@@ -111,8 +111,8 class MomentsPlot(Figure): | |||
|
111 | 111 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
112 | 112 | |
|
113 | 113 | factor = dataOut.normFactor |
|
114 |
x = dataOut.abscissa |
|
|
115 |
y = dataOut.height |
|
|
114 | x = dataOut.abscissaList | |
|
115 | y = dataOut.heightList | |
|
116 | 116 | |
|
117 | 117 | z = dataOut.data_pre[channelIndexList,:,:]/factor |
|
118 | 118 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
@@ -452,8 +452,8 class WindProfilerPlot(Figure): | |||
|
452 | 452 | tmax = None |
|
453 | 453 | |
|
454 | 454 | x = dataOut.getTimeRange1() |
|
455 |
# y = dataOut.height |
|
|
456 |
y = dataOut.height |
|
|
455 | # y = dataOut.heightList | |
|
456 | y = dataOut.heightList | |
|
457 | 457 | |
|
458 | 458 | z = dataOut.data_output.copy() |
|
459 | 459 | nplots = z.shape[0] #Number of wind dimensions estimated |
@@ -649,8 +649,8 class ParametersPlot(Figure): | |||
|
649 | 649 | |
|
650 | 650 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
651 | 651 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, |
|
652 |
|
|
|
653 | zlabel = "", parameterName = "", | |
|
652 | parameterIndex = None, onlyPositive = False, | |
|
653 | zlabel = "", parameterName = "", parameterObject = "data_param", | |
|
654 | 654 | save=False, figpath='', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
655 | 655 | server=None, folder=None, username=None, password=None, |
|
656 | 656 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
@@ -671,27 +671,25 class ParametersPlot(Figure): | |||
|
671 | 671 | zmax : None |
|
672 | 672 | """ |
|
673 | 673 | |
|
674 | data_param = getattr(dataOut, parameterObject) | |
|
675 | ||
|
674 | 676 | if channelList == None: |
|
675 |
channelIndexList = |
|
|
677 | channelIndexList = numpy.arange(data_param.shape[0]) | |
|
676 | 678 | else: |
|
677 |
channelIndexList = |
|
|
678 | for channel in channelList: | |
|
679 | if channel not in dataOut.channelList: | |
|
680 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
|
681 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
682 | ||
|
679 | channelIndexList = numpy.array(channelIndexList) | |
|
680 | ||
|
683 | 681 | if timerange != None: |
|
684 | 682 | self.timerange = timerange |
|
685 | 683 | |
|
686 | 684 | #tmin = None |
|
687 | 685 | #tmax = None |
|
688 | if paramIndex == None: | |
|
689 | paramIndex = 1 | |
|
686 | if parameterIndex == None: | |
|
687 | parameterIndex = 1 | |
|
690 | 688 | x = dataOut.getTimeRange1() |
|
691 |
y = dataOut.height |
|
|
692 |
z = |
|
|
689 | y = dataOut.heightList | |
|
690 | z = data_param[channelIndexList,parameterIndex,:].copy() | |
|
693 | 691 | |
|
694 |
zRange = dataOut.abscissa |
|
|
692 | zRange = dataOut.abscissaList | |
|
695 | 693 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
696 | 694 | # thisDatetime = dataOut.datatime |
|
697 | 695 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1]) |
@@ -718,10 +716,6 class ParametersPlot(Figure): | |||
|
718 | 716 | if ymax == None: ymax = numpy.nanmax(y) |
|
719 | 717 | if zmin == None: zmin = numpy.nanmin(zRange) |
|
720 | 718 | if zmax == None: zmax = numpy.nanmax(zRange) |
|
721 | ||
|
722 | if dataOut.data_SNR != None: | |
|
723 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) | |
|
724 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) | |
|
725 | 719 | |
|
726 | 720 | self.FTP_WEI = ftp_wei |
|
727 | 721 | self.EXP_CODE = exp_code |
@@ -862,7 +856,7 class SpectralFittingPlot(Figure): | |||
|
862 | 856 | cutHeight = dataOut.heightList[heightindex] |
|
863 | 857 | |
|
864 | 858 | factor = dataOut.normFactor |
|
865 |
x = dataOut.abscissa |
|
|
859 | x = dataOut.abscissaList[:-1] | |
|
866 | 860 | #y = dataOut.getHeiRange() |
|
867 | 861 | |
|
868 | 862 | z = dataOut.data_pre[:,:,heightindex]/factor |
@@ -1037,15 +1031,6 class EWDriftsPlot(Figure): | |||
|
1037 | 1031 | zmax : None |
|
1038 | 1032 | """ |
|
1039 | 1033 | |
|
1040 | if channelList == None: | |
|
1041 | channelIndexList = dataOut.channelIndexList | |
|
1042 | else: | |
|
1043 | channelIndexList = [] | |
|
1044 | for channel in channelList: | |
|
1045 | if channel not in dataOut.channelList: | |
|
1046 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
|
1047 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
1048 | ||
|
1049 | 1034 | if timerange != None: |
|
1050 | 1035 | self.timerange = timerange |
|
1051 | 1036 | |
@@ -1053,7 +1038,7 class EWDriftsPlot(Figure): | |||
|
1053 | 1038 | tmax = None |
|
1054 | 1039 | |
|
1055 | 1040 | x = dataOut.getTimeRange1() |
|
1056 |
# y = dataOut.height |
|
|
1041 | # y = dataOut.heightList | |
|
1057 | 1042 | y = dataOut.heightList |
|
1058 | 1043 | |
|
1059 | 1044 | z = dataOut.data_output |
@@ -1081,7 +1066,7 class EWDriftsPlot(Figure): | |||
|
1081 | 1066 | |
|
1082 | 1067 | showprofile = False |
|
1083 | 1068 | # thisDatetime = dataOut.datatime |
|
1084 |
thisDatetime = datetime.datetime.utcfromtimestamp( |
|
|
1069 | thisDatetime = datetime.datetime.utcfromtimestamp(x[1]) | |
|
1085 | 1070 | title = wintitle + " EW Drifts" |
|
1086 | 1071 | xlabel = "" |
|
1087 | 1072 | ylabel = "Height (Km)" |
@@ -17,38 +17,59 class HDF5Reader(ProcessingUnit): | |||
|
17 | 17 | |
|
18 | 18 | timezone = None |
|
19 | 19 | |
|
20 | secStart = None | |
|
21 | ||
|
22 | secEnd = None | |
|
23 | ||
|
20 | 24 | fileIndex = None |
|
21 | 25 | |
|
22 | 26 | blockIndex = None |
|
23 | 27 | |
|
28 | blocksPerFile = None | |
|
29 | ||
|
24 | 30 | path = None |
|
25 | 31 | |
|
32 | #List of Files | |
|
33 | ||
|
34 | filenameList = None | |
|
35 | ||
|
36 | datetimeList = None | |
|
37 | ||
|
26 | 38 | #Hdf5 File |
|
27 | 39 | |
|
28 | 40 | fpMetadata = None |
|
29 | 41 | |
|
42 | pathMeta = None | |
|
43 | ||
|
30 | 44 | listMetaname = None |
|
31 | 45 | |
|
32 |
listMeta |
|
|
46 | listMeta = None | |
|
33 | 47 | |
|
34 |
|
|
|
48 | listDataname = None | |
|
35 | 49 | |
|
36 | #dataOut reconstruction | |
|
50 | listData = None | |
|
37 | 51 | |
|
52 | listShapes = None | |
|
38 | 53 | |
|
39 |
|
|
|
54 | fp = None | |
|
40 | 55 | |
|
41 | nChannels = None #Dimension 0 | |
|
56 | #dataOut reconstruction | |
|
42 | 57 | |
|
43 | nPoints = None #Dimension 1, number of Points or Parameters | |
|
58 | dataOut = None | |
|
44 | 59 | |
|
45 | nSamples = None #Dimension 2, number of samples or ranges | |
|
60 | nRecords = None | |
|
46 | 61 | |
|
47 | 62 | |
|
48 | 63 | def __init__(self): |
|
49 | ||
|
64 | self.dataOut = self.__createObjByDefault() | |
|
50 | 65 | return |
|
66 | ||
|
67 | def __createObjByDefault(self): | |
|
51 | 68 | |
|
69 | dataObj = Parameters() | |
|
70 | ||
|
71 | return dataObj | |
|
72 | ||
|
52 | 73 | def setup(self,path=None, |
|
53 | 74 | startDate=None, |
|
54 | 75 | endDate=None, |
@@ -66,11 +87,18 class HDF5Reader(ProcessingUnit): | |||
|
66 | 87 | # self.all = all |
|
67 | 88 | # self.online = online |
|
68 | 89 | self.path = path |
|
69 |
|
|
|
90 | ||
|
91 | startDateTime = datetime.datetime.combine(startDate,startTime) | |
|
92 | endDateTime = datetime.datetime.combine(endDate,endTime) | |
|
93 | secStart = (startDateTime-datetime.datetime(1970,1,1)).total_seconds() | |
|
94 | secEnd = (endDateTime-datetime.datetime(1970,1,1)).total_seconds() | |
|
95 | ||
|
96 | self.secStart = secStart | |
|
97 | self.secEnd = secEnd | |
|
70 | 98 | |
|
71 | 99 | if not(online): |
|
72 | 100 | #Busqueda de archivos offline |
|
73 | self.__searchFilesOffline(path, startDate, endDate, ext, startTime, endTime, walk) | |
|
101 | self.__searchFilesOffline(path, startDate, endDate, ext, startTime, endTime, secStart, secEnd, walk) | |
|
74 | 102 | else: |
|
75 | 103 | self.__searchFilesOnline(path, walk) |
|
76 | 104 | |
@@ -97,6 +125,8 class HDF5Reader(ProcessingUnit): | |||
|
97 | 125 | ext, |
|
98 | 126 | startTime=datetime.time(0,0,0), |
|
99 | 127 | endTime=datetime.time(23,59,59), |
|
128 | secStart = 0, | |
|
129 | secEnd = numpy.inf, | |
|
100 | 130 | walk=True): |
|
101 | 131 | |
|
102 | 132 | # self.__setParameters(path, startDate, endDate, startTime, endTime, walk) |
@@ -181,7 +211,7 class HDF5Reader(ProcessingUnit): | |||
|
181 | 211 | for file in fileList: |
|
182 | 212 | |
|
183 | 213 | filename = os.path.join(thisPath,file) |
|
184 |
thisDatetime = self.__isFileinThisTime(filename, start |
|
|
214 | thisDatetime = self.__isFileinThisTime(filename, secStart, secEnd) | |
|
185 | 215 | |
|
186 | 216 | if not(thisDatetime): |
|
187 | 217 | continue |
@@ -204,7 +234,7 class HDF5Reader(ProcessingUnit): | |||
|
204 | 234 | |
|
205 | 235 | return pathList, filenameList |
|
206 | 236 | |
|
207 |
def __isFileinThisTime(self, filename, start |
|
|
237 | def __isFileinThisTime(self, filename, startSeconds, endSeconds): | |
|
208 | 238 | """ |
|
209 | 239 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
210 | 240 | |
@@ -224,8 +254,7 class HDF5Reader(ProcessingUnit): | |||
|
224 | 254 | Si la cabecera no puede ser leida. |
|
225 | 255 | |
|
226 | 256 | """ |
|
227 | ||
|
228 | ||
|
257 | ||
|
229 | 258 | try: |
|
230 | 259 | fp = fp = h5py.File(filename,'r') |
|
231 | 260 | except IOError: |
@@ -233,21 +262,20 class HDF5Reader(ProcessingUnit): | |||
|
233 | 262 | raise IOError, "The file %s can't be opened" %(filename) |
|
234 | 263 | |
|
235 | 264 | grp = fp['Data'] |
|
236 | time = grp['time'] | |
|
237 | time0 = time[:][0] | |
|
265 | timeAux = grp['time'] | |
|
266 | time0 = timeAux[:][0].astype(numpy.float) #Time Vector | |
|
238 | 267 | |
|
239 | 268 | fp.close() |
|
240 | 269 | |
|
241 | thisDatetime = datetime.datetime.utcfromtimestamp(time0) | |
|
242 | ||
|
243 | 270 | if self.timezone == 'lt': |
|
244 | thisDatetime = thisDatetime - datetime.timedelta(minutes = 300) | |
|
245 | ||
|
246 | thisTime = thisDatetime.time() | |
|
247 | ||
|
248 | if not ((startTime <= thisTime) and (endTime > thisTime)): | |
|
271 | time0 -= 5*3600 | |
|
272 | ||
|
273 | boolTimer = numpy.logical_and(time0 >= startSeconds,time0 < endSeconds) | |
|
274 | ||
|
275 | if not (numpy.any(boolTimer)): | |
|
249 | 276 | return None |
|
250 | 277 | |
|
278 | thisDatetime = datetime.datetime.utcfromtimestamp(time0[0]) | |
|
251 | 279 | return thisDatetime |
|
252 | 280 | |
|
253 | 281 | def __checkPath(self): |
@@ -264,7 +292,6 class HDF5Reader(ProcessingUnit): | |||
|
264 | 292 | idFile += 1 |
|
265 | 293 | |
|
266 | 294 | if not(idFile < len(self.filenameList)): |
|
267 | self.flagNoMoreFiles = 1 | |
|
268 | 295 | print "No more Files" |
|
269 | 296 | return 0 |
|
270 | 297 | |
@@ -281,12 +308,57 class HDF5Reader(ProcessingUnit): | |||
|
281 | 308 | print "Setting the file: %s"%self.filename |
|
282 | 309 | |
|
283 | 310 | self.__readMetadata() |
|
284 | ||
|
311 | self.__setBlockList() | |
|
312 | # self.nRecords = self.fp['Data'].attrs['blocksPerFile'] | |
|
313 | self.nRecords = self.fp['Data'].attrs['nRecords'] | |
|
314 | self.blockIndex = 0 | |
|
285 | 315 | return 1 |
|
286 | 316 | |
|
317 | def __setBlockList(self): | |
|
318 | ''' | |
|
319 | self.fp | |
|
320 | self.startDateTime | |
|
321 | self.endDateTime | |
|
322 | ||
|
323 | self.blockList | |
|
324 | self.blocksPerFile | |
|
325 | ||
|
326 | ''' | |
|
327 | filePointer = self.fp | |
|
328 | secStart = self.secStart | |
|
329 | secEnd = self.secEnd | |
|
330 | ||
|
331 | grp = filePointer['Data'] | |
|
332 | timeVector = grp['time'].value.astype(numpy.float)[0] | |
|
333 | ||
|
334 | if self.timezone == 'lt': | |
|
335 | timeVector -= 5*3600 | |
|
336 | ||
|
337 | ind = numpy.where(numpy.logical_and(timeVector >= secStart , timeVector < secEnd))[0] | |
|
338 | ||
|
339 | self.blockList = ind | |
|
340 | self.blocksPerFile = len(ind) | |
|
341 | ||
|
342 | return | |
|
343 | ||
|
287 | 344 | def __readMetadata(self): |
|
345 | ''' | |
|
346 | self.pathMeta | |
|
347 | ||
|
348 | self.listShapes | |
|
349 | self.listMetaname | |
|
350 | self.listMeta | |
|
351 | ||
|
352 | ''' | |
|
353 | ||
|
288 | 354 | grp = self.fp['Data'] |
|
289 |
|
|
|
355 | pathMeta = os.path.join(self.path, grp.attrs['metadata']) | |
|
356 | ||
|
357 | if pathMeta == self.pathMeta: | |
|
358 | return | |
|
359 | else: | |
|
360 | self.pathMeta = pathMeta | |
|
361 | ||
|
290 | 362 | filePointer = h5py.File(self.pathMeta,'r') |
|
291 | 363 | groupPointer = filePointer['Metadata'] |
|
292 | 364 | |
@@ -295,81 +367,172 class HDF5Reader(ProcessingUnit): | |||
|
295 | 367 | for item in groupPointer.items(): |
|
296 | 368 | name = item[0] |
|
297 | 369 | |
|
298 |
if name==' |
|
|
299 | self.nSamples = 1 | |
|
300 |
|
|
|
301 |
|
|
|
370 | if name=='array dimensions': | |
|
371 | table = groupPointer[name][:] | |
|
372 | listShapes = {} | |
|
373 | for shapes in table: | |
|
374 | listShapes[shapes[0]] = numpy.array([shapes[1],shapes[2],shapes[3],shapes[4]]) | |
|
302 | 375 | else: |
|
303 |
data = groupPointer[name] |
|
|
376 | data = groupPointer[name].value | |
|
304 | 377 | listMetaname.append(name) |
|
305 | 378 | listMetadata.append(data) |
|
306 | 379 | |
|
307 | 380 | if name=='type': |
|
308 |
self.__initDataOut( |
|
|
381 | self.__initDataOut(data) | |
|
309 | 382 | |
|
310 | 383 | filePointer.close() |
|
311 | 384 | |
|
312 |
self.list |
|
|
313 |
self.listMeta |
|
|
385 | self.listShapes = listShapes | |
|
386 | self.listMetaname = listMetaname | |
|
387 | self.listMeta = listMetadata | |
|
314 | 388 | |
|
315 | 389 | return |
|
316 | 390 | |
|
391 | def __readData(self): | |
|
392 | grp = self.fp['Data'] | |
|
393 | listdataname = [] | |
|
394 | listdata = [] | |
|
395 | ||
|
396 | for item in grp.items(): | |
|
397 | name = item[0] | |
|
398 | ||
|
399 | if name == 'time': | |
|
400 | listdataname.append('utctime') | |
|
401 | timeAux = grp[name].value.astype(numpy.float)[0] | |
|
402 | listdata.append(timeAux) | |
|
403 | continue | |
|
404 | ||
|
405 | listdataname.append(name) | |
|
406 | array = self.__setDataArray(self.nRecords, grp[name],self.listShapes[name]) | |
|
407 | listdata.append(array) | |
|
408 | ||
|
409 | self.listDataname = listdataname | |
|
410 | self.listData = listdata | |
|
411 | return | |
|
412 | ||
|
413 | def __setDataArray(self, nRecords, dataset, shapes): | |
|
414 | ||
|
415 | nChannels = shapes[0] #Dimension 0 | |
|
416 | ||
|
417 | nPoints = shapes[1] #Dimension 1, number of Points or Parameters | |
|
418 | ||
|
419 | nSamples = shapes[2] #Dimension 2, number of samples or ranges | |
|
420 | ||
|
421 | mode = shapes[3] | |
|
422 | ||
|
423 | # if nPoints>1: | |
|
424 | # arrayData = numpy.zeros((nRecords,nChannels,nPoints,nSamples)) | |
|
425 | # else: | |
|
426 | # arrayData = numpy.zeros((nRecords,nChannels,nSamples)) | |
|
427 | # | |
|
428 | # chn = 'channel' | |
|
429 | # | |
|
430 | # for i in range(nChannels): | |
|
431 | # | |
|
432 | # data = dataset[chn + str(i)].value | |
|
433 | # | |
|
434 | # if nPoints>1: | |
|
435 | # data = numpy.rollaxis(data,2) | |
|
436 | # | |
|
437 | # arrayData[:,i,:] = data | |
|
438 | ||
|
439 | arrayData = numpy.zeros((nRecords,nChannels,nPoints,nSamples)) | |
|
440 | doSqueeze = False | |
|
441 | if mode == 0: | |
|
442 | strds = 'channel' | |
|
443 | nDatas = nChannels | |
|
444 | newShapes = (nRecords,nPoints,nSamples) | |
|
445 | if nPoints == 1: | |
|
446 | doSqueeze = True | |
|
447 | axisSqueeze = 2 | |
|
448 | else: | |
|
449 | strds = 'param' | |
|
450 | nDatas = nPoints | |
|
451 | newShapes = (nRecords,nChannels,nSamples) | |
|
452 | if nChannels == 1: | |
|
453 | doSqueeze = True | |
|
454 | axisSqueeze = 1 | |
|
455 | ||
|
456 | for i in range(nDatas): | |
|
457 | ||
|
458 | data = dataset[strds + str(i)].value | |
|
459 | data = data.reshape(newShapes) | |
|
460 | ||
|
461 | if mode == 0: | |
|
462 | arrayData[:,i,:,:] = data | |
|
463 | else: | |
|
464 | arrayData[:,:,i,:] = data | |
|
465 | ||
|
466 | if doSqueeze: | |
|
467 | arrayData = numpy.squeeze(arrayData, axis=axisSqueeze) | |
|
468 | ||
|
469 | return arrayData | |
|
470 | ||
|
317 | 471 | def __initDataOut(self, type): |
|
318 | 472 | |
|
319 |
if |
|
|
320 | self.dataOut = Parameters() | |
|
321 |
elif |
|
|
322 | self.dataOut = Spectra() | |
|
323 |
elif |
|
|
324 | self.dataOut = Voltage() | |
|
325 |
elif |
|
|
326 | self.dataOut = Correlation() | |
|
473 | # if type =='Parameters': | |
|
474 | # self.dataOut = Parameters() | |
|
475 | # elif type =='Spectra': | |
|
476 | # self.dataOut = Spectra() | |
|
477 | # elif type =='Voltage': | |
|
478 | # self.dataOut = Voltage() | |
|
479 | # elif type =='Correlation': | |
|
480 | # self.dataOut = Correlation() | |
|
327 | 481 | |
|
328 | 482 | return |
|
329 | 483 | |
|
330 | 484 | def __setDataOut(self): |
|
331 |
listMeta |
|
|
485 | listMeta = self.listMeta | |
|
332 | 486 | listMetaname = self.listMetaname |
|
333 | 487 | listDataname = self.listDataname |
|
334 | 488 | listData = self.listData |
|
335 | 489 | |
|
336 | 490 | blockIndex = self.blockIndex |
|
491 | blockList = self.blockList | |
|
337 | 492 | |
|
338 |
for i in range(len(listMeta |
|
|
339 |
setattr(self.dataOut,listMetaname[i],listMeta |
|
|
493 | for i in range(len(listMeta)): | |
|
494 | setattr(self.dataOut,listMetaname[i],listMeta[i]) | |
|
340 | 495 | |
|
341 | 496 | for j in range(len(listData)): |
|
342 | setattr(self.dataOut,listDataname[j][blockIndex,:],listData[j][blockIndex,:]) | |
|
497 | if listDataname[j]=='utctime': | |
|
498 | # setattr(self.dataOut,listDataname[j],listData[j][blockList[blockIndex]]) | |
|
499 | setattr(self.dataOut,'utctimeInit',listData[j][blockList[blockIndex]]) | |
|
500 | continue | |
|
501 | ||
|
502 | setattr(self.dataOut,listDataname[j],listData[j][blockList[blockIndex],:]) | |
|
343 | 503 | |
|
344 | return | |
|
504 | return self.dataOut.data_param | |
|
345 | 505 | |
|
346 | 506 | def getData(self): |
|
347 | 507 | |
|
348 | if self.flagNoMoreFiles: | |
|
349 | self.dataOut.flagNoData = True | |
|
350 | print 'Process finished' | |
|
351 | return 0 | |
|
352 | ||
|
353 | if self.__hasNotDataInBuffer(): | |
|
354 | self.__setNextFile() | |
|
355 | ||
|
356 | ||
|
357 | if self.datablock == None: # setear esta condicion cuando no hayan datos por leers | |
|
358 | self.dataOut.flagNoData = True | |
|
359 | return 0 | |
|
508 | # if self.flagNoMoreFiles: | |
|
509 | # self.dataOut.flagNoData = True | |
|
510 | # print 'Process finished' | |
|
511 | # return 0 | |
|
512 | # | |
|
513 | if self.blockIndex==self.blocksPerFile: | |
|
514 | if not( self.__setNextFileOffline() ): | |
|
515 | self.dataOut.flagNoData = True | |
|
516 | return 0 | |
|
517 | ||
|
518 | # | |
|
519 | # if self.datablock == None: # setear esta condicion cuando no hayan datos por leers | |
|
520 | # self.dataOut.flagNoData = True | |
|
521 | # return 0 | |
|
360 | 522 | |
|
523 | self.__readData() | |
|
361 | 524 | self.__setDataOut() |
|
362 | 525 | self.dataOut.flagNoData = False |
|
363 | 526 | |
|
364 | 527 | self.blockIndex += 1 |
|
365 | 528 | |
|
366 |
return |
|
|
529 | return | |
|
367 | 530 | |
|
368 | 531 | def run(self, **kwargs): |
|
369 | 532 | |
|
370 | 533 | if not(self.isConfig): |
|
371 | 534 | self.setup(**kwargs) |
|
372 | self.setObjProperties() | |
|
535 | # self.setObjProperties() | |
|
373 | 536 | self.isConfig = True |
|
374 | 537 | |
|
375 | 538 | self.getData() |
@@ -412,11 +575,19 class HDF5Writer(Operation): | |||
|
412 | 575 | |
|
413 | 576 | metadataList = None |
|
414 | 577 | |
|
415 |
|
|
|
578 | arrayDim = None | |
|
416 | 579 | |
|
417 | 580 | tableDim = None |
|
418 | 581 | |
|
419 |
dtype = [('arrayName', 'S |
|
|
582 | # dtype = [('arrayName', 'S20'),('nChannels', 'i'), ('nPoints', 'i'), ('nSamples', 'i'),('mode', 'b')] | |
|
583 | ||
|
584 | dtype = [('arrayName', 'S20'),('nDimensions', 'i'), ('dim2', 'i'), ('dim1', 'i'),('dim0', 'i'),('mode', 'b')] | |
|
585 | ||
|
586 | mode = None | |
|
587 | ||
|
588 | nDatas = None #Number of datasets to be stored per array | |
|
589 | ||
|
590 | nDims = None #Number Dimensions in each dataset | |
|
420 | 591 | |
|
421 | 592 | def __init__(self): |
|
422 | 593 | |
@@ -431,23 +602,31 class HDF5Writer(Operation): | |||
|
431 | 602 | |
|
432 | 603 | if kwargs.has_key('ext'): |
|
433 | 604 | self.ext = kwargs['ext'] |
|
434 | else: | |
|
435 | self.blocksPerFile = 10 | |
|
436 | ||
|
605 | ||
|
437 | 606 | if kwargs.has_key('blocksPerFile'): |
|
438 | 607 | self.blocksPerFile = kwargs['blocksPerFile'] |
|
439 | 608 | else: |
|
440 | 609 | self.blocksPerFile = 10 |
|
441 | 610 | |
|
611 | self.metadataList = kwargs['metadataList'] | |
|
612 | ||
|
613 | self.dataList = kwargs['dataList'] | |
|
614 | ||
|
442 | 615 | self.dataOut = dataOut |
|
443 | 616 | |
|
444 | self.metadataList = ['type','inputUnit','abscissaRange','heightRange'] | |
|
445 | ||
|
446 | self.dataList = ['data_param', 'data_error', 'data_SNR'] | |
|
617 | if kwargs.has_key('mode'): | |
|
618 | mode = kwargs['mode'] | |
|
619 | ||
|
620 | if type(mode) == int: | |
|
621 | mode = numpy.zeros(len(self.dataList)) + mode | |
|
622 | else: | |
|
623 | mode = numpy.zeros(len(self.dataList)) | |
|
624 | ||
|
625 | self.mode = mode | |
|
447 | 626 | |
|
448 |
|
|
|
627 | arrayDim = numpy.zeros((len(self.dataList),5)) | |
|
449 | 628 | |
|
450 | #Data types | |
|
629 | #Table dimensions | |
|
451 | 630 | |
|
452 | 631 | dtype0 = self.dtype |
|
453 | 632 | |
@@ -455,18 +634,29 class HDF5Writer(Operation): | |||
|
455 | 634 | |
|
456 | 635 | for i in range(len(self.dataList)): |
|
457 | 636 | |
|
458 |
data |
|
|
637 | dataAux = getattr(self.dataOut, self.dataList[i]) | |
|
459 | 638 | |
|
460 | if len(dataDim) == 3: | |
|
461 |
|
|
|
639 | if type(dataAux)==float or type(dataAux)==int: | |
|
640 | arrayDim[i,0] = 1 | |
|
462 | 641 | else: |
|
463 | self.dataDim[i,0] = numpy.array(dataDim)[0] | |
|
464 |
|
|
|
465 |
|
|
|
642 | arrayDim0 = dataAux.shape | |
|
643 | arrayDim[i,0] = len(arrayDim0) | |
|
644 | arrayDim[i,4] = mode[i] | |
|
466 | 645 | |
|
467 | table = numpy.array((self.dataList[i],) + tuple(self.dataDim[i,:]),dtype = dtype0) | |
|
646 | if len(arrayDim0) == 3: | |
|
647 | arrayDim[i,1:-1] = numpy.array(arrayDim0) | |
|
648 | elif len(arrayDim0) == 2: | |
|
649 | arrayDim[i,2:-1] = numpy.array(arrayDim0) #nHeights | |
|
650 | elif len(arrayDim0) == 1: | |
|
651 | arrayDim[i,3] = arrayDim0 | |
|
652 | elif len(arrayDim0) == 0: | |
|
653 | arrayDim[i,0] = 1 | |
|
654 | arrayDim[i,3] = 1 | |
|
655 | ||
|
656 | table = numpy.array((self.dataList[i],) + tuple(arrayDim[i,:]),dtype = dtype0) | |
|
468 | 657 | tableList.append(table) |
|
469 |
|
|
|
658 | ||
|
659 | self.arrayDim = arrayDim | |
|
470 | 660 | self.tableDim = numpy.array(tableList, dtype = dtype0) |
|
471 | 661 | self.blockIndex = 0 |
|
472 | 662 | |
@@ -535,6 +725,7 class HDF5Writer(Operation): | |||
|
535 | 725 | ext = self.ext |
|
536 | 726 | path = self.path |
|
537 | 727 | setFile = self.setFile |
|
728 | mode = self.mode | |
|
538 | 729 | |
|
539 | 730 | if self.fp != None: |
|
540 | 731 | self.fp.close() |
@@ -576,29 +767,48 class HDF5Writer(Operation): | |||
|
576 | 767 | grp = fp.create_group("Data") |
|
577 | 768 | grp.attrs['metadata'] = self.metaFile |
|
578 | 769 | |
|
579 | grp['blocksPerFile'] = 0 | |
|
770 | # grp.attrs['blocksPerFile'] = 0 | |
|
580 | 771 | |
|
581 | 772 | ds = [] |
|
582 | 773 | data = [] |
|
583 | 774 | |
|
584 |
|
|
|
775 | nDatas = numpy.zeros(len(self.dataList)) | |
|
776 | nDims = self.arrayDim[:,0] | |
|
777 | ||
|
778 | for i in range(len(self.dataList)): | |
|
585 | 779 | |
|
586 | grp0 = grp.create_group(self.dataList[i]) | |
|
587 | ||
|
588 | for j in range(int(self.dataDim[i,0])): | |
|
589 | tableName = "channel" + str(j) | |
|
590 | ||
|
591 | if not(self.dataDim[i,1] == 1): | |
|
592 | ds0 = grp0.create_dataset(tableName, (1,1,1) , chunks = True) | |
|
593 | else: | |
|
594 | ds0 = grp0.create_dataset(tableName, (1,1) , chunks = True) | |
|
595 | ||
|
780 | if nDims[i]==1: | |
|
781 | ds0 = grp.create_dataset(self.dataList[i], (1,1), maxshape=(1,None) , chunks = True, dtype='S20') | |
|
596 | 782 | ds.append(ds0) |
|
597 | 783 | data.append([]) |
|
598 | ||
|
599 | ds0 = grp.create_dataset("time", (1,) , chunks = True) | |
|
600 | ds.append(ds0) | |
|
601 | data.append([]) | |
|
784 | ||
|
785 | else: | |
|
786 | ||
|
787 | if mode[i]==0: | |
|
788 | strMode = "channel" | |
|
789 | nDatas[i] = self.arrayDim[i,1] | |
|
790 | else: | |
|
791 | strMode = "param" | |
|
792 | nDatas[i] = self.arrayDim[i,2] | |
|
793 | ||
|
794 | if nDims[i]==2: | |
|
795 | nDatas[i] = self.arrayDim[i,2] | |
|
796 | ||
|
797 | grp0 = grp.create_group(self.dataList[i]) | |
|
798 | ||
|
799 | for j in range(int(nDatas[i])): | |
|
800 | tableName = strMode + str(j) | |
|
801 | ||
|
802 | if nDims[i] == 3: | |
|
803 | ds0 = grp0.create_dataset(tableName, (1,1,1) , maxshape=(None,None,None), chunks=True) | |
|
804 | else: | |
|
805 | ds0 = grp0.create_dataset(tableName, (1,1) , maxshape=(None,None), chunks=True) | |
|
806 | ||
|
807 | ds.append(ds0) | |
|
808 | data.append([]) | |
|
809 | ||
|
810 | self.nDatas = nDatas | |
|
811 | self.nDims = nDims | |
|
602 | 812 | |
|
603 | 813 | #Saving variables |
|
604 | 814 | print 'Writing the file: %s'%filename |
@@ -624,31 +834,46 class HDF5Writer(Operation): | |||
|
624 | 834 | ''' |
|
625 | 835 | data Array configured |
|
626 | 836 | |
|
837 | ||
|
838 | self.data | |
|
627 | 839 | ''' |
|
628 | 840 | #Creating Arrays |
|
629 | 841 | data = self.data |
|
842 | nDatas = self.nDatas | |
|
843 | nDims = self.nDims | |
|
844 | mode = self.mode | |
|
630 | 845 | ind = 0 |
|
846 | ||
|
631 | 847 | for i in range(len(self.dataList)): |
|
632 | 848 | dataAux = getattr(self.dataOut,self.dataList[i]) |
|
633 | 849 | |
|
634 | for j in range(int(self.dataDim[i,0])): | |
|
635 |
data[ind] = dataAux |
|
|
636 | ||
|
637 | if not(self.dataDim[i,1] == 1): | |
|
638 | data[ind] = data[ind].reshape((data[ind].shape[0],data[ind].shape[1],1)) | |
|
639 | if not self.firsttime: | |
|
640 | data[ind] = numpy.dstack((self.ds[ind][:], data[ind])) | |
|
641 | else: | |
|
642 | data[ind] = data[ind].reshape((1,data[ind].shape[0])) | |
|
643 | if not self.firsttime: | |
|
644 | data[ind] = numpy.vstack((self.ds[ind][:], data[ind])) | |
|
850 | if nDims[i] == 1: | |
|
851 | data[ind] = numpy.array([str(dataAux)]).reshape((1,1)) | |
|
852 | if not self.firsttime: | |
|
853 | data[ind] = numpy.hstack((self.ds[ind][:], self.data[ind])) | |
|
645 | 854 | ind += 1 |
|
646 | 855 | |
|
647 | data[ind] = numpy.array([self.dataOut.utctime]) | |
|
648 | if not self.firsttime: | |
|
649 | self.data[ind] = numpy.hstack((self.ds[ind][:], self.data[ind])) | |
|
856 | else: | |
|
857 | for j in range(int(nDatas[i])): | |
|
858 | if (mode[i] == 0) or (nDims[i] == 2): #In case division per channel or Dimensions is only 1 | |
|
859 | data[ind] = dataAux[j,:] | |
|
860 | else: | |
|
861 | data[ind] = dataAux[:,j,:] | |
|
862 | ||
|
863 | if nDims[i] == 3: | |
|
864 | data[ind] = data[ind].reshape((data[ind].shape[0],data[ind].shape[1],1)) | |
|
865 | ||
|
866 | if not self.firsttime: | |
|
867 | data[ind] = numpy.dstack((self.ds[ind][:], data[ind])) | |
|
868 | ||
|
869 | else: | |
|
870 | data[ind] = data[ind].reshape((1,data[ind].shape[0])) | |
|
871 | ||
|
872 | if not self.firsttime: | |
|
873 | data[ind] = numpy.vstack((self.ds[ind][:], data[ind])) | |
|
874 | ind += 1 | |
|
875 | ||
|
650 | 876 | self.data = data |
|
651 | ||
|
652 | 877 | return |
|
653 | 878 | |
|
654 | 879 | def writeBlock(self): |
@@ -656,12 +881,12 class HDF5Writer(Operation): | |||
|
656 | 881 | Saves the block in the HDF5 file |
|
657 | 882 | ''' |
|
658 | 883 | for i in range(len(self.ds)): |
|
659 |
self.ds[i]. |
|
|
884 | self.ds[i].resize(self.data[i].shape) | |
|
660 | 885 | self.ds[i][:] = self.data[i] |
|
661 | 886 | |
|
662 | 887 | self.blockIndex += 1 |
|
663 | 888 | |
|
664 |
self.grp.attrs.modify(' |
|
|
889 | self.grp.attrs.modify('nRecords', self.blockIndex) | |
|
665 | 890 | |
|
666 | 891 | self.firsttime = False |
|
667 | 892 | return |
@@ -22,7 +22,7 class ParametersProc(ProcessingUnit): | |||
|
22 | 22 | def __init__(self): |
|
23 | 23 | ProcessingUnit.__init__(self) |
|
24 | 24 | |
|
25 | self.objectDict = {} | |
|
25 | # self.objectDict = {} | |
|
26 | 26 | self.buffer = None |
|
27 | 27 | self.firstdatatime = None |
|
28 | 28 | self.profIndex = 0 |
@@ -57,7 +57,7 class ParametersProc(ProcessingUnit): | |||
|
57 | 57 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
58 | 58 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
59 | 59 | self.dataOut.timeInterval = self.dataIn.timeInterval |
|
60 |
self.dataOut.height |
|
|
60 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
|
61 | 61 | self.dataOut.frequency = self.dataIn.frequency |
|
62 | 62 | |
|
63 | 63 | def run(self, nSeconds = None, nProfiles = None): |
@@ -100,7 +100,7 class ParametersProc(ProcessingUnit): | |||
|
100 | 100 | |
|
101 | 101 | if self.dataIn.type == "Spectra": |
|
102 | 102 | self.dataOut.data_pre = self.dataIn.data_spc.copy() |
|
103 |
self.dataOut.abscissa |
|
|
103 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
|
104 | 104 | self.dataOut.noise = self.dataIn.getNoise() |
|
105 | 105 | self.dataOut.normFactor = self.dataIn.normFactor |
|
106 | 106 | self.dataOut.flagNoData = False |
@@ -112,17 +112,24 class ParametersProc(ProcessingUnit): | |||
|
112 | 112 | indR = numpy.where(lagRRange == 0)[0][0] |
|
113 | 113 | |
|
114 | 114 | self.dataOut.data_pre = self.dataIn.data_corr.copy()[:,:,indR,:] |
|
115 |
self.dataOut.abscissa |
|
|
115 | self.dataOut.abscissaList = self.dataIn.getLagTRange(1) | |
|
116 | 116 | self.dataOut.noise = self.dataIn.noise |
|
117 | 117 | self.dataOut.normFactor = self.dataIn.normFactor |
|
118 | 118 | self.dataOut.data_SNR = self.dataIn.SNR |
|
119 | 119 | self.dataOut.groupList = self.dataIn.pairsList |
|
120 | 120 | self.dataOut.flagNoData = False |
|
121 | ||
|
122 | #---------------------- Correlation Data --------------------------- | |
|
123 | ||
|
124 | if self.dataIn.type == "Parameters": | |
|
125 | self.dataOut.copy(self.dataIn) | |
|
126 | self.dataOut.flagNoData = False | |
|
121 | 127 | |
|
128 | return True | |
|
122 | 129 | |
|
123 | 130 | self.__updateObjFromInput() |
|
124 | 131 | self.firstdatatime = None |
|
125 |
self.dataOut. |
|
|
132 | self.dataOut.utctimeInit = self.dataIn.utctime | |
|
126 | 133 | self.dataOut.outputInterval = self.dataIn.timeInterval |
|
127 | 134 | |
|
128 | 135 | #------------------- Get Moments ---------------------------------- |
@@ -133,7 +140,7 class ParametersProc(ProcessingUnit): | |||
|
133 | 140 | Input: |
|
134 | 141 | channelList : simple channel list to select e.g. [2,3,7] |
|
135 | 142 | self.dataOut.data_pre |
|
136 |
self.dataOut.abscissa |
|
|
143 | self.dataOut.abscissaList | |
|
137 | 144 | self.dataOut.noise |
|
138 | 145 | |
|
139 | 146 | Affected: |
@@ -142,7 +149,7 class ParametersProc(ProcessingUnit): | |||
|
142 | 149 | |
|
143 | 150 | ''' |
|
144 | 151 | data = self.dataOut.data_pre |
|
145 |
absc = self.dataOut.abscissa |
|
|
152 | absc = self.dataOut.abscissaList[:-1] | |
|
146 | 153 | noise = self.dataOut.noise |
|
147 | 154 | |
|
148 | 155 | data_param = numpy.zeros((data.shape[0], 4, data.shape[2])) |
@@ -238,7 +245,7 class ParametersProc(ProcessingUnit): | |||
|
238 | 245 | |
|
239 | 246 | Input: |
|
240 | 247 | self.dataOut.data_pre |
|
241 |
self.dataOut.abscissa |
|
|
248 | self.dataOut.abscissaList | |
|
242 | 249 | self.dataOut.noise |
|
243 | 250 | self.dataOut.normFactor |
|
244 | 251 | self.dataOut.data_SNR |
@@ -252,7 +259,7 class ParametersProc(ProcessingUnit): | |||
|
252 | 259 | data = self.dataOut.data_pre |
|
253 | 260 | normFactor = self.dataOut.normFactor |
|
254 | 261 | nHeights = self.dataOut.nHeights |
|
255 |
absc = self.dataOut.abscissa |
|
|
262 | absc = self.dataOut.abscissaList[:-1] | |
|
256 | 263 | noise = self.dataOut.noise |
|
257 | 264 | SNR = self.dataOut.data_SNR |
|
258 | 265 | pairsList = self.dataOut.groupList |
@@ -1201,7 +1208,11 class ParametersProc(ProcessingUnit): | |||
|
1201 | 1208 | |
|
1202 | 1209 | #Initial values |
|
1203 | 1210 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1204 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants)) | |
|
1211 | ||
|
1212 | if (h>0)and(error1[3]<5): | |
|
1213 | p0 = self.dataOut.data_param[i,:,h-1] | |
|
1214 | else: | |
|
1215 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
|
1205 | 1216 | |
|
1206 | 1217 | try: |
|
1207 | 1218 | #Least Squares |
@@ -1570,10 +1581,10 class WindProfiler(Operation): | |||
|
1570 | 1581 | def run(self, dataOut, technique, **kwargs): |
|
1571 | 1582 | |
|
1572 | 1583 | param = dataOut.data_param |
|
1573 |
if dataOut.abscissa |
|
|
1574 |
absc = dataOut.abscissa |
|
|
1584 | if dataOut.abscissaList != None: | |
|
1585 | absc = dataOut.abscissaList[:-1] | |
|
1575 | 1586 | noise = dataOut.noise |
|
1576 |
height |
|
|
1587 | heightList = dataOut.getHeiRange() | |
|
1577 | 1588 | SNR = dataOut.data_SNR |
|
1578 | 1589 | |
|
1579 | 1590 | if technique == 'DBS': |
@@ -1602,7 +1613,9 class WindProfiler(Operation): | |||
|
1602 | 1613 | theta_y = theta_y[arrayChannel] |
|
1603 | 1614 | |
|
1604 | 1615 | velRadial0 = param[:,1,:] #Radial velocity |
|
1605 |
dataOut.data_output, dataOut.height |
|
|
1616 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(velRadial0, theta_x, theta_y, azimuth, correctFactor, horizontalOnly, heightList, SNR) #DBS Function | |
|
1617 | dataOut.utctimeInit = dataOut.utctime | |
|
1618 | dataOut.outputInterval = dataOut.timeInterval | |
|
1606 | 1619 | |
|
1607 | 1620 | elif technique == 'SA': |
|
1608 | 1621 | |
@@ -1627,7 +1640,7 class WindProfiler(Operation): | |||
|
1627 | 1640 | nChannels = dataOut.nChannels |
|
1628 | 1641 | |
|
1629 | 1642 | dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
1630 |
dataOut. |
|
|
1643 | dataOut.utctimeInit = dataOut.utctime | |
|
1631 | 1644 | dataOut.outputInterval = dataOut.timeInterval |
|
1632 | 1645 | |
|
1633 | 1646 | elif technique == 'Meteors': |
@@ -1656,7 +1669,9 class WindProfiler(Operation): | |||
|
1656 | 1669 | if self.__isConfig == False: |
|
1657 | 1670 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
1658 | 1671 | #Get Initial LTC time |
|
1659 | self.__initime = (dataOut.datatime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
|
1672 | self.__initime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) | |
|
1673 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
|
1674 | ||
|
1660 | 1675 | self.__isConfig = True |
|
1661 | 1676 | |
|
1662 | 1677 | if self.__buffer == None: |
@@ -1666,13 +1681,14 class WindProfiler(Operation): | |||
|
1666 | 1681 | else: |
|
1667 | 1682 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
1668 | 1683 | |
|
1669 |
self.__checkTime(dataOut. |
|
|
1684 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
|
1670 | 1685 | |
|
1671 | 1686 | if self.__dataReady: |
|
1672 |
dataOut. |
|
|
1673 | self.__initime = self.__initime + dataOut.outputInterval #to erase time offset | |
|
1687 | dataOut.utctimeInit = self.__initime | |
|
1688 | ||
|
1689 | self.__initime += dataOut.outputInterval #to erase time offset | |
|
1674 | 1690 | |
|
1675 |
dataOut.data_output, dataOut.height |
|
|
1691 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
|
1676 | 1692 | dataOut.flagNoData = False |
|
1677 | 1693 | self.__buffer = None |
|
1678 | 1694 | |
@@ -1743,7 +1759,7 class EWDriftsEstimation(Operation): | |||
|
1743 | 1759 | dataOut.data_output = winds |
|
1744 | 1760 | dataOut.data_SNR = SNR1 |
|
1745 | 1761 | |
|
1746 |
dataOut. |
|
|
1762 | dataOut.utctimeInit = dataOut.utctime | |
|
1747 | 1763 | dataOut.outputInterval = dataOut.timeInterval |
|
1748 | 1764 | return |
|
1749 | 1765 |
General Comments 0
You need to be logged in to leave comments.
Login now