@@ -1,1170 +1,1169 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | #print(numpy.shape(data)) |
|
80 | 80 | #exit() |
|
81 | 81 | ''' |
|
82 | 82 | lenOfData = len(sortdata) |
|
83 | 83 | nums_min = lenOfData*0.2 |
|
84 | 84 | |
|
85 | 85 | if nums_min <= 5: |
|
86 | 86 | |
|
87 | 87 | nums_min = 5 |
|
88 | 88 | |
|
89 | 89 | sump = 0. |
|
90 | 90 | sumq = 0. |
|
91 | 91 | |
|
92 | 92 | j = 0 |
|
93 | 93 | cont = 1 |
|
94 | 94 | |
|
95 | 95 | while((cont == 1)and(j < lenOfData)): |
|
96 | 96 | |
|
97 | 97 | sump += sortdata[j] |
|
98 | 98 | sumq += sortdata[j]**2 |
|
99 | 99 | |
|
100 | 100 | if j > nums_min: |
|
101 | 101 | rtest = float(j)/(j-1) + 1.0/navg |
|
102 | 102 | if ((sumq*j) > (rtest*sump**2)): |
|
103 | 103 | j = j - 1 |
|
104 | 104 | sump = sump - sortdata[j] |
|
105 | 105 | sumq = sumq - sortdata[j]**2 |
|
106 | 106 | cont = 0 |
|
107 | 107 | |
|
108 | 108 | j += 1 |
|
109 | 109 | |
|
110 | 110 | lnoise = sump / j |
|
111 | 111 | ''' |
|
112 | 112 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
113 | 113 | |
|
114 | 114 | |
|
115 | 115 | class Beam: |
|
116 | 116 | |
|
117 | 117 | def __init__(self): |
|
118 | 118 | self.codeList = [] |
|
119 | 119 | self.azimuthList = [] |
|
120 | 120 | self.zenithList = [] |
|
121 | 121 | |
|
122 | 122 | |
|
123 | 123 | class GenericData(object): |
|
124 | 124 | |
|
125 | 125 | flagNoData = True |
|
126 | 126 | |
|
127 | 127 | def copy(self, inputObj=None): |
|
128 | 128 | |
|
129 | 129 | if inputObj == None: |
|
130 | 130 | return copy.deepcopy(self) |
|
131 | 131 | |
|
132 | 132 | for key in list(inputObj.__dict__.keys()): |
|
133 | 133 | |
|
134 | 134 | attribute = inputObj.__dict__[key] |
|
135 | 135 | |
|
136 | 136 | # If this attribute is a tuple or list |
|
137 | 137 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
138 | 138 | self.__dict__[key] = attribute[:] |
|
139 | 139 | continue |
|
140 | 140 | |
|
141 | 141 | # If this attribute is another object or instance |
|
142 | 142 | if hasattr(attribute, '__dict__'): |
|
143 | 143 | self.__dict__[key] = attribute.copy() |
|
144 | 144 | continue |
|
145 | 145 | |
|
146 | 146 | self.__dict__[key] = inputObj.__dict__[key] |
|
147 | 147 | |
|
148 | 148 | def deepcopy(self): |
|
149 | 149 | |
|
150 | 150 | return copy.deepcopy(self) |
|
151 | 151 | |
|
152 | 152 | def isEmpty(self): |
|
153 | 153 | |
|
154 | 154 | return self.flagNoData |
|
155 | 155 | |
|
156 | 156 | def isReady(self): |
|
157 | 157 | |
|
158 | 158 | return not self.flagNoData |
|
159 | 159 | |
|
160 | 160 | |
|
161 | 161 | class JROData(GenericData): |
|
162 | 162 | |
|
163 | 163 | systemHeaderObj = SystemHeader() |
|
164 | 164 | radarControllerHeaderObj = RadarControllerHeader() |
|
165 | 165 | type = None |
|
166 | 166 | datatype = None # dtype but in string |
|
167 | 167 | nProfiles = None |
|
168 | 168 | heightList = None |
|
169 | 169 | channelList = None |
|
170 | 170 | flagDiscontinuousBlock = False |
|
171 | 171 | useLocalTime = False |
|
172 | 172 | utctime = None |
|
173 | 173 | timeZone = None |
|
174 | 174 | dstFlag = None |
|
175 | 175 | errorCount = None |
|
176 | 176 | blocksize = None |
|
177 | 177 | flagDecodeData = False # asumo q la data no esta decodificada |
|
178 | 178 | flagDeflipData = False # asumo q la data no esta sin flip |
|
179 | 179 | flagShiftFFT = False |
|
180 | 180 | nCohInt = None |
|
181 | 181 | windowOfFilter = 1 |
|
182 | 182 | C = 3e8 |
|
183 | 183 | frequency = 49.92e6 |
|
184 | 184 | realtime = False |
|
185 | 185 | beacon_heiIndexList = None |
|
186 | 186 | last_block = None |
|
187 | 187 | blocknow = None |
|
188 | 188 | azimuth = None |
|
189 | 189 | zenith = None |
|
190 | 190 | beam = Beam() |
|
191 | 191 | profileIndex = None |
|
192 | 192 | error = None |
|
193 | 193 | data = None |
|
194 | 194 | nmodes = None |
|
195 | 195 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
196 | 196 | |
|
197 | 197 | def __str__(self): |
|
198 | 198 | |
|
199 |
return '{} - {}'.format(self.type, self.datatime |
|
|
199 | return '{} - {}'.format(self.type, self.datatime) | |
|
200 | 200 | |
|
201 | 201 | def getNoise(self): |
|
202 | 202 | |
|
203 | 203 | raise NotImplementedError |
|
204 | 204 | |
|
205 | 205 | @property |
|
206 | 206 | def nChannels(self): |
|
207 | 207 | |
|
208 | 208 | return len(self.channelList) |
|
209 | 209 | |
|
210 | 210 | @property |
|
211 | 211 | def channelIndexList(self): |
|
212 | 212 | |
|
213 | 213 | return list(range(self.nChannels)) |
|
214 | 214 | |
|
215 | 215 | @property |
|
216 | 216 | def nHeights(self): |
|
217 | 217 | |
|
218 | 218 | return len(self.heightList) |
|
219 | 219 | |
|
220 | 220 | def getDeltaH(self): |
|
221 | 221 | |
|
222 | 222 | return self.heightList[1] - self.heightList[0] |
|
223 | 223 | |
|
224 | 224 | @property |
|
225 | 225 | def ltctime(self): |
|
226 | 226 | |
|
227 | 227 | if self.useLocalTime: |
|
228 | 228 | return self.utctime - self.timeZone * 60 |
|
229 | 229 | |
|
230 | 230 | return self.utctime |
|
231 | 231 | |
|
232 | 232 | @property |
|
233 | 233 | def datatime(self): |
|
234 | 234 | |
|
235 | 235 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
236 | 236 | return datatimeValue |
|
237 | 237 | |
|
238 | 238 | def getTimeRange(self): |
|
239 | 239 | |
|
240 | 240 | datatime = [] |
|
241 | 241 | |
|
242 | 242 | datatime.append(self.ltctime) |
|
243 | 243 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
244 | 244 | |
|
245 | 245 | datatime = numpy.array(datatime) |
|
246 | 246 | |
|
247 | 247 | return datatime |
|
248 | 248 | |
|
249 | 249 | def getFmaxTimeResponse(self): |
|
250 | 250 | |
|
251 | 251 | period = (10 ** -6) * self.getDeltaH() / (0.15) |
|
252 | 252 | |
|
253 | 253 | PRF = 1. / (period * self.nCohInt) |
|
254 | 254 | |
|
255 | 255 | fmax = PRF |
|
256 | 256 | |
|
257 | 257 | return fmax |
|
258 | 258 | |
|
259 | 259 | def getFmax(self): |
|
260 | 260 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
261 | 261 | |
|
262 | 262 | fmax = PRF |
|
263 | 263 | return fmax |
|
264 | 264 | |
|
265 | 265 | def getVmax(self): |
|
266 | 266 | |
|
267 | 267 | _lambda = self.C / self.frequency |
|
268 | 268 | |
|
269 | 269 | vmax = self.getFmax() * _lambda / 2 |
|
270 | 270 | |
|
271 | 271 | return vmax |
|
272 | 272 | |
|
273 | 273 | @property |
|
274 | 274 | def ippSeconds(self): |
|
275 | 275 | ''' |
|
276 | 276 | ''' |
|
277 | 277 | return self.radarControllerHeaderObj.ippSeconds |
|
278 | 278 | |
|
279 | 279 | @ippSeconds.setter |
|
280 | 280 | def ippSeconds(self, ippSeconds): |
|
281 | 281 | ''' |
|
282 | 282 | ''' |
|
283 | 283 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
284 | 284 | |
|
285 | 285 | @property |
|
286 | 286 | def code(self): |
|
287 | 287 | ''' |
|
288 | 288 | ''' |
|
289 | 289 | return self.radarControllerHeaderObj.code |
|
290 | 290 | |
|
291 | 291 | @code.setter |
|
292 | 292 | def code(self, code): |
|
293 | 293 | ''' |
|
294 | 294 | ''' |
|
295 | 295 | self.radarControllerHeaderObj.code = code |
|
296 | 296 | |
|
297 | 297 | @property |
|
298 | 298 | def nCode(self): |
|
299 | 299 | ''' |
|
300 | 300 | ''' |
|
301 | 301 | return self.radarControllerHeaderObj.nCode |
|
302 | 302 | |
|
303 | 303 | @nCode.setter |
|
304 | 304 | def nCode(self, ncode): |
|
305 | 305 | ''' |
|
306 | 306 | ''' |
|
307 | 307 | self.radarControllerHeaderObj.nCode = ncode |
|
308 | 308 | |
|
309 | 309 | @property |
|
310 | 310 | def nBaud(self): |
|
311 | 311 | ''' |
|
312 | 312 | ''' |
|
313 | 313 | return self.radarControllerHeaderObj.nBaud |
|
314 | 314 | |
|
315 | 315 | @nBaud.setter |
|
316 | 316 | def nBaud(self, nbaud): |
|
317 | 317 | ''' |
|
318 | 318 | ''' |
|
319 | 319 | self.radarControllerHeaderObj.nBaud = nbaud |
|
320 | 320 | |
|
321 | 321 | @property |
|
322 | 322 | def ipp(self): |
|
323 | 323 | ''' |
|
324 | 324 | ''' |
|
325 | 325 | return self.radarControllerHeaderObj.ipp |
|
326 | 326 | |
|
327 | 327 | @ipp.setter |
|
328 | 328 | def ipp(self, ipp): |
|
329 | 329 | ''' |
|
330 | 330 | ''' |
|
331 | 331 | self.radarControllerHeaderObj.ipp = ipp |
|
332 | 332 | |
|
333 | 333 | @property |
|
334 | 334 | def metadata(self): |
|
335 | 335 | ''' |
|
336 | 336 | ''' |
|
337 | 337 | |
|
338 | 338 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
339 | 339 | |
|
340 | 340 | |
|
341 | 341 | class Voltage(JROData): |
|
342 | 342 | |
|
343 | 343 | dataPP_POW = None |
|
344 | 344 | dataPP_DOP = None |
|
345 | 345 | dataPP_WIDTH = None |
|
346 | 346 | dataPP_SNR = None |
|
347 | 347 | |
|
348 | 348 | def __init__(self): |
|
349 | 349 | ''' |
|
350 | 350 | Constructor |
|
351 | 351 | ''' |
|
352 | 352 | |
|
353 | 353 | self.useLocalTime = True |
|
354 | 354 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
355 | 355 | self.systemHeaderObj = SystemHeader() |
|
356 | 356 | self.type = "Voltage" |
|
357 | 357 | self.data = None |
|
358 | 358 | self.nProfiles = None |
|
359 | 359 | self.heightList = None |
|
360 | 360 | self.channelList = None |
|
361 | 361 | self.flagNoData = True |
|
362 | 362 | self.flagDiscontinuousBlock = False |
|
363 | 363 | self.utctime = None |
|
364 | 364 | self.timeZone = 0 |
|
365 | 365 | self.dstFlag = None |
|
366 | 366 | self.errorCount = None |
|
367 | 367 | self.nCohInt = None |
|
368 | 368 | self.blocksize = None |
|
369 | 369 | self.flagCohInt = False |
|
370 | 370 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
371 | 371 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
372 | 372 | self.flagShiftFFT = False |
|
373 | 373 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
374 | 374 | self.profileIndex = 0 |
|
375 | 375 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
376 | 376 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
377 | 377 | |
|
378 | 378 | def getNoisebyHildebrand(self, channel=None): |
|
379 | 379 | """ |
|
380 | 380 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
381 | 381 | |
|
382 | 382 | Return: |
|
383 | 383 | noiselevel |
|
384 | 384 | """ |
|
385 | 385 | |
|
386 | 386 | if channel != None: |
|
387 | 387 | data = self.data[channel] |
|
388 | 388 | nChannels = 1 |
|
389 | 389 | else: |
|
390 | 390 | data = self.data |
|
391 | 391 | nChannels = self.nChannels |
|
392 | 392 | |
|
393 | 393 | noise = numpy.zeros(nChannels) |
|
394 | 394 | power = data * numpy.conjugate(data) |
|
395 | 395 | |
|
396 | 396 | for thisChannel in range(nChannels): |
|
397 | 397 | if nChannels == 1: |
|
398 | 398 | daux = power[:].real |
|
399 | 399 | else: |
|
400 | 400 | daux = power[thisChannel, :].real |
|
401 | 401 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
402 | 402 | |
|
403 | 403 | return noise |
|
404 | 404 | |
|
405 | 405 | def getNoise(self, type=1, channel=None): |
|
406 | 406 | |
|
407 | 407 | if type == 1: |
|
408 | 408 | noise = self.getNoisebyHildebrand(channel) |
|
409 | 409 | |
|
410 | 410 | return noise |
|
411 | 411 | |
|
412 | 412 | def getPower(self, channel=None): |
|
413 | 413 | |
|
414 | 414 | if channel != None: |
|
415 | 415 | data = self.data[channel] |
|
416 | 416 | else: |
|
417 | 417 | data = self.data |
|
418 | 418 | |
|
419 | 419 | power = data * numpy.conjugate(data) |
|
420 | 420 | powerdB = 10 * numpy.log10(power.real) |
|
421 | 421 | powerdB = numpy.squeeze(powerdB) |
|
422 | 422 | |
|
423 | 423 | return powerdB |
|
424 | 424 | |
|
425 | 425 | @property |
|
426 | 426 | def timeInterval(self): |
|
427 | 427 | |
|
428 | 428 | return self.ippSeconds * self.nCohInt |
|
429 | 429 | |
|
430 | 430 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
431 | 431 | |
|
432 | 432 | |
|
433 | 433 | class CrossProds(JROData): |
|
434 | 434 | |
|
435 | 435 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
436 | 436 | data = None |
|
437 | 437 | |
|
438 | 438 | def __init__(self): |
|
439 | 439 | ''' |
|
440 | 440 | Constructor |
|
441 | 441 | ''' |
|
442 | 442 | |
|
443 | 443 | self.useLocalTime = True |
|
444 | 444 | ''' |
|
445 | 445 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
446 | 446 | self.systemHeaderObj = SystemHeader() |
|
447 | 447 | self.type = "Voltage" |
|
448 | 448 | self.data = None |
|
449 | 449 | # self.dtype = None |
|
450 | 450 | # self.nChannels = 0 |
|
451 | 451 | # self.nHeights = 0 |
|
452 | 452 | self.nProfiles = None |
|
453 | 453 | self.heightList = None |
|
454 | 454 | self.channelList = None |
|
455 | 455 | # self.channelIndexList = None |
|
456 | 456 | self.flagNoData = True |
|
457 | 457 | self.flagDiscontinuousBlock = False |
|
458 | 458 | self.utctime = None |
|
459 | 459 | self.timeZone = None |
|
460 | 460 | self.dstFlag = None |
|
461 | 461 | self.errorCount = None |
|
462 | 462 | self.nCohInt = None |
|
463 | 463 | self.blocksize = None |
|
464 | 464 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
465 | 465 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
466 | 466 | self.flagShiftFFT = False |
|
467 | 467 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
468 | 468 | self.profileIndex = 0 |
|
469 | 469 | |
|
470 | 470 | |
|
471 | 471 | def getNoisebyHildebrand(self, channel=None): |
|
472 | 472 | |
|
473 | 473 | |
|
474 | 474 | if channel != None: |
|
475 | 475 | data = self.data[channel] |
|
476 | 476 | nChannels = 1 |
|
477 | 477 | else: |
|
478 | 478 | data = self.data |
|
479 | 479 | nChannels = self.nChannels |
|
480 | 480 | |
|
481 | 481 | noise = numpy.zeros(nChannels) |
|
482 | 482 | power = data * numpy.conjugate(data) |
|
483 | 483 | |
|
484 | 484 | for thisChannel in range(nChannels): |
|
485 | 485 | if nChannels == 1: |
|
486 | 486 | daux = power[:].real |
|
487 | 487 | else: |
|
488 | 488 | daux = power[thisChannel, :].real |
|
489 | 489 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
490 | 490 | |
|
491 | 491 | return noise |
|
492 | 492 | |
|
493 | 493 | def getNoise(self, type=1, channel=None): |
|
494 | 494 | |
|
495 | 495 | if type == 1: |
|
496 | 496 | noise = self.getNoisebyHildebrand(channel) |
|
497 | 497 | |
|
498 | 498 | return noise |
|
499 | 499 | |
|
500 | 500 | def getPower(self, channel=None): |
|
501 | 501 | |
|
502 | 502 | if channel != None: |
|
503 | 503 | data = self.data[channel] |
|
504 | 504 | else: |
|
505 | 505 | data = self.data |
|
506 | 506 | |
|
507 | 507 | power = data * numpy.conjugate(data) |
|
508 | 508 | powerdB = 10 * numpy.log10(power.real) |
|
509 | 509 | powerdB = numpy.squeeze(powerdB) |
|
510 | 510 | |
|
511 | 511 | return powerdB |
|
512 | 512 | |
|
513 | 513 | def getTimeInterval(self): |
|
514 | 514 | |
|
515 | 515 | timeInterval = self.ippSeconds * self.nCohInt |
|
516 | 516 | |
|
517 | 517 | return timeInterval |
|
518 | 518 | |
|
519 | 519 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
520 | 520 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
521 | 521 | ''' |
|
522 | 522 | def getTimeInterval(self): |
|
523 | 523 | |
|
524 | 524 | timeInterval = self.ippSeconds * self.nCohInt |
|
525 | 525 | |
|
526 | 526 | return timeInterval |
|
527 | 527 | |
|
528 | 528 | |
|
529 | 529 | |
|
530 | 530 | class Spectra(JROData): |
|
531 | 531 | |
|
532 | 532 | def __init__(self): |
|
533 | 533 | ''' |
|
534 | 534 | Constructor |
|
535 | 535 | ''' |
|
536 | 536 | |
|
537 | 537 | self.data_dc = None |
|
538 | 538 | self.data_spc = None |
|
539 | 539 | self.data_cspc = None |
|
540 | 540 | self.useLocalTime = True |
|
541 | 541 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
542 | 542 | self.systemHeaderObj = SystemHeader() |
|
543 | 543 | self.type = "Spectra" |
|
544 | 544 | self.timeZone = 0 |
|
545 | 545 | self.nProfiles = None |
|
546 | 546 | self.heightList = None |
|
547 | 547 | self.channelList = None |
|
548 | 548 | self.pairsList = None |
|
549 | 549 | self.flagNoData = True |
|
550 | 550 | self.flagDiscontinuousBlock = False |
|
551 | 551 | self.utctime = None |
|
552 | 552 | self.nCohInt = None |
|
553 | 553 | self.nIncohInt = None |
|
554 | 554 | self.blocksize = None |
|
555 | 555 | self.nFFTPoints = None |
|
556 | 556 | self.wavelength = None |
|
557 | 557 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
558 | 558 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
559 | 559 | self.flagShiftFFT = False |
|
560 | 560 | self.ippFactor = 1 |
|
561 | 561 | self.beacon_heiIndexList = [] |
|
562 | 562 | self.noise_estimation = None |
|
563 | self.spc_noise = None | |
|
563 | 564 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
564 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp', 'nIncohInt', 'nFFTPoints', 'nProfiles'] | |
|
565 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp', 'nIncohInt', 'nFFTPoints', 'nProfiles', 'flagDecodeData'] | |
|
565 | 566 | |
|
566 | 567 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
567 | 568 | """ |
|
568 | 569 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
569 | 570 | |
|
570 | 571 | Return: |
|
571 | 572 | noiselevel |
|
572 | 573 | """ |
|
573 | 574 | |
|
574 | 575 | noise = numpy.zeros(self.nChannels) |
|
575 | 576 | |
|
576 | 577 | for channel in range(self.nChannels): |
|
577 | 578 | daux = self.data_spc[channel, |
|
578 | 579 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
579 | 580 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
580 | 581 | |
|
581 | 582 | return noise |
|
582 | 583 | |
|
583 | 584 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
584 | 585 | |
|
585 |
if self.noise |
|
|
586 | if self.spc_noise is not None: | |
|
587 | # this was estimated by getNoise Operation defined in jroproc_parameters.py | |
|
588 | return self.spc_noise | |
|
589 | elif self.noise_estimation is not None: | |
|
586 | 590 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
587 | 591 | return self.noise_estimation |
|
588 | 592 | else: |
|
589 | 593 | noise = self.getNoisebyHildebrand( |
|
590 | 594 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
591 | 595 | return noise |
|
592 | 596 | |
|
593 | 597 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
594 | 598 | |
|
595 | 599 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
596 | 600 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
597 | 601 | |
|
598 | 602 | return freqrange |
|
599 | 603 | |
|
600 | 604 | def getAcfRange(self, extrapoints=0): |
|
601 | 605 | |
|
602 | 606 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
603 | 607 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
604 | 608 | |
|
605 | 609 | return freqrange |
|
606 | 610 | |
|
607 | 611 | def getFreqRange(self, extrapoints=0): |
|
608 | 612 | |
|
609 | 613 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
610 | 614 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
611 | 615 | |
|
612 | 616 | return freqrange |
|
613 | 617 | |
|
614 | 618 | def getVelRange(self, extrapoints=0): |
|
615 | 619 | |
|
616 | 620 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
617 | 621 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
618 | 622 | |
|
619 | 623 | if self.nmodes: |
|
620 | 624 | return velrange / self.nmodes |
|
621 | 625 | else: |
|
622 | 626 | return velrange |
|
623 | 627 | |
|
624 | 628 | @property |
|
625 | 629 | def nPairs(self): |
|
626 | 630 | |
|
627 | 631 | return len(self.pairsList) |
|
628 | 632 | |
|
629 | 633 | @property |
|
630 | 634 | def pairsIndexList(self): |
|
631 | 635 | |
|
632 | 636 | return list(range(self.nPairs)) |
|
633 | 637 | |
|
634 | 638 | @property |
|
635 | 639 | def normFactor(self): |
|
636 | 640 | |
|
637 | 641 | pwcode = 1 |
|
638 | 642 | |
|
639 | 643 | if self.flagDecodeData: |
|
640 | 644 | pwcode = numpy.sum(self.code[0] ** 2) |
|
641 | 645 | # normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
642 | 646 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
643 | 647 | |
|
644 | 648 | return normFactor |
|
645 | 649 | |
|
646 | 650 | @property |
|
647 | 651 | def flag_cspc(self): |
|
648 | 652 | |
|
649 | 653 | if self.data_cspc is None: |
|
650 | 654 | return True |
|
651 | 655 | |
|
652 | 656 | return False |
|
653 | 657 | |
|
654 | 658 | @property |
|
655 | 659 | def flag_dc(self): |
|
656 | 660 | |
|
657 | 661 | if self.data_dc is None: |
|
658 | 662 | return True |
|
659 | 663 | |
|
660 | 664 | return False |
|
661 | 665 | |
|
662 | 666 | @property |
|
663 | 667 | def timeInterval(self): |
|
664 | 668 | |
|
665 | 669 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
666 | 670 | if self.nmodes: |
|
667 | 671 | return self.nmodes * timeInterval |
|
668 | 672 | else: |
|
669 | 673 | return timeInterval |
|
670 | 674 | |
|
671 | 675 | def getPower(self): |
|
672 | 676 | |
|
673 | 677 | factor = self.normFactor |
|
674 | 678 | z = self.data_spc / factor |
|
675 | 679 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
676 | 680 | avg = numpy.average(z, axis=1) |
|
677 | 681 | |
|
678 | 682 | return 10 * numpy.log10(avg) |
|
679 | 683 | |
|
680 | 684 | def getCoherence(self, pairsList=None, phase=False): |
|
681 | 685 | |
|
682 | 686 | z = [] |
|
683 | 687 | if pairsList is None: |
|
684 | 688 | pairsIndexList = self.pairsIndexList |
|
685 | 689 | else: |
|
686 | 690 | pairsIndexList = [] |
|
687 | 691 | for pair in pairsList: |
|
688 | 692 | if pair not in self.pairsList: |
|
689 | 693 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
690 | 694 | pair)) |
|
691 | 695 | pairsIndexList.append(self.pairsList.index(pair)) |
|
692 | 696 | for i in range(len(pairsIndexList)): |
|
693 | 697 | pair = self.pairsList[pairsIndexList[i]] |
|
694 | 698 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
695 | 699 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
696 | 700 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
697 | 701 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
698 | 702 | if phase: |
|
699 | 703 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
700 | 704 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
701 | 705 | else: |
|
702 | 706 | data = numpy.abs(avgcoherenceComplex) |
|
703 | 707 | |
|
704 | 708 | z.append(data) |
|
705 | 709 | |
|
706 | 710 | return numpy.array(z) |
|
707 | 711 | |
|
708 | 712 | def setValue(self, value): |
|
709 | 713 | |
|
710 | 714 | print("This property should not be initialized") |
|
711 | 715 | |
|
712 | 716 | return |
|
713 | 717 | |
|
714 | 718 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
715 | 719 | |
|
716 | 720 | |
|
717 | 721 | class SpectraHeis(Spectra): |
|
718 | 722 | |
|
719 | 723 | def __init__(self): |
|
720 | 724 | |
|
721 | 725 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
722 | 726 | self.systemHeaderObj = SystemHeader() |
|
723 | 727 | self.type = "SpectraHeis" |
|
724 | 728 | self.nProfiles = None |
|
725 | 729 | self.heightList = None |
|
726 | 730 | self.channelList = None |
|
727 | 731 | self.flagNoData = True |
|
728 | 732 | self.flagDiscontinuousBlock = False |
|
729 | 733 | self.utctime = None |
|
730 | 734 | self.blocksize = None |
|
731 | 735 | self.profileIndex = 0 |
|
732 | 736 | self.nCohInt = 1 |
|
733 | 737 | self.nIncohInt = 1 |
|
734 | 738 | |
|
735 | 739 | @property |
|
736 | 740 | def normFactor(self): |
|
737 | 741 | pwcode = 1 |
|
738 | 742 | if self.flagDecodeData: |
|
739 | 743 | pwcode = numpy.sum(self.code[0] ** 2) |
|
740 | 744 | |
|
741 | 745 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
742 | 746 | |
|
743 | 747 | return normFactor |
|
744 | 748 | |
|
745 | 749 | @property |
|
746 | 750 | def timeInterval(self): |
|
747 | 751 | |
|
748 | 752 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
749 | 753 | |
|
750 | 754 | |
|
751 | 755 | class Fits(JROData): |
|
752 | 756 | |
|
753 | 757 | def __init__(self): |
|
754 | 758 | |
|
755 | 759 | self.type = "Fits" |
|
756 | 760 | self.nProfiles = None |
|
757 | 761 | self.heightList = None |
|
758 | 762 | self.channelList = None |
|
759 | 763 | self.flagNoData = True |
|
760 | 764 | self.utctime = None |
|
761 | 765 | self.nCohInt = 1 |
|
762 | 766 | self.nIncohInt = 1 |
|
763 | 767 | self.useLocalTime = True |
|
764 | 768 | self.profileIndex = 0 |
|
765 | 769 | self.timeZone = 0 |
|
766 | 770 | |
|
767 | 771 | def getTimeRange(self): |
|
768 | 772 | |
|
769 | 773 | datatime = [] |
|
770 | 774 | |
|
771 | 775 | datatime.append(self.ltctime) |
|
772 | 776 | datatime.append(self.ltctime + self.timeInterval) |
|
773 | 777 | |
|
774 | 778 | datatime = numpy.array(datatime) |
|
775 | 779 | |
|
776 | 780 | return datatime |
|
777 | 781 | |
|
778 | 782 | def getChannelIndexList(self): |
|
779 | 783 | |
|
780 | 784 | return list(range(self.nChannels)) |
|
781 | 785 | |
|
782 | 786 | def getNoise(self, type=1): |
|
783 | 787 | |
|
784 | 788 | |
|
785 | 789 | if type == 1: |
|
786 | 790 | noise = self.getNoisebyHildebrand() |
|
787 | 791 | |
|
788 | 792 | if type == 2: |
|
789 | 793 | noise = self.getNoisebySort() |
|
790 | 794 | |
|
791 | 795 | if type == 3: |
|
792 | 796 | noise = self.getNoisebyWindow() |
|
793 | 797 | |
|
794 | 798 | return noise |
|
795 | 799 | |
|
796 | 800 | @property |
|
797 | 801 | def timeInterval(self): |
|
798 | 802 | |
|
799 | 803 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
800 | 804 | |
|
801 | 805 | return timeInterval |
|
802 | 806 | |
|
803 | 807 | @property |
|
804 | 808 | def ippSeconds(self): |
|
805 | 809 | ''' |
|
806 | 810 | ''' |
|
807 | 811 | return self.ipp_sec |
|
808 | 812 | |
|
809 | 813 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
810 | 814 | |
|
811 | 815 | |
|
812 | 816 | class Correlation(JROData): |
|
813 | 817 | |
|
814 | 818 | def __init__(self): |
|
815 | 819 | ''' |
|
816 | 820 | Constructor |
|
817 | 821 | ''' |
|
818 | 822 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
819 | 823 | self.systemHeaderObj = SystemHeader() |
|
820 | 824 | self.type = "Correlation" |
|
821 | 825 | self.data = None |
|
822 | 826 | self.dtype = None |
|
823 | 827 | self.nProfiles = None |
|
824 | 828 | self.heightList = None |
|
825 | 829 | self.channelList = None |
|
826 | 830 | self.flagNoData = True |
|
827 | 831 | self.flagDiscontinuousBlock = False |
|
828 | 832 | self.utctime = None |
|
829 | 833 | self.timeZone = 0 |
|
830 | 834 | self.dstFlag = None |
|
831 | 835 | self.errorCount = None |
|
832 | 836 | self.blocksize = None |
|
833 | 837 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
834 | 838 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
835 | 839 | self.pairsList = None |
|
836 | 840 | self.nPoints = None |
|
837 | 841 | |
|
838 | 842 | def getPairsList(self): |
|
839 | 843 | |
|
840 | 844 | return self.pairsList |
|
841 | 845 | |
|
842 | 846 | def getNoise(self, mode=2): |
|
843 | 847 | |
|
844 | 848 | indR = numpy.where(self.lagR == 0)[0][0] |
|
845 | 849 | indT = numpy.where(self.lagT == 0)[0][0] |
|
846 | 850 | |
|
847 | 851 | jspectra0 = self.data_corr[:, :, indR, :] |
|
848 | 852 | jspectra = copy.copy(jspectra0) |
|
849 | 853 | |
|
850 | 854 | num_chan = jspectra.shape[0] |
|
851 | 855 | num_hei = jspectra.shape[2] |
|
852 | 856 | |
|
853 | 857 | freq_dc = jspectra.shape[1] / 2 |
|
854 | 858 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
855 | 859 | |
|
856 | 860 | if ind_vel[0] < 0: |
|
857 | 861 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
858 | 862 | range(0, 1))] + self.num_prof |
|
859 | 863 | |
|
860 | 864 | if mode == 1: |
|
861 | 865 | jspectra[:, freq_dc, :] = ( |
|
862 | 866 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
863 | 867 | |
|
864 | 868 | if mode == 2: |
|
865 | 869 | |
|
866 | 870 | vel = numpy.array([-2, -1, 1, 2]) |
|
867 | 871 | xx = numpy.zeros([4, 4]) |
|
868 | 872 | |
|
869 | 873 | for fil in range(4): |
|
870 | 874 | xx[fil, :] = vel[fil] ** numpy.asarray(list(range(4))) |
|
871 | 875 | |
|
872 | 876 | xx_inv = numpy.linalg.inv(xx) |
|
873 | 877 | xx_aux = xx_inv[0, :] |
|
874 | 878 | |
|
875 | 879 | for ich in range(num_chan): |
|
876 | 880 | yy = jspectra[ich, ind_vel, :] |
|
877 | 881 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
878 | 882 | |
|
879 | 883 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
880 | 884 | cjunkid = sum(junkid) |
|
881 | 885 | |
|
882 | 886 | if cjunkid.any(): |
|
883 | 887 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
884 | 888 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
885 | 889 | |
|
886 | 890 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
887 | 891 | |
|
888 | 892 | return noise |
|
889 | 893 | |
|
890 | 894 | @property |
|
891 | 895 | def timeInterval(self): |
|
892 | 896 | |
|
893 | 897 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
894 | 898 | |
|
895 | 899 | def splitFunctions(self): |
|
896 | 900 | |
|
897 | 901 | pairsList = self.pairsList |
|
898 | 902 | ccf_pairs = [] |
|
899 | 903 | acf_pairs = [] |
|
900 | 904 | ccf_ind = [] |
|
901 | 905 | acf_ind = [] |
|
902 | 906 | for l in range(len(pairsList)): |
|
903 | 907 | chan0 = pairsList[l][0] |
|
904 | 908 | chan1 = pairsList[l][1] |
|
905 | 909 | |
|
906 | 910 | # Obteniendo pares de Autocorrelacion |
|
907 | 911 | if chan0 == chan1: |
|
908 | 912 | acf_pairs.append(chan0) |
|
909 | 913 | acf_ind.append(l) |
|
910 | 914 | else: |
|
911 | 915 | ccf_pairs.append(pairsList[l]) |
|
912 | 916 | ccf_ind.append(l) |
|
913 | 917 | |
|
914 | 918 | data_acf = self.data_cf[acf_ind] |
|
915 | 919 | data_ccf = self.data_cf[ccf_ind] |
|
916 | 920 | |
|
917 | 921 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
918 | 922 | |
|
919 | 923 | @property |
|
920 | 924 | def normFactor(self): |
|
921 | 925 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
922 | 926 | acf_pairs = numpy.array(acf_pairs) |
|
923 | 927 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
924 | 928 | |
|
925 | 929 | for p in range(self.nPairs): |
|
926 | 930 | pair = self.pairsList[p] |
|
927 | 931 | |
|
928 | 932 | ch0 = pair[0] |
|
929 | 933 | ch1 = pair[1] |
|
930 | 934 | |
|
931 | 935 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
932 | 936 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
933 | 937 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
934 | 938 | |
|
935 | 939 | return normFactor |
|
936 | 940 | |
|
937 | 941 | |
|
938 | 942 | class Parameters(Spectra): |
|
939 | 943 | |
|
940 | 944 | groupList = None # List of Pairs, Groups, etc |
|
941 | 945 | data_param = None # Parameters obtained |
|
942 | 946 | data_pre = None # Data Pre Parametrization |
|
943 | 947 | data_SNR = None # Signal to Noise Ratio |
|
944 | 948 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
945 | 949 | utctimeInit = None # Initial UTC time |
|
946 | 950 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
947 | 951 | useLocalTime = True |
|
948 | 952 | # Fitting |
|
949 | 953 | data_error = None # Error of the estimation |
|
950 | 954 | constants = None |
|
951 | 955 | library = None |
|
952 | 956 | # Output signal |
|
953 | 957 | outputInterval = None # Time interval to calculate output signal in seconds |
|
954 | 958 | data_output = None # Out signal |
|
955 | 959 | nAvg = None |
|
956 | 960 | noise_estimation = None |
|
957 | 961 | GauSPC = None # Fit gaussian SPC |
|
962 | spc_noise = None | |
|
958 | 963 | |
|
959 | 964 | def __init__(self): |
|
960 | 965 | ''' |
|
961 | 966 | Constructor |
|
962 | 967 | ''' |
|
963 | 968 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
964 | 969 | self.systemHeaderObj = SystemHeader() |
|
965 | 970 | self.type = "Parameters" |
|
966 | 971 | self.timeZone = 0 |
|
967 | 972 | self.ippFactor = 1 |
|
968 | 973 | |
|
969 | 974 | def getTimeRange1(self, interval): |
|
970 | 975 | |
|
971 | 976 | datatime = [] |
|
972 | 977 | |
|
973 | 978 | if self.useLocalTime: |
|
974 | 979 | time1 = self.utctimeInit - self.timeZone * 60 |
|
975 | 980 | else: |
|
976 | 981 | time1 = self.utctimeInit |
|
977 | 982 | |
|
978 | 983 | datatime.append(time1) |
|
979 | 984 | datatime.append(time1 + interval) |
|
980 | 985 | datatime = numpy.array(datatime) |
|
981 | 986 | |
|
982 | 987 | return datatime |
|
983 | 988 | |
|
984 | 989 | @property |
|
985 | 990 | def timeInterval(self): |
|
986 | 991 | |
|
987 | 992 | if hasattr(self, 'timeInterval1'): |
|
988 | 993 | return self.timeInterval1 |
|
989 | 994 | else: |
|
990 | 995 | return self.paramInterval |
|
991 | 996 | |
|
992 | 997 | |
|
993 | 998 | def setValue(self, value): |
|
994 | 999 | |
|
995 | 1000 | print("This property should not be initialized") |
|
996 | 1001 | |
|
997 | 1002 | return |
|
998 | 1003 | |
|
999 | def getNoise(self): | |
|
1000 | ||
|
1001 | return self.spc_noise | |
|
1002 | ||
|
1003 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
|
1004 | ||
|
1005 | 1004 | |
|
1006 | 1005 | class PlotterData(object): |
|
1007 | 1006 | ''' |
|
1008 | 1007 | Object to hold data to be plotted |
|
1009 | 1008 | ''' |
|
1010 | 1009 | |
|
1011 | 1010 | MAXNUMX = 200 |
|
1012 | 1011 | MAXNUMY = 200 |
|
1013 | 1012 | |
|
1014 | 1013 | def __init__(self, code, exp_code, localtime=True): |
|
1015 | 1014 | |
|
1016 | 1015 | self.key = code |
|
1017 | 1016 | self.exp_code = exp_code |
|
1018 | 1017 | self.ready = False |
|
1019 | 1018 | self.flagNoData = False |
|
1020 | 1019 | self.localtime = localtime |
|
1021 | 1020 | self.data = {} |
|
1022 | 1021 | self.meta = {} |
|
1023 | 1022 | self.__heights = [] |
|
1024 | 1023 | |
|
1025 | 1024 | def __str__(self): |
|
1026 | 1025 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1027 | 1026 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
1028 | 1027 | |
|
1029 | 1028 | def __len__(self): |
|
1030 | 1029 | return len(self.data) |
|
1031 | 1030 | |
|
1032 | 1031 | def __getitem__(self, key): |
|
1033 | 1032 | if isinstance(key, int): |
|
1034 | 1033 | return self.data[self.times[key]] |
|
1035 | 1034 | elif isinstance(key, str): |
|
1036 | 1035 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
1037 | 1036 | if ret.ndim > 1: |
|
1038 | 1037 | ret = numpy.swapaxes(ret, 0, 1) |
|
1039 | 1038 | return ret |
|
1040 | 1039 | |
|
1041 | 1040 | def __contains__(self, key): |
|
1042 | 1041 | return key in self.data[self.min_time] |
|
1043 | 1042 | |
|
1044 | 1043 | def setup(self): |
|
1045 | 1044 | ''' |
|
1046 | 1045 | Configure object |
|
1047 | 1046 | ''' |
|
1048 | 1047 | self.type = '' |
|
1049 | 1048 | self.ready = False |
|
1050 | 1049 | del self.data |
|
1051 | 1050 | self.data = {} |
|
1052 | 1051 | self.__heights = [] |
|
1053 | 1052 | self.__all_heights = set() |
|
1054 | 1053 | |
|
1055 | 1054 | def shape(self, key): |
|
1056 | 1055 | ''' |
|
1057 | 1056 | Get the shape of the one-element data for the given key |
|
1058 | 1057 | ''' |
|
1059 | 1058 | |
|
1060 | 1059 | if len(self.data[self.min_time][key]): |
|
1061 | 1060 | return self.data[self.min_time][key].shape |
|
1062 | 1061 | return (0,) |
|
1063 | 1062 | |
|
1064 | 1063 | def update(self, data, tm, meta={}): |
|
1065 | 1064 | ''' |
|
1066 | 1065 | Update data object with new dataOut |
|
1067 | 1066 | ''' |
|
1068 | 1067 | |
|
1069 | 1068 | self.data[tm] = data |
|
1070 | 1069 | |
|
1071 | 1070 | for key, value in meta.items(): |
|
1072 | 1071 | setattr(self, key, value) |
|
1073 | 1072 | |
|
1074 | 1073 | def normalize_heights(self): |
|
1075 | 1074 | ''' |
|
1076 | 1075 | Ensure same-dimension of the data for different heighList |
|
1077 | 1076 | ''' |
|
1078 | 1077 | |
|
1079 | 1078 | H = numpy.array(list(self.__all_heights)) |
|
1080 | 1079 | H.sort() |
|
1081 | 1080 | for key in self.data: |
|
1082 | 1081 | shape = self.shape(key)[:-1] + H.shape |
|
1083 | 1082 | for tm, obj in list(self.data[key].items()): |
|
1084 | 1083 | h = self.__heights[self.times.tolist().index(tm)] |
|
1085 | 1084 | if H.size == h.size: |
|
1086 | 1085 | continue |
|
1087 | 1086 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1088 | 1087 | dummy = numpy.zeros(shape) + numpy.nan |
|
1089 | 1088 | if len(shape) == 2: |
|
1090 | 1089 | dummy[:, index] = obj |
|
1091 | 1090 | else: |
|
1092 | 1091 | dummy[index] = obj |
|
1093 | 1092 | self.data[key][tm] = dummy |
|
1094 | 1093 | |
|
1095 | 1094 | self.__heights = [H for tm in self.times] |
|
1096 | 1095 | |
|
1097 | 1096 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1098 | 1097 | ''' |
|
1099 | 1098 | Convert data to json |
|
1100 | 1099 | ''' |
|
1101 | 1100 | |
|
1102 | 1101 | meta = {} |
|
1103 | 1102 | meta['xrange'] = [] |
|
1104 | 1103 | dy = int(len(self.yrange) / self.MAXNUMY) + 1 |
|
1105 | 1104 | tmp = self.data[tm][self.key] |
|
1106 | 1105 | shape = tmp.shape |
|
1107 | 1106 | if len(shape) == 2: |
|
1108 | 1107 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1109 | 1108 | elif len(shape) == 3: |
|
1110 | 1109 | dx = int(self.data[tm][self.key].shape[1] / self.MAXNUMX) + 1 |
|
1111 | 1110 | data = self.roundFloats( |
|
1112 | 1111 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1113 | 1112 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1114 | 1113 | else: |
|
1115 | 1114 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1116 | 1115 | |
|
1117 | 1116 | ret = { |
|
1118 | 1117 | 'plot': plot_name, |
|
1119 | 1118 | 'code': self.exp_code, |
|
1120 | 1119 | 'time': float(tm), |
|
1121 | 1120 | 'data': data, |
|
1122 | 1121 | } |
|
1123 | 1122 | meta['type'] = plot_type |
|
1124 | 1123 | meta['interval'] = float(self.interval) |
|
1125 | 1124 | meta['localtime'] = self.localtime |
|
1126 | 1125 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1127 | 1126 | meta.update(self.meta) |
|
1128 | 1127 | ret['metadata'] = meta |
|
1129 | 1128 | return json.dumps(ret) |
|
1130 | 1129 | |
|
1131 | 1130 | @property |
|
1132 | 1131 | def times(self): |
|
1133 | 1132 | ''' |
|
1134 | 1133 | Return the list of times of the current data |
|
1135 | 1134 | ''' |
|
1136 | 1135 | |
|
1137 | 1136 | ret = [t for t in self.data] |
|
1138 | 1137 | ret.sort() |
|
1139 | 1138 | return numpy.array(ret) |
|
1140 | 1139 | |
|
1141 | 1140 | @property |
|
1142 | 1141 | def min_time(self): |
|
1143 | 1142 | ''' |
|
1144 | 1143 | Return the minimun time value |
|
1145 | 1144 | ''' |
|
1146 | 1145 | |
|
1147 | 1146 | return self.times[0] |
|
1148 | 1147 | |
|
1149 | 1148 | @property |
|
1150 | 1149 | def max_time(self): |
|
1151 | 1150 | ''' |
|
1152 | 1151 | Return the maximun time value |
|
1153 | 1152 | ''' |
|
1154 | 1153 | |
|
1155 | 1154 | return self.times[-1] |
|
1156 | 1155 | |
|
1157 | 1156 | # @property |
|
1158 | 1157 | # def heights(self): |
|
1159 | 1158 | # ''' |
|
1160 | 1159 | # Return the list of heights of the current data |
|
1161 | 1160 | # ''' |
|
1162 | 1161 | |
|
1163 | 1162 | # return numpy.array(self.__heights[-1]) |
|
1164 | 1163 | |
|
1165 | 1164 | @staticmethod |
|
1166 | 1165 | def roundFloats(obj): |
|
1167 | 1166 | if isinstance(obj, list): |
|
1168 | 1167 | return list(map(PlotterData.roundFloats, obj)) |
|
1169 | 1168 | elif isinstance(obj, float): |
|
1170 | 1169 | return round(obj, 2) |
@@ -1,873 +1,873 | |||
|
1 | 1 | import os |
|
2 | 2 | import time |
|
3 | 3 | import datetime |
|
4 | 4 | |
|
5 | 5 | import numpy |
|
6 | 6 | import h5py |
|
7 | 7 | |
|
8 | 8 | import schainpy.admin |
|
9 | 9 | from schainpy.model.data.jrodata import * |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class HDFReader(Reader, ProcessingUnit): |
|
16 | 16 | """Processing unit to read HDF5 format files |
|
17 | 17 | |
|
18 | 18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
19 | 19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
20 | 20 | attributes. |
|
21 | 21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
22 | 22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
23 | 23 | |
|
24 | 24 | Parameters: |
|
25 | 25 | ----------- |
|
26 | 26 | path : str |
|
27 | 27 | Path where files are located. |
|
28 | 28 | startDate : date |
|
29 | 29 | Start date of the files |
|
30 | 30 | endDate : list |
|
31 | 31 | End date of the files |
|
32 | 32 | startTime : time |
|
33 | 33 | Start time of the files |
|
34 | 34 | endTime : time |
|
35 | 35 | End time of the files |
|
36 | 36 | description : dict, optional |
|
37 | 37 | Dictionary with the description of the HDF5 file |
|
38 | 38 | extras : dict, optional |
|
39 | 39 | Dictionary with extra metadata to be be added to `dataOut` |
|
40 | 40 | |
|
41 | 41 | Examples |
|
42 | 42 | -------- |
|
43 | 43 | |
|
44 | 44 | desc = { |
|
45 | 45 | 'Data': { |
|
46 | 46 | 'data_output': ['u', 'v', 'w'], |
|
47 | 47 | 'utctime': 'timestamps', |
|
48 | 48 | } , |
|
49 | 49 | 'Metadata': { |
|
50 | 50 | 'heightList': 'heights' |
|
51 | 51 | } |
|
52 | 52 | } |
|
53 | 53 | |
|
54 | 54 | desc = { |
|
55 | 55 | 'Data': { |
|
56 | 56 | 'data_output': 'winds', |
|
57 | 57 | 'utctime': 'timestamps' |
|
58 | 58 | }, |
|
59 | 59 | 'Metadata': { |
|
60 | 60 | 'heightList': 'heights' |
|
61 | 61 | } |
|
62 | 62 | } |
|
63 | 63 | |
|
64 | 64 | extras = { |
|
65 | 65 | 'timeZone': 300 |
|
66 | 66 | } |
|
67 | 67 | |
|
68 | 68 | reader = project.addReadUnit( |
|
69 | 69 | name='HDFReader', |
|
70 | 70 | path='/path/to/files', |
|
71 | 71 | startDate='2019/01/01', |
|
72 | 72 | endDate='2019/01/31', |
|
73 | 73 | startTime='00:00:00', |
|
74 | 74 | endTime='23:59:59', |
|
75 | 75 | # description=json.dumps(desc), |
|
76 | 76 | # extras=json.dumps(extras), |
|
77 | 77 | ) |
|
78 | 78 | |
|
79 | 79 | """ |
|
80 | 80 | |
|
81 | 81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
82 | 82 | |
|
83 | 83 | def __init__(self): |
|
84 | 84 | ProcessingUnit.__init__(self) |
|
85 | 85 | self.dataOut = Parameters() |
|
86 | 86 | self.ext = ".hdf5" |
|
87 | 87 | self.optchar = "D" |
|
88 | 88 | self.meta = {} |
|
89 | 89 | self.data = {} |
|
90 | 90 | self.open_file = h5py.File |
|
91 | 91 | self.open_mode = 'r' |
|
92 | 92 | self.description = {} |
|
93 | 93 | self.extras = {} |
|
94 | 94 | self.filefmt = "*%Y%j***" |
|
95 | 95 | self.folderfmt = "*%Y%j" |
|
96 | 96 | self.utcoffset = 0 |
|
97 | 97 | |
|
98 | 98 | def setup(self, **kwargs): |
|
99 | 99 | |
|
100 | 100 | self.set_kwargs(**kwargs) |
|
101 | 101 | if not self.ext.startswith('.'): |
|
102 | 102 | self.ext = '.{}'.format(self.ext) |
|
103 | 103 | |
|
104 | 104 | if self.online: |
|
105 | 105 | log.log("Searching files in online mode...", self.name) |
|
106 | 106 | |
|
107 | 107 | for nTries in range(self.nTries): |
|
108 | 108 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
109 | 109 | self.endDate, self.expLabel, self.ext, self.walk, |
|
110 | 110 | self.filefmt, self.folderfmt) |
|
111 | 111 | try: |
|
112 | 112 | fullpath = next(fullpath) |
|
113 | 113 | except: |
|
114 | 114 | fullpath = None |
|
115 | 115 | |
|
116 | 116 | if fullpath: |
|
117 | 117 | break |
|
118 | 118 | |
|
119 | 119 | log.warning( |
|
120 | 120 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
121 | 121 | self.delay, self.path, nTries + 1), |
|
122 | 122 | self.name) |
|
123 | 123 | time.sleep(self.delay) |
|
124 | 124 | |
|
125 | 125 | if not(fullpath): |
|
126 | 126 | raise schainpy.admin.SchainError( |
|
127 | 127 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
128 | 128 | |
|
129 | 129 | pathname, filename = os.path.split(fullpath) |
|
130 | 130 | self.year = int(filename[1:5]) |
|
131 | 131 | self.doy = int(filename[5:8]) |
|
132 | 132 | self.set = int(filename[8:11]) - 1 |
|
133 | 133 | else: |
|
134 | 134 | log.log("Searching files in {}".format(self.path), self.name) |
|
135 | 135 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
136 | 136 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
137 | 137 | |
|
138 | 138 | self.setNextFile() |
|
139 | 139 | |
|
140 | 140 | return |
|
141 | 141 | |
|
142 | 142 | def readFirstHeader(self): |
|
143 | 143 | '''Read metadata and data''' |
|
144 | 144 | |
|
145 | 145 | self.__readMetadata() |
|
146 | 146 | self.__readData() |
|
147 | self.__setBlockList() | |
|
148 | ||
|
149 | if 'type' in self.meta: | |
|
150 | self.dataOut = eval(self.meta['type'])() | |
|
147 | self.__setBlockList() | |
|
151 | 148 | |
|
152 | 149 | for attr in self.meta: |
|
153 | 150 | setattr(self.dataOut, attr, self.meta[attr]) |
|
154 | 151 | |
|
155 | 152 | self.blockIndex = 0 |
|
156 | 153 | |
|
157 | 154 | return |
|
158 | 155 | |
|
159 | 156 | def __setBlockList(self): |
|
160 | 157 | ''' |
|
161 | 158 | Selects the data within the times defined |
|
162 | 159 | |
|
163 | 160 | self.fp |
|
164 | 161 | self.startTime |
|
165 | 162 | self.endTime |
|
166 | 163 | self.blockList |
|
167 | 164 | self.blocksPerFile |
|
168 | 165 | |
|
169 | 166 | ''' |
|
170 | 167 | |
|
171 | 168 | startTime = self.startTime |
|
172 | 169 | endTime = self.endTime |
|
173 | 170 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
174 | 171 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
175 | 172 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
176 | 173 | |
|
177 | 174 | thisDate = thisDatetime.date() |
|
178 | 175 | thisTime = thisDatetime.time() |
|
179 | 176 | |
|
180 | 177 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
181 | 178 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
182 | 179 | |
|
183 | 180 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
184 | 181 | |
|
185 | 182 | self.blockList = ind |
|
186 | 183 | self.blocksPerFile = len(ind) |
|
187 | 184 | return |
|
188 | 185 | |
|
189 | 186 | def __readMetadata(self): |
|
190 | 187 | ''' |
|
191 | 188 | Reads Metadata |
|
192 | 189 | ''' |
|
193 | 190 | |
|
194 | 191 | meta = {} |
|
195 | 192 | |
|
196 | 193 | if self.description: |
|
197 | 194 | for key, value in self.description['Metadata'].items(): |
|
198 | 195 | meta[key] = self.fp[value][()] |
|
199 | 196 | else: |
|
200 | 197 | grp = self.fp['Metadata'] |
|
201 | 198 | for name in grp: |
|
202 | 199 | meta[name] = grp[name][()] |
|
203 | 200 | |
|
204 | 201 | if self.extras: |
|
205 | 202 | for key, value in self.extras.items(): |
|
206 | 203 | meta[key] = value |
|
207 | 204 | self.meta = meta |
|
208 | 205 | |
|
209 | 206 | return |
|
210 | 207 | |
|
211 | 208 | def __readData(self): |
|
212 | 209 | |
|
213 | 210 | data = {} |
|
214 | 211 | |
|
215 | 212 | if self.description: |
|
216 | 213 | for key, value in self.description['Data'].items(): |
|
217 | 214 | if isinstance(value, str): |
|
218 | 215 | if isinstance(self.fp[value], h5py.Dataset): |
|
219 | 216 | data[key] = self.fp[value][()] |
|
220 | 217 | elif isinstance(self.fp[value], h5py.Group): |
|
221 | 218 | array = [] |
|
222 | 219 | for ch in self.fp[value]: |
|
223 | 220 | array.append(self.fp[value][ch][()]) |
|
224 | 221 | data[key] = numpy.array(array) |
|
225 | 222 | elif isinstance(value, list): |
|
226 | 223 | array = [] |
|
227 | 224 | for ch in value: |
|
228 | 225 | array.append(self.fp[ch][()]) |
|
229 | 226 | data[key] = numpy.array(array) |
|
230 | 227 | else: |
|
231 | 228 | grp = self.fp['Data'] |
|
232 | 229 | for name in grp: |
|
233 | 230 | if isinstance(grp[name], h5py.Dataset): |
|
234 | 231 | array = grp[name][()] |
|
235 | 232 | elif isinstance(grp[name], h5py.Group): |
|
236 | 233 | array = [] |
|
237 | 234 | for ch in grp[name]: |
|
238 | 235 | array.append(grp[name][ch][()]) |
|
239 | 236 | array = numpy.array(array) |
|
240 | 237 | else: |
|
241 | 238 | log.warning('Unknown type: {}'.format(name)) |
|
242 | 239 | |
|
243 | 240 | if name in self.description: |
|
244 | 241 | key = self.description[name] |
|
245 | 242 | else: |
|
246 | 243 | key = name |
|
247 | 244 | data[key] = array |
|
248 | 245 | |
|
249 | 246 | self.data = data |
|
250 | 247 | return |
|
251 | 248 | |
|
252 | 249 | def getData(self): |
|
253 | 250 | |
|
254 | 251 | for attr in self.data: |
|
255 | 252 | if self.data[attr].ndim == 1: |
|
256 | 253 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
257 | 254 | else: |
|
258 | 255 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
259 | 256 | |
|
260 | 257 | self.dataOut.flagNoData = False |
|
261 | 258 | self.blockIndex += 1 |
|
262 | 259 | |
|
263 | 260 | log.log("Block No. {}/{} -> {}".format( |
|
264 | 261 | self.blockIndex, |
|
265 | 262 | self.blocksPerFile, |
|
266 | 263 | self.dataOut.datatime.ctime()), self.name) |
|
267 | 264 | |
|
268 | 265 | return |
|
269 | 266 | |
|
270 | 267 | def run(self, **kwargs): |
|
271 | 268 | |
|
272 | 269 | if not(self.isConfig): |
|
273 | 270 | self.setup(**kwargs) |
|
274 | 271 | self.isConfig = True |
|
275 | 272 | |
|
276 | 273 | if self.blockIndex == self.blocksPerFile: |
|
277 | 274 | self.setNextFile() |
|
278 | 275 | |
|
279 | 276 | self.getData() |
|
280 | 277 | |
|
278 | if 'type' in self.meta: | |
|
279 | self.dataOut.type = self.meta['type'].decode('utf-8') | |
|
280 | ||
|
281 | 281 | return |
|
282 | 282 | |
|
283 | 283 | @MPDecorator |
|
284 | 284 | class HDFWriter(Operation): |
|
285 | 285 | """Operation to write HDF5 files. |
|
286 | 286 | |
|
287 | 287 | The HDF5 file contains by default two groups Data and Metadata where |
|
288 | 288 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
289 | 289 | parameters, data attributes are normaly time dependent where the metadata |
|
290 | 290 | are not. |
|
291 | 291 | It is possible to customize the structure of the HDF5 file with the |
|
292 | 292 | optional description parameter see the examples. |
|
293 | 293 | |
|
294 | 294 | Parameters: |
|
295 | 295 | ----------- |
|
296 | 296 | path : str |
|
297 | 297 | Path where files will be saved. |
|
298 | 298 | blocksPerFile : int |
|
299 | 299 | Number of blocks per file |
|
300 | 300 | metadataList : list |
|
301 | 301 | List of the dataOut attributes that will be saved as metadata |
|
302 | 302 | dataList : int |
|
303 | 303 | List of the dataOut attributes that will be saved as data |
|
304 | 304 | setType : bool |
|
305 | 305 | If True the name of the files corresponds to the timestamp of the data |
|
306 | 306 | description : dict, optional |
|
307 | 307 | Dictionary with the desired description of the HDF5 file |
|
308 | 308 | |
|
309 | 309 | Examples |
|
310 | 310 | -------- |
|
311 | 311 | |
|
312 | 312 | desc = { |
|
313 | 313 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
314 | 314 | 'utctime': 'timestamps', |
|
315 | 315 | 'heightList': 'heights' |
|
316 | 316 | } |
|
317 | 317 | desc = { |
|
318 | 318 | 'data_output': ['z', 'w', 'v'], |
|
319 | 319 | 'utctime': 'timestamps', |
|
320 | 320 | 'heightList': 'heights' |
|
321 | 321 | } |
|
322 | 322 | desc = { |
|
323 | 323 | 'Data': { |
|
324 | 324 | 'data_output': 'winds', |
|
325 | 325 | 'utctime': 'timestamps' |
|
326 | 326 | }, |
|
327 | 327 | 'Metadata': { |
|
328 | 328 | 'heightList': 'heights' |
|
329 | 329 | } |
|
330 | 330 | } |
|
331 | 331 | |
|
332 | 332 | writer = proc_unit.addOperation(name='HDFWriter') |
|
333 | 333 | writer.addParameter(name='path', value='/path/to/file') |
|
334 | 334 | writer.addParameter(name='blocksPerFile', value='32') |
|
335 | 335 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
336 | 336 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
337 | 337 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
338 | 338 | |
|
339 | 339 | """ |
|
340 | 340 | |
|
341 | 341 | ext = ".hdf5" |
|
342 | 342 | optchar = "D" |
|
343 | 343 | filename = None |
|
344 | 344 | path = None |
|
345 | 345 | setFile = None |
|
346 | 346 | fp = None |
|
347 | 347 | firsttime = True |
|
348 | 348 | # Configurations |
|
349 | 349 | blocksPerFile = None |
|
350 | 350 | blockIndex = None |
|
351 | 351 | dataOut = None |
|
352 | 352 | # Data Arrays |
|
353 | 353 | dataList = None |
|
354 | 354 | metadataList = None |
|
355 | 355 | currentDay = None |
|
356 | 356 | lastTime = None |
|
357 | 357 | |
|
358 | 358 | def __init__(self): |
|
359 | 359 | |
|
360 | 360 | Operation.__init__(self) |
|
361 | 361 | return |
|
362 | 362 | |
|
363 | 363 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None): |
|
364 | 364 | self.path = path |
|
365 | 365 | self.blocksPerFile = blocksPerFile |
|
366 | 366 | self.metadataList = metadataList |
|
367 | 367 | self.dataList = [s.strip() for s in dataList] |
|
368 | 368 | self.setType = setType |
|
369 | 369 | self.description = description |
|
370 | 370 | |
|
371 | 371 | if self.metadataList is None: |
|
372 | 372 | self.metadataList = self.dataOut.metadata_list |
|
373 | 373 | |
|
374 | 374 | tableList = [] |
|
375 | 375 | dsList = [] |
|
376 | 376 | |
|
377 | 377 | for i in range(len(self.dataList)): |
|
378 | 378 | dsDict = {} |
|
379 | 379 | if hasattr(self.dataOut, self.dataList[i]): |
|
380 | 380 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
381 | 381 | dsDict['variable'] = self.dataList[i] |
|
382 | 382 | else: |
|
383 | 383 | log.warning('Attribute {} not found in dataOut', self.name) |
|
384 | 384 | continue |
|
385 | 385 | |
|
386 | 386 | if dataAux is None: |
|
387 | 387 | continue |
|
388 | 388 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
389 | 389 | dsDict['nDim'] = 0 |
|
390 | 390 | else: |
|
391 | 391 | dsDict['nDim'] = len(dataAux.shape) |
|
392 | 392 | dsDict['shape'] = dataAux.shape |
|
393 | 393 | dsDict['dsNumber'] = dataAux.shape[0] |
|
394 | 394 | dsDict['dtype'] = dataAux.dtype |
|
395 | 395 | |
|
396 | 396 | dsList.append(dsDict) |
|
397 | 397 | |
|
398 | 398 | self.dsList = dsList |
|
399 | 399 | self.currentDay = self.dataOut.datatime.date() |
|
400 | 400 | |
|
401 | 401 | def timeFlag(self): |
|
402 | 402 | currentTime = self.dataOut.utctime |
|
403 | 403 | timeTuple = time.localtime(currentTime) |
|
404 | 404 | dataDay = timeTuple.tm_yday |
|
405 | 405 | |
|
406 | 406 | if self.lastTime is None: |
|
407 | 407 | self.lastTime = currentTime |
|
408 | 408 | self.currentDay = dataDay |
|
409 | 409 | return False |
|
410 | 410 | |
|
411 | 411 | timeDiff = currentTime - self.lastTime |
|
412 | 412 | |
|
413 | 413 | # Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
414 | 414 | if dataDay != self.currentDay: |
|
415 | 415 | self.currentDay = dataDay |
|
416 | 416 | return True |
|
417 | 417 | elif timeDiff > 3 * 60 * 60: |
|
418 | 418 | self.lastTime = currentTime |
|
419 | 419 | return True |
|
420 | 420 | else: |
|
421 | 421 | self.lastTime = currentTime |
|
422 | 422 | return False |
|
423 | 423 | |
|
424 | 424 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
425 | 425 | dataList=[], setType=None, description={}): |
|
426 | 426 | |
|
427 | 427 | self.dataOut = dataOut |
|
428 | 428 | if not(self.isConfig): |
|
429 | 429 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
430 | 430 | metadataList=metadataList, dataList=dataList, |
|
431 | 431 | setType=setType, description=description) |
|
432 | 432 | |
|
433 | 433 | self.isConfig = True |
|
434 | 434 | self.setNextFile() |
|
435 | 435 | |
|
436 | 436 | self.putData() |
|
437 | 437 | return |
|
438 | 438 | |
|
439 | 439 | def setNextFile(self): |
|
440 | 440 | |
|
441 | 441 | ext = self.ext |
|
442 | 442 | path = self.path |
|
443 | 443 | setFile = self.setFile |
|
444 | 444 | |
|
445 | 445 | timeTuple = time.localtime(self.dataOut.utctime) |
|
446 | 446 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year, timeTuple.tm_yday) |
|
447 | 447 | fullpath = os.path.join(path, subfolder) |
|
448 | 448 | |
|
449 | 449 | if os.path.exists(fullpath): |
|
450 | 450 | filesList = os.listdir(fullpath) |
|
451 | 451 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
452 | 452 | if len(filesList) > 0: |
|
453 | 453 | filesList = sorted(filesList, key=str.lower) |
|
454 | 454 | filen = filesList[-1] |
|
455 | 455 | # el filename debera tener el siguiente formato |
|
456 | 456 | # 0 1234 567 89A BCDE (hex) |
|
457 | 457 | # x YYYY DDD SSS .ext |
|
458 | 458 | if isNumber(filen[8:11]): |
|
459 | 459 | setFile = int(filen[8:11]) # inicializo mi contador de seteo al seteo del ultimo file |
|
460 | 460 | else: |
|
461 | 461 | setFile = -1 |
|
462 | 462 | else: |
|
463 | 463 | setFile = -1 # inicializo mi contador de seteo |
|
464 | 464 | else: |
|
465 | 465 | os.makedirs(fullpath) |
|
466 | 466 | setFile = -1 # inicializo mi contador de seteo |
|
467 | 467 | |
|
468 | 468 | if self.setType is None: |
|
469 | 469 | setFile += 1 |
|
470 | 470 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
471 | 471 | timeTuple.tm_year, |
|
472 | 472 | timeTuple.tm_yday, |
|
473 | 473 | setFile, |
|
474 | 474 | ext) |
|
475 | 475 | else: |
|
476 | 476 | setFile = timeTuple.tm_hour * 60 + timeTuple.tm_min |
|
477 | 477 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
478 | 478 | timeTuple.tm_year, |
|
479 | 479 | timeTuple.tm_yday, |
|
480 | 480 | setFile, |
|
481 | 481 | ext) |
|
482 | 482 | |
|
483 | 483 | self.filename = os.path.join(path, subfolder, file) |
|
484 | 484 | |
|
485 | 485 | # Setting HDF5 File |
|
486 | 486 | self.fp = h5py.File(self.filename, 'w') |
|
487 | 487 | # write metadata |
|
488 | 488 | self.writeMetadata(self.fp) |
|
489 | 489 | # Write data |
|
490 | 490 | self.writeData(self.fp) |
|
491 | 491 | |
|
492 | 492 | def getLabel(self, name, x=None): |
|
493 | 493 | |
|
494 | 494 | if x is None: |
|
495 | 495 | if 'Data' in self.description: |
|
496 | 496 | data = self.description['Data'] |
|
497 | 497 | if 'Metadata' in self.description: |
|
498 | 498 | data.update(self.description['Metadata']) |
|
499 | 499 | else: |
|
500 | 500 | data = self.description |
|
501 | 501 | if name in data: |
|
502 | 502 | if isinstance(data[name], str): |
|
503 | 503 | return data[name] |
|
504 | 504 | elif isinstance(data[name], list): |
|
505 | 505 | return None |
|
506 | 506 | elif isinstance(data[name], dict): |
|
507 | 507 | for key, value in data[name].items(): |
|
508 | 508 | return key |
|
509 | 509 | return name |
|
510 | 510 | else: |
|
511 | 511 | if 'Metadata' in self.description: |
|
512 | 512 | meta = self.description['Metadata'] |
|
513 | 513 | else: |
|
514 | 514 | meta = self.description |
|
515 | 515 | if name in meta: |
|
516 | 516 | if isinstance(meta[name], list): |
|
517 | 517 | return meta[name][x] |
|
518 | 518 | elif isinstance(meta[name], dict): |
|
519 | 519 | for key, value in meta[name].items(): |
|
520 | 520 | return value[x] |
|
521 | 521 | if 'cspc' in name: |
|
522 | 522 | return 'pair{:02d}'.format(x) |
|
523 | 523 | else: |
|
524 | 524 | return 'channel{:02d}'.format(x) |
|
525 | 525 | |
|
526 | 526 | def writeMetadata(self, fp): |
|
527 | 527 | |
|
528 | 528 | if self.description: |
|
529 | 529 | if 'Metadata' in self.description: |
|
530 | 530 | grp = fp.create_group('Metadata') |
|
531 | 531 | else: |
|
532 | 532 | grp = fp |
|
533 | 533 | else: |
|
534 | 534 | grp = fp.create_group('Metadata') |
|
535 | 535 | |
|
536 | 536 | for i in range(len(self.metadataList)): |
|
537 | 537 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
538 | 538 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
539 | 539 | continue |
|
540 | 540 | value = getattr(self.dataOut, self.metadataList[i]) |
|
541 | 541 | if isinstance(value, bool): |
|
542 | 542 | if value is True: |
|
543 | 543 | value = 1 |
|
544 | 544 | else: |
|
545 | 545 | value = 0 |
|
546 | 546 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
547 | 547 | return |
|
548 | 548 | |
|
549 | 549 | def writeData(self, fp): |
|
550 | 550 | |
|
551 | 551 | if self.description: |
|
552 | 552 | if 'Data' in self.description: |
|
553 | 553 | grp = fp.create_group('Data') |
|
554 | 554 | else: |
|
555 | 555 | grp = fp |
|
556 | 556 | else: |
|
557 | 557 | grp = fp.create_group('Data') |
|
558 | 558 | |
|
559 | 559 | dtsets = [] |
|
560 | 560 | data = [] |
|
561 | 561 | |
|
562 | 562 | for dsInfo in self.dsList: |
|
563 | 563 | if dsInfo['nDim'] == 0: |
|
564 | 564 | ds = grp.create_dataset( |
|
565 | 565 | self.getLabel(dsInfo['variable']), |
|
566 | 566 | (self.blocksPerFile,), |
|
567 | 567 | chunks=True, |
|
568 | 568 | dtype=numpy.float64) |
|
569 | 569 | dtsets.append(ds) |
|
570 | 570 | data.append((dsInfo['variable'], -1)) |
|
571 | 571 | else: |
|
572 | 572 | label = self.getLabel(dsInfo['variable']) |
|
573 | 573 | if label is not None: |
|
574 | 574 | sgrp = grp.create_group(label) |
|
575 | 575 | else: |
|
576 | 576 | sgrp = grp |
|
577 | 577 | for i in range(dsInfo['dsNumber']): |
|
578 | 578 | ds = sgrp.create_dataset( |
|
579 | 579 | self.getLabel(dsInfo['variable'], i), |
|
580 | 580 | (self.blocksPerFile,) + dsInfo['shape'][1:], |
|
581 | 581 | chunks=True, |
|
582 | 582 | dtype=dsInfo['dtype']) |
|
583 | 583 | dtsets.append(ds) |
|
584 | 584 | data.append((dsInfo['variable'], i)) |
|
585 | 585 | fp.flush() |
|
586 | 586 | |
|
587 | 587 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
588 | 588 | |
|
589 | 589 | self.ds = dtsets |
|
590 | 590 | self.data = data |
|
591 | 591 | self.firsttime = True |
|
592 | 592 | self.blockIndex = 0 |
|
593 | 593 | return |
|
594 | 594 | |
|
595 | 595 | def putData(self): |
|
596 | 596 | |
|
597 | 597 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
598 | 598 | self.closeFile() |
|
599 | 599 | self.setNextFile() |
|
600 | 600 | |
|
601 | 601 | for i, ds in enumerate(self.ds): |
|
602 | 602 | attr, ch = self.data[i] |
|
603 | 603 | if ch == -1: |
|
604 | 604 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
605 | 605 | else: |
|
606 | 606 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
607 | 607 | |
|
608 | 608 | self.fp.flush() |
|
609 | 609 | self.blockIndex += 1 |
|
610 | 610 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
611 | 611 | |
|
612 | 612 | return |
|
613 | 613 | |
|
614 | 614 | def closeFile(self): |
|
615 | 615 | |
|
616 | 616 | if self.blockIndex != self.blocksPerFile: |
|
617 | 617 | for ds in self.ds: |
|
618 | 618 | ds.resize(self.blockIndex, axis=0) |
|
619 | 619 | |
|
620 | 620 | if self.fp: |
|
621 | 621 | self.fp.flush() |
|
622 | 622 | self.fp.close() |
|
623 | 623 | |
|
624 | 624 | def close(self): |
|
625 | 625 | |
|
626 | 626 | self.closeFile() |
|
627 | 627 | |
|
628 | 628 | |
|
629 | 629 | @MPDecorator |
|
630 | 630 | class ASCIIWriter(Operation): |
|
631 | 631 | """Operation to write data in ascii files. |
|
632 | 632 | |
|
633 | 633 | Parameters: |
|
634 | 634 | ----------- |
|
635 | 635 | path : str |
|
636 | 636 | Path where files will be saved. |
|
637 | 637 | blocksPerFile : int |
|
638 | 638 | Number of blocks per file |
|
639 | 639 | metadataList : list |
|
640 | 640 | List of the dataOut attributes that will be saved as metadata |
|
641 | 641 | dataDict : dict |
|
642 | 642 | Dictionary with the varaibles to be saved |
|
643 | 643 | setType : bool |
|
644 | 644 | If True the name of the files corresponds to the timestamp of the data |
|
645 | 645 | |
|
646 | 646 | Examples |
|
647 | 647 | -------- |
|
648 | 648 | |
|
649 | 649 | data = { |
|
650 | 650 | 'data_output': ['z', 'w', 'v'], |
|
651 | 651 | 'utctime': 'time', |
|
652 | 652 | 'heightList': 'height' |
|
653 | 653 | } |
|
654 | 654 | |
|
655 | 655 | writer = proc_unit.addOperation(name='ASCIIWriter') |
|
656 | 656 | writer.addParameter(name='path', value='/path/to/file') |
|
657 | 657 | writer.addParameter(name='blocksPerFile', value='32') |
|
658 | 658 | writer.addParameter(name='dataDict',value=json.dumps(data)) |
|
659 | 659 | |
|
660 | 660 | """ |
|
661 | 661 | |
|
662 | 662 | ext = ".txt" |
|
663 | 663 | optchar = "D" |
|
664 | 664 | filename = None |
|
665 | 665 | path = None |
|
666 | 666 | setFile = None |
|
667 | 667 | fp = None |
|
668 | 668 | firsttime = True |
|
669 | 669 | # Configurations |
|
670 | 670 | blocksPerFile = None |
|
671 | 671 | blockIndex = None |
|
672 | 672 | dataOut = None |
|
673 | 673 | # Data Arrays |
|
674 | 674 | dataDict = None |
|
675 | 675 | metadataList = None |
|
676 | 676 | currentDay = None |
|
677 | 677 | lastTime = None |
|
678 | 678 | localtime = True |
|
679 | 679 | |
|
680 | 680 | def __init__(self): |
|
681 | 681 | |
|
682 | 682 | Operation.__init__(self) |
|
683 | 683 | return |
|
684 | 684 | |
|
685 | 685 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataDict=None, setType=None, localtime=True): |
|
686 | 686 | self.path = path |
|
687 | 687 | self.blocksPerFile = blocksPerFile |
|
688 | 688 | self.metadataList = metadataList |
|
689 | 689 | self.dataDict = dataDict |
|
690 | 690 | self.setType = setType |
|
691 | 691 | self.localtime = localtime |
|
692 | 692 | |
|
693 | 693 | if self.metadataList is None: |
|
694 | 694 | self.metadataList = self.dataOut.metadata_list |
|
695 | 695 | |
|
696 | 696 | dsList = [] |
|
697 | 697 | |
|
698 | 698 | for key, value in self.dataDict.items(): |
|
699 | 699 | dsDict = {} |
|
700 | 700 | if hasattr(self.dataOut, key): |
|
701 | 701 | dataAux = getattr(self.dataOut, key) |
|
702 | 702 | dsDict['variable'] = key |
|
703 | 703 | else: |
|
704 | 704 | log.warning('Attribute {} not found in dataOut', self.name) |
|
705 | 705 | continue |
|
706 | 706 | |
|
707 | 707 | if dataAux is None: |
|
708 | 708 | continue |
|
709 | 709 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
710 | 710 | dsDict['nDim'] = 0 |
|
711 | 711 | else: |
|
712 | 712 | dsDict['nDim'] = len(dataAux.shape) |
|
713 | 713 | dsDict['shape'] = dataAux.shape |
|
714 | 714 | dsDict['dsNumber'] = dataAux.shape[0] |
|
715 | 715 | dsDict['dtype'] = dataAux.dtype |
|
716 | 716 | |
|
717 | 717 | dsList.append(dsDict) |
|
718 | 718 | self.dsList = dsList |
|
719 | 719 | self.currentDay = self.dataOut.datatime.date() |
|
720 | 720 | |
|
721 | 721 | def timeFlag(self): |
|
722 | 722 | currentTime = self.dataOut.utctime |
|
723 | 723 | if self.localtime: |
|
724 | 724 | timeTuple = time.localtime(currentTime) |
|
725 | 725 | else: |
|
726 | 726 | timeTuple = time.gmtime(currentTime) |
|
727 | 727 | |
|
728 | 728 | dataDay = timeTuple.tm_yday |
|
729 | 729 | |
|
730 | 730 | if self.lastTime is None: |
|
731 | 731 | self.lastTime = currentTime |
|
732 | 732 | self.currentDay = dataDay |
|
733 | 733 | return False |
|
734 | 734 | |
|
735 | 735 | timeDiff = currentTime - self.lastTime |
|
736 | 736 | |
|
737 | 737 | # Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
738 | 738 | if dataDay != self.currentDay: |
|
739 | 739 | self.currentDay = dataDay |
|
740 | 740 | return True |
|
741 | 741 | elif timeDiff > 3 * 60 * 60: |
|
742 | 742 | self.lastTime = currentTime |
|
743 | 743 | return True |
|
744 | 744 | else: |
|
745 | 745 | self.lastTime = currentTime |
|
746 | 746 | return False |
|
747 | 747 | |
|
748 | 748 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
749 | 749 | dataDict={}, setType=None, localtime=True): |
|
750 | 750 | |
|
751 | 751 | self.dataOut = dataOut |
|
752 | 752 | if not(self.isConfig): |
|
753 | 753 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
754 | 754 | metadataList=metadataList, dataDict=dataDict, |
|
755 | 755 | setType=setType, localtime=localtime) |
|
756 | 756 | |
|
757 | 757 | self.isConfig = True |
|
758 | 758 | self.setNextFile() |
|
759 | 759 | |
|
760 | 760 | self.putData() |
|
761 | 761 | return |
|
762 | 762 | |
|
763 | 763 | def setNextFile(self): |
|
764 | 764 | |
|
765 | 765 | ext = self.ext |
|
766 | 766 | path = self.path |
|
767 | 767 | setFile = self.setFile |
|
768 | 768 | if self.localtime: |
|
769 | 769 | timeTuple = time.localtime(self.dataOut.utctime) |
|
770 | 770 | else: |
|
771 | 771 | timeTuple = time.gmtime(self.dataOut.utctime) |
|
772 | 772 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year, timeTuple.tm_yday) |
|
773 | 773 | fullpath = os.path.join(path, subfolder) |
|
774 | 774 | |
|
775 | 775 | if os.path.exists(fullpath): |
|
776 | 776 | filesList = os.listdir(fullpath) |
|
777 | 777 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
778 | 778 | if len(filesList) > 0: |
|
779 | 779 | filesList = sorted(filesList, key=str.lower) |
|
780 | 780 | filen = filesList[-1] |
|
781 | 781 | # el filename debera tener el siguiente formato |
|
782 | 782 | # 0 1234 567 89A BCDE (hex) |
|
783 | 783 | # x YYYY DDD SSS .ext |
|
784 | 784 | if isNumber(filen[8:11]): |
|
785 | 785 | setFile = int(filen[8:11]) # inicializo mi contador de seteo al seteo del ultimo file |
|
786 | 786 | else: |
|
787 | 787 | setFile = -1 |
|
788 | 788 | else: |
|
789 | 789 | setFile = -1 # inicializo mi contador de seteo |
|
790 | 790 | else: |
|
791 | 791 | os.makedirs(fullpath) |
|
792 | 792 | setFile = -1 # inicializo mi contador de seteo |
|
793 | 793 | |
|
794 | 794 | if self.setType is None: |
|
795 | 795 | setFile += 1 |
|
796 | 796 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
797 | 797 | timeTuple.tm_year, |
|
798 | 798 | timeTuple.tm_yday, |
|
799 | 799 | setFile, |
|
800 | 800 | ext) |
|
801 | 801 | else: |
|
802 | 802 | setFile = timeTuple.tm_hour * 60 + timeTuple.tm_min |
|
803 | 803 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
804 | 804 | timeTuple.tm_year, |
|
805 | 805 | timeTuple.tm_yday, |
|
806 | 806 | setFile, |
|
807 | 807 | ext) |
|
808 | 808 | |
|
809 | 809 | self.filename = os.path.join(path, subfolder, file) |
|
810 | 810 | |
|
811 | 811 | # Setting HDF5 File |
|
812 | 812 | self.fp = open(self.filename, 'w') |
|
813 | 813 | # write metadata |
|
814 | 814 | self.writeMetadata(self.fp) |
|
815 | 815 | # Write data |
|
816 | 816 | self.writeData(self.fp) |
|
817 | 817 | |
|
818 | 818 | def writeMetadata(self, fp): |
|
819 | 819 | |
|
820 | 820 | line = '' |
|
821 | 821 | for d in self.dsList: |
|
822 | 822 | par = self.dataDict[d['variable']] |
|
823 | 823 | if isinstance(par, (list,tuple)): |
|
824 | 824 | for p in par: |
|
825 | 825 | line += '{:>16}'.format(p) |
|
826 | 826 | else: |
|
827 | 827 | line += '{:>16}'.format(par) |
|
828 | 828 | |
|
829 | 829 | line += '\n' |
|
830 | 830 | fp.write(line) |
|
831 | 831 | |
|
832 | 832 | def writeData(self, fp): |
|
833 | 833 | |
|
834 | 834 | log.log('Creating file: {}'.format(self.filename), self.name) |
|
835 | 835 | |
|
836 | 836 | self.firsttime = True |
|
837 | 837 | self.blockIndex = 0 |
|
838 | 838 | return |
|
839 | 839 | |
|
840 | 840 | def putData(self): |
|
841 | 841 | |
|
842 | 842 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
843 | 843 | self.closeFile() |
|
844 | 844 | self.setNextFile() |
|
845 | 845 | |
|
846 | 846 | line = '' |
|
847 | 847 | for j in range(len(self.dataOut.heightList)): |
|
848 | 848 | for ds in self.dsList: |
|
849 | 849 | par = self.dataDict[ds['variable']] |
|
850 | 850 | if ds['nDim'] == 2: |
|
851 | 851 | for i in range(len(par)): |
|
852 | 852 | line += '{:>16}'.format('%8.2f' % getattr(self.dataOut, ds['variable'])[i][j]) |
|
853 | 853 | elif ds['nDim'] == 1: |
|
854 | 854 | line += '{:>16}'.format('%8.2f' % getattr(self.dataOut, ds['variable'])[j]) |
|
855 | 855 | else: |
|
856 | 856 | line += '{:>16}'.format('%8.2f' % getattr(self.dataOut, ds['variable'])) |
|
857 | 857 | |
|
858 | 858 | line += '\n' |
|
859 | 859 | self.fp.write(line) |
|
860 | 860 | |
|
861 | 861 | self.blockIndex += 1 |
|
862 | 862 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
863 | 863 | |
|
864 | 864 | return |
|
865 | 865 | |
|
866 | 866 | def closeFile(self): |
|
867 | 867 | |
|
868 | 868 | if self.fp: |
|
869 | 869 | self.fp.close() |
|
870 | 870 | |
|
871 | 871 | def close(self): |
|
872 | 872 | |
|
873 | 873 | self.closeFile() |
General Comments 0
You need to be logged in to leave comments.
Login now