@@ -1,1225 +1,1228 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | from schainpy import cSchain |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | def getNumpyDtype(dataTypeCode): |
|
16 | 16 | |
|
17 | 17 | if dataTypeCode == 0: |
|
18 | 18 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
19 | 19 | elif dataTypeCode == 1: |
|
20 | 20 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
21 | 21 | elif dataTypeCode == 2: |
|
22 | 22 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
23 | 23 | elif dataTypeCode == 3: |
|
24 | 24 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
25 | 25 | elif dataTypeCode == 4: |
|
26 | 26 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
27 | 27 | elif dataTypeCode == 5: |
|
28 | 28 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
29 | 29 | else: |
|
30 | 30 | raise ValueError, 'dataTypeCode was not defined' |
|
31 | 31 | |
|
32 | 32 | return numpyDtype |
|
33 | 33 | |
|
34 | 34 | def getDataTypeCode(numpyDtype): |
|
35 | 35 | |
|
36 | 36 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
37 | 37 | datatype = 0 |
|
38 | 38 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
39 | 39 | datatype = 1 |
|
40 | 40 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
41 | 41 | datatype = 2 |
|
42 | 42 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
43 | 43 | datatype = 3 |
|
44 | 44 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
45 | 45 | datatype = 4 |
|
46 | 46 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
47 | 47 | datatype = 5 |
|
48 | 48 | else: |
|
49 | 49 | datatype = None |
|
50 | 50 | |
|
51 | 51 | return datatype |
|
52 | 52 | |
|
53 | 53 | def hildebrand_sekhon(data, navg): |
|
54 | 54 | """ |
|
55 | 55 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
56 | 56 | implementation technique is based on the fact that the standard deviation of the spectral |
|
57 | 57 | densities is equal to the mean spectral density for white Gaussian noise |
|
58 | 58 | |
|
59 | 59 | Inputs: |
|
60 | 60 | Data : heights |
|
61 | 61 | navg : numbers of averages |
|
62 | 62 | |
|
63 | 63 | Return: |
|
64 | 64 | -1 : any error |
|
65 | 65 | anoise : noise's level |
|
66 | 66 | """ |
|
67 | 67 | |
|
68 | 68 | sortdata = numpy.sort(data,axis=None) |
|
69 | 69 | # lenOfData = len(sortdata) |
|
70 | 70 | # nums_min = lenOfData*0.2 |
|
71 | 71 | # |
|
72 | 72 | # if nums_min <= 5: |
|
73 | 73 | # nums_min = 5 |
|
74 | 74 | # |
|
75 | 75 | # sump = 0. |
|
76 | 76 | # |
|
77 | 77 | # sumq = 0. |
|
78 | 78 | # |
|
79 | 79 | # j = 0 |
|
80 | 80 | # |
|
81 | 81 | # cont = 1 |
|
82 | 82 | # |
|
83 | 83 | # while((cont==1)and(j<lenOfData)): |
|
84 | 84 | # |
|
85 | 85 | # sump += sortdata[j] |
|
86 | 86 | # |
|
87 | 87 | # sumq += sortdata[j]**2 |
|
88 | 88 | # |
|
89 | 89 | # if j > nums_min: |
|
90 | 90 | # rtest = float(j)/(j-1) + 1.0/navg |
|
91 | 91 | # if ((sumq*j) > (rtest*sump**2)): |
|
92 | 92 | # j = j - 1 |
|
93 | 93 | # sump = sump - sortdata[j] |
|
94 | 94 | # sumq = sumq - sortdata[j]**2 |
|
95 | 95 | # cont = 0 |
|
96 | 96 | # |
|
97 | 97 | # j += 1 |
|
98 | 98 | # |
|
99 | 99 | # lnoise = sump /j |
|
100 | 100 | # |
|
101 | 101 | # return lnoise |
|
102 | 102 | |
|
103 | 103 | return cSchain.hildebrand_sekhon(sortdata, navg) |
|
104 | 104 | |
|
105 | 105 | |
|
106 | 106 | class Beam: |
|
107 | 107 | |
|
108 | 108 | def __init__(self): |
|
109 | 109 | self.codeList = [] |
|
110 | 110 | self.azimuthList = [] |
|
111 | 111 | self.zenithList = [] |
|
112 | 112 | |
|
113 | 113 | class GenericData(object): |
|
114 | 114 | |
|
115 | 115 | flagNoData = True |
|
116 | 116 | |
|
117 | 117 | def __init__(self): |
|
118 | 118 | |
|
119 | 119 | raise NotImplementedError |
|
120 | 120 | |
|
121 | 121 | def copy(self, inputObj=None): |
|
122 | 122 | |
|
123 | 123 | if inputObj == None: |
|
124 | 124 | return copy.deepcopy(self) |
|
125 | 125 | |
|
126 | 126 | for key in inputObj.__dict__.keys(): |
|
127 | 127 | |
|
128 | 128 | attribute = inputObj.__dict__[key] |
|
129 | 129 | |
|
130 | 130 | #If this attribute is a tuple or list |
|
131 | 131 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
132 | 132 | self.__dict__[key] = attribute[:] |
|
133 | 133 | continue |
|
134 | 134 | |
|
135 | 135 | #If this attribute is another object or instance |
|
136 | 136 | if hasattr(attribute, '__dict__'): |
|
137 | 137 | self.__dict__[key] = attribute.copy() |
|
138 | 138 | continue |
|
139 | 139 | |
|
140 | 140 | self.__dict__[key] = inputObj.__dict__[key] |
|
141 | 141 | |
|
142 | 142 | def deepcopy(self): |
|
143 | 143 | |
|
144 | 144 | return copy.deepcopy(self) |
|
145 | 145 | |
|
146 | 146 | def isEmpty(self): |
|
147 | 147 | |
|
148 | 148 | return self.flagNoData |
|
149 | 149 | |
|
150 | 150 | class JROData(GenericData): |
|
151 | 151 | |
|
152 | 152 | # m_BasicHeader = BasicHeader() |
|
153 | 153 | # m_ProcessingHeader = ProcessingHeader() |
|
154 | 154 | |
|
155 | 155 | systemHeaderObj = SystemHeader() |
|
156 | 156 | |
|
157 | 157 | radarControllerHeaderObj = RadarControllerHeader() |
|
158 | 158 | |
|
159 | 159 | # data = None |
|
160 | 160 | |
|
161 | 161 | type = None |
|
162 | 162 | |
|
163 | 163 | datatype = None #dtype but in string |
|
164 | 164 | |
|
165 | 165 | # dtype = None |
|
166 | 166 | |
|
167 | 167 | # nChannels = None |
|
168 | 168 | |
|
169 | 169 | # nHeights = None |
|
170 | 170 | |
|
171 | 171 | nProfiles = None |
|
172 | 172 | |
|
173 | 173 | heightList = None |
|
174 | 174 | |
|
175 | 175 | channelList = None |
|
176 | 176 | |
|
177 | 177 | flagDiscontinuousBlock = False |
|
178 | 178 | |
|
179 | 179 | useLocalTime = False |
|
180 | 180 | |
|
181 | 181 | utctime = None |
|
182 | 182 | |
|
183 | 183 | timeZone = None |
|
184 | 184 | |
|
185 | 185 | dstFlag = None |
|
186 | 186 | |
|
187 | 187 | errorCount = None |
|
188 | 188 | |
|
189 | 189 | blocksize = None |
|
190 | 190 | |
|
191 | 191 | # nCode = None |
|
192 | 192 | # |
|
193 | 193 | # nBaud = None |
|
194 | 194 | # |
|
195 | 195 | # code = None |
|
196 | 196 | |
|
197 | 197 | flagDecodeData = False #asumo q la data no esta decodificada |
|
198 | 198 | |
|
199 | 199 | flagDeflipData = False #asumo q la data no esta sin flip |
|
200 | 200 | |
|
201 | 201 | flagShiftFFT = False |
|
202 | 202 | |
|
203 | 203 | # ippSeconds = None |
|
204 | 204 | |
|
205 | 205 | # timeInterval = None |
|
206 | 206 | |
|
207 | 207 | nCohInt = None |
|
208 | 208 | |
|
209 | 209 | # noise = None |
|
210 | 210 | |
|
211 | 211 | windowOfFilter = 1 |
|
212 | 212 | |
|
213 | 213 | #Speed of ligth |
|
214 | 214 | C = 3e8 |
|
215 | 215 | |
|
216 | 216 | frequency = 49.92e6 |
|
217 | 217 | |
|
218 | 218 | realtime = False |
|
219 | 219 | |
|
220 | 220 | beacon_heiIndexList = None |
|
221 | 221 | |
|
222 | 222 | last_block = None |
|
223 | 223 | |
|
224 | 224 | blocknow = None |
|
225 | 225 | |
|
226 | 226 | azimuth = None |
|
227 | 227 | |
|
228 | 228 | zenith = None |
|
229 | 229 | |
|
230 | 230 | beam = Beam() |
|
231 | 231 | |
|
232 | 232 | profileIndex = None |
|
233 | 233 | |
|
234 | 234 | def __init__(self): |
|
235 | 235 | |
|
236 | 236 | raise NotImplementedError |
|
237 | 237 | |
|
238 | 238 | def getNoise(self): |
|
239 | 239 | |
|
240 | 240 | raise NotImplementedError |
|
241 | 241 | |
|
242 | 242 | def getNChannels(self): |
|
243 | 243 | |
|
244 | 244 | return len(self.channelList) |
|
245 | 245 | |
|
246 | 246 | def getChannelIndexList(self): |
|
247 | 247 | |
|
248 | 248 | return range(self.nChannels) |
|
249 | 249 | |
|
250 | 250 | def getNHeights(self): |
|
251 | 251 | |
|
252 | 252 | return len(self.heightList) |
|
253 | 253 | |
|
254 | 254 | def getHeiRange(self, extrapoints=0): |
|
255 | 255 | |
|
256 | 256 | heis = self.heightList |
|
257 | 257 | # deltah = self.heightList[1] - self.heightList[0] |
|
258 | 258 | # |
|
259 | 259 | # heis.append(self.heightList[-1]) |
|
260 | 260 | |
|
261 | 261 | return heis |
|
262 | 262 | |
|
263 | 263 | def getDeltaH(self): |
|
264 | 264 | |
|
265 | 265 | delta = self.heightList[1] - self.heightList[0] |
|
266 | 266 | |
|
267 | 267 | return delta |
|
268 | 268 | |
|
269 | 269 | def getltctime(self): |
|
270 | 270 | |
|
271 | 271 | if self.useLocalTime: |
|
272 | 272 | return self.utctime - self.timeZone*60 |
|
273 | 273 | |
|
274 | 274 | return self.utctime |
|
275 | 275 | |
|
276 | 276 | def getDatatime(self): |
|
277 | 277 | |
|
278 | 278 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
279 | 279 | return datatimeValue |
|
280 | 280 | |
|
281 | 281 | def getTimeRange(self): |
|
282 | 282 | |
|
283 | 283 | datatime = [] |
|
284 | 284 | |
|
285 | 285 | datatime.append(self.ltctime) |
|
286 | 286 | datatime.append(self.ltctime + self.timeInterval+1) |
|
287 | 287 | |
|
288 | 288 | datatime = numpy.array(datatime) |
|
289 | 289 | |
|
290 | 290 | return datatime |
|
291 | 291 | |
|
292 | 292 | def getFmaxTimeResponse(self): |
|
293 | 293 | |
|
294 | 294 | period = (10**-6)*self.getDeltaH()/(0.15) |
|
295 | 295 | |
|
296 | 296 | PRF = 1./(period * self.nCohInt) |
|
297 | 297 | |
|
298 | 298 | fmax = PRF |
|
299 | 299 | |
|
300 | 300 | return fmax |
|
301 | 301 | |
|
302 | 302 | def getFmax(self): |
|
303 | 303 | |
|
304 | 304 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
305 | 305 | |
|
306 | 306 | fmax = PRF |
|
307 | 307 | |
|
308 | 308 | return fmax |
|
309 | 309 | |
|
310 | 310 | def getVmax(self): |
|
311 | 311 | |
|
312 | 312 | _lambda = self.C/self.frequency |
|
313 | 313 | |
|
314 | 314 | vmax = self.getFmax() * _lambda/2 |
|
315 | 315 | |
|
316 | 316 | return vmax |
|
317 | 317 | |
|
318 | 318 | def get_ippSeconds(self): |
|
319 | 319 | ''' |
|
320 | 320 | ''' |
|
321 | 321 | return self.radarControllerHeaderObj.ippSeconds |
|
322 | 322 | |
|
323 | 323 | def set_ippSeconds(self, ippSeconds): |
|
324 | 324 | ''' |
|
325 | 325 | ''' |
|
326 | 326 | |
|
327 | 327 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
328 | 328 | |
|
329 | 329 | return |
|
330 | 330 | |
|
331 | 331 | def get_dtype(self): |
|
332 | 332 | ''' |
|
333 | 333 | ''' |
|
334 | 334 | return getNumpyDtype(self.datatype) |
|
335 | 335 | |
|
336 | 336 | def set_dtype(self, numpyDtype): |
|
337 | 337 | ''' |
|
338 | 338 | ''' |
|
339 | 339 | |
|
340 | 340 | self.datatype = getDataTypeCode(numpyDtype) |
|
341 | 341 | |
|
342 | 342 | def get_code(self): |
|
343 | 343 | ''' |
|
344 | 344 | ''' |
|
345 | 345 | return self.radarControllerHeaderObj.code |
|
346 | 346 | |
|
347 | 347 | def set_code(self, code): |
|
348 | 348 | ''' |
|
349 | 349 | ''' |
|
350 | 350 | self.radarControllerHeaderObj.code = code |
|
351 | 351 | |
|
352 | 352 | return |
|
353 | 353 | |
|
354 | 354 | def get_ncode(self): |
|
355 | 355 | ''' |
|
356 | 356 | ''' |
|
357 | 357 | return self.radarControllerHeaderObj.nCode |
|
358 | 358 | |
|
359 | 359 | def set_ncode(self, nCode): |
|
360 | 360 | ''' |
|
361 | 361 | ''' |
|
362 | 362 | self.radarControllerHeaderObj.nCode = nCode |
|
363 | 363 | |
|
364 | 364 | return |
|
365 | 365 | |
|
366 | 366 | def get_nbaud(self): |
|
367 | 367 | ''' |
|
368 | 368 | ''' |
|
369 | 369 | return self.radarControllerHeaderObj.nBaud |
|
370 | 370 | |
|
371 | 371 | def set_nbaud(self, nBaud): |
|
372 | 372 | ''' |
|
373 | 373 | ''' |
|
374 | 374 | self.radarControllerHeaderObj.nBaud = nBaud |
|
375 | 375 | |
|
376 | 376 | return |
|
377 | 377 | |
|
378 | 378 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
379 | 379 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
380 | 380 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
381 | 381 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
382 | 382 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
383 | 383 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
384 | 384 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
385 | 385 | dtype = property(get_dtype, set_dtype) |
|
386 | 386 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
387 | 387 | code = property(get_code, set_code) |
|
388 | 388 | nCode = property(get_ncode, set_ncode) |
|
389 | 389 | nBaud = property(get_nbaud, set_nbaud) |
|
390 | 390 | |
|
391 | 391 | class Voltage(JROData): |
|
392 | 392 | |
|
393 | 393 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
394 | 394 | data = None |
|
395 | 395 | |
|
396 | 396 | def __init__(self): |
|
397 | 397 | ''' |
|
398 | 398 | Constructor |
|
399 | 399 | ''' |
|
400 | 400 | |
|
401 | 401 | self.useLocalTime = True |
|
402 | 402 | |
|
403 | 403 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
404 | 404 | |
|
405 | 405 | self.systemHeaderObj = SystemHeader() |
|
406 | 406 | |
|
407 | 407 | self.type = "Voltage" |
|
408 | 408 | |
|
409 | 409 | self.data = None |
|
410 | 410 | |
|
411 | 411 | # self.dtype = None |
|
412 | 412 | |
|
413 | 413 | # self.nChannels = 0 |
|
414 | 414 | |
|
415 | 415 | # self.nHeights = 0 |
|
416 | 416 | |
|
417 | 417 | self.nProfiles = None |
|
418 | 418 | |
|
419 | 419 | self.heightList = None |
|
420 | 420 | |
|
421 | 421 | self.channelList = None |
|
422 | 422 | |
|
423 | 423 | # self.channelIndexList = None |
|
424 | 424 | |
|
425 | 425 | self.flagNoData = True |
|
426 | 426 | |
|
427 | 427 | self.flagDiscontinuousBlock = False |
|
428 | 428 | |
|
429 | 429 | self.utctime = None |
|
430 | 430 | |
|
431 | 431 | self.timeZone = None |
|
432 | 432 | |
|
433 | 433 | self.dstFlag = None |
|
434 | 434 | |
|
435 | 435 | self.errorCount = None |
|
436 | 436 | |
|
437 | 437 | self.nCohInt = None |
|
438 | 438 | |
|
439 | 439 | self.blocksize = None |
|
440 | 440 | |
|
441 | 441 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
442 | 442 | |
|
443 | 443 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
444 | 444 | |
|
445 | 445 | self.flagShiftFFT = False |
|
446 | 446 | |
|
447 | 447 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
448 | 448 | |
|
449 | 449 | self.profileIndex = 0 |
|
450 | 450 | |
|
451 | 451 | def getNoisebyHildebrand(self, channel = None): |
|
452 | 452 | """ |
|
453 | 453 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
454 | 454 | |
|
455 | 455 | Return: |
|
456 | 456 | noiselevel |
|
457 | 457 | """ |
|
458 | 458 | |
|
459 | 459 | if channel != None: |
|
460 | 460 | data = self.data[channel] |
|
461 | 461 | nChannels = 1 |
|
462 | 462 | else: |
|
463 | 463 | data = self.data |
|
464 | 464 | nChannels = self.nChannels |
|
465 | 465 | |
|
466 | 466 | noise = numpy.zeros(nChannels) |
|
467 | 467 | power = data * numpy.conjugate(data) |
|
468 | 468 | |
|
469 | 469 | for thisChannel in range(nChannels): |
|
470 | 470 | if nChannels == 1: |
|
471 | 471 | daux = power[:].real |
|
472 | 472 | else: |
|
473 | 473 | daux = power[thisChannel,:].real |
|
474 | 474 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
475 | 475 | |
|
476 | 476 | return noise |
|
477 | 477 | |
|
478 | 478 | def getNoise(self, type = 1, channel = None): |
|
479 | 479 | |
|
480 | 480 | if type == 1: |
|
481 | 481 | noise = self.getNoisebyHildebrand(channel) |
|
482 | 482 | |
|
483 | 483 | return noise |
|
484 | 484 | |
|
485 | 485 | def getPower(self, channel = None): |
|
486 | 486 | |
|
487 | 487 | if channel != None: |
|
488 | 488 | data = self.data[channel] |
|
489 | 489 | else: |
|
490 | 490 | data = self.data |
|
491 | 491 | |
|
492 | 492 | power = data * numpy.conjugate(data) |
|
493 | 493 | powerdB = 10*numpy.log10(power.real) |
|
494 | 494 | powerdB = numpy.squeeze(powerdB) |
|
495 | 495 | |
|
496 | 496 | return powerdB |
|
497 | 497 | |
|
498 | 498 | def getTimeInterval(self): |
|
499 | 499 | |
|
500 | 500 | timeInterval = self.ippSeconds * self.nCohInt |
|
501 | 501 | |
|
502 | 502 | return timeInterval |
|
503 | 503 | |
|
504 | 504 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
505 | 505 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
506 | 506 | |
|
507 | 507 | class Spectra(JROData): |
|
508 | 508 | |
|
509 | 509 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
510 | 510 | data_spc = None |
|
511 | 511 | |
|
512 | 512 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
513 | 513 | data_cspc = None |
|
514 | 514 | |
|
515 | 515 | #data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
516 | 516 | data_dc = None |
|
517 | 517 | |
|
518 | 518 | #data power |
|
519 | 519 | data_pwr = None |
|
520 | 520 | |
|
521 | 521 | nFFTPoints = None |
|
522 | 522 | |
|
523 | 523 | # nPairs = None |
|
524 | 524 | |
|
525 | 525 | pairsList = None |
|
526 | 526 | |
|
527 | 527 | nIncohInt = None |
|
528 | 528 | |
|
529 | 529 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
530 | 530 | |
|
531 | 531 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
532 | 532 | |
|
533 | 533 | ippFactor = None |
|
534 | 534 | |
|
535 | 535 | profileIndex = 0 |
|
536 | 536 | |
|
537 | 537 | plotting = "spectra" |
|
538 | 538 | |
|
539 | 539 | def __init__(self): |
|
540 | 540 | ''' |
|
541 | 541 | Constructor |
|
542 | 542 | ''' |
|
543 | 543 | |
|
544 | 544 | self.useLocalTime = True |
|
545 | 545 | |
|
546 | 546 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
547 | 547 | |
|
548 | 548 | self.systemHeaderObj = SystemHeader() |
|
549 | 549 | |
|
550 | 550 | self.type = "Spectra" |
|
551 | 551 | |
|
552 | 552 | # self.data = None |
|
553 | 553 | |
|
554 | 554 | # self.dtype = None |
|
555 | 555 | |
|
556 | 556 | # self.nChannels = 0 |
|
557 | 557 | |
|
558 | 558 | # self.nHeights = 0 |
|
559 | 559 | |
|
560 | 560 | self.nProfiles = None |
|
561 | 561 | |
|
562 | 562 | self.heightList = None |
|
563 | 563 | |
|
564 | 564 | self.channelList = None |
|
565 | 565 | |
|
566 | 566 | # self.channelIndexList = None |
|
567 | 567 | |
|
568 | 568 | self.pairsList = None |
|
569 | 569 | |
|
570 | 570 | self.flagNoData = True |
|
571 | 571 | |
|
572 | 572 | self.flagDiscontinuousBlock = False |
|
573 | 573 | |
|
574 | 574 | self.utctime = None |
|
575 | 575 | |
|
576 | 576 | self.nCohInt = None |
|
577 | 577 | |
|
578 | 578 | self.nIncohInt = None |
|
579 | 579 | |
|
580 | 580 | self.blocksize = None |
|
581 | 581 | |
|
582 | 582 | self.nFFTPoints = None |
|
583 | 583 | |
|
584 | 584 | self.wavelength = None |
|
585 | 585 | |
|
586 | 586 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
587 | 587 | |
|
588 | 588 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
589 | 589 | |
|
590 | 590 | self.flagShiftFFT = False |
|
591 | 591 | |
|
592 | 592 | self.ippFactor = 1 |
|
593 | 593 | |
|
594 | 594 | #self.noise = None |
|
595 | 595 | |
|
596 | 596 | self.beacon_heiIndexList = [] |
|
597 | 597 | |
|
598 | 598 | self.noise_estimation = None |
|
599 | 599 | |
|
600 | 600 | |
|
601 | 601 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
602 | 602 | """ |
|
603 | 603 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
604 | 604 | |
|
605 | 605 | Return: |
|
606 | 606 | noiselevel |
|
607 | 607 | """ |
|
608 | 608 | |
|
609 | 609 | noise = numpy.zeros(self.nChannels) |
|
610 | 610 | |
|
611 | 611 | for channel in range(self.nChannels): |
|
612 | 612 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
613 | 613 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
614 | 614 | |
|
615 | 615 | return noise |
|
616 | 616 | |
|
617 | 617 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
618 | 618 | |
|
619 | 619 | if self.noise_estimation is not None: |
|
620 | 620 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
621 | 621 | else: |
|
622 | 622 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
623 | 623 | return noise |
|
624 | 624 | |
|
625 | 625 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
626 | 626 | |
|
627 | 627 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) |
|
628 | 628 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
629 | 629 | |
|
630 | 630 | return freqrange |
|
631 | 631 | |
|
632 | 632 | def getAcfRange(self, extrapoints=0): |
|
633 | 633 | |
|
634 | 634 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) |
|
635 | 635 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
636 | 636 | |
|
637 | 637 | return freqrange |
|
638 | 638 | |
|
639 | 639 | def getFreqRange(self, extrapoints=0): |
|
640 | 640 | |
|
641 | 641 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
642 | 642 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
643 | 643 | |
|
644 | 644 | return freqrange |
|
645 | 645 | |
|
646 | 646 | def getVelRange(self, extrapoints=0): |
|
647 | 647 | |
|
648 | 648 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
649 | 649 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2 |
|
650 | 650 | |
|
651 | 651 | return velrange |
|
652 | 652 | |
|
653 | 653 | def getNPairs(self): |
|
654 | 654 | |
|
655 | 655 | return len(self.pairsList) |
|
656 | 656 | |
|
657 | 657 | def getPairsIndexList(self): |
|
658 | 658 | |
|
659 | 659 | return range(self.nPairs) |
|
660 | 660 | |
|
661 | 661 | def getNormFactor(self): |
|
662 | 662 | |
|
663 | 663 | pwcode = 1 |
|
664 | 664 | |
|
665 | 665 | if self.flagDecodeData: |
|
666 | 666 | pwcode = numpy.sum(self.code[0]**2) |
|
667 | 667 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
668 | 668 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
669 | 669 | |
|
670 | 670 | return normFactor |
|
671 | 671 | |
|
672 | 672 | def getFlagCspc(self): |
|
673 | 673 | |
|
674 | 674 | if self.data_cspc is None: |
|
675 | 675 | return True |
|
676 | 676 | |
|
677 | 677 | return False |
|
678 | 678 | |
|
679 | 679 | def getFlagDc(self): |
|
680 | 680 | |
|
681 | 681 | if self.data_dc is None: |
|
682 | 682 | return True |
|
683 | 683 | |
|
684 | 684 | return False |
|
685 | 685 | |
|
686 | 686 | def getTimeInterval(self): |
|
687 | 687 | |
|
688 | 688 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
689 | 689 | |
|
690 | 690 | return timeInterval |
|
691 | 691 | |
|
692 | 692 | def getPower(self): |
|
693 | 693 | |
|
694 | 694 | factor = self.normFactor |
|
695 | 695 | z = self.data_spc/factor |
|
696 | 696 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
697 | 697 | avg = numpy.average(z, axis=1) |
|
698 | 698 | |
|
699 | 699 | return 10*numpy.log10(avg) |
|
700 | 700 | |
|
701 | 701 | def getCoherence(self, pairsList=None, phase=False): |
|
702 | 702 | |
|
703 | 703 | z = [] |
|
704 | 704 | if pairsList is None: |
|
705 | 705 | pairsIndexList = self.pairsIndexList |
|
706 | 706 | else: |
|
707 | 707 | pairsIndexList = [] |
|
708 | 708 | for pair in pairsList: |
|
709 | 709 | if pair not in self.pairsList: |
|
710 | 710 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
711 | 711 | pairsIndexList.append(self.pairsList.index(pair)) |
|
712 | 712 | for i in range(len(pairsIndexList)): |
|
713 | 713 | pair = self.pairsList[pairsIndexList[i]] |
|
714 | 714 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
715 | 715 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
716 | 716 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
717 | 717 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
718 | 718 | if phase: |
|
719 | 719 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
720 | 720 | avgcoherenceComplex.real)*180/numpy.pi |
|
721 | 721 | else: |
|
722 | 722 | data = numpy.abs(avgcoherenceComplex) |
|
723 | 723 | |
|
724 | 724 | z.append(data) |
|
725 | 725 | |
|
726 | 726 | return numpy.array(z) |
|
727 | 727 | |
|
728 | 728 | def setValue(self, value): |
|
729 | 729 | |
|
730 | 730 | print "This property should not be initialized" |
|
731 | 731 | |
|
732 | 732 | return |
|
733 | 733 | |
|
734 | 734 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
735 | 735 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
736 | 736 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") |
|
737 | 737 | flag_cspc = property(getFlagCspc, setValue) |
|
738 | 738 | flag_dc = property(getFlagDc, setValue) |
|
739 | 739 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
740 | 740 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") |
|
741 | 741 | |
|
742 | 742 | class SpectraHeis(Spectra): |
|
743 | 743 | |
|
744 | 744 | data_spc = None |
|
745 | 745 | |
|
746 | 746 | data_cspc = None |
|
747 | 747 | |
|
748 | 748 | data_dc = None |
|
749 | 749 | |
|
750 | 750 | nFFTPoints = None |
|
751 | 751 | |
|
752 | 752 | # nPairs = None |
|
753 | 753 | |
|
754 | 754 | pairsList = None |
|
755 | 755 | |
|
756 | 756 | nCohInt = None |
|
757 | 757 | |
|
758 | 758 | nIncohInt = None |
|
759 | 759 | |
|
760 | 760 | def __init__(self): |
|
761 | 761 | |
|
762 | 762 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
763 | 763 | |
|
764 | 764 | self.systemHeaderObj = SystemHeader() |
|
765 | 765 | |
|
766 | 766 | self.type = "SpectraHeis" |
|
767 | 767 | |
|
768 | 768 | # self.dtype = None |
|
769 | 769 | |
|
770 | 770 | # self.nChannels = 0 |
|
771 | 771 | |
|
772 | 772 | # self.nHeights = 0 |
|
773 | 773 | |
|
774 | 774 | self.nProfiles = None |
|
775 | 775 | |
|
776 | 776 | self.heightList = None |
|
777 | 777 | |
|
778 | 778 | self.channelList = None |
|
779 | 779 | |
|
780 | 780 | # self.channelIndexList = None |
|
781 | 781 | |
|
782 | 782 | self.flagNoData = True |
|
783 | 783 | |
|
784 | 784 | self.flagDiscontinuousBlock = False |
|
785 | 785 | |
|
786 | 786 | # self.nPairs = 0 |
|
787 | 787 | |
|
788 | 788 | self.utctime = None |
|
789 | 789 | |
|
790 | 790 | self.blocksize = None |
|
791 | 791 | |
|
792 | 792 | self.profileIndex = 0 |
|
793 | 793 | |
|
794 | 794 | self.nCohInt = 1 |
|
795 | 795 | |
|
796 | 796 | self.nIncohInt = 1 |
|
797 | 797 | |
|
798 | 798 | def getNormFactor(self): |
|
799 | 799 | pwcode = 1 |
|
800 | 800 | if self.flagDecodeData: |
|
801 | 801 | pwcode = numpy.sum(self.code[0]**2) |
|
802 | 802 | |
|
803 | 803 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
804 | 804 | |
|
805 | 805 | return normFactor |
|
806 | 806 | |
|
807 | 807 | def getTimeInterval(self): |
|
808 | 808 | |
|
809 | 809 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
810 | 810 | |
|
811 | 811 | return timeInterval |
|
812 | 812 | |
|
813 | 813 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
814 | 814 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
815 | 815 | |
|
816 | 816 | class Fits(JROData): |
|
817 | 817 | |
|
818 | 818 | heightList = None |
|
819 | 819 | |
|
820 | 820 | channelList = None |
|
821 | 821 | |
|
822 | 822 | flagNoData = True |
|
823 | 823 | |
|
824 | 824 | flagDiscontinuousBlock = False |
|
825 | 825 | |
|
826 | 826 | useLocalTime = False |
|
827 | 827 | |
|
828 | 828 | utctime = None |
|
829 | 829 | |
|
830 | 830 | timeZone = None |
|
831 | 831 | |
|
832 | 832 | # ippSeconds = None |
|
833 | 833 | |
|
834 | 834 | # timeInterval = None |
|
835 | 835 | |
|
836 | 836 | nCohInt = None |
|
837 | 837 | |
|
838 | 838 | nIncohInt = None |
|
839 | 839 | |
|
840 | 840 | noise = None |
|
841 | 841 | |
|
842 | 842 | windowOfFilter = 1 |
|
843 | 843 | |
|
844 | 844 | #Speed of ligth |
|
845 | 845 | C = 3e8 |
|
846 | 846 | |
|
847 | 847 | frequency = 49.92e6 |
|
848 | 848 | |
|
849 | 849 | realtime = False |
|
850 | 850 | |
|
851 | 851 | |
|
852 | 852 | def __init__(self): |
|
853 | 853 | |
|
854 | 854 | self.type = "Fits" |
|
855 | 855 | |
|
856 | 856 | self.nProfiles = None |
|
857 | 857 | |
|
858 | 858 | self.heightList = None |
|
859 | 859 | |
|
860 | 860 | self.channelList = None |
|
861 | 861 | |
|
862 | 862 | # self.channelIndexList = None |
|
863 | 863 | |
|
864 | 864 | self.flagNoData = True |
|
865 | 865 | |
|
866 | 866 | self.utctime = None |
|
867 | 867 | |
|
868 | 868 | self.nCohInt = 1 |
|
869 | 869 | |
|
870 | 870 | self.nIncohInt = 1 |
|
871 | 871 | |
|
872 | 872 | self.useLocalTime = True |
|
873 | 873 | |
|
874 | 874 | self.profileIndex = 0 |
|
875 | 875 | |
|
876 | 876 | # self.utctime = None |
|
877 | 877 | # self.timeZone = None |
|
878 | 878 | # self.ltctime = None |
|
879 | 879 | # self.timeInterval = None |
|
880 | 880 | # self.header = None |
|
881 | 881 | # self.data_header = None |
|
882 | 882 | # self.data = None |
|
883 | 883 | # self.datatime = None |
|
884 | 884 | # self.flagNoData = False |
|
885 | 885 | # self.expName = '' |
|
886 | 886 | # self.nChannels = None |
|
887 | 887 | # self.nSamples = None |
|
888 | 888 | # self.dataBlocksPerFile = None |
|
889 | 889 | # self.comments = '' |
|
890 | 890 | # |
|
891 | 891 | |
|
892 | 892 | |
|
893 | 893 | def getltctime(self): |
|
894 | 894 | |
|
895 | 895 | if self.useLocalTime: |
|
896 | 896 | return self.utctime - self.timeZone*60 |
|
897 | 897 | |
|
898 | 898 | return self.utctime |
|
899 | 899 | |
|
900 | 900 | def getDatatime(self): |
|
901 | 901 | |
|
902 | 902 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
903 | 903 | return datatime |
|
904 | 904 | |
|
905 | 905 | def getTimeRange(self): |
|
906 | 906 | |
|
907 | 907 | datatime = [] |
|
908 | 908 | |
|
909 | 909 | datatime.append(self.ltctime) |
|
910 | 910 | datatime.append(self.ltctime + self.timeInterval) |
|
911 | 911 | |
|
912 | 912 | datatime = numpy.array(datatime) |
|
913 | 913 | |
|
914 | 914 | return datatime |
|
915 | 915 | |
|
916 | 916 | def getHeiRange(self): |
|
917 | 917 | |
|
918 | 918 | heis = self.heightList |
|
919 | 919 | |
|
920 | 920 | return heis |
|
921 | 921 | |
|
922 | 922 | def getNHeights(self): |
|
923 | 923 | |
|
924 | 924 | return len(self.heightList) |
|
925 | 925 | |
|
926 | 926 | def getNChannels(self): |
|
927 | 927 | |
|
928 | 928 | return len(self.channelList) |
|
929 | 929 | |
|
930 | 930 | def getChannelIndexList(self): |
|
931 | 931 | |
|
932 | 932 | return range(self.nChannels) |
|
933 | 933 | |
|
934 | 934 | def getNoise(self, type = 1): |
|
935 | 935 | |
|
936 | 936 | #noise = numpy.zeros(self.nChannels) |
|
937 | 937 | |
|
938 | 938 | if type == 1: |
|
939 | 939 | noise = self.getNoisebyHildebrand() |
|
940 | 940 | |
|
941 | 941 | if type == 2: |
|
942 | 942 | noise = self.getNoisebySort() |
|
943 | 943 | |
|
944 | 944 | if type == 3: |
|
945 | 945 | noise = self.getNoisebyWindow() |
|
946 | 946 | |
|
947 | 947 | return noise |
|
948 | 948 | |
|
949 | 949 | def getTimeInterval(self): |
|
950 | 950 | |
|
951 | 951 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
952 | 952 | |
|
953 | 953 | return timeInterval |
|
954 | 954 | |
|
955 | 955 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
956 | 956 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
957 | 957 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
958 | 958 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
959 | 959 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
960 | 960 | |
|
961 | 961 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
962 | 962 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
963 | 963 | |
|
964 | 964 | |
|
965 | 965 | class Correlation(JROData): |
|
966 | 966 | |
|
967 | 967 | noise = None |
|
968 | 968 | |
|
969 | 969 | SNR = None |
|
970 | 970 | |
|
971 | 971 | #-------------------------------------------------- |
|
972 | 972 | |
|
973 | 973 | mode = None |
|
974 | 974 | |
|
975 | 975 | split = False |
|
976 | 976 | |
|
977 | 977 | data_cf = None |
|
978 | 978 | |
|
979 | 979 | lags = None |
|
980 | 980 | |
|
981 | 981 | lagRange = None |
|
982 | 982 | |
|
983 | 983 | pairsList = None |
|
984 | 984 | |
|
985 | 985 | normFactor = None |
|
986 | 986 | |
|
987 | 987 | #-------------------------------------------------- |
|
988 | 988 | |
|
989 | 989 | # calculateVelocity = None |
|
990 | 990 | |
|
991 | 991 | nLags = None |
|
992 | 992 | |
|
993 | 993 | nPairs = None |
|
994 | 994 | |
|
995 | 995 | nAvg = None |
|
996 | 996 | |
|
997 | 997 | |
|
998 | 998 | def __init__(self): |
|
999 | 999 | ''' |
|
1000 | 1000 | Constructor |
|
1001 | 1001 | ''' |
|
1002 | 1002 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1003 | 1003 | |
|
1004 | 1004 | self.systemHeaderObj = SystemHeader() |
|
1005 | 1005 | |
|
1006 | 1006 | self.type = "Correlation" |
|
1007 | 1007 | |
|
1008 | 1008 | self.data = None |
|
1009 | 1009 | |
|
1010 | 1010 | self.dtype = None |
|
1011 | 1011 | |
|
1012 | 1012 | self.nProfiles = None |
|
1013 | 1013 | |
|
1014 | 1014 | self.heightList = None |
|
1015 | 1015 | |
|
1016 | 1016 | self.channelList = None |
|
1017 | 1017 | |
|
1018 | 1018 | self.flagNoData = True |
|
1019 | 1019 | |
|
1020 | 1020 | self.flagDiscontinuousBlock = False |
|
1021 | 1021 | |
|
1022 | 1022 | self.utctime = None |
|
1023 | 1023 | |
|
1024 | 1024 | self.timeZone = None |
|
1025 | 1025 | |
|
1026 | 1026 | self.dstFlag = None |
|
1027 | 1027 | |
|
1028 | 1028 | self.errorCount = None |
|
1029 | 1029 | |
|
1030 | 1030 | self.blocksize = None |
|
1031 | 1031 | |
|
1032 | 1032 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
1033 | 1033 | |
|
1034 | 1034 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
1035 | 1035 | |
|
1036 | 1036 | self.pairsList = None |
|
1037 | 1037 | |
|
1038 | 1038 | self.nPoints = None |
|
1039 | 1039 | |
|
1040 | 1040 | def getPairsList(self): |
|
1041 | 1041 | |
|
1042 | 1042 | return self.pairsList |
|
1043 | 1043 | |
|
1044 | 1044 | def getNoise(self, mode = 2): |
|
1045 | 1045 | |
|
1046 | 1046 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1047 | 1047 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1048 | 1048 | |
|
1049 | 1049 | jspectra0 = self.data_corr[:,:,indR,:] |
|
1050 | 1050 | jspectra = copy.copy(jspectra0) |
|
1051 | 1051 | |
|
1052 | 1052 | num_chan = jspectra.shape[0] |
|
1053 | 1053 | num_hei = jspectra.shape[2] |
|
1054 | 1054 | |
|
1055 | 1055 | freq_dc = jspectra.shape[1]/2 |
|
1056 | 1056 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1057 | 1057 | |
|
1058 | 1058 | if ind_vel[0]<0: |
|
1059 | 1059 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1060 | 1060 | |
|
1061 | 1061 | if mode == 1: |
|
1062 | 1062 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1063 | 1063 | |
|
1064 | 1064 | if mode == 2: |
|
1065 | 1065 | |
|
1066 | 1066 | vel = numpy.array([-2,-1,1,2]) |
|
1067 | 1067 | xx = numpy.zeros([4,4]) |
|
1068 | 1068 | |
|
1069 | 1069 | for fil in range(4): |
|
1070 | 1070 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1071 | 1071 | |
|
1072 | 1072 | xx_inv = numpy.linalg.inv(xx) |
|
1073 | 1073 | xx_aux = xx_inv[0,:] |
|
1074 | 1074 | |
|
1075 | 1075 | for ich in range(num_chan): |
|
1076 | 1076 | yy = jspectra[ich,ind_vel,:] |
|
1077 | 1077 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1078 | 1078 | |
|
1079 | 1079 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1080 | 1080 | cjunkid = sum(junkid) |
|
1081 | 1081 | |
|
1082 | 1082 | if cjunkid.any(): |
|
1083 | 1083 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1084 | 1084 | |
|
1085 | 1085 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1086 | 1086 | |
|
1087 | 1087 | return noise |
|
1088 | 1088 | |
|
1089 | 1089 | def getTimeInterval(self): |
|
1090 | 1090 | |
|
1091 | 1091 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1092 | 1092 | |
|
1093 | 1093 | return timeInterval |
|
1094 | 1094 | |
|
1095 | 1095 | def splitFunctions(self): |
|
1096 | 1096 | |
|
1097 | 1097 | pairsList = self.pairsList |
|
1098 | 1098 | ccf_pairs = [] |
|
1099 | 1099 | acf_pairs = [] |
|
1100 | 1100 | ccf_ind = [] |
|
1101 | 1101 | acf_ind = [] |
|
1102 | 1102 | for l in range(len(pairsList)): |
|
1103 | 1103 | chan0 = pairsList[l][0] |
|
1104 | 1104 | chan1 = pairsList[l][1] |
|
1105 | 1105 | |
|
1106 | 1106 | #Obteniendo pares de Autocorrelacion |
|
1107 | 1107 | if chan0 == chan1: |
|
1108 | 1108 | acf_pairs.append(chan0) |
|
1109 | 1109 | acf_ind.append(l) |
|
1110 | 1110 | else: |
|
1111 | 1111 | ccf_pairs.append(pairsList[l]) |
|
1112 | 1112 | ccf_ind.append(l) |
|
1113 | 1113 | |
|
1114 | 1114 | data_acf = self.data_cf[acf_ind] |
|
1115 | 1115 | data_ccf = self.data_cf[ccf_ind] |
|
1116 | 1116 | |
|
1117 | 1117 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1118 | 1118 | |
|
1119 | 1119 | def getNormFactor(self): |
|
1120 | 1120 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1121 | 1121 | acf_pairs = numpy.array(acf_pairs) |
|
1122 | 1122 | normFactor = numpy.zeros((self.nPairs,self.nHeights)) |
|
1123 | 1123 | |
|
1124 | 1124 | for p in range(self.nPairs): |
|
1125 | 1125 | pair = self.pairsList[p] |
|
1126 | 1126 | |
|
1127 | 1127 | ch0 = pair[0] |
|
1128 | 1128 | ch1 = pair[1] |
|
1129 | 1129 | |
|
1130 | 1130 | ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1) |
|
1131 | 1131 | ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1) |
|
1132 | 1132 | normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max) |
|
1133 | 1133 | |
|
1134 | 1134 | return normFactor |
|
1135 | 1135 | |
|
1136 | 1136 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1137 | 1137 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1138 | 1138 | |
|
1139 | 1139 | class Parameters(Spectra): |
|
1140 | 1140 | |
|
1141 | 1141 | experimentInfo = None #Information about the experiment |
|
1142 | 1142 | |
|
1143 | 1143 | #Information from previous data |
|
1144 | 1144 | |
|
1145 | 1145 | inputUnit = None #Type of data to be processed |
|
1146 | 1146 | |
|
1147 | 1147 | operation = None #Type of operation to parametrize |
|
1148 | 1148 | |
|
1149 | 1149 | #normFactor = None #Normalization Factor |
|
1150 | 1150 | |
|
1151 | 1151 | groupList = None #List of Pairs, Groups, etc |
|
1152 | 1152 | |
|
1153 | 1153 | #Parameters |
|
1154 | 1154 | |
|
1155 | 1155 | data_param = None #Parameters obtained |
|
1156 | 1156 | |
|
1157 | 1157 | data_pre = None #Data Pre Parametrization |
|
1158 | 1158 | |
|
1159 | 1159 | data_SNR = None #Signal to Noise Ratio |
|
1160 | 1160 | |
|
1161 | 1161 | # heightRange = None #Heights |
|
1162 | 1162 | |
|
1163 | 1163 | abscissaList = None #Abscissa, can be velocities, lags or time |
|
1164 | 1164 | |
|
1165 | 1165 | # noise = None #Noise Potency |
|
1166 | 1166 | |
|
1167 | 1167 | utctimeInit = None #Initial UTC time |
|
1168 | 1168 | |
|
1169 | 1169 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1170 | 1170 | |
|
1171 | 1171 | useLocalTime = True |
|
1172 | 1172 | |
|
1173 | 1173 | #Fitting |
|
1174 | 1174 | |
|
1175 | 1175 | data_error = None #Error of the estimation |
|
1176 | 1176 | |
|
1177 | 1177 | constants = None |
|
1178 | 1178 | |
|
1179 | 1179 | library = None |
|
1180 | 1180 | |
|
1181 | 1181 | #Output signal |
|
1182 | 1182 | |
|
1183 | 1183 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1184 | 1184 | |
|
1185 | 1185 | data_output = None #Out signal |
|
1186 | 1186 | |
|
1187 | 1187 | nAvg = None |
|
1188 | 1188 | |
|
1189 | 1189 | noise_estimation = None |
|
1190 | 1190 | |
|
1191 | 1191 | |
|
1192 | 1192 | def __init__(self): |
|
1193 | 1193 | ''' |
|
1194 | 1194 | Constructor |
|
1195 | 1195 | ''' |
|
1196 | 1196 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1197 | 1197 | |
|
1198 | 1198 | self.systemHeaderObj = SystemHeader() |
|
1199 | 1199 | |
|
1200 | 1200 | self.type = "Parameters" |
|
1201 | 1201 | |
|
1202 | 1202 | def getTimeRange1(self, interval): |
|
1203 | 1203 | |
|
1204 | 1204 | datatime = [] |
|
1205 | 1205 | |
|
1206 | 1206 | if self.useLocalTime: |
|
1207 | 1207 | time1 = self.utctimeInit - self.timeZone*60 |
|
1208 | 1208 | else: |
|
1209 | 1209 | time1 = self.utctimeInit |
|
1210 | 1210 | |
|
1211 | 1211 | datatime.append(time1) |
|
1212 | 1212 | datatime.append(time1 + interval) |
|
1213 | 1213 | datatime = numpy.array(datatime) |
|
1214 | 1214 | |
|
1215 | 1215 | return datatime |
|
1216 | 1216 | |
|
1217 | 1217 | def getTimeInterval(self): |
|
1218 | 1218 | |
|
1219 |
|
|
|
1219 | if hasattr(self, 'timeInterval1'): | |
|
1220 | return self.timeInterval1 | |
|
1221 | else: | |
|
1222 | return self.paramInterval | |
|
1220 | 1223 | |
|
1221 | 1224 | def getNoise(self): |
|
1222 | 1225 | |
|
1223 | 1226 | return self.spc_noise |
|
1224 | 1227 | |
|
1225 | 1228 | timeInterval = property(getTimeInterval) |
@@ -1,693 +1,756 | |||
|
1 | 1 | |
|
2 | 2 | import os |
|
3 | 3 | import zmq |
|
4 | 4 | import time |
|
5 | 5 | import numpy |
|
6 | 6 | import datetime |
|
7 | 7 | import numpy as np |
|
8 | 8 | import matplotlib |
|
9 | 9 | matplotlib.use('TkAgg') |
|
10 | 10 | import matplotlib.pyplot as plt |
|
11 | 11 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
12 | 12 | from matplotlib.ticker import FuncFormatter, LinearLocator |
|
13 | 13 | from multiprocessing import Process |
|
14 | 14 | |
|
15 | 15 | from schainpy.model.proc.jroproc_base import Operation |
|
16 | 16 | |
|
17 | 17 | plt.ioff() |
|
18 | 18 | |
|
19 | 19 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) |
|
20 | 20 | |
|
21 | 21 | d1970 = datetime.datetime(1970,1,1) |
|
22 | 22 | |
|
23 | 23 | class PlotData(Operation, Process): |
|
24 | 24 | |
|
25 | 25 | CODE = 'Figure' |
|
26 | 26 | colormap = 'jro' |
|
27 | 27 | CONFLATE = True |
|
28 | 28 | __MAXNUMX = 80 |
|
29 | 29 | __MAXNUMY = 80 |
|
30 | 30 | __missing = 1E30 |
|
31 | 31 | |
|
32 | 32 | def __init__(self, **kwargs): |
|
33 | 33 | |
|
34 | 34 | Operation.__init__(self, plot=True, **kwargs) |
|
35 | 35 | Process.__init__(self) |
|
36 | 36 | self.kwargs['code'] = self.CODE |
|
37 | 37 | self.mp = False |
|
38 | 38 | self.dataOut = None |
|
39 | 39 | self.isConfig = False |
|
40 | 40 | self.figure = None |
|
41 | 41 | self.axes = [] |
|
42 | 42 | self.localtime = kwargs.pop('localtime', True) |
|
43 | 43 | self.show = kwargs.get('show', True) |
|
44 | 44 | self.save = kwargs.get('save', False) |
|
45 | 45 | self.colormap = kwargs.get('colormap', self.colormap) |
|
46 | 46 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
47 | 47 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
48 | 48 | self.showprofile = kwargs.get('showprofile', True) |
|
49 | 49 | self.title = kwargs.get('wintitle', '') |
|
50 | 50 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
51 | 51 | self.zmin = kwargs.get('zmin', None) |
|
52 | 52 | self.zmax = kwargs.get('zmax', None) |
|
53 | 53 | self.xmin = kwargs.get('xmin', None) |
|
54 | 54 | self.xmax = kwargs.get('xmax', None) |
|
55 | 55 | self.xrange = kwargs.get('xrange', 24) |
|
56 | 56 | self.ymin = kwargs.get('ymin', None) |
|
57 | 57 | self.ymax = kwargs.get('ymax', None) |
|
58 | 58 | self.throttle_value = 5 |
|
59 | 59 | |
|
60 | 60 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
61 | 61 | |
|
62 | 62 | if x_buffer.shape[0] < 2: |
|
63 | 63 | return x_buffer, y_buffer, z_buffer |
|
64 | 64 | |
|
65 | 65 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
66 | 66 | x_median = np.median(deltas) |
|
67 | 67 | |
|
68 | 68 | index = np.where(deltas > 5*x_median) |
|
69 | 69 | |
|
70 | 70 | if len(index[0]) != 0: |
|
71 | 71 | z_buffer[::, index[0], ::] = self.__missing |
|
72 | 72 | z_buffer = np.ma.masked_inside(z_buffer, |
|
73 | 73 | 0.99*self.__missing, |
|
74 | 74 | 1.01*self.__missing) |
|
75 | 75 | |
|
76 | 76 | return x_buffer, y_buffer, z_buffer |
|
77 | 77 | |
|
78 | 78 | def decimate(self): |
|
79 | 79 | |
|
80 | 80 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
81 | 81 | dy = int(len(self.y)/self.__MAXNUMY) + 1 |
|
82 | 82 | |
|
83 | 83 | # x = self.x[::dx] |
|
84 | 84 | x = self.x |
|
85 | 85 | y = self.y[::dy] |
|
86 | 86 | z = self.z[::, ::, ::dy] |
|
87 | 87 | |
|
88 | 88 | return x, y, z |
|
89 | 89 | |
|
90 | 90 | def __plot(self): |
|
91 | 91 | |
|
92 | 92 | print 'plotting...{}'.format(self.CODE) |
|
93 | 93 | |
|
94 | 94 | if self.show: |
|
95 | print 'showing' | |
|
96 | 95 | self.figure.show() |
|
97 | 96 | |
|
98 | 97 | self.plot() |
|
99 | 98 | plt.tight_layout() |
|
100 |
self.figure.canvas.manager.set_window_title('{} {} - |
|
|
101 |
|
|
|
99 | self.figure.canvas.manager.set_window_title('{} {} - {}'.format(self.title, self.CODE.upper(), | |
|
100 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) | |
|
102 | 101 | |
|
103 | 102 | if self.save: |
|
104 | 103 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, |
|
105 | 104 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) |
|
106 | 105 | print 'Saving figure: {}'.format(figname) |
|
107 | 106 | self.figure.savefig(figname) |
|
108 | 107 | |
|
109 | 108 | self.figure.canvas.draw() |
|
110 | 109 | |
|
111 | 110 | def plot(self): |
|
112 | 111 | |
|
113 | 112 | print 'plotting...{}'.format(self.CODE.upper()) |
|
114 | 113 | return |
|
115 | 114 | |
|
116 | 115 | def run(self): |
|
117 | 116 | |
|
118 | 117 | print '[Starting] {}'.format(self.name) |
|
118 | ||
|
119 | 119 | context = zmq.Context() |
|
120 | 120 | receiver = context.socket(zmq.SUB) |
|
121 | 121 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
122 | 122 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
123 | receiver.connect("ipc:///tmp/zmq.plots") | |
|
123 | if 'server' in self.kwargs['parent']: | |
|
124 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) | |
|
125 | else: | |
|
126 | receiver.connect("ipc:///tmp/zmq.plots") | |
|
124 | 127 | |
|
125 | 128 | while True: |
|
126 | 129 | try: |
|
127 | 130 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
128 | 131 | self.dataOut = self.data['dataOut'] |
|
129 | 132 | self.times = self.data['times'] |
|
130 | 133 | self.times.sort() |
|
131 | 134 | self.throttle_value = self.data['throttle'] |
|
132 | 135 | self.min_time = self.times[0] |
|
133 | 136 | self.max_time = self.times[-1] |
|
134 | 137 | |
|
135 | 138 | if self.isConfig is False: |
|
136 | 139 | self.setup() |
|
137 | 140 | self.isConfig = True |
|
138 | 141 | self.__plot() |
|
139 | 142 | |
|
140 | 143 | if self.data['ENDED'] is True: |
|
141 | 144 | self.isConfig = False |
|
142 | 145 | |
|
143 | 146 | except zmq.Again as e: |
|
144 | 147 | print 'Waiting for data...' |
|
145 | 148 | plt.pause(self.throttle_value) |
|
146 | 149 | |
|
147 | 150 | def close(self): |
|
148 | 151 | if self.dataOut: |
|
149 | 152 | self.__plot() |
|
150 | 153 | |
|
151 | 154 | |
|
152 | 155 | class PlotSpectraData(PlotData): |
|
153 | 156 | |
|
154 | 157 | CODE = 'spc' |
|
155 | 158 | colormap = 'jro' |
|
156 | 159 | CONFLATE = False |
|
157 | 160 | |
|
158 | 161 | def setup(self): |
|
159 | 162 | |
|
160 | 163 | ncolspan = 1 |
|
161 | 164 | colspan = 1 |
|
162 | 165 | self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9) |
|
163 | 166 | self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9) |
|
164 | 167 | self.width = 3.6*self.ncols |
|
165 | 168 | self.height = 3.2*self.nrows |
|
166 | 169 | if self.showprofile: |
|
167 | 170 | ncolspan = 3 |
|
168 | 171 | colspan = 2 |
|
169 | 172 | self.width += 1.2*self.ncols |
|
170 | 173 | |
|
171 | 174 | self.ylabel = 'Range [Km]' |
|
172 | 175 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
173 | 176 | |
|
174 | 177 | if self.figure is None: |
|
175 | 178 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
176 | 179 | edgecolor='k', |
|
177 | 180 | facecolor='w') |
|
178 | 181 | else: |
|
179 | 182 | self.figure.clf() |
|
180 | 183 | |
|
181 | 184 | n = 0 |
|
182 | 185 | for y in range(self.nrows): |
|
183 | 186 | for x in range(self.ncols): |
|
184 | 187 | if n >= self.dataOut.nChannels: |
|
185 | 188 | break |
|
186 | 189 | ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan) |
|
187 | 190 | if self.showprofile: |
|
188 | 191 | ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1) |
|
189 | 192 | |
|
190 | 193 | ax.firsttime = True |
|
191 | 194 | self.axes.append(ax) |
|
192 | 195 | n += 1 |
|
193 | 196 | |
|
194 | 197 | def plot(self): |
|
195 | 198 | |
|
196 | 199 | if self.xaxis == "frequency": |
|
197 | 200 | x = self.dataOut.getFreqRange(1)/1000. |
|
198 | 201 | xlabel = "Frequency (kHz)" |
|
199 | 202 | elif self.xaxis == "time": |
|
200 | 203 | x = self.dataOut.getAcfRange(1) |
|
201 | 204 | xlabel = "Time (ms)" |
|
202 | 205 | else: |
|
203 | 206 | x = self.dataOut.getVelRange(1) |
|
204 | 207 | xlabel = "Velocity (m/s)" |
|
205 | 208 | |
|
206 | 209 | y = self.dataOut.getHeiRange() |
|
207 | 210 | z = self.data[self.CODE] |
|
208 | 211 | |
|
209 | 212 | for n, ax in enumerate(self.axes): |
|
210 | 213 | |
|
211 | 214 | if ax.firsttime: |
|
212 | 215 | self.xmax = self.xmax if self.xmax else np.nanmax(x) |
|
213 | 216 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
214 | 217 | self.ymin = self.ymin if self.ymin else np.nanmin(y) |
|
215 | 218 | self.ymax = self.ymax if self.ymax else np.nanmax(y) |
|
216 | 219 | self.zmin = self.zmin if self.zmin else np.nanmin(z) |
|
217 | 220 | self.zmax = self.zmax if self.zmax else np.nanmax(z) |
|
218 | 221 | ax.plot = ax.pcolormesh(x, y, z[n].T, |
|
219 | 222 | vmin=self.zmin, |
|
220 | 223 | vmax=self.zmax, |
|
221 | 224 | cmap=plt.get_cmap(self.colormap) |
|
222 | 225 | ) |
|
223 | 226 | divider = make_axes_locatable(ax) |
|
224 | 227 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
225 | 228 | self.figure.add_axes(cax) |
|
226 | 229 | plt.colorbar(ax.plot, cax) |
|
227 | 230 | |
|
228 | 231 | ax.set_xlim(self.xmin, self.xmax) |
|
229 | 232 | ax.set_ylim(self.ymin, self.ymax) |
|
230 | 233 | |
|
231 | 234 | ax.set_ylabel(self.ylabel) |
|
232 | 235 | ax.set_xlabel(xlabel) |
|
233 | 236 | |
|
234 | 237 | ax.firsttime = False |
|
235 | 238 | |
|
236 | 239 | if self.showprofile: |
|
237 | 240 | ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] |
|
238 | 241 | ax.ax_profile.set_xlim(self.zmin, self.zmax) |
|
239 | 242 | ax.ax_profile.set_ylim(self.ymin, self.ymax) |
|
240 | 243 | ax.ax_profile.set_xlabel('dB') |
|
241 | 244 | ax.ax_profile.grid(b=True, axis='x') |
|
242 | 245 | ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, |
|
243 | 246 | color="k", linestyle="dashed", lw=2)[0] |
|
244 | 247 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] |
|
245 | 248 | else: |
|
246 | 249 | ax.plot.set_array(z[n].T.ravel()) |
|
247 | 250 | if self.showprofile: |
|
248 | 251 | ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y) |
|
249 | 252 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) |
|
250 | 253 | |
|
251 | 254 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), |
|
252 | 255 | size=8) |
|
253 | 256 | self.saveTime = self.max_time |
|
254 | 257 | |
|
255 | 258 | |
|
256 | 259 | class PlotCrossSpectraData(PlotData): |
|
257 | 260 | |
|
258 | 261 | CODE = 'cspc' |
|
259 | 262 | zmin_coh = None |
|
260 | 263 | zmax_coh = None |
|
261 | 264 | zmin_phase = None |
|
262 | 265 | zmax_phase = None |
|
263 | 266 | CONFLATE = False |
|
264 | 267 | |
|
265 | 268 | def setup(self): |
|
266 | 269 | |
|
267 | 270 | ncolspan = 1 |
|
268 | 271 | colspan = 1 |
|
269 | 272 | self.ncols = 2 |
|
270 | 273 | self.nrows = self.dataOut.nPairs |
|
271 | 274 | self.width = 3.6*self.ncols |
|
272 | 275 | self.height = 3.2*self.nrows |
|
273 | 276 | |
|
274 | 277 | self.ylabel = 'Range [Km]' |
|
275 | 278 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
276 | 279 | |
|
277 | 280 | if self.figure is None: |
|
278 | 281 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
279 | 282 | edgecolor='k', |
|
280 | 283 | facecolor='w') |
|
281 | 284 | else: |
|
282 | 285 | self.figure.clf() |
|
283 | 286 | |
|
284 | 287 | for y in range(self.nrows): |
|
285 | 288 | for x in range(self.ncols): |
|
286 | 289 | ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1) |
|
287 | 290 | ax.firsttime = True |
|
288 | 291 | self.axes.append(ax) |
|
289 | 292 | |
|
290 | 293 | def plot(self): |
|
291 | 294 | |
|
292 | 295 | if self.xaxis == "frequency": |
|
293 | 296 | x = self.dataOut.getFreqRange(1)/1000. |
|
294 | 297 | xlabel = "Frequency (kHz)" |
|
295 | 298 | elif self.xaxis == "time": |
|
296 | 299 | x = self.dataOut.getAcfRange(1) |
|
297 | 300 | xlabel = "Time (ms)" |
|
298 | 301 | else: |
|
299 | 302 | x = self.dataOut.getVelRange(1) |
|
300 | 303 | xlabel = "Velocity (m/s)" |
|
301 | 304 | |
|
302 | 305 | y = self.dataOut.getHeiRange() |
|
303 | 306 | z_coh = self.data['cspc_coh'] |
|
304 | 307 | z_phase = self.data['cspc_phase'] |
|
305 | 308 | |
|
306 | 309 | for n in range(self.nrows): |
|
307 | 310 | ax = self.axes[2*n] |
|
308 | 311 | ax1 = self.axes[2*n+1] |
|
309 | 312 | if ax.firsttime: |
|
310 | 313 | self.xmax = self.xmax if self.xmax else np.nanmax(x) |
|
311 | 314 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
312 | 315 | self.ymin = self.ymin if self.ymin else np.nanmin(y) |
|
313 | 316 | self.ymax = self.ymax if self.ymax else np.nanmax(y) |
|
314 | 317 | self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0 |
|
315 | 318 | self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0 |
|
316 | 319 | self.zmin_phase = self.zmin_phase if self.zmin_phase else -180 |
|
317 | 320 | self.zmax_phase = self.zmax_phase if self.zmax_phase else 180 |
|
318 | 321 | |
|
319 | 322 | ax.plot = ax.pcolormesh(x, y, z_coh[n].T, |
|
320 | 323 | vmin=self.zmin_coh, |
|
321 | 324 | vmax=self.zmax_coh, |
|
322 | 325 | cmap=plt.get_cmap(self.colormap_coh) |
|
323 | 326 | ) |
|
324 | 327 | divider = make_axes_locatable(ax) |
|
325 | 328 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
326 | 329 | self.figure.add_axes(cax) |
|
327 | 330 | plt.colorbar(ax.plot, cax) |
|
328 | 331 | |
|
329 | 332 | ax.set_xlim(self.xmin, self.xmax) |
|
330 | 333 | ax.set_ylim(self.ymin, self.ymax) |
|
331 | 334 | |
|
332 | 335 | ax.set_ylabel(self.ylabel) |
|
333 | 336 | ax.set_xlabel(xlabel) |
|
334 | 337 | ax.firsttime = False |
|
335 | 338 | |
|
336 | 339 | ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T, |
|
337 | 340 | vmin=self.zmin_phase, |
|
338 | 341 | vmax=self.zmax_phase, |
|
339 | 342 | cmap=plt.get_cmap(self.colormap_phase) |
|
340 | 343 | ) |
|
341 | 344 | divider = make_axes_locatable(ax1) |
|
342 | 345 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
343 | 346 | self.figure.add_axes(cax) |
|
344 | 347 | plt.colorbar(ax1.plot, cax) |
|
345 | 348 | |
|
346 | 349 | ax1.set_xlim(self.xmin, self.xmax) |
|
347 | 350 | ax1.set_ylim(self.ymin, self.ymax) |
|
348 | 351 | |
|
349 | 352 | ax1.set_ylabel(self.ylabel) |
|
350 | 353 | ax1.set_xlabel(xlabel) |
|
351 | 354 | ax1.firsttime = False |
|
352 | 355 | else: |
|
353 | 356 | ax.plot.set_array(z_coh[n].T.ravel()) |
|
354 | 357 | ax1.plot.set_array(z_phase[n].T.ravel()) |
|
355 | 358 | |
|
356 | 359 | ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) |
|
357 | 360 | ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) |
|
358 | 361 | self.saveTime = self.max_time |
|
359 | 362 | |
|
360 | 363 | |
|
361 | 364 | class PlotSpectraMeanData(PlotSpectraData): |
|
362 | 365 | |
|
363 | 366 | CODE = 'spc_mean' |
|
364 | 367 | colormap = 'jet' |
|
365 | 368 | |
|
366 | 369 | def plot(self): |
|
367 | 370 | |
|
368 | 371 | if self.xaxis == "frequency": |
|
369 | 372 | x = self.dataOut.getFreqRange(1)/1000. |
|
370 | 373 | xlabel = "Frequency (kHz)" |
|
371 | 374 | elif self.xaxis == "time": |
|
372 | 375 | x = self.dataOut.getAcfRange(1) |
|
373 | 376 | xlabel = "Time (ms)" |
|
374 | 377 | else: |
|
375 | 378 | x = self.dataOut.getVelRange(1) |
|
376 | 379 | xlabel = "Velocity (m/s)" |
|
377 | 380 | |
|
378 | 381 | y = self.dataOut.getHeiRange() |
|
379 | 382 | z = self.data['spc'] |
|
380 | 383 | mean = self.data['mean'][self.max_time] |
|
381 | 384 | |
|
382 | 385 | for n, ax in enumerate(self.axes): |
|
383 | 386 | |
|
384 | 387 | if ax.firsttime: |
|
385 | 388 | self.xmax = self.xmax if self.xmax else np.nanmax(x) |
|
386 | 389 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
387 | 390 | self.ymin = self.ymin if self.ymin else np.nanmin(y) |
|
388 | 391 | self.ymax = self.ymax if self.ymax else np.nanmax(y) |
|
389 | 392 | self.zmin = self.zmin if self.zmin else np.nanmin(z) |
|
390 | 393 | self.zmax = self.zmax if self.zmax else np.nanmax(z) |
|
391 | 394 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
392 | 395 | vmin=self.zmin, |
|
393 | 396 | vmax=self.zmax, |
|
394 | 397 | cmap=plt.get_cmap(self.colormap) |
|
395 | 398 | ) |
|
396 | 399 | ax.plt_dop = ax.plot(mean[n], y, |
|
397 | 400 | color='k')[0] |
|
398 | 401 | |
|
399 | 402 | divider = make_axes_locatable(ax) |
|
400 | 403 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
401 | 404 | self.figure.add_axes(cax) |
|
402 | 405 | plt.colorbar(ax.plt, cax) |
|
403 | 406 | |
|
404 | 407 | ax.set_xlim(self.xmin, self.xmax) |
|
405 | 408 | ax.set_ylim(self.ymin, self.ymax) |
|
406 | 409 | |
|
407 | 410 | ax.set_ylabel(self.ylabel) |
|
408 | 411 | ax.set_xlabel(xlabel) |
|
409 | 412 | |
|
410 | 413 | ax.firsttime = False |
|
411 | 414 | |
|
412 | 415 | if self.showprofile: |
|
413 | 416 | ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] |
|
414 | 417 | ax.ax_profile.set_xlim(self.zmin, self.zmax) |
|
415 | 418 | ax.ax_profile.set_ylim(self.ymin, self.ymax) |
|
416 | 419 | ax.ax_profile.set_xlabel('dB') |
|
417 | 420 | ax.ax_profile.grid(b=True, axis='x') |
|
418 | 421 | ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, |
|
419 | 422 | color="k", linestyle="dashed", lw=2)[0] |
|
420 | 423 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] |
|
421 | 424 | else: |
|
422 | 425 | ax.plt.set_array(z[n].T.ravel()) |
|
423 | 426 | ax.plt_dop.set_data(mean[n], y) |
|
424 | 427 | if self.showprofile: |
|
425 | 428 | ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y) |
|
426 | 429 | ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) |
|
427 | 430 | |
|
428 | 431 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), |
|
429 | 432 | size=8) |
|
430 | 433 | self.saveTime = self.max_time |
|
431 | 434 | |
|
432 | 435 | |
|
433 | 436 | class PlotRTIData(PlotData): |
|
434 | 437 | |
|
435 | 438 | CODE = 'rti' |
|
436 | 439 | colormap = 'jro' |
|
437 | 440 | |
|
438 | 441 | def setup(self): |
|
439 | 442 | self.ncols = 1 |
|
440 | 443 | self.nrows = self.dataOut.nChannels |
|
441 | 444 | self.width = 10 |
|
442 | 445 | self.height = 2.2*self.nrows if self.nrows<6 else 12 |
|
443 | 446 | if self.nrows==1: |
|
444 | 447 | self.height += 1 |
|
445 | 448 | self.ylabel = 'Range [Km]' |
|
446 | 449 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
447 | 450 | |
|
448 | 451 | if self.figure is None: |
|
449 | 452 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
450 | 453 | edgecolor='k', |
|
451 | 454 | facecolor='w') |
|
452 | 455 | else: |
|
453 | 456 | self.figure.clf() |
|
454 | 457 | self.axes = [] |
|
455 | 458 | |
|
456 | 459 | for n in range(self.nrows): |
|
457 | 460 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
458 | 461 | ax.firsttime = True |
|
459 | 462 | self.axes.append(ax) |
|
460 | 463 | |
|
461 | 464 | def plot(self): |
|
462 | 465 | |
|
463 | 466 | self.x = np.array(self.times) |
|
464 | 467 | self.y = self.dataOut.getHeiRange() |
|
465 | 468 | self.z = [] |
|
466 | 469 | |
|
467 | 470 | for ch in range(self.nrows): |
|
468 | 471 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) |
|
469 | 472 | |
|
470 | 473 | self.z = np.array(self.z) |
|
471 | 474 | for n, ax in enumerate(self.axes): |
|
472 | 475 | |
|
473 | 476 | x, y, z = self.fill_gaps(*self.decimate()) |
|
474 | 477 | xmin = self.min_time |
|
475 | 478 | xmax = xmin+self.xrange*60*60 |
|
476 | 479 | if ax.firsttime: |
|
477 | 480 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) |
|
478 | 481 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) |
|
479 | 482 | self.zmin = self.zmin if self.zmin else np.nanmin(self.z) |
|
480 | 483 | self.zmax = self.zmax if self.zmax else np.nanmax(self.z) |
|
481 | 484 | plot = ax.pcolormesh(x, y, z[n].T, |
|
482 | 485 | vmin=self.zmin, |
|
483 | 486 | vmax=self.zmax, |
|
484 | 487 | cmap=plt.get_cmap(self.colormap) |
|
485 | 488 | ) |
|
486 | 489 | divider = make_axes_locatable(ax) |
|
487 | 490 | cax = divider.new_horizontal(size='2%', pad=0.05) |
|
488 | 491 | self.figure.add_axes(cax) |
|
489 | 492 | plt.colorbar(plot, cax) |
|
490 | 493 | ax.set_ylim(self.ymin, self.ymax) |
|
491 | 494 | |
|
492 | 495 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
493 | 496 | ax.xaxis.set_major_locator(LinearLocator(6)) |
|
494 | 497 | |
|
495 | 498 | ax.set_ylabel(self.ylabel) |
|
496 | 499 | |
|
497 | 500 | # if self.xmin is None: |
|
498 | 501 | # xmin = self.min_time |
|
499 | 502 | # else: |
|
500 | 503 | # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), |
|
501 | 504 | # datetime.time(self.xmin, 0, 0))-d1970).total_seconds() |
|
502 | 505 | |
|
503 | 506 | ax.set_xlim(xmin, xmax) |
|
504 | 507 | ax.firsttime = False |
|
505 | 508 | else: |
|
506 | 509 | ax.collections.remove(ax.collections[0]) |
|
507 | 510 | ax.set_xlim(xmin, xmax) |
|
508 | 511 | plot = ax.pcolormesh(x, y, z[n].T, |
|
509 | 512 | vmin=self.zmin, |
|
510 | 513 | vmax=self.zmax, |
|
511 | 514 | cmap=plt.get_cmap(self.colormap) |
|
512 | 515 | ) |
|
513 | 516 | ax.set_title('{} {}'.format(self.titles[n], |
|
514 | 517 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), |
|
515 | 518 | size=8) |
|
516 | 519 | |
|
517 | 520 | self.saveTime = self.min_time |
|
518 | 521 | |
|
519 | 522 | |
|
520 | 523 | class PlotCOHData(PlotRTIData): |
|
521 | 524 | |
|
522 | 525 | CODE = 'coh' |
|
523 | 526 | |
|
524 | 527 | def setup(self): |
|
525 | 528 | |
|
526 | 529 | self.ncols = 1 |
|
527 | 530 | self.nrows = self.dataOut.nPairs |
|
528 | 531 | self.width = 10 |
|
529 | 532 | self.height = 2.2*self.nrows if self.nrows<6 else 12 |
|
530 | 533 | if self.nrows==1: |
|
531 | 534 | self.height += 1 |
|
532 | 535 | self.ylabel = 'Range [Km]' |
|
533 | 536 | self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList] |
|
534 | 537 | |
|
535 | 538 | if self.figure is None: |
|
536 | 539 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
537 | 540 | edgecolor='k', |
|
538 | 541 | facecolor='w') |
|
539 | 542 | else: |
|
540 | 543 | self.figure.clf() |
|
541 | 544 | self.axes = [] |
|
542 | 545 | |
|
543 | 546 | for n in range(self.nrows): |
|
544 | 547 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
545 | 548 | ax.firsttime = True |
|
546 | 549 | self.axes.append(ax) |
|
547 | 550 | |
|
548 | 551 | |
|
549 | 552 | class PlotNoiseData(PlotData): |
|
550 | 553 | CODE = 'noise' |
|
551 | 554 | |
|
552 | 555 | def setup(self): |
|
553 | 556 | |
|
554 | 557 | self.ncols = 1 |
|
555 | 558 | self.nrows = 1 |
|
556 | 559 | self.width = 10 |
|
557 | 560 | self.height = 3.2 |
|
558 | 561 | self.ylabel = 'Intensity [dB]' |
|
559 | 562 | self.titles = ['Noise'] |
|
560 | 563 | |
|
561 | 564 | if self.figure is None: |
|
562 | 565 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
563 | 566 | edgecolor='k', |
|
564 | 567 | facecolor='w') |
|
565 | 568 | else: |
|
566 | 569 | self.figure.clf() |
|
567 | 570 | self.axes = [] |
|
568 | 571 | |
|
569 | 572 | self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1) |
|
570 | 573 | self.ax.firsttime = True |
|
571 | 574 | |
|
572 | 575 | def plot(self): |
|
573 | 576 | |
|
574 | 577 | x = self.times |
|
575 | 578 | xmin = self.min_time |
|
576 | 579 | xmax = xmin+self.xrange*60*60 |
|
577 | 580 | if self.ax.firsttime: |
|
578 | 581 | for ch in self.dataOut.channelList: |
|
579 | 582 | y = [self.data[self.CODE][t][ch] for t in self.times] |
|
580 | 583 | self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
581 | 584 | self.ax.firsttime = False |
|
582 | 585 | self.ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
583 | 586 | self.ax.xaxis.set_major_locator(LinearLocator(6)) |
|
584 | 587 | self.ax.set_ylabel(self.ylabel) |
|
585 | 588 | plt.legend() |
|
586 | 589 | else: |
|
587 | 590 | for ch in self.dataOut.channelList: |
|
588 | 591 | y = [self.data[self.CODE][t][ch] for t in self.times] |
|
589 | 592 | self.ax.lines[ch].set_data(x, y) |
|
590 | 593 | |
|
591 | 594 | self.ax.set_xlim(xmin, xmax) |
|
592 | 595 | self.ax.set_ylim(min(y)-5, max(y)+5) |
|
593 | 596 | self.saveTime = self.min_time |
|
594 | 597 | |
|
595 | 598 | |
|
596 | 599 | class PlotWindProfilerData(PlotRTIData): |
|
600 | ||
|
597 | 601 | CODE = 'wind' |
|
598 | 602 | colormap = 'seismic' |
|
599 | 603 | |
|
600 | 604 | def setup(self): |
|
601 | 605 | self.ncols = 1 |
|
602 | 606 | self.nrows = self.dataOut.data_output.shape[0] |
|
603 | 607 | self.width = 10 |
|
604 | 608 | self.height = 2.2*self.nrows |
|
605 | 609 | self.ylabel = 'Height [Km]' |
|
606 | self.titles = ['Zonal' ,'Meridional', 'Vertical'] | |
|
610 | self.titles = ['Zonal Wind' ,'Meridional Wind', 'Vertical Wind'] | |
|
607 | 611 | self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] |
|
608 | 612 | self.windFactor = [1, 1, 100] |
|
609 | 613 | |
|
610 | 614 | if self.figure is None: |
|
611 | 615 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
612 | 616 | edgecolor='k', |
|
613 | 617 | facecolor='w') |
|
614 | 618 | else: |
|
615 | 619 | self.figure.clf() |
|
616 | 620 | self.axes = [] |
|
617 | 621 | |
|
618 | 622 | for n in range(self.nrows): |
|
619 | 623 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
620 | 624 | ax.firsttime = True |
|
621 | 625 | self.axes.append(ax) |
|
622 | 626 | |
|
623 | 627 | def plot(self): |
|
624 | 628 | |
|
625 | 629 | self.x = np.array(self.times) |
|
626 | 630 | self.y = self.dataOut.heightList |
|
627 | 631 | self.z = [] |
|
628 | 632 | |
|
629 | 633 | for ch in range(self.nrows): |
|
630 |
self.z.append([self.data[ |
|
|
634 | self.z.append([self.data['output'][t][ch] for t in self.times]) | |
|
631 | 635 | |
|
632 | 636 | self.z = np.array(self.z) |
|
633 | 637 | self.z = numpy.ma.masked_invalid(self.z) |
|
634 | 638 | |
|
635 | 639 | cmap=plt.get_cmap(self.colormap) |
|
636 |
cmap.set_bad(' |
|
|
640 | cmap.set_bad('black', 1.) | |
|
637 | 641 | |
|
638 | 642 | for n, ax in enumerate(self.axes): |
|
639 | 643 | x, y, z = self.fill_gaps(*self.decimate()) |
|
640 | 644 | xmin = self.min_time |
|
641 | 645 | xmax = xmin+self.xrange*60*60 |
|
642 | 646 | if ax.firsttime: |
|
643 | 647 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) |
|
644 | 648 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) |
|
645 | 649 | self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :])) |
|
646 | 650 | self.zmin = self.zmin if self.zmin else -self.zmax |
|
647 | 651 | |
|
648 | 652 | plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n], |
|
649 | 653 | vmin=self.zmin, |
|
650 | 654 | vmax=self.zmax, |
|
651 | 655 | cmap=cmap |
|
652 | 656 | ) |
|
653 | 657 | divider = make_axes_locatable(ax) |
|
654 | 658 | cax = divider.new_horizontal(size='2%', pad=0.05) |
|
655 | cax.set_ylabel(self.clabels[n]) | |
|
656 | 659 | self.figure.add_axes(cax) |
|
657 | plt.colorbar(plot, cax) | |
|
660 | cb = plt.colorbar(plot, cax) | |
|
661 | cb.set_label(self.clabels[n]) | |
|
658 | 662 | ax.set_ylim(self.ymin, self.ymax) |
|
659 | 663 | |
|
660 | 664 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
661 | 665 | ax.xaxis.set_major_locator(LinearLocator(6)) |
|
662 | 666 | |
|
663 | 667 | ax.set_ylabel(self.ylabel) |
|
664 | 668 | |
|
665 | 669 | ax.set_xlim(xmin, xmax) |
|
666 | 670 | ax.firsttime = False |
|
667 | 671 | else: |
|
668 | 672 | ax.collections.remove(ax.collections[0]) |
|
669 | 673 | ax.set_xlim(xmin, xmax) |
|
670 | 674 | plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n], |
|
671 | 675 | vmin=self.zmin, |
|
672 | 676 | vmax=self.zmax, |
|
673 | 677 | cmap=plt.get_cmap(self.colormap) |
|
674 | 678 | ) |
|
675 | 679 | ax.set_title('{} {}'.format(self.titles[n], |
|
676 | 680 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), |
|
677 | 681 | size=8) |
|
678 | 682 | |
|
679 | 683 | self.saveTime = self.min_time |
|
680 | 684 | |
|
681 | 685 | |
|
682 | 686 | class PlotSNRData(PlotRTIData): |
|
683 | 687 | CODE = 'snr' |
|
684 | 688 | colormap = 'jet' |
|
685 | 689 | |
|
686 | 690 | class PlotDOPData(PlotRTIData): |
|
687 | 691 | CODE = 'dop' |
|
688 | 692 | colormap = 'jet' |
|
689 | 693 | |
|
690 | 694 | |
|
691 | 695 | class PlotPHASEData(PlotCOHData): |
|
692 | 696 | CODE = 'phase' |
|
693 | 697 | colormap = 'seismic' |
|
698 | ||
|
699 | ||
|
700 | class PlotSkyMapData(PlotData): | |
|
701 | ||
|
702 | CODE = 'met' | |
|
703 | ||
|
704 | def setup(self): | |
|
705 | ||
|
706 | self.ncols = 1 | |
|
707 | self.nrows = 1 | |
|
708 | self.width = 7.2 | |
|
709 | self.height = 7.2 | |
|
710 | ||
|
711 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
|
712 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
|
713 | ||
|
714 | if self.figure is None: | |
|
715 | self.figure = plt.figure(figsize=(self.width, self.height), | |
|
716 | edgecolor='k', | |
|
717 | facecolor='w') | |
|
718 | else: | |
|
719 | self.figure.clf() | |
|
720 | ||
|
721 | self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True) | |
|
722 | self.ax.firsttime = True | |
|
723 | ||
|
724 | ||
|
725 | def plot(self): | |
|
726 | ||
|
727 | arrayParameters = np.concatenate([self.data['param'][t] for t in self.times]) | |
|
728 | error = arrayParameters[:,-1] | |
|
729 | indValid = numpy.where(error == 0)[0] | |
|
730 | finalMeteor = arrayParameters[indValid,:] | |
|
731 | finalAzimuth = finalMeteor[:,3] | |
|
732 | finalZenith = finalMeteor[:,4] | |
|
733 | ||
|
734 | x = finalAzimuth*numpy.pi/180 | |
|
735 | y = finalZenith | |
|
736 | ||
|
737 | if self.ax.firsttime: | |
|
738 | self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0] | |
|
739 | self.ax.set_ylim(0,90) | |
|
740 | self.ax.set_yticks(numpy.arange(0,90,20)) | |
|
741 | self.ax.set_xlabel(self.xlabel) | |
|
742 | self.ax.set_ylabel(self.ylabel) | |
|
743 | self.ax.yaxis.labelpad = 40 | |
|
744 | self.ax.firsttime = False | |
|
745 | else: | |
|
746 | self.ax.plot.set_data(x, y) | |
|
747 | ||
|
748 | ||
|
749 | dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S') | |
|
750 | dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S') | |
|
751 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
|
752 | dt2, | |
|
753 | len(x)) | |
|
754 | self.ax.set_title(title, size=8) | |
|
755 | ||
|
756 | self.saveTime = self.max_time |
@@ -1,315 +1,318 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: jroproc_base.py 1 2012-11-12 18:56:07Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | class ProcessingUnit(object): |
|
8 | 8 | |
|
9 | 9 | """ |
|
10 | 10 | Esta es la clase base para el procesamiento de datos. |
|
11 | 11 | |
|
12 | 12 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: |
|
13 | 13 | - Metodos internos (callMethod) |
|
14 | 14 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos |
|
15 | 15 | tienen que ser agreagados con el metodo "add". |
|
16 | 16 | |
|
17 | 17 | """ |
|
18 | 18 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
19 | 19 | dataIn = None |
|
20 | 20 | dataInList = [] |
|
21 | 21 | |
|
22 | 22 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
23 | 23 | dataOut = None |
|
24 | 24 | |
|
25 | 25 | operations2RunDict = None |
|
26 | 26 | |
|
27 | 27 | isConfig = False |
|
28 | 28 | |
|
29 | 29 | |
|
30 | 30 | def __init__(self, *args, **kwargs): |
|
31 | 31 | |
|
32 | 32 | self.dataIn = None |
|
33 | 33 | self.dataInList = [] |
|
34 | 34 | |
|
35 | 35 | self.dataOut = None |
|
36 | 36 | |
|
37 | 37 | self.operations2RunDict = {} |
|
38 | 38 | self.operationKwargs = {} |
|
39 | 39 | |
|
40 | 40 | self.isConfig = False |
|
41 | 41 | |
|
42 | 42 | self.args = args |
|
43 | 43 | self.kwargs = kwargs |
|
44 | 44 | |
|
45 | 45 | def addOperationKwargs(self, objId, **kwargs): |
|
46 | 46 | ''' |
|
47 | 47 | ''' |
|
48 | 48 | |
|
49 | 49 | self.operationKwargs[objId] = kwargs |
|
50 | 50 | |
|
51 | 51 | |
|
52 | 52 | def addOperation(self, opObj, objId): |
|
53 | 53 | |
|
54 | 54 | """ |
|
55 | 55 | Agrega un objeto del tipo "Operation" (opObj) a la lista de objetos "self.objectList" y retorna el |
|
56 | 56 | identificador asociado a este objeto. |
|
57 | 57 | |
|
58 | 58 | Input: |
|
59 | 59 | |
|
60 | 60 | object : objeto de la clase "Operation" |
|
61 | 61 | |
|
62 | 62 | Return: |
|
63 | 63 | |
|
64 | 64 | objId : identificador del objeto, necesario para ejecutar la operacion |
|
65 | 65 | """ |
|
66 | 66 | |
|
67 | 67 | self.operations2RunDict[objId] = opObj |
|
68 | 68 | |
|
69 | 69 | return objId |
|
70 | 70 | |
|
71 | 71 | def getOperationObj(self, objId): |
|
72 | 72 | |
|
73 | 73 | if objId not in self.operations2RunDict.keys(): |
|
74 | 74 | return None |
|
75 | 75 | |
|
76 | 76 | return self.operations2RunDict[objId] |
|
77 | 77 | |
|
78 | 78 | def operation(self, **kwargs): |
|
79 | 79 | |
|
80 | 80 | """ |
|
81 | 81 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los |
|
82 | 82 | atributos del objeto dataOut |
|
83 | 83 | |
|
84 | 84 | Input: |
|
85 | 85 | |
|
86 | 86 | **kwargs : Diccionario de argumentos de la funcion a ejecutar |
|
87 | 87 | """ |
|
88 | 88 | |
|
89 | 89 | raise NotImplementedError |
|
90 | 90 | |
|
91 | 91 | def callMethod(self, name, opId): |
|
92 | 92 | |
|
93 | 93 | """ |
|
94 | 94 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. |
|
95 | 95 | |
|
96 | 96 | Input: |
|
97 | 97 | name : nombre del metodo a ejecutar |
|
98 | 98 | |
|
99 | 99 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
100 | 100 | |
|
101 | 101 | """ |
|
102 | 102 | |
|
103 | 103 | #Checking the inputs |
|
104 | 104 | if name == 'run': |
|
105 | 105 | |
|
106 | 106 | if not self.checkInputs(): |
|
107 | 107 | self.dataOut.flagNoData = True |
|
108 | 108 | return False |
|
109 | 109 | else: |
|
110 | 110 | #Si no es un metodo RUN la entrada es la misma dataOut (interna) |
|
111 | 111 | if self.dataOut is not None and self.dataOut.isEmpty(): |
|
112 | 112 | return False |
|
113 | 113 | |
|
114 | 114 | #Getting the pointer to method |
|
115 | 115 | methodToCall = getattr(self, name) |
|
116 | 116 | |
|
117 | 117 | #Executing the self method |
|
118 | 118 | |
|
119 | 119 | if hasattr(self, 'mp'): |
|
120 | 120 | if name=='run': |
|
121 | 121 | if self.mp is False: |
|
122 | 122 | self.mp = True |
|
123 | 123 | self.start() |
|
124 |
else: |
|
|
124 | else: | |
|
125 | self.operationKwargs[opId]['parent'] = self.kwargs | |
|
125 | 126 | methodToCall(**self.operationKwargs[opId]) |
|
126 | 127 | else: |
|
127 | 128 | if name=='run': |
|
128 | 129 | methodToCall(**self.kwargs) |
|
129 |
else: |
|
|
130 | else: | |
|
130 | 131 | methodToCall(**self.operationKwargs[opId]) |
|
131 | 132 | |
|
132 | 133 | if self.dataOut is None: |
|
133 | 134 | return False |
|
134 | 135 | |
|
135 | 136 | if self.dataOut.isEmpty(): |
|
136 | 137 | return False |
|
137 | 138 | |
|
138 | 139 | return True |
|
139 | 140 | |
|
140 | 141 | def callObject(self, objId): |
|
141 | 142 | |
|
142 | 143 | """ |
|
143 | 144 | Ejecuta la operacion asociada al identificador del objeto "objId" |
|
144 | 145 | |
|
145 | 146 | Input: |
|
146 | 147 | |
|
147 | 148 | objId : identificador del objeto a ejecutar |
|
148 | 149 | |
|
149 | 150 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
150 | 151 | |
|
151 | 152 | Return: |
|
152 | 153 | |
|
153 | 154 | None |
|
154 | 155 | """ |
|
155 | 156 | |
|
156 | 157 | if self.dataOut is not None and self.dataOut.isEmpty(): |
|
157 | 158 | return False |
|
158 | 159 | |
|
159 | 160 | externalProcObj = self.operations2RunDict[objId] |
|
160 | 161 | |
|
161 | 162 | if hasattr(externalProcObj, 'mp'): |
|
162 | 163 | if externalProcObj.mp is False: |
|
164 | externalProcObj.kwargs['parent'] = self.kwargs | |
|
163 | 165 | self.operationKwargs[objId] = externalProcObj.kwargs |
|
164 | 166 | externalProcObj.mp = True |
|
165 | 167 | externalProcObj.start() |
|
166 | 168 | else: |
|
167 | 169 | externalProcObj.run(self.dataOut, **externalProcObj.kwargs) |
|
168 | 170 | self.operationKwargs[objId] = externalProcObj.kwargs |
|
171 | ||
|
169 | 172 | |
|
170 | 173 | return True |
|
171 | 174 | |
|
172 | 175 | def call(self, opType, opName=None, opId=None): |
|
173 | 176 | |
|
174 | 177 | """ |
|
175 | 178 | Return True si ejecuta la operacion interna nombrada "opName" o la operacion externa |
|
176 | 179 | identificada con el id "opId"; con los argumentos "**kwargs". |
|
177 | 180 | |
|
178 | 181 | False si la operacion no se ha ejecutado. |
|
179 | 182 | |
|
180 | 183 | Input: |
|
181 | 184 | |
|
182 | 185 | opType : Puede ser "self" o "external" |
|
183 | 186 | |
|
184 | 187 | Depende del tipo de operacion para llamar a:callMethod or callObject: |
|
185 | 188 | |
|
186 | 189 | 1. If opType = "self": Llama a un metodo propio de esta clase: |
|
187 | 190 | |
|
188 | 191 | name_method = getattr(self, name) |
|
189 | 192 | name_method(**kwargs) |
|
190 | 193 | |
|
191 | 194 | |
|
192 | 195 | 2. If opType = "other" o"external": Llama al metodo "run()" de una instancia de la |
|
193 | 196 | clase "Operation" o de un derivado de ella: |
|
194 | 197 | |
|
195 | 198 | instanceName = self.operationList[opId] |
|
196 | 199 | instanceName.run(**kwargs) |
|
197 | 200 | |
|
198 | 201 | opName : Si la operacion es interna (opType = 'self'), entonces el "opName" sera |
|
199 | 202 | usada para llamar a un metodo interno de la clase Processing |
|
200 | 203 | |
|
201 | 204 | opId : Si la operacion es externa (opType = 'other' o 'external), entonces el |
|
202 | 205 | "opId" sera usada para llamar al metodo "run" de la clase Operation |
|
203 | 206 | registrada anteriormente con ese Id |
|
204 | 207 | |
|
205 | 208 | Exception: |
|
206 | 209 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: |
|
207 | 210 | "addOperation" e identificado con el valor "opId" = el id de la operacion. |
|
208 | 211 | De lo contrario retornara un error del tipo ValueError |
|
209 | 212 | |
|
210 | 213 | """ |
|
211 | 214 | |
|
212 | 215 | if opType == 'self': |
|
213 | 216 | |
|
214 | 217 | if not opName: |
|
215 | 218 | raise ValueError, "opName parameter should be defined" |
|
216 | 219 | |
|
217 | 220 | sts = self.callMethod(opName, opId) |
|
218 | 221 | |
|
219 | 222 | elif opType == 'other' or opType == 'external' or opType == 'plotter': |
|
220 | 223 | |
|
221 | 224 | if not opId: |
|
222 | 225 | raise ValueError, "opId parameter should be defined" |
|
223 | 226 | |
|
224 | 227 | if opId not in self.operations2RunDict.keys(): |
|
225 | 228 | raise ValueError, "Any operation with id=%s has been added" %str(opId) |
|
226 | 229 | |
|
227 | 230 | sts = self.callObject(opId) |
|
228 | 231 | |
|
229 | 232 | else: |
|
230 | 233 | raise ValueError, "opType should be 'self', 'external' or 'plotter'; and not '%s'" %opType |
|
231 | 234 | |
|
232 | 235 | return sts |
|
233 | 236 | |
|
234 | 237 | def setInput(self, dataIn): |
|
235 | 238 | |
|
236 | 239 | self.dataIn = dataIn |
|
237 | 240 | self.dataInList.append(dataIn) |
|
238 | 241 | |
|
239 | 242 | def getOutputObj(self): |
|
240 | 243 | |
|
241 | 244 | return self.dataOut |
|
242 | 245 | |
|
243 | 246 | def checkInputs(self): |
|
244 | 247 | |
|
245 | 248 | for thisDataIn in self.dataInList: |
|
246 | 249 | |
|
247 | 250 | if thisDataIn.isEmpty(): |
|
248 | 251 | return False |
|
249 | 252 | |
|
250 | 253 | return True |
|
251 | 254 | |
|
252 | 255 | def setup(self): |
|
253 | 256 | |
|
254 | 257 | raise NotImplementedError |
|
255 | 258 | |
|
256 | 259 | def run(self): |
|
257 | 260 | |
|
258 | 261 | raise NotImplementedError |
|
259 | 262 | |
|
260 | 263 | def close(self): |
|
261 | 264 | #Close every thread, queue or any other object here is it is neccesary. |
|
262 | 265 | return |
|
263 | 266 | |
|
264 | 267 | class Operation(object): |
|
265 | 268 | |
|
266 | 269 | """ |
|
267 | 270 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit |
|
268 | 271 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de |
|
269 | 272 | acumulacion dentro de esta clase |
|
270 | 273 | |
|
271 | 274 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) |
|
272 | 275 | |
|
273 | 276 | """ |
|
274 | 277 | |
|
275 | 278 | __buffer = None |
|
276 | 279 | isConfig = False |
|
277 | 280 | |
|
278 | 281 | def __init__(self, **kwargs): |
|
279 | 282 | |
|
280 | 283 | self.__buffer = None |
|
281 | 284 | self.isConfig = False |
|
282 | 285 | self.kwargs = kwargs |
|
283 | 286 | |
|
284 | 287 | def setup(self): |
|
285 | 288 | |
|
286 | 289 | self.isConfig = True |
|
287 | 290 | |
|
288 | 291 | raise NotImplementedError |
|
289 | 292 | |
|
290 | 293 | def run(self, dataIn, **kwargs): |
|
291 | 294 | |
|
292 | 295 | """ |
|
293 | 296 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
294 | 297 | atributos del objeto dataIn. |
|
295 | 298 | |
|
296 | 299 | Input: |
|
297 | 300 | |
|
298 | 301 | dataIn : objeto del tipo JROData |
|
299 | 302 | |
|
300 | 303 | Return: |
|
301 | 304 | |
|
302 | 305 | None |
|
303 | 306 | |
|
304 | 307 | Affected: |
|
305 | 308 | __buffer : buffer de recepcion de datos. |
|
306 | 309 | |
|
307 | 310 | """ |
|
308 | 311 | if not self.isConfig: |
|
309 | 312 | self.setup(**kwargs) |
|
310 | 313 | |
|
311 | 314 | raise NotImplementedError |
|
312 | 315 | |
|
313 | 316 | def close(self): |
|
314 | 317 | |
|
315 | 318 | pass |
@@ -1,445 +1,450 | |||
|
1 | 1 | ''' |
|
2 | 2 | @author: Juan C. Espinoza |
|
3 | 3 | ''' |
|
4 | 4 | |
|
5 | 5 | import time |
|
6 | 6 | import json |
|
7 | 7 | import numpy |
|
8 | 8 | import paho.mqtt.client as mqtt |
|
9 | 9 | import zmq |
|
10 | 10 | import cPickle as pickle |
|
11 | 11 | import datetime |
|
12 | 12 | from zmq.utils.monitor import recv_monitor_message |
|
13 | 13 | from functools import wraps |
|
14 | 14 | from threading import Thread |
|
15 | 15 | from multiprocessing import Process |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit |
|
18 | 18 | |
|
19 | 19 | MAXNUMX = 100 |
|
20 | 20 | MAXNUMY = 100 |
|
21 | 21 | |
|
22 | 22 | class PrettyFloat(float): |
|
23 | 23 | def __repr__(self): |
|
24 | 24 | return '%.2f' % self |
|
25 | 25 | |
|
26 | 26 | def roundFloats(obj): |
|
27 | 27 | if isinstance(obj, list): |
|
28 | 28 | return map(roundFloats, obj) |
|
29 | 29 | elif isinstance(obj, float): |
|
30 | 30 | return round(obj, 2) |
|
31 | 31 | |
|
32 | 32 | def decimate(z): |
|
33 | 33 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
34 | 34 | |
|
35 | 35 | dy = int(len(z[0])/MAXNUMY) + 1 |
|
36 | 36 | |
|
37 | 37 | return z[::, ::dy] |
|
38 | 38 | |
|
39 | 39 | class throttle(object): |
|
40 | 40 | """Decorator that prevents a function from being called more than once every |
|
41 | 41 | time period. |
|
42 | 42 | To create a function that cannot be called more than once a minute, but |
|
43 | 43 | will sleep until it can be called: |
|
44 | 44 | @throttle(minutes=1) |
|
45 | 45 | def foo(): |
|
46 | 46 | pass |
|
47 | 47 | |
|
48 | 48 | for i in range(10): |
|
49 | 49 | foo() |
|
50 | 50 | print "This function has run %s times." % i |
|
51 | 51 | """ |
|
52 | 52 | |
|
53 | 53 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
54 | 54 | self.throttle_period = datetime.timedelta( |
|
55 | 55 | seconds=seconds, minutes=minutes, hours=hours |
|
56 | 56 | ) |
|
57 | 57 | |
|
58 | 58 | self.time_of_last_call = datetime.datetime.min |
|
59 | 59 | |
|
60 | 60 | def __call__(self, fn): |
|
61 | 61 | @wraps(fn) |
|
62 | 62 | def wrapper(*args, **kwargs): |
|
63 | 63 | now = datetime.datetime.now() |
|
64 | 64 | time_since_last_call = now - self.time_of_last_call |
|
65 | 65 | time_left = self.throttle_period - time_since_last_call |
|
66 | 66 | |
|
67 | 67 | if time_left > datetime.timedelta(seconds=0): |
|
68 | 68 | return |
|
69 | 69 | |
|
70 | 70 | self.time_of_last_call = datetime.datetime.now() |
|
71 | 71 | return fn(*args, **kwargs) |
|
72 | 72 | |
|
73 | 73 | return wrapper |
|
74 | 74 | |
|
75 | 75 | |
|
76 | 76 | class PublishData(Operation): |
|
77 | 77 | """Clase publish.""" |
|
78 | 78 | |
|
79 | 79 | def __init__(self, **kwargs): |
|
80 | 80 | """Inicio.""" |
|
81 | 81 | Operation.__init__(self, **kwargs) |
|
82 | 82 | self.isConfig = False |
|
83 | 83 | self.client = None |
|
84 | 84 | self.zeromq = None |
|
85 | 85 | self.mqtt = None |
|
86 | 86 | |
|
87 | 87 | def on_disconnect(self, client, userdata, rc): |
|
88 | 88 | if rc != 0: |
|
89 | 89 | print("Unexpected disconnection.") |
|
90 | 90 | self.connect() |
|
91 | 91 | |
|
92 | 92 | def connect(self): |
|
93 | 93 | print 'trying to connect' |
|
94 | 94 | try: |
|
95 | 95 | self.client.connect( |
|
96 | 96 | host=self.host, |
|
97 | 97 | port=self.port, |
|
98 | 98 | keepalive=60*10, |
|
99 | 99 | bind_address='') |
|
100 | 100 | self.client.loop_start() |
|
101 | 101 | # self.client.publish( |
|
102 | 102 | # self.topic + 'SETUP', |
|
103 | 103 | # json.dumps(setup), |
|
104 | 104 | # retain=True |
|
105 | 105 | # ) |
|
106 | 106 | except: |
|
107 | 107 | print "MQTT Conection error." |
|
108 | 108 | self.client = False |
|
109 | 109 | |
|
110 | 110 | def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, **kwargs): |
|
111 | 111 | self.counter = 0 |
|
112 | 112 | self.topic = kwargs.get('topic', 'schain') |
|
113 | 113 | self.delay = kwargs.get('delay', 0) |
|
114 | 114 | self.plottype = kwargs.get('plottype', 'spectra') |
|
115 | 115 | self.host = kwargs.get('host', "10.10.10.82") |
|
116 | 116 | self.port = kwargs.get('port', 3000) |
|
117 | 117 | self.clientId = clientId |
|
118 | 118 | self.cnt = 0 |
|
119 | 119 | self.zeromq = zeromq |
|
120 | 120 | self.mqtt = kwargs.get('plottype', 0) |
|
121 | 121 | self.client = None |
|
122 | 122 | setup = [] |
|
123 | 123 | if mqtt is 1: |
|
124 | 124 | self.client = mqtt.Client( |
|
125 | 125 | client_id=self.clientId + self.topic + 'SCHAIN', |
|
126 | 126 | clean_session=True) |
|
127 | 127 | self.client.on_disconnect = self.on_disconnect |
|
128 | 128 | self.connect() |
|
129 | 129 | for plot in self.plottype: |
|
130 | 130 | setup.append({ |
|
131 | 131 | 'plot': plot, |
|
132 | 132 | 'topic': self.topic + plot, |
|
133 | 133 | 'title': getattr(self, plot + '_' + 'title', False), |
|
134 | 134 | 'xlabel': getattr(self, plot + '_' + 'xlabel', False), |
|
135 | 135 | 'ylabel': getattr(self, plot + '_' + 'ylabel', False), |
|
136 | 136 | 'xrange': getattr(self, plot + '_' + 'xrange', False), |
|
137 | 137 | 'yrange': getattr(self, plot + '_' + 'yrange', False), |
|
138 | 138 | 'zrange': getattr(self, plot + '_' + 'zrange', False), |
|
139 | 139 | }) |
|
140 | 140 | if zeromq is 1: |
|
141 | 141 | context = zmq.Context() |
|
142 | 142 | self.zmq_socket = context.socket(zmq.PUSH) |
|
143 | 143 | server = kwargs.get('server', 'zmq.pipe') |
|
144 | 144 | |
|
145 | 145 | if 'tcp://' in server: |
|
146 | 146 | address = server |
|
147 | 147 | else: |
|
148 | 148 | address = 'ipc:///tmp/%s' % server |
|
149 | 149 | |
|
150 | 150 | self.zmq_socket.connect(address) |
|
151 | 151 | time.sleep(1) |
|
152 | 152 | |
|
153 | 153 | def publish_data(self): |
|
154 | 154 | self.dataOut.finished = False |
|
155 | 155 | if self.mqtt is 1: |
|
156 | 156 | yData = self.dataOut.heightList[:2].tolist() |
|
157 | 157 | if self.plottype == 'spectra': |
|
158 | 158 | data = getattr(self.dataOut, 'data_spc') |
|
159 | 159 | z = data/self.dataOut.normFactor |
|
160 | 160 | zdB = 10*numpy.log10(z) |
|
161 | 161 | xlen, ylen = zdB[0].shape |
|
162 | 162 | dx = int(xlen/MAXNUMX) + 1 |
|
163 | 163 | dy = int(ylen/MAXNUMY) + 1 |
|
164 | 164 | Z = [0 for i in self.dataOut.channelList] |
|
165 | 165 | for i in self.dataOut.channelList: |
|
166 | 166 | Z[i] = zdB[i][::dx, ::dy].tolist() |
|
167 | 167 | payload = { |
|
168 | 168 | 'timestamp': self.dataOut.utctime, |
|
169 | 169 | 'data': roundFloats(Z), |
|
170 | 170 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
171 | 171 | 'interval': self.dataOut.getTimeInterval(), |
|
172 | 172 | 'type': self.plottype, |
|
173 | 173 | 'yData': yData |
|
174 | 174 | } |
|
175 | 175 | # print payload |
|
176 | 176 | |
|
177 | 177 | elif self.plottype in ('rti', 'power'): |
|
178 | 178 | data = getattr(self.dataOut, 'data_spc') |
|
179 | 179 | z = data/self.dataOut.normFactor |
|
180 | 180 | avg = numpy.average(z, axis=1) |
|
181 | 181 | avgdB = 10*numpy.log10(avg) |
|
182 | 182 | xlen, ylen = z[0].shape |
|
183 | 183 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
184 | 184 | AVG = [0 for i in self.dataOut.channelList] |
|
185 | 185 | for i in self.dataOut.channelList: |
|
186 | 186 | AVG[i] = avgdB[i][::dy].tolist() |
|
187 | 187 | payload = { |
|
188 | 188 | 'timestamp': self.dataOut.utctime, |
|
189 | 189 | 'data': roundFloats(AVG), |
|
190 | 190 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
191 | 191 | 'interval': self.dataOut.getTimeInterval(), |
|
192 | 192 | 'type': self.plottype, |
|
193 | 193 | 'yData': yData |
|
194 | 194 | } |
|
195 | 195 | elif self.plottype == 'noise': |
|
196 | 196 | noise = self.dataOut.getNoise()/self.dataOut.normFactor |
|
197 | 197 | noisedB = 10*numpy.log10(noise) |
|
198 | 198 | payload = { |
|
199 | 199 | 'timestamp': self.dataOut.utctime, |
|
200 | 200 | 'data': roundFloats(noisedB.reshape(-1, 1).tolist()), |
|
201 | 201 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
202 | 202 | 'interval': self.dataOut.getTimeInterval(), |
|
203 | 203 | 'type': self.plottype, |
|
204 | 204 | 'yData': yData |
|
205 | 205 | } |
|
206 | 206 | elif self.plottype == 'snr': |
|
207 | 207 | data = getattr(self.dataOut, 'data_SNR') |
|
208 | 208 | avgdB = 10*numpy.log10(data) |
|
209 | 209 | |
|
210 | 210 | ylen = data[0].size |
|
211 | 211 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
212 | 212 | AVG = [0 for i in self.dataOut.channelList] |
|
213 | 213 | for i in self.dataOut.channelList: |
|
214 | 214 | AVG[i] = avgdB[i][::dy].tolist() |
|
215 | 215 | payload = { |
|
216 | 216 | 'timestamp': self.dataOut.utctime, |
|
217 | 217 | 'data': roundFloats(AVG), |
|
218 | 218 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
219 | 219 | 'type': self.plottype, |
|
220 | 220 | 'yData': yData |
|
221 | 221 | } |
|
222 | 222 | else: |
|
223 | 223 | print "Tipo de grafico invalido" |
|
224 | 224 | payload = { |
|
225 | 225 | 'data': 'None', |
|
226 | 226 | 'timestamp': 'None', |
|
227 | 227 | 'type': None |
|
228 | 228 | } |
|
229 | 229 | # print 'Publishing data to {}'.format(self.host) |
|
230 | 230 | self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0) |
|
231 | 231 | |
|
232 | 232 | if self.zeromq is 1: |
|
233 | 233 | print '[Sending] {} - {}'.format(self.dataOut.type, self.dataOut.datatime) |
|
234 | 234 | self.zmq_socket.send_pyobj(self.dataOut) |
|
235 | 235 | |
|
236 | 236 | def run(self, dataOut, **kwargs): |
|
237 | 237 | self.dataOut = dataOut |
|
238 | 238 | if not self.isConfig: |
|
239 | 239 | self.setup(**kwargs) |
|
240 | 240 | self.isConfig = True |
|
241 | 241 | |
|
242 | 242 | self.publish_data() |
|
243 | 243 | time.sleep(self.delay) |
|
244 | 244 | |
|
245 | 245 | def close(self): |
|
246 | 246 | if self.zeromq is 1: |
|
247 | 247 | self.dataOut.finished = True |
|
248 | 248 | self.zmq_socket.send_pyobj(self.dataOut) |
|
249 | 249 | |
|
250 | 250 | if self.client: |
|
251 | 251 | self.client.loop_stop() |
|
252 | 252 | self.client.disconnect() |
|
253 | 253 | |
|
254 | 254 | |
|
255 | 255 | class ReceiverData(ProcessingUnit, Process): |
|
256 | 256 | |
|
257 | 257 | throttle_value = 5 |
|
258 | 258 | |
|
259 | 259 | def __init__(self, **kwargs): |
|
260 | 260 | |
|
261 | 261 | ProcessingUnit.__init__(self, **kwargs) |
|
262 | 262 | Process.__init__(self) |
|
263 | 263 | self.mp = False |
|
264 | 264 | self.isConfig = False |
|
265 | 265 | self.isWebConfig = False |
|
266 | 266 | self.plottypes =[] |
|
267 | 267 | self.connections = 0 |
|
268 | 268 | server = kwargs.get('server', 'zmq.pipe') |
|
269 | 269 | plot_server = kwargs.get('plot_server', 'zmq.web') |
|
270 | 270 | if 'tcp://' in server: |
|
271 | 271 | address = server |
|
272 | 272 | else: |
|
273 | 273 | address = 'ipc:///tmp/%s' % server |
|
274 | 274 | |
|
275 | 275 | if 'tcp://' in plot_server: |
|
276 | 276 | plot_address = plot_server |
|
277 | 277 | else: |
|
278 | 278 | plot_address = 'ipc:///tmp/%s' % plot_server |
|
279 | 279 | |
|
280 | 280 | self.address = address |
|
281 | 281 | self.plot_address = plot_address |
|
282 | 282 | self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')] |
|
283 | 283 | self.realtime = kwargs.get('realtime', False) |
|
284 | 284 | self.throttle_value = kwargs.get('throttle', 5) |
|
285 | 285 | self.sendData = self.initThrottle(self.throttle_value) |
|
286 | 286 | self.setup() |
|
287 | 287 | |
|
288 | 288 | def setup(self): |
|
289 | 289 | |
|
290 | 290 | self.data = {} |
|
291 | 291 | self.data['times'] = [] |
|
292 | 292 | for plottype in self.plottypes: |
|
293 | 293 | self.data[plottype] = {} |
|
294 | 294 | self.data['noise'] = {} |
|
295 | 295 | self.data['throttle'] = self.throttle_value |
|
296 | 296 | self.data['ENDED'] = False |
|
297 | 297 | self.isConfig = True |
|
298 | 298 | self.data_web = {} |
|
299 | 299 | |
|
300 | 300 | def event_monitor(self, monitor): |
|
301 | 301 | |
|
302 | 302 | events = {} |
|
303 | 303 | |
|
304 | 304 | for name in dir(zmq): |
|
305 | 305 | if name.startswith('EVENT_'): |
|
306 | 306 | value = getattr(zmq, name) |
|
307 | 307 | events[value] = name |
|
308 | 308 | |
|
309 | 309 | while monitor.poll(): |
|
310 | 310 | evt = recv_monitor_message(monitor) |
|
311 | 311 | if evt['event'] == 32: |
|
312 | 312 | self.connections += 1 |
|
313 | 313 | if evt['event'] == 512: |
|
314 | 314 | pass |
|
315 | 315 | if self.connections == 0 and self.started is True: |
|
316 | 316 | self.ended = True |
|
317 | 317 | |
|
318 | 318 | evt.update({'description': events[evt['event']]}) |
|
319 | 319 | |
|
320 | 320 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: |
|
321 | 321 | break |
|
322 | 322 | monitor.close() |
|
323 | 323 | print("event monitor thread done!") |
|
324 | 324 | |
|
325 | 325 | def initThrottle(self, throttle_value): |
|
326 | 326 | |
|
327 | 327 | @throttle(seconds=throttle_value) |
|
328 | 328 | def sendDataThrottled(fn_sender, data): |
|
329 | 329 | fn_sender(data) |
|
330 | 330 | |
|
331 | 331 | return sendDataThrottled |
|
332 | 332 | |
|
333 | 333 | def send(self, data): |
|
334 | 334 | # print '[sending] data=%s size=%s' % (data.keys(), len(data['times'])) |
|
335 | 335 | self.sender.send_pyobj(data) |
|
336 | 336 | |
|
337 | 337 | def update(self): |
|
338 | 338 | |
|
339 | 339 | t = self.dataOut.utctime |
|
340 | 340 | |
|
341 | 341 | if t in self.data['times']: |
|
342 | 342 | return |
|
343 | 343 | |
|
344 | 344 | self.data['times'].append(t) |
|
345 | 345 | self.data['dataOut'] = self.dataOut |
|
346 | 346 | |
|
347 | 347 | for plottype in self.plottypes: |
|
348 | 348 | if plottype == 'spc': |
|
349 | 349 | z = self.dataOut.data_spc/self.dataOut.normFactor |
|
350 | 350 | self.data[plottype] = 10*numpy.log10(z) |
|
351 | 351 | self.data['noise'][t] = 10*numpy.log10(self.dataOut.getNoise()/self.dataOut.normFactor) |
|
352 | 352 | if plottype == 'cspc': |
|
353 | 353 | jcoherence = self.dataOut.data_cspc/numpy.sqrt(self.dataOut.data_spc*self.dataOut.data_spc) |
|
354 | 354 | self.data['cspc_coh'] = numpy.abs(jcoherence) |
|
355 | 355 | self.data['cspc_phase'] = numpy.arctan2(jcoherence.imag, jcoherence.real)*180/numpy.pi |
|
356 | 356 | if plottype == 'rti': |
|
357 | 357 | self.data[plottype][t] = self.dataOut.getPower() |
|
358 | 358 | if plottype == 'snr': |
|
359 | 359 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_SNR) |
|
360 | 360 | if plottype == 'dop': |
|
361 | 361 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_DOP) |
|
362 | 362 | if plottype == 'mean': |
|
363 | 363 | self.data[plottype][t] = self.dataOut.data_MEAN |
|
364 | 364 | if plottype == 'std': |
|
365 | 365 | self.data[plottype][t] = self.dataOut.data_STD |
|
366 | 366 | if plottype == 'coh': |
|
367 | 367 | self.data[plottype][t] = self.dataOut.getCoherence() |
|
368 | 368 | if plottype == 'phase': |
|
369 | 369 | self.data[plottype][t] = self.dataOut.getCoherence(phase=True) |
|
370 |
if plottype == ' |
|
|
370 | if plottype == 'output': | |
|
371 | 371 | self.data[plottype][t] = self.dataOut.data_output |
|
372 | if plottype == 'param': | |
|
373 | self.data[plottype][t] = self.dataOut.data_param | |
|
372 | 374 | if self.realtime: |
|
373 | 375 | self.data_web['timestamp'] = t |
|
374 | 376 | if plottype == 'spc': |
|
375 | 377 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype]).tolist()) |
|
376 | 378 | elif plottype == 'cspc': |
|
377 | 379 | self.data_web['cspc_coh'] = roundFloats(decimate(self.data['cspc_coh']).tolist()) |
|
378 | 380 | self.data_web['cspc_phase'] = roundFloats(decimate(self.data['cspc_phase']).tolist()) |
|
379 | 381 | elif plottype == 'noise': |
|
380 | 382 | self.data_web['noise'] = roundFloats(self.data['noise'][t].tolist()) |
|
381 | 383 | else: |
|
382 | 384 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist()) |
|
383 | 385 | self.data_web['interval'] = self.dataOut.getTimeInterval() |
|
384 | 386 | self.data_web['type'] = plottype |
|
385 | 387 | |
|
386 | 388 | def run(self): |
|
387 | 389 | |
|
388 | 390 | print '[Starting] {} from {}'.format(self.name, self.address) |
|
389 | 391 | |
|
390 | 392 | self.context = zmq.Context() |
|
391 | 393 | self.receiver = self.context.socket(zmq.PULL) |
|
392 | 394 | self.receiver.bind(self.address) |
|
393 | 395 | monitor = self.receiver.get_monitor_socket() |
|
394 | 396 | self.sender = self.context.socket(zmq.PUB) |
|
395 | 397 | if self.realtime: |
|
396 | 398 | self.sender_web = self.context.socket(zmq.PUB) |
|
397 | 399 | self.sender_web.connect(self.plot_address) |
|
398 | 400 | time.sleep(1) |
|
399 | self.sender.bind("ipc:///tmp/zmq.plots") | |
|
401 | if 'server' in self.kwargs: | |
|
402 | self.sender.bind("ipc:///tmp/{}.plots".format(self.kwargs['server'])) | |
|
403 | else: | |
|
404 | self.sender.bind("ipc:///tmp/zmq.plots") | |
|
400 | 405 | |
|
401 | 406 | t = Thread(target=self.event_monitor, args=(monitor,)) |
|
402 | 407 | t.start() |
|
403 | 408 | |
|
404 | 409 | while True: |
|
405 | 410 | self.dataOut = self.receiver.recv_pyobj() |
|
406 | 411 | # print '[Receiving] {} - {}'.format(self.dataOut.type, |
|
407 | 412 | # self.dataOut.datatime.ctime()) |
|
408 | 413 | |
|
409 | 414 | self.update() |
|
410 | 415 | |
|
411 | 416 | if self.dataOut.finished is True: |
|
412 | 417 | self.send(self.data) |
|
413 | 418 | self.connections -= 1 |
|
414 | 419 | if self.connections == 0 and self.started: |
|
415 | 420 | self.ended = True |
|
416 | 421 | self.data['ENDED'] = True |
|
417 | 422 | self.send(self.data) |
|
418 | 423 | self.setup() |
|
419 | 424 | else: |
|
420 | 425 | if self.realtime: |
|
421 | 426 | self.send(self.data) |
|
422 | 427 | self.sender_web.send_string(json.dumps(self.data_web)) |
|
423 | 428 | else: |
|
424 | 429 | self.sendData(self.send, self.data) |
|
425 | 430 | self.started = True |
|
426 | 431 | |
|
427 | 432 | return |
|
428 | 433 | |
|
429 | 434 | def sendToWeb(self): |
|
430 | 435 | |
|
431 | 436 | if not self.isWebConfig: |
|
432 | 437 | context = zmq.Context() |
|
433 | 438 | sender_web_config = context.socket(zmq.PUB) |
|
434 | 439 | if 'tcp://' in self.plot_address: |
|
435 | 440 | dum, address, port = self.plot_address.split(':') |
|
436 | 441 | conf_address = '{}:{}:{}'.format(dum, address, int(port)+1) |
|
437 | 442 | else: |
|
438 | 443 | conf_address = self.plot_address + '.config' |
|
439 | 444 | sender_web_config.bind(conf_address) |
|
440 | 445 | time.sleep(1) |
|
441 | 446 | for kwargs in self.operationKwargs.values(): |
|
442 | 447 | if 'plot' in kwargs: |
|
443 | 448 | print '[Sending] Config data to web for {}'.format(kwargs['code'].upper()) |
|
444 | 449 | sender_web_config.send_string(json.dumps(kwargs)) |
|
445 | 450 | self.isWebConfig = True |
General Comments 0
You need to be logged in to leave comments.
Login now