The requested changes are too big and content was truncated. Show full diff
@@ -1,1348 +1,1349 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 | #import collections.abc |
|
11 | #import collections.abc | |
12 |
|
12 | |||
13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 |
|
24 | |||
25 | def setup(self): |
|
25 | def setup(self): | |
26 |
|
26 | |||
27 | self.nplots = len(self.data.channels) |
|
27 | self.nplots = len(self.data.channels) | |
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
30 | self.height = 2.6 * self.nrows |
|
30 | self.height = 2.6 * self.nrows | |
31 | self.cb_label = 'dB' |
|
31 | self.cb_label = 'dB' | |
32 | if self.showprofile: |
|
32 | if self.showprofile: | |
33 | self.width = 4 * self.ncols |
|
33 | self.width = 4 * self.ncols | |
34 | else: |
|
34 | else: | |
35 | self.width = 3.5 * self.ncols |
|
35 | self.width = 3.5 * self.ncols | |
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
37 | self.ylabel = 'Range [km]' |
|
37 | self.ylabel = 'Range [km]' | |
38 |
|
38 | |||
39 | def update(self, dataOut): |
|
39 | def update(self, dataOut): | |
40 |
|
40 | |||
41 | data = {} |
|
41 | data = {} | |
42 | meta = {} |
|
42 | meta = {} | |
43 |
|
43 | |||
44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
45 | #print("dataOut.normFactor: ", dataOut.normFactor) |
|
45 | #print("dataOut.normFactor: ", dataOut.normFactor) | |
46 | #print("spc: ", dataOut.data_spc[0,0,0]) |
|
46 | #print("spc: ", dataOut.data_spc[0,0,0]) | |
47 | #spc = 10*numpy.log10(dataOut.data_spc) |
|
47 | #spc = 10*numpy.log10(dataOut.data_spc) | |
48 | #print("Spc: ",spc[0]) |
|
48 | #print("Spc: ",spc[0]) | |
49 | #exit(1) |
|
49 | #exit(1) | |
50 | data['spc'] = spc |
|
50 | data['spc'] = spc | |
51 | data['rti'] = dataOut.getPower() |
|
51 | data['rti'] = dataOut.getPower() | |
52 | #print(data['rti'][0]) |
|
52 | #print(data['rti'][0]) | |
53 | #exit(1) |
|
53 | #exit(1) | |
54 | #print("NormFactor: ",dataOut.normFactor) |
|
54 | #print("NormFactor: ",dataOut.normFactor) | |
55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse | |
57 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot |
|
57 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot | |
58 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) |
|
58 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) | |
59 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) |
|
59 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) | |
60 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) |
|
60 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) | |
61 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) |
|
61 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) | |
62 | #data['noise'][1] = 22.035507 |
|
62 | #data['noise'][1] = 22.035507 | |
63 | else: |
|
63 | else: | |
64 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
64 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
65 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) |
|
65 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) | |
66 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
66 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
67 |
|
67 | |||
68 | if self.CODE == 'spc_moments': |
|
68 | if self.CODE == 'spc_moments': | |
69 | data['moments'] = dataOut.moments |
|
69 | data['moments'] = dataOut.moments | |
70 | if self.CODE == 'gaussian_fit': |
|
70 | if self.CODE == 'gaussian_fit': | |
71 | data['gaussfit'] = dataOut.DGauFitParams |
|
71 | data['gaussfit'] = dataOut.DGauFitParams | |
72 |
|
72 | |||
73 | return data, meta |
|
73 | return data, meta | |
74 |
|
74 | |||
75 | def plot(self): |
|
75 | def plot(self): | |
76 |
|
76 | |||
77 | if self.xaxis == "frequency": |
|
77 | if self.xaxis == "frequency": | |
78 | x = self.data.xrange[0] |
|
78 | x = self.data.xrange[0] | |
79 | self.xlabel = "Frequency (kHz)" |
|
79 | self.xlabel = "Frequency (kHz)" | |
80 | elif self.xaxis == "time": |
|
80 | elif self.xaxis == "time": | |
81 | x = self.data.xrange[1] |
|
81 | x = self.data.xrange[1] | |
82 | self.xlabel = "Time (ms)" |
|
82 | self.xlabel = "Time (ms)" | |
83 | else: |
|
83 | else: | |
84 | x = self.data.xrange[2] |
|
84 | x = self.data.xrange[2] | |
85 | self.xlabel = "Velocity (m/s)" |
|
85 | self.xlabel = "Velocity (m/s)" | |
86 |
|
86 | |||
87 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
87 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
88 | x = self.data.xrange[2] |
|
88 | x = self.data.xrange[2] | |
89 | self.xlabel = "Velocity (m/s)" |
|
89 | self.xlabel = "Velocity (m/s)" | |
90 |
|
90 | |||
91 | self.titles = [] |
|
91 | self.titles = [] | |
92 |
|
92 | |||
93 | y = self.data.yrange |
|
93 | y = self.data.yrange | |
94 | self.y = y |
|
94 | self.y = y | |
95 |
|
95 | |||
96 | data = self.data[-1] |
|
96 | data = self.data[-1] | |
97 | z = data['spc'] |
|
97 | z = data['spc'] | |
98 |
|
98 | |||
99 | self.CODE2 = 'spc_oblique' |
|
99 | self.CODE2 = 'spc_oblique' | |
100 |
|
100 | |||
101 | for n, ax in enumerate(self.axes): |
|
101 | for n, ax in enumerate(self.axes): | |
102 | noise = data['noise'][n] |
|
102 | noise = data['noise'][n] | |
103 | if self.CODE == 'spc_moments': |
|
103 | if self.CODE == 'spc_moments': | |
104 | mean = data['moments'][n, 1] |
|
104 | mean = data['moments'][n, 1] | |
105 | if self.CODE == 'gaussian_fit': |
|
105 | if self.CODE == 'gaussian_fit': | |
106 | gau0 = data['gaussfit'][n][2,:,0] |
|
106 | gau0 = data['gaussfit'][n][2,:,0] | |
107 | gau1 = data['gaussfit'][n][2,:,1] |
|
107 | gau1 = data['gaussfit'][n][2,:,1] | |
108 | if ax.firsttime: |
|
108 | if ax.firsttime: | |
109 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
109 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
110 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
110 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax | |
111 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
111 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
112 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
112 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
113 | if self.zlimits is not None: |
|
113 | if self.zlimits is not None: | |
114 | self.zmin, self.zmax = self.zlimits[n] |
|
114 | self.zmin, self.zmax = self.zlimits[n] | |
115 |
|
115 | |||
116 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
116 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
117 | vmin=self.zmin, |
|
117 | vmin=self.zmin, | |
118 | vmax=self.zmax, |
|
118 | vmax=self.zmax, | |
119 | cmap=plt.get_cmap(self.colormap), |
|
119 | cmap=plt.get_cmap(self.colormap), | |
120 | ) |
|
120 | ) | |
121 |
|
121 | |||
122 | if self.showprofile: |
|
122 | if self.showprofile: | |
123 | ax.plt_profile = self.pf_axes[n].plot( |
|
123 | ax.plt_profile = self.pf_axes[n].plot( | |
124 | data['rti'][n], y)[0] |
|
124 | data['rti'][n], y)[0] | |
125 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
125 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
126 | color="k", linestyle="dashed", lw=1)[0] |
|
126 | color="k", linestyle="dashed", lw=1)[0] | |
127 | if self.CODE == 'spc_moments': |
|
127 | if self.CODE == 'spc_moments': | |
128 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
128 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
129 | if self.CODE == 'gaussian_fit': |
|
129 | if self.CODE == 'gaussian_fit': | |
130 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
130 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
131 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
131 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
132 | else: |
|
132 | else: | |
133 | if self.zlimits is not None: |
|
133 | if self.zlimits is not None: | |
134 | self.zmin, self.zmax = self.zlimits[n] |
|
134 | self.zmin, self.zmax = self.zlimits[n] | |
135 | ax.plt.set_array(z[n].T.ravel()) |
|
135 | ax.plt.set_array(z[n].T.ravel()) | |
136 | if self.showprofile: |
|
136 | if self.showprofile: | |
137 | ax.plt_profile.set_data(data['rti'][n], y) |
|
137 | ax.plt_profile.set_data(data['rti'][n], y) | |
138 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
138 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
139 | if self.CODE == 'spc_moments': |
|
139 | if self.CODE == 'spc_moments': | |
140 | ax.plt_mean.set_data(mean, y) |
|
140 | ax.plt_mean.set_data(mean, y) | |
141 | if self.CODE == 'gaussian_fit': |
|
141 | if self.CODE == 'gaussian_fit': | |
142 | ax.plt_gau0.set_data(gau0, y) |
|
142 | ax.plt_gau0.set_data(gau0, y) | |
143 | ax.plt_gau1.set_data(gau1, y) |
|
143 | ax.plt_gau1.set_data(gau1, y) | |
144 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
144 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
145 |
|
145 | |||
146 | class SpectraObliquePlot(Plot): |
|
146 | class SpectraObliquePlot(Plot): | |
147 | ''' |
|
147 | ''' | |
148 | Plot for Spectra data |
|
148 | Plot for Spectra data | |
149 | ''' |
|
149 | ''' | |
150 |
|
150 | |||
151 | CODE = 'spc_oblique' |
|
151 | CODE = 'spc_oblique' | |
152 | colormap = 'jet' |
|
152 | colormap = 'jet' | |
153 | plot_type = 'pcolor' |
|
153 | plot_type = 'pcolor' | |
154 |
|
154 | |||
155 | def setup(self): |
|
155 | def setup(self): | |
156 | self.xaxis = "oblique" |
|
156 | self.xaxis = "oblique" | |
157 | self.nplots = len(self.data.channels) |
|
157 | self.nplots = len(self.data.channels) | |
158 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
158 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
159 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
159 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
160 | self.height = 2.6 * self.nrows |
|
160 | self.height = 2.6 * self.nrows | |
161 | self.cb_label = 'dB' |
|
161 | self.cb_label = 'dB' | |
162 | if self.showprofile: |
|
162 | if self.showprofile: | |
163 | self.width = 4 * self.ncols |
|
163 | self.width = 4 * self.ncols | |
164 | else: |
|
164 | else: | |
165 | self.width = 3.5 * self.ncols |
|
165 | self.width = 3.5 * self.ncols | |
166 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
166 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
167 | self.ylabel = 'Range [km]' |
|
167 | self.ylabel = 'Range [km]' | |
168 |
|
168 | |||
169 | def update(self, dataOut): |
|
169 | def update(self, dataOut): | |
170 |
|
170 | |||
171 | data = {} |
|
171 | data = {} | |
172 | meta = {} |
|
172 | meta = {} | |
173 |
|
173 | |||
174 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
174 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
175 | data['spc'] = spc |
|
175 | data['spc'] = spc | |
176 | data['rti'] = dataOut.getPower() |
|
176 | data['rti'] = dataOut.getPower() | |
177 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
177 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
178 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
178 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
179 | ''' |
|
179 | ''' | |
180 | data['shift1'] = dataOut.Oblique_params[0,-2,:] |
|
180 | data['shift1'] = dataOut.Oblique_params[0,-2,:] | |
181 | data['shift2'] = dataOut.Oblique_params[0,-1,:] |
|
181 | data['shift2'] = dataOut.Oblique_params[0,-1,:] | |
182 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] |
|
182 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] | |
183 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] |
|
183 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] | |
184 | ''' |
|
184 | ''' | |
185 | ''' |
|
185 | ''' | |
186 | data['shift1'] = dataOut.Oblique_params[0,1,:] |
|
186 | data['shift1'] = dataOut.Oblique_params[0,1,:] | |
187 | data['shift2'] = dataOut.Oblique_params[0,4,:] |
|
187 | data['shift2'] = dataOut.Oblique_params[0,4,:] | |
188 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] |
|
188 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] | |
189 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] |
|
189 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] | |
190 | ''' |
|
190 | ''' | |
191 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
191 | data['shift1'] = dataOut.Dop_EEJ_T1[0] | |
192 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
192 | data['shift2'] = dataOut.Dop_EEJ_T2[0] | |
193 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
193 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] | |
194 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
194 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] | |
195 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
195 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] | |
196 |
|
196 | |||
197 | return data, meta |
|
197 | return data, meta | |
198 |
|
198 | |||
199 | def plot(self): |
|
199 | def plot(self): | |
200 |
|
200 | |||
201 | if self.xaxis == "frequency": |
|
201 | if self.xaxis == "frequency": | |
202 | x = self.data.xrange[0] |
|
202 | x = self.data.xrange[0] | |
203 | self.xlabel = "Frequency (kHz)" |
|
203 | self.xlabel = "Frequency (kHz)" | |
204 | elif self.xaxis == "time": |
|
204 | elif self.xaxis == "time": | |
205 | x = self.data.xrange[1] |
|
205 | x = self.data.xrange[1] | |
206 | self.xlabel = "Time (ms)" |
|
206 | self.xlabel = "Time (ms)" | |
207 | else: |
|
207 | else: | |
208 | x = self.data.xrange[2] |
|
208 | x = self.data.xrange[2] | |
209 | self.xlabel = "Velocity (m/s)" |
|
209 | self.xlabel = "Velocity (m/s)" | |
210 |
|
210 | |||
211 | self.titles = [] |
|
211 | self.titles = [] | |
212 |
|
212 | |||
213 | y = self.data.yrange |
|
213 | y = self.data.yrange | |
214 | self.y = y |
|
214 | self.y = y | |
215 |
|
215 | |||
216 | data = self.data[-1] |
|
216 | data = self.data[-1] | |
217 | z = data['spc'] |
|
217 | z = data['spc'] | |
218 |
|
218 | |||
219 | for n, ax in enumerate(self.axes): |
|
219 | for n, ax in enumerate(self.axes): | |
220 | noise = self.data['noise'][n][-1] |
|
220 | noise = self.data['noise'][n][-1] | |
221 | shift1 = data['shift1'] |
|
221 | shift1 = data['shift1'] | |
222 | #print(shift1) |
|
222 | #print(shift1) | |
223 | shift2 = data['shift2'] |
|
223 | shift2 = data['shift2'] | |
224 | max_val_2 = data['max_val_2'] |
|
224 | max_val_2 = data['max_val_2'] | |
225 | err1 = data['shift1_error'] |
|
225 | err1 = data['shift1_error'] | |
226 | err2 = data['shift2_error'] |
|
226 | err2 = data['shift2_error'] | |
227 | if ax.firsttime: |
|
227 | if ax.firsttime: | |
228 |
|
228 | |||
229 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
229 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
230 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
230 | self.xmin = self.xmin if self.xmin else -self.xmax | |
231 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
231 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
232 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
232 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
233 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
233 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
234 | vmin=self.zmin, |
|
234 | vmin=self.zmin, | |
235 | vmax=self.zmax, |
|
235 | vmax=self.zmax, | |
236 | cmap=plt.get_cmap(self.colormap) |
|
236 | cmap=plt.get_cmap(self.colormap) | |
237 | ) |
|
237 | ) | |
238 |
|
238 | |||
239 | if self.showprofile: |
|
239 | if self.showprofile: | |
240 | ax.plt_profile = self.pf_axes[n].plot( |
|
240 | ax.plt_profile = self.pf_axes[n].plot( | |
241 | self.data['rti'][n][-1], y)[0] |
|
241 | self.data['rti'][n][-1], y)[0] | |
242 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
242 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
243 | color="k", linestyle="dashed", lw=1)[0] |
|
243 | color="k", linestyle="dashed", lw=1)[0] | |
244 |
|
244 | |||
245 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
245 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
246 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
246 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
247 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
247 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
248 |
|
248 | |||
249 | #print("plotter1: ", self.ploterr1,shift1) |
|
249 | #print("plotter1: ", self.ploterr1,shift1) | |
250 |
|
250 | |||
251 | else: |
|
251 | else: | |
252 | #print("else plotter1: ", self.ploterr1,shift1) |
|
252 | #print("else plotter1: ", self.ploterr1,shift1) | |
253 | self.ploterr1.remove() |
|
253 | self.ploterr1.remove() | |
254 | self.ploterr2.remove() |
|
254 | self.ploterr2.remove() | |
255 | self.ploterr3.remove() |
|
255 | self.ploterr3.remove() | |
256 | ax.plt.set_array(z[n].T.ravel()) |
|
256 | ax.plt.set_array(z[n].T.ravel()) | |
257 | if self.showprofile: |
|
257 | if self.showprofile: | |
258 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
258 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
259 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
259 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
260 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
260 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
261 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
261 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
262 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
262 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
263 |
|
263 | |||
264 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
264 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
265 |
|
265 | |||
266 |
|
266 | |||
267 | class CrossSpectraPlot(Plot): |
|
267 | class CrossSpectraPlot(Plot): | |
268 |
|
268 | |||
269 | CODE = 'cspc' |
|
269 | CODE = 'cspc' | |
270 | colormap = 'jet' |
|
270 | colormap = 'jet' | |
271 | plot_type = 'pcolor' |
|
271 | plot_type = 'pcolor' | |
272 | zmin_coh = None |
|
272 | zmin_coh = None | |
273 | zmax_coh = None |
|
273 | zmax_coh = None | |
274 | zmin_phase = None |
|
274 | zmin_phase = None | |
275 | zmax_phase = None |
|
275 | zmax_phase = None | |
276 |
|
276 | |||
277 | def setup(self): |
|
277 | def setup(self): | |
278 |
|
278 | |||
279 | self.ncols = 4 |
|
279 | self.ncols = 4 | |
280 | self.nplots = len(self.data.pairs) * 2 |
|
280 | self.nplots = len(self.data.pairs) * 2 | |
281 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
281 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
282 | self.width = 3.1 * self.ncols |
|
282 | self.width = 3.1 * self.ncols | |
283 | self.height = 5 * self.nrows |
|
283 | self.height = 5 * self.nrows | |
284 | self.ylabel = 'Range [km]' |
|
284 | self.ylabel = 'Range [km]' | |
285 | self.showprofile = False |
|
285 | self.showprofile = False | |
286 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
286 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
287 |
|
287 | |||
288 | def update(self, dataOut): |
|
288 | def update(self, dataOut): | |
289 |
|
289 | |||
290 | data = {} |
|
290 | data = {} | |
291 | meta = {} |
|
291 | meta = {} | |
292 |
|
292 | |||
293 | spc = dataOut.data_spc |
|
293 | spc = dataOut.data_spc | |
294 | cspc = dataOut.data_cspc |
|
294 | cspc = dataOut.data_cspc | |
295 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
295 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
296 | meta['pairs'] = dataOut.pairsList |
|
296 | meta['pairs'] = dataOut.pairsList | |
297 |
|
297 | |||
298 | tmp = [] |
|
298 | tmp = [] | |
299 |
|
299 | |||
300 | for n, pair in enumerate(meta['pairs']): |
|
300 | for n, pair in enumerate(meta['pairs']): | |
301 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
301 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
302 | coh = numpy.abs(out) |
|
302 | coh = numpy.abs(out) | |
303 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
303 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
304 | tmp.append(coh) |
|
304 | tmp.append(coh) | |
305 | tmp.append(phase) |
|
305 | tmp.append(phase) | |
306 |
|
306 | |||
307 | data['cspc'] = numpy.array(tmp) |
|
307 | data['cspc'] = numpy.array(tmp) | |
308 |
|
308 | |||
309 | return data, meta |
|
309 | return data, meta | |
310 |
|
310 | |||
311 | def plot(self): |
|
311 | def plot(self): | |
312 |
|
312 | |||
313 | if self.xaxis == "frequency": |
|
313 | if self.xaxis == "frequency": | |
314 | x = self.data.xrange[0] |
|
314 | x = self.data.xrange[0] | |
315 | self.xlabel = "Frequency (kHz)" |
|
315 | self.xlabel = "Frequency (kHz)" | |
316 | elif self.xaxis == "time": |
|
316 | elif self.xaxis == "time": | |
317 | x = self.data.xrange[1] |
|
317 | x = self.data.xrange[1] | |
318 | self.xlabel = "Time (ms)" |
|
318 | self.xlabel = "Time (ms)" | |
319 | else: |
|
319 | else: | |
320 | x = self.data.xrange[2] |
|
320 | x = self.data.xrange[2] | |
321 | self.xlabel = "Velocity (m/s)" |
|
321 | self.xlabel = "Velocity (m/s)" | |
322 |
|
322 | |||
323 | self.titles = [] |
|
323 | self.titles = [] | |
324 |
|
324 | |||
325 | y = self.data.yrange |
|
325 | y = self.data.yrange | |
326 | self.y = y |
|
326 | self.y = y | |
327 |
|
327 | |||
328 | data = self.data[-1] |
|
328 | data = self.data[-1] | |
329 | cspc = data['cspc'] |
|
329 | cspc = data['cspc'] | |
330 |
|
330 | |||
331 | for n in range(len(self.data.pairs)): |
|
331 | for n in range(len(self.data.pairs)): | |
332 | pair = self.data.pairs[n] |
|
332 | pair = self.data.pairs[n] | |
333 | coh = cspc[n*2] |
|
333 | coh = cspc[n*2] | |
334 | phase = cspc[n*2+1] |
|
334 | phase = cspc[n*2+1] | |
335 | ax = self.axes[2 * n] |
|
335 | ax = self.axes[2 * n] | |
336 | if ax.firsttime: |
|
336 | if ax.firsttime: | |
337 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
337 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
338 | vmin=0, |
|
338 | vmin=0, | |
339 | vmax=1, |
|
339 | vmax=1, | |
340 | cmap=plt.get_cmap(self.colormap_coh) |
|
340 | cmap=plt.get_cmap(self.colormap_coh) | |
341 | ) |
|
341 | ) | |
342 | else: |
|
342 | else: | |
343 | ax.plt.set_array(coh.T.ravel()) |
|
343 | ax.plt.set_array(coh.T.ravel()) | |
344 | self.titles.append( |
|
344 | self.titles.append( | |
345 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
345 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
346 |
|
346 | |||
347 | ax = self.axes[2 * n + 1] |
|
347 | ax = self.axes[2 * n + 1] | |
348 | if ax.firsttime: |
|
348 | if ax.firsttime: | |
349 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
349 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
350 | vmin=-180, |
|
350 | vmin=-180, | |
351 | vmax=180, |
|
351 | vmax=180, | |
352 | cmap=plt.get_cmap(self.colormap_phase) |
|
352 | cmap=plt.get_cmap(self.colormap_phase) | |
353 | ) |
|
353 | ) | |
354 | else: |
|
354 | else: | |
355 | ax.plt.set_array(phase.T.ravel()) |
|
355 | ax.plt.set_array(phase.T.ravel()) | |
356 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
356 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
357 |
|
357 | |||
358 |
|
358 | |||
359 | class CrossSpectra4Plot(Plot): |
|
359 | class CrossSpectra4Plot(Plot): | |
360 |
|
360 | |||
361 | CODE = 'cspc' |
|
361 | CODE = 'cspc' | |
362 | colormap = 'jet' |
|
362 | colormap = 'jet' | |
363 | plot_type = 'pcolor' |
|
363 | plot_type = 'pcolor' | |
364 | zmin_coh = None |
|
364 | zmin_coh = None | |
365 | zmax_coh = None |
|
365 | zmax_coh = None | |
366 | zmin_phase = None |
|
366 | zmin_phase = None | |
367 | zmax_phase = None |
|
367 | zmax_phase = None | |
368 |
|
368 | |||
369 | def setup(self): |
|
369 | def setup(self): | |
370 |
|
370 | |||
371 | self.ncols = 4 |
|
371 | self.ncols = 4 | |
372 | self.nrows = len(self.data.pairs) |
|
372 | self.nrows = len(self.data.pairs) | |
373 | self.nplots = self.nrows * 4 |
|
373 | self.nplots = self.nrows * 4 | |
374 | self.width = 3.1 * self.ncols |
|
374 | self.width = 3.1 * self.ncols | |
375 | self.height = 5 * self.nrows |
|
375 | self.height = 5 * self.nrows | |
376 | self.ylabel = 'Range [km]' |
|
376 | self.ylabel = 'Range [km]' | |
377 | self.showprofile = False |
|
377 | self.showprofile = False | |
378 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
378 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
379 |
|
379 | |||
380 | def plot(self): |
|
380 | def plot(self): | |
381 |
|
381 | |||
382 | if self.xaxis == "frequency": |
|
382 | if self.xaxis == "frequency": | |
383 | x = self.data.xrange[0] |
|
383 | x = self.data.xrange[0] | |
384 | self.xlabel = "Frequency (kHz)" |
|
384 | self.xlabel = "Frequency (kHz)" | |
385 | elif self.xaxis == "time": |
|
385 | elif self.xaxis == "time": | |
386 | x = self.data.xrange[1] |
|
386 | x = self.data.xrange[1] | |
387 | self.xlabel = "Time (ms)" |
|
387 | self.xlabel = "Time (ms)" | |
388 | else: |
|
388 | else: | |
389 | x = self.data.xrange[2] |
|
389 | x = self.data.xrange[2] | |
390 | self.xlabel = "Velocity (m/s)" |
|
390 | self.xlabel = "Velocity (m/s)" | |
391 |
|
391 | |||
392 | self.titles = [] |
|
392 | self.titles = [] | |
393 |
|
393 | |||
394 |
|
394 | |||
395 | y = self.data.heights |
|
395 | y = self.data.heights | |
396 | self.y = y |
|
396 | self.y = y | |
397 | nspc = self.data['spc'] |
|
397 | nspc = self.data['spc'] | |
398 | #print(numpy.shape(self.data['spc'])) |
|
398 | #print(numpy.shape(self.data['spc'])) | |
399 | spc = self.data['cspc'][0] |
|
399 | spc = self.data['cspc'][0] | |
400 | #print(numpy.shape(nspc)) |
|
400 | #print(numpy.shape(nspc)) | |
401 | #exit() |
|
401 | #exit() | |
402 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
402 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) | |
403 | #print(numpy.shape(spc)) |
|
403 | #print(numpy.shape(spc)) | |
404 | #exit() |
|
404 | #exit() | |
405 | cspc = self.data['cspc'][1] |
|
405 | cspc = self.data['cspc'][1] | |
406 |
|
406 | |||
407 | #xflip=numpy.flip(x) |
|
407 | #xflip=numpy.flip(x) | |
408 | #print(numpy.shape(cspc)) |
|
408 | #print(numpy.shape(cspc)) | |
409 | #exit() |
|
409 | #exit() | |
410 |
|
410 | |||
411 | for n in range(self.nrows): |
|
411 | for n in range(self.nrows): | |
412 | noise = self.data['noise'][:,-1] |
|
412 | noise = self.data['noise'][:,-1] | |
413 | pair = self.data.pairs[n] |
|
413 | pair = self.data.pairs[n] | |
414 | #print(pair) |
|
414 | #print(pair) | |
415 | #exit() |
|
415 | #exit() | |
416 | ax = self.axes[4 * n] |
|
416 | ax = self.axes[4 * n] | |
417 | if ax.firsttime: |
|
417 | if ax.firsttime: | |
418 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
418 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
419 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
419 | self.xmin = self.xmin if self.xmin else -self.xmax | |
420 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
420 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |
421 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
421 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |
422 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
422 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |
423 | vmin=self.zmin, |
|
423 | vmin=self.zmin, | |
424 | vmax=self.zmax, |
|
424 | vmax=self.zmax, | |
425 | cmap=plt.get_cmap(self.colormap) |
|
425 | cmap=plt.get_cmap(self.colormap) | |
426 | ) |
|
426 | ) | |
427 | else: |
|
427 | else: | |
428 | #print(numpy.shape(nspc[pair[0]].T)) |
|
428 | #print(numpy.shape(nspc[pair[0]].T)) | |
429 | #exit() |
|
429 | #exit() | |
430 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
430 | ax.plt.set_array(nspc[pair[0]].T.ravel()) | |
431 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
431 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) | |
432 |
|
432 | |||
433 | ax = self.axes[4 * n + 1] |
|
433 | ax = self.axes[4 * n + 1] | |
434 |
|
434 | |||
435 | if ax.firsttime: |
|
435 | if ax.firsttime: | |
436 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
436 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, | |
437 | vmin=self.zmin, |
|
437 | vmin=self.zmin, | |
438 | vmax=self.zmax, |
|
438 | vmax=self.zmax, | |
439 | cmap=plt.get_cmap(self.colormap) |
|
439 | cmap=plt.get_cmap(self.colormap) | |
440 | ) |
|
440 | ) | |
441 | else: |
|
441 | else: | |
442 |
|
442 | |||
443 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
443 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) | |
444 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
444 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) | |
445 |
|
445 | |||
446 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
446 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
447 | coh = numpy.abs(out) |
|
447 | coh = numpy.abs(out) | |
448 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
448 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
449 |
|
449 | |||
450 | ax = self.axes[4 * n + 2] |
|
450 | ax = self.axes[4 * n + 2] | |
451 | if ax.firsttime: |
|
451 | if ax.firsttime: | |
452 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
452 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, | |
453 | vmin=0, |
|
453 | vmin=0, | |
454 | vmax=1, |
|
454 | vmax=1, | |
455 | cmap=plt.get_cmap(self.colormap_coh) |
|
455 | cmap=plt.get_cmap(self.colormap_coh) | |
456 | ) |
|
456 | ) | |
457 | else: |
|
457 | else: | |
458 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
458 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) | |
459 | self.titles.append( |
|
459 | self.titles.append( | |
460 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
460 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
461 |
|
461 | |||
462 | ax = self.axes[4 * n + 3] |
|
462 | ax = self.axes[4 * n + 3] | |
463 | if ax.firsttime: |
|
463 | if ax.firsttime: | |
464 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
464 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, | |
465 | vmin=-180, |
|
465 | vmin=-180, | |
466 | vmax=180, |
|
466 | vmax=180, | |
467 | cmap=plt.get_cmap(self.colormap_phase) |
|
467 | cmap=plt.get_cmap(self.colormap_phase) | |
468 | ) |
|
468 | ) | |
469 | else: |
|
469 | else: | |
470 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
470 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) | |
471 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
471 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
472 |
|
472 | |||
473 |
|
473 | |||
474 | class CrossSpectra2Plot(Plot): |
|
474 | class CrossSpectra2Plot(Plot): | |
475 |
|
475 | |||
476 | CODE = 'cspc' |
|
476 | CODE = 'cspc' | |
477 | colormap = 'jet' |
|
477 | colormap = 'jet' | |
478 | plot_type = 'pcolor' |
|
478 | plot_type = 'pcolor' | |
479 | zmin_coh = None |
|
479 | zmin_coh = None | |
480 | zmax_coh = None |
|
480 | zmax_coh = None | |
481 | zmin_phase = None |
|
481 | zmin_phase = None | |
482 | zmax_phase = None |
|
482 | zmax_phase = None | |
483 |
|
483 | |||
484 | def setup(self): |
|
484 | def setup(self): | |
485 |
|
485 | |||
486 | self.ncols = 1 |
|
486 | self.ncols = 1 | |
487 | self.nrows = len(self.data.pairs) |
|
487 | self.nrows = len(self.data.pairs) | |
488 | self.nplots = self.nrows * 1 |
|
488 | self.nplots = self.nrows * 1 | |
489 | self.width = 3.1 * self.ncols |
|
489 | self.width = 3.1 * self.ncols | |
490 | self.height = 5 * self.nrows |
|
490 | self.height = 5 * self.nrows | |
491 | self.ylabel = 'Range [km]' |
|
491 | self.ylabel = 'Range [km]' | |
492 | self.showprofile = False |
|
492 | self.showprofile = False | |
493 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
493 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
494 |
|
494 | |||
495 | def plot(self): |
|
495 | def plot(self): | |
496 |
|
496 | |||
497 | if self.xaxis == "frequency": |
|
497 | if self.xaxis == "frequency": | |
498 | x = self.data.xrange[0] |
|
498 | x = self.data.xrange[0] | |
499 | self.xlabel = "Frequency (kHz)" |
|
499 | self.xlabel = "Frequency (kHz)" | |
500 | elif self.xaxis == "time": |
|
500 | elif self.xaxis == "time": | |
501 | x = self.data.xrange[1] |
|
501 | x = self.data.xrange[1] | |
502 | self.xlabel = "Time (ms)" |
|
502 | self.xlabel = "Time (ms)" | |
503 | else: |
|
503 | else: | |
504 | x = self.data.xrange[2] |
|
504 | x = self.data.xrange[2] | |
505 | self.xlabel = "Velocity (m/s)" |
|
505 | self.xlabel = "Velocity (m/s)" | |
506 |
|
506 | |||
507 | self.titles = [] |
|
507 | self.titles = [] | |
508 |
|
508 | |||
509 |
|
509 | |||
510 | y = self.data.heights |
|
510 | y = self.data.heights | |
511 | self.y = y |
|
511 | self.y = y | |
512 | #nspc = self.data['spc'] |
|
512 | #nspc = self.data['spc'] | |
513 | #print(numpy.shape(self.data['spc'])) |
|
513 | #print(numpy.shape(self.data['spc'])) | |
514 | #spc = self.data['cspc'][0] |
|
514 | #spc = self.data['cspc'][0] | |
515 | #print(numpy.shape(spc)) |
|
515 | #print(numpy.shape(spc)) | |
516 | #exit() |
|
516 | #exit() | |
517 | cspc = self.data['cspc'][1] |
|
517 | cspc = self.data['cspc'][1] | |
518 | #print(numpy.shape(cspc)) |
|
518 | #print(numpy.shape(cspc)) | |
519 | #exit() |
|
519 | #exit() | |
520 |
|
520 | |||
521 | for n in range(self.nrows): |
|
521 | for n in range(self.nrows): | |
522 | noise = self.data['noise'][:,-1] |
|
522 | noise = self.data['noise'][:,-1] | |
523 | pair = self.data.pairs[n] |
|
523 | pair = self.data.pairs[n] | |
524 | #print(pair) #exit() |
|
524 | #print(pair) #exit() | |
525 |
|
525 | |||
526 |
|
526 | |||
527 |
|
527 | |||
528 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
528 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
529 |
|
529 | |||
530 | #print(out[:,53]) |
|
530 | #print(out[:,53]) | |
531 | #exit() |
|
531 | #exit() | |
532 | cross = numpy.abs(out) |
|
532 | cross = numpy.abs(out) | |
533 | z = cross/self.data.nFactor |
|
533 | z = cross/self.data.nFactor | |
534 | #print("here") |
|
534 | #print("here") | |
535 | #print(dataOut.data_spc[0,0,0]) |
|
535 | #print(dataOut.data_spc[0,0,0]) | |
536 | #exit() |
|
536 | #exit() | |
537 |
|
537 | |||
538 | cross = 10*numpy.log10(z) |
|
538 | cross = 10*numpy.log10(z) | |
539 | #print(numpy.shape(cross)) |
|
539 | #print(numpy.shape(cross)) | |
540 | #print(cross[0,:]) |
|
540 | #print(cross[0,:]) | |
541 | #print(self.data.nFactor) |
|
541 | #print(self.data.nFactor) | |
542 | #exit() |
|
542 | #exit() | |
543 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
543 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
544 |
|
544 | |||
545 | ax = self.axes[1 * n] |
|
545 | ax = self.axes[1 * n] | |
546 | if ax.firsttime: |
|
546 | if ax.firsttime: | |
547 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
547 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
548 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
548 | self.xmin = self.xmin if self.xmin else -self.xmax | |
549 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
549 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
550 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
550 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
551 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
551 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
552 | vmin=self.zmin, |
|
552 | vmin=self.zmin, | |
553 | vmax=self.zmax, |
|
553 | vmax=self.zmax, | |
554 | cmap=plt.get_cmap(self.colormap) |
|
554 | cmap=plt.get_cmap(self.colormap) | |
555 | ) |
|
555 | ) | |
556 | else: |
|
556 | else: | |
557 | ax.plt.set_array(cross.T.ravel()) |
|
557 | ax.plt.set_array(cross.T.ravel()) | |
558 | self.titles.append( |
|
558 | self.titles.append( | |
559 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
559 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
560 |
|
560 | |||
561 |
|
561 | |||
562 | class CrossSpectra3Plot(Plot): |
|
562 | class CrossSpectra3Plot(Plot): | |
563 |
|
563 | |||
564 | CODE = 'cspc' |
|
564 | CODE = 'cspc' | |
565 | colormap = 'jet' |
|
565 | colormap = 'jet' | |
566 | plot_type = 'pcolor' |
|
566 | plot_type = 'pcolor' | |
567 | zmin_coh = None |
|
567 | zmin_coh = None | |
568 | zmax_coh = None |
|
568 | zmax_coh = None | |
569 | zmin_phase = None |
|
569 | zmin_phase = None | |
570 | zmax_phase = None |
|
570 | zmax_phase = None | |
571 |
|
571 | |||
572 | def setup(self): |
|
572 | def setup(self): | |
573 |
|
573 | |||
574 | self.ncols = 3 |
|
574 | self.ncols = 3 | |
575 | self.nrows = len(self.data.pairs) |
|
575 | self.nrows = len(self.data.pairs) | |
576 | self.nplots = self.nrows * 3 |
|
576 | self.nplots = self.nrows * 3 | |
577 | self.width = 3.1 * self.ncols |
|
577 | self.width = 3.1 * self.ncols | |
578 | self.height = 5 * self.nrows |
|
578 | self.height = 5 * self.nrows | |
579 | self.ylabel = 'Range [km]' |
|
579 | self.ylabel = 'Range [km]' | |
580 | self.showprofile = False |
|
580 | self.showprofile = False | |
581 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
581 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
582 |
|
582 | |||
583 | def plot(self): |
|
583 | def plot(self): | |
584 |
|
584 | |||
585 | if self.xaxis == "frequency": |
|
585 | if self.xaxis == "frequency": | |
586 | x = self.data.xrange[0] |
|
586 | x = self.data.xrange[0] | |
587 | self.xlabel = "Frequency (kHz)" |
|
587 | self.xlabel = "Frequency (kHz)" | |
588 | elif self.xaxis == "time": |
|
588 | elif self.xaxis == "time": | |
589 | x = self.data.xrange[1] |
|
589 | x = self.data.xrange[1] | |
590 | self.xlabel = "Time (ms)" |
|
590 | self.xlabel = "Time (ms)" | |
591 | else: |
|
591 | else: | |
592 | x = self.data.xrange[2] |
|
592 | x = self.data.xrange[2] | |
593 | self.xlabel = "Velocity (m/s)" |
|
593 | self.xlabel = "Velocity (m/s)" | |
594 |
|
594 | |||
595 | self.titles = [] |
|
595 | self.titles = [] | |
596 |
|
596 | |||
597 |
|
597 | |||
598 | y = self.data.heights |
|
598 | y = self.data.heights | |
599 | self.y = y |
|
599 | self.y = y | |
600 | #nspc = self.data['spc'] |
|
600 | #nspc = self.data['spc'] | |
601 | #print(numpy.shape(self.data['spc'])) |
|
601 | #print(numpy.shape(self.data['spc'])) | |
602 | #spc = self.data['cspc'][0] |
|
602 | #spc = self.data['cspc'][0] | |
603 | #print(numpy.shape(spc)) |
|
603 | #print(numpy.shape(spc)) | |
604 | #exit() |
|
604 | #exit() | |
605 | cspc = self.data['cspc'][1] |
|
605 | cspc = self.data['cspc'][1] | |
606 | #print(numpy.shape(cspc)) |
|
606 | #print(numpy.shape(cspc)) | |
607 | #exit() |
|
607 | #exit() | |
608 |
|
608 | |||
609 | for n in range(self.nrows): |
|
609 | for n in range(self.nrows): | |
610 | noise = self.data['noise'][:,-1] |
|
610 | noise = self.data['noise'][:,-1] | |
611 | pair = self.data.pairs[n] |
|
611 | pair = self.data.pairs[n] | |
612 | #print(pair) #exit() |
|
612 | #print(pair) #exit() | |
613 |
|
613 | |||
614 |
|
614 | |||
615 |
|
615 | |||
616 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
616 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
617 |
|
617 | |||
618 | #print(out[:,53]) |
|
618 | #print(out[:,53]) | |
619 | #exit() |
|
619 | #exit() | |
620 | cross = numpy.abs(out) |
|
620 | cross = numpy.abs(out) | |
621 | z = cross/self.data.nFactor |
|
621 | z = cross/self.data.nFactor | |
622 | cross = 10*numpy.log10(z) |
|
622 | cross = 10*numpy.log10(z) | |
623 |
|
623 | |||
624 | out_r= out.real/self.data.nFactor |
|
624 | out_r= out.real/self.data.nFactor | |
625 | #out_r = 10*numpy.log10(out_r) |
|
625 | #out_r = 10*numpy.log10(out_r) | |
626 |
|
626 | |||
627 | out_i= out.imag/self.data.nFactor |
|
627 | out_i= out.imag/self.data.nFactor | |
628 | #out_i = 10*numpy.log10(out_i) |
|
628 | #out_i = 10*numpy.log10(out_i) | |
629 | #print(numpy.shape(cross)) |
|
629 | #print(numpy.shape(cross)) | |
630 | #print(cross[0,:]) |
|
630 | #print(cross[0,:]) | |
631 | #print(self.data.nFactor) |
|
631 | #print(self.data.nFactor) | |
632 | #exit() |
|
632 | #exit() | |
633 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
633 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
634 |
|
634 | |||
635 | ax = self.axes[3 * n] |
|
635 | ax = self.axes[3 * n] | |
636 | if ax.firsttime: |
|
636 | if ax.firsttime: | |
637 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
637 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
638 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
638 | self.xmin = self.xmin if self.xmin else -self.xmax | |
639 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
639 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
640 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
640 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
641 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
641 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
642 | vmin=self.zmin, |
|
642 | vmin=self.zmin, | |
643 | vmax=self.zmax, |
|
643 | vmax=self.zmax, | |
644 | cmap=plt.get_cmap(self.colormap) |
|
644 | cmap=plt.get_cmap(self.colormap) | |
645 | ) |
|
645 | ) | |
646 | else: |
|
646 | else: | |
647 | ax.plt.set_array(cross.T.ravel()) |
|
647 | ax.plt.set_array(cross.T.ravel()) | |
648 | self.titles.append( |
|
648 | self.titles.append( | |
649 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
649 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
650 |
|
650 | |||
651 | ax = self.axes[3 * n + 1] |
|
651 | ax = self.axes[3 * n + 1] | |
652 | if ax.firsttime: |
|
652 | if ax.firsttime: | |
653 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
653 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
654 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
654 | self.xmin = self.xmin if self.xmin else -self.xmax | |
655 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
655 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
656 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
656 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
657 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
657 | ax.plt = ax.pcolormesh(x, y, out_r.T, | |
658 | vmin=-1.e6, |
|
658 | vmin=-1.e6, | |
659 | vmax=0, |
|
659 | vmax=0, | |
660 | cmap=plt.get_cmap(self.colormap) |
|
660 | cmap=plt.get_cmap(self.colormap) | |
661 | ) |
|
661 | ) | |
662 | else: |
|
662 | else: | |
663 | ax.plt.set_array(out_r.T.ravel()) |
|
663 | ax.plt.set_array(out_r.T.ravel()) | |
664 | self.titles.append( |
|
664 | self.titles.append( | |
665 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
665 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) | |
666 |
|
666 | |||
667 | ax = self.axes[3 * n + 2] |
|
667 | ax = self.axes[3 * n + 2] | |
668 |
|
668 | |||
669 |
|
669 | |||
670 | if ax.firsttime: |
|
670 | if ax.firsttime: | |
671 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
671 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
672 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
672 | self.xmin = self.xmin if self.xmin else -self.xmax | |
673 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
673 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
674 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
674 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
675 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
675 | ax.plt = ax.pcolormesh(x, y, out_i.T, | |
676 | vmin=-1.e6, |
|
676 | vmin=-1.e6, | |
677 | vmax=1.e6, |
|
677 | vmax=1.e6, | |
678 | cmap=plt.get_cmap(self.colormap) |
|
678 | cmap=plt.get_cmap(self.colormap) | |
679 | ) |
|
679 | ) | |
680 | else: |
|
680 | else: | |
681 | ax.plt.set_array(out_i.T.ravel()) |
|
681 | ax.plt.set_array(out_i.T.ravel()) | |
682 | self.titles.append( |
|
682 | self.titles.append( | |
683 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
683 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) | |
684 |
|
684 | |||
685 | class RTIPlot(Plot): |
|
685 | class RTIPlot(Plot): | |
686 | ''' |
|
686 | ''' | |
687 | Plot for RTI data |
|
687 | Plot for RTI data | |
688 | ''' |
|
688 | ''' | |
689 |
|
689 | |||
690 | CODE = 'rti' |
|
690 | CODE = 'rti' | |
691 | colormap = 'jet' |
|
691 | colormap = 'jet' | |
692 | plot_type = 'pcolorbuffer' |
|
692 | plot_type = 'pcolorbuffer' | |
693 |
|
693 | |||
694 | def setup(self): |
|
694 | def setup(self): | |
695 | self.xaxis = 'time' |
|
695 | self.xaxis = 'time' | |
696 | self.ncols = 1 |
|
696 | self.ncols = 1 | |
697 | self.nrows = len(self.data.channels) |
|
697 | self.nrows = len(self.data.channels) | |
698 | self.nplots = len(self.data.channels) |
|
698 | self.nplots = len(self.data.channels) | |
699 | self.ylabel = 'Range [km]' |
|
699 | self.ylabel = 'Range [km]' | |
700 | self.xlabel = 'Time' |
|
700 | self.xlabel = 'Time' | |
701 | self.cb_label = 'dB' |
|
701 | self.cb_label = 'dB' | |
702 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
702 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
703 | self.titles = ['{} Channel {}'.format( |
|
703 | self.titles = ['{} Channel {}'.format( | |
704 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
704 | self.CODE.upper(), x) for x in range(self.nrows)] | |
705 |
|
705 | |||
706 | def update(self, dataOut): |
|
706 | def update(self, dataOut): | |
707 |
|
707 | |||
708 | data = {} |
|
708 | data = {} | |
709 | meta = {} |
|
709 | meta = {} | |
710 | data['rti'] = dataOut.getPower() |
|
710 | data['rti'] = dataOut.getPower() | |
711 | #print(numpy.shape(data['rti'])) |
|
711 | #print(numpy.shape(data['rti'])) | |
712 |
|
712 | |||
713 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
713 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
714 |
|
714 | |||
715 | return data, meta |
|
715 | return data, meta | |
716 |
|
716 | |||
717 | def plot(self): |
|
717 | def plot(self): | |
718 |
|
718 | |||
719 | self.x = self.data.times |
|
719 | self.x = self.data.times | |
720 | self.y = self.data.yrange |
|
720 | self.y = self.data.yrange | |
721 | self.z = self.data[self.CODE] |
|
721 | self.z = self.data[self.CODE] | |
722 | #print("Inside RTI: ", self.z) |
|
722 | #print("Inside RTI: ", self.z) | |
723 | self.z = numpy.ma.masked_invalid(self.z) |
|
723 | self.z = numpy.ma.masked_invalid(self.z) | |
724 |
|
724 | |||
725 | if self.decimation is None: |
|
725 | if self.decimation is None: | |
726 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
726 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
727 | else: |
|
727 | else: | |
728 | x, y, z = self.fill_gaps(*self.decimate()) |
|
728 | x, y, z = self.fill_gaps(*self.decimate()) | |
729 | #print("self.z: ", self.z) |
|
729 | #print("self.z: ", self.z) | |
730 | #exit(1) |
|
730 | #exit(1) | |
731 | ''' |
|
731 | ''' | |
732 | if not isinstance(self.zmin, collections.abc.Sequence): |
|
732 | if not isinstance(self.zmin, collections.abc.Sequence): | |
733 | if not self.zmin: |
|
733 | if not self.zmin: | |
734 | self.zmin = [numpy.min(self.z)]*len(self.axes) |
|
734 | self.zmin = [numpy.min(self.z)]*len(self.axes) | |
735 | else: |
|
735 | else: | |
736 | self.zmin = [self.zmin]*len(self.axes) |
|
736 | self.zmin = [self.zmin]*len(self.axes) | |
737 |
|
737 | |||
738 | if not isinstance(self.zmax, collections.abc.Sequence): |
|
738 | if not isinstance(self.zmax, collections.abc.Sequence): | |
739 | if not self.zmax: |
|
739 | if not self.zmax: | |
740 | self.zmax = [numpy.max(self.z)]*len(self.axes) |
|
740 | self.zmax = [numpy.max(self.z)]*len(self.axes) | |
741 | else: |
|
741 | else: | |
742 | self.zmax = [self.zmax]*len(self.axes) |
|
742 | self.zmax = [self.zmax]*len(self.axes) | |
743 | ''' |
|
743 | ''' | |
744 | for n, ax in enumerate(self.axes): |
|
744 | for n, ax in enumerate(self.axes): | |
745 |
|
745 | |||
746 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
746 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
747 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
747 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
748 |
|
748 | |||
749 | if ax.firsttime: |
|
749 | if ax.firsttime: | |
750 | if self.zlimits is not None: |
|
750 | if self.zlimits is not None: | |
751 | self.zmin, self.zmax = self.zlimits[n] |
|
751 | self.zmin, self.zmax = self.zlimits[n] | |
752 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
752 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
753 | vmin=self.zmin, |
|
753 | vmin=self.zmin, | |
754 | vmax=self.zmax, |
|
754 | vmax=self.zmax, | |
755 | cmap=plt.get_cmap(self.colormap) |
|
755 | cmap=plt.get_cmap(self.colormap) | |
756 | ) |
|
756 | ) | |
757 | if self.showprofile: |
|
757 | if self.showprofile: | |
758 | ax.plot_profile = self.pf_axes[n].plot( |
|
758 | ax.plot_profile = self.pf_axes[n].plot( | |
759 | self.data['rti'][n][-1], self.y)[0] |
|
759 | self.data['rti'][n][-1], self.y)[0] | |
760 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
760 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
761 | color="k", linestyle="dashed", lw=1)[0] |
|
761 | color="k", linestyle="dashed", lw=1)[0] | |
762 | else: |
|
762 | else: | |
763 | if self.zlimits is not None: |
|
763 | if self.zlimits is not None: | |
764 | self.zmin, self.zmax = self.zlimits[n] |
|
764 | self.zmin, self.zmax = self.zlimits[n] | |
765 | ax.collections.remove(ax.collections[0]) |
|
765 | ax.collections.remove(ax.collections[0]) | |
766 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
766 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
767 | vmin=self.zmin, |
|
767 | vmin=self.zmin, | |
768 | vmax=self.zmax, |
|
768 | vmax=self.zmax, | |
769 | cmap=plt.get_cmap(self.colormap) |
|
769 | cmap=plt.get_cmap(self.colormap) | |
770 | ) |
|
770 | ) | |
771 | if self.showprofile: |
|
771 | if self.showprofile: | |
772 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
772 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
773 | ax.plot_noise.set_data(numpy.repeat( |
|
773 | ax.plot_noise.set_data(numpy.repeat( | |
774 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
774 | self.data['noise'][n][-1], len(self.y)), self.y) | |
775 |
|
775 | |||
776 |
|
776 | |||
777 | class SpectrogramPlot(Plot): |
|
777 | class SpectrogramPlot(Plot): | |
778 | ''' |
|
778 | ''' | |
779 | Plot for Spectrogram data |
|
779 | Plot for Spectrogram data | |
780 | ''' |
|
780 | ''' | |
781 |
|
781 | |||
782 | CODE = 'Spectrogram_Profile' |
|
782 | CODE = 'Spectrogram_Profile' | |
783 | colormap = 'binary' |
|
783 | colormap = 'binary' | |
784 | plot_type = 'pcolorbuffer' |
|
784 | plot_type = 'pcolorbuffer' | |
785 |
|
785 | |||
786 | def setup(self): |
|
786 | def setup(self): | |
787 | self.xaxis = 'time' |
|
787 | self.xaxis = 'time' | |
788 | self.ncols = 1 |
|
788 | self.ncols = 1 | |
789 | self.nrows = len(self.data.channels) |
|
789 | self.nrows = len(self.data.channels) | |
790 | self.nplots = len(self.data.channels) |
|
790 | self.nplots = len(self.data.channels) | |
791 | self.xlabel = 'Time' |
|
791 | self.xlabel = 'Time' | |
792 | #self.cb_label = 'dB' |
|
792 | #self.cb_label = 'dB' | |
793 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
793 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) | |
794 | self.titles = [] |
|
794 | self.titles = [] | |
795 |
|
795 | |||
796 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
796 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( | |
797 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
797 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] | |
798 |
|
798 | |||
799 | self.titles = ['{} Channel {}'.format( |
|
799 | self.titles = ['{} Channel {}'.format( | |
800 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
800 | self.CODE.upper(), x) for x in range(self.nrows)] | |
801 |
|
801 | |||
802 |
|
802 | |||
803 | def update(self, dataOut): |
|
803 | def update(self, dataOut): | |
804 | data = {} |
|
804 | data = {} | |
805 | meta = {} |
|
805 | meta = {} | |
806 |
|
806 | |||
807 | maxHei = 1620#+12000 |
|
807 | maxHei = 1620#+12000 | |
|
808 | maxHei = 1180 | |||
808 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
809 | indb = numpy.where(dataOut.heightList <= maxHei) | |
809 | hei = indb[0][-1] |
|
810 | hei = indb[0][-1] | |
810 | #print(dataOut.heightList) |
|
811 | #print(dataOut.heightList) | |
811 |
|
812 | |||
812 | factor = dataOut.nIncohInt |
|
813 | factor = dataOut.nIncohInt | |
813 | z = dataOut.data_spc[:,:,hei] / factor |
|
814 | z = dataOut.data_spc[:,:,hei] / factor | |
814 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
815 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
815 | #buffer = 10 * numpy.log10(z) |
|
816 | #buffer = 10 * numpy.log10(z) | |
816 |
|
817 | |||
817 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
818 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
818 |
|
819 | |||
819 |
|
820 | |||
820 | #self.hei = hei |
|
821 | #self.hei = hei | |
821 | #self.heightList = dataOut.heightList |
|
822 | #self.heightList = dataOut.heightList | |
822 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
823 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
823 | #self.nProfiles = dataOut.nProfiles |
|
824 | #self.nProfiles = dataOut.nProfiles | |
824 |
|
825 | |||
825 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
826 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) | |
826 |
|
827 | |||
827 | data['hei'] = hei |
|
828 | data['hei'] = hei | |
828 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
829 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
829 | data['nProfiles'] = dataOut.nProfiles |
|
830 | data['nProfiles'] = dataOut.nProfiles | |
830 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
831 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
831 | ''' |
|
832 | ''' | |
832 | import matplotlib.pyplot as plt |
|
833 | import matplotlib.pyplot as plt | |
833 | plt.plot(10 * numpy.log10(z[0,:])) |
|
834 | plt.plot(10 * numpy.log10(z[0,:])) | |
834 | plt.show() |
|
835 | plt.show() | |
835 |
|
836 | |||
836 | from time import sleep |
|
837 | from time import sleep | |
837 | sleep(10) |
|
838 | sleep(10) | |
838 | ''' |
|
839 | ''' | |
839 | return data, meta |
|
840 | return data, meta | |
840 |
|
841 | |||
841 | def plot(self): |
|
842 | def plot(self): | |
842 |
|
843 | |||
843 | self.x = self.data.times |
|
844 | self.x = self.data.times | |
844 | self.z = self.data[self.CODE] |
|
845 | self.z = self.data[self.CODE] | |
845 | self.y = self.data.xrange[0] |
|
846 | self.y = self.data.xrange[0] | |
846 |
|
847 | |||
847 | hei = self.data['hei'][-1] |
|
848 | hei = self.data['hei'][-1] | |
848 | DH = self.data['DH'][-1] |
|
849 | DH = self.data['DH'][-1] | |
849 | nProfiles = self.data['nProfiles'][-1] |
|
850 | nProfiles = self.data['nProfiles'][-1] | |
850 |
|
851 | |||
851 | self.ylabel = "Frequency (kHz)" |
|
852 | self.ylabel = "Frequency (kHz)" | |
852 |
|
853 | |||
853 | self.z = numpy.ma.masked_invalid(self.z) |
|
854 | self.z = numpy.ma.masked_invalid(self.z) | |
854 |
|
855 | |||
855 | if self.decimation is None: |
|
856 | if self.decimation is None: | |
856 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
857 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
857 | else: |
|
858 | else: | |
858 | x, y, z = self.fill_gaps(*self.decimate()) |
|
859 | x, y, z = self.fill_gaps(*self.decimate()) | |
859 |
|
860 | |||
860 | for n, ax in enumerate(self.axes): |
|
861 | for n, ax in enumerate(self.axes): | |
861 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
862 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
862 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
863 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
863 | data = self.data[-1] |
|
864 | data = self.data[-1] | |
864 | if ax.firsttime: |
|
865 | if ax.firsttime: | |
865 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
866 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
866 | vmin=self.zmin, |
|
867 | vmin=self.zmin, | |
867 | vmax=self.zmax, |
|
868 | vmax=self.zmax, | |
868 | cmap=plt.get_cmap(self.colormap) |
|
869 | cmap=plt.get_cmap(self.colormap) | |
869 | ) |
|
870 | ) | |
870 | else: |
|
871 | else: | |
871 | ax.collections.remove(ax.collections[0]) |
|
872 | ax.collections.remove(ax.collections[0]) | |
872 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
873 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
873 | vmin=self.zmin, |
|
874 | vmin=self.zmin, | |
874 | vmax=self.zmax, |
|
875 | vmax=self.zmax, | |
875 | cmap=plt.get_cmap(self.colormap) |
|
876 | cmap=plt.get_cmap(self.colormap) | |
876 | ) |
|
877 | ) | |
877 |
|
878 | |||
878 | #self.titles.append('Spectrogram') |
|
879 | #self.titles.append('Spectrogram') | |
879 |
|
880 | |||
880 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
881 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( | |
881 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
882 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) | |
882 |
|
883 | |||
883 |
|
884 | |||
884 |
|
885 | |||
885 |
|
886 | |||
886 | class CoherencePlot(RTIPlot): |
|
887 | class CoherencePlot(RTIPlot): | |
887 | ''' |
|
888 | ''' | |
888 | Plot for Coherence data |
|
889 | Plot for Coherence data | |
889 | ''' |
|
890 | ''' | |
890 |
|
891 | |||
891 | CODE = 'coh' |
|
892 | CODE = 'coh' | |
892 |
|
893 | |||
893 | def setup(self): |
|
894 | def setup(self): | |
894 | self.xaxis = 'time' |
|
895 | self.xaxis = 'time' | |
895 | self.ncols = 1 |
|
896 | self.ncols = 1 | |
896 | self.nrows = len(self.data.pairs) |
|
897 | self.nrows = len(self.data.pairs) | |
897 | self.nplots = len(self.data.pairs) |
|
898 | self.nplots = len(self.data.pairs) | |
898 | self.ylabel = 'Range [km]' |
|
899 | self.ylabel = 'Range [km]' | |
899 | self.xlabel = 'Time' |
|
900 | self.xlabel = 'Time' | |
900 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
901 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
901 | if self.CODE == 'coh': |
|
902 | if self.CODE == 'coh': | |
902 | self.cb_label = '' |
|
903 | self.cb_label = '' | |
903 | self.titles = [ |
|
904 | self.titles = [ | |
904 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
905 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
905 | else: |
|
906 | else: | |
906 | self.cb_label = 'Degrees' |
|
907 | self.cb_label = 'Degrees' | |
907 | self.titles = [ |
|
908 | self.titles = [ | |
908 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
909 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
909 |
|
910 | |||
910 | def update(self, dataOut): |
|
911 | def update(self, dataOut): | |
911 |
|
912 | |||
912 | data = {} |
|
913 | data = {} | |
913 | meta = {} |
|
914 | meta = {} | |
914 | data['coh'] = dataOut.getCoherence() |
|
915 | data['coh'] = dataOut.getCoherence() | |
915 | meta['pairs'] = dataOut.pairsList |
|
916 | meta['pairs'] = dataOut.pairsList | |
916 |
|
917 | |||
917 | return data, meta |
|
918 | return data, meta | |
918 |
|
919 | |||
919 | class PhasePlot(CoherencePlot): |
|
920 | class PhasePlot(CoherencePlot): | |
920 | ''' |
|
921 | ''' | |
921 | Plot for Phase map data |
|
922 | Plot for Phase map data | |
922 | ''' |
|
923 | ''' | |
923 |
|
924 | |||
924 | CODE = 'phase' |
|
925 | CODE = 'phase' | |
925 | colormap = 'seismic' |
|
926 | colormap = 'seismic' | |
926 |
|
927 | |||
927 | def update(self, dataOut): |
|
928 | def update(self, dataOut): | |
928 |
|
929 | |||
929 | data = {} |
|
930 | data = {} | |
930 | meta = {} |
|
931 | meta = {} | |
931 | data['phase'] = dataOut.getCoherence(phase=True) |
|
932 | data['phase'] = dataOut.getCoherence(phase=True) | |
932 | meta['pairs'] = dataOut.pairsList |
|
933 | meta['pairs'] = dataOut.pairsList | |
933 |
|
934 | |||
934 | return data, meta |
|
935 | return data, meta | |
935 |
|
936 | |||
936 | class NoisePlot(Plot): |
|
937 | class NoisePlot(Plot): | |
937 | ''' |
|
938 | ''' | |
938 | Plot for noise |
|
939 | Plot for noise | |
939 | ''' |
|
940 | ''' | |
940 |
|
941 | |||
941 | CODE = 'noise' |
|
942 | CODE = 'noise' | |
942 | plot_type = 'scatterbuffer' |
|
943 | plot_type = 'scatterbuffer' | |
943 |
|
944 | |||
944 | def setup(self): |
|
945 | def setup(self): | |
945 | self.xaxis = 'time' |
|
946 | self.xaxis = 'time' | |
946 | self.ncols = 1 |
|
947 | self.ncols = 1 | |
947 | self.nrows = 1 |
|
948 | self.nrows = 1 | |
948 | self.nplots = 1 |
|
949 | self.nplots = 1 | |
949 | self.ylabel = 'Intensity [dB]' |
|
950 | self.ylabel = 'Intensity [dB]' | |
950 | self.xlabel = 'Time' |
|
951 | self.xlabel = 'Time' | |
951 | self.titles = ['Noise'] |
|
952 | self.titles = ['Noise'] | |
952 | self.colorbar = False |
|
953 | self.colorbar = False | |
953 | self.plots_adjust.update({'right': 0.85 }) |
|
954 | self.plots_adjust.update({'right': 0.85 }) | |
954 |
|
955 | |||
955 | def update(self, dataOut): |
|
956 | def update(self, dataOut): | |
956 |
|
957 | |||
957 | data = {} |
|
958 | data = {} | |
958 | meta = {} |
|
959 | meta = {} | |
959 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
960 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
960 | meta['yrange'] = numpy.array([]) |
|
961 | meta['yrange'] = numpy.array([]) | |
961 |
|
962 | |||
962 | return data, meta |
|
963 | return data, meta | |
963 |
|
964 | |||
964 | def plot(self): |
|
965 | def plot(self): | |
965 |
|
966 | |||
966 | x = self.data.times |
|
967 | x = self.data.times | |
967 | xmin = self.data.min_time |
|
968 | xmin = self.data.min_time | |
968 | xmax = xmin + self.xrange * 60 * 60 |
|
969 | xmax = xmin + self.xrange * 60 * 60 | |
969 | Y = self.data['noise'] |
|
970 | Y = self.data['noise'] | |
970 |
|
971 | |||
971 | if self.axes[0].firsttime: |
|
972 | if self.axes[0].firsttime: | |
972 | self.ymin = numpy.nanmin(Y) - 5 |
|
973 | self.ymin = numpy.nanmin(Y) - 5 | |
973 | self.ymax = numpy.nanmax(Y) + 5 |
|
974 | self.ymax = numpy.nanmax(Y) + 5 | |
974 | for ch in self.data.channels: |
|
975 | for ch in self.data.channels: | |
975 | y = Y[ch] |
|
976 | y = Y[ch] | |
976 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
977 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
977 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
978 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
978 | else: |
|
979 | else: | |
979 | for ch in self.data.channels: |
|
980 | for ch in self.data.channels: | |
980 | y = Y[ch] |
|
981 | y = Y[ch] | |
981 | self.axes[0].lines[ch].set_data(x, y) |
|
982 | self.axes[0].lines[ch].set_data(x, y) | |
982 |
|
983 | |||
983 | self.ymin = numpy.nanmin(Y) - 5 |
|
984 | self.ymin = numpy.nanmin(Y) - 5 | |
984 | self.ymax = numpy.nanmax(Y) + 10 |
|
985 | self.ymax = numpy.nanmax(Y) + 10 | |
985 |
|
986 | |||
986 |
|
987 | |||
987 | class PowerProfilePlot(Plot): |
|
988 | class PowerProfilePlot(Plot): | |
988 |
|
989 | |||
989 | CODE = 'pow_profile' |
|
990 | CODE = 'pow_profile' | |
990 | plot_type = 'scatter' |
|
991 | plot_type = 'scatter' | |
991 |
|
992 | |||
992 | def setup(self): |
|
993 | def setup(self): | |
993 |
|
994 | |||
994 | self.ncols = 1 |
|
995 | self.ncols = 1 | |
995 | self.nrows = 1 |
|
996 | self.nrows = 1 | |
996 | self.nplots = 1 |
|
997 | self.nplots = 1 | |
997 | self.height = 4 |
|
998 | self.height = 4 | |
998 | self.width = 3 |
|
999 | self.width = 3 | |
999 | self.ylabel = 'Range [km]' |
|
1000 | self.ylabel = 'Range [km]' | |
1000 | self.xlabel = 'Intensity [dB]' |
|
1001 | self.xlabel = 'Intensity [dB]' | |
1001 | self.titles = ['Power Profile'] |
|
1002 | self.titles = ['Power Profile'] | |
1002 | self.colorbar = False |
|
1003 | self.colorbar = False | |
1003 |
|
1004 | |||
1004 | def update(self, dataOut): |
|
1005 | def update(self, dataOut): | |
1005 |
|
1006 | |||
1006 | data = {} |
|
1007 | data = {} | |
1007 | meta = {} |
|
1008 | meta = {} | |
1008 | data[self.CODE] = dataOut.getPower() |
|
1009 | data[self.CODE] = dataOut.getPower() | |
1009 |
|
1010 | |||
1010 | return data, meta |
|
1011 | return data, meta | |
1011 |
|
1012 | |||
1012 | def plot(self): |
|
1013 | def plot(self): | |
1013 |
|
1014 | |||
1014 | y = self.data.yrange |
|
1015 | y = self.data.yrange | |
1015 | self.y = y |
|
1016 | self.y = y | |
1016 |
|
1017 | |||
1017 | x = self.data[-1][self.CODE] |
|
1018 | x = self.data[-1][self.CODE] | |
1018 |
|
1019 | |||
1019 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
1020 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
1020 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
1021 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
1021 |
|
1022 | |||
1022 | if self.axes[0].firsttime: |
|
1023 | if self.axes[0].firsttime: | |
1023 | for ch in self.data.channels: |
|
1024 | for ch in self.data.channels: | |
1024 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
1025 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
1025 | plt.legend() |
|
1026 | plt.legend() | |
1026 | else: |
|
1027 | else: | |
1027 | for ch in self.data.channels: |
|
1028 | for ch in self.data.channels: | |
1028 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
1029 | self.axes[0].lines[ch].set_data(x[ch], y) | |
1029 |
|
1030 | |||
1030 |
|
1031 | |||
1031 | class SpectraCutPlot(Plot): |
|
1032 | class SpectraCutPlot(Plot): | |
1032 |
|
1033 | |||
1033 | CODE = 'spc_cut' |
|
1034 | CODE = 'spc_cut' | |
1034 | plot_type = 'scatter' |
|
1035 | plot_type = 'scatter' | |
1035 | buffering = False |
|
1036 | buffering = False | |
1036 |
|
1037 | |||
1037 | def setup(self): |
|
1038 | def setup(self): | |
1038 |
|
1039 | |||
1039 | self.nplots = len(self.data.channels) |
|
1040 | self.nplots = len(self.data.channels) | |
1040 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
1041 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
1041 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
1042 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
1042 | self.width = 3.4 * self.ncols + 1.5 |
|
1043 | self.width = 3.4 * self.ncols + 1.5 | |
1043 | self.height = 3 * self.nrows |
|
1044 | self.height = 3 * self.nrows | |
1044 | self.ylabel = 'Power [dB]' |
|
1045 | self.ylabel = 'Power [dB]' | |
1045 | self.colorbar = False |
|
1046 | self.colorbar = False | |
1046 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
1047 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
1047 |
|
1048 | |||
1048 | def update(self, dataOut): |
|
1049 | def update(self, dataOut): | |
1049 |
|
1050 | |||
1050 | data = {} |
|
1051 | data = {} | |
1051 | meta = {} |
|
1052 | meta = {} | |
1052 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
1053 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
1053 | data['spc'] = spc |
|
1054 | data['spc'] = spc | |
1054 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1055 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
1055 | if self.CODE == 'cut_gaussian_fit': |
|
1056 | if self.CODE == 'cut_gaussian_fit': | |
1056 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
1057 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) | |
1057 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
1058 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) | |
1058 | return data, meta |
|
1059 | return data, meta | |
1059 |
|
1060 | |||
1060 | def plot(self): |
|
1061 | def plot(self): | |
1061 | if self.xaxis == "frequency": |
|
1062 | if self.xaxis == "frequency": | |
1062 | x = self.data.xrange[0][1:] |
|
1063 | x = self.data.xrange[0][1:] | |
1063 | self.xlabel = "Frequency (kHz)" |
|
1064 | self.xlabel = "Frequency (kHz)" | |
1064 | elif self.xaxis == "time": |
|
1065 | elif self.xaxis == "time": | |
1065 | x = self.data.xrange[1] |
|
1066 | x = self.data.xrange[1] | |
1066 | self.xlabel = "Time (ms)" |
|
1067 | self.xlabel = "Time (ms)" | |
1067 | else: |
|
1068 | else: | |
1068 | x = self.data.xrange[2][:-1] |
|
1069 | x = self.data.xrange[2][:-1] | |
1069 | self.xlabel = "Velocity (m/s)" |
|
1070 | self.xlabel = "Velocity (m/s)" | |
1070 |
|
1071 | |||
1071 | if self.CODE == 'cut_gaussian_fit': |
|
1072 | if self.CODE == 'cut_gaussian_fit': | |
1072 | x = self.data.xrange[2][:-1] |
|
1073 | x = self.data.xrange[2][:-1] | |
1073 | self.xlabel = "Velocity (m/s)" |
|
1074 | self.xlabel = "Velocity (m/s)" | |
1074 |
|
1075 | |||
1075 | self.titles = [] |
|
1076 | self.titles = [] | |
1076 |
|
1077 | |||
1077 | y = self.data.yrange |
|
1078 | y = self.data.yrange | |
1078 | data = self.data[-1] |
|
1079 | data = self.data[-1] | |
1079 | z = data['spc'] |
|
1080 | z = data['spc'] | |
1080 |
|
1081 | |||
1081 | if self.height_index: |
|
1082 | if self.height_index: | |
1082 | index = numpy.array(self.height_index) |
|
1083 | index = numpy.array(self.height_index) | |
1083 | else: |
|
1084 | else: | |
1084 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1085 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
1085 |
|
1086 | |||
1086 | for n, ax in enumerate(self.axes): |
|
1087 | for n, ax in enumerate(self.axes): | |
1087 | if self.CODE == 'cut_gaussian_fit': |
|
1088 | if self.CODE == 'cut_gaussian_fit': | |
1088 | gau0 = data['gauss_fit0'] |
|
1089 | gau0 = data['gauss_fit0'] | |
1089 | gau1 = data['gauss_fit1'] |
|
1090 | gau1 = data['gauss_fit1'] | |
1090 | if ax.firsttime: |
|
1091 | if ax.firsttime: | |
1091 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1092 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1092 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1093 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1093 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1094 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) | |
1094 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1095 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) | |
1095 | #print(self.ymax) |
|
1096 | #print(self.ymax) | |
1096 | #print(z[n, :, index]) |
|
1097 | #print(z[n, :, index]) | |
1097 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1098 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
1098 | if self.CODE == 'cut_gaussian_fit': |
|
1099 | if self.CODE == 'cut_gaussian_fit': | |
1099 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1100 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
1100 | for i, line in enumerate(ax.plt_gau0): |
|
1101 | for i, line in enumerate(ax.plt_gau0): | |
1101 | line.set_color(ax.plt[i].get_color()) |
|
1102 | line.set_color(ax.plt[i].get_color()) | |
1102 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1103 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
1103 | for i, line in enumerate(ax.plt_gau1): |
|
1104 | for i, line in enumerate(ax.plt_gau1): | |
1104 | line.set_color(ax.plt[i].get_color()) |
|
1105 | line.set_color(ax.plt[i].get_color()) | |
1105 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1106 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
1106 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1107 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
1107 | else: |
|
1108 | else: | |
1108 | for i, line in enumerate(ax.plt): |
|
1109 | for i, line in enumerate(ax.plt): | |
1109 | line.set_data(x, z[n, :, index[i]].T) |
|
1110 | line.set_data(x, z[n, :, index[i]].T) | |
1110 | for i, line in enumerate(ax.plt_gau0): |
|
1111 | for i, line in enumerate(ax.plt_gau0): | |
1111 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1112 | line.set_data(x, gau0[n, :, index[i]].T) | |
1112 | line.set_color(ax.plt[i].get_color()) |
|
1113 | line.set_color(ax.plt[i].get_color()) | |
1113 | for i, line in enumerate(ax.plt_gau1): |
|
1114 | for i, line in enumerate(ax.plt_gau1): | |
1114 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1115 | line.set_data(x, gau1[n, :, index[i]].T) | |
1115 | line.set_color(ax.plt[i].get_color()) |
|
1116 | line.set_color(ax.plt[i].get_color()) | |
1116 | self.titles.append('CH {}'.format(n)) |
|
1117 | self.titles.append('CH {}'.format(n)) | |
1117 |
|
1118 | |||
1118 |
|
1119 | |||
1119 | class BeaconPhase(Plot): |
|
1120 | class BeaconPhase(Plot): | |
1120 |
|
1121 | |||
1121 | __isConfig = None |
|
1122 | __isConfig = None | |
1122 | __nsubplots = None |
|
1123 | __nsubplots = None | |
1123 |
|
1124 | |||
1124 | PREFIX = 'beacon_phase' |
|
1125 | PREFIX = 'beacon_phase' | |
1125 |
|
1126 | |||
1126 | def __init__(self): |
|
1127 | def __init__(self): | |
1127 | Plot.__init__(self) |
|
1128 | Plot.__init__(self) | |
1128 | self.timerange = 24*60*60 |
|
1129 | self.timerange = 24*60*60 | |
1129 | self.isConfig = False |
|
1130 | self.isConfig = False | |
1130 | self.__nsubplots = 1 |
|
1131 | self.__nsubplots = 1 | |
1131 | self.counter_imagwr = 0 |
|
1132 | self.counter_imagwr = 0 | |
1132 | self.WIDTH = 800 |
|
1133 | self.WIDTH = 800 | |
1133 | self.HEIGHT = 400 |
|
1134 | self.HEIGHT = 400 | |
1134 | self.WIDTHPROF = 120 |
|
1135 | self.WIDTHPROF = 120 | |
1135 | self.HEIGHTPROF = 0 |
|
1136 | self.HEIGHTPROF = 0 | |
1136 | self.xdata = None |
|
1137 | self.xdata = None | |
1137 | self.ydata = None |
|
1138 | self.ydata = None | |
1138 |
|
1139 | |||
1139 | self.PLOT_CODE = BEACON_CODE |
|
1140 | self.PLOT_CODE = BEACON_CODE | |
1140 |
|
1141 | |||
1141 | self.FTP_WEI = None |
|
1142 | self.FTP_WEI = None | |
1142 | self.EXP_CODE = None |
|
1143 | self.EXP_CODE = None | |
1143 | self.SUB_EXP_CODE = None |
|
1144 | self.SUB_EXP_CODE = None | |
1144 | self.PLOT_POS = None |
|
1145 | self.PLOT_POS = None | |
1145 |
|
1146 | |||
1146 | self.filename_phase = None |
|
1147 | self.filename_phase = None | |
1147 |
|
1148 | |||
1148 | self.figfile = None |
|
1149 | self.figfile = None | |
1149 |
|
1150 | |||
1150 | self.xmin = None |
|
1151 | self.xmin = None | |
1151 | self.xmax = None |
|
1152 | self.xmax = None | |
1152 |
|
1153 | |||
1153 | def getSubplots(self): |
|
1154 | def getSubplots(self): | |
1154 |
|
1155 | |||
1155 | ncol = 1 |
|
1156 | ncol = 1 | |
1156 | nrow = 1 |
|
1157 | nrow = 1 | |
1157 |
|
1158 | |||
1158 | return nrow, ncol |
|
1159 | return nrow, ncol | |
1159 |
|
1160 | |||
1160 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1161 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1161 |
|
1162 | |||
1162 | self.__showprofile = showprofile |
|
1163 | self.__showprofile = showprofile | |
1163 | self.nplots = nplots |
|
1164 | self.nplots = nplots | |
1164 |
|
1165 | |||
1165 | ncolspan = 7 |
|
1166 | ncolspan = 7 | |
1166 | colspan = 6 |
|
1167 | colspan = 6 | |
1167 | self.__nsubplots = 2 |
|
1168 | self.__nsubplots = 2 | |
1168 |
|
1169 | |||
1169 | self.createFigure(id = id, |
|
1170 | self.createFigure(id = id, | |
1170 | wintitle = wintitle, |
|
1171 | wintitle = wintitle, | |
1171 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1172 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1172 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1173 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1173 | show=show) |
|
1174 | show=show) | |
1174 |
|
1175 | |||
1175 | nrow, ncol = self.getSubplots() |
|
1176 | nrow, ncol = self.getSubplots() | |
1176 |
|
1177 | |||
1177 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1178 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1178 |
|
1179 | |||
1179 | def save_phase(self, filename_phase): |
|
1180 | def save_phase(self, filename_phase): | |
1180 | f = open(filename_phase,'w+') |
|
1181 | f = open(filename_phase,'w+') | |
1181 | f.write('\n\n') |
|
1182 | f.write('\n\n') | |
1182 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1183 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1183 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1184 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1184 | f.close() |
|
1185 | f.close() | |
1185 |
|
1186 | |||
1186 | def save_data(self, filename_phase, data, data_datetime): |
|
1187 | def save_data(self, filename_phase, data, data_datetime): | |
1187 | f=open(filename_phase,'a') |
|
1188 | f=open(filename_phase,'a') | |
1188 | timetuple_data = data_datetime.timetuple() |
|
1189 | timetuple_data = data_datetime.timetuple() | |
1189 | day = str(timetuple_data.tm_mday) |
|
1190 | day = str(timetuple_data.tm_mday) | |
1190 | month = str(timetuple_data.tm_mon) |
|
1191 | month = str(timetuple_data.tm_mon) | |
1191 | year = str(timetuple_data.tm_year) |
|
1192 | year = str(timetuple_data.tm_year) | |
1192 | hour = str(timetuple_data.tm_hour) |
|
1193 | hour = str(timetuple_data.tm_hour) | |
1193 | minute = str(timetuple_data.tm_min) |
|
1194 | minute = str(timetuple_data.tm_min) | |
1194 | second = str(timetuple_data.tm_sec) |
|
1195 | second = str(timetuple_data.tm_sec) | |
1195 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1196 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1196 | f.close() |
|
1197 | f.close() | |
1197 |
|
1198 | |||
1198 | def plot(self): |
|
1199 | def plot(self): | |
1199 | log.warning('TODO: Not yet implemented...') |
|
1200 | log.warning('TODO: Not yet implemented...') | |
1200 |
|
1201 | |||
1201 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1202 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1202 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1203 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1203 | timerange=None, |
|
1204 | timerange=None, | |
1204 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1205 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1205 | server=None, folder=None, username=None, password=None, |
|
1206 | server=None, folder=None, username=None, password=None, | |
1206 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1207 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1207 |
|
1208 | |||
1208 | if dataOut.flagNoData: |
|
1209 | if dataOut.flagNoData: | |
1209 | return dataOut |
|
1210 | return dataOut | |
1210 |
|
1211 | |||
1211 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1212 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1212 | return |
|
1213 | return | |
1213 |
|
1214 | |||
1214 | if pairsList == None: |
|
1215 | if pairsList == None: | |
1215 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1216 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1216 | else: |
|
1217 | else: | |
1217 | pairsIndexList = [] |
|
1218 | pairsIndexList = [] | |
1218 | for pair in pairsList: |
|
1219 | for pair in pairsList: | |
1219 | if pair not in dataOut.pairsList: |
|
1220 | if pair not in dataOut.pairsList: | |
1220 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1221 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
1221 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1222 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1222 |
|
1223 | |||
1223 | if pairsIndexList == []: |
|
1224 | if pairsIndexList == []: | |
1224 | return |
|
1225 | return | |
1225 |
|
1226 | |||
1226 | # if len(pairsIndexList) > 4: |
|
1227 | # if len(pairsIndexList) > 4: | |
1227 | # pairsIndexList = pairsIndexList[0:4] |
|
1228 | # pairsIndexList = pairsIndexList[0:4] | |
1228 |
|
1229 | |||
1229 | hmin_index = None |
|
1230 | hmin_index = None | |
1230 | hmax_index = None |
|
1231 | hmax_index = None | |
1231 |
|
1232 | |||
1232 | if hmin != None and hmax != None: |
|
1233 | if hmin != None and hmax != None: | |
1233 | indexes = numpy.arange(dataOut.nHeights) |
|
1234 | indexes = numpy.arange(dataOut.nHeights) | |
1234 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1235 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1235 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1236 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1236 |
|
1237 | |||
1237 | if hmin_list.any(): |
|
1238 | if hmin_list.any(): | |
1238 | hmin_index = hmin_list[0] |
|
1239 | hmin_index = hmin_list[0] | |
1239 |
|
1240 | |||
1240 | if hmax_list.any(): |
|
1241 | if hmax_list.any(): | |
1241 | hmax_index = hmax_list[-1]+1 |
|
1242 | hmax_index = hmax_list[-1]+1 | |
1242 |
|
1243 | |||
1243 | x = dataOut.getTimeRange() |
|
1244 | x = dataOut.getTimeRange() | |
1244 |
|
1245 | |||
1245 | thisDatetime = dataOut.datatime |
|
1246 | thisDatetime = dataOut.datatime | |
1246 |
|
1247 | |||
1247 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1248 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1248 | xlabel = "Local Time" |
|
1249 | xlabel = "Local Time" | |
1249 | ylabel = "Phase (degrees)" |
|
1250 | ylabel = "Phase (degrees)" | |
1250 |
|
1251 | |||
1251 | update_figfile = False |
|
1252 | update_figfile = False | |
1252 |
|
1253 | |||
1253 | nplots = len(pairsIndexList) |
|
1254 | nplots = len(pairsIndexList) | |
1254 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1255 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1255 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1256 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1256 | for i in range(nplots): |
|
1257 | for i in range(nplots): | |
1257 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1258 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1258 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1259 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1259 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1260 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1260 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1261 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1261 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1262 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1262 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1263 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1263 |
|
1264 | |||
1264 | if dataOut.beacon_heiIndexList: |
|
1265 | if dataOut.beacon_heiIndexList: | |
1265 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1266 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1266 | else: |
|
1267 | else: | |
1267 | phase_beacon[i] = numpy.average(phase) |
|
1268 | phase_beacon[i] = numpy.average(phase) | |
1268 |
|
1269 | |||
1269 | if not self.isConfig: |
|
1270 | if not self.isConfig: | |
1270 |
|
1271 | |||
1271 | nplots = len(pairsIndexList) |
|
1272 | nplots = len(pairsIndexList) | |
1272 |
|
1273 | |||
1273 | self.setup(id=id, |
|
1274 | self.setup(id=id, | |
1274 | nplots=nplots, |
|
1275 | nplots=nplots, | |
1275 | wintitle=wintitle, |
|
1276 | wintitle=wintitle, | |
1276 | showprofile=showprofile, |
|
1277 | showprofile=showprofile, | |
1277 | show=show) |
|
1278 | show=show) | |
1278 |
|
1279 | |||
1279 | if timerange != None: |
|
1280 | if timerange != None: | |
1280 | self.timerange = timerange |
|
1281 | self.timerange = timerange | |
1281 |
|
1282 | |||
1282 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1283 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1283 |
|
1284 | |||
1284 | if ymin == None: ymin = 0 |
|
1285 | if ymin == None: ymin = 0 | |
1285 | if ymax == None: ymax = 360 |
|
1286 | if ymax == None: ymax = 360 | |
1286 |
|
1287 | |||
1287 | self.FTP_WEI = ftp_wei |
|
1288 | self.FTP_WEI = ftp_wei | |
1288 | self.EXP_CODE = exp_code |
|
1289 | self.EXP_CODE = exp_code | |
1289 | self.SUB_EXP_CODE = sub_exp_code |
|
1290 | self.SUB_EXP_CODE = sub_exp_code | |
1290 | self.PLOT_POS = plot_pos |
|
1291 | self.PLOT_POS = plot_pos | |
1291 |
|
1292 | |||
1292 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1293 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1293 | self.isConfig = True |
|
1294 | self.isConfig = True | |
1294 | self.figfile = figfile |
|
1295 | self.figfile = figfile | |
1295 | self.xdata = numpy.array([]) |
|
1296 | self.xdata = numpy.array([]) | |
1296 | self.ydata = numpy.array([]) |
|
1297 | self.ydata = numpy.array([]) | |
1297 |
|
1298 | |||
1298 | update_figfile = True |
|
1299 | update_figfile = True | |
1299 |
|
1300 | |||
1300 | #open file beacon phase |
|
1301 | #open file beacon phase | |
1301 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1302 | path = '%s%03d' %(self.PREFIX, self.id) | |
1302 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1303 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1303 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1304 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1304 | #self.save_phase(self.filename_phase) |
|
1305 | #self.save_phase(self.filename_phase) | |
1305 |
|
1306 | |||
1306 |
|
1307 | |||
1307 | #store data beacon phase |
|
1308 | #store data beacon phase | |
1308 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1309 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1309 |
|
1310 | |||
1310 | self.setWinTitle(title) |
|
1311 | self.setWinTitle(title) | |
1311 |
|
1312 | |||
1312 |
|
1313 | |||
1313 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1314 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1314 |
|
1315 | |||
1315 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1316 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1316 |
|
1317 | |||
1317 | axes = self.axesList[0] |
|
1318 | axes = self.axesList[0] | |
1318 |
|
1319 | |||
1319 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1320 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1320 |
|
1321 | |||
1321 | if len(self.ydata)==0: |
|
1322 | if len(self.ydata)==0: | |
1322 | self.ydata = phase_beacon.reshape(-1,1) |
|
1323 | self.ydata = phase_beacon.reshape(-1,1) | |
1323 | else: |
|
1324 | else: | |
1324 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1325 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1325 |
|
1326 | |||
1326 |
|
1327 | |||
1327 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1328 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1328 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1329 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1329 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1330 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1330 | XAxisAsTime=True, grid='both' |
|
1331 | XAxisAsTime=True, grid='both' | |
1331 | ) |
|
1332 | ) | |
1332 |
|
1333 | |||
1333 | self.draw() |
|
1334 | self.draw() | |
1334 |
|
1335 | |||
1335 | if dataOut.ltctime >= self.xmax: |
|
1336 | if dataOut.ltctime >= self.xmax: | |
1336 | self.counter_imagwr = wr_period |
|
1337 | self.counter_imagwr = wr_period | |
1337 | self.isConfig = False |
|
1338 | self.isConfig = False | |
1338 | update_figfile = True |
|
1339 | update_figfile = True | |
1339 |
|
1340 | |||
1340 | self.save(figpath=figpath, |
|
1341 | self.save(figpath=figpath, | |
1341 | figfile=figfile, |
|
1342 | figfile=figfile, | |
1342 | save=save, |
|
1343 | save=save, | |
1343 | ftp=ftp, |
|
1344 | ftp=ftp, | |
1344 | wr_period=wr_period, |
|
1345 | wr_period=wr_period, | |
1345 | thisDatetime=thisDatetime, |
|
1346 | thisDatetime=thisDatetime, | |
1346 | update_figfile=update_figfile) |
|
1347 | update_figfile=update_figfile) | |
1347 |
|
1348 | |||
1348 | return dataOut |
|
1349 | return dataOut |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,1049 +1,1049 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 |
|
15 | |||
16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
17 | from schainpy.model.data.jrodata import Spectra |
|
17 | from schainpy.model.data.jrodata import Spectra | |
18 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
18 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
19 | from schainpy.utils import log |
|
19 | from schainpy.utils import log | |
20 |
|
20 | |||
21 |
|
21 | |||
22 | class SpectraProc(ProcessingUnit): |
|
22 | class SpectraProc(ProcessingUnit): | |
23 |
|
23 | |||
24 | def __init__(self): |
|
24 | def __init__(self): | |
25 |
|
25 | |||
26 | ProcessingUnit.__init__(self) |
|
26 | ProcessingUnit.__init__(self) | |
27 |
|
27 | |||
28 | self.buffer = None |
|
28 | self.buffer = None | |
29 | self.firstdatatime = None |
|
29 | self.firstdatatime = None | |
30 | self.profIndex = 0 |
|
30 | self.profIndex = 0 | |
31 | self.dataOut = Spectra() |
|
31 | self.dataOut = Spectra() | |
32 | self.id_min = None |
|
32 | self.id_min = None | |
33 | self.id_max = None |
|
33 | self.id_max = None | |
34 | self.setupReq = False #Agregar a todas las unidades de proc |
|
34 | self.setupReq = False #Agregar a todas las unidades de proc | |
35 |
|
35 | |||
36 | def __updateSpecFromVoltage(self): |
|
36 | def __updateSpecFromVoltage(self): | |
37 |
|
37 | |||
38 | self.dataOut.timeZone = self.dataIn.timeZone |
|
38 | self.dataOut.timeZone = self.dataIn.timeZone | |
39 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
39 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
40 | self.dataOut.errorCount = self.dataIn.errorCount |
|
40 | self.dataOut.errorCount = self.dataIn.errorCount | |
41 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
41 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
42 | try: |
|
42 | try: | |
43 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
43 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
44 | except: |
|
44 | except: | |
45 | pass |
|
45 | pass | |
46 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
46 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
47 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
47 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
48 | self.dataOut.channelList = self.dataIn.channelList |
|
48 | self.dataOut.channelList = self.dataIn.channelList | |
49 | self.dataOut.heightList = self.dataIn.heightList |
|
49 | self.dataOut.heightList = self.dataIn.heightList | |
50 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
50 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
51 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
51 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
52 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
52 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
53 | self.dataOut.utctime = self.firstdatatime |
|
53 | self.dataOut.utctime = self.firstdatatime | |
54 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
54 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
55 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
55 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
56 | self.dataOut.flagShiftFFT = False |
|
56 | self.dataOut.flagShiftFFT = False | |
57 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
57 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
58 | self.dataOut.nIncohInt = 1 |
|
58 | self.dataOut.nIncohInt = 1 | |
59 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
59 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
60 | self.dataOut.frequency = self.dataIn.frequency |
|
60 | self.dataOut.frequency = self.dataIn.frequency | |
61 | self.dataOut.realtime = self.dataIn.realtime |
|
61 | self.dataOut.realtime = self.dataIn.realtime | |
62 | self.dataOut.azimuth = self.dataIn.azimuth |
|
62 | self.dataOut.azimuth = self.dataIn.azimuth | |
63 | self.dataOut.zenith = self.dataIn.zenith |
|
63 | self.dataOut.zenith = self.dataIn.zenith | |
64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
67 | self.dataOut.runNextUnit = self.dataIn.runNextUnit |
|
67 | self.dataOut.runNextUnit = self.dataIn.runNextUnit | |
68 | try: |
|
68 | try: | |
69 | self.dataOut.step = self.dataIn.step |
|
69 | self.dataOut.step = self.dataIn.step | |
70 | except: |
|
70 | except: | |
71 | pass |
|
71 | pass | |
72 |
|
72 | |||
73 | def __getFft(self): |
|
73 | def __getFft(self): | |
74 | """ |
|
74 | """ | |
75 | Convierte valores de Voltaje a Spectra |
|
75 | Convierte valores de Voltaje a Spectra | |
76 |
|
76 | |||
77 | Affected: |
|
77 | Affected: | |
78 | self.dataOut.data_spc |
|
78 | self.dataOut.data_spc | |
79 | self.dataOut.data_cspc |
|
79 | self.dataOut.data_cspc | |
80 | self.dataOut.data_dc |
|
80 | self.dataOut.data_dc | |
81 | self.dataOut.heightList |
|
81 | self.dataOut.heightList | |
82 | self.profIndex |
|
82 | self.profIndex | |
83 | self.buffer |
|
83 | self.buffer | |
84 | self.dataOut.flagNoData |
|
84 | self.dataOut.flagNoData | |
85 | """ |
|
85 | """ | |
86 | fft_volt = numpy.fft.fft( |
|
86 | fft_volt = numpy.fft.fft( | |
87 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
87 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
88 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
88 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
89 | dc = fft_volt[:, 0, :] |
|
89 | dc = fft_volt[:, 0, :] | |
90 |
|
90 | |||
91 | # calculo de self-spectra |
|
91 | # calculo de self-spectra | |
92 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
92 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
93 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
93 | spc = fft_volt * numpy.conjugate(fft_volt) | |
94 | spc = spc.real |
|
94 | spc = spc.real | |
95 |
|
95 | |||
96 | blocksize = 0 |
|
96 | blocksize = 0 | |
97 | blocksize += dc.size |
|
97 | blocksize += dc.size | |
98 | blocksize += spc.size |
|
98 | blocksize += spc.size | |
99 |
|
99 | |||
100 | cspc = None |
|
100 | cspc = None | |
101 | pairIndex = 0 |
|
101 | pairIndex = 0 | |
102 | if self.dataOut.pairsList != None: |
|
102 | if self.dataOut.pairsList != None: | |
103 | # calculo de cross-spectra |
|
103 | # calculo de cross-spectra | |
104 | cspc = numpy.zeros( |
|
104 | cspc = numpy.zeros( | |
105 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
105 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
106 | for pair in self.dataOut.pairsList: |
|
106 | for pair in self.dataOut.pairsList: | |
107 | if pair[0] not in self.dataOut.channelList: |
|
107 | if pair[0] not in self.dataOut.channelList: | |
108 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
108 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
109 | str(pair), str(self.dataOut.channelList))) |
|
109 | str(pair), str(self.dataOut.channelList))) | |
110 | if pair[1] not in self.dataOut.channelList: |
|
110 | if pair[1] not in self.dataOut.channelList: | |
111 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
111 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
112 | str(pair), str(self.dataOut.channelList))) |
|
112 | str(pair), str(self.dataOut.channelList))) | |
113 |
|
113 | |||
114 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
114 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
115 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
115 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
116 | pairIndex += 1 |
|
116 | pairIndex += 1 | |
117 | blocksize += cspc.size |
|
117 | blocksize += cspc.size | |
118 |
|
118 | |||
119 | self.dataOut.data_spc = spc |
|
119 | self.dataOut.data_spc = spc | |
120 | self.dataOut.data_cspc = cspc |
|
120 | self.dataOut.data_cspc = cspc | |
121 | self.dataOut.data_dc = dc |
|
121 | self.dataOut.data_dc = dc | |
122 | self.dataOut.blockSize = blocksize |
|
122 | self.dataOut.blockSize = blocksize | |
123 | self.dataOut.flagShiftFFT = False |
|
123 | self.dataOut.flagShiftFFT = False | |
124 |
|
124 | |||
125 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, runNextUnit = 0): |
|
125 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, runNextUnit = 0): | |
126 |
|
126 | |||
127 | self.dataIn.runNextUnit = runNextUnit |
|
127 | self.dataIn.runNextUnit = runNextUnit | |
128 | if self.dataIn.type == "Spectra": |
|
128 | if self.dataIn.type == "Spectra": | |
129 |
|
129 | |||
130 | self.dataOut.copy(self.dataIn) |
|
130 | self.dataOut.copy(self.dataIn) | |
131 | if shift_fft: |
|
131 | if shift_fft: | |
132 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
132 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
133 | shift = int(self.dataOut.nFFTPoints/2) |
|
133 | shift = int(self.dataOut.nFFTPoints/2) | |
134 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
134 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
135 |
|
135 | |||
136 | if self.dataOut.data_cspc is not None: |
|
136 | if self.dataOut.data_cspc is not None: | |
137 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
137 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
138 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
138 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
139 | if pairsList: |
|
139 | if pairsList: | |
140 | self.__selectPairs(pairsList) |
|
140 | self.__selectPairs(pairsList) | |
141 |
|
141 | |||
142 | elif self.dataIn.type == "Voltage": |
|
142 | elif self.dataIn.type == "Voltage": | |
143 |
|
143 | |||
144 | self.dataOut.flagNoData = True |
|
144 | self.dataOut.flagNoData = True | |
145 |
|
145 | |||
146 | if nFFTPoints == None: |
|
146 | if nFFTPoints == None: | |
147 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
147 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
148 |
|
148 | |||
149 | if nProfiles == None: |
|
149 | if nProfiles == None: | |
150 | nProfiles = nFFTPoints |
|
150 | nProfiles = nFFTPoints | |
151 | #print(self.dataOut.ipp) |
|
151 | #print(self.dataOut.ipp) | |
152 | #exit(1) |
|
152 | #exit(1) | |
153 | if ippFactor == None: |
|
153 | if ippFactor == None: | |
154 | self.dataOut.ippFactor = 1 |
|
154 | self.dataOut.ippFactor = 1 | |
155 | #if ippFactor is not None: |
|
155 | #if ippFactor is not None: | |
156 | #self.dataOut.ippFactor = ippFactor |
|
156 | #self.dataOut.ippFactor = ippFactor | |
157 | #print(ippFactor) |
|
157 | #print(ippFactor) | |
158 | #print(self.dataOut.ippFactor) |
|
158 | #print(self.dataOut.ippFactor) | |
159 | #exit(1) |
|
159 | #exit(1) | |
160 |
|
160 | |||
161 | self.dataOut.nFFTPoints = nFFTPoints |
|
161 | self.dataOut.nFFTPoints = nFFTPoints | |
162 |
|
162 | |||
163 | if self.buffer is None: |
|
163 | if self.buffer is None: | |
164 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
164 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
165 | nProfiles, |
|
165 | nProfiles, | |
166 | self.dataIn.nHeights), |
|
166 | self.dataIn.nHeights), | |
167 | dtype='complex') |
|
167 | dtype='complex') | |
168 |
|
168 | |||
169 | if self.dataIn.flagDataAsBlock: |
|
169 | if self.dataIn.flagDataAsBlock: | |
170 | nVoltProfiles = self.dataIn.data.shape[1] |
|
170 | nVoltProfiles = self.dataIn.data.shape[1] | |
171 |
|
171 | |||
172 | if nVoltProfiles == nProfiles: |
|
172 | if nVoltProfiles == nProfiles: | |
173 | self.buffer = self.dataIn.data.copy() |
|
173 | self.buffer = self.dataIn.data.copy() | |
174 | self.profIndex = nVoltProfiles |
|
174 | self.profIndex = nVoltProfiles | |
175 |
|
175 | |||
176 | elif nVoltProfiles < nProfiles: |
|
176 | elif nVoltProfiles < nProfiles: | |
177 |
|
177 | |||
178 | if self.profIndex == 0: |
|
178 | if self.profIndex == 0: | |
179 | self.id_min = 0 |
|
179 | self.id_min = 0 | |
180 | self.id_max = nVoltProfiles |
|
180 | self.id_max = nVoltProfiles | |
181 | #print(self.id_min) |
|
181 | #print(self.id_min) | |
182 | #print(self.id_max) |
|
182 | #print(self.id_max) | |
183 | #print(numpy.shape(self.buffer)) |
|
183 | #print(numpy.shape(self.buffer)) | |
184 | self.buffer[:, self.id_min:self.id_max, |
|
184 | self.buffer[:, self.id_min:self.id_max, | |
185 | :] = self.dataIn.data |
|
185 | :] = self.dataIn.data | |
186 | self.profIndex += nVoltProfiles |
|
186 | self.profIndex += nVoltProfiles | |
187 | self.id_min += nVoltProfiles |
|
187 | self.id_min += nVoltProfiles | |
188 | self.id_max += nVoltProfiles |
|
188 | self.id_max += nVoltProfiles | |
189 | else: |
|
189 | else: | |
190 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
190 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
191 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
191 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
192 | self.dataOut.flagNoData = True |
|
192 | self.dataOut.flagNoData = True | |
193 | else: |
|
193 | else: | |
194 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
194 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
195 | self.profIndex += 1 |
|
195 | self.profIndex += 1 | |
196 |
|
196 | |||
197 | if self.firstdatatime == None: |
|
197 | if self.firstdatatime == None: | |
198 | self.firstdatatime = self.dataIn.utctime |
|
198 | self.firstdatatime = self.dataIn.utctime | |
199 |
|
199 | |||
200 | if self.profIndex == nProfiles: |
|
200 | if self.profIndex == nProfiles: | |
201 | self.__updateSpecFromVoltage() |
|
201 | self.__updateSpecFromVoltage() | |
202 | if pairsList == None: |
|
202 | if pairsList == None: | |
203 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
203 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
204 | else: |
|
204 | else: | |
205 | self.dataOut.pairsList = pairsList |
|
205 | self.dataOut.pairsList = pairsList | |
206 | self.__getFft() |
|
206 | self.__getFft() | |
207 | self.dataOut.flagNoData = False |
|
207 | self.dataOut.flagNoData = False | |
208 | self.firstdatatime = None |
|
208 | self.firstdatatime = None | |
209 | self.profIndex = 0 |
|
209 | self.profIndex = 0 | |
210 | else: |
|
210 | else: | |
211 | raise ValueError("The type of input object '%s' is not valid".format( |
|
211 | raise ValueError("The type of input object '%s' is not valid".format( | |
212 | self.dataIn.type)) |
|
212 | self.dataIn.type)) | |
213 |
|
213 | |||
214 |
|
214 | |||
215 | def __selectPairs(self, pairsList): |
|
215 | def __selectPairs(self, pairsList): | |
216 |
|
216 | |||
217 | if not pairsList: |
|
217 | if not pairsList: | |
218 | return |
|
218 | return | |
219 |
|
219 | |||
220 | pairs = [] |
|
220 | pairs = [] | |
221 | pairsIndex = [] |
|
221 | pairsIndex = [] | |
222 |
|
222 | |||
223 | for pair in pairsList: |
|
223 | for pair in pairsList: | |
224 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
224 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
225 | continue |
|
225 | continue | |
226 | pairs.append(pair) |
|
226 | pairs.append(pair) | |
227 | pairsIndex.append(pairs.index(pair)) |
|
227 | pairsIndex.append(pairs.index(pair)) | |
228 |
|
228 | |||
229 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
229 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
230 | self.dataOut.pairsList = pairs |
|
230 | self.dataOut.pairsList = pairs | |
231 |
|
231 | |||
232 | return |
|
232 | return | |
233 |
|
233 | |||
234 | def selectFFTs(self, minFFT, maxFFT ): |
|
234 | def selectFFTs(self, minFFT, maxFFT ): | |
235 | """ |
|
235 | """ | |
236 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
236 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
237 | minFFT<= FFT <= maxFFT |
|
237 | minFFT<= FFT <= maxFFT | |
238 | """ |
|
238 | """ | |
239 |
|
239 | |||
240 | if (minFFT > maxFFT): |
|
240 | if (minFFT > maxFFT): | |
241 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
241 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
242 |
|
242 | |||
243 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
243 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
244 | minFFT = self.dataOut.getFreqRange()[0] |
|
244 | minFFT = self.dataOut.getFreqRange()[0] | |
245 |
|
245 | |||
246 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
246 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
247 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
247 | maxFFT = self.dataOut.getFreqRange()[-1] | |
248 |
|
248 | |||
249 | minIndex = 0 |
|
249 | minIndex = 0 | |
250 | maxIndex = 0 |
|
250 | maxIndex = 0 | |
251 | FFTs = self.dataOut.getFreqRange() |
|
251 | FFTs = self.dataOut.getFreqRange() | |
252 |
|
252 | |||
253 | inda = numpy.where(FFTs >= minFFT) |
|
253 | inda = numpy.where(FFTs >= minFFT) | |
254 | indb = numpy.where(FFTs <= maxFFT) |
|
254 | indb = numpy.where(FFTs <= maxFFT) | |
255 |
|
255 | |||
256 | try: |
|
256 | try: | |
257 | minIndex = inda[0][0] |
|
257 | minIndex = inda[0][0] | |
258 | except: |
|
258 | except: | |
259 | minIndex = 0 |
|
259 | minIndex = 0 | |
260 |
|
260 | |||
261 | try: |
|
261 | try: | |
262 | maxIndex = indb[0][-1] |
|
262 | maxIndex = indb[0][-1] | |
263 | except: |
|
263 | except: | |
264 | maxIndex = len(FFTs) |
|
264 | maxIndex = len(FFTs) | |
265 |
|
265 | |||
266 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
266 | self.selectFFTsByIndex(minIndex, maxIndex) | |
267 |
|
267 | |||
268 | return 1 |
|
268 | return 1 | |
269 |
|
269 | |||
270 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
270 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
271 | newheis = numpy.where( |
|
271 | newheis = numpy.where( | |
272 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
272 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
273 |
|
273 | |||
274 | if hei_ref != None: |
|
274 | if hei_ref != None: | |
275 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
275 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
276 |
|
276 | |||
277 | minIndex = min(newheis[0]) |
|
277 | minIndex = min(newheis[0]) | |
278 | maxIndex = max(newheis[0]) |
|
278 | maxIndex = max(newheis[0]) | |
279 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
279 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
280 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
280 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
281 |
|
281 | |||
282 | # determina indices |
|
282 | # determina indices | |
283 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
283 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
284 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
284 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
285 | avg_dB = 10 * \ |
|
285 | avg_dB = 10 * \ | |
286 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
286 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
287 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
287 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
288 | beacon_heiIndexList = [] |
|
288 | beacon_heiIndexList = [] | |
289 | for val in avg_dB.tolist(): |
|
289 | for val in avg_dB.tolist(): | |
290 | if val >= beacon_dB[0]: |
|
290 | if val >= beacon_dB[0]: | |
291 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
291 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
292 |
|
292 | |||
293 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
293 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
294 | data_cspc = None |
|
294 | data_cspc = None | |
295 | if self.dataOut.data_cspc is not None: |
|
295 | if self.dataOut.data_cspc is not None: | |
296 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
296 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
297 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
297 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
298 |
|
298 | |||
299 | data_dc = None |
|
299 | data_dc = None | |
300 | if self.dataOut.data_dc is not None: |
|
300 | if self.dataOut.data_dc is not None: | |
301 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
301 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
302 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
302 | #data_dc = data_dc[:,beacon_heiIndexList] | |
303 |
|
303 | |||
304 | self.dataOut.data_spc = data_spc |
|
304 | self.dataOut.data_spc = data_spc | |
305 | self.dataOut.data_cspc = data_cspc |
|
305 | self.dataOut.data_cspc = data_cspc | |
306 | self.dataOut.data_dc = data_dc |
|
306 | self.dataOut.data_dc = data_dc | |
307 | self.dataOut.heightList = heightList |
|
307 | self.dataOut.heightList = heightList | |
308 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
308 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
309 |
|
309 | |||
310 | return 1 |
|
310 | return 1 | |
311 |
|
311 | |||
312 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
312 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
313 | """ |
|
313 | """ | |
314 |
|
314 | |||
315 | """ |
|
315 | """ | |
316 |
|
316 | |||
317 | if (minIndex < 0) or (minIndex > maxIndex): |
|
317 | if (minIndex < 0) or (minIndex > maxIndex): | |
318 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
318 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
319 |
|
319 | |||
320 | if (maxIndex >= self.dataOut.nProfiles): |
|
320 | if (maxIndex >= self.dataOut.nProfiles): | |
321 | maxIndex = self.dataOut.nProfiles-1 |
|
321 | maxIndex = self.dataOut.nProfiles-1 | |
322 |
|
322 | |||
323 | #Spectra |
|
323 | #Spectra | |
324 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
324 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
325 |
|
325 | |||
326 | data_cspc = None |
|
326 | data_cspc = None | |
327 | if self.dataOut.data_cspc is not None: |
|
327 | if self.dataOut.data_cspc is not None: | |
328 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
328 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
329 |
|
329 | |||
330 | data_dc = None |
|
330 | data_dc = None | |
331 | if self.dataOut.data_dc is not None: |
|
331 | if self.dataOut.data_dc is not None: | |
332 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
332 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
333 |
|
333 | |||
334 | self.dataOut.data_spc = data_spc |
|
334 | self.dataOut.data_spc = data_spc | |
335 | self.dataOut.data_cspc = data_cspc |
|
335 | self.dataOut.data_cspc = data_cspc | |
336 | self.dataOut.data_dc = data_dc |
|
336 | self.dataOut.data_dc = data_dc | |
337 |
|
337 | |||
338 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
338 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
339 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
339 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
340 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
340 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
341 |
|
341 | |||
342 | return 1 |
|
342 | return 1 | |
343 |
|
343 | |||
344 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
344 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
345 | # validacion de rango |
|
345 | # validacion de rango | |
346 | print("NOISeeee") |
|
346 | print("NOISeeee") | |
347 | if minHei == None: |
|
347 | if minHei == None: | |
348 | minHei = self.dataOut.heightList[0] |
|
348 | minHei = self.dataOut.heightList[0] | |
349 |
|
349 | |||
350 | if maxHei == None: |
|
350 | if maxHei == None: | |
351 | maxHei = self.dataOut.heightList[-1] |
|
351 | maxHei = self.dataOut.heightList[-1] | |
352 |
|
352 | |||
353 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
353 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
354 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
354 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
355 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
355 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
356 | minHei = self.dataOut.heightList[0] |
|
356 | minHei = self.dataOut.heightList[0] | |
357 |
|
357 | |||
358 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
358 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
359 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
359 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
360 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
360 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
361 | maxHei = self.dataOut.heightList[-1] |
|
361 | maxHei = self.dataOut.heightList[-1] | |
362 |
|
362 | |||
363 | # validacion de velocidades |
|
363 | # validacion de velocidades | |
364 | velrange = self.dataOut.getVelRange(1) |
|
364 | velrange = self.dataOut.getVelRange(1) | |
365 |
|
365 | |||
366 | if minVel == None: |
|
366 | if minVel == None: | |
367 | minVel = velrange[0] |
|
367 | minVel = velrange[0] | |
368 |
|
368 | |||
369 | if maxVel == None: |
|
369 | if maxVel == None: | |
370 | maxVel = velrange[-1] |
|
370 | maxVel = velrange[-1] | |
371 |
|
371 | |||
372 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
372 | if (minVel < velrange[0]) or (minVel > maxVel): | |
373 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
373 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
374 | print('minVel is setting to %.2f' % (velrange[0])) |
|
374 | print('minVel is setting to %.2f' % (velrange[0])) | |
375 | minVel = velrange[0] |
|
375 | minVel = velrange[0] | |
376 |
|
376 | |||
377 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
377 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
378 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
378 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
379 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
379 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
380 | maxVel = velrange[-1] |
|
380 | maxVel = velrange[-1] | |
381 |
|
381 | |||
382 | # seleccion de indices para rango |
|
382 | # seleccion de indices para rango | |
383 | minIndex = 0 |
|
383 | minIndex = 0 | |
384 | maxIndex = 0 |
|
384 | maxIndex = 0 | |
385 | heights = self.dataOut.heightList |
|
385 | heights = self.dataOut.heightList | |
386 |
|
386 | |||
387 | inda = numpy.where(heights >= minHei) |
|
387 | inda = numpy.where(heights >= minHei) | |
388 | indb = numpy.where(heights <= maxHei) |
|
388 | indb = numpy.where(heights <= maxHei) | |
389 |
|
389 | |||
390 | try: |
|
390 | try: | |
391 | minIndex = inda[0][0] |
|
391 | minIndex = inda[0][0] | |
392 | except: |
|
392 | except: | |
393 | minIndex = 0 |
|
393 | minIndex = 0 | |
394 |
|
394 | |||
395 | try: |
|
395 | try: | |
396 | maxIndex = indb[0][-1] |
|
396 | maxIndex = indb[0][-1] | |
397 | except: |
|
397 | except: | |
398 | maxIndex = len(heights) |
|
398 | maxIndex = len(heights) | |
399 |
|
399 | |||
400 | if (minIndex < 0) or (minIndex > maxIndex): |
|
400 | if (minIndex < 0) or (minIndex > maxIndex): | |
401 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
401 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
402 | minIndex, maxIndex)) |
|
402 | minIndex, maxIndex)) | |
403 |
|
403 | |||
404 | if (maxIndex >= self.dataOut.nHeights): |
|
404 | if (maxIndex >= self.dataOut.nHeights): | |
405 | maxIndex = self.dataOut.nHeights - 1 |
|
405 | maxIndex = self.dataOut.nHeights - 1 | |
406 |
|
406 | |||
407 | # seleccion de indices para velocidades |
|
407 | # seleccion de indices para velocidades | |
408 | indminvel = numpy.where(velrange >= minVel) |
|
408 | indminvel = numpy.where(velrange >= minVel) | |
409 | indmaxvel = numpy.where(velrange <= maxVel) |
|
409 | indmaxvel = numpy.where(velrange <= maxVel) | |
410 | try: |
|
410 | try: | |
411 | minIndexVel = indminvel[0][0] |
|
411 | minIndexVel = indminvel[0][0] | |
412 | except: |
|
412 | except: | |
413 | minIndexVel = 0 |
|
413 | minIndexVel = 0 | |
414 |
|
414 | |||
415 | try: |
|
415 | try: | |
416 | maxIndexVel = indmaxvel[0][-1] |
|
416 | maxIndexVel = indmaxvel[0][-1] | |
417 | except: |
|
417 | except: | |
418 | maxIndexVel = len(velrange) |
|
418 | maxIndexVel = len(velrange) | |
419 |
|
419 | |||
420 | # seleccion del espectro |
|
420 | # seleccion del espectro | |
421 | data_spc = self.dataOut.data_spc[:, |
|
421 | data_spc = self.dataOut.data_spc[:, | |
422 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
422 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
423 | # estimacion de ruido |
|
423 | # estimacion de ruido | |
424 | noise = numpy.zeros(self.dataOut.nChannels) |
|
424 | noise = numpy.zeros(self.dataOut.nChannels) | |
425 |
|
425 | |||
426 | for channel in range(self.dataOut.nChannels): |
|
426 | for channel in range(self.dataOut.nChannels): | |
427 | daux = data_spc[channel, :, :] |
|
427 | daux = data_spc[channel, :, :] | |
428 | sortdata = numpy.sort(daux, axis=None) |
|
428 | sortdata = numpy.sort(daux, axis=None) | |
429 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
429 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
430 |
|
430 | |||
431 | self.dataOut.noise_estimation = noise.copy() |
|
431 | self.dataOut.noise_estimation = noise.copy() | |
432 |
|
432 | |||
433 | return 1 |
|
433 | return 1 | |
434 |
|
434 | |||
435 | class GetSNR(Operation): |
|
435 | class GetSNR(Operation): | |
436 | ''' |
|
436 | ''' | |
437 | Written by R. Flores |
|
437 | Written by R. Flores | |
438 | ''' |
|
438 | ''' | |
439 | """Operation to get SNR. |
|
439 | """Operation to get SNR. | |
440 |
|
440 | |||
441 | Parameters: |
|
441 | Parameters: | |
442 | ----------- |
|
442 | ----------- | |
443 |
|
443 | |||
444 | Example |
|
444 | Example | |
445 | -------- |
|
445 | -------- | |
446 |
|
446 | |||
447 | op = proc_unit.addOperation(name='GetSNR', optype='other') |
|
447 | op = proc_unit.addOperation(name='GetSNR', optype='other') | |
448 |
|
448 | |||
449 | """ |
|
449 | """ | |
450 |
|
450 | |||
451 | def __init__(self, **kwargs): |
|
451 | def __init__(self, **kwargs): | |
452 |
|
452 | |||
453 | Operation.__init__(self, **kwargs) |
|
453 | Operation.__init__(self, **kwargs) | |
454 |
|
454 | |||
455 |
|
455 | |||
456 | def run(self,dataOut): |
|
456 | def run(self,dataOut): | |
457 |
|
457 | |||
458 |
|
|
458 | noise = dataOut.getNoise() | |
459 | noise = dataOut.getNoise(ymin_index=-10) #Región superior donde solo debería de haber ruido |
|
459 | #noise = dataOut.getNoise(ymin_index=-10) #Región superior donde solo debería de haber ruido | |
460 | #print("Noise: ", noise) |
|
460 | #print("Noise: ", noise) | |
461 | #print("Noise_dB: ", 10*numpy.log10(noise/dataOut.normFactor)) |
|
461 | #print("Noise_dB: ", 10*numpy.log10(noise/dataOut.normFactor)) | |
462 | #print("Heights: ", dataOut.heightList) |
|
462 | #print("Heights: ", dataOut.heightList) | |
463 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.normFactor) |
|
463 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.normFactor) | |
464 | ################dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.nFFTPoints) #Before 12Jan2023 |
|
464 | ################dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.nFFTPoints) #Before 12Jan2023 | |
465 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None])/(noise[:,None]) |
|
465 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None])/(noise[:,None]) | |
466 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently |
|
466 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently | |
467 | dataOut.snl = numpy.log10(dataOut.data_snr) |
|
467 | dataOut.snl = numpy.log10(dataOut.data_snr) | |
468 | #print("snl: ", dataOut.snl) |
|
468 | #print("snl: ", dataOut.snl) | |
469 | #exit(1) |
|
469 | #exit(1) | |
470 | #print(dataOut.heightList[-11]) |
|
470 | #print(dataOut.heightList[-11]) | |
471 | #print(numpy.shape(dataOut.heightList)) |
|
471 | #print(numpy.shape(dataOut.heightList)) | |
472 | #print(dataOut.data_snr) |
|
472 | #print(dataOut.data_snr) | |
473 | #print(dataOut.data_snr[0,-11]) |
|
473 | #print(dataOut.data_snr[0,-11]) | |
474 | #exit(1) |
|
474 | #exit(1) | |
475 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.5, numpy.nan, dataOut.data_snr) |
|
475 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.5, numpy.nan, dataOut.data_snr) | |
476 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.1, numpy.nan, dataOut.data_snr) |
|
476 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.1, numpy.nan, dataOut.data_snr) | |
477 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.0, numpy.nan, dataOut.data_snr) |
|
477 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.0, numpy.nan, dataOut.data_snr) | |
478 | #dataOut.data_snr = numpy.where(dataOut.data_snr<.05, numpy.nan, dataOut.data_snr) |
|
478 | #dataOut.data_snr = numpy.where(dataOut.data_snr<.05, numpy.nan, dataOut.data_snr) | |
479 | #dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) |
|
479 | #dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) | |
480 | dataOut.snl = numpy.where(dataOut.snl<-1, numpy.nan, dataOut.snl) |
|
480 | dataOut.snl = numpy.where(dataOut.snl<-1, numpy.nan, dataOut.snl) | |
481 | ''' |
|
481 | ''' | |
482 | import matplotlib.pyplot as plt |
|
482 | import matplotlib.pyplot as plt | |
483 | #plt.plot(10*numpy.log10(dataOut.data_snr[0]),dataOut.heightList) |
|
483 | #plt.plot(10*numpy.log10(dataOut.data_snr[0]),dataOut.heightList) | |
484 | plt.plot(dataOut.data_snr[0],dataOut.heightList)#,marker='*') |
|
484 | plt.plot(dataOut.data_snr[0],dataOut.heightList)#,marker='*') | |
485 | plt.xlim(-1,10) |
|
485 | plt.xlim(-1,10) | |
486 | plt.axvline(1,color='k') |
|
486 | plt.axvline(1,color='k') | |
487 | plt.axvline(.1,color='k',linestyle='--') |
|
487 | plt.axvline(.1,color='k',linestyle='--') | |
488 | plt.grid() |
|
488 | plt.grid() | |
489 | plt.show() |
|
489 | plt.show() | |
490 | ''' |
|
490 | ''' | |
491 | #dataOut.data_snr = 10*numpy.log10(dataOut.data_snr) |
|
491 | #dataOut.data_snr = 10*numpy.log10(dataOut.data_snr) | |
492 | #dataOut.data_snr = numpy.expand_dims(dataOut.data_snr,axis=0) |
|
492 | #dataOut.data_snr = numpy.expand_dims(dataOut.data_snr,axis=0) | |
493 | #print(dataOut.data_snr.shape) |
|
493 | #print(dataOut.data_snr.shape) | |
494 | #exit(1) |
|
494 | #exit(1) | |
495 | #print("Before: ", dataOut.data_snr[0]) |
|
495 | #print("Before: ", dataOut.data_snr[0]) | |
496 |
|
496 | |||
497 |
|
497 | |||
498 | return dataOut |
|
498 | return dataOut | |
499 |
|
499 | |||
500 | class removeDC(Operation): |
|
500 | class removeDC(Operation): | |
501 |
|
501 | |||
502 | def run(self, dataOut, mode=2): |
|
502 | def run(self, dataOut, mode=2): | |
503 | self.dataOut = dataOut |
|
503 | self.dataOut = dataOut | |
504 | jspectra = self.dataOut.data_spc |
|
504 | jspectra = self.dataOut.data_spc | |
505 | jcspectra = self.dataOut.data_cspc |
|
505 | jcspectra = self.dataOut.data_cspc | |
506 |
|
506 | |||
507 | num_chan = jspectra.shape[0] |
|
507 | num_chan = jspectra.shape[0] | |
508 | num_hei = jspectra.shape[2] |
|
508 | num_hei = jspectra.shape[2] | |
509 |
|
509 | |||
510 | if jcspectra is not None: |
|
510 | if jcspectra is not None: | |
511 | jcspectraExist = True |
|
511 | jcspectraExist = True | |
512 | num_pairs = jcspectra.shape[0] |
|
512 | num_pairs = jcspectra.shape[0] | |
513 | else: |
|
513 | else: | |
514 | jcspectraExist = False |
|
514 | jcspectraExist = False | |
515 |
|
515 | |||
516 | freq_dc = int(jspectra.shape[1] / 2) |
|
516 | freq_dc = int(jspectra.shape[1] / 2) | |
517 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
517 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
518 | ind_vel = ind_vel.astype(int) |
|
518 | ind_vel = ind_vel.astype(int) | |
519 |
|
519 | |||
520 | if ind_vel[0] < 0: |
|
520 | if ind_vel[0] < 0: | |
521 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
521 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
522 |
|
522 | |||
523 | if mode == 1: |
|
523 | if mode == 1: | |
524 | jspectra[:, freq_dc, :] = ( |
|
524 | jspectra[:, freq_dc, :] = ( | |
525 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
525 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
526 |
|
526 | |||
527 | if jcspectraExist: |
|
527 | if jcspectraExist: | |
528 | jcspectra[:, freq_dc, :] = ( |
|
528 | jcspectra[:, freq_dc, :] = ( | |
529 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
529 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
530 |
|
530 | |||
531 | if mode == 2: |
|
531 | if mode == 2: | |
532 |
|
532 | |||
533 | vel = numpy.array([-2, -1, 1, 2]) |
|
533 | vel = numpy.array([-2, -1, 1, 2]) | |
534 | xx = numpy.zeros([4, 4]) |
|
534 | xx = numpy.zeros([4, 4]) | |
535 |
|
535 | |||
536 | for fil in range(4): |
|
536 | for fil in range(4): | |
537 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
537 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
538 |
|
538 | |||
539 | xx_inv = numpy.linalg.inv(xx) |
|
539 | xx_inv = numpy.linalg.inv(xx) | |
540 | xx_aux = xx_inv[0, :] |
|
540 | xx_aux = xx_inv[0, :] | |
541 |
|
541 | |||
542 | for ich in range(num_chan): |
|
542 | for ich in range(num_chan): | |
543 | yy = jspectra[ich, ind_vel, :] |
|
543 | yy = jspectra[ich, ind_vel, :] | |
544 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
544 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
545 |
|
545 | |||
546 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
546 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
547 | cjunkid = sum(junkid) |
|
547 | cjunkid = sum(junkid) | |
548 |
|
548 | |||
549 | if cjunkid.any(): |
|
549 | if cjunkid.any(): | |
550 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
550 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
551 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
551 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
552 |
|
552 | |||
553 | if jcspectraExist: |
|
553 | if jcspectraExist: | |
554 | for ip in range(num_pairs): |
|
554 | for ip in range(num_pairs): | |
555 | yy = jcspectra[ip, ind_vel, :] |
|
555 | yy = jcspectra[ip, ind_vel, :] | |
556 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
556 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
557 |
|
557 | |||
558 | self.dataOut.data_spc = jspectra |
|
558 | self.dataOut.data_spc = jspectra | |
559 | self.dataOut.data_cspc = jcspectra |
|
559 | self.dataOut.data_cspc = jcspectra | |
560 |
|
560 | |||
561 | return self.dataOut |
|
561 | return self.dataOut | |
562 |
|
562 | |||
563 | class removeInterference(Operation): |
|
563 | class removeInterference(Operation): | |
564 |
|
564 | |||
565 | def removeInterference2(self): |
|
565 | def removeInterference2(self): | |
566 |
|
566 | |||
567 | cspc = self.dataOut.data_cspc |
|
567 | cspc = self.dataOut.data_cspc | |
568 | spc = self.dataOut.data_spc |
|
568 | spc = self.dataOut.data_spc | |
569 | Heights = numpy.arange(cspc.shape[2]) |
|
569 | Heights = numpy.arange(cspc.shape[2]) | |
570 | realCspc = numpy.abs(cspc) |
|
570 | realCspc = numpy.abs(cspc) | |
571 |
|
571 | |||
572 | for i in range(cspc.shape[0]): |
|
572 | for i in range(cspc.shape[0]): | |
573 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
573 | LinePower= numpy.sum(realCspc[i], axis=0) | |
574 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
574 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
575 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
575 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
576 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
576 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
577 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
577 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
578 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
578 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
579 |
|
579 | |||
580 |
|
580 | |||
581 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
581 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
582 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
582 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
583 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
583 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
584 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
584 | cspc[i,InterferenceRange,:] = numpy.NaN | |
585 |
|
585 | |||
586 | self.dataOut.data_cspc = cspc |
|
586 | self.dataOut.data_cspc = cspc | |
587 |
|
587 | |||
588 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
588 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |
589 |
|
589 | |||
590 | jspectra = self.dataOut.data_spc |
|
590 | jspectra = self.dataOut.data_spc | |
591 | jcspectra = self.dataOut.data_cspc |
|
591 | jcspectra = self.dataOut.data_cspc | |
592 | jnoise = self.dataOut.getNoise() |
|
592 | jnoise = self.dataOut.getNoise() | |
593 | num_incoh = self.dataOut.nIncohInt |
|
593 | num_incoh = self.dataOut.nIncohInt | |
594 |
|
594 | |||
595 | num_channel = jspectra.shape[0] |
|
595 | num_channel = jspectra.shape[0] | |
596 | num_prof = jspectra.shape[1] |
|
596 | num_prof = jspectra.shape[1] | |
597 | num_hei = jspectra.shape[2] |
|
597 | num_hei = jspectra.shape[2] | |
598 |
|
598 | |||
599 | # hei_interf |
|
599 | # hei_interf | |
600 | if hei_interf is None: |
|
600 | if hei_interf is None: | |
601 | count_hei = int(num_hei / 2) |
|
601 | count_hei = int(num_hei / 2) | |
602 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
602 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
603 | hei_interf = numpy.asarray(hei_interf)[0] |
|
603 | hei_interf = numpy.asarray(hei_interf)[0] | |
604 | # nhei_interf |
|
604 | # nhei_interf | |
605 | if (nhei_interf == None): |
|
605 | if (nhei_interf == None): | |
606 | nhei_interf = 5 |
|
606 | nhei_interf = 5 | |
607 | if (nhei_interf < 1): |
|
607 | if (nhei_interf < 1): | |
608 | nhei_interf = 1 |
|
608 | nhei_interf = 1 | |
609 | if (nhei_interf > count_hei): |
|
609 | if (nhei_interf > count_hei): | |
610 | nhei_interf = count_hei |
|
610 | nhei_interf = count_hei | |
611 | if (offhei_interf == None): |
|
611 | if (offhei_interf == None): | |
612 | offhei_interf = 0 |
|
612 | offhei_interf = 0 | |
613 |
|
613 | |||
614 | ind_hei = list(range(num_hei)) |
|
614 | ind_hei = list(range(num_hei)) | |
615 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
615 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
616 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
616 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
617 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
617 | mask_prof = numpy.asarray(list(range(num_prof))) | |
618 | num_mask_prof = mask_prof.size |
|
618 | num_mask_prof = mask_prof.size | |
619 | comp_mask_prof = [0, num_prof / 2] |
|
619 | comp_mask_prof = [0, num_prof / 2] | |
620 |
|
620 | |||
621 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
621 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
622 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
622 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
623 | jnoise = numpy.nan |
|
623 | jnoise = numpy.nan | |
624 | noise_exist = jnoise[0] < numpy.Inf |
|
624 | noise_exist = jnoise[0] < numpy.Inf | |
625 |
|
625 | |||
626 | # Subrutina de Remocion de la Interferencia |
|
626 | # Subrutina de Remocion de la Interferencia | |
627 | for ich in range(num_channel): |
|
627 | for ich in range(num_channel): | |
628 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
628 | # Se ordena los espectros segun su potencia (menor a mayor) | |
629 | power = jspectra[ich, mask_prof, :] |
|
629 | power = jspectra[ich, mask_prof, :] | |
630 | power = power[:, hei_interf] |
|
630 | power = power[:, hei_interf] | |
631 | power = power.sum(axis=0) |
|
631 | power = power.sum(axis=0) | |
632 | psort = power.ravel().argsort() |
|
632 | psort = power.ravel().argsort() | |
633 |
|
633 | |||
634 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
634 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
635 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
635 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
636 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
636 | offhei_interf, nhei_interf + offhei_interf))]]] | |
637 |
|
637 | |||
638 | if noise_exist: |
|
638 | if noise_exist: | |
639 | # tmp_noise = jnoise[ich] / num_prof |
|
639 | # tmp_noise = jnoise[ich] / num_prof | |
640 | tmp_noise = jnoise[ich] |
|
640 | tmp_noise = jnoise[ich] | |
641 | junkspc_interf = junkspc_interf - tmp_noise |
|
641 | junkspc_interf = junkspc_interf - tmp_noise | |
642 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
642 | #junkspc_interf[:,comp_mask_prof] = 0 | |
643 |
|
643 | |||
644 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
644 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
645 | jspc_interf = jspc_interf.transpose() |
|
645 | jspc_interf = jspc_interf.transpose() | |
646 | # Calculando el espectro de interferencia promedio |
|
646 | # Calculando el espectro de interferencia promedio | |
647 | noiseid = numpy.where( |
|
647 | noiseid = numpy.where( | |
648 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
648 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
649 | noiseid = noiseid[0] |
|
649 | noiseid = noiseid[0] | |
650 | cnoiseid = noiseid.size |
|
650 | cnoiseid = noiseid.size | |
651 | interfid = numpy.where( |
|
651 | interfid = numpy.where( | |
652 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
652 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
653 | interfid = interfid[0] |
|
653 | interfid = interfid[0] | |
654 | cinterfid = interfid.size |
|
654 | cinterfid = interfid.size | |
655 |
|
655 | |||
656 | if (cnoiseid > 0): |
|
656 | if (cnoiseid > 0): | |
657 | jspc_interf[noiseid] = 0 |
|
657 | jspc_interf[noiseid] = 0 | |
658 |
|
658 | |||
659 | # Expandiendo los perfiles a limpiar |
|
659 | # Expandiendo los perfiles a limpiar | |
660 | if (cinterfid > 0): |
|
660 | if (cinterfid > 0): | |
661 | new_interfid = ( |
|
661 | new_interfid = ( | |
662 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
662 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
663 | new_interfid = numpy.asarray(new_interfid) |
|
663 | new_interfid = numpy.asarray(new_interfid) | |
664 | new_interfid = {x for x in new_interfid} |
|
664 | new_interfid = {x for x in new_interfid} | |
665 | new_interfid = numpy.array(list(new_interfid)) |
|
665 | new_interfid = numpy.array(list(new_interfid)) | |
666 | new_cinterfid = new_interfid.size |
|
666 | new_cinterfid = new_interfid.size | |
667 | else: |
|
667 | else: | |
668 | new_cinterfid = 0 |
|
668 | new_cinterfid = 0 | |
669 |
|
669 | |||
670 | for ip in range(new_cinterfid): |
|
670 | for ip in range(new_cinterfid): | |
671 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
671 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
672 | jspc_interf[new_interfid[ip] |
|
672 | jspc_interf[new_interfid[ip] | |
673 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
673 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
674 |
|
674 | |||
675 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
675 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
676 | ind_hei] - jspc_interf # Corregir indices |
|
676 | ind_hei] - jspc_interf # Corregir indices | |
677 |
|
677 | |||
678 | # Removiendo la interferencia del punto de mayor interferencia |
|
678 | # Removiendo la interferencia del punto de mayor interferencia | |
679 | ListAux = jspc_interf[mask_prof].tolist() |
|
679 | ListAux = jspc_interf[mask_prof].tolist() | |
680 | maxid = ListAux.index(max(ListAux)) |
|
680 | maxid = ListAux.index(max(ListAux)) | |
681 |
|
681 | |||
682 | if cinterfid > 0: |
|
682 | if cinterfid > 0: | |
683 | for ip in range(cinterfid * (interf == 2) - 1): |
|
683 | for ip in range(cinterfid * (interf == 2) - 1): | |
684 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
684 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
685 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
685 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
686 | cind = len(ind) |
|
686 | cind = len(ind) | |
687 |
|
687 | |||
688 | if (cind > 0): |
|
688 | if (cind > 0): | |
689 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
689 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
690 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
690 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
691 | numpy.sqrt(num_incoh)) |
|
691 | numpy.sqrt(num_incoh)) | |
692 |
|
692 | |||
693 | ind = numpy.array([-2, -1, 1, 2]) |
|
693 | ind = numpy.array([-2, -1, 1, 2]) | |
694 | xx = numpy.zeros([4, 4]) |
|
694 | xx = numpy.zeros([4, 4]) | |
695 |
|
695 | |||
696 | for id1 in range(4): |
|
696 | for id1 in range(4): | |
697 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
697 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
698 |
|
698 | |||
699 | xx_inv = numpy.linalg.inv(xx) |
|
699 | xx_inv = numpy.linalg.inv(xx) | |
700 | xx = xx_inv[:, 0] |
|
700 | xx = xx_inv[:, 0] | |
701 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
701 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
702 | yy = jspectra[ich, mask_prof[ind], :] |
|
702 | yy = jspectra[ich, mask_prof[ind], :] | |
703 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
703 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
704 | yy.transpose(), xx) |
|
704 | yy.transpose(), xx) | |
705 |
|
705 | |||
706 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
706 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
707 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
707 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
708 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
708 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
709 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
709 | (1 - 1 / numpy.sqrt(num_incoh)) | |
710 |
|
710 | |||
711 | # Remocion de Interferencia en el Cross Spectra |
|
711 | # Remocion de Interferencia en el Cross Spectra | |
712 | if jcspectra is None: |
|
712 | if jcspectra is None: | |
713 | return jspectra, jcspectra |
|
713 | return jspectra, jcspectra | |
714 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
714 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
715 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
715 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
716 |
|
716 | |||
717 | for ip in range(num_pairs): |
|
717 | for ip in range(num_pairs): | |
718 |
|
718 | |||
719 | #------------------------------------------- |
|
719 | #------------------------------------------- | |
720 |
|
720 | |||
721 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
721 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
722 | cspower = cspower[:, hei_interf] |
|
722 | cspower = cspower[:, hei_interf] | |
723 | cspower = cspower.sum(axis=0) |
|
723 | cspower = cspower.sum(axis=0) | |
724 |
|
724 | |||
725 | cspsort = cspower.ravel().argsort() |
|
725 | cspsort = cspower.ravel().argsort() | |
726 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
726 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
727 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
727 | offhei_interf, nhei_interf + offhei_interf))]]] | |
728 | junkcspc_interf = junkcspc_interf.transpose() |
|
728 | junkcspc_interf = junkcspc_interf.transpose() | |
729 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
729 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
730 |
|
730 | |||
731 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
731 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
732 |
|
732 | |||
733 | median_real = int(numpy.median(numpy.real( |
|
733 | median_real = int(numpy.median(numpy.real( | |
734 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
734 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
735 | median_imag = int(numpy.median(numpy.imag( |
|
735 | median_imag = int(numpy.median(numpy.imag( | |
736 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
736 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
737 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
737 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
738 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
738 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
739 | median_real, median_imag) |
|
739 | median_real, median_imag) | |
740 |
|
740 | |||
741 | for iprof in range(num_prof): |
|
741 | for iprof in range(num_prof): | |
742 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
742 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
743 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
743 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
744 |
|
744 | |||
745 | # Removiendo la Interferencia |
|
745 | # Removiendo la Interferencia | |
746 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
746 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
747 | :, ind_hei] - jcspc_interf |
|
747 | :, ind_hei] - jcspc_interf | |
748 |
|
748 | |||
749 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
749 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
750 | maxid = ListAux.index(max(ListAux)) |
|
750 | maxid = ListAux.index(max(ListAux)) | |
751 |
|
751 | |||
752 | ind = numpy.array([-2, -1, 1, 2]) |
|
752 | ind = numpy.array([-2, -1, 1, 2]) | |
753 | xx = numpy.zeros([4, 4]) |
|
753 | xx = numpy.zeros([4, 4]) | |
754 |
|
754 | |||
755 | for id1 in range(4): |
|
755 | for id1 in range(4): | |
756 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
756 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
757 |
|
757 | |||
758 | xx_inv = numpy.linalg.inv(xx) |
|
758 | xx_inv = numpy.linalg.inv(xx) | |
759 | xx = xx_inv[:, 0] |
|
759 | xx = xx_inv[:, 0] | |
760 |
|
760 | |||
761 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
761 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
762 | yy = jcspectra[ip, mask_prof[ind], :] |
|
762 | yy = jcspectra[ip, mask_prof[ind], :] | |
763 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
763 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
764 |
|
764 | |||
765 | # Guardar Resultados |
|
765 | # Guardar Resultados | |
766 | self.dataOut.data_spc = jspectra |
|
766 | self.dataOut.data_spc = jspectra | |
767 | self.dataOut.data_cspc = jcspectra |
|
767 | self.dataOut.data_cspc = jcspectra | |
768 |
|
768 | |||
769 | return 1 |
|
769 | return 1 | |
770 |
|
770 | |||
771 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
771 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |
772 |
|
772 | |||
773 | self.dataOut = dataOut |
|
773 | self.dataOut = dataOut | |
774 |
|
774 | |||
775 | if mode == 1: |
|
775 | if mode == 1: | |
776 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
776 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |
777 | elif mode == 2: |
|
777 | elif mode == 2: | |
778 | self.removeInterference2() |
|
778 | self.removeInterference2() | |
779 |
|
779 | |||
780 | return self.dataOut |
|
780 | return self.dataOut | |
781 |
|
781 | |||
782 | class removeInterferenceAtFreq(Operation): |
|
782 | class removeInterferenceAtFreq(Operation): | |
783 | ''' |
|
783 | ''' | |
784 | Written by R. Flores |
|
784 | Written by R. Flores | |
785 | ''' |
|
785 | ''' | |
786 | """Operation to remove interfernce at a known frequency(s). |
|
786 | """Operation to remove interfernce at a known frequency(s). | |
787 |
|
787 | |||
788 | Parameters: |
|
788 | Parameters: | |
789 | ----------- |
|
789 | ----------- | |
790 | None |
|
790 | None | |
791 |
|
791 | |||
792 | Example |
|
792 | Example | |
793 | -------- |
|
793 | -------- | |
794 |
|
794 | |||
795 | op = proc_unit.addOperation(name='removeInterferenceAtFreq') |
|
795 | op = proc_unit.addOperation(name='removeInterferenceAtFreq') | |
796 |
|
796 | |||
797 | """ |
|
797 | """ | |
798 |
|
798 | |||
799 | def __init__(self): |
|
799 | def __init__(self): | |
800 |
|
800 | |||
801 | Operation.__init__(self) |
|
801 | Operation.__init__(self) | |
802 |
|
802 | |||
803 | def run(self, dataOut, freq = None, freqList = None): |
|
803 | def run(self, dataOut, freq = None, freqList = None): | |
804 |
|
804 | |||
805 | VelRange = dataOut.getVelRange() |
|
805 | VelRange = dataOut.getVelRange() | |
806 | #print("VelRange: ", VelRange) |
|
806 | #print("VelRange: ", VelRange) | |
807 |
|
807 | |||
808 | freq_ids = [] |
|
808 | freq_ids = [] | |
809 |
|
809 | |||
810 | if freq is not None: |
|
810 | if freq is not None: | |
811 | #print("freq") |
|
811 | #print("freq") | |
812 | #if freq < 0: |
|
812 | #if freq < 0: | |
813 | inda = numpy.where(VelRange >= freq) |
|
813 | inda = numpy.where(VelRange >= freq) | |
814 | minIndex = inda[0][0] |
|
814 | minIndex = inda[0][0] | |
815 | #print(numpy.shape(dataOut.dataLag_spc)) |
|
815 | #print(numpy.shape(dataOut.dataLag_spc)) | |
816 | dataOut.data_spc[:,minIndex,:] = numpy.nan |
|
816 | dataOut.data_spc[:,minIndex,:] = numpy.nan | |
817 |
|
817 | |||
818 | #inda = numpy.where(VelRange >= ymin_noise) |
|
818 | #inda = numpy.where(VelRange >= ymin_noise) | |
819 | #indb = numpy.where(VelRange <= ymax_noise) |
|
819 | #indb = numpy.where(VelRange <= ymax_noise) | |
820 |
|
820 | |||
821 | #minIndex = inda[0][0] |
|
821 | #minIndex = inda[0][0] | |
822 | #maxIndex = indb[0][-1] |
|
822 | #maxIndex = indb[0][-1] | |
823 |
|
823 | |||
824 | elif freqList is not None: |
|
824 | elif freqList is not None: | |
825 | #print("freqList") |
|
825 | #print("freqList") | |
826 | for freq in freqList: |
|
826 | for freq in freqList: | |
827 | #if freq < 0: |
|
827 | #if freq < 0: | |
828 | inda = numpy.where(VelRange >= freq) |
|
828 | inda = numpy.where(VelRange >= freq) | |
829 | minIndex = inda[0][0] |
|
829 | minIndex = inda[0][0] | |
830 | #print(numpy.shape(dataOut.dataLag_spc)) |
|
830 | #print(numpy.shape(dataOut.dataLag_spc)) | |
831 | if freq > 0: |
|
831 | if freq > 0: | |
832 | #dataOut.data_spc[:,minIndex-1,:] = numpy.nan |
|
832 | #dataOut.data_spc[:,minIndex-1,:] = numpy.nan | |
833 | freq_ids.append(minIndex-1) |
|
833 | freq_ids.append(minIndex-1) | |
834 | else: |
|
834 | else: | |
835 | #dataOut.data_spc[:,minIndex,:] = numpy.nan |
|
835 | #dataOut.data_spc[:,minIndex,:] = numpy.nan | |
836 | freq_ids.append(minIndex) |
|
836 | freq_ids.append(minIndex) | |
837 | else: |
|
837 | else: | |
838 | raise ValueError("freq or freqList should be specified ...") |
|
838 | raise ValueError("freq or freqList should be specified ...") | |
839 |
|
839 | |||
840 | #freq_ids = numpy.array(freq_ids).flatten() |
|
840 | #freq_ids = numpy.array(freq_ids).flatten() | |
841 |
|
841 | |||
842 | avg = numpy.mean(dataOut.data_spc[:,[t for t in range(dataOut.data_spc.shape[0]) if t not in freq_ids],:],axis=1) |
|
842 | avg = numpy.mean(dataOut.data_spc[:,[t for t in range(dataOut.data_spc.shape[0]) if t not in freq_ids],:],axis=1) | |
843 |
|
843 | |||
844 | for p in list(freq_ids): |
|
844 | for p in list(freq_ids): | |
845 | dataOut.data_spc[:,p,:] = avg#numpy.nan |
|
845 | dataOut.data_spc[:,p,:] = avg#numpy.nan | |
846 |
|
846 | |||
847 |
|
847 | |||
848 | return dataOut |
|
848 | return dataOut | |
849 |
|
849 | |||
850 | class IncohInt(Operation): |
|
850 | class IncohInt(Operation): | |
851 |
|
851 | |||
852 | __profIndex = 0 |
|
852 | __profIndex = 0 | |
853 | __withOverapping = False |
|
853 | __withOverapping = False | |
854 |
|
854 | |||
855 | __byTime = False |
|
855 | __byTime = False | |
856 | __initime = None |
|
856 | __initime = None | |
857 | __lastdatatime = None |
|
857 | __lastdatatime = None | |
858 | __integrationtime = None |
|
858 | __integrationtime = None | |
859 |
|
859 | |||
860 | __buffer_spc = None |
|
860 | __buffer_spc = None | |
861 | __buffer_cspc = None |
|
861 | __buffer_cspc = None | |
862 | __buffer_dc = None |
|
862 | __buffer_dc = None | |
863 |
|
863 | |||
864 | __dataReady = False |
|
864 | __dataReady = False | |
865 |
|
865 | |||
866 | __timeInterval = None |
|
866 | __timeInterval = None | |
867 |
|
867 | |||
868 | n = None |
|
868 | n = None | |
869 |
|
869 | |||
870 | def __init__(self): |
|
870 | def __init__(self): | |
871 |
|
871 | |||
872 | Operation.__init__(self) |
|
872 | Operation.__init__(self) | |
873 |
|
873 | |||
874 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
874 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
875 | """ |
|
875 | """ | |
876 | Set the parameters of the integration class. |
|
876 | Set the parameters of the integration class. | |
877 |
|
877 | |||
878 | Inputs: |
|
878 | Inputs: | |
879 |
|
879 | |||
880 | n : Number of coherent integrations |
|
880 | n : Number of coherent integrations | |
881 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
881 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
882 | overlapping : |
|
882 | overlapping : | |
883 |
|
883 | |||
884 | """ |
|
884 | """ | |
885 |
|
885 | |||
886 | self.__initime = None |
|
886 | self.__initime = None | |
887 | self.__lastdatatime = 0 |
|
887 | self.__lastdatatime = 0 | |
888 |
|
888 | |||
889 | self.__buffer_spc = 0 |
|
889 | self.__buffer_spc = 0 | |
890 | self.__buffer_cspc = 0 |
|
890 | self.__buffer_cspc = 0 | |
891 | self.__buffer_dc = 0 |
|
891 | self.__buffer_dc = 0 | |
892 |
|
892 | |||
893 | self.__profIndex = 0 |
|
893 | self.__profIndex = 0 | |
894 | self.__dataReady = False |
|
894 | self.__dataReady = False | |
895 | self.__byTime = False |
|
895 | self.__byTime = False | |
896 |
|
896 | |||
897 | if n is None and timeInterval is None: |
|
897 | if n is None and timeInterval is None: | |
898 | raise ValueError("n or timeInterval should be specified ...") |
|
898 | raise ValueError("n or timeInterval should be specified ...") | |
899 |
|
899 | |||
900 | if n is not None: |
|
900 | if n is not None: | |
901 | self.n = int(n) |
|
901 | self.n = int(n) | |
902 | else: |
|
902 | else: | |
903 |
|
903 | |||
904 | self.__integrationtime = int(timeInterval) |
|
904 | self.__integrationtime = int(timeInterval) | |
905 | self.n = None |
|
905 | self.n = None | |
906 | self.__byTime = True |
|
906 | self.__byTime = True | |
907 |
|
907 | |||
908 | def putData(self, data_spc, data_cspc, data_dc): |
|
908 | def putData(self, data_spc, data_cspc, data_dc): | |
909 | """ |
|
909 | """ | |
910 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
910 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
911 |
|
911 | |||
912 | """ |
|
912 | """ | |
913 |
|
913 | |||
914 | self.__buffer_spc += data_spc |
|
914 | self.__buffer_spc += data_spc | |
915 |
|
915 | |||
916 | if data_cspc is None: |
|
916 | if data_cspc is None: | |
917 | self.__buffer_cspc = None |
|
917 | self.__buffer_cspc = None | |
918 | else: |
|
918 | else: | |
919 | self.__buffer_cspc += data_cspc |
|
919 | self.__buffer_cspc += data_cspc | |
920 |
|
920 | |||
921 | if data_dc is None: |
|
921 | if data_dc is None: | |
922 | self.__buffer_dc = None |
|
922 | self.__buffer_dc = None | |
923 | else: |
|
923 | else: | |
924 | self.__buffer_dc += data_dc |
|
924 | self.__buffer_dc += data_dc | |
925 |
|
925 | |||
926 | self.__profIndex += 1 |
|
926 | self.__profIndex += 1 | |
927 |
|
927 | |||
928 | return |
|
928 | return | |
929 |
|
929 | |||
930 | def pushData(self): |
|
930 | def pushData(self): | |
931 | """ |
|
931 | """ | |
932 | Return the sum of the last profiles and the profiles used in the sum. |
|
932 | Return the sum of the last profiles and the profiles used in the sum. | |
933 |
|
933 | |||
934 | Affected: |
|
934 | Affected: | |
935 |
|
935 | |||
936 | self.__profileIndex |
|
936 | self.__profileIndex | |
937 |
|
937 | |||
938 | """ |
|
938 | """ | |
939 |
|
939 | |||
940 | data_spc = self.__buffer_spc |
|
940 | data_spc = self.__buffer_spc | |
941 | data_cspc = self.__buffer_cspc |
|
941 | data_cspc = self.__buffer_cspc | |
942 | data_dc = self.__buffer_dc |
|
942 | data_dc = self.__buffer_dc | |
943 | n = self.__profIndex |
|
943 | n = self.__profIndex | |
944 |
|
944 | |||
945 | self.__buffer_spc = 0 |
|
945 | self.__buffer_spc = 0 | |
946 | self.__buffer_cspc = 0 |
|
946 | self.__buffer_cspc = 0 | |
947 | self.__buffer_dc = 0 |
|
947 | self.__buffer_dc = 0 | |
948 | self.__profIndex = 0 |
|
948 | self.__profIndex = 0 | |
949 |
|
949 | |||
950 | return data_spc, data_cspc, data_dc, n |
|
950 | return data_spc, data_cspc, data_dc, n | |
951 |
|
951 | |||
952 | def byProfiles(self, *args): |
|
952 | def byProfiles(self, *args): | |
953 |
|
953 | |||
954 | self.__dataReady = False |
|
954 | self.__dataReady = False | |
955 | avgdata_spc = None |
|
955 | avgdata_spc = None | |
956 | avgdata_cspc = None |
|
956 | avgdata_cspc = None | |
957 | avgdata_dc = None |
|
957 | avgdata_dc = None | |
958 |
|
958 | |||
959 | self.putData(*args) |
|
959 | self.putData(*args) | |
960 |
|
960 | |||
961 | if self.__profIndex == self.n: |
|
961 | if self.__profIndex == self.n: | |
962 |
|
962 | |||
963 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
963 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
964 | self.n = n |
|
964 | self.n = n | |
965 | self.__dataReady = True |
|
965 | self.__dataReady = True | |
966 |
|
966 | |||
967 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
967 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
968 |
|
968 | |||
969 | def byTime(self, datatime, *args): |
|
969 | def byTime(self, datatime, *args): | |
970 |
|
970 | |||
971 | self.__dataReady = False |
|
971 | self.__dataReady = False | |
972 | avgdata_spc = None |
|
972 | avgdata_spc = None | |
973 | avgdata_cspc = None |
|
973 | avgdata_cspc = None | |
974 | avgdata_dc = None |
|
974 | avgdata_dc = None | |
975 |
|
975 | |||
976 | self.putData(*args) |
|
976 | self.putData(*args) | |
977 |
|
977 | |||
978 | if (datatime - self.__initime) >= self.__integrationtime: |
|
978 | if (datatime - self.__initime) >= self.__integrationtime: | |
979 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
979 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
980 | self.n = n |
|
980 | self.n = n | |
981 | self.__dataReady = True |
|
981 | self.__dataReady = True | |
982 |
|
982 | |||
983 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
983 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
984 |
|
984 | |||
985 | def integrate(self, datatime, *args): |
|
985 | def integrate(self, datatime, *args): | |
986 |
|
986 | |||
987 | if self.__profIndex == 0: |
|
987 | if self.__profIndex == 0: | |
988 | self.__initime = datatime |
|
988 | self.__initime = datatime | |
989 |
|
989 | |||
990 | if self.__byTime: |
|
990 | if self.__byTime: | |
991 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
991 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
992 | datatime, *args) |
|
992 | datatime, *args) | |
993 | else: |
|
993 | else: | |
994 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
994 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
995 |
|
995 | |||
996 | if not self.__dataReady: |
|
996 | if not self.__dataReady: | |
997 | return None, None, None, None |
|
997 | return None, None, None, None | |
998 |
|
998 | |||
999 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
999 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1000 |
|
1000 | |||
1001 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1001 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1002 | if n == 1: |
|
1002 | if n == 1: | |
1003 | return dataOut |
|
1003 | return dataOut | |
1004 | print("JERE") |
|
1004 | print("JERE") | |
1005 | dataOut.flagNoData = True |
|
1005 | dataOut.flagNoData = True | |
1006 |
|
1006 | |||
1007 | if not self.isConfig: |
|
1007 | if not self.isConfig: | |
1008 | self.setup(n, timeInterval, overlapping) |
|
1008 | self.setup(n, timeInterval, overlapping) | |
1009 | self.isConfig = True |
|
1009 | self.isConfig = True | |
1010 |
|
1010 | |||
1011 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1011 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1012 | dataOut.data_spc, |
|
1012 | dataOut.data_spc, | |
1013 | dataOut.data_cspc, |
|
1013 | dataOut.data_cspc, | |
1014 | dataOut.data_dc) |
|
1014 | dataOut.data_dc) | |
1015 |
|
1015 | |||
1016 | if self.__dataReady: |
|
1016 | if self.__dataReady: | |
1017 |
|
1017 | |||
1018 | dataOut.data_spc = avgdata_spc |
|
1018 | dataOut.data_spc = avgdata_spc | |
1019 | print(numpy.sum(dataOut.data_spc)) |
|
1019 | print(numpy.sum(dataOut.data_spc)) | |
1020 | exit(1) |
|
1020 | exit(1) | |
1021 | dataOut.data_cspc = avgdata_cspc |
|
1021 | dataOut.data_cspc = avgdata_cspc | |
1022 | dataOut.data_dc = avgdata_dc |
|
1022 | dataOut.data_dc = avgdata_dc | |
1023 | dataOut.nIncohInt *= self.n |
|
1023 | dataOut.nIncohInt *= self.n | |
1024 | dataOut.utctime = avgdatatime |
|
1024 | dataOut.utctime = avgdatatime | |
1025 | dataOut.flagNoData = False |
|
1025 | dataOut.flagNoData = False | |
1026 |
|
1026 | |||
1027 | return dataOut |
|
1027 | return dataOut | |
1028 |
|
1028 | |||
1029 | class dopplerFlip(Operation): |
|
1029 | class dopplerFlip(Operation): | |
1030 |
|
1030 | |||
1031 | def run(self, dataOut, chann = None): |
|
1031 | def run(self, dataOut, chann = None): | |
1032 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1032 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
1033 | self.dataOut = dataOut |
|
1033 | self.dataOut = dataOut | |
1034 | # JULIA-oblicua, indice 2 |
|
1034 | # JULIA-oblicua, indice 2 | |
1035 | # arreglo 2: (num_profiles, num_heights) |
|
1035 | # arreglo 2: (num_profiles, num_heights) | |
1036 | jspectra = self.dataOut.data_spc[chann] |
|
1036 | jspectra = self.dataOut.data_spc[chann] | |
1037 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1037 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
1038 | num_profiles = jspectra.shape[0] |
|
1038 | num_profiles = jspectra.shape[0] | |
1039 | freq_dc = int(num_profiles / 2) |
|
1039 | freq_dc = int(num_profiles / 2) | |
1040 | # Flip con for |
|
1040 | # Flip con for | |
1041 | for j in range(num_profiles): |
|
1041 | for j in range(num_profiles): | |
1042 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1042 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
1043 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1043 | # Intercambio perfil de DC con perfil inmediato anterior | |
1044 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1044 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
1045 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1045 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
1046 | # canal modificado es re-escrito en el arreglo de canales |
|
1046 | # canal modificado es re-escrito en el arreglo de canales | |
1047 | self.dataOut.data_spc[chann] = jspectra_tmp |
|
1047 | self.dataOut.data_spc[chann] = jspectra_tmp | |
1048 |
|
1048 | |||
1049 | return self.dataOut |
|
1049 | return self.dataOut |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now