181 | if not zeroPad: |
|
179 | 182 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
180 | 183 | nProfiles, |
|
181 | 184 | self.dataIn.nHeights), |
|
182 | 185 | dtype='complex') |
|
183 | 186 | else: |
|
184 | 187 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
185 | 188 | nFFTPoints, |
|
186 | 189 | self.dataIn.nHeights), |
|
187 | 190 | dtype='complex') |
|
188 | 191 | |
|
189 | 192 | if self.dataIn.flagDataAsBlock: |
|
190 | 193 | nVoltProfiles = self.dataIn.data.shape[1] |
|
191 | 194 | |
|
192 | 195 | if nVoltProfiles == nProfiles or zeroPad: |
|
193 | 196 | self.buffer = self.dataIn.data.copy() |
|
194 | 197 | self.profIndex = nVoltProfiles |
|
195 | 198 | |
|
196 | 199 | elif nVoltProfiles < nProfiles: |
|
197 | 200 | |
|
198 | 201 | if self.profIndex == 0: |
|
199 | 202 | self.id_min = 0 |
|
200 | 203 | self.id_max = nVoltProfiles |
|
201 | 204 | |
|
202 | 205 | self.buffer[:, self.id_min:self.id_max, |
|
203 | 206 | :] = self.dataIn.data |
|
204 | 207 | self.profIndex += nVoltProfiles |
|
205 | 208 | self.id_min += nVoltProfiles |
|
206 | 209 | self.id_max += nVoltProfiles |
|
207 | 210 | else: |
|
208 | 211 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
209 | 212 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
210 | 213 | self.dataOut.flagNoData = True |
|
211 | 214 | else: |
|
212 | 215 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
213 | 216 | self.profIndex += 1 |
|
214 | 217 | |
|
215 | 218 | if self.firstdatatime == None: |
|
216 | 219 | self.firstdatatime = self.dataIn.utctime |
|
217 | 220 | |
|
218 | 221 | if self.profIndex == nProfiles or zeroPad: |
|
219 | 222 | |
|
220 | 223 | self.__updateSpecFromVoltage() |
|
221 | 224 | |
|
222 | 225 | if pairsList == None: |
|
223 | 226 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
224 | 227 | else: |
|
225 | 228 | self.dataOut.pairsList = pairsList |
|
226 | 229 | self.__getFft() |
|
227 | 230 | self.dataOut.flagNoData = False |
|
228 | 231 | self.firstdatatime = None |
|
232 | self.nsamplesFFT = self.profIndex | |
|
229 | 233 | self.profIndex = 0 |
|
230 | 234 | |
|
235 | #update Processing Header: | |
|
236 | self.dataOut.processingHeaderObj.dtype = "Spectra" | |
|
237 | self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints | |
|
238 | self.dataOut.processingHeaderObj.nSamplesFFT = self.nsamplesFFT | |
|
239 | self.dataOut.processingHeaderObj.nIncohInt = 1 | |
|
240 | ||
|
241 | ||
|
231 | 242 | elif self.dataIn.type == "Parameters": |
|
232 | 243 | |
|
233 | 244 | self.dataOut.data_spc = self.dataIn.data_spc |
|
234 | 245 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
235 | 246 | self.dataOut.data_outlier = self.dataIn.data_outlier |
|
236 | 247 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
237 | 248 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
238 | 249 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
239 | 250 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
240 | 251 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt |
|
241 | 252 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
253 | self.dataOut.ProcessingHeader = self.dataIn.ProcessingHeader.copy() | |
|
254 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
|
242 | 255 | self.dataOut.ipp = self.dataIn.ipp |
|
243 | 256 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
244 | 257 | #self.dataOut.spc_noise = self.dataIn.getNoise() |
|
245 | 258 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
246 | 259 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
247 | 260 | if hasattr(self.dataIn, 'channelList'): |
|
248 | 261 | self.dataOut.channelList = self.dataIn.channelList |
|
249 | 262 | if hasattr(self.dataIn, 'pairsList'): |
|
250 | 263 | self.dataOut.pairsList = self.dataIn.pairsList |
|
251 | 264 | self.dataOut.groupList = self.dataIn.pairsList |
|
252 | 265 | |
|
253 | 266 | self.dataOut.flagNoData = False |
|
254 | 267 | |
|
255 | 268 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
256 | 269 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
257 | 270 | else: self.dataOut.ChanDist = None |
|
258 | 271 | |
|
259 | 272 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
260 | 273 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
261 | 274 | #else: self.dataOut.VelRange = None |
|
262 | 275 | |
|
263 | 276 | |
|
264 | 277 | |
|
265 | 278 | else: |
|
266 | 279 | raise ValueError("The type of input object {} is not valid".format( |
|
267 | 280 | self.dataIn.type)) |
|
281 | ||
|
282 | ||
|
283 | ||
|
284 | ||
|
268 | 285 | #print("spc proc Done", self.dataOut.data_spc.shape) |
|
286 | #print(self.dataOut.data_spc) | |
|
287 | return | |
|
269 | 288 | |
|
270 | 289 | def __selectPairs(self, pairsList): |
|
271 | 290 | |
|
272 | 291 | if not pairsList: |
|
273 | 292 | return |
|
274 | 293 | |
|
275 | 294 | pairs = [] |
|
276 | 295 | pairsIndex = [] |
|
277 | 296 | |
|
278 | 297 | for pair in pairsList: |
|
279 | 298 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
280 | 299 | continue |
|
281 | 300 | pairs.append(pair) |
|
282 | 301 | pairsIndex.append(pairs.index(pair)) |
|
283 | 302 | |
|
284 | 303 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
285 | 304 | self.dataOut.pairsList = pairs |
|
286 | 305 | |
|
287 | 306 | return |
|
288 | 307 | |
|
289 | 308 | def selectFFTs(self, minFFT, maxFFT ): |
|
290 | 309 | """ |
|
291 | 310 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
292 | 311 | minFFT<= FFT <= maxFFT |
|
293 | 312 | """ |
|
294 | 313 | |
|
295 | 314 | if (minFFT > maxFFT): |
|
296 | 315 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
297 | 316 | |
|
298 | 317 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
299 | 318 | minFFT = self.dataOut.getFreqRange()[0] |
|
300 | 319 | |
|
301 | 320 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
302 | 321 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
303 | 322 | |
|
304 | 323 | minIndex = 0 |
|
305 | 324 | maxIndex = 0 |
|
306 | 325 | FFTs = self.dataOut.getFreqRange() |
|
307 | 326 | |
|
308 | 327 | inda = numpy.where(FFTs >= minFFT) |
|
309 | 328 | indb = numpy.where(FFTs <= maxFFT) |
|
310 | 329 | |
|
311 | 330 | try: |
|
312 | 331 | minIndex = inda[0][0] |
|
313 | 332 | except: |
|
314 | 333 | minIndex = 0 |
|
315 | 334 | |
|
316 | 335 | try: |
|
317 | 336 | maxIndex = indb[0][-1] |
|
318 | 337 | except: |
|
319 | 338 | maxIndex = len(FFTs) |
|
320 | 339 | |
|
321 | 340 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
322 | 341 | |
|
323 | 342 | return 1 |
|
324 | 343 | |
|
325 | 344 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
326 | 345 | newheis = numpy.where( |
|
327 | 346 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
328 | 347 | |
|
329 | 348 | if hei_ref != None: |
|
330 | 349 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
331 | 350 | |
|
332 | 351 | minIndex = min(newheis[0]) |
|
333 | 352 | maxIndex = max(newheis[0]) |
|
334 | 353 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
335 | 354 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
336 | 355 | |
|
337 | 356 | # determina indices |
|
338 | 357 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
339 | 358 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
340 | 359 | avg_dB = 10 * \ |
|
341 | 360 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
342 | 361 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
343 | 362 | beacon_heiIndexList = [] |
|
344 | 363 | for val in avg_dB.tolist(): |
|
345 | 364 | if val >= beacon_dB[0]: |
|
346 | 365 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
347 | 366 | |
|
348 | 367 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
349 | 368 | data_cspc = None |
|
350 | 369 | if self.dataOut.data_cspc is not None: |
|
351 | 370 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
352 | 371 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
353 | 372 | |
|
354 | 373 | data_dc = None |
|
355 | 374 | if self.dataOut.data_dc is not None: |
|
356 | 375 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
357 | 376 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
358 | 377 | |
|
359 | 378 | self.dataOut.data_spc = data_spc |
|
360 | 379 | self.dataOut.data_cspc = data_cspc |
|
361 | 380 | self.dataOut.data_dc = data_dc |
|
362 | 381 | self.dataOut.heightList = heightList |
|
363 | 382 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
364 | 383 | |
|
365 | 384 | return 1 |
|
366 | 385 | |
|
367 | 386 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
368 | 387 | """ |
|
369 | 388 | |
|
370 | 389 | """ |
|
371 | 390 | |
|
372 | 391 | if (minIndex < 0) or (minIndex > maxIndex): |
|
373 | 392 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
374 | 393 | |
|
375 | 394 | if (maxIndex >= self.dataOut.nProfiles): |
|
376 | 395 | maxIndex = self.dataOut.nProfiles-1 |
|
377 | 396 | |
|
378 | 397 | #Spectra |
|
379 | 398 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
380 | 399 | |
|
381 | 400 | data_cspc = None |
|
382 | 401 | if self.dataOut.data_cspc is not None: |
|
383 | 402 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
384 | 403 | |
|
385 | 404 | data_dc = None |
|
386 | 405 | if self.dataOut.data_dc is not None: |
|
387 | 406 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
388 | 407 | |
|
389 | 408 | self.dataOut.data_spc = data_spc |
|
390 | 409 | self.dataOut.data_cspc = data_cspc |
|
391 | 410 | self.dataOut.data_dc = data_dc |
|
392 | 411 | |
|
393 | 412 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
394 | 413 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
395 | 414 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
396 | 415 | |
|
397 | 416 | return 1 |
|
398 | 417 | |
|
399 | 418 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
400 | 419 | # validacion de rango |
|
401 | 420 | if minHei == None: |
|
402 | 421 | minHei = self.dataOut.heightList[0] |
|
403 | 422 | |
|
404 | 423 | if maxHei == None: |
|
405 | 424 | maxHei = self.dataOut.heightList[-1] |
|
406 | 425 | |
|
407 | 426 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
408 | 427 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
409 | 428 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
410 | 429 | minHei = self.dataOut.heightList[0] |
|
411 | 430 | |
|
412 | 431 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
413 | 432 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
414 | 433 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
415 | 434 | maxHei = self.dataOut.heightList[-1] |
|
416 | 435 | |
|
417 | 436 | # validacion de velocidades |
|
418 | 437 | velrange = self.dataOut.getVelRange(1) |
|
419 | 438 | |
|
420 | 439 | if minVel == None: |
|
421 | 440 | minVel = velrange[0] |
|
422 | 441 | |
|
423 | 442 | if maxVel == None: |
|
424 | 443 | maxVel = velrange[-1] |
|
425 | 444 | |
|
426 | 445 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
427 | 446 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
428 | 447 | print('minVel is setting to %.2f' % (velrange[0])) |
|
429 | 448 | minVel = velrange[0] |
|
430 | 449 | |
|
431 | 450 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
432 | 451 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
433 | 452 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
434 | 453 | maxVel = velrange[-1] |
|
435 | 454 | |
|
436 | 455 | # seleccion de indices para rango |
|
437 | 456 | minIndex = 0 |
|
438 | 457 | maxIndex = 0 |
|
439 | 458 | heights = self.dataOut.heightList |
|
440 | 459 | |
|
441 | 460 | inda = numpy.where(heights >= minHei) |
|
442 | 461 | indb = numpy.where(heights <= maxHei) |
|
443 | 462 | |
|
444 | 463 | try: |
|
445 | 464 | minIndex = inda[0][0] |
|
446 | 465 | except: |
|
447 | 466 | minIndex = 0 |
|
448 | 467 | |
|
449 | 468 | try: |
|
450 | 469 | maxIndex = indb[0][-1] |
|
451 | 470 | except: |
|
452 | 471 | maxIndex = len(heights) |
|
453 | 472 | |
|
454 | 473 | if (minIndex < 0) or (minIndex > maxIndex): |
|
455 | 474 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
456 | 475 | minIndex, maxIndex)) |
|
457 | 476 | |
|
458 | 477 | if (maxIndex >= self.dataOut.nHeights): |
|
459 | 478 | maxIndex = self.dataOut.nHeights - 1 |
|
460 | 479 | |
|
461 | 480 | # seleccion de indices para velocidades |
|
462 | 481 | indminvel = numpy.where(velrange >= minVel) |
|
463 | 482 | indmaxvel = numpy.where(velrange <= maxVel) |
|
464 | 483 | try: |
|
465 | 484 | minIndexVel = indminvel[0][0] |
|
466 | 485 | except: |
|
467 | 486 | minIndexVel = 0 |
|
468 | 487 | |
|
469 | 488 | try: |
|
470 | 489 | maxIndexVel = indmaxvel[0][-1] |
|
471 | 490 | except: |
|
472 | 491 | maxIndexVel = len(velrange) |
|
473 | 492 | |
|
474 | 493 | # seleccion del espectro |
|
475 | 494 | data_spc = self.dataOut.data_spc[:, |
|
476 | 495 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
477 | 496 | # estimacion de ruido |
|
478 | 497 | noise = numpy.zeros(self.dataOut.nChannels) |
|
479 | 498 | |
|
480 | 499 | for channel in range(self.dataOut.nChannels): |
|
481 | 500 | daux = data_spc[channel, :, :] |
|
482 | 501 | sortdata = numpy.sort(daux, axis=None) |
|
483 | 502 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
484 | 503 | |
|
485 | 504 | self.dataOut.noise_estimation = noise.copy() |
|
486 | 505 | |
|
487 | 506 | return 1 |
|
488 | 507 | |
|
489 | 508 | class removeDC(Operation): |
|
490 | 509 | |
|
491 | 510 | def run(self, dataOut, mode=2): |
|
492 | 511 | self.dataOut = dataOut |
|
493 | 512 | jspectra = self.dataOut.data_spc |
|
494 | 513 | jcspectra = self.dataOut.data_cspc |
|
495 | 514 | |
|
496 | 515 | num_chan = jspectra.shape[0] |
|
497 | 516 | num_hei = jspectra.shape[2] |
|
498 | 517 | |
|
499 | 518 | if jcspectra is not None: |
|
500 | 519 | jcspectraExist = True |
|
501 | 520 | num_pairs = jcspectra.shape[0] |
|
502 | 521 | else: |
|
503 | 522 | jcspectraExist = False |
|
504 | 523 | |
|
505 | 524 | freq_dc = int(jspectra.shape[1] / 2) |
|
506 | 525 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
507 | 526 | ind_vel = ind_vel.astype(int) |
|
508 | 527 | |
|
509 | 528 | if ind_vel[0] < 0: |
|
510 | 529 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
511 | 530 | |
|
512 | 531 | if mode == 1: |
|
513 | 532 | jspectra[:, freq_dc, :] = ( |
|
514 | 533 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
515 | 534 | |
|
516 | 535 | if jcspectraExist: |
|
517 | 536 | jcspectra[:, freq_dc, :] = ( |
|
518 | 537 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
519 | 538 | |
|
520 | 539 | if mode == 2: |
|
521 | 540 | |
|
522 | 541 | vel = numpy.array([-2, -1, 1, 2]) |
|
523 | 542 | xx = numpy.zeros([4, 4]) |
|
524 | 543 | |
|
525 | 544 | for fil in range(4): |
|
526 | 545 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
527 | 546 | |
|
528 | 547 | xx_inv = numpy.linalg.inv(xx) |
|
529 | 548 | xx_aux = xx_inv[0, :] |
|
530 | 549 | |
|
531 | 550 | for ich in range(num_chan): |
|
532 | 551 | yy = jspectra[ich, ind_vel, :] |
|
533 | 552 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
534 | 553 | |
|
535 | 554 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
536 | 555 | cjunkid = sum(junkid) |
|
537 | 556 | |
|
538 | 557 | if cjunkid.any(): |
|
539 | 558 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
540 | 559 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
541 | 560 | |
|
542 | 561 | if jcspectraExist: |
|
543 | 562 | for ip in range(num_pairs): |
|
544 | 563 | yy = jcspectra[ip, ind_vel, :] |
|
545 | 564 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
546 | 565 | |
|
547 | 566 | self.dataOut.data_spc = jspectra |
|
548 | 567 | self.dataOut.data_cspc = jcspectra |
|
549 | 568 | |
|
550 | 569 | return self.dataOut |
|
551 | 570 | |
|
552 | 571 | class getNoiseB(Operation): |
|
553 | 572 | |
|
554 | 573 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') |
|
555 | 574 | def __init__(self): |
|
556 | 575 | |
|
557 | 576 | Operation.__init__(self) |
|
558 | 577 | self.isConfig = False |
|
559 | 578 | |
|
560 | 579 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
561 | 580 | |
|
562 | 581 | self.warnings = warnings |
|
563 | 582 | if minHei == None: |
|
564 | 583 | minHei = self.dataOut.heightList[0] |
|
565 | 584 | |
|
566 | 585 | if maxHei == None: |
|
567 | 586 | maxHei = self.dataOut.heightList[-1] |
|
568 | 587 | |
|
569 | 588 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
570 | 589 | if self.warnings: |
|
571 | 590 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
572 | 591 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
573 | 592 | minHei = self.dataOut.heightList[0] |
|
574 | 593 | |
|
575 | 594 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
576 | 595 | if self.warnings: |
|
577 | 596 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
578 | 597 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
579 | 598 | maxHei = self.dataOut.heightList[-1] |
|
580 | 599 | |
|
581 | 600 | |
|
582 | 601 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
583 | 602 | minIndexFFT = 0 |
|
584 | 603 | maxIndexFFT = 0 |
|
585 | 604 | # validacion de velocidades |
|
586 | 605 | indminPoint = None |
|
587 | 606 | indmaxPoint = None |
|
588 | 607 | if self.dataOut.type == 'Spectra': |
|
589 | 608 | if minVel == None and maxVel == None : |
|
590 | 609 | |
|
591 | 610 | freqrange = self.dataOut.getFreqRange(1) |
|
592 | 611 | |
|
593 | 612 | if minFreq == None: |
|
594 | 613 | minFreq = freqrange[0] |
|
595 | 614 | |
|
596 | 615 | if maxFreq == None: |
|
597 | 616 | maxFreq = freqrange[-1] |
|
598 | 617 | |
|
599 | 618 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
600 | 619 | if self.warnings: |
|
601 | 620 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
602 | 621 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
603 | 622 | minFreq = freqrange[0] |
|
604 | 623 | |
|
605 | 624 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
606 | 625 | if self.warnings: |
|
607 | 626 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
608 | 627 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
609 | 628 | maxFreq = freqrange[-1] |
|
610 | 629 | |
|
611 | 630 | indminPoint = numpy.where(freqrange >= minFreq) |
|
612 | 631 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
613 | 632 | |
|
614 | 633 | else: |
|
615 | 634 | |
|
616 | 635 | velrange = self.dataOut.getVelRange(1) |
|
617 | 636 | |
|
618 | 637 | if minVel == None: |
|
619 | 638 | minVel = velrange[0] |
|
620 | 639 | |
|
621 | 640 | if maxVel == None: |
|
622 | 641 | maxVel = velrange[-1] |
|
623 | 642 | |
|
624 | 643 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
625 | 644 | if self.warnings: |
|
626 | 645 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
627 | 646 | print('minVel is setting to %.2f' % (velrange[0])) |
|
628 | 647 | minVel = velrange[0] |
|
629 | 648 | |
|
630 | 649 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
631 | 650 | if self.warnings: |
|
632 | 651 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
633 | 652 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
634 | 653 | maxVel = velrange[-1] |
|
635 | 654 | |
|
636 | 655 | indminPoint = numpy.where(velrange >= minVel) |
|
637 | 656 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
638 | 657 | |
|
639 | 658 | |
|
640 | 659 | # seleccion de indices para rango |
|
641 | 660 | minIndex = 0 |
|
642 | 661 | maxIndex = 0 |
|
643 | 662 | heights = self.dataOut.heightList |
|
644 | 663 | |
|
645 | 664 | inda = numpy.where(heights >= minHei) |
|
646 | 665 | indb = numpy.where(heights <= maxHei) |
|
647 | 666 | |
|
648 | 667 | try: |
|
649 | 668 | minIndex = inda[0][0] |
|
650 | 669 | except: |
|
651 | 670 | minIndex = 0 |
|
652 | 671 | |
|
653 | 672 | try: |
|
654 | 673 | maxIndex = indb[0][-1] |
|
655 | 674 | except: |
|
656 | 675 | maxIndex = len(heights) |
|
657 | 676 | |
|
658 | 677 | if (minIndex < 0) or (minIndex > maxIndex): |
|
659 | 678 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
660 | 679 | minIndex, maxIndex)) |
|
661 | 680 | |
|
662 | 681 | if (maxIndex >= self.dataOut.nHeights): |
|
663 | 682 | maxIndex = self.dataOut.nHeights - 1 |
|
664 | 683 | #############################################################3 |
|
665 | 684 | # seleccion de indices para velocidades |
|
666 | 685 | if self.dataOut.type == 'Spectra': |
|
667 | 686 | try: |
|
668 | 687 | minIndexFFT = indminPoint[0][0] |
|
669 | 688 | except: |
|
670 | 689 | minIndexFFT = 0 |
|
671 | 690 | |
|
672 | 691 | try: |
|
673 | 692 | maxIndexFFT = indmaxPoint[0][-1] |
|
674 | 693 | except: |
|
675 | 694 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
676 | 695 | |
|
677 | 696 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT |
|
678 | 697 | self.isConfig = True |
|
679 | 698 | self.offset = 1 |
|
680 | 699 | if offset!=None: |
|
681 | 700 | self.offset = 10**(offset/10) |
|
682 | 701 | #print("config getNoiseB Done") |
|
683 | 702 | |
|
684 | 703 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
685 | 704 | self.dataOut = dataOut |
|
686 | 705 | |
|
687 | 706 | if not self.isConfig: |
|
688 | 707 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) |
|
689 | 708 | |
|
690 | 709 | self.dataOut.noise_estimation = None |
|
691 | 710 | noise = None |
|
692 | 711 | #print("data type: ",self.dataOut.type, self.dataOut.nIncohInt, self.dataOut.max_nIncohInt) |
|
693 | 712 | if self.dataOut.type == 'Voltage': |
|
694 | 713 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
695 | 714 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) |
|
696 | 715 | elif self.dataOut.type == 'Spectra': |
|
697 | 716 | #print(self.dataOut.nChannels, self.minIndex, self.maxIndex,self.minIndexFFT, self.maxIndexFFT, self.dataOut.max_nIncohInt, self.dataOut.nIncohInt) |
|
698 | 717 | noise = numpy.zeros( self.dataOut.nChannels) |
|
699 | 718 | norm = 1 |
|
700 | 719 | |
|
701 | 720 | for channel in range( self.dataOut.nChannels): |
|
702 | 721 | if not hasattr(self.dataOut.nIncohInt,'__len__'): |
|
703 | 722 | norm = 1 |
|
704 | 723 | else: |
|
705 | 724 | norm = self.dataOut.max_nIncohInt[channel]/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] |
|
706 | 725 | #print("norm nIncoh: ", norm ,self.dataOut.data_spc.shape, self.dataOut.max_nIncohInt) |
|
707 | 726 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] |
|
708 | 727 | daux = numpy.multiply(daux, norm) |
|
709 | 728 | #print("offset: ", self.offset, 10*numpy.log10(self.offset)) |
|
710 | 729 | # noise[channel] = self.getNoiseByMean(daux)/self.offset |
|
711 | 730 | #print(daux.shape, daux) |
|
712 | 731 | #noise[channel] = self.getNoiseByHS(daux, self.dataOut.max_nIncohInt)/self.offset |
|
713 | 732 | sortdata = numpy.sort(daux, axis=None) |
|
714 | 733 | |
|
715 | 734 | noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt[channel])/self.offset |
|
716 | 735 | |
|
717 | 736 | |
|
718 | 737 | #noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
719 | 738 | else: |
|
720 | 739 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
721 | 740 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise |
|
722 | 741 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) |
|
723 | 742 | #print("2: ",self.dataOut.noise_estimation) |
|
724 | 743 | #print(self.dataOut.flagNoData) |
|
725 | 744 | #print("getNoise Done", noise, self.dataOut.nProfiles ,self.dataOut.ippFactor) |
|
726 | 745 | return self.dataOut |
|
727 | 746 | |
|
728 | 747 | def getNoiseByMean(self,data): |
|
729 | 748 | #data debe estar ordenado |
|
730 | 749 | data = numpy.mean(data,axis=1) |
|
731 | 750 | sortdata = numpy.sort(data, axis=None) |
|
732 | 751 | #sortID=data.argsort() |
|
733 | 752 | #print(data.shape) |
|
734 | 753 | |
|
735 | 754 | pnoise = None |
|
736 | 755 | j = 0 |
|
737 | 756 | |
|
738 | 757 | mean = numpy.mean(sortdata) |
|
739 | 758 | min = numpy.min(sortdata) |
|
740 | 759 | delta = mean - min |
|
741 | 760 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes |
|
742 | 761 | #print(len(indexes)) |
|
743 | 762 | if len(indexes)==0: |
|
744 | 763 | pnoise = numpy.mean(sortdata) |
|
745 | 764 | else: |
|
746 | 765 | j = indexes[0] |
|
747 | 766 | pnoise = numpy.mean(sortdata[0:j]) |
|
748 | 767 | |
|
749 | 768 | # from matplotlib import pyplot as plt |
|
750 | 769 | # plt.plot(sortdata) |
|
751 | 770 | # plt.vlines(j,(pnoise-delta),(pnoise+delta), color='r') |
|
752 | 771 | # plt.show() |
|
753 | 772 | #print("noise: ", 10*numpy.log10(pnoise)) |
|
754 | 773 | return pnoise |
|
755 | 774 | |
|
756 | 775 | def getNoiseByHS(self,data, navg): |
|
757 | 776 | #data debe estar ordenado |
|
758 | 777 | #data = numpy.mean(data,axis=1) |
|
759 | 778 | sortdata = numpy.sort(data, axis=None) |
|
760 | 779 | |
|
761 | 780 | lenOfData = len(sortdata) |
|
762 | 781 | nums_min = lenOfData*0.2 |
|
763 | 782 | |
|
764 | 783 | if nums_min <= 5: |
|
765 | 784 | |
|
766 | 785 | nums_min = 5 |
|
767 | 786 | |
|
768 | 787 | sump = 0. |
|
769 | 788 | sumq = 0. |
|
770 | 789 | |
|
771 | 790 | j = 0 |
|
772 | 791 | cont = 1 |
|
773 | 792 | |
|
774 | 793 | while((cont == 1)and(j < lenOfData)): |
|
775 | 794 | |
|
776 | 795 | sump += sortdata[j] |
|
777 | 796 | sumq += sortdata[j]**2 |
|
778 | 797 | #sumq -= sump**2 |
|
779 | 798 | if j > nums_min: |
|
780 | 799 | rtest = float(j)/(j-1) + 1.0/navg |
|
781 | 800 | #if ((sumq*j) > (sump**2)): |
|
782 | 801 | if ((sumq*j) > (rtest*sump**2)): |
|
783 | 802 | j = j - 1 |
|
784 | 803 | sump = sump - sortdata[j] |
|
785 | 804 | sumq = sumq - sortdata[j]**2 |
|
786 | 805 | cont = 0 |
|
787 | 806 | |
|
788 | 807 | j += 1 |
|
789 | 808 | |
|
790 | 809 | lnoise = sump / j |
|
791 | 810 | |
|
792 | 811 | return lnoise |
|
793 | 812 | |
|
794 | 813 | |
|
795 | 814 | |
|
796 | 815 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
797 | 816 | z = (x - a1) / a2 |
|
798 | 817 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
799 | 818 | return y |
|
800 | 819 | |
|
801 | 820 | |
|
802 | 821 | # class CleanRayleigh(Operation): |
|
803 | 822 | # |
|
804 | 823 | # def __init__(self): |
|
805 | 824 | # |
|
806 | 825 | # Operation.__init__(self) |
|
807 | 826 | # self.i=0 |
|
808 | 827 | # self.isConfig = False |
|
809 | 828 | # self.__dataReady = False |
|
810 | 829 | # self.__profIndex = 0 |
|
811 | 830 | # self.byTime = False |
|
812 | 831 | # self.byProfiles = False |
|
813 | 832 | # |
|
814 | 833 | # self.bloques = None |
|
815 | 834 | # self.bloque0 = None |
|
816 | 835 | # |
|
817 | 836 | # self.index = 0 |
|
818 | 837 | # |
|
819 | 838 | # self.buffer = 0 |
|
820 | 839 | # self.buffer2 = 0 |
|
821 | 840 | # self.buffer3 = 0 |
|
822 | 841 | # |
|
823 | 842 | # |
|
824 | 843 | # def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
825 | 844 | # |
|
826 | 845 | # self.nChannels = dataOut.nChannels |
|
827 | 846 | # self.nProf = dataOut.nProfiles |
|
828 | 847 | # self.nPairs = dataOut.data_cspc.shape[0] |
|
829 | 848 | # self.pairsArray = numpy.array(dataOut.pairsList) |
|
830 | 849 | # self.spectra = dataOut.data_spc |
|
831 | 850 | # self.cspectra = dataOut.data_cspc |
|
832 | 851 | # self.heights = dataOut.heightList #alturas totales |
|
833 | 852 | # self.nHeights = len(self.heights) |
|
834 | 853 | # self.min_hei = min_hei |
|
835 | 854 | # self.max_hei = max_hei |
|
836 | 855 | # if (self.min_hei == None): |
|
837 | 856 | # self.min_hei = 0 |
|
838 | 857 | # if (self.max_hei == None): |
|
839 | 858 | # self.max_hei = dataOut.heightList[-1] |
|
840 | 859 | # self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
841 | 860 | # self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
842 | 861 | # self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
843 | 862 | # self.nHeightsClean = len(self.heightsClean) |
|
844 | 863 | # self.channels = dataOut.channelList |
|
845 | 864 | # self.nChan = len(self.channels) |
|
846 | 865 | # self.nIncohInt = dataOut.nIncohInt |
|
847 | 866 | # self.__initime = dataOut.utctime |
|
848 | 867 | # self.maxAltInd = self.hval[-1]+1 |
|
849 | 868 | # self.minAltInd = self.hval[0] |
|
850 | 869 | # |
|
851 | 870 | # self.crosspairs = dataOut.pairsList |
|
852 | 871 | # self.nPairs = len(self.crosspairs) |
|
853 | 872 | # self.normFactor = dataOut.normFactor |
|
854 | 873 | # self.nFFTPoints = dataOut.nFFTPoints |
|
855 | 874 | # self.ippSeconds = dataOut.ippSeconds |
|
856 | 875 | # self.currentTime = self.__initime |
|
857 | 876 | # self.pairsArray = numpy.array(dataOut.pairsList) |
|
858 | 877 | # self.factor_stdv = factor_stdv |
|
859 | 878 | # |
|
860 | 879 | # if n != None : |
|
861 | 880 | # self.byProfiles = True |
|
862 | 881 | # self.nIntProfiles = n |
|
863 | 882 | # else: |
|
864 | 883 | # self.__integrationtime = timeInterval |
|
865 | 884 | # |
|
866 | 885 | # self.__dataReady = False |
|
867 | 886 | # self.isConfig = True |
|
868 | 887 | # |
|
869 | 888 | # |
|
870 | 889 | # |
|
871 | 890 | # def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
872 | 891 | # #print("runing cleanRayleigh") |
|
873 | 892 | # if not self.isConfig : |
|
874 | 893 | # |
|
875 | 894 | # self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
876 | 895 | # |
|
877 | 896 | # tini=dataOut.utctime |
|
878 | 897 | # |
|
879 | 898 | # if self.byProfiles: |
|
880 | 899 | # if self.__profIndex == self.nIntProfiles: |
|
881 | 900 | # self.__dataReady = True |
|
882 | 901 | # else: |
|
883 | 902 | # if (tini - self.__initime) >= self.__integrationtime: |
|
884 | 903 | # |
|
885 | 904 | # self.__dataReady = True |
|
886 | 905 | # self.__initime = tini |
|
887 | 906 | # |
|
888 | 907 | # #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
889 | 908 | # |
|
890 | 909 | # if self.__dataReady: |
|
891 | 910 | # |
|
892 | 911 | # self.__profIndex = 0 |
|
893 | 912 | # jspc = self.buffer |
|
894 | 913 | # jcspc = self.buffer2 |
|
895 | 914 | # #jnoise = self.buffer3 |
|
896 | 915 | # self.buffer = dataOut.data_spc |
|
897 | 916 | # self.buffer2 = dataOut.data_cspc |
|
898 | 917 | # #self.buffer3 = dataOut.noise |
|
899 | 918 | # self.currentTime = dataOut.utctime |
|
900 | 919 | # if numpy.any(jspc) : |
|
901 | 920 | # #print( jspc.shape, jcspc.shape) |
|
902 | 921 | # jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
903 | 922 | # try: |
|
904 | 923 | # jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
905 | 924 | # except: |
|
906 | 925 | # print("no cspc") |
|
907 | 926 | # self.__dataReady = False |
|
908 | 927 | # #print( jspc.shape, jcspc.shape) |
|
909 | 928 | # dataOut.flagNoData = False |
|
910 | 929 | # else: |
|
911 | 930 | # dataOut.flagNoData = True |
|
912 | 931 | # self.__dataReady = False |
|
913 | 932 | # return dataOut |
|
914 | 933 | # else: |
|
915 | 934 | # #print( len(self.buffer)) |
|
916 | 935 | # if numpy.any(self.buffer): |
|
917 | 936 | # self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
918 | 937 | # try: |
|
919 | 938 | # self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
920 | 939 | # self.buffer3 += dataOut.data_dc |
|
921 | 940 | # except: |
|
922 | 941 | # pass |
|
923 | 942 | # else: |
|
924 | 943 | # self.buffer = dataOut.data_spc |
|
925 | 944 | # self.buffer2 = dataOut.data_cspc |
|
926 | 945 | # self.buffer3 = dataOut.data_dc |
|
927 | 946 | # #print self.index, self.fint |
|
928 | 947 | # #print self.buffer2.shape |
|
929 | 948 | # dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
930 | 949 | # self.__profIndex += 1 |
|
931 | 950 | # return dataOut ## NOTE: REV |
|
932 | 951 | # |
|
933 | 952 | # |
|
934 | 953 | # #index = tini.tm_hour*12+tini.tm_min/5 |
|
935 | 954 | # ''' |
|
936 | 955 | # #REVISAR |
|
937 | 956 | # ''' |
|
938 | 957 | # # jspc = jspc/self.nFFTPoints/self.normFactor |
|
939 | 958 | # # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
940 | 959 | # |
|
941 | 960 | # |
|
942 | 961 | # |
|
943 | 962 | # tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
944 | 963 | # dataOut.data_spc = tmp_spectra |
|
945 | 964 | # dataOut.data_cspc = tmp_cspectra |
|
946 | 965 | # |
|
947 | 966 | # #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
948 | 967 | # |
|
949 | 968 | # dataOut.data_dc = self.buffer3 |
|
950 | 969 | # dataOut.nIncohInt *= self.nIntProfiles |
|
951 | 970 | # dataOut.max_nIncohInt = self.nIntProfiles |
|
952 | 971 | # dataOut.utctime = self.currentTime #tiempo promediado |
|
953 | 972 | # #print("Time: ",time.localtime(dataOut.utctime)) |
|
954 | 973 | # # dataOut.data_spc = sat_spectra |
|
955 | 974 | # # dataOut.data_cspc = sat_cspectra |
|
956 | 975 | # self.buffer = 0 |
|
957 | 976 | # self.buffer2 = 0 |
|
958 | 977 | # self.buffer3 = 0 |
|
959 | 978 | # |
|
960 | 979 | # return dataOut |
|
961 | 980 | # |
|
962 | 981 | # def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
963 | 982 | # print("OP cleanRayleigh") |
|
964 | 983 | # #import matplotlib.pyplot as plt |
|
965 | 984 | # #for k in range(149): |
|
966 | 985 | # #channelsProcssd = [] |
|
967 | 986 | # #channelA_ok = False |
|
968 | 987 | # #rfunc = cspectra.copy() #self.bloques |
|
969 | 988 | # rfunc = spectra.copy() |
|
970 | 989 | # #rfunc = cspectra |
|
971 | 990 | # #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
972 | 991 | # #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
973 | 992 | # #in_sat_spectra = spectra.copy() #self.bloque0 |
|
974 | 993 | # #in_sat_cspectra = cspectra.copy() #self.bloques |
|
975 | 994 | # |
|
976 | 995 | # |
|
977 | 996 | # ###ONLY FOR TEST: |
|
978 | 997 | # raxs = math.ceil(math.sqrt(self.nPairs)) |
|
979 | 998 | # if raxs == 0: |
|
980 | 999 | # raxs = 1 |
|
981 | 1000 | # caxs = math.ceil(self.nPairs/raxs) |
|
982 | 1001 | # if self.nPairs <4: |
|
983 | 1002 | # raxs = 2 |
|
984 | 1003 | # caxs = 2 |
|
985 | 1004 | # #print(raxs, caxs) |
|
986 | 1005 | # fft_rev = 14 #nFFT to plot |
|
987 | 1006 | # hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
988 | 1007 | # hei_rev = hei_rev[0] |
|
989 | 1008 | # #print(hei_rev) |
|
990 | 1009 | # |
|
991 | 1010 | # #print numpy.absolute(rfunc[:,0,0,14]) |
|
992 | 1011 | # |
|
993 | 1012 | # gauss_fit, covariance = None, None |
|
994 | 1013 | # for ih in range(self.minAltInd,self.maxAltInd): |
|
995 | 1014 | # for ifreq in range(self.nFFTPoints): |
|
996 | 1015 | # ''' |
|
997 | 1016 | # ###ONLY FOR TEST: |
|
998 | 1017 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
999 | 1018 | # fig, axs = plt.subplots(raxs, caxs) |
|
1000 | 1019 | # fig2, axs2 = plt.subplots(raxs, caxs) |
|
1001 | 1020 | # col_ax = 0 |
|
1002 | 1021 | # row_ax = 0 |
|
1003 | 1022 | # ''' |
|
1004 | 1023 | # #print(self.nPairs) |
|
1005 | 1024 | # for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
1006 | 1025 | # # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
1007 | 1026 | # # continue |
|
1008 | 1027 | # # if not self.crosspairs[ii][0] in channelsProcssd: |
|
1009 | 1028 | # # channelA_ok = True |
|
1010 | 1029 | # #print("pair: ",self.crosspairs[ii]) |
|
1011 | 1030 | # ''' |
|
1012 | 1031 | # ###ONLY FOR TEST: |
|
1013 | 1032 | # if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
1014 | 1033 | # col_ax = 0 |
|
1015 | 1034 | # row_ax += 1 |
|
1016 | 1035 | # ''' |
|
1017 | 1036 | # func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
1018 | 1037 | # #print(func2clean.shape) |
|
1019 | 1038 | # val = (numpy.isfinite(func2clean)==True).nonzero() |
|
1020 | 1039 | # |
|
1021 | 1040 | # if len(val)>0: #limitador |
|
1022 | 1041 | # min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
1023 | 1042 | # if min_val <= -40 : |
|
1024 | 1043 | # min_val = -40 |
|
1025 | 1044 | # max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
1026 | 1045 | # if max_val >= 200 : |
|
1027 | 1046 | # max_val = 200 |
|
1028 | 1047 | # #print min_val, max_val |
|
1029 | 1048 | # step = 1 |
|
1030 | 1049 | # #print("Getting bins and the histogram") |
|
1031 | 1050 | # x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
1032 | 1051 | # y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
1033 | 1052 | # #print(len(y_dist),len(binstep[:-1])) |
|
1034 | 1053 | # #print(row_ax,col_ax, " ..") |
|
1035 | 1054 | # #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
1036 | 1055 | # mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
1037 | 1056 | # sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
1038 | 1057 | # parg = [numpy.amax(y_dist),mean,sigma] |
|
1039 | 1058 | # |
|
1040 | 1059 | # newY = None |
|
1041 | 1060 | # |
|
1042 | 1061 | # try : |
|
1043 | 1062 | # gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
1044 | 1063 | # mode = gauss_fit[1] |
|
1045 | 1064 | # stdv = gauss_fit[2] |
|
1046 | 1065 | # #print(" FIT OK",gauss_fit) |
|
1047 | 1066 | # ''' |
|
1048 | 1067 | # ###ONLY FOR TEST: |
|
1049 | 1068 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1050 | 1069 | # newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
1051 | 1070 | # axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
1052 | 1071 | # axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
1053 | 1072 | # axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
1054 | 1073 | # ''' |
|
1055 | 1074 | # except: |
|
1056 | 1075 | # mode = mean |
|
1057 | 1076 | # stdv = sigma |
|
1058 | 1077 | # #print("FIT FAIL") |
|
1059 | 1078 | # #continue |
|
1060 | 1079 | # |
|
1061 | 1080 | # |
|
1062 | 1081 | # #print(mode,stdv) |
|
1063 | 1082 | # #Removing echoes greater than mode + std_factor*stdv |
|
1064 | 1083 | # noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
1065 | 1084 | # #noval tiene los indices que se van a remover |
|
1066 | 1085 | # #print("Chan ",ii," novals: ",len(noval[0])) |
|
1067 | 1086 | # if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
1068 | 1087 | # novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
1069 | 1088 | # #print(novall) |
|
1070 | 1089 | # #print(" ",self.pairsArray[ii]) |
|
1071 | 1090 | # #cross_pairs = self.pairsArray[ii] |
|
1072 | 1091 | # #Getting coherent echoes which are removed. |
|
1073 | 1092 | # # if len(novall[0]) > 0: |
|
1074 | 1093 | # # |
|
1075 | 1094 | # # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
1076 | 1095 | # # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
1077 | 1096 | # # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
1078 | 1097 | # #print("OUT NOVALL 1") |
|
1079 | 1098 | # try: |
|
1080 | 1099 | # pair = (self.channels[ii],self.channels[ii + 1]) |
|
1081 | 1100 | # except: |
|
1082 | 1101 | # pair = (99,99) |
|
1083 | 1102 | # #print("par ", pair) |
|
1084 | 1103 | # if ( pair in self.crosspairs): |
|
1085 | 1104 | # q = self.crosspairs.index(pair) |
|
1086 | 1105 | # #print("está aqui: ", q, (ii,ii + 1)) |
|
1087 | 1106 | # new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
1088 | 1107 | # cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
1089 | 1108 | # |
|
1090 | 1109 | # #if channelA_ok: |
|
1091 | 1110 | # #chA = self.channels.index(cross_pairs[0]) |
|
1092 | 1111 | # new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
1093 | 1112 | # spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
1094 | 1113 | # #channelA_ok = False |
|
1095 | 1114 | # |
|
1096 | 1115 | # # chB = self.channels.index(cross_pairs[1]) |
|
1097 | 1116 | # # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
1098 | 1117 | # # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
1099 | 1118 | # # |
|
1100 | 1119 | # # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
1101 | 1120 | # # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
1102 | 1121 | # ''' |
|
1103 | 1122 | # ###ONLY FOR TEST: |
|
1104 | 1123 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1105 | 1124 | # func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
1106 | 1125 | # y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
1107 | 1126 | # axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
1108 | 1127 | # axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
1109 | 1128 | # axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
1110 | 1129 | # ''' |
|
1111 | 1130 | # ''' |
|
1112 | 1131 | # ###ONLY FOR TEST: |
|
1113 | 1132 | # col_ax += 1 #contador de ploteo columnas |
|
1114 | 1133 | # ##print(col_ax) |
|
1115 | 1134 | # ###ONLY FOR TEST: |
|
1116 | 1135 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1117 | 1136 | # title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
1118 | 1137 | # title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
1119 | 1138 | # fig.suptitle(title) |
|
1120 | 1139 | # fig2.suptitle(title2) |
|
1121 | 1140 | # plt.show() |
|
1122 | 1141 | # ''' |
|
1123 | 1142 | # ################################################################################################## |
|
1124 | 1143 | # |
|
1125 | 1144 | # #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
1126 | 1145 | # out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
1127 | 1146 | # out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
1128 | 1147 | # for ih in range(self.nHeights): |
|
1129 | 1148 | # for ifreq in range(self.nFFTPoints): |
|
1130 | 1149 | # for ich in range(self.nChan): |
|
1131 | 1150 | # tmp = spectra[:,ich,ifreq,ih] |
|
1132 | 1151 | # valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
1133 | 1152 | # |
|
1134 | 1153 | # if len(valid[0]) >0 : |
|
1135 | 1154 | # out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
1136 | 1155 | # |
|
1137 | 1156 | # for icr in range(self.nPairs): |
|
1138 | 1157 | # tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
1139 | 1158 | # valid = (numpy.isfinite(tmp)==True).nonzero() |
|
1140 | 1159 | # if len(valid[0]) > 0: |
|
1141 | 1160 | # out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
1142 | 1161 | # |
|
1143 | 1162 | # return out_spectra, out_cspectra |
|
1144 | 1163 | # |
|
1145 | 1164 | # def REM_ISOLATED_POINTS(self,array,rth): |
|
1146 | 1165 | # # import matplotlib.pyplot as plt |
|
1147 | 1166 | # if rth == None : |
|
1148 | 1167 | # rth = 4 |
|
1149 | 1168 | # #print("REM ISO") |
|
1150 | 1169 | # num_prof = len(array[0,:,0]) |
|
1151 | 1170 | # num_hei = len(array[0,0,:]) |
|
1152 | 1171 | # n2d = len(array[:,0,0]) |
|
1153 | 1172 | # |
|
1154 | 1173 | # for ii in range(n2d) : |
|
1155 | 1174 | # #print ii,n2d |
|
1156 | 1175 | # tmp = array[ii,:,:] |
|
1157 | 1176 | # #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
1158 | 1177 | # |
|
1159 | 1178 | # # fig = plt.figure(figsize=(6,5)) |
|
1160 | 1179 | # # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1161 | 1180 | # # ax = fig.add_axes([left, bottom, width, height]) |
|
1162 | 1181 | # # x = range(num_prof) |
|
1163 | 1182 | # # y = range(num_hei) |
|
1164 | 1183 | # # cp = ax.contour(y,x,tmp) |
|
1165 | 1184 | # # ax.clabel(cp, inline=True,fontsize=10) |
|
1166 | 1185 | # # plt.show() |
|
1167 | 1186 | # |
|
1168 | 1187 | # #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
1169 | 1188 | # tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
1170 | 1189 | # indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
1171 | 1190 | # indxs2 = (tmp > 0).nonzero() |
|
1172 | 1191 | # |
|
1173 | 1192 | # indxs1 = (indxs1[0]) |
|
1174 | 1193 | # indxs2 = indxs2[0] |
|
1175 | 1194 | # #indxs1 = numpy.array(indxs1[0]) |
|
1176 | 1195 | # #indxs2 = numpy.array(indxs2[0]) |
|
1177 | 1196 | # indxs = None |
|
1178 | 1197 | # #print indxs1 , indxs2 |
|
1179 | 1198 | # for iv in range(len(indxs2)): |
|
1180 | 1199 | # indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
1181 | 1200 | # #print len(indxs2), indv |
|
1182 | 1201 | # if len(indv[0]) > 0 : |
|
1183 | 1202 | # indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
1184 | 1203 | # # print indxs |
|
1185 | 1204 | # indxs = indxs[1:] |
|
1186 | 1205 | # #print(indxs, len(indxs)) |
|
1187 | 1206 | # if len(indxs) < 4 : |
|
1188 | 1207 | # array[ii,:,:] = 0. |
|
1189 | 1208 | # return |
|
1190 | 1209 | # |
|
1191 | 1210 | # xpos = numpy.mod(indxs ,num_hei) |
|
1192 | 1211 | # ypos = (indxs / num_hei) |
|
1193 | 1212 | # sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
1194 | 1213 | # #print sx |
|
1195 | 1214 | # xpos = xpos[sx] |
|
1196 | 1215 | # ypos = ypos[sx] |
|
1197 | 1216 | # |
|
1198 | 1217 | # # *********************************** Cleaning isolated points ********************************** |
|
1199 | 1218 | # ic = 0 |
|
1200 | 1219 | # while True : |
|
1201 | 1220 | # r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
1202 | 1221 | # #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
1203 | 1222 | # #plt.plot(r) |
|
1204 | 1223 | # #plt.show() |
|
1205 | 1224 | # no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
1206 | 1225 | # no_coh2 = (r <= rth).nonzero() |
|
1207 | 1226 | # #print r, no_coh1, no_coh2 |
|
1208 | 1227 | # no_coh1 = numpy.array(no_coh1[0]) |
|
1209 | 1228 | # no_coh2 = numpy.array(no_coh2[0]) |
|
1210 | 1229 | # no_coh = None |
|
1211 | 1230 | # #print valid1 , valid2 |
|
1212 | 1231 | # for iv in range(len(no_coh2)): |
|
1213 | 1232 | # indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
1214 | 1233 | # if len(indv[0]) > 0 : |
|
1215 | 1234 | # no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
1216 | 1235 | # no_coh = no_coh[1:] |
|
1217 | 1236 | # #print len(no_coh), no_coh |
|
1218 | 1237 | # if len(no_coh) < 4 : |
|
1219 | 1238 | # #print xpos[ic], ypos[ic], ic |
|
1220 | 1239 | # # plt.plot(r) |
|
1221 | 1240 | # # plt.show() |
|
1222 | 1241 | # xpos[ic] = numpy.nan |
|
1223 | 1242 | # ypos[ic] = numpy.nan |
|
1224 | 1243 | # |
|
1225 | 1244 | # ic = ic + 1 |
|
1226 | 1245 | # if (ic == len(indxs)) : |
|
1227 | 1246 | # break |
|
1228 | 1247 | # #print( xpos, ypos) |
|
1229 | 1248 | # |
|
1230 | 1249 | # indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1231 | 1250 | # #print indxs[0] |
|
1232 | 1251 | # if len(indxs[0]) < 4 : |
|
1233 | 1252 | # array[ii,:,:] = 0. |
|
1234 | 1253 | # return |
|
1235 | 1254 | # |
|
1236 | 1255 | # xpos = xpos[indxs[0]] |
|
1237 | 1256 | # ypos = ypos[indxs[0]] |
|
1238 | 1257 | # for i in range(0,len(ypos)): |
|
1239 | 1258 | # ypos[i]=int(ypos[i]) |
|
1240 | 1259 | # junk = tmp |
|
1241 | 1260 | # tmp = junk*0.0 |
|
1242 | 1261 | # |
|
1243 | 1262 | # tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1244 | 1263 | # array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1245 | 1264 | # |
|
1246 | 1265 | # #print array.shape |
|
1247 | 1266 | # #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1248 | 1267 | # #print tmp.shape |
|
1249 | 1268 | # |
|
1250 | 1269 | # # fig = plt.figure(figsize=(6,5)) |
|
1251 | 1270 | # # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1252 | 1271 | # # ax = fig.add_axes([left, bottom, width, height]) |
|
1253 | 1272 | # # x = range(num_prof) |
|
1254 | 1273 | # # y = range(num_hei) |
|
1255 | 1274 | # # cp = ax.contour(y,x,array[ii,:,:]) |
|
1256 | 1275 | # # ax.clabel(cp, inline=True,fontsize=10) |
|
1257 | 1276 | # # plt.show() |
|
1258 | 1277 | # return array |
|
1259 | 1278 | # |
|
1260 | 1279 | |
|
1261 | 1280 | class IntegrationFaradaySpectra(Operation): |
|
1262 | 1281 | |
|
1263 | 1282 | __profIndex = 0 |
|
1264 | 1283 | __withOverapping = False |
|
1265 | 1284 | |
|
1266 | 1285 | __byTime = False |
|
1267 | 1286 | __initime = None |
|
1268 | 1287 | __lastdatatime = None |
|
1269 | 1288 | __integrationtime = None |
|
1270 | 1289 | |
|
1271 | 1290 | __buffer_spc = None |
|
1272 | 1291 | __buffer_cspc = None |
|
1273 | 1292 | __buffer_dc = None |
|
1274 | 1293 | |
|
1275 | 1294 | __dataReady = False |
|
1276 | 1295 | |
|
1277 | 1296 | __timeInterval = None |
|
1278 | 1297 | n_ints = None #matriz de numero de integracions (CH,HEI) |
|
1279 | 1298 | n = None |
|
1280 | 1299 | minHei_ind = None |
|
1281 | 1300 | maxHei_ind = None |
|
1282 | 1301 | navg = 1.0 |
|
1283 | 1302 | factor = 0.0 |
|
1284 | 1303 | dataoutliers = None # (CHANNELS, HEIGHTS) |
|
1285 | 1304 | |
|
1286 | 1305 | def __init__(self): |
|
1287 | 1306 | |
|
1288 | 1307 | Operation.__init__(self) |
|
1289 | 1308 | |
|
1290 | 1309 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): |
|
1291 | 1310 | """ |
|
1292 | 1311 | Set the parameters of the integration class. |
|
1293 | 1312 | |
|
1294 | 1313 | Inputs: |
|
1295 | 1314 | |
|
1296 | 1315 | n : Number of coherent integrations |
|
1297 | 1316 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1298 | 1317 | overlapping : |
|
1299 | 1318 | |
|
1300 | 1319 | """ |
|
1301 | 1320 | |
|
1302 | 1321 | self.__initime = None |
|
1303 | 1322 | self.__lastdatatime = 0 |
|
1304 | 1323 | |
|
1305 | 1324 | self.__buffer_spc = [] |
|
1306 | 1325 | self.__buffer_cspc = [] |
|
1307 | 1326 | self.__buffer_dc = 0 |
|
1308 | 1327 | |
|
1309 | 1328 | self.__profIndex = 0 |
|
1310 | 1329 | self.__dataReady = False |
|
1311 | 1330 | self.__byTime = False |
|
1312 | 1331 | |
|
1313 | 1332 | self.factor = factor |
|
1314 | 1333 | self.navg = avg |
|
1315 | 1334 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1316 | 1335 | self.ByLags = False |
|
1317 | 1336 | self.maxProfilesInt = 0 |
|
1318 | 1337 | self.__nChannels = dataOut.nChannels |
|
1319 | 1338 | if DPL != None: |
|
1320 | 1339 | self.DPL=DPL |
|
1321 | 1340 | else: |
|
1322 | 1341 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1323 | 1342 | self.DPL=0 |
|
1324 | 1343 | |
|
1325 | 1344 | if n is None and timeInterval is None: |
|
1326 | 1345 | raise ValueError("n or timeInterval should be specified ...") |
|
1327 | 1346 | |
|
1328 | 1347 | if n is not None: |
|
1329 | 1348 | self.n = int(n) |
|
1330 | 1349 | else: |
|
1331 | 1350 | self.__integrationtime = int(timeInterval) |
|
1332 | 1351 | self.n = None |
|
1333 | 1352 | self.__byTime = True |
|
1334 | 1353 | |
|
1354 | ||
|
1335 | 1355 | if minHei == None: |
|
1336 | 1356 | minHei = self.dataOut.heightList[0] |
|
1337 | 1357 | |
|
1338 | 1358 | if maxHei == None: |
|
1339 | 1359 | maxHei = self.dataOut.heightList[-1] |
|
1340 | 1360 | |
|
1341 | 1361 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1342 | 1362 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
1343 | 1363 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
1344 | 1364 | minHei = self.dataOut.heightList[0] |
|
1345 | 1365 | |
|
1346 | 1366 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1347 | 1367 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
1348 | 1368 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
1349 | 1369 | maxHei = self.dataOut.heightList[-1] |
|
1350 | 1370 | |
|
1351 | 1371 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) |
|
1352 | 1372 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) |
|
1353 | 1373 | self.minHei_ind = ind_list1[0][0] |
|
1354 | 1374 | self.maxHei_ind = ind_list2[0][-1] |
|
1355 | #print("setup rem sats done") | |
|
1375 | ||
|
1356 | 1376 | |
|
1357 | 1377 | def putData(self, data_spc, data_cspc, data_dc): |
|
1358 | 1378 | """ |
|
1359 | 1379 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1360 | 1380 | |
|
1361 | 1381 | """ |
|
1362 | 1382 | |
|
1363 | 1383 | self.__buffer_spc.append(data_spc) |
|
1364 | 1384 | |
|
1365 | 1385 | if self.__nChannels < 2: |
|
1366 | 1386 | self.__buffer_cspc = None |
|
1367 | 1387 | else: |
|
1368 | 1388 | self.__buffer_cspc.append(data_cspc) |
|
1369 | 1389 | |
|
1370 | 1390 | if data_dc is None: |
|
1371 | 1391 | self.__buffer_dc = None |
|
1372 | 1392 | else: |
|
1373 | 1393 | self.__buffer_dc += data_dc |
|
1374 | 1394 | |
|
1375 | 1395 | self.__profIndex += 1 |
|
1376 | 1396 | |
|
1377 | 1397 | return |
|
1378 | 1398 | |
|
1379 | 1399 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): |
|
1380 | 1400 | #data debe estar ordenado |
|
1381 | 1401 | #sortdata = numpy.sort(data, axis=None) |
|
1382 | 1402 | #sortID=data.argsort() |
|
1383 | 1403 | lenOfData = len(sortdata) |
|
1384 | 1404 | nums_min = lenOfData*factor |
|
1385 | 1405 | if nums_min <= 5: |
|
1386 | 1406 | nums_min = 5 |
|
1387 | 1407 | sump = 0. |
|
1388 | 1408 | sumq = 0. |
|
1389 | 1409 | j = 0 |
|
1390 | 1410 | cont = 1 |
|
1391 | 1411 | while((cont == 1)and(j < lenOfData)): |
|
1392 | 1412 | sump += sortdata[j] |
|
1393 | 1413 | sumq += sortdata[j]**2 |
|
1394 | 1414 | if j > nums_min: |
|
1395 | 1415 | rtest = float(j)/(j-1) + 1.0/navg |
|
1396 | 1416 | if ((sumq*j) > (rtest*sump**2)): |
|
1397 | 1417 | j = j - 1 |
|
1398 | 1418 | sump = sump - sortdata[j] |
|
1399 | 1419 | sumq = sumq - sortdata[j]**2 |
|
1400 | 1420 | cont = 0 |
|
1401 | 1421 | j += 1 |
|
1402 | 1422 | #lnoise = sump / j |
|
1403 | 1423 | #print("H S done") |
|
1404 | 1424 | #return j,sortID |
|
1405 | 1425 | return j |
|
1406 | 1426 | |
|
1407 | 1427 | |
|
1408 | 1428 | def pushData(self): |
|
1409 | 1429 | """ |
|
1410 | 1430 | Return the sum of the last profiles and the profiles used in the sum. |
|
1411 | 1431 | |
|
1412 | 1432 | Affected: |
|
1413 | 1433 | |
|
1414 | 1434 | self.__profileIndex |
|
1415 | 1435 | |
|
1416 | 1436 | """ |
|
1417 | 1437 | bufferH=None |
|
1418 | 1438 | buffer=None |
|
1419 | 1439 | buffer1=None |
|
1420 | 1440 | buffer_cspc=None |
|
1421 | 1441 | #print("aes: ", self.__buffer_cspc) |
|
1422 | 1442 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1423 | 1443 | if self.__nChannels > 1 : |
|
1424 | 1444 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1425 | 1445 | |
|
1426 | 1446 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) |
|
1427 | 1447 | |
|
1428 | 1448 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1429 | 1449 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1430 | 1450 | |
|
1431 | 1451 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers |
|
1432 | 1452 | |
|
1433 | 1453 | for k in range(self.minHei_ind,self.maxHei_ind): |
|
1434 | 1454 | if self.__nChannels > 1: |
|
1435 | 1455 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1436 | 1456 | |
|
1437 | 1457 | outliers_IDs_cspc=[] |
|
1438 | 1458 | cspc_outliers_exist=False |
|
1439 | 1459 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1440 | 1460 | |
|
1441 | 1461 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1442 | 1462 | indexes=[] |
|
1443 | 1463 | #sortIDs=[] |
|
1444 | 1464 | outliers_IDs=[] |
|
1445 | 1465 | |
|
1446 | 1466 | for j in range(self.nProfiles): #frecuencias en el tiempo |
|
1447 | 1467 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1448 | 1468 | # continue |
|
1449 | 1469 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1450 | 1470 | # continue |
|
1451 | 1471 | buffer=buffer1[:,j] |
|
1452 | 1472 | sortdata = numpy.sort(buffer, axis=None) |
|
1453 | 1473 | |
|
1454 | 1474 | sortID=buffer.argsort() |
|
1455 | 1475 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) |
|
1456 | 1476 | |
|
1457 | 1477 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) |
|
1458 | 1478 | |
|
1459 | 1479 | # fig,ax = plt.subplots() |
|
1460 | 1480 | # ax.set_title(str(k)+" "+str(j)) |
|
1461 | 1481 | # x=range(len(sortdata)) |
|
1462 | 1482 | # ax.scatter(x,sortdata) |
|
1463 | 1483 | # ax.axvline(index) |
|
1464 | 1484 | # plt.show() |
|
1465 | 1485 | |
|
1466 | 1486 | indexes.append(index) |
|
1467 | 1487 | #sortIDs.append(sortID) |
|
1468 | 1488 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1469 | 1489 | |
|
1470 | 1490 | #print("Outliers: ",outliers_IDs) |
|
1471 | 1491 | outliers_IDs=numpy.array(outliers_IDs) |
|
1472 | 1492 | outliers_IDs=outliers_IDs.ravel() |
|
1473 | 1493 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1474 | 1494 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1475 | 1495 | indexes=numpy.array(indexes) |
|
1476 | 1496 | indexmin=numpy.min(indexes) |
|
1477 | 1497 | |
|
1478 | 1498 | |
|
1479 | 1499 | #print(indexmin,buffer1.shape[0], k) |
|
1480 | 1500 | |
|
1481 | 1501 | # fig,ax = plt.subplots() |
|
1482 | 1502 | # ax.plot(sortdata) |
|
1483 | 1503 | # ax2 = ax.twinx() |
|
1484 | 1504 | # x=range(len(indexes)) |
|
1485 | 1505 | # #plt.scatter(x,indexes) |
|
1486 | 1506 | # ax2.scatter(x,indexes) |
|
1487 | 1507 | # plt.show() |
|
1488 | 1508 | |
|
1489 | 1509 | if indexmin != buffer1.shape[0]: |
|
1490 | 1510 | if self.__nChannels > 1: |
|
1491 | 1511 | cspc_outliers_exist= True |
|
1492 | 1512 | |
|
1493 | 1513 | lt=outliers_IDs |
|
1494 | 1514 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1495 | 1515 | |
|
1496 | 1516 | for p in list(outliers_IDs): |
|
1497 | 1517 | #buffer1[p,:]=avg |
|
1498 | 1518 | buffer1[p,:] = numpy.NaN |
|
1499 | 1519 | |
|
1500 | 1520 | self.dataOutliers[i,k] = len(outliers_IDs) |
|
1501 | 1521 | |
|
1502 | 1522 | |
|
1503 | 1523 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1504 | 1524 | |
|
1505 | 1525 | |
|
1506 | 1526 | if self.__nChannels > 1: |
|
1507 | 1527 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1508 | 1528 | |
|
1509 | 1529 | |
|
1510 | 1530 | if self.__nChannels > 1: |
|
1511 | 1531 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1512 | 1532 | if cspc_outliers_exist: |
|
1513 | 1533 | |
|
1514 | 1534 | lt=outliers_IDs_cspc |
|
1515 | 1535 | |
|
1516 | 1536 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1517 | 1537 | for p in list(outliers_IDs_cspc): |
|
1518 | 1538 | #buffer_cspc[p,:]=avg |
|
1519 | 1539 | buffer_cspc[p,:] = numpy.NaN |
|
1520 | 1540 | |
|
1521 | 1541 | if self.__nChannels > 1: |
|
1522 | 1542 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1523 | 1543 | |
|
1524 | 1544 | |
|
1525 | 1545 | |
|
1526 | 1546 | |
|
1527 | 1547 | nOutliers = len(outliers_IDs) |
|
1528 | 1548 | #print("Outliers n: ",self.dataOutliers,nOutliers) |
|
1529 | 1549 | buffer=None |
|
1530 | 1550 | bufferH=None |
|
1531 | 1551 | buffer1=None |
|
1532 | 1552 | buffer_cspc=None |
|
1533 | 1553 | |
|
1534 | 1554 | |
|
1535 | 1555 | buffer=None |
|
1536 | 1556 | |
|
1537 | 1557 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1538 | 1558 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) |
|
1539 | 1559 | if self.__nChannels > 1: |
|
1540 | 1560 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1541 | 1561 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) |
|
1542 | 1562 | else: |
|
1543 | 1563 | data_cspc = None |
|
1544 | 1564 | data_dc = self.__buffer_dc |
|
1545 | 1565 | #(CH, HEIGH) |
|
1546 | 1566 | self.maxProfilesInt = self.__profIndex - 1 |
|
1547 | 1567 | n = self.__profIndex - self.dataOutliers # n becomes a matrix |
|
1548 | 1568 | |
|
1549 | 1569 | self.__buffer_spc = [] |
|
1550 | 1570 | self.__buffer_cspc = [] |
|
1551 | 1571 | self.__buffer_dc = 0 |
|
1552 | 1572 | self.__profIndex = 0 |
|
1553 | 1573 | #print("cleaned ",data_cspc) |
|
1554 | 1574 | return data_spc, data_cspc, data_dc, n |
|
1555 | 1575 | |
|
1556 | 1576 | def byProfiles(self, *args): |
|
1557 | 1577 | |
|
1558 | 1578 | self.__dataReady = False |
|
1559 | 1579 | avgdata_spc = None |
|
1560 | 1580 | avgdata_cspc = None |
|
1561 | 1581 | avgdata_dc = None |
|
1562 | 1582 | |
|
1563 | 1583 | self.putData(*args) |
|
1564 | 1584 | |
|
1565 | 1585 | if self.__profIndex == self.n: |
|
1566 | 1586 | |
|
1567 | 1587 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1568 | 1588 | self.n_ints = n |
|
1569 | 1589 | self.__dataReady = True |
|
1570 | 1590 | |
|
1571 | 1591 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1572 | 1592 | |
|
1573 | 1593 | def byTime(self, datatime, *args): |
|
1574 | 1594 | |
|
1575 | 1595 | self.__dataReady = False |
|
1576 | 1596 | avgdata_spc = None |
|
1577 | 1597 | avgdata_cspc = None |
|
1578 | 1598 | avgdata_dc = None |
|
1579 | 1599 | |
|
1580 | 1600 | self.putData(*args) |
|
1581 | 1601 | |
|
1582 | 1602 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1583 | 1603 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1584 | 1604 | self.n_ints = n |
|
1585 | 1605 | self.__dataReady = True |
|
1586 | 1606 | |
|
1587 | 1607 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1588 | 1608 | |
|
1589 | 1609 | def integrate(self, datatime, *args): |
|
1590 | 1610 | |
|
1591 | 1611 | if self.__profIndex == 0: |
|
1592 | 1612 | self.__initime = datatime |
|
1593 | 1613 | |
|
1594 | 1614 | if self.__byTime: |
|
1595 | 1615 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1596 | 1616 | datatime, *args) |
|
1597 | 1617 | else: |
|
1598 | 1618 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1599 | 1619 | |
|
1600 | 1620 | if not self.__dataReady: |
|
1601 | 1621 | return None, None, None, None |
|
1602 | 1622 | |
|
1603 | 1623 | #print("integrate", avgdata_cspc) |
|
1604 | 1624 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1605 | 1625 | |
|
1606 | 1626 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): |
|
1607 | 1627 | self.dataOut = dataOut |
|
1608 | 1628 | if n == 1: |
|
1609 | 1629 | return self.dataOut |
|
1610 | ||
|
1630 | self.dataOut.processingHeaderObj.timeIncohInt = timeInterval | |
|
1611 | 1631 | #print("nchannels", self.dataOut.nChannels) |
|
1612 | 1632 | if self.dataOut.nChannels == 1: |
|
1613 | 1633 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS |
|
1614 | 1634 | #print("IN spc:", self.dataOut.data_spc.shape, self.dataOut.data_cspc) |
|
1615 | 1635 | if not self.isConfig: |
|
1616 | 1636 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) |
|
1617 | 1637 | self.isConfig = True |
|
1618 | 1638 | |
|
1619 | 1639 | if not self.ByLags: |
|
1620 | 1640 | self.nProfiles=self.dataOut.nProfiles |
|
1621 | 1641 | self.nChannels=self.dataOut.nChannels |
|
1622 | 1642 | self.nHeights=self.dataOut.nHeights |
|
1623 | 1643 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1624 | 1644 | self.dataOut.data_spc, |
|
1625 | 1645 | self.dataOut.data_cspc, |
|
1626 | 1646 | self.dataOut.data_dc) |
|
1627 | 1647 | else: |
|
1628 | 1648 | self.nProfiles=self.dataOut.nProfiles |
|
1629 | 1649 | self.nChannels=self.dataOut.nChannels |
|
1630 | 1650 | self.nHeights=self.dataOut.nHeights |
|
1631 | 1651 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1632 | 1652 | self.dataOut.dataLag_spc, |
|
1633 | 1653 | self.dataOut.dataLag_cspc, |
|
1634 | 1654 | self.dataOut.dataLag_dc) |
|
1635 | 1655 | self.dataOut.flagNoData = True |
|
1636 | 1656 | if self.__dataReady: |
|
1637 | 1657 | |
|
1638 | 1658 | if not self.ByLags: |
|
1639 | 1659 | if self.nChannels == 1: |
|
1640 | 1660 | #print("f int", avgdata_spc.shape) |
|
1641 | 1661 | self.dataOut.data_spc = avgdata_spc |
|
1642 | 1662 | self.dataOut.data_cspc = None |
|
1643 | 1663 | else: |
|
1644 | 1664 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1645 | 1665 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1646 | 1666 | self.dataOut.data_dc = avgdata_dc |
|
1647 | 1667 | self.dataOut.data_outlier = self.dataOutliers |
|
1648 | 1668 | |
|
1649 | 1669 | else: |
|
1650 | 1670 | self.dataOut.dataLag_spc = avgdata_spc |
|
1651 | 1671 | self.dataOut.dataLag_cspc = avgdata_cspc |
|
1652 | 1672 | self.dataOut.dataLag_dc = avgdata_dc |
|
1653 | 1673 | |
|
1654 | 1674 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] |
|
1655 | 1675 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1656 | 1676 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1657 | 1677 | |
|
1658 | 1678 | |
|
1659 | 1679 | self.dataOut.nIncohInt *= self.n_ints |
|
1660 | 1680 | #print("maxProfilesInt: ",self.maxProfilesInt) |
|
1661 | 1681 | |
|
1662 | 1682 | self.dataOut.utctime = avgdatatime |
|
1663 | 1683 | self.dataOut.flagNoData = False |
|
1684 | ||
|
1685 | # #update Processing Header: | |
|
1686 | # self.dataOut.processingHeaderObj.nIncohInt = | |
|
1687 | # self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints | |
|
1688 | ||
|
1664 | 1689 | #print("Faraday Integration DONE...", self.dataOut.data_cspc) |
|
1665 | 1690 | #print(self.dataOut.flagNoData) |
|
1666 | 1691 | return self.dataOut |
|
1667 | 1692 | |
|
1668 | 1693 | |
|
1669 | 1694 | |
|
1670 | 1695 | class removeInterference(Operation): |
|
1671 | 1696 | |
|
1672 | 1697 | def removeInterference3(self, min_hei = None, max_hei = None): |
|
1673 | 1698 | |
|
1674 | 1699 | jspectra = self.dataOut.data_spc |
|
1675 | 1700 | #jcspectra = self.dataOut.data_cspc |
|
1676 | 1701 | jnoise = self.dataOut.getNoise() |
|
1677 | 1702 | num_incoh = self.dataOut.max_nIncohInt |
|
1678 | 1703 | #print(jspectra.shape) |
|
1679 | 1704 | num_channel, num_prof, num_hei = jspectra.shape |
|
1680 | 1705 | minHei = min_hei |
|
1681 | 1706 | maxHei = max_hei |
|
1682 | 1707 | ######################################################################## |
|
1683 | 1708 | if minHei == None or (minHei < self.dataOut.heightList[0]): |
|
1684 | 1709 | minHei = self.dataOut.heightList[0] |
|
1685 | 1710 | |
|
1686 | 1711 | if maxHei == None or (maxHei > self.dataOut.heightList[-1]): |
|
1687 | 1712 | maxHei = self.dataOut.heightList[-1] |
|
1688 | 1713 | minIndex = 0 |
|
1689 | 1714 | maxIndex = 0 |
|
1690 | 1715 | heights = self.dataOut.heightList |
|
1691 | 1716 | |
|
1692 | 1717 | inda = numpy.where(heights >= minHei) |
|
1693 | 1718 | indb = numpy.where(heights <= maxHei) |
|
1694 | 1719 | |
|
1695 | 1720 | try: |
|
1696 | 1721 | minIndex = inda[0][0] |
|
1697 | 1722 | except: |
|
1698 | 1723 | minIndex = 0 |
|
1699 | 1724 | try: |
|
1700 | 1725 | maxIndex = indb[0][-1] |
|
1701 | 1726 | except: |
|
1702 | 1727 | maxIndex = len(heights) |
|
1703 | 1728 | |
|
1704 | 1729 | if (minIndex < 0) or (minIndex > maxIndex): |
|
1705 | 1730 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
1706 | 1731 | minIndex, maxIndex)) |
|
1707 | 1732 | if (maxIndex >= self.dataOut.nHeights): |
|
1708 | 1733 | maxIndex = self.dataOut.nHeights - 1 |
|
1709 | 1734 | |
|
1710 | 1735 | ######################################################################## |
|
1711 | 1736 | |
|
1712 | 1737 | |
|
1713 | 1738 | #dataOut.max_nIncohInt * dataOut.nCohInt |
|
1714 | 1739 | norm = self.dataOut.nIncohInt /self.dataOut.max_nIncohInt |
|
1715 | 1740 | #print(norm.shape) |
|
1716 | 1741 | # Subrutina de Remocion de la Interferencia |
|
1717 | 1742 | for ich in range(num_channel): |
|
1718 | 1743 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1719 | 1744 | #power = jspectra[ich, mask_prof, :] |
|
1720 | 1745 | interf = jspectra[ich, :, minIndex:maxIndex] |
|
1721 | 1746 | #print(interf.shape) |
|
1722 | 1747 | inttef = interf.mean(axis=1) |
|
1723 | 1748 | |
|
1724 | 1749 | for hei in range(num_hei): |
|
1725 | 1750 | temp = jspectra[ich,:, hei] |
|
1726 | 1751 | temp -= inttef |
|
1727 | 1752 | temp += jnoise[ich]*norm[ich,hei] |
|
1728 | 1753 | jspectra[ich,:, hei] = temp |
|
1729 | 1754 | |
|
1730 | 1755 | # Guardar Resultados |
|
1731 | 1756 | self.dataOut.data_spc = jspectra |
|
1732 | 1757 | #self.dataOut.data_cspc = jcspectra |
|
1733 | 1758 | |
|
1734 | 1759 | return 1 |
|
1735 | 1760 | |
|
1736 | 1761 | def removeInterference2(self): |
|
1737 | 1762 | |
|
1738 | 1763 | cspc = self.dataOut.data_cspc |
|
1739 | 1764 | spc = self.dataOut.data_spc |
|
1740 | 1765 | Heights = numpy.arange(cspc.shape[2]) |
|
1741 | 1766 | realCspc = numpy.abs(cspc) |
|
1742 | 1767 | |
|
1743 | 1768 | for i in range(cspc.shape[0]): |
|
1744 | 1769 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1745 | 1770 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1746 | 1771 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1747 | 1772 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1748 | 1773 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1749 | 1774 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1750 | 1775 | |
|
1751 | 1776 | |
|
1752 | 1777 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1753 | 1778 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1754 | 1779 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1755 | 1780 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1756 | 1781 | |
|
1757 | 1782 | self.dataOut.data_cspc = cspc |
|
1758 | 1783 | |
|
1759 | 1784 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1760 | 1785 | |
|
1761 | 1786 | jspectra = self.dataOut.data_spc |
|
1762 | 1787 | jcspectra = self.dataOut.data_cspc |
|
1763 | 1788 | jnoise = self.dataOut.getNoise() |
|
1764 | 1789 | #num_incoh = self.dataOut.nIncohInt |
|
1765 | 1790 | num_incoh = self.dataOut.max_nIncohInt |
|
1766 | 1791 | #print("spc: ", jspectra.shape, jcspectra) |
|
1767 | 1792 | num_channel = jspectra.shape[0] |
|
1768 | 1793 | num_prof = jspectra.shape[1] |
|
1769 | 1794 | num_hei = jspectra.shape[2] |
|
1770 | 1795 | |
|
1771 | 1796 | # hei_interf |
|
1772 | 1797 | if hei_interf is None: |
|
1773 | 1798 | count_hei = int(num_hei / 2) # a half of total ranges |
|
1774 | 1799 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1775 | 1800 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1776 | 1801 | #print(hei_interf) |
|
1777 | 1802 | # nhei_interf |
|
1778 | 1803 | if (nhei_interf == None): |
|
1779 | 1804 | nhei_interf = 5 |
|
1780 | 1805 | if (nhei_interf < 1): |
|
1781 | 1806 | nhei_interf = 1 |
|
1782 | 1807 | if (nhei_interf > count_hei): |
|
1783 | 1808 | nhei_interf = count_hei |
|
1784 | 1809 | if (offhei_interf == None): |
|
1785 | 1810 | offhei_interf = 0 |
|
1786 | 1811 | |
|
1787 | 1812 | ind_hei = list(range(num_hei)) |
|
1788 | 1813 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1789 | 1814 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1790 | 1815 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1791 | 1816 | num_mask_prof = mask_prof.size |
|
1792 | 1817 | comp_mask_prof = [0, num_prof / 2] |
|
1793 | 1818 | |
|
1794 | 1819 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1795 | 1820 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1796 | 1821 | jnoise = numpy.nan |
|
1797 | 1822 | noise_exist = jnoise[0] < numpy.Inf |
|
1798 | 1823 | |
|
1799 | 1824 | # Subrutina de Remocion de la Interferencia |
|
1800 | 1825 | for ich in range(num_channel): |
|
1801 | 1826 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1802 | 1827 | power = jspectra[ich, mask_prof, :] |
|
1803 | 1828 | power = power[:, hei_interf] |
|
1804 | 1829 | power = power.sum(axis=0) |
|
1805 | 1830 | psort = power.ravel().argsort() |
|
1806 | 1831 | print(hei_interf[psort[list(range(offhei_interf, nhei_interf + offhei_interf))]]) |
|
1807 | 1832 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1808 | 1833 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1809 | 1834 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1810 | 1835 | |
|
1811 | 1836 | if noise_exist: |
|
1812 | 1837 | # tmp_noise = jnoise[ich] / num_prof |
|
1813 | 1838 | tmp_noise = jnoise[ich] |
|
1814 | 1839 | junkspc_interf = junkspc_interf - tmp_noise |
|
1815 | 1840 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1816 | 1841 | print(junkspc_interf.shape) |
|
1817 | 1842 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1818 | 1843 | jspc_interf = jspc_interf.transpose() |
|
1819 | 1844 | # Calculando el espectro de interferencia promedio |
|
1820 | 1845 | noiseid = numpy.where(jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1821 | 1846 | noiseid = noiseid[0] |
|
1822 | 1847 | cnoiseid = noiseid.size |
|
1823 | 1848 | interfid = numpy.where(jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1824 | 1849 | interfid = interfid[0] |
|
1825 | 1850 | cinterfid = interfid.size |
|
1826 | 1851 | |
|
1827 | 1852 | if (cnoiseid > 0): |
|
1828 | 1853 | jspc_interf[noiseid] = 0 |
|
1829 | 1854 | # Expandiendo los perfiles a limpiar |
|
1830 | 1855 | if (cinterfid > 0): |
|
1831 | 1856 | new_interfid = ( |
|
1832 | 1857 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1833 | 1858 | new_interfid = numpy.asarray(new_interfid) |
|
1834 | 1859 | new_interfid = {x for x in new_interfid} |
|
1835 | 1860 | new_interfid = numpy.array(list(new_interfid)) |
|
1836 | 1861 | new_cinterfid = new_interfid.size |
|
1837 | 1862 | else: |
|
1838 | 1863 | new_cinterfid = 0 |
|
1839 | 1864 | |
|
1840 | 1865 | for ip in range(new_cinterfid): |
|
1841 | 1866 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1842 | 1867 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1843 | 1868 | |
|
1844 | 1869 | jspectra[ich, :, ind_hei] = jspectra[ich, :,ind_hei] - jspc_interf # Corregir indices |
|
1845 | 1870 | |
|
1846 | 1871 | # Removiendo la interferencia del punto de mayor interferencia |
|
1847 | 1872 | ListAux = jspc_interf[mask_prof].tolist() |
|
1848 | 1873 | maxid = ListAux.index(max(ListAux)) |
|
1849 | 1874 | print(cinterfid) |
|
1850 | 1875 | if cinterfid > 0: |
|
1851 | 1876 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1852 | 1877 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1853 | 1878 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1854 | 1879 | cind = len(ind) |
|
1855 | 1880 | |
|
1856 | 1881 | if (cind > 0): |
|
1857 | 1882 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1858 | 1883 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1859 | 1884 | numpy.sqrt(num_incoh)) |
|
1860 | 1885 | |
|
1861 | 1886 | ind = numpy.array([-2, -1, 1, 2]) |
|
1862 | 1887 | xx = numpy.zeros([4, 4]) |
|
1863 | 1888 | |
|
1864 | 1889 | for id1 in range(4): |
|
1865 | 1890 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1866 | 1891 | xx_inv = numpy.linalg.inv(xx) |
|
1867 | 1892 | xx = xx_inv[:, 0] |
|
1868 | 1893 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1869 | 1894 | yy = jspectra[ich, mask_prof[ind], :] |
|
1870 | 1895 | jspectra[ich, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1871 | 1896 | |
|
1872 | 1897 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1873 | 1898 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1874 | 1899 | print(indAux) |
|
1875 | 1900 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1876 | 1901 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1877 | 1902 | |
|
1878 | 1903 | # Remocion de Interferencia en el Cross Spectra |
|
1879 | 1904 | if jcspectra is None: |
|
1880 | 1905 | return jspectra, jcspectra |
|
1881 | 1906 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1882 | 1907 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1883 | 1908 | |
|
1884 | 1909 | for ip in range(num_pairs): |
|
1885 | 1910 | |
|
1886 | 1911 | #------------------------------------------- |
|
1887 | 1912 | |
|
1888 | 1913 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1889 | 1914 | cspower = cspower[:, hei_interf] |
|
1890 | 1915 | cspower = cspower.sum(axis=0) |
|
1891 | 1916 | |
|
1892 | 1917 | cspsort = cspower.ravel().argsort() |
|
1893 | 1918 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1894 | 1919 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1895 | 1920 | junkcspc_interf = junkcspc_interf.transpose() |
|
1896 | 1921 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1897 | 1922 | |
|
1898 | 1923 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1899 | 1924 | |
|
1900 | 1925 | median_real = int(numpy.median(numpy.real( |
|
1901 | 1926 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1902 | 1927 | median_imag = int(numpy.median(numpy.imag( |
|
1903 | 1928 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1904 | 1929 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1905 | 1930 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1906 | 1931 | median_real, median_imag) |
|
1907 | 1932 | |
|
1908 | 1933 | for iprof in range(num_prof): |
|
1909 | 1934 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1910 | 1935 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1911 | 1936 | |
|
1912 | 1937 | # Removiendo la Interferencia |
|
1913 | 1938 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1914 | 1939 | :, ind_hei] - jcspc_interf |
|
1915 | 1940 | |
|
1916 | 1941 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1917 | 1942 | maxid = ListAux.index(max(ListAux)) |
|
1918 | 1943 | |
|
1919 | 1944 | ind = numpy.array([-2, -1, 1, 2]) |
|
1920 | 1945 | xx = numpy.zeros([4, 4]) |
|
1921 | 1946 | |
|
1922 | 1947 | for id1 in range(4): |
|
1923 | 1948 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1924 | 1949 | |
|
1925 | 1950 | xx_inv = numpy.linalg.inv(xx) |
|
1926 | 1951 | xx = xx_inv[:, 0] |
|
1927 | 1952 | |
|
1928 | 1953 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1929 | 1954 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1930 | 1955 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1931 | 1956 | |
|
1932 | 1957 | # Guardar Resultados |
|
1933 | 1958 | self.dataOut.data_spc = jspectra |
|
1934 | 1959 | self.dataOut.data_cspc = jcspectra |
|
1935 | 1960 | |
|
1936 | 1961 | return 1 |
|
1937 | 1962 | |
|
1938 | 1963 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1, minHei=None, maxHei=None): |
|
1939 | 1964 | |
|
1940 | 1965 | self.dataOut = dataOut |
|
1941 | 1966 | |
|
1942 | 1967 | if mode == 1: |
|
1943 | 1968 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1944 | 1969 | elif mode == 2: |
|
1945 | 1970 | self.removeInterference2() |
|
1946 | 1971 | elif mode == 3: |
|
1947 | 1972 | self.removeInterference3(min_hei=minHei, max_hei=maxHei) |
|
1948 | 1973 | return self.dataOut |
|
1949 | 1974 | |
|
1950 | 1975 | |
|
1951 | 1976 | class IncohInt(Operation): |
|
1952 | 1977 | |
|
1953 | 1978 | __profIndex = 0 |
|
1954 | 1979 | __withOverapping = False |
|
1955 | 1980 | |
|
1956 | 1981 | __byTime = False |
|
1957 | 1982 | __initime = None |
|
1958 | 1983 | __lastdatatime = None |
|
1959 | 1984 | __integrationtime = None |
|
1960 | 1985 | |
|
1961 | 1986 | __buffer_spc = None |
|
1962 | 1987 | __buffer_cspc = None |
|
1963 | 1988 | __buffer_dc = None |
|
1964 | 1989 | |
|
1965 | 1990 | __dataReady = False |
|
1966 | 1991 | |
|
1967 | 1992 | __timeInterval = None |
|
1968 | 1993 | incohInt = 0 |
|
1969 | 1994 | nOutliers = 0 |
|
1970 | 1995 | n = None |
|
1971 | 1996 | |
|
1972 | 1997 | def __init__(self): |
|
1973 | 1998 | |
|
1974 | 1999 | Operation.__init__(self) |
|
1975 | 2000 | |
|
1976 | 2001 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1977 | 2002 | """ |
|
1978 | 2003 | Set the parameters of the integration class. |
|
1979 | 2004 | |
|
1980 | 2005 | Inputs: |
|
1981 | 2006 | |
|
1982 | 2007 | n : Number of coherent integrations |
|
1983 | 2008 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1984 | 2009 | overlapping : |
|
1985 | 2010 | |
|
1986 | 2011 | """ |
|
1987 | 2012 | |
|
1988 | 2013 | self.__initime = None |
|
1989 | 2014 | self.__lastdatatime = 0 |
|
1990 | 2015 | |
|
1991 | 2016 | self.__buffer_spc = 0 |
|
1992 | 2017 | self.__buffer_cspc = 0 |
|
1993 | 2018 | self.__buffer_dc = 0 |
|
1994 | 2019 | |
|
1995 | 2020 | self.__profIndex = 0 |
|
1996 | 2021 | self.__dataReady = False |
|
1997 | 2022 | self.__byTime = False |
|
1998 | 2023 | self.incohInt = 0 |
|
1999 | 2024 | self.nOutliers = 0 |
|
2000 | 2025 | if n is None and timeInterval is None: |
|
2001 | 2026 | raise ValueError("n or timeInterval should be specified ...") |
|
2002 | 2027 | |
|
2003 | 2028 | if n is not None: |
|
2004 | 2029 | self.n = int(n) |
|
2005 | 2030 | else: |
|
2006 | 2031 | |
|
2007 | 2032 | self.__integrationtime = int(timeInterval) |
|
2008 | 2033 | self.n = None |
|
2009 | 2034 | self.__byTime = True |
|
2010 | 2035 | |
|
2036 | ||
|
2011 | 2037 | def putData(self, data_spc, data_cspc, data_dc): |
|
2012 | 2038 | """ |
|
2013 | 2039 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
2014 | 2040 | |
|
2015 | 2041 | """ |
|
2016 | 2042 | if data_spc.all() == numpy.nan : |
|
2017 | 2043 | print("nan ") |
|
2018 | 2044 | return |
|
2019 | 2045 | self.__buffer_spc += data_spc |
|
2020 | 2046 | |
|
2021 | 2047 | if data_cspc is None: |
|
2022 | 2048 | self.__buffer_cspc = None |
|
2023 | 2049 | else: |
|
2024 | 2050 | self.__buffer_cspc += data_cspc |
|
2025 | 2051 | |
|
2026 | 2052 | if data_dc is None: |
|
2027 | 2053 | self.__buffer_dc = None |
|
2028 | 2054 | else: |
|
2029 | 2055 | self.__buffer_dc += data_dc |
|
2030 | 2056 | |
|
2031 | 2057 | self.__profIndex += 1 |
|
2032 | 2058 | |
|
2033 | 2059 | return |
|
2034 | 2060 | |
|
2035 | 2061 | def pushData(self): |
|
2036 | 2062 | """ |
|
2037 | 2063 | Return the sum of the last profiles and the profiles used in the sum. |
|
2038 | 2064 | |
|
2039 | 2065 | Affected: |
|
2040 | 2066 | |
|
2041 | 2067 | self.__profileIndex |
|
2042 | 2068 | |
|
2043 | 2069 | """ |
|
2044 | 2070 | |
|
2045 | 2071 | data_spc = self.__buffer_spc |
|
2046 | 2072 | data_cspc = self.__buffer_cspc |
|
2047 | 2073 | data_dc = self.__buffer_dc |
|
2048 | 2074 | n = self.__profIndex |
|
2049 | 2075 | |
|
2050 | 2076 | self.__buffer_spc = 0 |
|
2051 | 2077 | self.__buffer_cspc = 0 |
|
2052 | 2078 | self.__buffer_dc = 0 |
|
2053 | 2079 | |
|
2054 | 2080 | |
|
2055 | 2081 | return data_spc, data_cspc, data_dc, n |
|
2056 | 2082 | |
|
2057 | 2083 | def byProfiles(self, *args): |
|
2058 | 2084 | |
|
2059 | 2085 | self.__dataReady = False |
|
2060 | 2086 | avgdata_spc = None |
|
2061 | 2087 | avgdata_cspc = None |
|
2062 | 2088 | avgdata_dc = None |
|
2063 | 2089 | |
|
2064 | 2090 | self.putData(*args) |
|
2065 | 2091 | |
|
2066 | 2092 | if self.__profIndex == self.n: |
|
2067 | 2093 | |
|
2068 | 2094 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
2069 | 2095 | self.n = n |
|
2070 | 2096 | self.__dataReady = True |
|
2071 | 2097 | |
|
2072 | 2098 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
2073 | 2099 | |
|
2074 | 2100 | def byTime(self, datatime, *args): |
|
2075 | 2101 | |
|
2076 | 2102 | self.__dataReady = False |
|
2077 | 2103 | avgdata_spc = None |
|
2078 | 2104 | avgdata_cspc = None |
|
2079 | 2105 | avgdata_dc = None |
|
2080 | 2106 | |
|
2081 | 2107 | self.putData(*args) |
|
2082 | 2108 | |
|
2083 | 2109 | if (datatime - self.__initime) >= self.__integrationtime: |
|
2084 | 2110 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
2085 | 2111 | self.n = n |
|
2086 | 2112 | self.__dataReady = True |
|
2087 | 2113 | |
|
2088 | 2114 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
2089 | 2115 | |
|
2090 | 2116 | def integrate(self, datatime, *args): |
|
2091 | 2117 | |
|
2092 | 2118 | if self.__profIndex == 0: |
|
2093 | 2119 | self.__initime = datatime |
|
2094 | 2120 | |
|
2095 | 2121 | if self.__byTime: |
|
2096 | 2122 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
2097 | 2123 | datatime, *args) |
|
2098 | 2124 | else: |
|
2099 | 2125 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
2100 | 2126 | |
|
2101 | 2127 | if not self.__dataReady: |
|
2102 | 2128 | return None, None, None, None |
|
2103 | 2129 | |
|
2104 | 2130 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
2105 | 2131 | |
|
2106 | 2132 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
2107 | 2133 | if n == 1: |
|
2108 | 2134 | return dataOut |
|
2109 | 2135 | |
|
2110 | 2136 | if dataOut.flagNoData == True: |
|
2111 | 2137 | return dataOut |
|
2112 | 2138 | |
|
2113 | 2139 | dataOut.flagNoData = True |
|
2114 | ||
|
2140 | dataOut.processingHeaderObj.timeIncohInt = timeInterval | |
|
2115 | 2141 | if not self.isConfig: |
|
2116 | 2142 | self.setup(n, timeInterval, overlapping) |
|
2117 | 2143 | self.isConfig = True |
|
2118 | 2144 | |
|
2145 | ||
|
2119 | 2146 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
2120 | 2147 | dataOut.data_spc, |
|
2121 | 2148 | dataOut.data_cspc, |
|
2122 | 2149 | dataOut.data_dc) |
|
2123 | 2150 | |
|
2124 | 2151 | self.incohInt += dataOut.nIncohInt |
|
2125 | 2152 | |
|
2126 | 2153 | if isinstance(dataOut.data_outlier,numpy.ndarray) or isinstance(dataOut.data_outlier,int) or isinstance(dataOut.data_outlier, float): |
|
2127 | 2154 | self.nOutliers += dataOut.data_outlier |
|
2128 | 2155 | |
|
2129 | 2156 | if self.__dataReady: |
|
2130 | 2157 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) |
|
2131 | 2158 | dataOut.data_spc = avgdata_spc |
|
2132 | 2159 | dataOut.data_cspc = avgdata_cspc |
|
2133 | 2160 | dataOut.data_dc = avgdata_dc |
|
2134 | 2161 | dataOut.nIncohInt = self.incohInt |
|
2135 | 2162 | dataOut.data_outlier = self.nOutliers |
|
2136 | 2163 | dataOut.utctime = avgdatatime |
|
2137 | 2164 | dataOut.flagNoData = False |
|
2138 | 2165 | self.incohInt = 0 |
|
2139 | 2166 | self.nOutliers = 0 |
|
2140 | 2167 | self.__profIndex = 0 |
|
2141 | 2168 | #print("IncohInt Done") |
|
2142 | 2169 | return dataOut |
|
2143 | 2170 | |
|
2144 | 2171 | class dopplerFlip(Operation): |
|
2145 | 2172 | |
|
2146 | 2173 | def run(self, dataOut): |
|
2147 | 2174 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
2148 | 2175 | self.dataOut = dataOut |
|
2149 | 2176 | # JULIA-oblicua, indice 2 |
|
2150 | 2177 | # arreglo 2: (num_profiles, num_heights) |
|
2151 | 2178 | jspectra = self.dataOut.data_spc[2] |
|
2152 | 2179 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
2153 | 2180 | num_profiles = jspectra.shape[0] |
|
2154 | 2181 | freq_dc = int(num_profiles / 2) |
|
2155 | 2182 | # Flip con for |
|
2156 | 2183 | for j in range(num_profiles): |
|
2157 | 2184 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
2158 | 2185 | # Intercambio perfil de DC con perfil inmediato anterior |
|
2159 | 2186 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
2160 | 2187 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
2161 | 2188 | # canal modificado es re-escrito en el arreglo de canales |
|
2162 | 2189 | self.dataOut.data_spc[2] = jspectra_tmp |
|
2163 | 2190 | |
|
2164 | 2191 | return self.dataOut |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now