The requested changes are too big and content was truncated. Show full diff
@@ -1,1348 +1,1349 | |||
|
1 | 1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | #import collections.abc |
|
12 | 12 | |
|
13 | 13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | 22 | plot_type = 'pcolor' |
|
23 | 23 | buffering = False |
|
24 | 24 | |
|
25 | 25 | def setup(self): |
|
26 | 26 | |
|
27 | 27 | self.nplots = len(self.data.channels) |
|
28 | 28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
29 | 29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
30 | 30 | self.height = 2.6 * self.nrows |
|
31 | 31 | self.cb_label = 'dB' |
|
32 | 32 | if self.showprofile: |
|
33 | 33 | self.width = 4 * self.ncols |
|
34 | 34 | else: |
|
35 | 35 | self.width = 3.5 * self.ncols |
|
36 | 36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
37 | 37 | self.ylabel = 'Range [km]' |
|
38 | 38 | |
|
39 | 39 | def update(self, dataOut): |
|
40 | 40 | |
|
41 | 41 | data = {} |
|
42 | 42 | meta = {} |
|
43 | 43 | |
|
44 | 44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
45 | 45 | #print("dataOut.normFactor: ", dataOut.normFactor) |
|
46 | 46 | #print("spc: ", dataOut.data_spc[0,0,0]) |
|
47 | 47 | #spc = 10*numpy.log10(dataOut.data_spc) |
|
48 | 48 | #print("Spc: ",spc[0]) |
|
49 | 49 | #exit(1) |
|
50 | 50 | data['spc'] = spc |
|
51 | 51 | data['rti'] = dataOut.getPower() |
|
52 | 52 | #print(data['rti'][0]) |
|
53 | 53 | #exit(1) |
|
54 | 54 | #print("NormFactor: ",dataOut.normFactor) |
|
55 | 55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
56 | 56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
57 | 57 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot |
|
58 | 58 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) |
|
59 | 59 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) |
|
60 | 60 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) |
|
61 | 61 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) |
|
62 | 62 | #data['noise'][1] = 22.035507 |
|
63 | 63 | else: |
|
64 | 64 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
65 | 65 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) |
|
66 | 66 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
67 | 67 | |
|
68 | 68 | if self.CODE == 'spc_moments': |
|
69 | 69 | data['moments'] = dataOut.moments |
|
70 | 70 | if self.CODE == 'gaussian_fit': |
|
71 | 71 | data['gaussfit'] = dataOut.DGauFitParams |
|
72 | 72 | |
|
73 | 73 | return data, meta |
|
74 | 74 | |
|
75 | 75 | def plot(self): |
|
76 | 76 | |
|
77 | 77 | if self.xaxis == "frequency": |
|
78 | 78 | x = self.data.xrange[0] |
|
79 | 79 | self.xlabel = "Frequency (kHz)" |
|
80 | 80 | elif self.xaxis == "time": |
|
81 | 81 | x = self.data.xrange[1] |
|
82 | 82 | self.xlabel = "Time (ms)" |
|
83 | 83 | else: |
|
84 | 84 | x = self.data.xrange[2] |
|
85 | 85 | self.xlabel = "Velocity (m/s)" |
|
86 | 86 | |
|
87 | 87 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
88 | 88 | x = self.data.xrange[2] |
|
89 | 89 | self.xlabel = "Velocity (m/s)" |
|
90 | 90 | |
|
91 | 91 | self.titles = [] |
|
92 | 92 | |
|
93 | 93 | y = self.data.yrange |
|
94 | 94 | self.y = y |
|
95 | 95 | |
|
96 | 96 | data = self.data[-1] |
|
97 | 97 | z = data['spc'] |
|
98 | 98 | |
|
99 | 99 | self.CODE2 = 'spc_oblique' |
|
100 | 100 | |
|
101 | 101 | for n, ax in enumerate(self.axes): |
|
102 | 102 | noise = data['noise'][n] |
|
103 | 103 | if self.CODE == 'spc_moments': |
|
104 | 104 | mean = data['moments'][n, 1] |
|
105 | 105 | if self.CODE == 'gaussian_fit': |
|
106 | 106 | gau0 = data['gaussfit'][n][2,:,0] |
|
107 | 107 | gau1 = data['gaussfit'][n][2,:,1] |
|
108 | 108 | if ax.firsttime: |
|
109 | 109 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
110 | 110 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
111 | 111 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
112 | 112 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
113 | 113 | if self.zlimits is not None: |
|
114 | 114 | self.zmin, self.zmax = self.zlimits[n] |
|
115 | 115 | |
|
116 | 116 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
117 | 117 | vmin=self.zmin, |
|
118 | 118 | vmax=self.zmax, |
|
119 | 119 | cmap=plt.get_cmap(self.colormap), |
|
120 | 120 | ) |
|
121 | 121 | |
|
122 | 122 | if self.showprofile: |
|
123 | 123 | ax.plt_profile = self.pf_axes[n].plot( |
|
124 | 124 | data['rti'][n], y)[0] |
|
125 | 125 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
126 | 126 | color="k", linestyle="dashed", lw=1)[0] |
|
127 | 127 | if self.CODE == 'spc_moments': |
|
128 | 128 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
129 | 129 | if self.CODE == 'gaussian_fit': |
|
130 | 130 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
131 | 131 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
132 | 132 | else: |
|
133 | 133 | if self.zlimits is not None: |
|
134 | 134 | self.zmin, self.zmax = self.zlimits[n] |
|
135 | 135 | ax.plt.set_array(z[n].T.ravel()) |
|
136 | 136 | if self.showprofile: |
|
137 | 137 | ax.plt_profile.set_data(data['rti'][n], y) |
|
138 | 138 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
139 | 139 | if self.CODE == 'spc_moments': |
|
140 | 140 | ax.plt_mean.set_data(mean, y) |
|
141 | 141 | if self.CODE == 'gaussian_fit': |
|
142 | 142 | ax.plt_gau0.set_data(gau0, y) |
|
143 | 143 | ax.plt_gau1.set_data(gau1, y) |
|
144 | 144 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
145 | 145 | |
|
146 | 146 | class SpectraObliquePlot(Plot): |
|
147 | 147 | ''' |
|
148 | 148 | Plot for Spectra data |
|
149 | 149 | ''' |
|
150 | 150 | |
|
151 | 151 | CODE = 'spc_oblique' |
|
152 | 152 | colormap = 'jet' |
|
153 | 153 | plot_type = 'pcolor' |
|
154 | 154 | |
|
155 | 155 | def setup(self): |
|
156 | 156 | self.xaxis = "oblique" |
|
157 | 157 | self.nplots = len(self.data.channels) |
|
158 | 158 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
159 | 159 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
160 | 160 | self.height = 2.6 * self.nrows |
|
161 | 161 | self.cb_label = 'dB' |
|
162 | 162 | if self.showprofile: |
|
163 | 163 | self.width = 4 * self.ncols |
|
164 | 164 | else: |
|
165 | 165 | self.width = 3.5 * self.ncols |
|
166 | 166 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
167 | 167 | self.ylabel = 'Range [km]' |
|
168 | 168 | |
|
169 | 169 | def update(self, dataOut): |
|
170 | 170 | |
|
171 | 171 | data = {} |
|
172 | 172 | meta = {} |
|
173 | 173 | |
|
174 | 174 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
175 | 175 | data['spc'] = spc |
|
176 | 176 | data['rti'] = dataOut.getPower() |
|
177 | 177 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
178 | 178 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
179 | 179 | ''' |
|
180 | 180 | data['shift1'] = dataOut.Oblique_params[0,-2,:] |
|
181 | 181 | data['shift2'] = dataOut.Oblique_params[0,-1,:] |
|
182 | 182 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] |
|
183 | 183 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] |
|
184 | 184 | ''' |
|
185 | 185 | ''' |
|
186 | 186 | data['shift1'] = dataOut.Oblique_params[0,1,:] |
|
187 | 187 | data['shift2'] = dataOut.Oblique_params[0,4,:] |
|
188 | 188 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] |
|
189 | 189 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] |
|
190 | 190 | ''' |
|
191 | 191 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
192 | 192 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
193 | 193 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
194 | 194 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
195 | 195 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
196 | 196 | |
|
197 | 197 | return data, meta |
|
198 | 198 | |
|
199 | 199 | def plot(self): |
|
200 | 200 | |
|
201 | 201 | if self.xaxis == "frequency": |
|
202 | 202 | x = self.data.xrange[0] |
|
203 | 203 | self.xlabel = "Frequency (kHz)" |
|
204 | 204 | elif self.xaxis == "time": |
|
205 | 205 | x = self.data.xrange[1] |
|
206 | 206 | self.xlabel = "Time (ms)" |
|
207 | 207 | else: |
|
208 | 208 | x = self.data.xrange[2] |
|
209 | 209 | self.xlabel = "Velocity (m/s)" |
|
210 | 210 | |
|
211 | 211 | self.titles = [] |
|
212 | 212 | |
|
213 | 213 | y = self.data.yrange |
|
214 | 214 | self.y = y |
|
215 | 215 | |
|
216 | 216 | data = self.data[-1] |
|
217 | 217 | z = data['spc'] |
|
218 | 218 | |
|
219 | 219 | for n, ax in enumerate(self.axes): |
|
220 | 220 | noise = self.data['noise'][n][-1] |
|
221 | 221 | shift1 = data['shift1'] |
|
222 | 222 | #print(shift1) |
|
223 | 223 | shift2 = data['shift2'] |
|
224 | 224 | max_val_2 = data['max_val_2'] |
|
225 | 225 | err1 = data['shift1_error'] |
|
226 | 226 | err2 = data['shift2_error'] |
|
227 | 227 | if ax.firsttime: |
|
228 | 228 | |
|
229 | 229 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
230 | 230 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
231 | 231 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
232 | 232 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
233 | 233 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
234 | 234 | vmin=self.zmin, |
|
235 | 235 | vmax=self.zmax, |
|
236 | 236 | cmap=plt.get_cmap(self.colormap) |
|
237 | 237 | ) |
|
238 | 238 | |
|
239 | 239 | if self.showprofile: |
|
240 | 240 | ax.plt_profile = self.pf_axes[n].plot( |
|
241 | 241 | self.data['rti'][n][-1], y)[0] |
|
242 | 242 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
243 | 243 | color="k", linestyle="dashed", lw=1)[0] |
|
244 | 244 | |
|
245 | 245 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
246 | 246 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
247 | 247 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
248 | 248 | |
|
249 | 249 | #print("plotter1: ", self.ploterr1,shift1) |
|
250 | 250 | |
|
251 | 251 | else: |
|
252 | 252 | #print("else plotter1: ", self.ploterr1,shift1) |
|
253 | 253 | self.ploterr1.remove() |
|
254 | 254 | self.ploterr2.remove() |
|
255 | 255 | self.ploterr3.remove() |
|
256 | 256 | ax.plt.set_array(z[n].T.ravel()) |
|
257 | 257 | if self.showprofile: |
|
258 | 258 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
259 | 259 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
260 | 260 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
261 | 261 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
262 | 262 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
263 | 263 | |
|
264 | 264 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
265 | 265 | |
|
266 | 266 | |
|
267 | 267 | class CrossSpectraPlot(Plot): |
|
268 | 268 | |
|
269 | 269 | CODE = 'cspc' |
|
270 | 270 | colormap = 'jet' |
|
271 | 271 | plot_type = 'pcolor' |
|
272 | 272 | zmin_coh = None |
|
273 | 273 | zmax_coh = None |
|
274 | 274 | zmin_phase = None |
|
275 | 275 | zmax_phase = None |
|
276 | 276 | |
|
277 | 277 | def setup(self): |
|
278 | 278 | |
|
279 | 279 | self.ncols = 4 |
|
280 | 280 | self.nplots = len(self.data.pairs) * 2 |
|
281 | 281 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
282 | 282 | self.width = 3.1 * self.ncols |
|
283 | 283 | self.height = 5 * self.nrows |
|
284 | 284 | self.ylabel = 'Range [km]' |
|
285 | 285 | self.showprofile = False |
|
286 | 286 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
287 | 287 | |
|
288 | 288 | def update(self, dataOut): |
|
289 | 289 | |
|
290 | 290 | data = {} |
|
291 | 291 | meta = {} |
|
292 | 292 | |
|
293 | 293 | spc = dataOut.data_spc |
|
294 | 294 | cspc = dataOut.data_cspc |
|
295 | 295 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
296 | 296 | meta['pairs'] = dataOut.pairsList |
|
297 | 297 | |
|
298 | 298 | tmp = [] |
|
299 | 299 | |
|
300 | 300 | for n, pair in enumerate(meta['pairs']): |
|
301 | 301 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
302 | 302 | coh = numpy.abs(out) |
|
303 | 303 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
304 | 304 | tmp.append(coh) |
|
305 | 305 | tmp.append(phase) |
|
306 | 306 | |
|
307 | 307 | data['cspc'] = numpy.array(tmp) |
|
308 | 308 | |
|
309 | 309 | return data, meta |
|
310 | 310 | |
|
311 | 311 | def plot(self): |
|
312 | 312 | |
|
313 | 313 | if self.xaxis == "frequency": |
|
314 | 314 | x = self.data.xrange[0] |
|
315 | 315 | self.xlabel = "Frequency (kHz)" |
|
316 | 316 | elif self.xaxis == "time": |
|
317 | 317 | x = self.data.xrange[1] |
|
318 | 318 | self.xlabel = "Time (ms)" |
|
319 | 319 | else: |
|
320 | 320 | x = self.data.xrange[2] |
|
321 | 321 | self.xlabel = "Velocity (m/s)" |
|
322 | 322 | |
|
323 | 323 | self.titles = [] |
|
324 | 324 | |
|
325 | 325 | y = self.data.yrange |
|
326 | 326 | self.y = y |
|
327 | 327 | |
|
328 | 328 | data = self.data[-1] |
|
329 | 329 | cspc = data['cspc'] |
|
330 | 330 | |
|
331 | 331 | for n in range(len(self.data.pairs)): |
|
332 | 332 | pair = self.data.pairs[n] |
|
333 | 333 | coh = cspc[n*2] |
|
334 | 334 | phase = cspc[n*2+1] |
|
335 | 335 | ax = self.axes[2 * n] |
|
336 | 336 | if ax.firsttime: |
|
337 | 337 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
338 | 338 | vmin=0, |
|
339 | 339 | vmax=1, |
|
340 | 340 | cmap=plt.get_cmap(self.colormap_coh) |
|
341 | 341 | ) |
|
342 | 342 | else: |
|
343 | 343 | ax.plt.set_array(coh.T.ravel()) |
|
344 | 344 | self.titles.append( |
|
345 | 345 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
346 | 346 | |
|
347 | 347 | ax = self.axes[2 * n + 1] |
|
348 | 348 | if ax.firsttime: |
|
349 | 349 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
350 | 350 | vmin=-180, |
|
351 | 351 | vmax=180, |
|
352 | 352 | cmap=plt.get_cmap(self.colormap_phase) |
|
353 | 353 | ) |
|
354 | 354 | else: |
|
355 | 355 | ax.plt.set_array(phase.T.ravel()) |
|
356 | 356 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
357 | 357 | |
|
358 | 358 | |
|
359 | 359 | class CrossSpectra4Plot(Plot): |
|
360 | 360 | |
|
361 | 361 | CODE = 'cspc' |
|
362 | 362 | colormap = 'jet' |
|
363 | 363 | plot_type = 'pcolor' |
|
364 | 364 | zmin_coh = None |
|
365 | 365 | zmax_coh = None |
|
366 | 366 | zmin_phase = None |
|
367 | 367 | zmax_phase = None |
|
368 | 368 | |
|
369 | 369 | def setup(self): |
|
370 | 370 | |
|
371 | 371 | self.ncols = 4 |
|
372 | 372 | self.nrows = len(self.data.pairs) |
|
373 | 373 | self.nplots = self.nrows * 4 |
|
374 | 374 | self.width = 3.1 * self.ncols |
|
375 | 375 | self.height = 5 * self.nrows |
|
376 | 376 | self.ylabel = 'Range [km]' |
|
377 | 377 | self.showprofile = False |
|
378 | 378 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
379 | 379 | |
|
380 | 380 | def plot(self): |
|
381 | 381 | |
|
382 | 382 | if self.xaxis == "frequency": |
|
383 | 383 | x = self.data.xrange[0] |
|
384 | 384 | self.xlabel = "Frequency (kHz)" |
|
385 | 385 | elif self.xaxis == "time": |
|
386 | 386 | x = self.data.xrange[1] |
|
387 | 387 | self.xlabel = "Time (ms)" |
|
388 | 388 | else: |
|
389 | 389 | x = self.data.xrange[2] |
|
390 | 390 | self.xlabel = "Velocity (m/s)" |
|
391 | 391 | |
|
392 | 392 | self.titles = [] |
|
393 | 393 | |
|
394 | 394 | |
|
395 | 395 | y = self.data.heights |
|
396 | 396 | self.y = y |
|
397 | 397 | nspc = self.data['spc'] |
|
398 | 398 | #print(numpy.shape(self.data['spc'])) |
|
399 | 399 | spc = self.data['cspc'][0] |
|
400 | 400 | #print(numpy.shape(nspc)) |
|
401 | 401 | #exit() |
|
402 | 402 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
403 | 403 | #print(numpy.shape(spc)) |
|
404 | 404 | #exit() |
|
405 | 405 | cspc = self.data['cspc'][1] |
|
406 | 406 | |
|
407 | 407 | #xflip=numpy.flip(x) |
|
408 | 408 | #print(numpy.shape(cspc)) |
|
409 | 409 | #exit() |
|
410 | 410 | |
|
411 | 411 | for n in range(self.nrows): |
|
412 | 412 | noise = self.data['noise'][:,-1] |
|
413 | 413 | pair = self.data.pairs[n] |
|
414 | 414 | #print(pair) |
|
415 | 415 | #exit() |
|
416 | 416 | ax = self.axes[4 * n] |
|
417 | 417 | if ax.firsttime: |
|
418 | 418 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
419 | 419 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
420 | 420 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
421 | 421 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
422 | 422 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
423 | 423 | vmin=self.zmin, |
|
424 | 424 | vmax=self.zmax, |
|
425 | 425 | cmap=plt.get_cmap(self.colormap) |
|
426 | 426 | ) |
|
427 | 427 | else: |
|
428 | 428 | #print(numpy.shape(nspc[pair[0]].T)) |
|
429 | 429 | #exit() |
|
430 | 430 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
431 | 431 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
432 | 432 | |
|
433 | 433 | ax = self.axes[4 * n + 1] |
|
434 | 434 | |
|
435 | 435 | if ax.firsttime: |
|
436 | 436 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
437 | 437 | vmin=self.zmin, |
|
438 | 438 | vmax=self.zmax, |
|
439 | 439 | cmap=plt.get_cmap(self.colormap) |
|
440 | 440 | ) |
|
441 | 441 | else: |
|
442 | 442 | |
|
443 | 443 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
444 | 444 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
445 | 445 | |
|
446 | 446 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
447 | 447 | coh = numpy.abs(out) |
|
448 | 448 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
449 | 449 | |
|
450 | 450 | ax = self.axes[4 * n + 2] |
|
451 | 451 | if ax.firsttime: |
|
452 | 452 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
453 | 453 | vmin=0, |
|
454 | 454 | vmax=1, |
|
455 | 455 | cmap=plt.get_cmap(self.colormap_coh) |
|
456 | 456 | ) |
|
457 | 457 | else: |
|
458 | 458 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
459 | 459 | self.titles.append( |
|
460 | 460 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
461 | 461 | |
|
462 | 462 | ax = self.axes[4 * n + 3] |
|
463 | 463 | if ax.firsttime: |
|
464 | 464 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
465 | 465 | vmin=-180, |
|
466 | 466 | vmax=180, |
|
467 | 467 | cmap=plt.get_cmap(self.colormap_phase) |
|
468 | 468 | ) |
|
469 | 469 | else: |
|
470 | 470 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
471 | 471 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
472 | 472 | |
|
473 | 473 | |
|
474 | 474 | class CrossSpectra2Plot(Plot): |
|
475 | 475 | |
|
476 | 476 | CODE = 'cspc' |
|
477 | 477 | colormap = 'jet' |
|
478 | 478 | plot_type = 'pcolor' |
|
479 | 479 | zmin_coh = None |
|
480 | 480 | zmax_coh = None |
|
481 | 481 | zmin_phase = None |
|
482 | 482 | zmax_phase = None |
|
483 | 483 | |
|
484 | 484 | def setup(self): |
|
485 | 485 | |
|
486 | 486 | self.ncols = 1 |
|
487 | 487 | self.nrows = len(self.data.pairs) |
|
488 | 488 | self.nplots = self.nrows * 1 |
|
489 | 489 | self.width = 3.1 * self.ncols |
|
490 | 490 | self.height = 5 * self.nrows |
|
491 | 491 | self.ylabel = 'Range [km]' |
|
492 | 492 | self.showprofile = False |
|
493 | 493 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
494 | 494 | |
|
495 | 495 | def plot(self): |
|
496 | 496 | |
|
497 | 497 | if self.xaxis == "frequency": |
|
498 | 498 | x = self.data.xrange[0] |
|
499 | 499 | self.xlabel = "Frequency (kHz)" |
|
500 | 500 | elif self.xaxis == "time": |
|
501 | 501 | x = self.data.xrange[1] |
|
502 | 502 | self.xlabel = "Time (ms)" |
|
503 | 503 | else: |
|
504 | 504 | x = self.data.xrange[2] |
|
505 | 505 | self.xlabel = "Velocity (m/s)" |
|
506 | 506 | |
|
507 | 507 | self.titles = [] |
|
508 | 508 | |
|
509 | 509 | |
|
510 | 510 | y = self.data.heights |
|
511 | 511 | self.y = y |
|
512 | 512 | #nspc = self.data['spc'] |
|
513 | 513 | #print(numpy.shape(self.data['spc'])) |
|
514 | 514 | #spc = self.data['cspc'][0] |
|
515 | 515 | #print(numpy.shape(spc)) |
|
516 | 516 | #exit() |
|
517 | 517 | cspc = self.data['cspc'][1] |
|
518 | 518 | #print(numpy.shape(cspc)) |
|
519 | 519 | #exit() |
|
520 | 520 | |
|
521 | 521 | for n in range(self.nrows): |
|
522 | 522 | noise = self.data['noise'][:,-1] |
|
523 | 523 | pair = self.data.pairs[n] |
|
524 | 524 | #print(pair) #exit() |
|
525 | 525 | |
|
526 | 526 | |
|
527 | 527 | |
|
528 | 528 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
529 | 529 | |
|
530 | 530 | #print(out[:,53]) |
|
531 | 531 | #exit() |
|
532 | 532 | cross = numpy.abs(out) |
|
533 | 533 | z = cross/self.data.nFactor |
|
534 | 534 | #print("here") |
|
535 | 535 | #print(dataOut.data_spc[0,0,0]) |
|
536 | 536 | #exit() |
|
537 | 537 | |
|
538 | 538 | cross = 10*numpy.log10(z) |
|
539 | 539 | #print(numpy.shape(cross)) |
|
540 | 540 | #print(cross[0,:]) |
|
541 | 541 | #print(self.data.nFactor) |
|
542 | 542 | #exit() |
|
543 | 543 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
544 | 544 | |
|
545 | 545 | ax = self.axes[1 * n] |
|
546 | 546 | if ax.firsttime: |
|
547 | 547 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
548 | 548 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
549 | 549 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
550 | 550 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
551 | 551 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
552 | 552 | vmin=self.zmin, |
|
553 | 553 | vmax=self.zmax, |
|
554 | 554 | cmap=plt.get_cmap(self.colormap) |
|
555 | 555 | ) |
|
556 | 556 | else: |
|
557 | 557 | ax.plt.set_array(cross.T.ravel()) |
|
558 | 558 | self.titles.append( |
|
559 | 559 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
560 | 560 | |
|
561 | 561 | |
|
562 | 562 | class CrossSpectra3Plot(Plot): |
|
563 | 563 | |
|
564 | 564 | CODE = 'cspc' |
|
565 | 565 | colormap = 'jet' |
|
566 | 566 | plot_type = 'pcolor' |
|
567 | 567 | zmin_coh = None |
|
568 | 568 | zmax_coh = None |
|
569 | 569 | zmin_phase = None |
|
570 | 570 | zmax_phase = None |
|
571 | 571 | |
|
572 | 572 | def setup(self): |
|
573 | 573 | |
|
574 | 574 | self.ncols = 3 |
|
575 | 575 | self.nrows = len(self.data.pairs) |
|
576 | 576 | self.nplots = self.nrows * 3 |
|
577 | 577 | self.width = 3.1 * self.ncols |
|
578 | 578 | self.height = 5 * self.nrows |
|
579 | 579 | self.ylabel = 'Range [km]' |
|
580 | 580 | self.showprofile = False |
|
581 | 581 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
582 | 582 | |
|
583 | 583 | def plot(self): |
|
584 | 584 | |
|
585 | 585 | if self.xaxis == "frequency": |
|
586 | 586 | x = self.data.xrange[0] |
|
587 | 587 | self.xlabel = "Frequency (kHz)" |
|
588 | 588 | elif self.xaxis == "time": |
|
589 | 589 | x = self.data.xrange[1] |
|
590 | 590 | self.xlabel = "Time (ms)" |
|
591 | 591 | else: |
|
592 | 592 | x = self.data.xrange[2] |
|
593 | 593 | self.xlabel = "Velocity (m/s)" |
|
594 | 594 | |
|
595 | 595 | self.titles = [] |
|
596 | 596 | |
|
597 | 597 | |
|
598 | 598 | y = self.data.heights |
|
599 | 599 | self.y = y |
|
600 | 600 | #nspc = self.data['spc'] |
|
601 | 601 | #print(numpy.shape(self.data['spc'])) |
|
602 | 602 | #spc = self.data['cspc'][0] |
|
603 | 603 | #print(numpy.shape(spc)) |
|
604 | 604 | #exit() |
|
605 | 605 | cspc = self.data['cspc'][1] |
|
606 | 606 | #print(numpy.shape(cspc)) |
|
607 | 607 | #exit() |
|
608 | 608 | |
|
609 | 609 | for n in range(self.nrows): |
|
610 | 610 | noise = self.data['noise'][:,-1] |
|
611 | 611 | pair = self.data.pairs[n] |
|
612 | 612 | #print(pair) #exit() |
|
613 | 613 | |
|
614 | 614 | |
|
615 | 615 | |
|
616 | 616 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
617 | 617 | |
|
618 | 618 | #print(out[:,53]) |
|
619 | 619 | #exit() |
|
620 | 620 | cross = numpy.abs(out) |
|
621 | 621 | z = cross/self.data.nFactor |
|
622 | 622 | cross = 10*numpy.log10(z) |
|
623 | 623 | |
|
624 | 624 | out_r= out.real/self.data.nFactor |
|
625 | 625 | #out_r = 10*numpy.log10(out_r) |
|
626 | 626 | |
|
627 | 627 | out_i= out.imag/self.data.nFactor |
|
628 | 628 | #out_i = 10*numpy.log10(out_i) |
|
629 | 629 | #print(numpy.shape(cross)) |
|
630 | 630 | #print(cross[0,:]) |
|
631 | 631 | #print(self.data.nFactor) |
|
632 | 632 | #exit() |
|
633 | 633 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
634 | 634 | |
|
635 | 635 | ax = self.axes[3 * n] |
|
636 | 636 | if ax.firsttime: |
|
637 | 637 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
638 | 638 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
639 | 639 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
640 | 640 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
641 | 641 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
642 | 642 | vmin=self.zmin, |
|
643 | 643 | vmax=self.zmax, |
|
644 | 644 | cmap=plt.get_cmap(self.colormap) |
|
645 | 645 | ) |
|
646 | 646 | else: |
|
647 | 647 | ax.plt.set_array(cross.T.ravel()) |
|
648 | 648 | self.titles.append( |
|
649 | 649 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
650 | 650 | |
|
651 | 651 | ax = self.axes[3 * n + 1] |
|
652 | 652 | if ax.firsttime: |
|
653 | 653 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
654 | 654 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
655 | 655 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
656 | 656 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
657 | 657 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
658 | 658 | vmin=-1.e6, |
|
659 | 659 | vmax=0, |
|
660 | 660 | cmap=plt.get_cmap(self.colormap) |
|
661 | 661 | ) |
|
662 | 662 | else: |
|
663 | 663 | ax.plt.set_array(out_r.T.ravel()) |
|
664 | 664 | self.titles.append( |
|
665 | 665 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
666 | 666 | |
|
667 | 667 | ax = self.axes[3 * n + 2] |
|
668 | 668 | |
|
669 | 669 | |
|
670 | 670 | if ax.firsttime: |
|
671 | 671 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
672 | 672 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
673 | 673 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
674 | 674 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
675 | 675 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
676 | 676 | vmin=-1.e6, |
|
677 | 677 | vmax=1.e6, |
|
678 | 678 | cmap=plt.get_cmap(self.colormap) |
|
679 | 679 | ) |
|
680 | 680 | else: |
|
681 | 681 | ax.plt.set_array(out_i.T.ravel()) |
|
682 | 682 | self.titles.append( |
|
683 | 683 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
684 | 684 | |
|
685 | 685 | class RTIPlot(Plot): |
|
686 | 686 | ''' |
|
687 | 687 | Plot for RTI data |
|
688 | 688 | ''' |
|
689 | 689 | |
|
690 | 690 | CODE = 'rti' |
|
691 | 691 | colormap = 'jet' |
|
692 | 692 | plot_type = 'pcolorbuffer' |
|
693 | 693 | |
|
694 | 694 | def setup(self): |
|
695 | 695 | self.xaxis = 'time' |
|
696 | 696 | self.ncols = 1 |
|
697 | 697 | self.nrows = len(self.data.channels) |
|
698 | 698 | self.nplots = len(self.data.channels) |
|
699 | 699 | self.ylabel = 'Range [km]' |
|
700 | 700 | self.xlabel = 'Time' |
|
701 | 701 | self.cb_label = 'dB' |
|
702 | 702 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
703 | 703 | self.titles = ['{} Channel {}'.format( |
|
704 | 704 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
705 | 705 | |
|
706 | 706 | def update(self, dataOut): |
|
707 | 707 | |
|
708 | 708 | data = {} |
|
709 | 709 | meta = {} |
|
710 | 710 | data['rti'] = dataOut.getPower() |
|
711 | 711 | #print(numpy.shape(data['rti'])) |
|
712 | 712 | |
|
713 | 713 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
714 | 714 | |
|
715 | 715 | return data, meta |
|
716 | 716 | |
|
717 | 717 | def plot(self): |
|
718 | 718 | |
|
719 | 719 | self.x = self.data.times |
|
720 | 720 | self.y = self.data.yrange |
|
721 | 721 | self.z = self.data[self.CODE] |
|
722 | 722 | #print("Inside RTI: ", self.z) |
|
723 | 723 | self.z = numpy.ma.masked_invalid(self.z) |
|
724 | 724 | |
|
725 | 725 | if self.decimation is None: |
|
726 | 726 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
727 | 727 | else: |
|
728 | 728 | x, y, z = self.fill_gaps(*self.decimate()) |
|
729 | 729 | #print("self.z: ", self.z) |
|
730 | 730 | #exit(1) |
|
731 | 731 | ''' |
|
732 | 732 | if not isinstance(self.zmin, collections.abc.Sequence): |
|
733 | 733 | if not self.zmin: |
|
734 | 734 | self.zmin = [numpy.min(self.z)]*len(self.axes) |
|
735 | 735 | else: |
|
736 | 736 | self.zmin = [self.zmin]*len(self.axes) |
|
737 | 737 | |
|
738 | 738 | if not isinstance(self.zmax, collections.abc.Sequence): |
|
739 | 739 | if not self.zmax: |
|
740 | 740 | self.zmax = [numpy.max(self.z)]*len(self.axes) |
|
741 | 741 | else: |
|
742 | 742 | self.zmax = [self.zmax]*len(self.axes) |
|
743 | 743 | ''' |
|
744 | 744 | for n, ax in enumerate(self.axes): |
|
745 | 745 | |
|
746 | 746 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
747 | 747 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
748 | 748 | |
|
749 | 749 | if ax.firsttime: |
|
750 | 750 | if self.zlimits is not None: |
|
751 | 751 | self.zmin, self.zmax = self.zlimits[n] |
|
752 | 752 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
753 | 753 | vmin=self.zmin, |
|
754 | 754 | vmax=self.zmax, |
|
755 | 755 | cmap=plt.get_cmap(self.colormap) |
|
756 | 756 | ) |
|
757 | 757 | if self.showprofile: |
|
758 | 758 | ax.plot_profile = self.pf_axes[n].plot( |
|
759 | 759 | self.data['rti'][n][-1], self.y)[0] |
|
760 | 760 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
761 | 761 | color="k", linestyle="dashed", lw=1)[0] |
|
762 | 762 | else: |
|
763 | 763 | if self.zlimits is not None: |
|
764 | 764 | self.zmin, self.zmax = self.zlimits[n] |
|
765 | 765 | ax.collections.remove(ax.collections[0]) |
|
766 | 766 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
767 | 767 | vmin=self.zmin, |
|
768 | 768 | vmax=self.zmax, |
|
769 | 769 | cmap=plt.get_cmap(self.colormap) |
|
770 | 770 | ) |
|
771 | 771 | if self.showprofile: |
|
772 | 772 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
773 | 773 | ax.plot_noise.set_data(numpy.repeat( |
|
774 | 774 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
775 | 775 | |
|
776 | 776 | |
|
777 | 777 | class SpectrogramPlot(Plot): |
|
778 | 778 | ''' |
|
779 | 779 | Plot for Spectrogram data |
|
780 | 780 | ''' |
|
781 | 781 | |
|
782 | 782 | CODE = 'Spectrogram_Profile' |
|
783 | 783 | colormap = 'binary' |
|
784 | 784 | plot_type = 'pcolorbuffer' |
|
785 | 785 | |
|
786 | 786 | def setup(self): |
|
787 | 787 | self.xaxis = 'time' |
|
788 | 788 | self.ncols = 1 |
|
789 | 789 | self.nrows = len(self.data.channels) |
|
790 | 790 | self.nplots = len(self.data.channels) |
|
791 | 791 | self.xlabel = 'Time' |
|
792 | 792 | #self.cb_label = 'dB' |
|
793 | 793 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
794 | 794 | self.titles = [] |
|
795 | 795 | |
|
796 | 796 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
797 | 797 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
798 | 798 | |
|
799 | 799 | self.titles = ['{} Channel {}'.format( |
|
800 | 800 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
801 | 801 | |
|
802 | 802 | |
|
803 | 803 | def update(self, dataOut): |
|
804 | 804 | data = {} |
|
805 | 805 | meta = {} |
|
806 | 806 | |
|
807 | 807 | maxHei = 1620#+12000 |
|
808 | maxHei = 1180 | |
|
808 | 809 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
809 | 810 | hei = indb[0][-1] |
|
810 | 811 | #print(dataOut.heightList) |
|
811 | 812 | |
|
812 | 813 | factor = dataOut.nIncohInt |
|
813 | 814 | z = dataOut.data_spc[:,:,hei] / factor |
|
814 | 815 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
815 | 816 | #buffer = 10 * numpy.log10(z) |
|
816 | 817 | |
|
817 | 818 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
818 | 819 | |
|
819 | 820 | |
|
820 | 821 | #self.hei = hei |
|
821 | 822 | #self.heightList = dataOut.heightList |
|
822 | 823 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
823 | 824 | #self.nProfiles = dataOut.nProfiles |
|
824 | 825 | |
|
825 | 826 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
826 | 827 | |
|
827 | 828 | data['hei'] = hei |
|
828 | 829 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
829 | 830 | data['nProfiles'] = dataOut.nProfiles |
|
830 | 831 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
831 | 832 | ''' |
|
832 | 833 | import matplotlib.pyplot as plt |
|
833 | 834 | plt.plot(10 * numpy.log10(z[0,:])) |
|
834 | 835 | plt.show() |
|
835 | 836 | |
|
836 | 837 | from time import sleep |
|
837 | 838 | sleep(10) |
|
838 | 839 | ''' |
|
839 | 840 | return data, meta |
|
840 | 841 | |
|
841 | 842 | def plot(self): |
|
842 | 843 | |
|
843 | 844 | self.x = self.data.times |
|
844 | 845 | self.z = self.data[self.CODE] |
|
845 | 846 | self.y = self.data.xrange[0] |
|
846 | 847 | |
|
847 | 848 | hei = self.data['hei'][-1] |
|
848 | 849 | DH = self.data['DH'][-1] |
|
849 | 850 | nProfiles = self.data['nProfiles'][-1] |
|
850 | 851 | |
|
851 | 852 | self.ylabel = "Frequency (kHz)" |
|
852 | 853 | |
|
853 | 854 | self.z = numpy.ma.masked_invalid(self.z) |
|
854 | 855 | |
|
855 | 856 | if self.decimation is None: |
|
856 | 857 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
857 | 858 | else: |
|
858 | 859 | x, y, z = self.fill_gaps(*self.decimate()) |
|
859 | 860 | |
|
860 | 861 | for n, ax in enumerate(self.axes): |
|
861 | 862 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
862 | 863 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
863 | 864 | data = self.data[-1] |
|
864 | 865 | if ax.firsttime: |
|
865 | 866 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
866 | 867 | vmin=self.zmin, |
|
867 | 868 | vmax=self.zmax, |
|
868 | 869 | cmap=plt.get_cmap(self.colormap) |
|
869 | 870 | ) |
|
870 | 871 | else: |
|
871 | 872 | ax.collections.remove(ax.collections[0]) |
|
872 | 873 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
873 | 874 | vmin=self.zmin, |
|
874 | 875 | vmax=self.zmax, |
|
875 | 876 | cmap=plt.get_cmap(self.colormap) |
|
876 | 877 | ) |
|
877 | 878 | |
|
878 | 879 | #self.titles.append('Spectrogram') |
|
879 | 880 | |
|
880 | 881 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
881 | 882 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
882 | 883 | |
|
883 | 884 | |
|
884 | 885 | |
|
885 | 886 | |
|
886 | 887 | class CoherencePlot(RTIPlot): |
|
887 | 888 | ''' |
|
888 | 889 | Plot for Coherence data |
|
889 | 890 | ''' |
|
890 | 891 | |
|
891 | 892 | CODE = 'coh' |
|
892 | 893 | |
|
893 | 894 | def setup(self): |
|
894 | 895 | self.xaxis = 'time' |
|
895 | 896 | self.ncols = 1 |
|
896 | 897 | self.nrows = len(self.data.pairs) |
|
897 | 898 | self.nplots = len(self.data.pairs) |
|
898 | 899 | self.ylabel = 'Range [km]' |
|
899 | 900 | self.xlabel = 'Time' |
|
900 | 901 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
901 | 902 | if self.CODE == 'coh': |
|
902 | 903 | self.cb_label = '' |
|
903 | 904 | self.titles = [ |
|
904 | 905 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
905 | 906 | else: |
|
906 | 907 | self.cb_label = 'Degrees' |
|
907 | 908 | self.titles = [ |
|
908 | 909 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
909 | 910 | |
|
910 | 911 | def update(self, dataOut): |
|
911 | 912 | |
|
912 | 913 | data = {} |
|
913 | 914 | meta = {} |
|
914 | 915 | data['coh'] = dataOut.getCoherence() |
|
915 | 916 | meta['pairs'] = dataOut.pairsList |
|
916 | 917 | |
|
917 | 918 | return data, meta |
|
918 | 919 | |
|
919 | 920 | class PhasePlot(CoherencePlot): |
|
920 | 921 | ''' |
|
921 | 922 | Plot for Phase map data |
|
922 | 923 | ''' |
|
923 | 924 | |
|
924 | 925 | CODE = 'phase' |
|
925 | 926 | colormap = 'seismic' |
|
926 | 927 | |
|
927 | 928 | def update(self, dataOut): |
|
928 | 929 | |
|
929 | 930 | data = {} |
|
930 | 931 | meta = {} |
|
931 | 932 | data['phase'] = dataOut.getCoherence(phase=True) |
|
932 | 933 | meta['pairs'] = dataOut.pairsList |
|
933 | 934 | |
|
934 | 935 | return data, meta |
|
935 | 936 | |
|
936 | 937 | class NoisePlot(Plot): |
|
937 | 938 | ''' |
|
938 | 939 | Plot for noise |
|
939 | 940 | ''' |
|
940 | 941 | |
|
941 | 942 | CODE = 'noise' |
|
942 | 943 | plot_type = 'scatterbuffer' |
|
943 | 944 | |
|
944 | 945 | def setup(self): |
|
945 | 946 | self.xaxis = 'time' |
|
946 | 947 | self.ncols = 1 |
|
947 | 948 | self.nrows = 1 |
|
948 | 949 | self.nplots = 1 |
|
949 | 950 | self.ylabel = 'Intensity [dB]' |
|
950 | 951 | self.xlabel = 'Time' |
|
951 | 952 | self.titles = ['Noise'] |
|
952 | 953 | self.colorbar = False |
|
953 | 954 | self.plots_adjust.update({'right': 0.85 }) |
|
954 | 955 | |
|
955 | 956 | def update(self, dataOut): |
|
956 | 957 | |
|
957 | 958 | data = {} |
|
958 | 959 | meta = {} |
|
959 | 960 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
960 | 961 | meta['yrange'] = numpy.array([]) |
|
961 | 962 | |
|
962 | 963 | return data, meta |
|
963 | 964 | |
|
964 | 965 | def plot(self): |
|
965 | 966 | |
|
966 | 967 | x = self.data.times |
|
967 | 968 | xmin = self.data.min_time |
|
968 | 969 | xmax = xmin + self.xrange * 60 * 60 |
|
969 | 970 | Y = self.data['noise'] |
|
970 | 971 | |
|
971 | 972 | if self.axes[0].firsttime: |
|
972 | 973 | self.ymin = numpy.nanmin(Y) - 5 |
|
973 | 974 | self.ymax = numpy.nanmax(Y) + 5 |
|
974 | 975 | for ch in self.data.channels: |
|
975 | 976 | y = Y[ch] |
|
976 | 977 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
977 | 978 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
978 | 979 | else: |
|
979 | 980 | for ch in self.data.channels: |
|
980 | 981 | y = Y[ch] |
|
981 | 982 | self.axes[0].lines[ch].set_data(x, y) |
|
982 | 983 | |
|
983 | 984 | self.ymin = numpy.nanmin(Y) - 5 |
|
984 | 985 | self.ymax = numpy.nanmax(Y) + 10 |
|
985 | 986 | |
|
986 | 987 | |
|
987 | 988 | class PowerProfilePlot(Plot): |
|
988 | 989 | |
|
989 | 990 | CODE = 'pow_profile' |
|
990 | 991 | plot_type = 'scatter' |
|
991 | 992 | |
|
992 | 993 | def setup(self): |
|
993 | 994 | |
|
994 | 995 | self.ncols = 1 |
|
995 | 996 | self.nrows = 1 |
|
996 | 997 | self.nplots = 1 |
|
997 | 998 | self.height = 4 |
|
998 | 999 | self.width = 3 |
|
999 | 1000 | self.ylabel = 'Range [km]' |
|
1000 | 1001 | self.xlabel = 'Intensity [dB]' |
|
1001 | 1002 | self.titles = ['Power Profile'] |
|
1002 | 1003 | self.colorbar = False |
|
1003 | 1004 | |
|
1004 | 1005 | def update(self, dataOut): |
|
1005 | 1006 | |
|
1006 | 1007 | data = {} |
|
1007 | 1008 | meta = {} |
|
1008 | 1009 | data[self.CODE] = dataOut.getPower() |
|
1009 | 1010 | |
|
1010 | 1011 | return data, meta |
|
1011 | 1012 | |
|
1012 | 1013 | def plot(self): |
|
1013 | 1014 | |
|
1014 | 1015 | y = self.data.yrange |
|
1015 | 1016 | self.y = y |
|
1016 | 1017 | |
|
1017 | 1018 | x = self.data[-1][self.CODE] |
|
1018 | 1019 | |
|
1019 | 1020 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
1020 | 1021 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
1021 | 1022 | |
|
1022 | 1023 | if self.axes[0].firsttime: |
|
1023 | 1024 | for ch in self.data.channels: |
|
1024 | 1025 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
1025 | 1026 | plt.legend() |
|
1026 | 1027 | else: |
|
1027 | 1028 | for ch in self.data.channels: |
|
1028 | 1029 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
1029 | 1030 | |
|
1030 | 1031 | |
|
1031 | 1032 | class SpectraCutPlot(Plot): |
|
1032 | 1033 | |
|
1033 | 1034 | CODE = 'spc_cut' |
|
1034 | 1035 | plot_type = 'scatter' |
|
1035 | 1036 | buffering = False |
|
1036 | 1037 | |
|
1037 | 1038 | def setup(self): |
|
1038 | 1039 | |
|
1039 | 1040 | self.nplots = len(self.data.channels) |
|
1040 | 1041 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
1041 | 1042 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
1042 | 1043 | self.width = 3.4 * self.ncols + 1.5 |
|
1043 | 1044 | self.height = 3 * self.nrows |
|
1044 | 1045 | self.ylabel = 'Power [dB]' |
|
1045 | 1046 | self.colorbar = False |
|
1046 | 1047 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
1047 | 1048 | |
|
1048 | 1049 | def update(self, dataOut): |
|
1049 | 1050 | |
|
1050 | 1051 | data = {} |
|
1051 | 1052 | meta = {} |
|
1052 | 1053 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
1053 | 1054 | data['spc'] = spc |
|
1054 | 1055 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1055 | 1056 | if self.CODE == 'cut_gaussian_fit': |
|
1056 | 1057 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
1057 | 1058 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
1058 | 1059 | return data, meta |
|
1059 | 1060 | |
|
1060 | 1061 | def plot(self): |
|
1061 | 1062 | if self.xaxis == "frequency": |
|
1062 | 1063 | x = self.data.xrange[0][1:] |
|
1063 | 1064 | self.xlabel = "Frequency (kHz)" |
|
1064 | 1065 | elif self.xaxis == "time": |
|
1065 | 1066 | x = self.data.xrange[1] |
|
1066 | 1067 | self.xlabel = "Time (ms)" |
|
1067 | 1068 | else: |
|
1068 | 1069 | x = self.data.xrange[2][:-1] |
|
1069 | 1070 | self.xlabel = "Velocity (m/s)" |
|
1070 | 1071 | |
|
1071 | 1072 | if self.CODE == 'cut_gaussian_fit': |
|
1072 | 1073 | x = self.data.xrange[2][:-1] |
|
1073 | 1074 | self.xlabel = "Velocity (m/s)" |
|
1074 | 1075 | |
|
1075 | 1076 | self.titles = [] |
|
1076 | 1077 | |
|
1077 | 1078 | y = self.data.yrange |
|
1078 | 1079 | data = self.data[-1] |
|
1079 | 1080 | z = data['spc'] |
|
1080 | 1081 | |
|
1081 | 1082 | if self.height_index: |
|
1082 | 1083 | index = numpy.array(self.height_index) |
|
1083 | 1084 | else: |
|
1084 | 1085 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1085 | 1086 | |
|
1086 | 1087 | for n, ax in enumerate(self.axes): |
|
1087 | 1088 | if self.CODE == 'cut_gaussian_fit': |
|
1088 | 1089 | gau0 = data['gauss_fit0'] |
|
1089 | 1090 | gau1 = data['gauss_fit1'] |
|
1090 | 1091 | if ax.firsttime: |
|
1091 | 1092 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1092 | 1093 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1093 | 1094 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1094 | 1095 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1095 | 1096 | #print(self.ymax) |
|
1096 | 1097 | #print(z[n, :, index]) |
|
1097 | 1098 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1098 | 1099 | if self.CODE == 'cut_gaussian_fit': |
|
1099 | 1100 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1100 | 1101 | for i, line in enumerate(ax.plt_gau0): |
|
1101 | 1102 | line.set_color(ax.plt[i].get_color()) |
|
1102 | 1103 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1103 | 1104 | for i, line in enumerate(ax.plt_gau1): |
|
1104 | 1105 | line.set_color(ax.plt[i].get_color()) |
|
1105 | 1106 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1106 | 1107 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1107 | 1108 | else: |
|
1108 | 1109 | for i, line in enumerate(ax.plt): |
|
1109 | 1110 | line.set_data(x, z[n, :, index[i]].T) |
|
1110 | 1111 | for i, line in enumerate(ax.plt_gau0): |
|
1111 | 1112 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1112 | 1113 | line.set_color(ax.plt[i].get_color()) |
|
1113 | 1114 | for i, line in enumerate(ax.plt_gau1): |
|
1114 | 1115 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1115 | 1116 | line.set_color(ax.plt[i].get_color()) |
|
1116 | 1117 | self.titles.append('CH {}'.format(n)) |
|
1117 | 1118 | |
|
1118 | 1119 | |
|
1119 | 1120 | class BeaconPhase(Plot): |
|
1120 | 1121 | |
|
1121 | 1122 | __isConfig = None |
|
1122 | 1123 | __nsubplots = None |
|
1123 | 1124 | |
|
1124 | 1125 | PREFIX = 'beacon_phase' |
|
1125 | 1126 | |
|
1126 | 1127 | def __init__(self): |
|
1127 | 1128 | Plot.__init__(self) |
|
1128 | 1129 | self.timerange = 24*60*60 |
|
1129 | 1130 | self.isConfig = False |
|
1130 | 1131 | self.__nsubplots = 1 |
|
1131 | 1132 | self.counter_imagwr = 0 |
|
1132 | 1133 | self.WIDTH = 800 |
|
1133 | 1134 | self.HEIGHT = 400 |
|
1134 | 1135 | self.WIDTHPROF = 120 |
|
1135 | 1136 | self.HEIGHTPROF = 0 |
|
1136 | 1137 | self.xdata = None |
|
1137 | 1138 | self.ydata = None |
|
1138 | 1139 | |
|
1139 | 1140 | self.PLOT_CODE = BEACON_CODE |
|
1140 | 1141 | |
|
1141 | 1142 | self.FTP_WEI = None |
|
1142 | 1143 | self.EXP_CODE = None |
|
1143 | 1144 | self.SUB_EXP_CODE = None |
|
1144 | 1145 | self.PLOT_POS = None |
|
1145 | 1146 | |
|
1146 | 1147 | self.filename_phase = None |
|
1147 | 1148 | |
|
1148 | 1149 | self.figfile = None |
|
1149 | 1150 | |
|
1150 | 1151 | self.xmin = None |
|
1151 | 1152 | self.xmax = None |
|
1152 | 1153 | |
|
1153 | 1154 | def getSubplots(self): |
|
1154 | 1155 | |
|
1155 | 1156 | ncol = 1 |
|
1156 | 1157 | nrow = 1 |
|
1157 | 1158 | |
|
1158 | 1159 | return nrow, ncol |
|
1159 | 1160 | |
|
1160 | 1161 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1161 | 1162 | |
|
1162 | 1163 | self.__showprofile = showprofile |
|
1163 | 1164 | self.nplots = nplots |
|
1164 | 1165 | |
|
1165 | 1166 | ncolspan = 7 |
|
1166 | 1167 | colspan = 6 |
|
1167 | 1168 | self.__nsubplots = 2 |
|
1168 | 1169 | |
|
1169 | 1170 | self.createFigure(id = id, |
|
1170 | 1171 | wintitle = wintitle, |
|
1171 | 1172 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1172 | 1173 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1173 | 1174 | show=show) |
|
1174 | 1175 | |
|
1175 | 1176 | nrow, ncol = self.getSubplots() |
|
1176 | 1177 | |
|
1177 | 1178 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1178 | 1179 | |
|
1179 | 1180 | def save_phase(self, filename_phase): |
|
1180 | 1181 | f = open(filename_phase,'w+') |
|
1181 | 1182 | f.write('\n\n') |
|
1182 | 1183 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1183 | 1184 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1184 | 1185 | f.close() |
|
1185 | 1186 | |
|
1186 | 1187 | def save_data(self, filename_phase, data, data_datetime): |
|
1187 | 1188 | f=open(filename_phase,'a') |
|
1188 | 1189 | timetuple_data = data_datetime.timetuple() |
|
1189 | 1190 | day = str(timetuple_data.tm_mday) |
|
1190 | 1191 | month = str(timetuple_data.tm_mon) |
|
1191 | 1192 | year = str(timetuple_data.tm_year) |
|
1192 | 1193 | hour = str(timetuple_data.tm_hour) |
|
1193 | 1194 | minute = str(timetuple_data.tm_min) |
|
1194 | 1195 | second = str(timetuple_data.tm_sec) |
|
1195 | 1196 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1196 | 1197 | f.close() |
|
1197 | 1198 | |
|
1198 | 1199 | def plot(self): |
|
1199 | 1200 | log.warning('TODO: Not yet implemented...') |
|
1200 | 1201 | |
|
1201 | 1202 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1202 | 1203 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1203 | 1204 | timerange=None, |
|
1204 | 1205 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1205 | 1206 | server=None, folder=None, username=None, password=None, |
|
1206 | 1207 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1207 | 1208 | |
|
1208 | 1209 | if dataOut.flagNoData: |
|
1209 | 1210 | return dataOut |
|
1210 | 1211 | |
|
1211 | 1212 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1212 | 1213 | return |
|
1213 | 1214 | |
|
1214 | 1215 | if pairsList == None: |
|
1215 | 1216 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1216 | 1217 | else: |
|
1217 | 1218 | pairsIndexList = [] |
|
1218 | 1219 | for pair in pairsList: |
|
1219 | 1220 | if pair not in dataOut.pairsList: |
|
1220 | 1221 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1221 | 1222 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1222 | 1223 | |
|
1223 | 1224 | if pairsIndexList == []: |
|
1224 | 1225 | return |
|
1225 | 1226 | |
|
1226 | 1227 | # if len(pairsIndexList) > 4: |
|
1227 | 1228 | # pairsIndexList = pairsIndexList[0:4] |
|
1228 | 1229 | |
|
1229 | 1230 | hmin_index = None |
|
1230 | 1231 | hmax_index = None |
|
1231 | 1232 | |
|
1232 | 1233 | if hmin != None and hmax != None: |
|
1233 | 1234 | indexes = numpy.arange(dataOut.nHeights) |
|
1234 | 1235 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1235 | 1236 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1236 | 1237 | |
|
1237 | 1238 | if hmin_list.any(): |
|
1238 | 1239 | hmin_index = hmin_list[0] |
|
1239 | 1240 | |
|
1240 | 1241 | if hmax_list.any(): |
|
1241 | 1242 | hmax_index = hmax_list[-1]+1 |
|
1242 | 1243 | |
|
1243 | 1244 | x = dataOut.getTimeRange() |
|
1244 | 1245 | |
|
1245 | 1246 | thisDatetime = dataOut.datatime |
|
1246 | 1247 | |
|
1247 | 1248 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1248 | 1249 | xlabel = "Local Time" |
|
1249 | 1250 | ylabel = "Phase (degrees)" |
|
1250 | 1251 | |
|
1251 | 1252 | update_figfile = False |
|
1252 | 1253 | |
|
1253 | 1254 | nplots = len(pairsIndexList) |
|
1254 | 1255 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1255 | 1256 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1256 | 1257 | for i in range(nplots): |
|
1257 | 1258 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1258 | 1259 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1259 | 1260 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1260 | 1261 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1261 | 1262 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1262 | 1263 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1263 | 1264 | |
|
1264 | 1265 | if dataOut.beacon_heiIndexList: |
|
1265 | 1266 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1266 | 1267 | else: |
|
1267 | 1268 | phase_beacon[i] = numpy.average(phase) |
|
1268 | 1269 | |
|
1269 | 1270 | if not self.isConfig: |
|
1270 | 1271 | |
|
1271 | 1272 | nplots = len(pairsIndexList) |
|
1272 | 1273 | |
|
1273 | 1274 | self.setup(id=id, |
|
1274 | 1275 | nplots=nplots, |
|
1275 | 1276 | wintitle=wintitle, |
|
1276 | 1277 | showprofile=showprofile, |
|
1277 | 1278 | show=show) |
|
1278 | 1279 | |
|
1279 | 1280 | if timerange != None: |
|
1280 | 1281 | self.timerange = timerange |
|
1281 | 1282 | |
|
1282 | 1283 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1283 | 1284 | |
|
1284 | 1285 | if ymin == None: ymin = 0 |
|
1285 | 1286 | if ymax == None: ymax = 360 |
|
1286 | 1287 | |
|
1287 | 1288 | self.FTP_WEI = ftp_wei |
|
1288 | 1289 | self.EXP_CODE = exp_code |
|
1289 | 1290 | self.SUB_EXP_CODE = sub_exp_code |
|
1290 | 1291 | self.PLOT_POS = plot_pos |
|
1291 | 1292 | |
|
1292 | 1293 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1293 | 1294 | self.isConfig = True |
|
1294 | 1295 | self.figfile = figfile |
|
1295 | 1296 | self.xdata = numpy.array([]) |
|
1296 | 1297 | self.ydata = numpy.array([]) |
|
1297 | 1298 | |
|
1298 | 1299 | update_figfile = True |
|
1299 | 1300 | |
|
1300 | 1301 | #open file beacon phase |
|
1301 | 1302 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1302 | 1303 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1303 | 1304 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1304 | 1305 | #self.save_phase(self.filename_phase) |
|
1305 | 1306 | |
|
1306 | 1307 | |
|
1307 | 1308 | #store data beacon phase |
|
1308 | 1309 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1309 | 1310 | |
|
1310 | 1311 | self.setWinTitle(title) |
|
1311 | 1312 | |
|
1312 | 1313 | |
|
1313 | 1314 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1314 | 1315 | |
|
1315 | 1316 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1316 | 1317 | |
|
1317 | 1318 | axes = self.axesList[0] |
|
1318 | 1319 | |
|
1319 | 1320 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1320 | 1321 | |
|
1321 | 1322 | if len(self.ydata)==0: |
|
1322 | 1323 | self.ydata = phase_beacon.reshape(-1,1) |
|
1323 | 1324 | else: |
|
1324 | 1325 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1325 | 1326 | |
|
1326 | 1327 | |
|
1327 | 1328 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1328 | 1329 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1329 | 1330 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1330 | 1331 | XAxisAsTime=True, grid='both' |
|
1331 | 1332 | ) |
|
1332 | 1333 | |
|
1333 | 1334 | self.draw() |
|
1334 | 1335 | |
|
1335 | 1336 | if dataOut.ltctime >= self.xmax: |
|
1336 | 1337 | self.counter_imagwr = wr_period |
|
1337 | 1338 | self.isConfig = False |
|
1338 | 1339 | update_figfile = True |
|
1339 | 1340 | |
|
1340 | 1341 | self.save(figpath=figpath, |
|
1341 | 1342 | figfile=figfile, |
|
1342 | 1343 | save=save, |
|
1343 | 1344 | ftp=ftp, |
|
1344 | 1345 | wr_period=wr_period, |
|
1345 | 1346 | thisDatetime=thisDatetime, |
|
1346 | 1347 | update_figfile=update_figfile) |
|
1347 | 1348 | |
|
1348 | 1349 | return dataOut |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,1049 +1,1049 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | |
|
16 | 16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | 17 | from schainpy.model.data.jrodata import Spectra |
|
18 | 18 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | |
|
21 | 21 | |
|
22 | 22 | class SpectraProc(ProcessingUnit): |
|
23 | 23 | |
|
24 | 24 | def __init__(self): |
|
25 | 25 | |
|
26 | 26 | ProcessingUnit.__init__(self) |
|
27 | 27 | |
|
28 | 28 | self.buffer = None |
|
29 | 29 | self.firstdatatime = None |
|
30 | 30 | self.profIndex = 0 |
|
31 | 31 | self.dataOut = Spectra() |
|
32 | 32 | self.id_min = None |
|
33 | 33 | self.id_max = None |
|
34 | 34 | self.setupReq = False #Agregar a todas las unidades de proc |
|
35 | 35 | |
|
36 | 36 | def __updateSpecFromVoltage(self): |
|
37 | 37 | |
|
38 | 38 | self.dataOut.timeZone = self.dataIn.timeZone |
|
39 | 39 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
40 | 40 | self.dataOut.errorCount = self.dataIn.errorCount |
|
41 | 41 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
42 | 42 | try: |
|
43 | 43 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
44 | 44 | except: |
|
45 | 45 | pass |
|
46 | 46 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
47 | 47 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
48 | 48 | self.dataOut.channelList = self.dataIn.channelList |
|
49 | 49 | self.dataOut.heightList = self.dataIn.heightList |
|
50 | 50 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
51 | 51 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
52 | 52 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
53 | 53 | self.dataOut.utctime = self.firstdatatime |
|
54 | 54 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
55 | 55 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
56 | 56 | self.dataOut.flagShiftFFT = False |
|
57 | 57 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
58 | 58 | self.dataOut.nIncohInt = 1 |
|
59 | 59 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
60 | 60 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | 61 | self.dataOut.realtime = self.dataIn.realtime |
|
62 | 62 | self.dataOut.azimuth = self.dataIn.azimuth |
|
63 | 63 | self.dataOut.zenith = self.dataIn.zenith |
|
64 | 64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
65 | 65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
66 | 66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
67 | 67 | self.dataOut.runNextUnit = self.dataIn.runNextUnit |
|
68 | 68 | try: |
|
69 | 69 | self.dataOut.step = self.dataIn.step |
|
70 | 70 | except: |
|
71 | 71 | pass |
|
72 | 72 | |
|
73 | 73 | def __getFft(self): |
|
74 | 74 | """ |
|
75 | 75 | Convierte valores de Voltaje a Spectra |
|
76 | 76 | |
|
77 | 77 | Affected: |
|
78 | 78 | self.dataOut.data_spc |
|
79 | 79 | self.dataOut.data_cspc |
|
80 | 80 | self.dataOut.data_dc |
|
81 | 81 | self.dataOut.heightList |
|
82 | 82 | self.profIndex |
|
83 | 83 | self.buffer |
|
84 | 84 | self.dataOut.flagNoData |
|
85 | 85 | """ |
|
86 | 86 | fft_volt = numpy.fft.fft( |
|
87 | 87 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
88 | 88 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
89 | 89 | dc = fft_volt[:, 0, :] |
|
90 | 90 | |
|
91 | 91 | # calculo de self-spectra |
|
92 | 92 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
93 | 93 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
94 | 94 | spc = spc.real |
|
95 | 95 | |
|
96 | 96 | blocksize = 0 |
|
97 | 97 | blocksize += dc.size |
|
98 | 98 | blocksize += spc.size |
|
99 | 99 | |
|
100 | 100 | cspc = None |
|
101 | 101 | pairIndex = 0 |
|
102 | 102 | if self.dataOut.pairsList != None: |
|
103 | 103 | # calculo de cross-spectra |
|
104 | 104 | cspc = numpy.zeros( |
|
105 | 105 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
106 | 106 | for pair in self.dataOut.pairsList: |
|
107 | 107 | if pair[0] not in self.dataOut.channelList: |
|
108 | 108 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
109 | 109 | str(pair), str(self.dataOut.channelList))) |
|
110 | 110 | if pair[1] not in self.dataOut.channelList: |
|
111 | 111 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
112 | 112 | str(pair), str(self.dataOut.channelList))) |
|
113 | 113 | |
|
114 | 114 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
115 | 115 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
116 | 116 | pairIndex += 1 |
|
117 | 117 | blocksize += cspc.size |
|
118 | 118 | |
|
119 | 119 | self.dataOut.data_spc = spc |
|
120 | 120 | self.dataOut.data_cspc = cspc |
|
121 | 121 | self.dataOut.data_dc = dc |
|
122 | 122 | self.dataOut.blockSize = blocksize |
|
123 | 123 | self.dataOut.flagShiftFFT = False |
|
124 | 124 | |
|
125 | 125 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, runNextUnit = 0): |
|
126 | 126 | |
|
127 | 127 | self.dataIn.runNextUnit = runNextUnit |
|
128 | 128 | if self.dataIn.type == "Spectra": |
|
129 | 129 | |
|
130 | 130 | self.dataOut.copy(self.dataIn) |
|
131 | 131 | if shift_fft: |
|
132 | 132 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
133 | 133 | shift = int(self.dataOut.nFFTPoints/2) |
|
134 | 134 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
135 | 135 | |
|
136 | 136 | if self.dataOut.data_cspc is not None: |
|
137 | 137 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
138 | 138 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
139 | 139 | if pairsList: |
|
140 | 140 | self.__selectPairs(pairsList) |
|
141 | 141 | |
|
142 | 142 | elif self.dataIn.type == "Voltage": |
|
143 | 143 | |
|
144 | 144 | self.dataOut.flagNoData = True |
|
145 | 145 | |
|
146 | 146 | if nFFTPoints == None: |
|
147 | 147 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
148 | 148 | |
|
149 | 149 | if nProfiles == None: |
|
150 | 150 | nProfiles = nFFTPoints |
|
151 | 151 | #print(self.dataOut.ipp) |
|
152 | 152 | #exit(1) |
|
153 | 153 | if ippFactor == None: |
|
154 | 154 | self.dataOut.ippFactor = 1 |
|
155 | 155 | #if ippFactor is not None: |
|
156 | 156 | #self.dataOut.ippFactor = ippFactor |
|
157 | 157 | #print(ippFactor) |
|
158 | 158 | #print(self.dataOut.ippFactor) |
|
159 | 159 | #exit(1) |
|
160 | 160 | |
|
161 | 161 | self.dataOut.nFFTPoints = nFFTPoints |
|
162 | 162 | |
|
163 | 163 | if self.buffer is None: |
|
164 | 164 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
165 | 165 | nProfiles, |
|
166 | 166 | self.dataIn.nHeights), |
|
167 | 167 | dtype='complex') |
|
168 | 168 | |
|
169 | 169 | if self.dataIn.flagDataAsBlock: |
|
170 | 170 | nVoltProfiles = self.dataIn.data.shape[1] |
|
171 | 171 | |
|
172 | 172 | if nVoltProfiles == nProfiles: |
|
173 | 173 | self.buffer = self.dataIn.data.copy() |
|
174 | 174 | self.profIndex = nVoltProfiles |
|
175 | 175 | |
|
176 | 176 | elif nVoltProfiles < nProfiles: |
|
177 | 177 | |
|
178 | 178 | if self.profIndex == 0: |
|
179 | 179 | self.id_min = 0 |
|
180 | 180 | self.id_max = nVoltProfiles |
|
181 | 181 | #print(self.id_min) |
|
182 | 182 | #print(self.id_max) |
|
183 | 183 | #print(numpy.shape(self.buffer)) |
|
184 | 184 | self.buffer[:, self.id_min:self.id_max, |
|
185 | 185 | :] = self.dataIn.data |
|
186 | 186 | self.profIndex += nVoltProfiles |
|
187 | 187 | self.id_min += nVoltProfiles |
|
188 | 188 | self.id_max += nVoltProfiles |
|
189 | 189 | else: |
|
190 | 190 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
191 | 191 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
192 | 192 | self.dataOut.flagNoData = True |
|
193 | 193 | else: |
|
194 | 194 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
195 | 195 | self.profIndex += 1 |
|
196 | 196 | |
|
197 | 197 | if self.firstdatatime == None: |
|
198 | 198 | self.firstdatatime = self.dataIn.utctime |
|
199 | 199 | |
|
200 | 200 | if self.profIndex == nProfiles: |
|
201 | 201 | self.__updateSpecFromVoltage() |
|
202 | 202 | if pairsList == None: |
|
203 | 203 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
204 | 204 | else: |
|
205 | 205 | self.dataOut.pairsList = pairsList |
|
206 | 206 | self.__getFft() |
|
207 | 207 | self.dataOut.flagNoData = False |
|
208 | 208 | self.firstdatatime = None |
|
209 | 209 | self.profIndex = 0 |
|
210 | 210 | else: |
|
211 | 211 | raise ValueError("The type of input object '%s' is not valid".format( |
|
212 | 212 | self.dataIn.type)) |
|
213 | 213 | |
|
214 | 214 | |
|
215 | 215 | def __selectPairs(self, pairsList): |
|
216 | 216 | |
|
217 | 217 | if not pairsList: |
|
218 | 218 | return |
|
219 | 219 | |
|
220 | 220 | pairs = [] |
|
221 | 221 | pairsIndex = [] |
|
222 | 222 | |
|
223 | 223 | for pair in pairsList: |
|
224 | 224 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
225 | 225 | continue |
|
226 | 226 | pairs.append(pair) |
|
227 | 227 | pairsIndex.append(pairs.index(pair)) |
|
228 | 228 | |
|
229 | 229 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
230 | 230 | self.dataOut.pairsList = pairs |
|
231 | 231 | |
|
232 | 232 | return |
|
233 | 233 | |
|
234 | 234 | def selectFFTs(self, minFFT, maxFFT ): |
|
235 | 235 | """ |
|
236 | 236 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
237 | 237 | minFFT<= FFT <= maxFFT |
|
238 | 238 | """ |
|
239 | 239 | |
|
240 | 240 | if (minFFT > maxFFT): |
|
241 | 241 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
242 | 242 | |
|
243 | 243 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
244 | 244 | minFFT = self.dataOut.getFreqRange()[0] |
|
245 | 245 | |
|
246 | 246 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
247 | 247 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
248 | 248 | |
|
249 | 249 | minIndex = 0 |
|
250 | 250 | maxIndex = 0 |
|
251 | 251 | FFTs = self.dataOut.getFreqRange() |
|
252 | 252 | |
|
253 | 253 | inda = numpy.where(FFTs >= minFFT) |
|
254 | 254 | indb = numpy.where(FFTs <= maxFFT) |
|
255 | 255 | |
|
256 | 256 | try: |
|
257 | 257 | minIndex = inda[0][0] |
|
258 | 258 | except: |
|
259 | 259 | minIndex = 0 |
|
260 | 260 | |
|
261 | 261 | try: |
|
262 | 262 | maxIndex = indb[0][-1] |
|
263 | 263 | except: |
|
264 | 264 | maxIndex = len(FFTs) |
|
265 | 265 | |
|
266 | 266 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
267 | 267 | |
|
268 | 268 | return 1 |
|
269 | 269 | |
|
270 | 270 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
271 | 271 | newheis = numpy.where( |
|
272 | 272 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
273 | 273 | |
|
274 | 274 | if hei_ref != None: |
|
275 | 275 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
276 | 276 | |
|
277 | 277 | minIndex = min(newheis[0]) |
|
278 | 278 | maxIndex = max(newheis[0]) |
|
279 | 279 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
280 | 280 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
281 | 281 | |
|
282 | 282 | # determina indices |
|
283 | 283 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
284 | 284 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
285 | 285 | avg_dB = 10 * \ |
|
286 | 286 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
287 | 287 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
288 | 288 | beacon_heiIndexList = [] |
|
289 | 289 | for val in avg_dB.tolist(): |
|
290 | 290 | if val >= beacon_dB[0]: |
|
291 | 291 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
292 | 292 | |
|
293 | 293 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
294 | 294 | data_cspc = None |
|
295 | 295 | if self.dataOut.data_cspc is not None: |
|
296 | 296 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
297 | 297 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
298 | 298 | |
|
299 | 299 | data_dc = None |
|
300 | 300 | if self.dataOut.data_dc is not None: |
|
301 | 301 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
302 | 302 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
303 | 303 | |
|
304 | 304 | self.dataOut.data_spc = data_spc |
|
305 | 305 | self.dataOut.data_cspc = data_cspc |
|
306 | 306 | self.dataOut.data_dc = data_dc |
|
307 | 307 | self.dataOut.heightList = heightList |
|
308 | 308 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
309 | 309 | |
|
310 | 310 | return 1 |
|
311 | 311 | |
|
312 | 312 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
313 | 313 | """ |
|
314 | 314 | |
|
315 | 315 | """ |
|
316 | 316 | |
|
317 | 317 | if (minIndex < 0) or (minIndex > maxIndex): |
|
318 | 318 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
319 | 319 | |
|
320 | 320 | if (maxIndex >= self.dataOut.nProfiles): |
|
321 | 321 | maxIndex = self.dataOut.nProfiles-1 |
|
322 | 322 | |
|
323 | 323 | #Spectra |
|
324 | 324 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
325 | 325 | |
|
326 | 326 | data_cspc = None |
|
327 | 327 | if self.dataOut.data_cspc is not None: |
|
328 | 328 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
329 | 329 | |
|
330 | 330 | data_dc = None |
|
331 | 331 | if self.dataOut.data_dc is not None: |
|
332 | 332 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
333 | 333 | |
|
334 | 334 | self.dataOut.data_spc = data_spc |
|
335 | 335 | self.dataOut.data_cspc = data_cspc |
|
336 | 336 | self.dataOut.data_dc = data_dc |
|
337 | 337 | |
|
338 | 338 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
339 | 339 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
340 | 340 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
341 | 341 | |
|
342 | 342 | return 1 |
|
343 | 343 | |
|
344 | 344 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
345 | 345 | # validacion de rango |
|
346 | 346 | print("NOISeeee") |
|
347 | 347 | if minHei == None: |
|
348 | 348 | minHei = self.dataOut.heightList[0] |
|
349 | 349 | |
|
350 | 350 | if maxHei == None: |
|
351 | 351 | maxHei = self.dataOut.heightList[-1] |
|
352 | 352 | |
|
353 | 353 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
354 | 354 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
355 | 355 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
356 | 356 | minHei = self.dataOut.heightList[0] |
|
357 | 357 | |
|
358 | 358 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
359 | 359 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
360 | 360 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
361 | 361 | maxHei = self.dataOut.heightList[-1] |
|
362 | 362 | |
|
363 | 363 | # validacion de velocidades |
|
364 | 364 | velrange = self.dataOut.getVelRange(1) |
|
365 | 365 | |
|
366 | 366 | if minVel == None: |
|
367 | 367 | minVel = velrange[0] |
|
368 | 368 | |
|
369 | 369 | if maxVel == None: |
|
370 | 370 | maxVel = velrange[-1] |
|
371 | 371 | |
|
372 | 372 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
373 | 373 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
374 | 374 | print('minVel is setting to %.2f' % (velrange[0])) |
|
375 | 375 | minVel = velrange[0] |
|
376 | 376 | |
|
377 | 377 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
378 | 378 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
379 | 379 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
380 | 380 | maxVel = velrange[-1] |
|
381 | 381 | |
|
382 | 382 | # seleccion de indices para rango |
|
383 | 383 | minIndex = 0 |
|
384 | 384 | maxIndex = 0 |
|
385 | 385 | heights = self.dataOut.heightList |
|
386 | 386 | |
|
387 | 387 | inda = numpy.where(heights >= minHei) |
|
388 | 388 | indb = numpy.where(heights <= maxHei) |
|
389 | 389 | |
|
390 | 390 | try: |
|
391 | 391 | minIndex = inda[0][0] |
|
392 | 392 | except: |
|
393 | 393 | minIndex = 0 |
|
394 | 394 | |
|
395 | 395 | try: |
|
396 | 396 | maxIndex = indb[0][-1] |
|
397 | 397 | except: |
|
398 | 398 | maxIndex = len(heights) |
|
399 | 399 | |
|
400 | 400 | if (minIndex < 0) or (minIndex > maxIndex): |
|
401 | 401 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
402 | 402 | minIndex, maxIndex)) |
|
403 | 403 | |
|
404 | 404 | if (maxIndex >= self.dataOut.nHeights): |
|
405 | 405 | maxIndex = self.dataOut.nHeights - 1 |
|
406 | 406 | |
|
407 | 407 | # seleccion de indices para velocidades |
|
408 | 408 | indminvel = numpy.where(velrange >= minVel) |
|
409 | 409 | indmaxvel = numpy.where(velrange <= maxVel) |
|
410 | 410 | try: |
|
411 | 411 | minIndexVel = indminvel[0][0] |
|
412 | 412 | except: |
|
413 | 413 | minIndexVel = 0 |
|
414 | 414 | |
|
415 | 415 | try: |
|
416 | 416 | maxIndexVel = indmaxvel[0][-1] |
|
417 | 417 | except: |
|
418 | 418 | maxIndexVel = len(velrange) |
|
419 | 419 | |
|
420 | 420 | # seleccion del espectro |
|
421 | 421 | data_spc = self.dataOut.data_spc[:, |
|
422 | 422 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
423 | 423 | # estimacion de ruido |
|
424 | 424 | noise = numpy.zeros(self.dataOut.nChannels) |
|
425 | 425 | |
|
426 | 426 | for channel in range(self.dataOut.nChannels): |
|
427 | 427 | daux = data_spc[channel, :, :] |
|
428 | 428 | sortdata = numpy.sort(daux, axis=None) |
|
429 | 429 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
430 | 430 | |
|
431 | 431 | self.dataOut.noise_estimation = noise.copy() |
|
432 | 432 | |
|
433 | 433 | return 1 |
|
434 | 434 | |
|
435 | 435 | class GetSNR(Operation): |
|
436 | 436 | ''' |
|
437 | 437 | Written by R. Flores |
|
438 | 438 | ''' |
|
439 | 439 | """Operation to get SNR. |
|
440 | 440 | |
|
441 | 441 | Parameters: |
|
442 | 442 | ----------- |
|
443 | 443 | |
|
444 | 444 | Example |
|
445 | 445 | -------- |
|
446 | 446 | |
|
447 | 447 | op = proc_unit.addOperation(name='GetSNR', optype='other') |
|
448 | 448 | |
|
449 | 449 | """ |
|
450 | 450 | |
|
451 | 451 | def __init__(self, **kwargs): |
|
452 | 452 | |
|
453 | 453 | Operation.__init__(self, **kwargs) |
|
454 | 454 | |
|
455 | 455 | |
|
456 | 456 | def run(self,dataOut): |
|
457 | 457 | |
|
458 |
|
|
|
459 | noise = dataOut.getNoise(ymin_index=-10) #Región superior donde solo debería de haber ruido | |
|
458 | noise = dataOut.getNoise() | |
|
459 | #noise = dataOut.getNoise(ymin_index=-10) #Región superior donde solo debería de haber ruido | |
|
460 | 460 | #print("Noise: ", noise) |
|
461 | 461 | #print("Noise_dB: ", 10*numpy.log10(noise/dataOut.normFactor)) |
|
462 | 462 | #print("Heights: ", dataOut.heightList) |
|
463 | 463 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.normFactor) |
|
464 | 464 | ################dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.nFFTPoints) #Before 12Jan2023 |
|
465 | 465 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None])/(noise[:,None]) |
|
466 | 466 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently |
|
467 | 467 | dataOut.snl = numpy.log10(dataOut.data_snr) |
|
468 | 468 | #print("snl: ", dataOut.snl) |
|
469 | 469 | #exit(1) |
|
470 | 470 | #print(dataOut.heightList[-11]) |
|
471 | 471 | #print(numpy.shape(dataOut.heightList)) |
|
472 | 472 | #print(dataOut.data_snr) |
|
473 | 473 | #print(dataOut.data_snr[0,-11]) |
|
474 | 474 | #exit(1) |
|
475 | 475 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.5, numpy.nan, dataOut.data_snr) |
|
476 | 476 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.1, numpy.nan, dataOut.data_snr) |
|
477 | 477 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.0, numpy.nan, dataOut.data_snr) |
|
478 | 478 | #dataOut.data_snr = numpy.where(dataOut.data_snr<.05, numpy.nan, dataOut.data_snr) |
|
479 | 479 | #dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) |
|
480 | 480 | dataOut.snl = numpy.where(dataOut.snl<-1, numpy.nan, dataOut.snl) |
|
481 | 481 | ''' |
|
482 | 482 | import matplotlib.pyplot as plt |
|
483 | 483 | #plt.plot(10*numpy.log10(dataOut.data_snr[0]),dataOut.heightList) |
|
484 | 484 | plt.plot(dataOut.data_snr[0],dataOut.heightList)#,marker='*') |
|
485 | 485 | plt.xlim(-1,10) |
|
486 | 486 | plt.axvline(1,color='k') |
|
487 | 487 | plt.axvline(.1,color='k',linestyle='--') |
|
488 | 488 | plt.grid() |
|
489 | 489 | plt.show() |
|
490 | 490 | ''' |
|
491 | 491 | #dataOut.data_snr = 10*numpy.log10(dataOut.data_snr) |
|
492 | 492 | #dataOut.data_snr = numpy.expand_dims(dataOut.data_snr,axis=0) |
|
493 | 493 | #print(dataOut.data_snr.shape) |
|
494 | 494 | #exit(1) |
|
495 | 495 | #print("Before: ", dataOut.data_snr[0]) |
|
496 | 496 | |
|
497 | 497 | |
|
498 | 498 | return dataOut |
|
499 | 499 | |
|
500 | 500 | class removeDC(Operation): |
|
501 | 501 | |
|
502 | 502 | def run(self, dataOut, mode=2): |
|
503 | 503 | self.dataOut = dataOut |
|
504 | 504 | jspectra = self.dataOut.data_spc |
|
505 | 505 | jcspectra = self.dataOut.data_cspc |
|
506 | 506 | |
|
507 | 507 | num_chan = jspectra.shape[0] |
|
508 | 508 | num_hei = jspectra.shape[2] |
|
509 | 509 | |
|
510 | 510 | if jcspectra is not None: |
|
511 | 511 | jcspectraExist = True |
|
512 | 512 | num_pairs = jcspectra.shape[0] |
|
513 | 513 | else: |
|
514 | 514 | jcspectraExist = False |
|
515 | 515 | |
|
516 | 516 | freq_dc = int(jspectra.shape[1] / 2) |
|
517 | 517 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
518 | 518 | ind_vel = ind_vel.astype(int) |
|
519 | 519 | |
|
520 | 520 | if ind_vel[0] < 0: |
|
521 | 521 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
522 | 522 | |
|
523 | 523 | if mode == 1: |
|
524 | 524 | jspectra[:, freq_dc, :] = ( |
|
525 | 525 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
526 | 526 | |
|
527 | 527 | if jcspectraExist: |
|
528 | 528 | jcspectra[:, freq_dc, :] = ( |
|
529 | 529 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
530 | 530 | |
|
531 | 531 | if mode == 2: |
|
532 | 532 | |
|
533 | 533 | vel = numpy.array([-2, -1, 1, 2]) |
|
534 | 534 | xx = numpy.zeros([4, 4]) |
|
535 | 535 | |
|
536 | 536 | for fil in range(4): |
|
537 | 537 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
538 | 538 | |
|
539 | 539 | xx_inv = numpy.linalg.inv(xx) |
|
540 | 540 | xx_aux = xx_inv[0, :] |
|
541 | 541 | |
|
542 | 542 | for ich in range(num_chan): |
|
543 | 543 | yy = jspectra[ich, ind_vel, :] |
|
544 | 544 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
545 | 545 | |
|
546 | 546 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
547 | 547 | cjunkid = sum(junkid) |
|
548 | 548 | |
|
549 | 549 | if cjunkid.any(): |
|
550 | 550 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
551 | 551 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
552 | 552 | |
|
553 | 553 | if jcspectraExist: |
|
554 | 554 | for ip in range(num_pairs): |
|
555 | 555 | yy = jcspectra[ip, ind_vel, :] |
|
556 | 556 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
557 | 557 | |
|
558 | 558 | self.dataOut.data_spc = jspectra |
|
559 | 559 | self.dataOut.data_cspc = jcspectra |
|
560 | 560 | |
|
561 | 561 | return self.dataOut |
|
562 | 562 | |
|
563 | 563 | class removeInterference(Operation): |
|
564 | 564 | |
|
565 | 565 | def removeInterference2(self): |
|
566 | 566 | |
|
567 | 567 | cspc = self.dataOut.data_cspc |
|
568 | 568 | spc = self.dataOut.data_spc |
|
569 | 569 | Heights = numpy.arange(cspc.shape[2]) |
|
570 | 570 | realCspc = numpy.abs(cspc) |
|
571 | 571 | |
|
572 | 572 | for i in range(cspc.shape[0]): |
|
573 | 573 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
574 | 574 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
575 | 575 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
576 | 576 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
577 | 577 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
578 | 578 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
579 | 579 | |
|
580 | 580 | |
|
581 | 581 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
582 | 582 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
583 | 583 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
584 | 584 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
585 | 585 | |
|
586 | 586 | self.dataOut.data_cspc = cspc |
|
587 | 587 | |
|
588 | 588 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
589 | 589 | |
|
590 | 590 | jspectra = self.dataOut.data_spc |
|
591 | 591 | jcspectra = self.dataOut.data_cspc |
|
592 | 592 | jnoise = self.dataOut.getNoise() |
|
593 | 593 | num_incoh = self.dataOut.nIncohInt |
|
594 | 594 | |
|
595 | 595 | num_channel = jspectra.shape[0] |
|
596 | 596 | num_prof = jspectra.shape[1] |
|
597 | 597 | num_hei = jspectra.shape[2] |
|
598 | 598 | |
|
599 | 599 | # hei_interf |
|
600 | 600 | if hei_interf is None: |
|
601 | 601 | count_hei = int(num_hei / 2) |
|
602 | 602 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
603 | 603 | hei_interf = numpy.asarray(hei_interf)[0] |
|
604 | 604 | # nhei_interf |
|
605 | 605 | if (nhei_interf == None): |
|
606 | 606 | nhei_interf = 5 |
|
607 | 607 | if (nhei_interf < 1): |
|
608 | 608 | nhei_interf = 1 |
|
609 | 609 | if (nhei_interf > count_hei): |
|
610 | 610 | nhei_interf = count_hei |
|
611 | 611 | if (offhei_interf == None): |
|
612 | 612 | offhei_interf = 0 |
|
613 | 613 | |
|
614 | 614 | ind_hei = list(range(num_hei)) |
|
615 | 615 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
616 | 616 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
617 | 617 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
618 | 618 | num_mask_prof = mask_prof.size |
|
619 | 619 | comp_mask_prof = [0, num_prof / 2] |
|
620 | 620 | |
|
621 | 621 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
622 | 622 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
623 | 623 | jnoise = numpy.nan |
|
624 | 624 | noise_exist = jnoise[0] < numpy.Inf |
|
625 | 625 | |
|
626 | 626 | # Subrutina de Remocion de la Interferencia |
|
627 | 627 | for ich in range(num_channel): |
|
628 | 628 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
629 | 629 | power = jspectra[ich, mask_prof, :] |
|
630 | 630 | power = power[:, hei_interf] |
|
631 | 631 | power = power.sum(axis=0) |
|
632 | 632 | psort = power.ravel().argsort() |
|
633 | 633 | |
|
634 | 634 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
635 | 635 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
636 | 636 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
637 | 637 | |
|
638 | 638 | if noise_exist: |
|
639 | 639 | # tmp_noise = jnoise[ich] / num_prof |
|
640 | 640 | tmp_noise = jnoise[ich] |
|
641 | 641 | junkspc_interf = junkspc_interf - tmp_noise |
|
642 | 642 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
643 | 643 | |
|
644 | 644 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
645 | 645 | jspc_interf = jspc_interf.transpose() |
|
646 | 646 | # Calculando el espectro de interferencia promedio |
|
647 | 647 | noiseid = numpy.where( |
|
648 | 648 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
649 | 649 | noiseid = noiseid[0] |
|
650 | 650 | cnoiseid = noiseid.size |
|
651 | 651 | interfid = numpy.where( |
|
652 | 652 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
653 | 653 | interfid = interfid[0] |
|
654 | 654 | cinterfid = interfid.size |
|
655 | 655 | |
|
656 | 656 | if (cnoiseid > 0): |
|
657 | 657 | jspc_interf[noiseid] = 0 |
|
658 | 658 | |
|
659 | 659 | # Expandiendo los perfiles a limpiar |
|
660 | 660 | if (cinterfid > 0): |
|
661 | 661 | new_interfid = ( |
|
662 | 662 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
663 | 663 | new_interfid = numpy.asarray(new_interfid) |
|
664 | 664 | new_interfid = {x for x in new_interfid} |
|
665 | 665 | new_interfid = numpy.array(list(new_interfid)) |
|
666 | 666 | new_cinterfid = new_interfid.size |
|
667 | 667 | else: |
|
668 | 668 | new_cinterfid = 0 |
|
669 | 669 | |
|
670 | 670 | for ip in range(new_cinterfid): |
|
671 | 671 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
672 | 672 | jspc_interf[new_interfid[ip] |
|
673 | 673 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
674 | 674 | |
|
675 | 675 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
676 | 676 | ind_hei] - jspc_interf # Corregir indices |
|
677 | 677 | |
|
678 | 678 | # Removiendo la interferencia del punto de mayor interferencia |
|
679 | 679 | ListAux = jspc_interf[mask_prof].tolist() |
|
680 | 680 | maxid = ListAux.index(max(ListAux)) |
|
681 | 681 | |
|
682 | 682 | if cinterfid > 0: |
|
683 | 683 | for ip in range(cinterfid * (interf == 2) - 1): |
|
684 | 684 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
685 | 685 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
686 | 686 | cind = len(ind) |
|
687 | 687 | |
|
688 | 688 | if (cind > 0): |
|
689 | 689 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
690 | 690 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
691 | 691 | numpy.sqrt(num_incoh)) |
|
692 | 692 | |
|
693 | 693 | ind = numpy.array([-2, -1, 1, 2]) |
|
694 | 694 | xx = numpy.zeros([4, 4]) |
|
695 | 695 | |
|
696 | 696 | for id1 in range(4): |
|
697 | 697 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
698 | 698 | |
|
699 | 699 | xx_inv = numpy.linalg.inv(xx) |
|
700 | 700 | xx = xx_inv[:, 0] |
|
701 | 701 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
702 | 702 | yy = jspectra[ich, mask_prof[ind], :] |
|
703 | 703 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
704 | 704 | yy.transpose(), xx) |
|
705 | 705 | |
|
706 | 706 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
707 | 707 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
708 | 708 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
709 | 709 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
710 | 710 | |
|
711 | 711 | # Remocion de Interferencia en el Cross Spectra |
|
712 | 712 | if jcspectra is None: |
|
713 | 713 | return jspectra, jcspectra |
|
714 | 714 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
715 | 715 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
716 | 716 | |
|
717 | 717 | for ip in range(num_pairs): |
|
718 | 718 | |
|
719 | 719 | #------------------------------------------- |
|
720 | 720 | |
|
721 | 721 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
722 | 722 | cspower = cspower[:, hei_interf] |
|
723 | 723 | cspower = cspower.sum(axis=0) |
|
724 | 724 | |
|
725 | 725 | cspsort = cspower.ravel().argsort() |
|
726 | 726 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
727 | 727 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
728 | 728 | junkcspc_interf = junkcspc_interf.transpose() |
|
729 | 729 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
730 | 730 | |
|
731 | 731 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
732 | 732 | |
|
733 | 733 | median_real = int(numpy.median(numpy.real( |
|
734 | 734 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
735 | 735 | median_imag = int(numpy.median(numpy.imag( |
|
736 | 736 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
737 | 737 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
738 | 738 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
739 | 739 | median_real, median_imag) |
|
740 | 740 | |
|
741 | 741 | for iprof in range(num_prof): |
|
742 | 742 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
743 | 743 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
744 | 744 | |
|
745 | 745 | # Removiendo la Interferencia |
|
746 | 746 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
747 | 747 | :, ind_hei] - jcspc_interf |
|
748 | 748 | |
|
749 | 749 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
750 | 750 | maxid = ListAux.index(max(ListAux)) |
|
751 | 751 | |
|
752 | 752 | ind = numpy.array([-2, -1, 1, 2]) |
|
753 | 753 | xx = numpy.zeros([4, 4]) |
|
754 | 754 | |
|
755 | 755 | for id1 in range(4): |
|
756 | 756 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
757 | 757 | |
|
758 | 758 | xx_inv = numpy.linalg.inv(xx) |
|
759 | 759 | xx = xx_inv[:, 0] |
|
760 | 760 | |
|
761 | 761 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
762 | 762 | yy = jcspectra[ip, mask_prof[ind], :] |
|
763 | 763 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
764 | 764 | |
|
765 | 765 | # Guardar Resultados |
|
766 | 766 | self.dataOut.data_spc = jspectra |
|
767 | 767 | self.dataOut.data_cspc = jcspectra |
|
768 | 768 | |
|
769 | 769 | return 1 |
|
770 | 770 | |
|
771 | 771 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
772 | 772 | |
|
773 | 773 | self.dataOut = dataOut |
|
774 | 774 | |
|
775 | 775 | if mode == 1: |
|
776 | 776 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
777 | 777 | elif mode == 2: |
|
778 | 778 | self.removeInterference2() |
|
779 | 779 | |
|
780 | 780 | return self.dataOut |
|
781 | 781 | |
|
782 | 782 | class removeInterferenceAtFreq(Operation): |
|
783 | 783 | ''' |
|
784 | 784 | Written by R. Flores |
|
785 | 785 | ''' |
|
786 | 786 | """Operation to remove interfernce at a known frequency(s). |
|
787 | 787 | |
|
788 | 788 | Parameters: |
|
789 | 789 | ----------- |
|
790 | 790 | None |
|
791 | 791 | |
|
792 | 792 | Example |
|
793 | 793 | -------- |
|
794 | 794 | |
|
795 | 795 | op = proc_unit.addOperation(name='removeInterferenceAtFreq') |
|
796 | 796 | |
|
797 | 797 | """ |
|
798 | 798 | |
|
799 | 799 | def __init__(self): |
|
800 | 800 | |
|
801 | 801 | Operation.__init__(self) |
|
802 | 802 | |
|
803 | 803 | def run(self, dataOut, freq = None, freqList = None): |
|
804 | 804 | |
|
805 | 805 | VelRange = dataOut.getVelRange() |
|
806 | 806 | #print("VelRange: ", VelRange) |
|
807 | 807 | |
|
808 | 808 | freq_ids = [] |
|
809 | 809 | |
|
810 | 810 | if freq is not None: |
|
811 | 811 | #print("freq") |
|
812 | 812 | #if freq < 0: |
|
813 | 813 | inda = numpy.where(VelRange >= freq) |
|
814 | 814 | minIndex = inda[0][0] |
|
815 | 815 | #print(numpy.shape(dataOut.dataLag_spc)) |
|
816 | 816 | dataOut.data_spc[:,minIndex,:] = numpy.nan |
|
817 | 817 | |
|
818 | 818 | #inda = numpy.where(VelRange >= ymin_noise) |
|
819 | 819 | #indb = numpy.where(VelRange <= ymax_noise) |
|
820 | 820 | |
|
821 | 821 | #minIndex = inda[0][0] |
|
822 | 822 | #maxIndex = indb[0][-1] |
|
823 | 823 | |
|
824 | 824 | elif freqList is not None: |
|
825 | 825 | #print("freqList") |
|
826 | 826 | for freq in freqList: |
|
827 | 827 | #if freq < 0: |
|
828 | 828 | inda = numpy.where(VelRange >= freq) |
|
829 | 829 | minIndex = inda[0][0] |
|
830 | 830 | #print(numpy.shape(dataOut.dataLag_spc)) |
|
831 | 831 | if freq > 0: |
|
832 | 832 | #dataOut.data_spc[:,minIndex-1,:] = numpy.nan |
|
833 | 833 | freq_ids.append(minIndex-1) |
|
834 | 834 | else: |
|
835 | 835 | #dataOut.data_spc[:,minIndex,:] = numpy.nan |
|
836 | 836 | freq_ids.append(minIndex) |
|
837 | 837 | else: |
|
838 | 838 | raise ValueError("freq or freqList should be specified ...") |
|
839 | 839 | |
|
840 | 840 | #freq_ids = numpy.array(freq_ids).flatten() |
|
841 | 841 | |
|
842 | 842 | avg = numpy.mean(dataOut.data_spc[:,[t for t in range(dataOut.data_spc.shape[0]) if t not in freq_ids],:],axis=1) |
|
843 | 843 | |
|
844 | 844 | for p in list(freq_ids): |
|
845 | 845 | dataOut.data_spc[:,p,:] = avg#numpy.nan |
|
846 | 846 | |
|
847 | 847 | |
|
848 | 848 | return dataOut |
|
849 | 849 | |
|
850 | 850 | class IncohInt(Operation): |
|
851 | 851 | |
|
852 | 852 | __profIndex = 0 |
|
853 | 853 | __withOverapping = False |
|
854 | 854 | |
|
855 | 855 | __byTime = False |
|
856 | 856 | __initime = None |
|
857 | 857 | __lastdatatime = None |
|
858 | 858 | __integrationtime = None |
|
859 | 859 | |
|
860 | 860 | __buffer_spc = None |
|
861 | 861 | __buffer_cspc = None |
|
862 | 862 | __buffer_dc = None |
|
863 | 863 | |
|
864 | 864 | __dataReady = False |
|
865 | 865 | |
|
866 | 866 | __timeInterval = None |
|
867 | 867 | |
|
868 | 868 | n = None |
|
869 | 869 | |
|
870 | 870 | def __init__(self): |
|
871 | 871 | |
|
872 | 872 | Operation.__init__(self) |
|
873 | 873 | |
|
874 | 874 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
875 | 875 | """ |
|
876 | 876 | Set the parameters of the integration class. |
|
877 | 877 | |
|
878 | 878 | Inputs: |
|
879 | 879 | |
|
880 | 880 | n : Number of coherent integrations |
|
881 | 881 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
882 | 882 | overlapping : |
|
883 | 883 | |
|
884 | 884 | """ |
|
885 | 885 | |
|
886 | 886 | self.__initime = None |
|
887 | 887 | self.__lastdatatime = 0 |
|
888 | 888 | |
|
889 | 889 | self.__buffer_spc = 0 |
|
890 | 890 | self.__buffer_cspc = 0 |
|
891 | 891 | self.__buffer_dc = 0 |
|
892 | 892 | |
|
893 | 893 | self.__profIndex = 0 |
|
894 | 894 | self.__dataReady = False |
|
895 | 895 | self.__byTime = False |
|
896 | 896 | |
|
897 | 897 | if n is None and timeInterval is None: |
|
898 | 898 | raise ValueError("n or timeInterval should be specified ...") |
|
899 | 899 | |
|
900 | 900 | if n is not None: |
|
901 | 901 | self.n = int(n) |
|
902 | 902 | else: |
|
903 | 903 | |
|
904 | 904 | self.__integrationtime = int(timeInterval) |
|
905 | 905 | self.n = None |
|
906 | 906 | self.__byTime = True |
|
907 | 907 | |
|
908 | 908 | def putData(self, data_spc, data_cspc, data_dc): |
|
909 | 909 | """ |
|
910 | 910 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
911 | 911 | |
|
912 | 912 | """ |
|
913 | 913 | |
|
914 | 914 | self.__buffer_spc += data_spc |
|
915 | 915 | |
|
916 | 916 | if data_cspc is None: |
|
917 | 917 | self.__buffer_cspc = None |
|
918 | 918 | else: |
|
919 | 919 | self.__buffer_cspc += data_cspc |
|
920 | 920 | |
|
921 | 921 | if data_dc is None: |
|
922 | 922 | self.__buffer_dc = None |
|
923 | 923 | else: |
|
924 | 924 | self.__buffer_dc += data_dc |
|
925 | 925 | |
|
926 | 926 | self.__profIndex += 1 |
|
927 | 927 | |
|
928 | 928 | return |
|
929 | 929 | |
|
930 | 930 | def pushData(self): |
|
931 | 931 | """ |
|
932 | 932 | Return the sum of the last profiles and the profiles used in the sum. |
|
933 | 933 | |
|
934 | 934 | Affected: |
|
935 | 935 | |
|
936 | 936 | self.__profileIndex |
|
937 | 937 | |
|
938 | 938 | """ |
|
939 | 939 | |
|
940 | 940 | data_spc = self.__buffer_spc |
|
941 | 941 | data_cspc = self.__buffer_cspc |
|
942 | 942 | data_dc = self.__buffer_dc |
|
943 | 943 | n = self.__profIndex |
|
944 | 944 | |
|
945 | 945 | self.__buffer_spc = 0 |
|
946 | 946 | self.__buffer_cspc = 0 |
|
947 | 947 | self.__buffer_dc = 0 |
|
948 | 948 | self.__profIndex = 0 |
|
949 | 949 | |
|
950 | 950 | return data_spc, data_cspc, data_dc, n |
|
951 | 951 | |
|
952 | 952 | def byProfiles(self, *args): |
|
953 | 953 | |
|
954 | 954 | self.__dataReady = False |
|
955 | 955 | avgdata_spc = None |
|
956 | 956 | avgdata_cspc = None |
|
957 | 957 | avgdata_dc = None |
|
958 | 958 | |
|
959 | 959 | self.putData(*args) |
|
960 | 960 | |
|
961 | 961 | if self.__profIndex == self.n: |
|
962 | 962 | |
|
963 | 963 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
964 | 964 | self.n = n |
|
965 | 965 | self.__dataReady = True |
|
966 | 966 | |
|
967 | 967 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
968 | 968 | |
|
969 | 969 | def byTime(self, datatime, *args): |
|
970 | 970 | |
|
971 | 971 | self.__dataReady = False |
|
972 | 972 | avgdata_spc = None |
|
973 | 973 | avgdata_cspc = None |
|
974 | 974 | avgdata_dc = None |
|
975 | 975 | |
|
976 | 976 | self.putData(*args) |
|
977 | 977 | |
|
978 | 978 | if (datatime - self.__initime) >= self.__integrationtime: |
|
979 | 979 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
980 | 980 | self.n = n |
|
981 | 981 | self.__dataReady = True |
|
982 | 982 | |
|
983 | 983 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
984 | 984 | |
|
985 | 985 | def integrate(self, datatime, *args): |
|
986 | 986 | |
|
987 | 987 | if self.__profIndex == 0: |
|
988 | 988 | self.__initime = datatime |
|
989 | 989 | |
|
990 | 990 | if self.__byTime: |
|
991 | 991 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
992 | 992 | datatime, *args) |
|
993 | 993 | else: |
|
994 | 994 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
995 | 995 | |
|
996 | 996 | if not self.__dataReady: |
|
997 | 997 | return None, None, None, None |
|
998 | 998 | |
|
999 | 999 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1000 | 1000 | |
|
1001 | 1001 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1002 | 1002 | if n == 1: |
|
1003 | 1003 | return dataOut |
|
1004 | 1004 | print("JERE") |
|
1005 | 1005 | dataOut.flagNoData = True |
|
1006 | 1006 | |
|
1007 | 1007 | if not self.isConfig: |
|
1008 | 1008 | self.setup(n, timeInterval, overlapping) |
|
1009 | 1009 | self.isConfig = True |
|
1010 | 1010 | |
|
1011 | 1011 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1012 | 1012 | dataOut.data_spc, |
|
1013 | 1013 | dataOut.data_cspc, |
|
1014 | 1014 | dataOut.data_dc) |
|
1015 | 1015 | |
|
1016 | 1016 | if self.__dataReady: |
|
1017 | 1017 | |
|
1018 | 1018 | dataOut.data_spc = avgdata_spc |
|
1019 | 1019 | print(numpy.sum(dataOut.data_spc)) |
|
1020 | 1020 | exit(1) |
|
1021 | 1021 | dataOut.data_cspc = avgdata_cspc |
|
1022 | 1022 | dataOut.data_dc = avgdata_dc |
|
1023 | 1023 | dataOut.nIncohInt *= self.n |
|
1024 | 1024 | dataOut.utctime = avgdatatime |
|
1025 | 1025 | dataOut.flagNoData = False |
|
1026 | 1026 | |
|
1027 | 1027 | return dataOut |
|
1028 | 1028 | |
|
1029 | 1029 | class dopplerFlip(Operation): |
|
1030 | 1030 | |
|
1031 | 1031 | def run(self, dataOut, chann = None): |
|
1032 | 1032 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1033 | 1033 | self.dataOut = dataOut |
|
1034 | 1034 | # JULIA-oblicua, indice 2 |
|
1035 | 1035 | # arreglo 2: (num_profiles, num_heights) |
|
1036 | 1036 | jspectra = self.dataOut.data_spc[chann] |
|
1037 | 1037 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1038 | 1038 | num_profiles = jspectra.shape[0] |
|
1039 | 1039 | freq_dc = int(num_profiles / 2) |
|
1040 | 1040 | # Flip con for |
|
1041 | 1041 | for j in range(num_profiles): |
|
1042 | 1042 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1043 | 1043 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1044 | 1044 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1045 | 1045 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1046 | 1046 | # canal modificado es re-escrito en el arreglo de canales |
|
1047 | 1047 | self.dataOut.data_spc[chann] = jspectra_tmp |
|
1048 | 1048 | |
|
1049 | 1049 | return self.dataOut |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now