@@ -0,0 +1,199 | |||||
|
1 | # 13th Generation International Geomagnetic Reference Field Schmidt semi-normalised spherical harmonic coefficients, degree n=1,13 | |||
|
2 | # in units nanoTesla for IGRF and definitive DGRF main-field models (degree n=1,8 nanoTesla/year for secular variation (SV)) | |||
|
3 | c/s deg ord IGRF IGRF IGRF IGRF IGRF IGRF IGRF IGRF IGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF IGRF SV | |||
|
4 | g/h n m 1900.0 1905.0 1910.0 1915.0 1920.0 1925.0 1930.0 1935.0 1940.0 1945.0 1950.0 1955.0 1960.0 1965.0 1970.0 1975.0 1980.0 1985.0 1990.0 1995.0 2000.0 2005.0 2010.0 2015.0 2020.0 2020-25 | |||
|
5 | g 1 0 -31543 -31464 -31354 -31212 -31060 -30926 -30805 -30715 -30654 -30594 -30554 -30500 -30421 -30334 -30220 -30100 -29992 -29873 -29775 -29692 -29619.4 -29554.63 -29496.57 -29441.46 -29404.8 5.7 | |||
|
6 | g 1 1 -2298 -2298 -2297 -2306 -2317 -2318 -2316 -2306 -2292 -2285 -2250 -2215 -2169 -2119 -2068 -2013 -1956 -1905 -1848 -1784 -1728.2 -1669.05 -1586.42 -1501.77 -1450.9 7.4 | |||
|
7 | h 1 1 5922 5909 5898 5875 5845 5817 5808 5812 5821 5810 5815 5820 5791 5776 5737 5675 5604 5500 5406 5306 5186.1 5077.99 4944.26 4795.99 4652.5 -25.9 | |||
|
8 | g 2 0 -677 -728 -769 -802 -839 -893 -951 -1018 -1106 -1244 -1341 -1440 -1555 -1662 -1781 -1902 -1997 -2072 -2131 -2200 -2267.7 -2337.24 -2396.06 -2445.88 -2499.6 -11.0 | |||
|
9 | g 2 1 2905 2928 2948 2956 2959 2969 2980 2984 2981 2990 2998 3003 3002 2997 3000 3010 3027 3044 3059 3070 3068.4 3047.69 3026.34 3012.20 2982.0 -7.0 | |||
|
10 | h 2 1 -1061 -1086 -1128 -1191 -1259 -1334 -1424 -1520 -1614 -1702 -1810 -1898 -1967 -2016 -2047 -2067 -2129 -2197 -2279 -2366 -2481.6 -2594.50 -2708.54 -2845.41 -2991.6 -30.2 | |||
|
11 | g 2 2 924 1041 1176 1309 1407 1471 1517 1550 1566 1578 1576 1581 1590 1594 1611 1632 1663 1687 1686 1681 1670.9 1657.76 1668.17 1676.35 1677.0 -2.1 | |||
|
12 | h 2 2 1121 1065 1000 917 823 728 644 586 528 477 381 291 206 114 25 -68 -200 -306 -373 -413 -458.0 -515.43 -575.73 -642.17 -734.6 -22.4 | |||
|
13 | g 3 0 1022 1037 1058 1084 1111 1140 1172 1206 1240 1282 1297 1302 1302 1297 1287 1276 1281 1296 1314 1335 1339.6 1336.30 1339.85 1350.33 1363.2 2.2 | |||
|
14 | g 3 1 -1469 -1494 -1524 -1559 -1600 -1645 -1692 -1740 -1790 -1834 -1889 -1944 -1992 -2038 -2091 -2144 -2180 -2208 -2239 -2267 -2288.0 -2305.83 -2326.54 -2352.26 -2381.2 -5.9 | |||
|
15 | h 3 1 -330 -357 -389 -421 -445 -462 -480 -494 -499 -499 -476 -462 -414 -404 -366 -333 -336 -310 -284 -262 -227.6 -198.86 -160.40 -115.29 -82.1 6.0 | |||
|
16 | g 3 2 1256 1239 1223 1212 1205 1202 1205 1215 1232 1255 1274 1288 1289 1292 1278 1260 1251 1247 1248 1249 1252.1 1246.39 1232.10 1225.85 1236.2 3.1 | |||
|
17 | h 3 2 3 34 62 84 103 119 133 146 163 186 206 216 224 240 251 262 271 284 293 302 293.4 269.72 251.75 245.04 241.9 -1.1 | |||
|
18 | g 3 3 572 635 705 778 839 881 907 918 916 913 896 882 878 856 838 830 833 829 802 759 714.5 672.51 633.73 581.69 525.7 -12.0 | |||
|
19 | h 3 3 523 480 425 360 293 229 166 101 43 -11 -46 -83 -130 -165 -196 -223 -252 -297 -352 -427 -491.1 -524.72 -537.03 -538.70 -543.4 0.5 | |||
|
20 | g 4 0 876 880 884 887 889 891 896 903 914 944 954 958 957 957 952 946 938 936 939 940 932.3 920.55 912.66 907.42 903.0 -1.2 | |||
|
21 | g 4 1 628 643 660 678 695 711 727 744 762 776 792 796 800 804 800 791 782 780 780 780 786.8 797.96 808.97 813.68 809.5 -1.6 | |||
|
22 | h 4 1 195 203 211 218 220 216 205 188 169 144 136 133 135 148 167 191 212 232 247 262 272.6 282.07 286.48 283.54 281.9 -0.1 | |||
|
23 | g 4 2 660 653 644 631 616 601 584 565 550 544 528 510 504 479 461 438 398 361 325 290 250.0 210.65 166.58 120.49 86.3 -5.9 | |||
|
24 | h 4 2 -69 -77 -90 -109 -134 -163 -195 -226 -252 -276 -278 -274 -278 -269 -266 -265 -257 -249 -240 -236 -231.9 -225.23 -211.03 -188.43 -158.4 6.5 | |||
|
25 | g 4 3 -361 -380 -400 -416 -424 -426 -422 -415 -405 -421 -408 -397 -394 -390 -395 -405 -419 -424 -423 -418 -403.0 -379.86 -356.83 -334.85 -309.4 5.2 | |||
|
26 | h 4 3 -210 -201 -189 -173 -153 -130 -109 -90 -72 -55 -37 -23 3 13 26 39 53 69 84 97 119.8 145.15 164.46 180.95 199.7 3.6 | |||
|
27 | g 4 4 134 146 160 178 199 217 234 249 265 304 303 290 269 252 234 216 199 170 141 122 111.3 100.00 89.40 70.38 48.0 -5.1 | |||
|
28 | h 4 4 -75 -65 -55 -51 -57 -70 -90 -114 -141 -178 -210 -230 -255 -269 -279 -288 -297 -297 -299 -306 -303.8 -305.36 -309.72 -329.23 -349.7 -5.0 | |||
|
29 | g 5 0 -184 -192 -201 -211 -221 -230 -237 -241 -241 -253 -240 -229 -222 -219 -216 -218 -218 -214 -214 -214 -218.8 -227.00 -230.87 -232.91 -234.3 -0.3 | |||
|
30 | g 5 1 328 328 327 327 326 326 327 329 334 346 349 360 362 358 359 356 357 355 353 352 351.4 354.41 357.29 360.14 363.2 0.5 | |||
|
31 | h 5 1 -210 -193 -172 -148 -122 -96 -72 -51 -33 -12 3 15 16 19 26 31 46 47 46 46 43.8 42.72 44.58 46.98 47.7 0.0 | |||
|
32 | g 5 2 264 259 253 245 236 226 218 211 208 194 211 230 242 254 262 264 261 253 245 235 222.3 208.95 200.26 192.35 187.8 -0.6 | |||
|
33 | h 5 2 53 56 57 58 58 58 60 64 71 95 103 110 125 128 139 148 150 150 154 165 171.9 180.25 189.01 196.98 208.3 2.5 | |||
|
34 | g 5 3 5 -1 -9 -16 -23 -28 -32 -33 -33 -20 -20 -23 -26 -31 -42 -59 -74 -93 -109 -118 -130.4 -136.54 -141.05 -140.94 -140.7 0.2 | |||
|
35 | h 5 3 -33 -32 -33 -34 -38 -44 -53 -64 -75 -67 -87 -98 -117 -126 -139 -152 -151 -154 -153 -143 -133.1 -123.45 -118.06 -119.14 -121.2 -0.6 | |||
|
36 | g 5 4 -86 -93 -102 -111 -119 -125 -131 -136 -141 -142 -147 -152 -156 -157 -160 -159 -162 -164 -165 -166 -168.6 -168.05 -163.17 -157.40 -151.2 1.3 | |||
|
37 | h 5 4 -124 -125 -126 -126 -125 -122 -118 -115 -113 -119 -122 -121 -114 -97 -91 -83 -78 -75 -69 -55 -39.3 -19.57 -0.01 15.98 32.3 3.0 | |||
|
38 | g 5 5 -16 -26 -38 -51 -62 -69 -74 -76 -76 -82 -76 -69 -63 -62 -56 -49 -48 -46 -36 -17 -12.9 -13.55 -8.03 4.30 13.5 0.9 | |||
|
39 | h 5 5 3 11 21 32 43 51 58 64 69 82 80 78 81 81 83 88 92 95 97 107 106.3 103.85 101.04 100.12 98.9 0.3 | |||
|
40 | g 6 0 63 62 62 61 61 61 60 59 57 59 54 47 46 45 43 45 48 53 61 68 72.3 73.60 72.78 69.55 66.0 -0.5 | |||
|
41 | g 6 1 61 60 58 57 55 54 53 53 54 57 57 57 58 61 64 66 66 65 65 67 68.2 69.56 68.69 67.57 65.5 -0.3 | |||
|
42 | h 6 1 -9 -7 -5 -2 0 3 4 4 4 6 -1 -9 -10 -11 -12 -13 -15 -16 -16 -17 -17.4 -20.33 -20.90 -20.61 -19.1 0.0 | |||
|
43 | g 6 2 -11 -11 -11 -10 -10 -9 -9 -8 -7 6 4 3 1 8 15 28 42 51 59 68 74.2 76.74 75.92 72.79 72.9 0.4 | |||
|
44 | h 6 2 83 86 89 93 96 99 102 104 105 100 99 96 99 100 100 99 93 88 82 72 63.7 54.75 44.18 33.30 25.1 -1.6 | |||
|
45 | g 6 3 -217 -221 -224 -228 -233 -238 -242 -246 -249 -246 -247 -247 -237 -228 -212 -198 -192 -185 -178 -170 -160.9 -151.34 -141.40 -129.85 -121.5 1.3 | |||
|
46 | h 6 3 2 4 5 8 11 14 19 25 33 16 33 48 60 68 72 75 71 69 69 67 65.1 63.63 61.54 58.74 52.8 -1.3 | |||
|
47 | g 6 4 -58 -57 -54 -51 -46 -40 -32 -25 -18 -25 -16 -8 -1 4 2 1 4 4 3 -1 -5.9 -14.58 -22.83 -28.93 -36.2 -1.4 | |||
|
48 | h 6 4 -35 -32 -29 -26 -22 -18 -16 -15 -15 -9 -12 -16 -20 -32 -37 -41 -43 -48 -52 -58 -61.2 -63.53 -66.26 -66.64 -64.5 0.8 | |||
|
49 | g 6 5 59 57 54 49 44 39 32 25 18 21 12 7 -2 1 3 6 14 16 18 19 16.9 14.58 13.10 13.14 13.5 0.0 | |||
|
50 | h 6 5 36 32 28 23 18 13 8 4 0 -16 -12 -12 -11 -8 -6 -4 -2 -1 1 1 0.7 0.24 3.02 7.35 8.9 0.0 | |||
|
51 | g 6 6 -90 -92 -95 -98 -101 -103 -104 -106 -107 -104 -105 -107 -113 -111 -112 -111 -108 -102 -96 -93 -90.4 -86.36 -78.09 -70.85 -64.7 0.9 | |||
|
52 | h 6 6 -69 -67 -65 -62 -57 -52 -46 -40 -33 -39 -30 -24 -17 -7 1 11 17 21 24 36 43.8 50.94 55.40 62.41 68.1 1.0 | |||
|
53 | g 7 0 70 70 71 72 73 73 74 74 74 70 65 65 67 75 72 71 72 74 77 77 79.0 79.88 80.44 81.29 80.6 -0.1 | |||
|
54 | g 7 1 -55 -54 -54 -54 -54 -54 -54 -53 -53 -40 -55 -56 -56 -57 -57 -56 -59 -62 -64 -72 -74.0 -74.46 -75.00 -75.99 -76.7 -0.2 | |||
|
55 | h 7 1 -45 -46 -47 -48 -49 -50 -51 -52 -52 -45 -35 -50 -55 -61 -70 -77 -82 -83 -80 -69 -64.6 -61.14 -57.80 -54.27 -51.5 0.6 | |||
|
56 | g 7 2 0 0 1 2 2 3 4 4 4 0 2 2 5 4 1 1 2 3 2 1 0.0 -1.65 -4.55 -6.79 -8.2 0.0 | |||
|
57 | h 7 2 -13 -14 -14 -14 -14 -14 -15 -17 -18 -18 -17 -24 -28 -27 -27 -26 -27 -27 -26 -25 -24.2 -22.57 -21.20 -19.53 -16.9 0.6 | |||
|
58 | g 7 3 34 33 32 31 29 27 25 23 20 0 1 10 15 13 14 16 21 24 26 28 33.3 38.73 45.24 51.82 56.5 0.7 | |||
|
59 | h 7 3 -10 -11 -12 -12 -13 -14 -14 -14 -14 2 0 -4 -6 -2 -4 -5 -5 -2 0 4 6.2 6.82 6.54 5.59 2.2 -0.8 | |||
|
60 | g 7 4 -41 -41 -40 -38 -37 -35 -34 -33 -31 -29 -40 -32 -32 -26 -22 -14 -12 -6 -1 5 9.1 12.30 14.00 15.07 15.8 0.1 | |||
|
61 | h 7 4 -1 0 1 2 4 5 6 7 7 6 10 8 7 6 8 10 16 20 21 24 24.0 25.35 24.96 24.45 23.5 -0.2 | |||
|
62 | g 7 5 -21 -20 -19 -18 -16 -14 -12 -11 -9 -10 -7 -11 -7 -6 -2 0 1 4 5 4 6.9 9.37 10.46 9.32 6.4 -0.5 | |||
|
63 | h 7 5 28 28 28 28 28 29 29 29 29 28 36 28 23 26 23 22 18 17 17 17 14.8 10.93 7.03 3.27 -2.2 -1.1 | |||
|
64 | g 7 6 18 18 18 19 19 19 18 18 17 15 5 9 17 13 13 12 11 10 9 8 7.3 5.42 1.64 -2.88 -7.2 -0.8 | |||
|
65 | h 7 6 -12 -12 -13 -15 -16 -17 -18 -19 -20 -17 -18 -20 -18 -23 -23 -23 -23 -23 -23 -24 -25.4 -26.32 -27.61 -27.50 -27.2 0.1 | |||
|
66 | g 7 7 6 6 6 6 6 6 6 6 5 29 19 18 8 1 -2 -5 -2 0 0 -2 -1.2 1.94 4.92 6.61 9.8 0.8 | |||
|
67 | h 7 7 -22 -22 -22 -22 -22 -21 -20 -19 -19 -22 -16 -18 -17 -12 -11 -12 -10 -7 -4 -6 -5.8 -4.64 -3.28 -2.32 -1.8 0.3 | |||
|
68 | g 8 0 11 11 11 11 11 11 11 11 11 13 22 11 15 13 14 14 18 21 23 25 24.4 24.80 24.41 23.98 23.7 0.0 | |||
|
69 | g 8 1 8 8 8 8 7 7 7 7 7 7 15 9 6 5 6 6 6 6 5 6 6.6 7.62 8.21 8.89 9.7 0.1 | |||
|
70 | h 8 1 8 8 8 8 8 8 8 8 8 12 5 10 11 7 7 6 7 8 10 11 11.9 11.20 10.84 10.04 8.4 -0.2 | |||
|
71 | g 8 2 -4 -4 -4 -4 -3 -3 -3 -3 -3 -8 -4 -6 -4 -4 -2 -1 0 0 -1 -6 -9.2 -11.73 -14.50 -16.78 -17.6 -0.1 | |||
|
72 | h 8 2 -14 -15 -15 -15 -15 -15 -15 -15 -14 -21 -22 -15 -14 -12 -15 -16 -18 -19 -19 -21 -21.5 -20.88 -20.03 -18.26 -15.3 0.6 | |||
|
73 | g 8 3 -9 -9 -9 -9 -9 -9 -9 -9 -10 -5 -1 -14 -11 -14 -13 -12 -11 -11 -10 -9 -7.9 -6.88 -5.59 -3.16 -0.5 0.4 | |||
|
74 | h 8 3 7 7 6 6 6 6 5 5 5 -12 0 5 7 9 6 4 4 5 6 8 8.5 9.83 11.83 13.18 12.8 -0.2 | |||
|
75 | g 8 4 1 1 1 2 2 2 2 1 1 9 11 6 2 0 -3 -8 -7 -9 -12 -14 -16.6 -18.11 -19.34 -20.56 -21.1 -0.1 | |||
|
76 | h 8 4 -13 -13 -13 -13 -14 -14 -14 -15 -15 -7 -21 -23 -18 -16 -17 -19 -22 -23 -22 -23 -21.5 -19.71 -17.41 -14.60 -11.7 0.5 | |||
|
77 | g 8 5 2 2 2 3 4 4 5 6 6 7 15 10 10 8 5 4 4 4 3 9 9.1 10.17 11.61 13.33 15.3 0.4 | |||
|
78 | h 8 5 5 5 5 5 5 5 5 5 5 2 -8 3 4 4 6 6 9 11 12 15 15.5 16.22 16.71 16.16 14.9 -0.3 | |||
|
79 | g 8 6 -9 -8 -8 -8 -7 -7 -6 -6 -5 -10 -13 -7 -5 -1 0 0 3 4 4 6 7.0 9.36 10.85 11.76 13.7 0.3 | |||
|
80 | h 8 6 16 16 16 16 17 17 18 18 19 18 17 23 23 24 21 18 16 14 12 11 8.9 7.61 6.96 5.69 3.6 -0.4 | |||
|
81 | g 8 7 5 5 5 6 6 7 8 8 9 7 5 6 10 11 11 10 6 4 2 -5 -7.9 -11.25 -14.05 -15.98 -16.5 -0.1 | |||
|
82 | h 8 7 -5 -5 -5 -5 -5 -5 -5 -5 -5 3 -4 -4 1 -3 -6 -10 -13 -15 -16 -16 -14.9 -12.76 -10.74 -9.10 -6.9 0.5 | |||
|
83 | g 8 8 8 8 8 8 8 8 8 7 7 2 -1 9 8 4 3 1 -1 -4 -6 -7 -7.0 -4.87 -3.54 -2.02 -0.3 0.4 | |||
|
84 | h 8 8 -18 -18 -18 -18 -19 -19 -19 -19 -19 -11 -17 -13 -20 -17 -16 -17 -15 -11 -10 -4 -2.1 -0.06 1.64 2.26 2.8 0.0 | |||
|
85 | g 9 0 8 8 8 8 8 8 8 8 8 5 3 4 4 8 8 7 5 5 4 4 5.0 5.58 5.50 5.33 5.0 0.0 | |||
|
86 | g 9 1 10 10 10 10 10 10 10 10 10 -21 -7 9 6 10 10 10 10 10 9 9 9.4 9.76 9.45 8.83 8.4 0.0 | |||
|
87 | h 9 1 -20 -20 -20 -20 -20 -20 -20 -20 -21 -27 -24 -11 -18 -22 -21 -21 -21 -21 -20 -20 -19.7 -20.11 -20.54 -21.77 -23.4 0.0 | |||
|
88 | g 9 2 1 1 1 1 1 1 1 1 1 1 -1 -4 0 2 2 2 1 1 1 3 3.0 3.58 3.45 3.02 2.9 0.0 | |||
|
89 | h 9 2 14 14 14 14 14 14 14 15 15 17 19 12 12 15 16 16 16 15 15 15 13.4 12.69 11.51 10.76 11.0 0.0 | |||
|
90 | g 9 3 -11 -11 -11 -11 -11 -11 -12 -12 -12 -11 -25 -5 -9 -13 -12 -12 -12 -12 -12 -10 -8.4 -6.94 -5.27 -3.22 -1.5 0.0 | |||
|
91 | h 9 3 5 5 5 5 5 5 5 5 5 29 12 7 2 7 6 7 9 9 11 12 12.5 12.67 12.75 11.74 9.8 0.0 | |||
|
92 | g 9 4 12 12 12 12 12 12 12 11 11 3 10 2 1 10 10 10 9 9 9 8 6.3 5.01 3.13 0.67 -1.1 0.0 | |||
|
93 | h 9 4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -9 2 6 0 -4 -4 -4 -5 -6 -7 -6 -6.2 -6.72 -7.14 -6.74 -5.1 0.0 | |||
|
94 | g 9 5 1 1 1 1 1 1 1 1 1 16 5 4 4 -1 -1 -1 -3 -3 -4 -8 -8.9 -10.76 -12.38 -13.20 -13.2 0.0 | |||
|
95 | h 9 5 -2 -2 -2 -2 -2 -2 -2 -3 -3 4 2 -2 -3 -5 -5 -5 -6 -6 -7 -8 -8.4 -8.16 -7.42 -6.88 -6.3 0.0 | |||
|
96 | g 9 6 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -5 1 -1 -1 0 -1 -1 -1 -2 -1 -1.5 -1.25 -0.76 -0.10 1.1 0.0 | |||
|
97 | h 9 6 8 8 8 8 9 9 9 9 9 9 8 10 9 10 10 10 9 9 9 8 8.4 8.10 7.97 7.79 7.8 0.0 | |||
|
98 | g 9 7 2 2 2 2 2 2 3 3 3 -4 -2 2 -2 5 3 4 7 7 7 10 9.3 8.76 8.43 8.68 8.8 0.0 | |||
|
99 | h 9 7 10 10 10 10 10 10 10 11 11 6 8 7 8 10 11 11 10 9 8 5 3.8 2.92 2.14 1.04 0.4 0.0 | |||
|
100 | g 9 8 -1 0 0 0 0 0 0 0 1 -3 3 2 3 1 1 1 2 1 1 -2 -4.3 -6.66 -8.42 -9.06 -9.3 0.0 | |||
|
101 | h 9 8 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 -11 -6 0 -4 -2 -3 -6 -7 -7 -8 -8.2 -7.73 -6.08 -3.89 -1.4 0.0 | |||
|
102 | g 9 9 -1 -1 -1 -1 -1 -1 -2 -2 -2 -4 8 5 -1 -2 -1 -2 -5 -5 -6 -8 -8.2 -9.22 -10.08 -10.54 -11.9 0.0 | |||
|
103 | h 9 9 2 2 2 2 2 2 2 2 2 8 -7 5 5 1 1 1 2 2 2 3 4.8 6.01 7.01 8.44 9.6 0.0 | |||
|
104 | g 10 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -8 -3 1 -2 -3 -3 -4 -4 -3 -3 -2.6 -2.17 -1.94 -2.01 -1.9 0.0 | |||
|
105 | g 10 1 -4 -4 -4 -4 -4 -4 -4 -4 -4 11 4 -5 -3 -3 -3 -3 -4 -4 -4 -6 -6.0 -6.12 -6.24 -6.26 -6.2 0.0 | |||
|
106 | h 10 1 2 2 2 2 2 2 2 2 2 5 13 -4 4 2 1 1 1 1 2 1 1.7 2.19 2.73 3.28 3.4 0.0 | |||
|
107 | g 10 2 2 2 2 2 2 2 2 2 2 1 -1 -1 4 2 2 2 2 3 2 2 1.7 1.42 0.89 0.17 -0.1 0.0 | |||
|
108 | h 10 2 1 1 1 1 1 1 1 1 1 1 -2 0 1 1 1 1 0 0 1 0 0.0 0.10 -0.10 -0.40 -0.2 0.0 | |||
|
109 | g 10 3 -5 -5 -5 -5 -5 -5 -5 -5 -5 2 13 2 0 -5 -5 -5 -5 -5 -5 -4 -3.1 -2.35 -1.07 0.55 1.7 0.0 | |||
|
110 | h 10 3 2 2 2 2 2 2 2 2 2 -20 -10 -8 0 2 3 3 3 3 3 4 4.0 4.46 4.71 4.55 3.6 0.0 | |||
|
111 | g 10 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -5 -4 -3 -1 -2 -1 -2 -2 -2 -2 -1 -0.5 -0.15 -0.16 -0.55 -0.9 0.0 | |||
|
112 | h 10 4 6 6 6 6 6 6 6 6 6 -1 2 -2 2 6 4 4 6 6 6 5 4.9 4.76 4.44 4.40 4.8 0.0 | |||
|
113 | g 10 5 6 6 6 6 6 6 6 6 6 -1 4 7 4 4 6 5 5 5 4 4 3.7 3.06 2.45 1.70 0.7 0.0 | |||
|
114 | h 10 5 -4 -4 -4 -4 -4 -4 -4 -4 -4 -6 -3 -4 -5 -4 -4 -4 -4 -4 -4 -5 -5.9 -6.58 -7.22 -7.92 -8.6 0.0 | |||
|
115 | g 10 6 4 4 4 4 4 4 4 4 4 8 12 4 6 4 4 4 3 3 3 2 1.0 0.29 -0.33 -0.67 -0.9 0.0 | |||
|
116 | h 10 6 0 0 0 0 0 0 0 0 0 6 6 1 1 0 0 -1 0 0 0 -1 -1.2 -1.01 -0.96 -0.61 -0.1 0.0 | |||
|
117 | g 10 7 0 0 0 0 0 0 0 0 0 -1 3 -2 1 0 1 1 1 1 1 2 2.0 2.06 2.13 2.13 1.9 0.0 | |||
|
118 | h 10 7 -2 -2 -2 -2 -2 -2 -2 -1 -1 -4 -3 -3 -1 -2 -1 -1 -1 -1 -2 -2 -2.9 -3.47 -3.95 -4.16 -4.3 0.0 | |||
|
119 | g 10 8 2 2 2 1 1 1 1 2 2 -3 2 6 -1 2 0 0 2 2 3 5 4.2 3.77 3.09 2.33 1.4 0.0 | |||
|
120 | h 10 8 4 4 4 4 4 4 4 4 4 -2 6 7 6 3 3 3 4 4 3 1 0.2 -0.86 -1.99 -2.85 -3.4 0.0 | |||
|
121 | g 10 9 2 2 2 2 3 3 3 3 3 5 10 -2 2 2 3 3 3 3 3 1 0.3 -0.21 -1.03 -1.80 -2.4 0.0 | |||
|
122 | h 10 9 0 0 0 0 0 0 0 0 0 0 11 -1 0 0 1 1 0 0 -1 -2 -2.2 -2.31 -1.97 -1.12 -0.1 0.0 | |||
|
123 | g 10 10 0 0 0 0 0 0 0 0 0 -2 3 0 0 0 -1 -1 0 0 0 0 -1.1 -2.09 -2.80 -3.59 -3.8 0.0 | |||
|
124 | h 10 10 -6 -6 -6 -6 -6 -6 -6 -6 -6 -2 8 -3 -7 -6 -4 -5 -6 -6 -6 -7 -7.4 -7.93 -8.31 -8.72 -8.8 0.0 | |||
|
125 | g 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.7 2.95 3.05 3.00 3.0 0.0 | |||
|
126 | g 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.7 -1.60 -1.48 -1.40 -1.4 0.0 | |||
|
127 | h 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.26 0.13 0.00 0.0 0.0 | |||
|
128 | g 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.9 -1.88 -2.03 -2.30 -2.5 0.0 | |||
|
129 | h 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3 1.44 1.67 2.11 2.5 0.0 | |||
|
130 | g 11 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.44 1.65 2.08 2.3 0.0 | |||
|
131 | h 11 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.77 -0.66 -0.60 -0.6 0.0 | |||
|
132 | g 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.31 -0.51 -0.79 -0.9 0.0 | |||
|
133 | h 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.6 -2.27 -1.76 -1.05 -0.4 0.0 | |||
|
134 | g 11 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.29 0.54 0.58 0.3 0.0 | |||
|
135 | h 11 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.90 0.85 0.76 0.6 0.0 | |||
|
136 | g 11 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.7 -0.79 -0.79 -0.70 -0.7 0.0 | |||
|
137 | h 11 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.7 -0.58 -0.39 -0.20 -0.2 0.0 | |||
|
138 | g 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.53 0.37 0.14 -0.1 0.0 | |||
|
139 | h 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.8 -2.69 -2.51 -2.12 -1.7 0.0 | |||
|
140 | g 11 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7 1.80 1.79 1.70 1.4 0.0 | |||
|
141 | h 11 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -1.08 -1.27 -1.44 -1.6 0.0 | |||
|
142 | g 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.16 0.12 -0.22 -0.6 0.0 | |||
|
143 | h 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.2 -1.58 -2.11 -2.57 -3.0 0.0 | |||
|
144 | g 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.2 0.96 0.75 0.44 0.2 0.0 | |||
|
145 | h 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.9 -1.90 -1.94 -2.01 -2.0 0.0 | |||
|
146 | g 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.0 3.99 3.75 3.49 3.1 0.0 | |||
|
147 | h 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -1.39 -1.86 -2.34 -2.6 0.0 | |||
|
148 | g 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.2 -2.15 -2.12 -2.09 -2.0 0.0 | |||
|
149 | g 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.3 -0.29 -0.21 -0.16 -0.1 0.0 | |||
|
150 | h 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.55 -0.87 -1.08 -1.2 0.0 | |||
|
151 | g 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.21 0.30 0.46 0.5 0.0 | |||
|
152 | h 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.23 0.27 0.37 0.5 0.0 | |||
|
153 | g 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.89 1.04 1.23 1.3 0.0 | |||
|
154 | h 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 2.38 2.13 1.75 1.4 0.0 | |||
|
155 | g 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 -0.38 -0.63 -0.89 -1.2 0.0 | |||
|
156 | h 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.6 -2.63 -2.49 -2.19 -1.8 0.0 | |||
|
157 | g 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.96 0.95 0.85 0.7 0.0 | |||
|
158 | h 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.61 0.49 0.27 0.1 0.0 | |||
|
159 | g 12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 -0.30 -0.11 0.10 0.3 0.0 | |||
|
160 | h 12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.40 0.59 0.72 0.8 0.0 | |||
|
161 | g 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.46 0.52 0.54 0.5 0.0 | |||
|
162 | h 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.01 0.00 -0.09 -0.2 0.0 | |||
|
163 | g 12 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.3 -0.35 -0.39 -0.37 -0.3 0.0 | |||
|
164 | h 12 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.02 0.13 0.29 0.6 0.0 | |||
|
165 | g 12 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.36 -0.37 -0.43 -0.5 0.0 | |||
|
166 | h 12 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.28 0.27 0.23 0.2 0.0 | |||
|
167 | g 12 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 0.08 0.21 0.22 0.1 0.0 | |||
|
168 | h 12 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.87 -0.86 -0.89 -0.9 0.0 | |||
|
169 | g 12 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 -0.49 -0.77 -0.94 -1.1 0.0 | |||
|
170 | h 12 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.34 -0.23 -0.16 0.0 0.0 | |||
|
171 | g 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.08 0.04 -0.03 -0.3 0.0 | |||
|
172 | h 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0.88 0.87 0.72 0.5 0.0 | |||
|
173 | g 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 -0.16 -0.09 -0.02 0.1 0.0 | |||
|
174 | g 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.88 -0.89 -0.92 -0.9 0.0 | |||
|
175 | h 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.76 -0.87 -0.88 -0.9 0.0 | |||
|
176 | g 13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.30 0.31 0.42 0.5 0.0 | |||
|
177 | h 13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.33 0.30 0.49 0.6 0.0 | |||
|
178 | g 13 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.28 0.42 0.63 0.7 0.0 | |||
|
179 | h 13 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 1.72 1.66 1.56 1.4 0.0 | |||
|
180 | g 13 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.43 -0.45 -0.42 -0.3 0.0 | |||
|
181 | h 13 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.54 -0.59 -0.50 -0.4 0.0 | |||
|
182 | g 13 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3 1.18 1.08 0.96 0.8 0.0 | |||
|
183 | h 13 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.0 -1.07 -1.14 -1.24 -1.3 0.0 | |||
|
184 | g 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.37 -0.31 -0.19 0.0 0.0 | |||
|
185 | h 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.04 -0.07 -0.10 -0.1 0.0 | |||
|
186 | g 13 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.75 0.78 0.81 0.8 0.0 | |||
|
187 | h 13 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.63 0.54 0.42 0.3 0.0 | |||
|
188 | g 13 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.26 -0.18 -0.13 0.0 0.0 | |||
|
189 | h 13 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.21 0.10 -0.04 -0.1 0.0 | |||
|
190 | g 13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.35 0.38 0.38 0.4 0.0 | |||
|
191 | h 13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.53 0.49 0.48 0.5 0.0 | |||
|
192 | g 13 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.05 0.02 0.08 0.1 0.0 | |||
|
193 | h 13 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.38 0.44 0.48 0.5 0.0 | |||
|
194 | g 13 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.41 0.42 0.46 0.5 0.0 | |||
|
195 | h 13 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 -0.22 -0.25 -0.30 -0.4 0.0 | |||
|
196 | g 13 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 -0.10 -0.26 -0.35 -0.5 0.0 | |||
|
197 | h 13 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 -0.57 -0.53 -0.43 -0.4 0.0 | |||
|
198 | g 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 -0.18 -0.26 -0.36 -0.4 0.0 | |||
|
199 | h 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.82 -0.79 -0.71 -0.6 0.0 |
@@ -935,6 +935,7 class Parameters(Spectra): | |||||
935 | data_pre = None # Data Pre Parametrization |
|
935 | data_pre = None # Data Pre Parametrization | |
936 | data_SNR = None # Signal to Noise Ratio |
|
936 | data_SNR = None # Signal to Noise Ratio | |
937 | data_outlier = None |
|
937 | data_outlier = None | |
|
938 | data_vdrift = None | |||
938 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
939 | abscissaList = None # Abscissa, can be velocities, lags or time | |
939 | utctimeInit = None # Initial UTC time |
|
940 | utctimeInit = None # Initial UTC time | |
940 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
941 | paramInterval = None # Time interval to calculate Parameters in seconds |
@@ -213,7 +213,7 class GenericRTIPlot(Plot): | |||||
213 | if self.zlimits is not None: |
|
213 | if self.zlimits is not None: | |
214 | self.zmin, self.zmax = self.zlimits[n] |
|
214 | self.zmin, self.zmax = self.zlimits[n] | |
215 |
|
215 | |||
216 |
ax.plt = ax.pcolormesh(x, y, z[n].T |
|
216 | ax.plt = ax.pcolormesh(x, y, z[n].T , | |
217 | vmin=self.zmin, |
|
217 | vmin=self.zmin, | |
218 | vmax=self.zmax, |
|
218 | vmax=self.zmax, | |
219 | cmap=self.cmaps[n] |
|
219 | cmap=self.cmaps[n] | |
@@ -222,7 +222,7 class GenericRTIPlot(Plot): | |||||
222 | if self.zlimits is not None: |
|
222 | if self.zlimits is not None: | |
223 | self.zmin, self.zmax = self.zlimits[n] |
|
223 | self.zmin, self.zmax = self.zlimits[n] | |
224 | ax.collections.remove(ax.collections[0]) |
|
224 | ax.collections.remove(ax.collections[0]) | |
225 |
ax.plt = ax.pcolormesh(x, y, z[n].T |
|
225 | ax.plt = ax.pcolormesh(x, y, z[n].T , | |
226 | vmin=self.zmin, |
|
226 | vmin=self.zmin, | |
227 | vmax=self.zmax, |
|
227 | vmax=self.zmax, | |
228 | cmap=self.cmaps[n] |
|
228 | cmap=self.cmaps[n] |
@@ -71,11 +71,8 class SpectraPlot(Plot): | |||||
71 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
71 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
72 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
72 | noise = 10*numpy.log10(dataOut.getNoise()/norm) | |
73 |
|
73 | |||
74 | <<<<<<< HEAD |
|
|||
75 | ======= |
|
|||
76 |
|
74 | |||
77 |
|
75 | |||
78 | >>>>>>> 37cccf17c7b80521b59b978cb30e4ab2e6f37fce |
|
|||
79 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
76 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) | |
80 | for ch in range(dataOut.nChannels): |
|
77 | for ch in range(dataOut.nChannels): | |
81 | if hasattr(dataOut.normFactor,'ndim'): |
|
78 | if hasattr(dataOut.normFactor,'ndim'): |
@@ -596,9 +596,9 class AMISRReader(ProcessingUnit): | |||||
596 | # self.dataOut.channelIndexList = None |
|
596 | # self.dataOut.channelIndexList = None | |
597 |
|
597 | |||
598 |
|
598 | |||
599 | #self.dataOut.azimuthList = numpy.roll( numpy.array(self.azimuthList) ,self.shiftChannels) |
|
599 | # #self.dataOut.azimuthList = numpy.roll( numpy.array(self.azimuthList) ,self.shiftChannels) | |
600 | #self.dataOut.elevationList = numpy.roll(numpy.array(self.elevationList) ,self.shiftChannels) |
|
600 | # #self.dataOut.elevationList = numpy.roll(numpy.array(self.elevationList) ,self.shiftChannels) | |
601 | #self.dataOut.codeList = numpy.roll(numpy.array(self.beamCode), self.shiftChannels) |
|
601 | # #self.dataOut.codeList = numpy.roll(numpy.array(self.beamCode), self.shiftChannels) | |
602 |
|
602 | |||
603 | self.dataOut.azimuthList = self.azimuthList |
|
603 | self.dataOut.azimuthList = self.azimuthList | |
604 | self.dataOut.elevationList = self.elevationList |
|
604 | self.dataOut.elevationList = self.elevationList | |
@@ -661,11 +661,7 class AMISRReader(ProcessingUnit): | |||||
661 | self.dataOut.radarControllerHeaderObj.elevationList = self.elevationList |
|
661 | self.dataOut.radarControllerHeaderObj.elevationList = self.elevationList | |
662 | self.dataOut.radarControllerHeaderObj.dtype = "Voltage" |
|
662 | self.dataOut.radarControllerHeaderObj.dtype = "Voltage" | |
663 | self.dataOut.ippSeconds = self.ippSeconds |
|
663 | self.dataOut.ippSeconds = self.ippSeconds | |
664 | <<<<<<< HEAD |
|
|||
665 | self.dataOut.ippFactor = self.nchannels*self.nFFT |
|
|||
666 | ======= |
|
|||
667 | self.dataOut.ippFactor = self.nFFT |
|
664 | self.dataOut.ippFactor = self.nFFT | |
668 | >>>>>>> 37cccf17c7b80521b59b978cb30e4ab2e6f37fce |
|
|||
669 | pass |
|
665 | pass | |
670 |
|
666 | |||
671 | def readNextFile(self,online=False): |
|
667 | def readNextFile(self,online=False): |
@@ -19,6 +19,7 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |||||
19 | from scipy import asarray as ar,exp |
|
19 | from scipy import asarray as ar,exp | |
20 | from scipy.optimize import curve_fit |
|
20 | from scipy.optimize import curve_fit | |
21 | from schainpy.utils import log |
|
21 | from schainpy.utils import log | |
|
22 | from scipy import signal | |||
22 | import warnings |
|
23 | import warnings | |
23 | from numpy import NaN |
|
24 | from numpy import NaN | |
24 | from scipy.optimize.optimize import OptimizeWarning |
|
25 | from scipy.optimize.optimize import OptimizeWarning | |
@@ -3990,4 +3991,69 class addTxPower(Operation): | |||||
3990 | log.warning("No power available for the datetime {}, setting power to 0 w", self.name) |
|
3991 | log.warning("No power available for the datetime {}, setting power to 0 w", self.name) | |
3991 | dataOut.txPower = 0 |
|
3992 | dataOut.txPower = 0 | |
3992 |
|
3993 | |||
|
3994 | return dataOut | |||
|
3995 | ||||
|
3996 | ||||
|
3997 | ||||
|
3998 | ||||
|
3999 | ||||
|
4000 | ||||
|
4001 | class getVerticalDrifts(Operation): | |||
|
4002 | ''' | |||
|
4003 | This operation is just for test AMISR Data | |||
|
4004 | ||||
|
4005 | fmin = minimun range to measure drifts (KHz) | |||
|
4006 | fmax = maximun range to measure drifts (KHz) | |||
|
4007 | ||||
|
4008 | ''' | |||
|
4009 | isConfig = False | |||
|
4010 | vdrifts = None | |||
|
4011 | frange = None | |||
|
4012 | nfft = None | |||
|
4013 | i_min = 0 | |||
|
4014 | i_max = -1 | |||
|
4015 | fcoef = None | |||
|
4016 | def __init__(self): | |||
|
4017 | ||||
|
4018 | Operation.__init__(self) | |||
|
4019 | self.isConfig = False | |||
|
4020 | ||||
|
4021 | ||||
|
4022 | def setup(self, dataOut, fmin=None, fmax=None): | |||
|
4023 | ||||
|
4024 | self.vdrifts=numpy.zeros((dataOut.nChannels, dataOut.nHeights)) | |||
|
4025 | dt1 = dataOut.processingHeaderObj.ipp | |||
|
4026 | self.nfft = dataOut.data_spc.shape[1] | |||
|
4027 | all_frange=numpy.fft.fftshift(numpy.fft.fftfreq(self.nfft,d=dt1)/1000) | |||
|
4028 | self.i_min = numpy.argwhere(all_frange < fmin)[-1][0] | |||
|
4029 | self.i_max = numpy.argwhere(all_frange > fmax)[0][0] | |||
|
4030 | #print(self.i_min, self.i_max) | |||
|
4031 | self.frange = all_frange[self.i_min:self.i_max] | |||
|
4032 | self.fcoef = signal.butter(3, 0.05) | |||
|
4033 | #print(self.frange) | |||
|
4034 | print("VELOCITY STEP RESOLUTION = {:2.2f} m/s".format(abs(self.frange[1]-self.frange[0])*1000*SPEED_OF_LIGHT /(2*dataOut.frequency))) | |||
|
4035 | self.isConfig = True | |||
|
4036 | ||||
|
4037 | def run(self, dataOut, fmin=None, fmax=None): | |||
|
4038 | ||||
|
4039 | dataOut.flagNoData = False | |||
|
4040 | # dataOut.data_spc | |||
|
4041 | ||||
|
4042 | if not(self.isConfig): | |||
|
4043 | self.setup(dataOut, fmin=fmin, fmax=fmax) | |||
|
4044 | ||||
|
4045 | spc = dataOut.data_spc[:, self.i_min:self.i_max, :] | |||
|
4046 | for ch in range(dataOut.nChannels): | |||
|
4047 | for h in range(dataOut.nHeights): | |||
|
4048 | #spcHf = signal.filtfilt(self.fcoef[0], self.fcoef[1], spc[ch,:,h]) | |||
|
4049 | spcHf = spc[ch,:,h] | |||
|
4050 | im = numpy.argmax(spcHf) | |||
|
4051 | ||||
|
4052 | ||||
|
4053 | v = -self.frange[im]*1000*SPEED_OF_LIGHT /(2*dataOut.frequency) | |||
|
4054 | ||||
|
4055 | self.vdrifts[ch,h] = v | |||
|
4056 | aux = signal.filtfilt(self.fcoef[0], self.fcoef[1], self.vdrifts[ch, :]) | |||
|
4057 | self.vdrifts[ch,:]=aux | |||
|
4058 | dataOut.data_vdrift = self.vdrifts | |||
3993 | return dataOut No newline at end of file |
|
4059 | return dataOut |
@@ -1597,7 +1597,7 class IntegrationFaradaySpectra(Operation): | |||||
1597 |
|
1597 | |||
1598 | self.putData(*args) |
|
1598 | self.putData(*args) | |
1599 |
|
1599 | |||
1600 |
if self.__profIndex |
|
1600 | if self.__profIndex >= self.n: | |
1601 |
|
1601 | |||
1602 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1602 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1603 | self.n_ints = n |
|
1603 | self.n_ints = n | |
@@ -1699,7 +1699,6 class IntegrationFaradaySpectra(Operation): | |||||
1699 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1699 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] | |
1700 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1700 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] | |
1701 |
|
1701 | |||
1702 |
|
||||
1703 | self.dataOut.nIncohInt *= self.n_ints |
|
1702 | self.dataOut.nIncohInt *= self.n_ints | |
1704 | #print("maxProfilesInt: ",self.maxProfilesInt) |
|
1703 | #print("maxProfilesInt: ",self.maxProfilesInt) | |
1705 |
|
1704 | |||
@@ -1764,21 +1763,30 class removeInterference(Operation): | |||||
1764 |
|
1763 | |||
1765 |
|
1764 | |||
1766 | #dataOut.max_nIncohInt * dataOut.nCohInt |
|
1765 | #dataOut.max_nIncohInt * dataOut.nCohInt | |
1767 | norm = self.dataOut.nIncohInt /self.dataOut.max_nIncohInt |
|
1766 | if hasattr(self.dataOut.nIncohInt, 'shape'): | |
1768 | #print(norm.shape) |
|
1767 | norm = self.dataOut.nIncohInt.T /self.dataOut.max_nIncohInt | |
|
1768 | norm = norm.T | |||
|
1769 | else: | |||
|
1770 | norm = self.dataOut.nIncohInt /self.dataOut.max_nIncohInt | |||
|
1771 | norm = norm | |||
|
1772 | ||||
1769 | # Subrutina de Remocion de la Interferencia |
|
1773 | # Subrutina de Remocion de la Interferencia | |
1770 | for ich in range(num_channel): |
|
1774 | for ich in range(num_channel): | |
1771 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1775 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1772 | #power = jspectra[ich, mask_prof, :] |
|
1776 | #power = jspectra[ich, mask_prof, :] | |
1773 | interf = jspectra[ich, :, minIndex:maxIndex] |
|
1777 | if hasattr(self.dataOut.nIncohInt, 'shape'): | |
1774 | #print(interf.shape) |
|
1778 | interf = jspectra[ich, :, minIndex:maxIndex]/norm[ich,minIndex:maxIndex] | |
|
1779 | else: | |||
|
1780 | interf = jspectra[ich, :, minIndex:maxIndex]/norm | |||
|
1781 | # print(interf.shape) | |||
1775 | inttef = interf.mean(axis=1) |
|
1782 | inttef = interf.mean(axis=1) | |
1776 |
|
1783 | |||
1777 | for hei in range(num_hei): |
|
1784 | for hei in range(num_hei): | |
1778 | temp = jspectra[ich,:, hei] |
|
1785 | temp = jspectra[ich,:, hei]#/norm[ich,hei] | |
1779 | temp -= inttef |
|
1786 | temp -= inttef | |
1780 |
temp += jnoise[ich] |
|
1787 | temp += jnoise[ich] | |
1781 |
jspectra |
|
1788 | # print(jspectra.shape, temp.shape) | |
|
1789 | jspectra[ich,:, hei] = temp | |||
1782 |
|
1790 | |||
1783 | # Guardar Resultados |
|
1791 | # Guardar Resultados | |
1784 | self.dataOut.data_spc = jspectra |
|
1792 | self.dataOut.data_spc = jspectra | |
@@ -1821,6 +1829,7 class removeInterference(Operation): | |||||
1821 | num_prof = jspectra.shape[1] |
|
1829 | num_prof = jspectra.shape[1] | |
1822 | num_hei = jspectra.shape[2] |
|
1830 | num_hei = jspectra.shape[2] | |
1823 |
|
1831 | |||
|
1832 | count_hei = nhei_interf | |||
1824 | # hei_interf |
|
1833 | # hei_interf | |
1825 | if hei_interf is None: |
|
1834 | if hei_interf is None: | |
1826 | count_hei = int(num_hei / 2) # a half of total ranges |
|
1835 | count_hei = int(num_hei / 2) # a half of total ranges | |
@@ -1993,7 +2002,7 class removeInterference(Operation): | |||||
1993 | self.dataOut = dataOut |
|
2002 | self.dataOut = dataOut | |
1994 |
|
2003 | |||
1995 | if mode == 1: |
|
2004 | if mode == 1: | |
1996 |
self.removeInterference(interf = 2,hei_interf = |
|
2005 | self.removeInterference(interf = 2,hei_interf = hei_interf, nhei_interf = nhei_interf, offhei_interf = offhei_interf) | |
1997 | elif mode == 2: |
|
2006 | elif mode == 2: | |
1998 | self.removeInterference2() |
|
2007 | self.removeInterference2() | |
1999 | elif mode == 3: |
|
2008 | elif mode == 3: |
@@ -79,9 +79,13 class VoltageProc(ProcessingUnit): | |||||
79 |
|
79 | |||
80 | class selectChannels(Operation): |
|
80 | class selectChannels(Operation): | |
81 |
|
81 | |||
82 |
def run(self, dataOut, channelList= |
|
82 | def run(self, dataOut, channelList=[]): | |
|
83 | ||||
|
84 | if isinstance(channelList, int): | |||
|
85 | channelList = [channelList] | |||
|
86 | ||||
83 | self.channelList = channelList |
|
87 | self.channelList = channelList | |
84 |
if self.channelList == |
|
88 | if len(self.channelList) == 0: | |
85 | print("Missing channelList") |
|
89 | print("Missing channelList") | |
86 | return dataOut |
|
90 | return dataOut | |
87 | channelIndexList = [] |
|
91 | channelIndexList = [] | |
@@ -99,15 +103,16 class selectChannels(Operation): | |||||
99 |
|
103 | |||
100 | index = dataOut.channelList.index(channel) |
|
104 | index = dataOut.channelList.index(channel) | |
101 | channelIndexList.append(index) |
|
105 | channelIndexList.append(index) | |
|
106 | ||||
102 | dataOut = self.selectChannelsByIndex(dataOut,channelIndexList) |
|
107 | dataOut = self.selectChannelsByIndex(dataOut,channelIndexList) | |
103 |
|
108 | |||
104 | #update Processing Header: |
|
109 | #update Processing Header: | |
105 | dataOut.processingHeaderObj.channelList = dataOut.channelList |
|
110 | dataOut.processingHeaderObj.channelList = dataOut.channelList | |
106 | dataOut.processingHeaderObj.elevationList = dataOut.elevationList |
|
111 | dataOut.processingHeaderObj.elevationList = dataOut.elevationList | |
107 | dataOut.processingHeaderObj.azimuthList = dataOut.azimuthList |
|
112 | dataOut.processingHeaderObj.azimuthList = dataOut.azimuthList | |
108 | dataOut.processingHeaderObj.codeList = dataOut.codeList |
|
113 | dataOut.processingHeaderObj.codeList = dataOut.codeList | |
109 | dataOut.processingHeaderObj.nChannels = len(dataOut.channelList) |
|
114 | dataOut.processingHeaderObj.nChannels = len(dataOut.channelList) | |
110 |
|
115 | |||
111 | return dataOut |
|
116 | return dataOut | |
112 |
|
117 | |||
113 | def selectChannelsByIndex(self, dataOut, channelIndexList): |
|
118 | def selectChannelsByIndex(self, dataOut, channelIndexList): | |
@@ -145,7 +150,7 class selectChannels(Operation): | |||||
145 | dataOut.data = data |
|
150 | dataOut.data = data | |
146 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] |
|
151 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] | |
147 | dataOut.channelList = [n for n in range(len(channelIndexList))] |
|
152 | dataOut.channelList = [n for n in range(len(channelIndexList))] | |
148 |
|
153 | |||
149 | elif dataOut.type == 'Spectra': |
|
154 | elif dataOut.type == 'Spectra': | |
150 | if hasattr(dataOut, 'data_spc'): |
|
155 | if hasattr(dataOut, 'data_spc'): | |
151 | if dataOut.data_spc is None: |
|
156 | if dataOut.data_spc is None: | |
@@ -165,10 +170,16 class selectChannels(Operation): | |||||
165 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] |
|
170 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] | |
166 | dataOut.channelList = channelIndexList |
|
171 | dataOut.channelList = channelIndexList | |
167 | dataOut = self.__selectPairsByChannel(dataOut,channelIndexList) |
|
172 | dataOut = self.__selectPairsByChannel(dataOut,channelIndexList) | |
168 | if len(dataOut.elevationList>0): |
|
173 | ||
|
174 | # channelIndexList = numpy.asarray(channelIndexList) | |||
|
175 | dataOut.elevationList = numpy.asarray(dataOut.elevationList) | |||
|
176 | dataOut.azimuthList = numpy.asarray(dataOut.azimuthList) | |||
|
177 | dataOut.codeList = numpy.asarray(dataOut.codeList) | |||
|
178 | if (len(dataOut.elevationList) > 0): | |||
169 | dataOut.elevationList = dataOut.elevationList[channelIndexList] |
|
179 | dataOut.elevationList = dataOut.elevationList[channelIndexList] | |
170 | dataOut.azimuthList = dataOut.azimuthList[channelIndexList] |
|
180 | dataOut.azimuthList = dataOut.azimuthList[channelIndexList] | |
171 | dataOut.codeList = dataOut.codeList[channelIndexList] |
|
181 | dataOut.codeList = dataOut.codeList[channelIndexList] | |
|
182 | ||||
172 | return dataOut |
|
183 | return dataOut | |
173 |
|
184 | |||
174 | def __selectPairsByChannel(self, dataOut, channelList=None): |
|
185 | def __selectPairsByChannel(self, dataOut, channelList=None): |
General Comments 0
You need to be logged in to leave comments.
Login now