@@ -1,1372 +1,1372 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | import json |
|
11 | 11 | |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
14 | 14 | |
|
15 | 15 | |
|
16 | 16 | def getNumpyDtype(dataTypeCode): |
|
17 | 17 | |
|
18 | 18 | if dataTypeCode == 0: |
|
19 | 19 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
20 | 20 | elif dataTypeCode == 1: |
|
21 | 21 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
22 | 22 | elif dataTypeCode == 2: |
|
23 | 23 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
24 | 24 | elif dataTypeCode == 3: |
|
25 | 25 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
26 | 26 | elif dataTypeCode == 4: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
28 | 28 | elif dataTypeCode == 5: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
30 | 30 | else: |
|
31 | 31 | raise ValueError('dataTypeCode was not defined') |
|
32 | 32 | |
|
33 | 33 | return numpyDtype |
|
34 | 34 | |
|
35 | 35 | |
|
36 | 36 | def getDataTypeCode(numpyDtype): |
|
37 | 37 | |
|
38 | 38 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
39 | 39 | datatype = 0 |
|
40 | 40 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
41 | 41 | datatype = 1 |
|
42 | 42 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
43 | 43 | datatype = 2 |
|
44 | 44 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
45 | 45 | datatype = 3 |
|
46 | 46 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
47 | 47 | datatype = 4 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
49 | 49 | datatype = 5 |
|
50 | 50 | else: |
|
51 | 51 | datatype = None |
|
52 | 52 | |
|
53 | 53 | return datatype |
|
54 | 54 | |
|
55 | 55 | |
|
56 | 56 | def hildebrand_sekhon(data, navg): |
|
57 | 57 | """ |
|
58 | 58 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
59 | 59 | implementation technique is based on the fact that the standard deviation of the spectral |
|
60 | 60 | densities is equal to the mean spectral density for white Gaussian noise |
|
61 | 61 | |
|
62 | 62 | Inputs: |
|
63 | 63 | Data : heights |
|
64 | 64 | navg : numbers of averages |
|
65 | 65 | |
|
66 | 66 | Return: |
|
67 | 67 | mean : noise's level |
|
68 | 68 | """ |
|
69 | 69 | |
|
70 | 70 | sortdata = numpy.sort(data, axis=None) |
|
71 | 71 | lenOfData = len(sortdata) |
|
72 | 72 | nums_min = lenOfData*0.2 |
|
73 | 73 | |
|
74 | 74 | if nums_min <= 5: |
|
75 | 75 | |
|
76 | 76 | nums_min = 5 |
|
77 | 77 | |
|
78 | 78 | sump = 0. |
|
79 | 79 | sumq = 0. |
|
80 | 80 | |
|
81 | 81 | j = 0 |
|
82 | 82 | cont = 1 |
|
83 | 83 | |
|
84 | 84 | while((cont == 1)and(j < lenOfData)): |
|
85 | 85 | |
|
86 | 86 | sump += sortdata[j] |
|
87 | 87 | sumq += sortdata[j]**2 |
|
88 | 88 | |
|
89 | 89 | if j > nums_min: |
|
90 | 90 | rtest = float(j)/(j-1) + 1.0/navg |
|
91 | 91 | if ((sumq*j) > (rtest*sump**2)): |
|
92 | 92 | j = j - 1 |
|
93 | 93 | sump = sump - sortdata[j] |
|
94 | 94 | sumq = sumq - sortdata[j]**2 |
|
95 | 95 | cont = 0 |
|
96 | 96 | |
|
97 | 97 | j += 1 |
|
98 | 98 | |
|
99 | 99 | lnoise = sump / j |
|
100 | 100 | |
|
101 | 101 | return lnoise |
|
102 | 102 | |
|
103 | 103 | |
|
104 | 104 | class Beam: |
|
105 | 105 | |
|
106 | 106 | def __init__(self): |
|
107 | 107 | self.codeList = [] |
|
108 | 108 | self.azimuthList = [] |
|
109 | 109 | self.zenithList = [] |
|
110 | 110 | |
|
111 | 111 | |
|
112 | 112 | class GenericData(object): |
|
113 | 113 | |
|
114 | 114 | flagNoData = True |
|
115 | 115 | |
|
116 | 116 | def copy(self, inputObj=None): |
|
117 | 117 | |
|
118 | 118 | if inputObj == None: |
|
119 | 119 | return copy.deepcopy(self) |
|
120 | 120 | |
|
121 | 121 | for key in list(inputObj.__dict__.keys()): |
|
122 | 122 | |
|
123 | 123 | attribute = inputObj.__dict__[key] |
|
124 | 124 | |
|
125 | 125 | # If this attribute is a tuple or list |
|
126 | 126 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
127 | 127 | self.__dict__[key] = attribute[:] |
|
128 | 128 | continue |
|
129 | 129 | |
|
130 | 130 | # If this attribute is another object or instance |
|
131 | 131 | if hasattr(attribute, '__dict__'): |
|
132 | 132 | self.__dict__[key] = attribute.copy() |
|
133 | 133 | continue |
|
134 | 134 | |
|
135 | 135 | self.__dict__[key] = inputObj.__dict__[key] |
|
136 | 136 | |
|
137 | 137 | def deepcopy(self): |
|
138 | 138 | |
|
139 | 139 | return copy.deepcopy(self) |
|
140 | 140 | |
|
141 | 141 | def isEmpty(self): |
|
142 | 142 | |
|
143 | 143 | return self.flagNoData |
|
144 | 144 | |
|
145 | 145 | |
|
146 | 146 | class JROData(GenericData): |
|
147 | 147 | |
|
148 | 148 | # m_BasicHeader = BasicHeader() |
|
149 | 149 | # m_ProcessingHeader = ProcessingHeader() |
|
150 | 150 | |
|
151 | 151 | systemHeaderObj = SystemHeader() |
|
152 | 152 | radarControllerHeaderObj = RadarControllerHeader() |
|
153 | 153 | # data = None |
|
154 | 154 | type = None |
|
155 | 155 | datatype = None # dtype but in string |
|
156 | 156 | # dtype = None |
|
157 | 157 | # nChannels = None |
|
158 | 158 | # nHeights = None |
|
159 | 159 | nProfiles = None |
|
160 | 160 | heightList = None |
|
161 | 161 | channelList = None |
|
162 | 162 | flagDiscontinuousBlock = False |
|
163 | 163 | useLocalTime = False |
|
164 | 164 | utctime = None |
|
165 | 165 | timeZone = None |
|
166 | 166 | dstFlag = None |
|
167 | 167 | errorCount = None |
|
168 | 168 | blocksize = None |
|
169 | 169 | # nCode = None |
|
170 | 170 | # nBaud = None |
|
171 | 171 | # code = None |
|
172 | 172 | flagDecodeData = False # asumo q la data no esta decodificada |
|
173 | 173 | flagDeflipData = False # asumo q la data no esta sin flip |
|
174 | 174 | flagShiftFFT = False |
|
175 | 175 | # ippSeconds = None |
|
176 | 176 | # timeInterval = None |
|
177 | 177 | nCohInt = None |
|
178 | 178 | # noise = None |
|
179 | 179 | windowOfFilter = 1 |
|
180 | 180 | # Speed of ligth |
|
181 | 181 | C = 3e8 |
|
182 | 182 | frequency = 49.92e6 |
|
183 | 183 | realtime = False |
|
184 | 184 | beacon_heiIndexList = None |
|
185 | 185 | last_block = None |
|
186 | 186 | blocknow = None |
|
187 | 187 | azimuth = None |
|
188 | 188 | zenith = None |
|
189 | 189 | beam = Beam() |
|
190 | 190 | profileIndex = None |
|
191 | 191 | error = None |
|
192 | 192 | data = None |
|
193 | 193 | nmodes = None |
|
194 | 194 | |
|
195 | 195 | def __str__(self): |
|
196 | 196 | |
|
197 | 197 | return '{} - {}'.format(self.type, self.getDatatime()) |
|
198 | 198 | |
|
199 | 199 | def getNoise(self): |
|
200 | 200 | |
|
201 | 201 | raise NotImplementedError |
|
202 | 202 | |
|
203 | 203 | def getNChannels(self): |
|
204 | 204 | |
|
205 | 205 | return len(self.channelList) |
|
206 | 206 | |
|
207 | 207 | def getChannelIndexList(self): |
|
208 | 208 | |
|
209 | 209 | return list(range(self.nChannels)) |
|
210 | 210 | |
|
211 | 211 | def getNHeights(self): |
|
212 | 212 | |
|
213 | 213 | return len(self.heightList) |
|
214 | 214 | |
|
215 | 215 | def getHeiRange(self, extrapoints=0): |
|
216 | 216 | |
|
217 | 217 | heis = self.heightList |
|
218 | 218 | # deltah = self.heightList[1] - self.heightList[0] |
|
219 | 219 | # |
|
220 | 220 | # heis.append(self.heightList[-1]) |
|
221 | 221 | |
|
222 | 222 | return heis |
|
223 | 223 | |
|
224 | 224 | def getDeltaH(self): |
|
225 | 225 | |
|
226 | 226 | delta = self.heightList[1] - self.heightList[0] |
|
227 | 227 | |
|
228 | 228 | return delta |
|
229 | 229 | |
|
230 | 230 | def getltctime(self): |
|
231 | 231 | |
|
232 | 232 | if self.useLocalTime: |
|
233 | 233 | return self.utctime - self.timeZone * 60 |
|
234 | 234 | |
|
235 | 235 | return self.utctime |
|
236 | 236 | |
|
237 | 237 | def getDatatime(self): |
|
238 | 238 | |
|
239 | 239 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
240 | 240 | return datatimeValue |
|
241 | 241 | |
|
242 | 242 | def getTimeRange(self): |
|
243 | 243 | |
|
244 | 244 | datatime = [] |
|
245 | 245 | |
|
246 | 246 | datatime.append(self.ltctime) |
|
247 | 247 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
248 | 248 | |
|
249 | 249 | datatime = numpy.array(datatime) |
|
250 | 250 | |
|
251 | 251 | return datatime |
|
252 | 252 | |
|
253 | 253 | def getFmaxTimeResponse(self): |
|
254 | 254 | |
|
255 | 255 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
256 | 256 | |
|
257 | 257 | PRF = 1. / (period * self.nCohInt) |
|
258 | 258 | |
|
259 | 259 | fmax = PRF |
|
260 | 260 | |
|
261 | 261 | return fmax |
|
262 | 262 | |
|
263 | 263 | def getFmax(self): |
|
264 | 264 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
265 | 265 | |
|
266 | 266 | fmax = PRF |
|
267 | 267 | return fmax |
|
268 | 268 | |
|
269 | 269 | def getVmax(self): |
|
270 | ||
|
270 | #print("frequency",self.frequency) | |
|
271 | 271 | _lambda = self.C / self.frequency |
|
272 | 272 | |
|
273 | 273 | vmax = self.getFmax() * _lambda / 2 |
|
274 | 274 | |
|
275 | 275 | return vmax |
|
276 | 276 | |
|
277 | 277 | def get_ippSeconds(self): |
|
278 | 278 | ''' |
|
279 | 279 | ''' |
|
280 | 280 | return self.radarControllerHeaderObj.ippSeconds |
|
281 | 281 | |
|
282 | 282 | def set_ippSeconds(self, ippSeconds): |
|
283 | 283 | ''' |
|
284 | 284 | ''' |
|
285 | 285 | |
|
286 | 286 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
287 | 287 | |
|
288 | 288 | return |
|
289 | 289 | |
|
290 | 290 | def get_dtype(self): |
|
291 | 291 | ''' |
|
292 | 292 | ''' |
|
293 | 293 | return getNumpyDtype(self.datatype) |
|
294 | 294 | |
|
295 | 295 | def set_dtype(self, numpyDtype): |
|
296 | 296 | ''' |
|
297 | 297 | ''' |
|
298 | 298 | |
|
299 | 299 | self.datatype = getDataTypeCode(numpyDtype) |
|
300 | 300 | |
|
301 | 301 | def get_code(self): |
|
302 | 302 | ''' |
|
303 | 303 | ''' |
|
304 | 304 | return self.radarControllerHeaderObj.code |
|
305 | 305 | |
|
306 | 306 | def set_code(self, code): |
|
307 | 307 | ''' |
|
308 | 308 | ''' |
|
309 | 309 | self.radarControllerHeaderObj.code = code |
|
310 | 310 | |
|
311 | 311 | return |
|
312 | 312 | |
|
313 | 313 | def get_ncode(self): |
|
314 | 314 | ''' |
|
315 | 315 | ''' |
|
316 | 316 | return self.radarControllerHeaderObj.nCode |
|
317 | 317 | |
|
318 | 318 | def set_ncode(self, nCode): |
|
319 | 319 | ''' |
|
320 | 320 | ''' |
|
321 | 321 | self.radarControllerHeaderObj.nCode = nCode |
|
322 | 322 | |
|
323 | 323 | return |
|
324 | 324 | |
|
325 | 325 | def get_nbaud(self): |
|
326 | 326 | ''' |
|
327 | 327 | ''' |
|
328 | 328 | return self.radarControllerHeaderObj.nBaud |
|
329 | 329 | |
|
330 | 330 | def set_nbaud(self, nBaud): |
|
331 | 331 | ''' |
|
332 | 332 | ''' |
|
333 | 333 | self.radarControllerHeaderObj.nBaud = nBaud |
|
334 | 334 | |
|
335 | 335 | return |
|
336 | 336 | |
|
337 | 337 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
338 | 338 | channelIndexList = property( |
|
339 | 339 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
340 | 340 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
341 | 341 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
342 | 342 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
343 | 343 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
344 | 344 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
345 | 345 | dtype = property(get_dtype, set_dtype) |
|
346 | 346 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
347 | 347 | code = property(get_code, set_code) |
|
348 | 348 | nCode = property(get_ncode, set_ncode) |
|
349 | 349 | nBaud = property(get_nbaud, set_nbaud) |
|
350 | 350 | |
|
351 | 351 | |
|
352 | 352 | class Voltage(JROData): |
|
353 | 353 | |
|
354 | 354 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
355 | 355 | data = None |
|
356 | 356 | |
|
357 | 357 | def __init__(self): |
|
358 | 358 | ''' |
|
359 | 359 | Constructor |
|
360 | 360 | ''' |
|
361 | 361 | |
|
362 | 362 | self.useLocalTime = True |
|
363 | 363 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
364 | 364 | self.systemHeaderObj = SystemHeader() |
|
365 | 365 | self.type = "Voltage" |
|
366 | 366 | self.data = None |
|
367 | 367 | # self.dtype = None |
|
368 | 368 | # self.nChannels = 0 |
|
369 | 369 | # self.nHeights = 0 |
|
370 | 370 | self.nProfiles = None |
|
371 | 371 | self.heightList = None |
|
372 | 372 | self.channelList = None |
|
373 | 373 | # self.channelIndexList = None |
|
374 | 374 | self.flagNoData = True |
|
375 | 375 | self.flagDiscontinuousBlock = False |
|
376 | 376 | self.utctime = None |
|
377 | 377 | self.timeZone = None |
|
378 | 378 | self.dstFlag = None |
|
379 | 379 | self.errorCount = None |
|
380 | 380 | self.nCohInt = None |
|
381 | 381 | self.blocksize = None |
|
382 | 382 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
383 | 383 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
384 | 384 | self.flagShiftFFT = False |
|
385 | 385 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
386 | 386 | self.profileIndex = 0 |
|
387 | 387 | |
|
388 | 388 | def getNoisebyHildebrand(self, channel=None): |
|
389 | 389 | """ |
|
390 | 390 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
391 | 391 | |
|
392 | 392 | Return: |
|
393 | 393 | noiselevel |
|
394 | 394 | """ |
|
395 | 395 | |
|
396 | 396 | if channel != None: |
|
397 | 397 | data = self.data[channel] |
|
398 | 398 | nChannels = 1 |
|
399 | 399 | else: |
|
400 | 400 | data = self.data |
|
401 | 401 | nChannels = self.nChannels |
|
402 | 402 | |
|
403 | 403 | noise = numpy.zeros(nChannels) |
|
404 | 404 | power = data * numpy.conjugate(data) |
|
405 | 405 | |
|
406 | 406 | for thisChannel in range(nChannels): |
|
407 | 407 | if nChannels == 1: |
|
408 | 408 | daux = power[:].real |
|
409 | 409 | else: |
|
410 | 410 | daux = power[thisChannel, :].real |
|
411 | 411 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
412 | 412 | |
|
413 | 413 | return noise |
|
414 | 414 | |
|
415 | 415 | def getNoise(self, type=1, channel=None): |
|
416 | 416 | |
|
417 | 417 | if type == 1: |
|
418 | 418 | noise = self.getNoisebyHildebrand(channel) |
|
419 | 419 | |
|
420 | 420 | return noise |
|
421 | 421 | |
|
422 | 422 | def getPower(self, channel=None): |
|
423 | 423 | |
|
424 | 424 | if channel != None: |
|
425 | 425 | data = self.data[channel] |
|
426 | 426 | else: |
|
427 | 427 | data = self.data |
|
428 | 428 | |
|
429 | 429 | power = data * numpy.conjugate(data) |
|
430 | 430 | powerdB = 10 * numpy.log10(power.real) |
|
431 | 431 | powerdB = numpy.squeeze(powerdB) |
|
432 | 432 | |
|
433 | 433 | return powerdB |
|
434 | 434 | |
|
435 | 435 | def getTimeInterval(self): |
|
436 | 436 | |
|
437 | 437 | timeInterval = self.ippSeconds * self.nCohInt |
|
438 | 438 | |
|
439 | 439 | return timeInterval |
|
440 | 440 | |
|
441 | 441 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
442 | 442 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
443 | 443 | |
|
444 | 444 | |
|
445 | 445 | class Spectra(JROData): |
|
446 | 446 | |
|
447 | 447 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
448 | 448 | data_spc = None |
|
449 | 449 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
450 | 450 | data_cspc = None |
|
451 | 451 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
452 | 452 | data_dc = None |
|
453 | 453 | # data power |
|
454 | 454 | data_pwr = None |
|
455 | 455 | nFFTPoints = None |
|
456 | 456 | # nPairs = None |
|
457 | 457 | pairsList = None |
|
458 | 458 | nIncohInt = None |
|
459 | 459 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
460 | 460 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
461 | 461 | ippFactor = None |
|
462 | 462 | profileIndex = 0 |
|
463 | 463 | plotting = "spectra" |
|
464 | 464 | |
|
465 | 465 | def __init__(self): |
|
466 | 466 | ''' |
|
467 | 467 | Constructor |
|
468 | 468 | ''' |
|
469 | 469 | |
|
470 | 470 | self.useLocalTime = True |
|
471 | 471 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
472 | 472 | self.systemHeaderObj = SystemHeader() |
|
473 | 473 | self.type = "Spectra" |
|
474 | 474 | # self.data = None |
|
475 | 475 | # self.dtype = None |
|
476 | 476 | # self.nChannels = 0 |
|
477 | 477 | # self.nHeights = 0 |
|
478 | 478 | self.nProfiles = None |
|
479 | 479 | self.heightList = None |
|
480 | 480 | self.channelList = None |
|
481 | 481 | # self.channelIndexList = None |
|
482 | 482 | self.pairsList = None |
|
483 | 483 | self.flagNoData = True |
|
484 | 484 | self.flagDiscontinuousBlock = False |
|
485 | 485 | self.utctime = None |
|
486 | 486 | self.nCohInt = None |
|
487 | 487 | self.nIncohInt = None |
|
488 | 488 | self.blocksize = None |
|
489 | 489 | self.nFFTPoints = None |
|
490 | 490 | self.wavelength = None |
|
491 | 491 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
492 | 492 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
493 | 493 | self.flagShiftFFT = False |
|
494 | 494 | self.ippFactor = 1 |
|
495 | 495 | #self.noise = None |
|
496 | 496 | self.beacon_heiIndexList = [] |
|
497 | 497 | self.noise_estimation = None |
|
498 | 498 | |
|
499 | 499 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
500 | 500 | """ |
|
501 | 501 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
502 | 502 | |
|
503 | 503 | Return: |
|
504 | 504 | noiselevel |
|
505 | 505 | """ |
|
506 | 506 | |
|
507 | 507 | noise = numpy.zeros(self.nChannels) |
|
508 | 508 | |
|
509 | 509 | for channel in range(self.nChannels): |
|
510 | 510 | daux = self.data_spc[channel, |
|
511 | 511 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
512 | 512 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
513 | 513 | |
|
514 | 514 | return noise |
|
515 | 515 | |
|
516 | 516 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
517 | 517 | |
|
518 | 518 | if self.noise_estimation is not None: |
|
519 | 519 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
520 | 520 | return self.noise_estimation |
|
521 | 521 | else: |
|
522 | 522 | noise = self.getNoisebyHildebrand( |
|
523 | 523 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
524 | 524 | return noise |
|
525 | 525 | |
|
526 | 526 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
527 | 527 | |
|
528 | 528 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
529 | 529 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
530 | 530 | |
|
531 | 531 | return freqrange |
|
532 | 532 | |
|
533 | 533 | def getAcfRange(self, extrapoints=0): |
|
534 | 534 | |
|
535 | 535 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
536 | 536 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
537 | 537 | |
|
538 | 538 | return freqrange |
|
539 | 539 | |
|
540 | 540 | def getFreqRange(self, extrapoints=0): |
|
541 | 541 | |
|
542 | 542 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
543 | 543 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
544 | 544 | |
|
545 | 545 | return freqrange |
|
546 | 546 | |
|
547 | 547 | def getVelRange(self, extrapoints=0): |
|
548 | 548 | |
|
549 | 549 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
550 | 550 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
551 | 551 | |
|
552 | 552 | if self.nmodes: |
|
553 | 553 | return velrange/self.nmodes |
|
554 | 554 | else: |
|
555 | 555 | return velrange |
|
556 | 556 | |
|
557 | 557 | def getNPairs(self): |
|
558 | 558 | |
|
559 | 559 | return len(self.pairsList) |
|
560 | 560 | |
|
561 | 561 | def getPairsIndexList(self): |
|
562 | 562 | |
|
563 | 563 | return list(range(self.nPairs)) |
|
564 | 564 | |
|
565 | 565 | def getNormFactor(self): |
|
566 | 566 | |
|
567 | 567 | pwcode = 1 |
|
568 | 568 | |
|
569 | 569 | if self.flagDecodeData: |
|
570 | 570 | pwcode = numpy.sum(self.code[0]**2) |
|
571 | 571 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
572 | 572 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
573 | 573 | |
|
574 | 574 | return normFactor |
|
575 | 575 | |
|
576 | 576 | def getFlagCspc(self): |
|
577 | 577 | |
|
578 | 578 | if self.data_cspc is None: |
|
579 | 579 | return True |
|
580 | 580 | |
|
581 | 581 | return False |
|
582 | 582 | |
|
583 | 583 | def getFlagDc(self): |
|
584 | 584 | |
|
585 | 585 | if self.data_dc is None: |
|
586 | 586 | return True |
|
587 | 587 | |
|
588 | 588 | return False |
|
589 | 589 | |
|
590 | 590 | def getTimeInterval(self): |
|
591 | 591 | |
|
592 | 592 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
593 | 593 | if self.nmodes: |
|
594 | 594 | return self.nmodes*timeInterval |
|
595 | 595 | else: |
|
596 | 596 | return timeInterval |
|
597 | 597 | |
|
598 | 598 | def getPower(self): |
|
599 | 599 | |
|
600 | 600 | factor = self.normFactor |
|
601 | 601 | z = self.data_spc / factor |
|
602 | 602 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
603 | 603 | avg = numpy.average(z, axis=1) |
|
604 | 604 | |
|
605 | 605 | return 10 * numpy.log10(avg) |
|
606 | 606 | |
|
607 | 607 | def getCoherence(self, pairsList=None, phase=False): |
|
608 | 608 | |
|
609 | 609 | z = [] |
|
610 | 610 | if pairsList is None: |
|
611 | 611 | pairsIndexList = self.pairsIndexList |
|
612 | 612 | else: |
|
613 | 613 | pairsIndexList = [] |
|
614 | 614 | for pair in pairsList: |
|
615 | 615 | if pair not in self.pairsList: |
|
616 | 616 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
617 | 617 | pair)) |
|
618 | 618 | pairsIndexList.append(self.pairsList.index(pair)) |
|
619 | 619 | for i in range(len(pairsIndexList)): |
|
620 | 620 | pair = self.pairsList[pairsIndexList[i]] |
|
621 | 621 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
622 | 622 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
623 | 623 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
624 | 624 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
625 | 625 | if phase: |
|
626 | 626 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
627 | 627 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
628 | 628 | else: |
|
629 | 629 | data = numpy.abs(avgcoherenceComplex) |
|
630 | 630 | |
|
631 | 631 | z.append(data) |
|
632 | 632 | |
|
633 | 633 | return numpy.array(z) |
|
634 | 634 | |
|
635 | 635 | def setValue(self, value): |
|
636 | 636 | |
|
637 | 637 | print("This property should not be initialized") |
|
638 | 638 | |
|
639 | 639 | return |
|
640 | 640 | |
|
641 | 641 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
642 | 642 | pairsIndexList = property( |
|
643 | 643 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
644 | 644 | normFactor = property(getNormFactor, setValue, |
|
645 | 645 | "I'm the 'getNormFactor' property.") |
|
646 | 646 | flag_cspc = property(getFlagCspc, setValue) |
|
647 | 647 | flag_dc = property(getFlagDc, setValue) |
|
648 | 648 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
649 | 649 | timeInterval = property(getTimeInterval, setValue, |
|
650 | 650 | "I'm the 'timeInterval' property") |
|
651 | 651 | |
|
652 | 652 | |
|
653 | 653 | class SpectraHeis(Spectra): |
|
654 | 654 | |
|
655 | 655 | data_spc = None |
|
656 | 656 | data_cspc = None |
|
657 | 657 | data_dc = None |
|
658 | 658 | nFFTPoints = None |
|
659 | 659 | # nPairs = None |
|
660 | 660 | pairsList = None |
|
661 | 661 | nCohInt = None |
|
662 | 662 | nIncohInt = None |
|
663 | 663 | |
|
664 | 664 | def __init__(self): |
|
665 | 665 | |
|
666 | 666 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
667 | 667 | |
|
668 | 668 | self.systemHeaderObj = SystemHeader() |
|
669 | 669 | |
|
670 | 670 | self.type = "SpectraHeis" |
|
671 | 671 | |
|
672 | 672 | # self.dtype = None |
|
673 | 673 | |
|
674 | 674 | # self.nChannels = 0 |
|
675 | 675 | |
|
676 | 676 | # self.nHeights = 0 |
|
677 | 677 | |
|
678 | 678 | self.nProfiles = None |
|
679 | 679 | |
|
680 | 680 | self.heightList = None |
|
681 | 681 | |
|
682 | 682 | self.channelList = None |
|
683 | 683 | |
|
684 | 684 | # self.channelIndexList = None |
|
685 | 685 | |
|
686 | 686 | self.flagNoData = True |
|
687 | 687 | |
|
688 | 688 | self.flagDiscontinuousBlock = False |
|
689 | 689 | |
|
690 | 690 | # self.nPairs = 0 |
|
691 | 691 | |
|
692 | 692 | self.utctime = None |
|
693 | 693 | |
|
694 | 694 | self.blocksize = None |
|
695 | 695 | |
|
696 | 696 | self.profileIndex = 0 |
|
697 | 697 | |
|
698 | 698 | self.nCohInt = 1 |
|
699 | 699 | |
|
700 | 700 | self.nIncohInt = 1 |
|
701 | 701 | |
|
702 | 702 | def getNormFactor(self): |
|
703 | 703 | pwcode = 1 |
|
704 | 704 | if self.flagDecodeData: |
|
705 | 705 | pwcode = numpy.sum(self.code[0]**2) |
|
706 | 706 | |
|
707 | 707 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
708 | 708 | |
|
709 | 709 | return normFactor |
|
710 | 710 | |
|
711 | 711 | def getTimeInterval(self): |
|
712 | 712 | |
|
713 | 713 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
714 | 714 | |
|
715 | 715 | return timeInterval |
|
716 | 716 | |
|
717 | 717 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
718 | 718 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
719 | 719 | |
|
720 | 720 | |
|
721 | 721 | class Fits(JROData): |
|
722 | 722 | |
|
723 | 723 | heightList = None |
|
724 | 724 | channelList = None |
|
725 | 725 | flagNoData = True |
|
726 | 726 | flagDiscontinuousBlock = False |
|
727 | 727 | useLocalTime = False |
|
728 | 728 | utctime = None |
|
729 | 729 | timeZone = None |
|
730 | 730 | # ippSeconds = None |
|
731 | 731 | # timeInterval = None |
|
732 | 732 | nCohInt = None |
|
733 | 733 | nIncohInt = None |
|
734 | 734 | noise = None |
|
735 | 735 | windowOfFilter = 1 |
|
736 | 736 | # Speed of ligth |
|
737 | 737 | C = 3e8 |
|
738 | 738 | frequency = 49.92e6 |
|
739 | 739 | realtime = False |
|
740 | 740 | |
|
741 | 741 | def __init__(self): |
|
742 | 742 | |
|
743 | 743 | self.type = "Fits" |
|
744 | 744 | |
|
745 | 745 | self.nProfiles = None |
|
746 | 746 | |
|
747 | 747 | self.heightList = None |
|
748 | 748 | |
|
749 | 749 | self.channelList = None |
|
750 | 750 | |
|
751 | 751 | # self.channelIndexList = None |
|
752 | 752 | |
|
753 | 753 | self.flagNoData = True |
|
754 | 754 | |
|
755 | 755 | self.utctime = None |
|
756 | 756 | |
|
757 | 757 | self.nCohInt = 1 |
|
758 | 758 | |
|
759 | 759 | self.nIncohInt = 1 |
|
760 | 760 | |
|
761 | 761 | self.useLocalTime = True |
|
762 | 762 | |
|
763 | 763 | self.profileIndex = 0 |
|
764 | 764 | |
|
765 | 765 | # self.utctime = None |
|
766 | 766 | # self.timeZone = None |
|
767 | 767 | # self.ltctime = None |
|
768 | 768 | # self.timeInterval = None |
|
769 | 769 | # self.header = None |
|
770 | 770 | # self.data_header = None |
|
771 | 771 | # self.data = None |
|
772 | 772 | # self.datatime = None |
|
773 | 773 | # self.flagNoData = False |
|
774 | 774 | # self.expName = '' |
|
775 | 775 | # self.nChannels = None |
|
776 | 776 | # self.nSamples = None |
|
777 | 777 | # self.dataBlocksPerFile = None |
|
778 | 778 | # self.comments = '' |
|
779 | 779 | # |
|
780 | 780 | |
|
781 | 781 | def getltctime(self): |
|
782 | 782 | |
|
783 | 783 | if self.useLocalTime: |
|
784 | 784 | return self.utctime - self.timeZone * 60 |
|
785 | 785 | |
|
786 | 786 | return self.utctime |
|
787 | 787 | |
|
788 | 788 | def getDatatime(self): |
|
789 | 789 | |
|
790 | 790 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
791 | 791 | return datatime |
|
792 | 792 | |
|
793 | 793 | def getTimeRange(self): |
|
794 | 794 | |
|
795 | 795 | datatime = [] |
|
796 | 796 | |
|
797 | 797 | datatime.append(self.ltctime) |
|
798 | 798 | datatime.append(self.ltctime + self.timeInterval) |
|
799 | 799 | |
|
800 | 800 | datatime = numpy.array(datatime) |
|
801 | 801 | |
|
802 | 802 | return datatime |
|
803 | 803 | |
|
804 | 804 | def getHeiRange(self): |
|
805 | 805 | |
|
806 | 806 | heis = self.heightList |
|
807 | 807 | |
|
808 | 808 | return heis |
|
809 | 809 | |
|
810 | 810 | def getNHeights(self): |
|
811 | 811 | |
|
812 | 812 | return len(self.heightList) |
|
813 | 813 | |
|
814 | 814 | def getNChannels(self): |
|
815 | 815 | |
|
816 | 816 | return len(self.channelList) |
|
817 | 817 | |
|
818 | 818 | def getChannelIndexList(self): |
|
819 | 819 | |
|
820 | 820 | return list(range(self.nChannels)) |
|
821 | 821 | |
|
822 | 822 | def getNoise(self, type=1): |
|
823 | 823 | |
|
824 | 824 | #noise = numpy.zeros(self.nChannels) |
|
825 | 825 | |
|
826 | 826 | if type == 1: |
|
827 | 827 | noise = self.getNoisebyHildebrand() |
|
828 | 828 | |
|
829 | 829 | if type == 2: |
|
830 | 830 | noise = self.getNoisebySort() |
|
831 | 831 | |
|
832 | 832 | if type == 3: |
|
833 | 833 | noise = self.getNoisebyWindow() |
|
834 | 834 | |
|
835 | 835 | return noise |
|
836 | 836 | |
|
837 | 837 | def getTimeInterval(self): |
|
838 | 838 | |
|
839 | 839 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
840 | 840 | |
|
841 | 841 | return timeInterval |
|
842 | 842 | |
|
843 | 843 | def get_ippSeconds(self): |
|
844 | 844 | ''' |
|
845 | 845 | ''' |
|
846 | 846 | return self.ipp_sec |
|
847 | 847 | |
|
848 | 848 | |
|
849 | 849 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
850 | 850 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
851 | 851 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
852 | 852 | channelIndexList = property( |
|
853 | 853 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
854 | 854 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
855 | 855 | |
|
856 | 856 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
857 | 857 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
858 | 858 | ippSeconds = property(get_ippSeconds, '') |
|
859 | 859 | |
|
860 | 860 | class Correlation(JROData): |
|
861 | 861 | |
|
862 | 862 | noise = None |
|
863 | 863 | SNR = None |
|
864 | 864 | #-------------------------------------------------- |
|
865 | 865 | mode = None |
|
866 | 866 | split = False |
|
867 | 867 | data_cf = None |
|
868 | 868 | lags = None |
|
869 | 869 | lagRange = None |
|
870 | 870 | pairsList = None |
|
871 | 871 | normFactor = None |
|
872 | 872 | #-------------------------------------------------- |
|
873 | 873 | # calculateVelocity = None |
|
874 | 874 | nLags = None |
|
875 | 875 | nPairs = None |
|
876 | 876 | nAvg = None |
|
877 | 877 | |
|
878 | 878 | def __init__(self): |
|
879 | 879 | ''' |
|
880 | 880 | Constructor |
|
881 | 881 | ''' |
|
882 | 882 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
883 | 883 | |
|
884 | 884 | self.systemHeaderObj = SystemHeader() |
|
885 | 885 | |
|
886 | 886 | self.type = "Correlation" |
|
887 | 887 | |
|
888 | 888 | self.data = None |
|
889 | 889 | |
|
890 | 890 | self.dtype = None |
|
891 | 891 | |
|
892 | 892 | self.nProfiles = None |
|
893 | 893 | |
|
894 | 894 | self.heightList = None |
|
895 | 895 | |
|
896 | 896 | self.channelList = None |
|
897 | 897 | |
|
898 | 898 | self.flagNoData = True |
|
899 | 899 | |
|
900 | 900 | self.flagDiscontinuousBlock = False |
|
901 | 901 | |
|
902 | 902 | self.utctime = None |
|
903 | 903 | |
|
904 | 904 | self.timeZone = None |
|
905 | 905 | |
|
906 | 906 | self.dstFlag = None |
|
907 | 907 | |
|
908 | 908 | self.errorCount = None |
|
909 | 909 | |
|
910 | 910 | self.blocksize = None |
|
911 | 911 | |
|
912 | 912 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
913 | 913 | |
|
914 | 914 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
915 | 915 | |
|
916 | 916 | self.pairsList = None |
|
917 | 917 | |
|
918 | 918 | self.nPoints = None |
|
919 | 919 | |
|
920 | 920 | def getPairsList(self): |
|
921 | 921 | |
|
922 | 922 | return self.pairsList |
|
923 | 923 | |
|
924 | 924 | def getNoise(self, mode=2): |
|
925 | 925 | |
|
926 | 926 | indR = numpy.where(self.lagR == 0)[0][0] |
|
927 | 927 | indT = numpy.where(self.lagT == 0)[0][0] |
|
928 | 928 | |
|
929 | 929 | jspectra0 = self.data_corr[:, :, indR, :] |
|
930 | 930 | jspectra = copy.copy(jspectra0) |
|
931 | 931 | |
|
932 | 932 | num_chan = jspectra.shape[0] |
|
933 | 933 | num_hei = jspectra.shape[2] |
|
934 | 934 | |
|
935 | 935 | freq_dc = jspectra.shape[1] / 2 |
|
936 | 936 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
937 | 937 | |
|
938 | 938 | if ind_vel[0] < 0: |
|
939 | 939 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
940 | 940 | range(0, 1))] + self.num_prof |
|
941 | 941 | |
|
942 | 942 | if mode == 1: |
|
943 | 943 | jspectra[:, freq_dc, :] = ( |
|
944 | 944 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
945 | 945 | |
|
946 | 946 | if mode == 2: |
|
947 | 947 | |
|
948 | 948 | vel = numpy.array([-2, -1, 1, 2]) |
|
949 | 949 | xx = numpy.zeros([4, 4]) |
|
950 | 950 | |
|
951 | 951 | for fil in range(4): |
|
952 | 952 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
953 | 953 | |
|
954 | 954 | xx_inv = numpy.linalg.inv(xx) |
|
955 | 955 | xx_aux = xx_inv[0, :] |
|
956 | 956 | |
|
957 | 957 | for ich in range(num_chan): |
|
958 | 958 | yy = jspectra[ich, ind_vel, :] |
|
959 | 959 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
960 | 960 | |
|
961 | 961 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
962 | 962 | cjunkid = sum(junkid) |
|
963 | 963 | |
|
964 | 964 | if cjunkid.any(): |
|
965 | 965 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
966 | 966 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
967 | 967 | |
|
968 | 968 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
969 | 969 | |
|
970 | 970 | return noise |
|
971 | 971 | |
|
972 | 972 | def getTimeInterval(self): |
|
973 | 973 | |
|
974 | 974 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
975 | 975 | |
|
976 | 976 | return timeInterval |
|
977 | 977 | |
|
978 | 978 | def splitFunctions(self): |
|
979 | 979 | |
|
980 | 980 | pairsList = self.pairsList |
|
981 | 981 | ccf_pairs = [] |
|
982 | 982 | acf_pairs = [] |
|
983 | 983 | ccf_ind = [] |
|
984 | 984 | acf_ind = [] |
|
985 | 985 | for l in range(len(pairsList)): |
|
986 | 986 | chan0 = pairsList[l][0] |
|
987 | 987 | chan1 = pairsList[l][1] |
|
988 | 988 | |
|
989 | 989 | # Obteniendo pares de Autocorrelacion |
|
990 | 990 | if chan0 == chan1: |
|
991 | 991 | acf_pairs.append(chan0) |
|
992 | 992 | acf_ind.append(l) |
|
993 | 993 | else: |
|
994 | 994 | ccf_pairs.append(pairsList[l]) |
|
995 | 995 | ccf_ind.append(l) |
|
996 | 996 | |
|
997 | 997 | data_acf = self.data_cf[acf_ind] |
|
998 | 998 | data_ccf = self.data_cf[ccf_ind] |
|
999 | 999 | |
|
1000 | 1000 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1001 | 1001 | |
|
1002 | 1002 | def getNormFactor(self): |
|
1003 | 1003 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1004 | 1004 | acf_pairs = numpy.array(acf_pairs) |
|
1005 | 1005 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
1006 | 1006 | |
|
1007 | 1007 | for p in range(self.nPairs): |
|
1008 | 1008 | pair = self.pairsList[p] |
|
1009 | 1009 | |
|
1010 | 1010 | ch0 = pair[0] |
|
1011 | 1011 | ch1 = pair[1] |
|
1012 | 1012 | |
|
1013 | 1013 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
1014 | 1014 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
1015 | 1015 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
1016 | 1016 | |
|
1017 | 1017 | return normFactor |
|
1018 | 1018 | |
|
1019 | 1019 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1020 | 1020 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1021 | 1021 | |
|
1022 | 1022 | |
|
1023 | 1023 | class Parameters(Spectra): |
|
1024 | 1024 | |
|
1025 | 1025 | experimentInfo = None # Information about the experiment |
|
1026 | 1026 | # Information from previous data |
|
1027 | 1027 | inputUnit = None # Type of data to be processed |
|
1028 | 1028 | operation = None # Type of operation to parametrize |
|
1029 | 1029 | # normFactor = None #Normalization Factor |
|
1030 | 1030 | groupList = None # List of Pairs, Groups, etc |
|
1031 | 1031 | # Parameters |
|
1032 | 1032 | data_param = None # Parameters obtained |
|
1033 | 1033 | data_pre = None # Data Pre Parametrization |
|
1034 | 1034 | data_SNR = None # Signal to Noise Ratio |
|
1035 | 1035 | # heightRange = None #Heights |
|
1036 | 1036 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1037 | 1037 | # noise = None #Noise Potency |
|
1038 | 1038 | utctimeInit = None # Initial UTC time |
|
1039 | 1039 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1040 | 1040 | useLocalTime = True |
|
1041 | 1041 | # Fitting |
|
1042 | 1042 | data_error = None # Error of the estimation |
|
1043 | 1043 | constants = None |
|
1044 | 1044 | library = None |
|
1045 | 1045 | # Output signal |
|
1046 | 1046 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1047 | 1047 | data_output = None # Out signal |
|
1048 | 1048 | nAvg = None |
|
1049 | 1049 | noise_estimation = None |
|
1050 | 1050 | GauSPC = None # Fit gaussian SPC |
|
1051 | 1051 | |
|
1052 | 1052 | def __init__(self): |
|
1053 | 1053 | ''' |
|
1054 | 1054 | Constructor |
|
1055 | 1055 | ''' |
|
1056 | 1056 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1057 | 1057 | |
|
1058 | 1058 | self.systemHeaderObj = SystemHeader() |
|
1059 | 1059 | |
|
1060 | 1060 | self.type = "Parameters" |
|
1061 | 1061 | |
|
1062 | 1062 | def getTimeRange1(self, interval): |
|
1063 | 1063 | |
|
1064 | 1064 | datatime = [] |
|
1065 | 1065 | |
|
1066 | 1066 | if self.useLocalTime: |
|
1067 | 1067 | time1 = self.utctimeInit - self.timeZone * 60 |
|
1068 | 1068 | else: |
|
1069 | 1069 | time1 = self.utctimeInit |
|
1070 | 1070 | |
|
1071 | 1071 | datatime.append(time1) |
|
1072 | 1072 | datatime.append(time1 + interval) |
|
1073 | 1073 | datatime = numpy.array(datatime) |
|
1074 | 1074 | |
|
1075 | 1075 | return datatime |
|
1076 | 1076 | |
|
1077 | 1077 | def getTimeInterval(self): |
|
1078 | 1078 | |
|
1079 | 1079 | if hasattr(self, 'timeInterval1'): |
|
1080 | 1080 | return self.timeInterval1 |
|
1081 | 1081 | else: |
|
1082 | 1082 | return self.paramInterval |
|
1083 | 1083 | |
|
1084 | 1084 | def setValue(self, value): |
|
1085 | 1085 | |
|
1086 | 1086 | print("This property should not be initialized") |
|
1087 | 1087 | |
|
1088 | 1088 | return |
|
1089 | 1089 | |
|
1090 | 1090 | def getNoise(self): |
|
1091 | 1091 | |
|
1092 | 1092 | return self.spc_noise |
|
1093 | 1093 | |
|
1094 | 1094 | timeInterval = property(getTimeInterval) |
|
1095 | 1095 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
1096 | 1096 | |
|
1097 | 1097 | |
|
1098 | 1098 | class PlotterData(object): |
|
1099 | 1099 | ''' |
|
1100 | 1100 | Object to hold data to be plotted |
|
1101 | 1101 | ''' |
|
1102 | 1102 | |
|
1103 | 1103 | MAXNUMX = 100 |
|
1104 | 1104 | MAXNUMY = 100 |
|
1105 | 1105 | |
|
1106 | 1106 | def __init__(self, code, throttle_value, exp_code, buffering=True, snr=False): |
|
1107 | 1107 | |
|
1108 | 1108 | self.key = code |
|
1109 | 1109 | self.throttle = throttle_value |
|
1110 | 1110 | self.exp_code = exp_code |
|
1111 | 1111 | self.buffering = buffering |
|
1112 | 1112 | self.ready = False |
|
1113 | 1113 | self.localtime = False |
|
1114 | 1114 | self.data = {} |
|
1115 | 1115 | self.meta = {} |
|
1116 | 1116 | self.__times = [] |
|
1117 | 1117 | self.__heights = [] |
|
1118 | 1118 | |
|
1119 | 1119 | if 'snr' in code: |
|
1120 | 1120 | self.plottypes = ['snr'] |
|
1121 | 1121 | elif code == 'spc': |
|
1122 | 1122 | self.plottypes = ['spc', 'noise', 'rti'] |
|
1123 | 1123 | elif code == 'rti': |
|
1124 | 1124 | self.plottypes = ['noise', 'rti'] |
|
1125 | 1125 | else: |
|
1126 | 1126 | self.plottypes = [code] |
|
1127 | 1127 | |
|
1128 | 1128 | if 'snr' not in self.plottypes and snr: |
|
1129 | 1129 | self.plottypes.append('snr') |
|
1130 | 1130 | |
|
1131 | 1131 | for plot in self.plottypes: |
|
1132 | 1132 | self.data[plot] = {} |
|
1133 | 1133 | |
|
1134 | 1134 | def __str__(self): |
|
1135 | 1135 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1136 | 1136 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) |
|
1137 | 1137 | |
|
1138 | 1138 | def __len__(self): |
|
1139 | 1139 | return len(self.__times) |
|
1140 | 1140 | |
|
1141 | 1141 | def __getitem__(self, key): |
|
1142 | 1142 | |
|
1143 | 1143 | if key not in self.data: |
|
1144 | 1144 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
1145 | 1145 | if 'spc' in key or not self.buffering: |
|
1146 | 1146 | ret = self.data[key] |
|
1147 | 1147 | elif 'scope' in key: |
|
1148 | 1148 | ret = numpy.array(self.data[key][float(self.tm)]) |
|
1149 | 1149 | else: |
|
1150 | 1150 | ret = numpy.array([self.data[key][x] for x in self.times]) |
|
1151 | 1151 | if ret.ndim > 1: |
|
1152 | 1152 | ret = numpy.swapaxes(ret, 0, 1) |
|
1153 | 1153 | return ret |
|
1154 | 1154 | |
|
1155 | 1155 | def __contains__(self, key): |
|
1156 | 1156 | return key in self.data |
|
1157 | 1157 | |
|
1158 | 1158 | def setup(self): |
|
1159 | 1159 | ''' |
|
1160 | 1160 | Configure object |
|
1161 | 1161 | ''' |
|
1162 | 1162 | |
|
1163 | 1163 | self.type = '' |
|
1164 | 1164 | self.ready = False |
|
1165 | 1165 | self.data = {} |
|
1166 | 1166 | self.__times = [] |
|
1167 | 1167 | self.__heights = [] |
|
1168 | 1168 | self.__all_heights = set() |
|
1169 | 1169 | for plot in self.plottypes: |
|
1170 | 1170 | if 'snr' in plot: |
|
1171 | 1171 | plot = 'snr' |
|
1172 | 1172 | elif 'spc_moments' == plot: |
|
1173 | 1173 | plot = 'moments' |
|
1174 | 1174 | self.data[plot] = {} |
|
1175 | 1175 | |
|
1176 | 1176 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data or 'moments' in self.data: |
|
1177 | 1177 | self.data['noise'] = {} |
|
1178 | 1178 | self.data['rti'] = {} |
|
1179 | 1179 | if 'noise' not in self.plottypes: |
|
1180 | 1180 | self.plottypes.append('noise') |
|
1181 | 1181 | if 'rti' not in self.plottypes: |
|
1182 | 1182 | self.plottypes.append('rti') |
|
1183 | 1183 | |
|
1184 | 1184 | def shape(self, key): |
|
1185 | 1185 | ''' |
|
1186 | 1186 | Get the shape of the one-element data for the given key |
|
1187 | 1187 | ''' |
|
1188 | 1188 | |
|
1189 | 1189 | if len(self.data[key]): |
|
1190 | 1190 | if 'spc' in key or not self.buffering: |
|
1191 | 1191 | return self.data[key].shape |
|
1192 | 1192 | return self.data[key][self.__times[0]].shape |
|
1193 | 1193 | return (0,) |
|
1194 | 1194 | |
|
1195 | 1195 | def update(self, dataOut, tm): |
|
1196 | 1196 | ''' |
|
1197 | 1197 | Update data object with new dataOut |
|
1198 | 1198 | ''' |
|
1199 | 1199 | |
|
1200 | 1200 | if tm in self.__times: |
|
1201 | 1201 | return |
|
1202 | 1202 | self.profileIndex = dataOut.profileIndex |
|
1203 | 1203 | self.tm = tm |
|
1204 | 1204 | self.type = dataOut.type |
|
1205 | 1205 | self.parameters = getattr(dataOut, 'parameters', []) |
|
1206 | 1206 | |
|
1207 | 1207 | if hasattr(dataOut, 'meta'): |
|
1208 | 1208 | self.meta.update(dataOut.meta) |
|
1209 | 1209 | |
|
1210 | 1210 | self.pairs = dataOut.pairsList |
|
1211 | 1211 | self.interval = dataOut.getTimeInterval() |
|
1212 | 1212 | self.localtime = dataOut.useLocalTime |
|
1213 | 1213 | if 'spc' in self.plottypes or 'cspc' in self.plottypes or 'spc_moments' in self.plottypes: |
|
1214 | 1214 | self.xrange = (dataOut.getFreqRange(1)/1000., |
|
1215 | 1215 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1216 | 1216 | self.factor = dataOut.normFactor |
|
1217 | 1217 | self.__heights.append(dataOut.heightList) |
|
1218 | 1218 | self.__all_heights.update(dataOut.heightList) |
|
1219 | 1219 | self.__times.append(tm) |
|
1220 | 1220 | |
|
1221 | 1221 | for plot in self.plottypes: |
|
1222 | 1222 | if plot in ('spc', 'spc_moments'): |
|
1223 | 1223 | z = dataOut.data_spc/dataOut.normFactor |
|
1224 | 1224 | buffer = 10*numpy.log10(z) |
|
1225 | 1225 | if plot == 'cspc': |
|
1226 | 1226 | z = dataOut.data_spc/dataOut.normFactor |
|
1227 | 1227 | buffer = (dataOut.data_spc, dataOut.data_cspc) |
|
1228 | 1228 | if plot == 'noise': |
|
1229 | 1229 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
1230 | 1230 | if plot == 'rti': |
|
1231 | 1231 | buffer = dataOut.getPower() |
|
1232 | 1232 | if plot == 'snr_db': |
|
1233 | 1233 | buffer = dataOut.data_SNR |
|
1234 | 1234 | if plot == 'snr': |
|
1235 | 1235 | buffer = 10*numpy.log10(dataOut.data_SNR) |
|
1236 | 1236 | if plot == 'dop': |
|
1237 | 1237 | buffer = dataOut.data_DOP |
|
1238 | 1238 | if plot == 'pow': |
|
1239 | 1239 | buffer = 10*numpy.log10(dataOut.data_POW) |
|
1240 | 1240 | if plot == 'width': |
|
1241 | 1241 | buffer = dataOut.data_WIDTH |
|
1242 | 1242 | if plot == 'coh': |
|
1243 | 1243 | buffer = dataOut.getCoherence() |
|
1244 | 1244 | if plot == 'phase': |
|
1245 | 1245 | buffer = dataOut.getCoherence(phase=True) |
|
1246 | 1246 | if plot == 'output': |
|
1247 | 1247 | buffer = dataOut.data_output |
|
1248 | 1248 | if plot == 'param': |
|
1249 | 1249 | buffer = dataOut.data_param |
|
1250 | 1250 | if plot == 'scope': |
|
1251 | 1251 | buffer = dataOut.data |
|
1252 | 1252 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1253 | 1253 | self.nProfiles = dataOut.nProfiles |
|
1254 | 1254 | |
|
1255 | 1255 | if plot == 'spc': |
|
1256 | 1256 | self.data['spc'] = buffer |
|
1257 | 1257 | elif plot == 'cspc': |
|
1258 | 1258 | self.data['spc'] = buffer[0] |
|
1259 | 1259 | self.data['cspc'] = buffer[1] |
|
1260 | 1260 | elif plot == 'spc_moments': |
|
1261 | 1261 | self.data['spc'] = buffer |
|
1262 | 1262 | self.data['moments'][tm] = dataOut.moments |
|
1263 | 1263 | else: |
|
1264 | 1264 | if self.buffering: |
|
1265 | 1265 | self.data[plot][tm] = buffer |
|
1266 | 1266 | else: |
|
1267 | 1267 | self.data[plot] = buffer |
|
1268 | 1268 | |
|
1269 | 1269 | if dataOut.channelList is None: |
|
1270 | 1270 | self.channels = range(buffer.shape[0]) |
|
1271 | 1271 | else: |
|
1272 | 1272 | self.channels = dataOut.channelList |
|
1273 | 1273 | |
|
1274 | 1274 | def normalize_heights(self): |
|
1275 | 1275 | ''' |
|
1276 | 1276 | Ensure same-dimension of the data for different heighList |
|
1277 | 1277 | ''' |
|
1278 | 1278 | |
|
1279 | 1279 | H = numpy.array(list(self.__all_heights)) |
|
1280 | 1280 | H.sort() |
|
1281 | 1281 | for key in self.data: |
|
1282 | 1282 | shape = self.shape(key)[:-1] + H.shape |
|
1283 | 1283 | for tm, obj in list(self.data[key].items()): |
|
1284 | 1284 | h = self.__heights[self.__times.index(tm)] |
|
1285 | 1285 | if H.size == h.size: |
|
1286 | 1286 | continue |
|
1287 | 1287 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1288 | 1288 | dummy = numpy.zeros(shape) + numpy.nan |
|
1289 | 1289 | if len(shape) == 2: |
|
1290 | 1290 | dummy[:, index] = obj |
|
1291 | 1291 | else: |
|
1292 | 1292 | dummy[index] = obj |
|
1293 | 1293 | self.data[key][tm] = dummy |
|
1294 | 1294 | |
|
1295 | 1295 | self.__heights = [H for tm in self.__times] |
|
1296 | 1296 | |
|
1297 | 1297 | def jsonify(self, plot_name, plot_type, decimate=False): |
|
1298 | 1298 | ''' |
|
1299 | 1299 | Convert data to json |
|
1300 | 1300 | ''' |
|
1301 | 1301 | |
|
1302 | 1302 | tm = self.times[-1] |
|
1303 | 1303 | dy = int(self.heights.size/self.MAXNUMY) + 1 |
|
1304 | 1304 | if self.key in ('spc', 'cspc') or not self.buffering: |
|
1305 | 1305 | dx = int(self.data[self.key].shape[1]/self.MAXNUMX) + 1 |
|
1306 | 1306 | data = self.roundFloats( |
|
1307 | 1307 | self.data[self.key][::, ::dx, ::dy].tolist()) |
|
1308 | 1308 | else: |
|
1309 | 1309 | data = self.roundFloats(self.data[self.key][tm].tolist()) |
|
1310 | 1310 | if self.key is 'noise': |
|
1311 | 1311 | data = [[x] for x in data] |
|
1312 | 1312 | |
|
1313 | 1313 | meta = {} |
|
1314 | 1314 | ret = { |
|
1315 | 1315 | 'plot': plot_name, |
|
1316 | 1316 | 'code': self.exp_code, |
|
1317 | 1317 | 'time': float(tm), |
|
1318 | 1318 | 'data': data, |
|
1319 | 1319 | } |
|
1320 | 1320 | meta['type'] = plot_type |
|
1321 | 1321 | meta['interval'] = float(self.interval) |
|
1322 | 1322 | meta['localtime'] = self.localtime |
|
1323 | 1323 | meta['yrange'] = self.roundFloats(self.heights[::dy].tolist()) |
|
1324 | 1324 | if 'spc' in self.data or 'cspc' in self.data: |
|
1325 | 1325 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1326 | 1326 | else: |
|
1327 | 1327 | meta['xrange'] = [] |
|
1328 | 1328 | |
|
1329 | 1329 | meta.update(self.meta) |
|
1330 | 1330 | ret['metadata'] = meta |
|
1331 | 1331 | return json.dumps(ret) |
|
1332 | 1332 | |
|
1333 | 1333 | @property |
|
1334 | 1334 | def times(self): |
|
1335 | 1335 | ''' |
|
1336 | 1336 | Return the list of times of the current data |
|
1337 | 1337 | ''' |
|
1338 | 1338 | |
|
1339 | 1339 | ret = numpy.array(self.__times) |
|
1340 | 1340 | ret.sort() |
|
1341 | 1341 | return ret |
|
1342 | 1342 | |
|
1343 | 1343 | @property |
|
1344 | 1344 | def min_time(self): |
|
1345 | 1345 | ''' |
|
1346 | 1346 | Return the minimun time value |
|
1347 | 1347 | ''' |
|
1348 | 1348 | |
|
1349 | 1349 | return self.times[0] |
|
1350 | 1350 | |
|
1351 | 1351 | @property |
|
1352 | 1352 | def max_time(self): |
|
1353 | 1353 | ''' |
|
1354 | 1354 | Return the maximun time value |
|
1355 | 1355 | ''' |
|
1356 | 1356 | |
|
1357 | 1357 | return self.times[-1] |
|
1358 | 1358 | |
|
1359 | 1359 | @property |
|
1360 | 1360 | def heights(self): |
|
1361 | 1361 | ''' |
|
1362 | 1362 | Return the list of heights of the current data |
|
1363 | 1363 | ''' |
|
1364 | 1364 | |
|
1365 | 1365 | return numpy.array(self.__heights[-1]) |
|
1366 | 1366 | |
|
1367 | 1367 | @staticmethod |
|
1368 | 1368 | def roundFloats(obj): |
|
1369 | 1369 | if isinstance(obj, list): |
|
1370 | 1370 | return list(map(PlotterData.roundFloats, obj)) |
|
1371 | 1371 | elif isinstance(obj, float): |
|
1372 | 1372 | return round(obj, 2) |
@@ -1,295 +1,581 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG |
|
10 | 10 | from schainpy.utils import log |
|
11 | 11 | from .figure import Figure |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | @MPDecorator |
|
15 | 15 | class Scope_(Figure): |
|
16 | 16 | |
|
17 | 17 | isConfig = None |
|
18 | 18 | |
|
19 | 19 | def __init__(self):#, **kwargs): #YONG |
|
20 | 20 | Figure.__init__(self)#, **kwargs) |
|
21 | 21 | self.isConfig = False |
|
22 | 22 | self.WIDTH = 300 |
|
23 | 23 | self.HEIGHT = 200 |
|
24 | 24 | self.counter_imagwr = 0 |
|
25 | 25 | |
|
26 | 26 | def getSubplots(self): |
|
27 | 27 | |
|
28 | 28 | nrow = self.nplots |
|
29 | 29 | ncol = 3 |
|
30 | 30 | return nrow, ncol |
|
31 | 31 | |
|
32 | 32 | def setup(self, id, nplots, wintitle, show): |
|
33 | 33 | |
|
34 | 34 | self.nplots = nplots |
|
35 | 35 | |
|
36 | 36 | self.createFigure(id=id, |
|
37 | 37 | wintitle=wintitle, |
|
38 | 38 | show=show) |
|
39 | 39 | |
|
40 | 40 | nrow,ncol = self.getSubplots() |
|
41 | 41 | colspan = 3 |
|
42 | 42 | rowspan = 1 |
|
43 | 43 | |
|
44 | 44 | for i in range(nplots): |
|
45 | 45 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) |
|
46 | 46 | |
|
47 | 47 | def plot_iq(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): |
|
48 | 48 | yreal = y[channelIndexList,:].real |
|
49 | 49 | yimag = y[channelIndexList,:].imag |
|
50 | 50 | |
|
51 | 51 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
52 | 52 | xlabel = "Range (Km)" |
|
53 | 53 | ylabel = "Intensity - IQ" |
|
54 | 54 | |
|
55 | 55 | if not self.isConfig: |
|
56 | 56 | nplots = len(channelIndexList) |
|
57 | 57 | |
|
58 | 58 | self.setup(id=id, |
|
59 | 59 | nplots=nplots, |
|
60 | 60 | wintitle='', |
|
61 | 61 | show=show) |
|
62 | 62 | |
|
63 | 63 | if xmin == None: xmin = numpy.nanmin(x) |
|
64 | 64 | if xmax == None: xmax = numpy.nanmax(x) |
|
65 | 65 | if ymin == None: ymin = min(numpy.nanmin(yreal),numpy.nanmin(yimag)) |
|
66 | 66 | if ymax == None: ymax = max(numpy.nanmax(yreal),numpy.nanmax(yimag)) |
|
67 | 67 | |
|
68 | 68 | self.isConfig = True |
|
69 | 69 | |
|
70 | 70 | self.setWinTitle(title) |
|
71 | 71 | |
|
72 | 72 | for i in range(len(self.axesList)): |
|
73 | 73 | title = "Channel %d" %(i) |
|
74 | 74 | axes = self.axesList[i] |
|
75 | 75 | |
|
76 | 76 | axes.pline(x, yreal[i,:], |
|
77 | 77 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
78 | 78 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
79 | 79 | |
|
80 | 80 | axes.addpline(x, yimag[i,:], idline=1, color="red", linestyle="solid", lw=2) |
|
81 | 81 | |
|
82 | 82 | def plot_power(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): |
|
83 | 83 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) |
|
84 | 84 | yreal = y.real |
|
85 | 85 | |
|
86 | 86 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
87 | 87 | xlabel = "Range (Km)" |
|
88 | 88 | ylabel = "Intensity" |
|
89 | 89 | |
|
90 | 90 | if not self.isConfig: |
|
91 | 91 | nplots = len(channelIndexList) |
|
92 | 92 | |
|
93 | 93 | self.setup(id=id, |
|
94 | 94 | nplots=nplots, |
|
95 | 95 | wintitle='', |
|
96 | 96 | show=show) |
|
97 | 97 | |
|
98 | 98 | if xmin == None: xmin = numpy.nanmin(x) |
|
99 | 99 | if xmax == None: xmax = numpy.nanmax(x) |
|
100 | 100 | if ymin == None: ymin = numpy.nanmin(yreal) |
|
101 | 101 | if ymax == None: ymax = numpy.nanmax(yreal) |
|
102 | 102 | |
|
103 | ||
|
103 | 104 | self.isConfig = True |
|
104 | 105 | |
|
105 | 106 | self.setWinTitle(title) |
|
106 | 107 | |
|
107 | 108 | for i in range(len(self.axesList)): |
|
108 | 109 | title = "Channel %d" %(i) |
|
109 | 110 | axes = self.axesList[i] |
|
110 | 111 | ychannel = yreal[i,:] |
|
111 | 112 | axes.pline(x, ychannel, |
|
112 | 113 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
113 | 114 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
114 | 115 | |
|
115 | 116 | def plot_weatherpower(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): |
|
116 | y = y[channelIndexList,:] | |
|
117 | yreal = y | |
|
118 | 117 | |
|
118 | #x = x[channelIndexList,:] | |
|
119 | y = y[channelIndexList,:].real | |
|
120 | y = 10*numpy.log10(y) | |
|
119 | 121 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
120 | 122 | xlabel = "Range (Km)" |
|
121 | 123 | ylabel = "Intensity" |
|
122 | 124 | |
|
123 | 125 | if not self.isConfig: |
|
124 | 126 | nplots = len(channelIndexList) |
|
125 | 127 | |
|
126 | 128 | self.setup(id=id, |
|
127 | 129 | nplots=nplots, |
|
128 | 130 | wintitle='', |
|
129 | 131 | show=show) |
|
130 | 132 | |
|
131 | 133 | if xmin == None: xmin = numpy.nanmin(x) |
|
132 | 134 | if xmax == None: xmax = numpy.nanmax(x) |
|
133 |
if ymin == None: ymin = numpy.nanmin(y |
|
|
134 |
if ymax == None: ymax = numpy.nanmax(y |
|
|
135 | if ymin == None: ymin = numpy.nanmin(y) | |
|
136 | if ymax == None: ymax = numpy.nanmax(y) | |
|
137 | #print (xmin,xmax) | |
|
135 | 138 | |
|
136 | 139 | self.isConfig = True |
|
137 | 140 | |
|
138 | 141 | self.setWinTitle(title) |
|
139 | 142 | |
|
140 | 143 | for i in range(len(self.axesList)): |
|
141 | 144 | title = "Channel %d" %(i) |
|
142 | 145 | axes = self.axesList[i] |
|
143 | ychannel = yreal[i,:] | |
|
146 | #print(numpy.nanmax(x)) | |
|
147 | ychannel = y[i,:] | |
|
148 | #ychannel = yreal[i,:] | |
|
144 | 149 | axes.pline(x, ychannel, |
|
145 | 150 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
146 | 151 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
147 | 152 | |
|
153 | def plot_weathervelocity(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): | |
|
154 | #print(channelIndexList) | |
|
155 | x = x[channelIndexList,:] | |
|
156 | ||
|
157 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
|
158 | xlabel = "Velocity (m/s)" | |
|
159 | ylabel = "Range (Km)" | |
|
160 | ||
|
161 | if not self.isConfig: | |
|
162 | nplots = len(channelIndexList) | |
|
163 | ||
|
164 | self.setup(id=id, | |
|
165 | nplots=nplots, | |
|
166 | wintitle='', | |
|
167 | show=show) | |
|
168 | ||
|
169 | if xmin == None: xmin = numpy.nanmin(x) | |
|
170 | if xmax == None: xmax = numpy.nanmax(x) | |
|
171 | if ymin == None: ymin = numpy.nanmin(y) | |
|
172 | if ymax == None: ymax = numpy.nanmax(y) | |
|
173 | print (xmin,xmax) | |
|
174 | ||
|
175 | self.isConfig = True | |
|
176 | ||
|
177 | self.setWinTitle(title) | |
|
178 | ||
|
179 | for i in range(len(self.axesList)): | |
|
180 | title = "Channel %d" %(i) | |
|
181 | axes = self.axesList[i] | |
|
182 | #print(numpy.nanmax(x)) | |
|
183 | xchannel = x[i,:] | |
|
184 | #ychannel = yreal[i,:] | |
|
185 | axes.pline(xchannel, y, | |
|
186 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
|
187 | xlabel=xlabel, ylabel=ylabel, title=title) | |
|
148 | 188 | |
|
149 | 189 | |
|
150 | 190 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
151 | 191 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, |
|
152 | 192 | figpath='./', figfile=None, show=True, wr_period=1, |
|
153 | 193 | ftp=False, server=None, folder=None, username=None, password=None, type='power', **kwargs): |
|
154 | 194 | |
|
155 | 195 | """ |
|
156 | 196 | |
|
157 | 197 | Input: |
|
158 | 198 | dataOut : |
|
159 | 199 | id : |
|
160 | 200 | wintitle : |
|
161 | 201 | channelList : |
|
162 | 202 | xmin : None, |
|
163 | 203 | xmax : None, |
|
164 | 204 | ymin : None, |
|
165 | 205 | ymax : None, |
|
166 | 206 | """ |
|
167 | 207 | if dataOut.flagNoData: |
|
168 | 208 | return dataOut |
|
169 | 209 | |
|
170 | 210 | if channelList == None: |
|
171 | 211 | channelIndexList = dataOut.channelIndexList |
|
172 | 212 | else: |
|
173 | 213 | channelIndexList = [] |
|
174 | 214 | for channel in channelList: |
|
175 | 215 | if channel not in dataOut.channelList: |
|
176 | 216 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
177 | 217 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
178 | 218 | |
|
179 | 219 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
180 | 220 | #print("***************** PLOTEO **************************") |
|
181 | 221 | #print(dataOut.nProfiles) |
|
182 | 222 | #print(dataOut.heightList.shape) |
|
183 | 223 | #print(dataOut.data.shape) |
|
184 | 224 | if dataOut.flagDataAsBlock: |
|
185 | 225 | |
|
186 | 226 | for i in range(dataOut.nProfiles): |
|
187 | 227 | |
|
188 | 228 | wintitle1 = wintitle + " [Profile = %d] " %i |
|
189 | 229 | |
|
190 | 230 | if type == "power": |
|
191 | 231 | self.plot_power(dataOut.heightList, |
|
192 | 232 | dataOut.data[:,i,:], |
|
193 | 233 | id, |
|
194 | 234 | channelIndexList, |
|
195 | 235 | thisDatetime, |
|
196 | 236 | wintitle1, |
|
197 | 237 | show, |
|
198 | 238 | xmin, |
|
199 | 239 | xmax, |
|
200 | 240 | ymin, |
|
201 | 241 | ymax) |
|
202 | 242 | |
|
203 | 243 | if type == "weatherpower": |
|
204 | 244 | self.plot_weatherpower(dataOut.heightList, |
|
205 | 245 | dataOut.data[:,i,:], |
|
206 | 246 | id, |
|
207 | 247 | channelIndexList, |
|
208 | 248 | thisDatetime, |
|
209 |
wintitle |
|
|
249 | wintitle, | |
|
210 | 250 | show, |
|
211 | 251 | xmin, |
|
212 | 252 | xmax, |
|
213 | 253 | ymin, |
|
214 | 254 | ymax) |
|
215 | 255 | |
|
216 | 256 | if type == "weathervelocity": |
|
217 |
self.plot_weather |
|
|
218 |
dataOut. |
|
|
257 | self.plot_weathervelocity(dataOut.data_velocity[:,i,:], | |
|
258 | dataOut.heightList, | |
|
219 | 259 | id, |
|
220 | 260 | channelIndexList, |
|
221 | 261 | thisDatetime, |
|
222 | 262 | wintitle1, |
|
223 | 263 | show, |
|
224 | 264 | xmin, |
|
225 | 265 | xmax, |
|
226 | 266 | ymin, |
|
227 | 267 | ymax) |
|
228 | 268 | |
|
229 | 269 | if type == "iq": |
|
230 | 270 | self.plot_iq(dataOut.heightList, |
|
231 | 271 | dataOut.data[:,i,:], |
|
232 | 272 | id, |
|
233 | 273 | channelIndexList, |
|
234 | 274 | thisDatetime, |
|
235 | 275 | wintitle1, |
|
236 | 276 | show, |
|
237 | 277 | xmin, |
|
238 | 278 | xmax, |
|
239 | 279 | ymin, |
|
240 | 280 | ymax) |
|
241 | 281 | |
|
242 | 282 | self.draw() |
|
243 | 283 | |
|
244 | 284 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
245 | 285 | figfile = self.getFilename(name = str_datetime) + "_" + str(i) |
|
246 | 286 | |
|
247 | 287 | self.save(figpath=figpath, |
|
248 | 288 | figfile=figfile, |
|
249 | 289 | save=save, |
|
250 | 290 | ftp=ftp, |
|
251 | 291 | wr_period=wr_period, |
|
252 | 292 | thisDatetime=thisDatetime) |
|
253 | 293 | |
|
254 | 294 | else: |
|
255 | 295 | wintitle += " [Profile = %d] " %dataOut.profileIndex |
|
256 | 296 | |
|
257 | 297 | if type == "power": |
|
258 | 298 | self.plot_power(dataOut.heightList, |
|
259 | 299 | dataOut.data, |
|
260 | 300 | id, |
|
261 | 301 | channelIndexList, |
|
262 | 302 | thisDatetime, |
|
263 | 303 | wintitle, |
|
264 | 304 | show, |
|
265 | 305 | xmin, |
|
266 | 306 | xmax, |
|
267 | 307 | ymin, |
|
268 | 308 | ymax) |
|
269 | 309 | |
|
270 | 310 | if type == "iq": |
|
271 | 311 | self.plot_iq(dataOut.heightList, |
|
272 | 312 | dataOut.data, |
|
273 | 313 | id, |
|
274 | 314 | channelIndexList, |
|
275 | 315 | thisDatetime, |
|
276 | 316 | wintitle, |
|
277 | 317 | show, |
|
278 | 318 | xmin, |
|
279 | 319 | xmax, |
|
280 | 320 | ymin, |
|
281 | 321 | ymax) |
|
282 | 322 | |
|
323 | if type== "weatherpower": | |
|
324 | self.plot_weatherpower(dataOut.heightList, | |
|
325 | dataOut.data, | |
|
326 | id, | |
|
327 | channelIndexList, | |
|
328 | thisDatetime, | |
|
329 | wintitle, | |
|
330 | show, | |
|
331 | xmin, | |
|
332 | xmax, | |
|
333 | ymin, | |
|
334 | ymax) | |
|
335 | if type== "weathervelocity": | |
|
336 | self.plot_weathervelocity(dataOut.data_velocity, | |
|
337 | dataOut.heightList, | |
|
338 | id, | |
|
339 | channelIndexList, | |
|
340 | thisDatetime, | |
|
341 | wintitle, | |
|
342 | show, | |
|
343 | xmin, | |
|
344 | xmax, | |
|
345 | ymin, | |
|
346 | ymax) | |
|
347 | ||
|
283 | 348 | self.draw() |
|
284 | 349 | |
|
285 | 350 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") + "_" + str(dataOut.profileIndex) |
|
286 | 351 | figfile = self.getFilename(name = str_datetime) |
|
287 | 352 | |
|
288 | 353 | self.save(figpath=figpath, |
|
289 | 354 | figfile=figfile, |
|
290 | 355 | save=save, |
|
291 | 356 | ftp=ftp, |
|
292 | 357 | wr_period=wr_period, |
|
293 | 358 | thisDatetime=thisDatetime) |
|
294 | 359 | |
|
295 | 360 | return dataOut |
|
361 | ||
|
362 | ||
|
363 | ||
|
364 | @MPDecorator | |
|
365 | class TimePlot_(Figure): | |
|
366 | ||
|
367 | __isConfig = None | |
|
368 | __nsubplots = None | |
|
369 | ||
|
370 | WIDTHPROF = None | |
|
371 | HEIGHTPROF = None | |
|
372 | PREFIX = 'time' | |
|
373 | ||
|
374 | def __init__(self): | |
|
375 | ||
|
376 | Figure.__init__(self) | |
|
377 | self.timerange = None | |
|
378 | self.isConfig = False | |
|
379 | self.__nsubplots = 1 | |
|
380 | ||
|
381 | self.WIDTH = 800 | |
|
382 | self.HEIGHT = 250 | |
|
383 | self.WIDTHPROF = 120 | |
|
384 | self.HEIGHTPROF = 0 | |
|
385 | self.counter_imagwr = 0 | |
|
386 | ||
|
387 | self.PLOT_CODE = RTIVOLT_CODE | |
|
388 | ||
|
389 | self.FTP_WEI = None | |
|
390 | self.EXP_CODE = None | |
|
391 | self.SUB_EXP_CODE = None | |
|
392 | self.PLOT_POS = None | |
|
393 | self.tmin = None | |
|
394 | self.tmax = None | |
|
395 | ||
|
396 | self.xmin = None | |
|
397 | self.xmax = None | |
|
398 | ||
|
399 | self.figfile = None | |
|
400 | ||
|
401 | def getSubplots(self): | |
|
402 | ||
|
403 | ncol = 1 | |
|
404 | nrow = self.nplots | |
|
405 | ||
|
406 | return nrow, ncol | |
|
407 | ||
|
408 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
|
409 | ||
|
410 | self.__showprofile = showprofile | |
|
411 | self.nplots = nplots | |
|
412 | ||
|
413 | ncolspan = 1 | |
|
414 | colspan = 1 | |
|
415 | if showprofile: | |
|
416 | ncolspan = 7 | |
|
417 | colspan = 6 | |
|
418 | self.__nsubplots = 2 | |
|
419 | ||
|
420 | self.createFigure(id = id, | |
|
421 | wintitle = wintitle, | |
|
422 | widthplot = self.WIDTH + self.WIDTHPROF, | |
|
423 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
|
424 | show=show) | |
|
425 | ||
|
426 | nrow, ncol = self.getSubplots() | |
|
427 | ||
|
428 | counter = 0 | |
|
429 | for y in range(nrow): | |
|
430 | for x in range(ncol): | |
|
431 | ||
|
432 | if counter >= self.nplots: | |
|
433 | break | |
|
434 | ||
|
435 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
|
436 | ||
|
437 | if showprofile: | |
|
438 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
|
439 | ||
|
440 | counter += 1 | |
|
441 | ||
|
442 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', | |
|
443 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,type="intensity", | |
|
444 | timerange=None, colormap='jet', | |
|
445 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
|
446 | server=None, folder=None, username=None, password=None, | |
|
447 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): | |
|
448 | ||
|
449 | """ | |
|
450 | ||
|
451 | Input: | |
|
452 | dataOut : | |
|
453 | id : | |
|
454 | wintitle : | |
|
455 | channelList : | |
|
456 | showProfile : | |
|
457 | xmin : None, | |
|
458 | xmax : None, | |
|
459 | ymin : None, | |
|
460 | ymax : None, | |
|
461 | zmin : None, | |
|
462 | zmax : None | |
|
463 | """ | |
|
464 | print("estoy aqui :D") | |
|
465 | if dataOut.flagNoData: | |
|
466 | return dataOut | |
|
467 | ||
|
468 | #colormap = kwargs.get('colormap', 'jet') | |
|
469 | if HEIGHT is not None: | |
|
470 | self.HEIGHT = HEIGHT | |
|
471 | ||
|
472 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
|
473 | return | |
|
474 | ||
|
475 | if channelList == None: | |
|
476 | channelIndexList = dataOut.channelIndexList | |
|
477 | else: | |
|
478 | channelIndexList = [] | |
|
479 | for channel in channelList: | |
|
480 | if channel not in dataOut.channelList: | |
|
481 | raise ValueError("Channel %d is not in dataOut.channelList") | |
|
482 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
483 | ||
|
484 | if normFactor is None: | |
|
485 | factor = dataOut.normFactor | |
|
486 | else: | |
|
487 | factor = normFactor | |
|
488 | ||
|
489 | #factor = dataOut.normFactor | |
|
490 | x = dataOut.getTimeRange() | |
|
491 | y = dataOut.getHeiRange() | |
|
492 | if type=="intensity": | |
|
493 | z = dataOut.data_intensity/factor | |
|
494 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
495 | avgdB = numpy.average(z, axis=1) | |
|
496 | avgdB = 10.*numpy.log10(avg) | |
|
497 | else: | |
|
498 | z= dataOut.data_velocity | |
|
499 | avgdB = numpy.average(z, axis=1) | |
|
500 | ||
|
501 | # avgdB = dataOut.getPower() | |
|
502 | ||
|
503 | ||
|
504 | thisDatetime = dataOut.datatime | |
|
505 | #thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
|
506 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
|
507 | xlabel = "" | |
|
508 | ylabel = "Range (Km)" | |
|
509 | ||
|
510 | update_figfile = False | |
|
511 | ||
|
512 | if self.xmax is not None and dataOut.ltctime >= self.xmax: #yong | |
|
513 | self.counter_imagwr = wr_period | |
|
514 | self.isConfig = False | |
|
515 | update_figfile = True | |
|
516 | ||
|
517 | if not self.isConfig: | |
|
518 | ||
|
519 | nplots = len(channelIndexList) | |
|
520 | ||
|
521 | self.setup(id=id, | |
|
522 | nplots=nplots, | |
|
523 | wintitle=wintitle, | |
|
524 | showprofile=showprofile, | |
|
525 | show=show) | |
|
526 | ||
|
527 | if timerange != None: | |
|
528 | self.timerange = timerange | |
|
529 | ||
|
530 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
|
531 | ||
|
532 | noise = dataOut.noise/factor | |
|
533 | noisedB = 10*numpy.log10(noise) | |
|
534 | ||
|
535 | if ymin == None: ymin = numpy.nanmin(y) | |
|
536 | if ymax == None: ymax = numpy.nanmax(y) | |
|
537 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
|
538 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
|
539 | ||
|
540 | self.FTP_WEI = ftp_wei | |
|
541 | self.EXP_CODE = exp_code | |
|
542 | self.SUB_EXP_CODE = sub_exp_code | |
|
543 | self.PLOT_POS = plot_pos | |
|
544 | ||
|
545 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
|
546 | self.isConfig = True | |
|
547 | self.figfile = figfile | |
|
548 | update_figfile = True | |
|
549 | ||
|
550 | self.setWinTitle(title) | |
|
551 | ||
|
552 | for i in range(self.nplots): | |
|
553 | index = channelIndexList[i] | |
|
554 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
|
555 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
556 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
|
557 | axes = self.axesList[i*self.__nsubplots] | |
|
558 | zdB = avgdB[index].reshape((1,-1)) | |
|
559 | axes.pcolorbuffer(x, y, zdB, | |
|
560 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
561 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
|
562 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) | |
|
563 | ||
|
564 | if self.__showprofile: | |
|
565 | axes = self.axesList[i*self.__nsubplots +1] | |
|
566 | axes.pline(avgdB[index], y, | |
|
567 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
|
568 | xlabel='dB', ylabel='', title='', | |
|
569 | ytick_visible=False, | |
|
570 | grid='x') | |
|
571 | ||
|
572 | self.draw() | |
|
573 | ||
|
574 | self.save(figpath=figpath, | |
|
575 | figfile=figfile, | |
|
576 | save=save, | |
|
577 | ftp=ftp, | |
|
578 | wr_period=wr_period, | |
|
579 | thisDatetime=thisDatetime, | |
|
580 | update_figfile=update_figfile) | |
|
581 | return dataOut |
@@ -1,30 +1,31 | |||
|
1 | 1 | ''' |
|
2 | 2 | @author: roj-idl71 |
|
3 | 3 | ''' |
|
4 | 4 | #USED IN jroplot_spectra.py |
|
5 | 5 | RTI_CODE = 0 #Range time intensity (RTI). |
|
6 | 6 | SPEC_CODE = 1 #Spectra (and Cross-spectra) information. |
|
7 | 7 | CROSS_CODE = 2 #Cross-Correlation information. |
|
8 | 8 | COH_CODE = 3 #Coherence map. |
|
9 | 9 | BASE_CODE = 4 #Base lines graphic. |
|
10 | 10 | ROW_CODE = 5 #Row Spectra. |
|
11 | 11 | TOTAL_CODE = 6 #Total Power. |
|
12 | 12 | DRIFT_CODE = 7 #Drifts graphics. |
|
13 | 13 | HEIGHT_CODE = 8 #Height profile. |
|
14 | 14 | PHASE_CODE = 9 #Signal Phase. |
|
15 | 15 | |
|
16 | 16 | POWER_CODE = 16 |
|
17 | 17 | NOISE_CODE = 17 |
|
18 | 18 | BEACON_CODE = 18 |
|
19 | 19 | |
|
20 | 20 | #USED IN jroplot_parameters.py |
|
21 | 21 | WIND_CODE = 22 |
|
22 | 22 | MSKYMAP_CODE = 23 |
|
23 | 23 | MPHASE_CODE = 24 |
|
24 | 24 | |
|
25 | 25 | MOMENTS_CODE = 25 |
|
26 | 26 | PARMS_CODE = 26 |
|
27 | 27 | SPECFIT_CODE = 27 |
|
28 | 28 | EWDRIFT_CODE = 28 |
|
29 | 29 | |
|
30 | 30 | WPO_CODE = 29 #Weather Intensity - Power |
|
31 | RTIVOLT_CODE = 30 |
@@ -1,480 +1,496 | |||
|
1 | 1 | import numpy,math,random,time |
|
2 | 2 | import zmq |
|
3 | 3 | import tempfile |
|
4 | 4 | from io import StringIO |
|
5 | 5 | ########## 1 Heredamos JRODatareader |
|
6 | 6 | from schainpy.model.io.jroIO_base import * |
|
7 | 7 | ########## 2 Heredamos las propiedades de ProcessingUnit |
|
8 | 8 | from schainpy.model.proc.jroproc_base import ProcessingUnit,Operation,MPDecorator |
|
9 | 9 | ########## 3 Importaremos las clases BascicHeader, SystemHeader, RadarControlHeader, ProcessingHeader |
|
10 | 10 | from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader,SystemHeader,RadarControllerHeader, ProcessingHeader |
|
11 | 11 | ########## 4 Importaremos el objeto Voltge |
|
12 | 12 | from schainpy.model.data.jrodata import Voltage |
|
13 | 13 | |
|
14 | 14 | @MPDecorator |
|
15 | 15 | class SimulatorReader(JRODataReader, ProcessingUnit): |
|
16 | 16 | incIntFactor = 1 |
|
17 | 17 | nFFTPoints = 0 |
|
18 | 18 | FixPP_IncInt = 1 |
|
19 | 19 | FixRCP_IPP = 1000 |
|
20 | 20 | FixPP_CohInt = 1 |
|
21 | 21 | Tau_0 = 250 |
|
22 | 22 | AcqH0_0 = 70 |
|
23 | 23 | H0 = AcqH0_0 |
|
24 | 24 | AcqDH_0 = 1.25 |
|
25 | 25 | DH0 = AcqDH_0 |
|
26 | 26 | Bauds = 32 |
|
27 | 27 | BaudWidth = None |
|
28 | 28 | FixRCP_TXA = 40 |
|
29 | 29 | FixRCP_TXB = 70 |
|
30 | 30 | fAngle = 2.0*math.pi*(1/16) |
|
31 | 31 | DC_level = 500 |
|
32 | 32 | stdev = 8 |
|
33 | 33 | Num_Codes = 2 |
|
34 | 34 | #code0 = numpy.array([1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1]) |
|
35 | 35 | #code1 = numpy.array([1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0]) |
|
36 | 36 | #Dyn_snCode = numpy.array([Num_Codes,Bauds]) |
|
37 | 37 | Dyn_snCode = None |
|
38 | 38 | Samples = 200 |
|
39 | 39 | channels = 5 |
|
40 | 40 | pulses = None |
|
41 | 41 | Reference = None |
|
42 | 42 | pulse_size = None |
|
43 | 43 | prof_gen = None |
|
44 | 44 | Fdoppler = 100 |
|
45 | 45 | Hdoppler = 36 |
|
46 | Adoppler = 300 | |
|
47 | frequency = 9345 | |
|
46 | 48 | def __init__(self): |
|
47 | 49 | """ |
|
48 | 50 | Inicializador de la clases SimulatorReader para |
|
49 | 51 | generar datos de voltage simulados. |
|
50 | 52 | Input: |
|
51 | 53 | dataOut: Objeto de la clase Voltage. |
|
52 | 54 | Este Objeto sera utilizado apra almacenar |
|
53 | 55 | un perfil de datos cada vez qe se haga psiversho |
|
54 | 56 | un requerimiento (getData) |
|
55 | 57 | """ |
|
56 | 58 | ProcessingUnit.__init__(self) |
|
57 | 59 | print(" [ START ] init - Metodo Simulator Reader") |
|
58 | 60 | |
|
59 | 61 | self.isConfig = False |
|
60 | 62 | self.basicHeaderObj = BasicHeader(LOCALTIME) |
|
61 | 63 | self.systemHeaderObj = SystemHeader() |
|
62 | 64 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
63 | 65 | self.processingHeaderObj = ProcessingHeader() |
|
64 | 66 | self.profileIndex = 2**32-1 |
|
65 | 67 | self.dataOut = Voltage() |
|
66 | 68 | #code0 = numpy.array([1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1]) |
|
67 | 69 | code0 = numpy.array([1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1]) |
|
68 | 70 | #code1 = numpy.array([1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0]) |
|
69 | 71 | code1 = numpy.array([1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1]) |
|
70 | 72 | #self.Dyn_snCode = numpy.array([code0,code1]) |
|
71 | 73 | self.Dyn_snCode = None |
|
72 | 74 | print(" [ END ] init - Metodo simulator Reader" ) |
|
73 | 75 | |
|
74 | 76 | |
|
75 | 77 | def __hasNotDataInBuffer(self): |
|
76 | 78 | |
|
77 | 79 | if self.profileIndex >= self.processingHeaderObj.profilesPerBlock* self.nTxs: |
|
78 | 80 | if self.nReadBlocks>0: |
|
79 | 81 | tmp = self.dataOut.utctime |
|
80 | 82 | tmp_utc = int(self.dataOut.utctime) |
|
81 | 83 | tmp_milisecond = int((tmp-tmp_utc)*1000) |
|
82 | 84 | self.basicHeaderObj.utc = tmp_utc |
|
83 | 85 | self.basicHeaderObj.miliSecond= tmp_milisecond |
|
84 | 86 | return 1 |
|
85 | 87 | return 0 |
|
86 | 88 | |
|
87 | 89 | |
|
88 | 90 | def setNextFile(self): |
|
89 | 91 | """Set the next file to be readed open it and parse de file header""" |
|
90 | 92 | |
|
91 | 93 | if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile): |
|
92 | print('------------------- [Opening file] ------------------------------') | |
|
94 | self.nReadFiles=self.nReadFiles+1 | |
|
95 | print('------------------- [Opening file] ------------------------------',self.nReadFiles) | |
|
93 | 96 | self.nReadBlocks = 0 |
|
94 | 97 | |
|
95 | 98 | def __setNewBlock(self): |
|
96 | 99 | |
|
97 | 100 | self.setNextFile() |
|
98 | 101 | if self.flagIsNewFile: |
|
99 | 102 | return 1 |
|
100 | 103 | |
|
101 | 104 | def readNextBlock(self): |
|
102 | 105 | while True: |
|
103 | 106 | self.__setNewBlock() |
|
104 | 107 | if not(self.readBlock()): |
|
105 | 108 | return 0 |
|
106 | 109 | self.getBasicHeader() |
|
107 | 110 | break |
|
108 | 111 | if self.verbose: |
|
109 | 112 | print("[Reading] Block No. %d/%d -> %s" %(self.nReadBlocks, |
|
110 | 113 | self.processingHeaderObj.dataBlocksPerFile, |
|
111 | 114 | self.dataOut.datatime.ctime()) ) |
|
112 | 115 | return 1 |
|
113 | 116 | |
|
114 | 117 | def getFirstHeader(self): |
|
115 | 118 | self.getBasicHeader() |
|
116 | 119 | self.dataOut.processingHeaderObj = self.processingHeaderObj.copy() |
|
117 | 120 | self.dataOut.systemHeaderObj = self.systemHeaderObj.copy() |
|
118 | 121 | self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy() |
|
119 | 122 | #ADD NEW |
|
120 | 123 | self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock |
|
121 | 124 | self.dataOut.heightList = numpy.arange(self.processingHeaderObj.nHeights) * self.processingHeaderObj.deltaHeight + self.processingHeaderObj.firstHeight |
|
122 | 125 | self.dataOut.channelList = list(range(self.systemHeaderObj.nChannels)) |
|
123 | 126 | self.dataOut.nCohInt = self.processingHeaderObj.nCohInt |
|
124 | 127 | # asumo q la data no esta decodificada |
|
125 | 128 | self.dataOut.flagDecodeData = self.processingHeaderObj.flag_decode |
|
126 | 129 | # asumo q la data no esta sin flip |
|
127 | 130 | self.dataOut.flagDeflipData = self.processingHeaderObj.flag_deflip |
|
128 | 131 | self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft |
|
132 | # | |
|
133 | self.dataOut.frequency = self.frequency | |
|
129 | 134 | |
|
130 | 135 | def getBasicHeader(self): |
|
131 | 136 | |
|
132 | 137 | self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond / \ |
|
133 | 138 | 1000. + self.profileIndex * self.radarControllerHeaderObj.ippSeconds |
|
134 | 139 | |
|
135 | 140 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock |
|
136 | 141 | |
|
137 | 142 | self.dataOut.timeZone = self.basicHeaderObj.timeZone |
|
138 | 143 | |
|
139 | 144 | self.dataOut.dstFlag = self.basicHeaderObj.dstFlag |
|
140 | 145 | |
|
141 | 146 | self.dataOut.errorCount = self.basicHeaderObj.errorCount |
|
142 | 147 | |
|
143 | 148 | self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime |
|
144 | 149 | |
|
145 | 150 | self.dataOut.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs |
|
146 | 151 | |
|
147 | 152 | def reshapeData(self): |
|
148 | 153 | if self.nTxs==1: |
|
149 | 154 | return |
|
150 | 155 | |
|
151 | 156 | def readBlock(self): |
|
152 | 157 | |
|
153 | 158 | self.jro_GenerateBlockOfData(Samples= self.samples,DC_level=self.DC_level, |
|
154 | 159 | stdev=self.stdev,Reference= self.Reference, |
|
155 | 160 | pulses = self.pulses,Num_Codes=self.Num_Codes, |
|
156 | 161 | pulse_size=self.pulse_size,prof_gen=self.profiles, |
|
157 | 162 | H0=self.H0,DH0=self.DH0) |
|
158 | 163 | |
|
159 | 164 | self.profileIndex = 0 |
|
160 | 165 | self.flagIsNewFile = 0 |
|
161 | 166 | self.flagIsNewBlock = 1 |
|
162 | 167 | self.nTotalBlocks += 1 |
|
163 | 168 | self.nReadBlocks += 1 |
|
164 | 169 | |
|
165 | 170 | return 1 |
|
166 | 171 | |
|
167 | 172 | |
|
168 | 173 | def getData(self): ### metodo propio de VoltageReader |
|
169 | 174 | |
|
170 | 175 | if self.flagNoMoreFiles: |
|
171 | 176 | self.dataOut.flagNodata = True |
|
172 | 177 | self.flagDiscontinuousBlock = 0 |
|
173 | 178 | self.flagIsNewBlock = 0 |
|
174 | 179 | if self.__hasNotDataInBuffer(): # aqui es verdad |
|
175 | 180 | if not(self.readNextBlock()): # return 1 y por eso el if not salta a getBasic Header |
|
176 | 181 | return 0 |
|
177 | 182 | self.getFirstHeader() # atributo |
|
178 | 183 | self.reshapeData() # nTxx1 =1 return , n |
|
179 | 184 | |
|
180 | 185 | if not self.getByBlock: |
|
181 | 186 | self.dataOut.flagDataAsBlock = False |
|
182 | 187 | self.dataOut.data = self.datablock[:, self.profileIndex, :] |
|
183 | 188 | self.dataOut.profileIndex = self.profileIndex |
|
184 | 189 | self.profileIndex += 1 |
|
185 | 190 | else: |
|
186 | 191 | pass |
|
187 | 192 | self.dataOut.flagNoData = False |
|
188 | 193 | self.getBasicHeader() |
|
189 | 194 | self.dataOut.realtime = self.online |
|
190 | 195 | return self.dataOut.data |
|
191 | 196 | |
|
192 | 197 | def set_kwargs(self, **kwargs): |
|
193 | 198 | for key, value in kwargs.items(): |
|
194 | 199 | setattr(self, key, value) |
|
195 | 200 | |
|
196 | 201 | def set_RCH(self, expType=2, nTx=1,ipp=None, txA=0, txB=0, |
|
197 | 202 | nWindows=None, nHeights=None, firstHeight=None, deltaHeight=None, |
|
198 | 203 | numTaus=0, line6Function=0, line5Function=0, fClock=None, |
|
199 | 204 | prePulseBefore=0, prePulseAfter=0, |
|
200 | 205 | codeType=0, nCode=0, nBaud=0, code=None, |
|
201 | 206 | flip1=0, flip2=0): |
|
202 | 207 | |
|
203 | 208 | self.radarControllerHeaderObj.expType = expType |
|
204 | 209 | self.radarControllerHeaderObj.nTx = nTx |
|
205 | 210 | self.radarControllerHeaderObj.ipp = float(ipp) |
|
206 | 211 | self.radarControllerHeaderObj.txA = float(txA) |
|
207 | 212 | self.radarControllerHeaderObj.txB = float(txB) |
|
208 | 213 | self.radarControllerHeaderObj.rangeIPP = ipp |
|
209 | 214 | self.radarControllerHeaderObj.rangeTxA = txA |
|
210 | 215 | self.radarControllerHeaderObj.rangeTxB = txB |
|
211 | 216 | |
|
212 | 217 | self.radarControllerHeaderObj.nHeights = int(nHeights) |
|
213 | 218 | self.radarControllerHeaderObj.firstHeight = numpy.array([firstHeight]) |
|
214 | 219 | self.radarControllerHeaderObj.deltaHeight = numpy.array([deltaHeight]) |
|
215 | 220 | self.radarControllerHeaderObj.samplesWin = numpy.array([nHeights]) |
|
216 | 221 | |
|
217 | 222 | |
|
218 | 223 | self.radarControllerHeaderObj.nWindows = nWindows |
|
219 | 224 | self.radarControllerHeaderObj.numTaus = numTaus |
|
220 | 225 | self.radarControllerHeaderObj.codeType = codeType |
|
221 | 226 | self.radarControllerHeaderObj.line6Function = line6Function |
|
222 | 227 | self.radarControllerHeaderObj.line5Function = line5Function |
|
223 | 228 | self.radarControllerHeaderObj.fclock = fClock |
|
224 | 229 | self.radarControllerHeaderObj.prePulseBefore= prePulseBefore |
|
225 | 230 | self.radarControllerHeaderObj.prePulseAfter = prePulseAfter |
|
226 | 231 | |
|
227 | 232 | self.radarControllerHeaderObj.nCode = nCode |
|
228 | 233 | self.radarControllerHeaderObj.nBaud = nBaud |
|
229 | 234 | self.radarControllerHeaderObj.code = code |
|
230 | 235 | self.radarControllerHeaderObj.flip1 = flip1 |
|
231 | 236 | self.radarControllerHeaderObj.flip2 = flip2 |
|
232 | 237 | |
|
233 | 238 | self.radarControllerHeaderObj.code_size = int(numpy.ceil(nBaud / 32.)) * nCode * 4 |
|
234 | 239 | |
|
235 | 240 | if fClock is None and deltaHeight is not None: |
|
236 | 241 | self.fClock = 0.15 / (deltaHeight * 1e-6) |
|
237 | 242 | |
|
238 | 243 | def set_PH(self, dtype=0, blockSize=0, profilesPerBlock=0, |
|
239 | 244 | dataBlocksPerFile=0, nWindows=0, processFlags=0, nCohInt=0, |
|
240 | 245 | nIncohInt=0, totalSpectra=0, nHeights=0, firstHeight=0, |
|
241 | 246 | deltaHeight=0, samplesWin=0, spectraComb=0, nCode=0, |
|
242 | 247 | code=0, nBaud=None, shif_fft=False, flag_dc=False, |
|
243 | 248 | flag_cspc=False, flag_decode=False, flag_deflip=False): |
|
244 | 249 | |
|
245 | 250 | self.processingHeaderObj.profilesPerBlock = profilesPerBlock |
|
246 | 251 | self.processingHeaderObj.dataBlocksPerFile = dataBlocksPerFile |
|
247 | 252 | self.processingHeaderObj.nWindows = nWindows |
|
248 | 253 | self.processingHeaderObj.nCohInt = nCohInt |
|
249 | 254 | self.processingHeaderObj.nIncohInt = nIncohInt |
|
250 | 255 | self.processingHeaderObj.totalSpectra = totalSpectra |
|
251 | 256 | self.processingHeaderObj.nHeights = int(nHeights) |
|
252 | 257 | self.processingHeaderObj.firstHeight = firstHeight |
|
253 | 258 | self.processingHeaderObj.deltaHeight = deltaHeight |
|
254 | 259 | self.processingHeaderObj.samplesWin = nHeights |
|
255 | 260 | |
|
256 | 261 | def set_BH(self, utc = 0, miliSecond = 0, timeZone = 0): |
|
257 | 262 | self.basicHeaderObj.utc = utc |
|
258 | 263 | self.basicHeaderObj.miliSecond = miliSecond |
|
259 | 264 | self.basicHeaderObj.timeZone = timeZone |
|
260 | 265 | |
|
261 | 266 | def set_SH(self, nSamples=0, nProfiles=0, nChannels=0, adcResolution=14, pciDioBusWidth=0): |
|
262 | 267 | self.systemHeaderObj.nSamples = nSamples |
|
263 | 268 | self.systemHeaderObj.nProfiles = nProfiles |
|
264 | 269 | self.systemHeaderObj.nChannels = nChannels |
|
265 | 270 | self.systemHeaderObj.adcResolution = adcResolution |
|
266 | 271 | self.systemHeaderObj.pciDioBusWidth = pciDioBusWidth |
|
267 | 272 | |
|
268 | def setup(self,incIntFactor= 1, nFFTPoints = 0, FixPP_IncInt=1,FixRCP_IPP=1000, | |
|
273 | def setup(self,frequency=49.92e6,incIntFactor= 1, nFFTPoints = 0, FixPP_IncInt=1,FixRCP_IPP=1000, | |
|
269 | 274 | FixPP_CohInt= 1,Tau_0= 250,AcqH0_0 = 70 ,AcqDH_0=1.25, Bauds= 32, |
|
270 |
FixRCP_TXA = 40, FixRCP_TXB = 50, fAngle = 2.0*math.pi*(1/16),DC_level= 50 |
|
|
271 |
stdev= 8,Num_Codes = 1 , Dyn_snCode = None, samples=200, |
|
|
275 | FixRCP_TXA = 40, FixRCP_TXB = 50, fAngle = 2.0*math.pi*(1/16),DC_level= 50, | |
|
276 | stdev= 8,Num_Codes = 1 , Dyn_snCode = None, samples=200, | |
|
277 | channels=2,Fdoppler=20,Hdoppler=36,Adoppler=500, | |
|
272 | 278 | **kwargs): |
|
273 | 279 | |
|
274 | 280 | self.set_kwargs(**kwargs) |
|
275 | 281 | self.nReadBlocks = 0 |
|
282 | self.nReadFiles = 1 | |
|
283 | print('------------------- [Opening file: ] ------------------------------',self.nReadFiles) | |
|
284 | ||
|
276 | 285 | tmp = time.time() |
|
277 | 286 | tmp_utc = int(tmp) |
|
278 | 287 | tmp_milisecond = int((tmp-tmp_utc)*1000) |
|
279 | 288 | print(" SETUP -basicHeaderObj.utc",datetime.datetime.utcfromtimestamp(tmp)) |
|
280 | 289 | if Dyn_snCode is None: |
|
281 | 290 | Num_Codes=1 |
|
282 | 291 | Bauds =1 |
|
283 | 292 | |
|
284 | 293 | |
|
285 | 294 | |
|
286 | 295 | self.set_BH(utc= tmp_utc,miliSecond= tmp_milisecond,timeZone=300 ) |
|
287 | 296 | |
|
288 | 297 | self.set_RCH( expType=0, nTx=150,ipp=FixRCP_IPP, txA=FixRCP_TXA, txB= FixRCP_TXB, |
|
289 | 298 | nWindows=1 , nHeights=samples, firstHeight=AcqH0_0, deltaHeight=AcqDH_0, |
|
290 | 299 | numTaus=1, line6Function=0, line5Function=0, fClock=None, |
|
291 | 300 | prePulseBefore=0, prePulseAfter=0, |
|
292 | 301 | codeType=14, nCode=Num_Codes, nBaud=32, code=Dyn_snCode, |
|
293 | 302 | flip1=0, flip2=0) |
|
294 | 303 | |
|
295 | 304 | self.set_PH(dtype=0, blockSize=0, profilesPerBlock=300, |
|
296 | 305 | dataBlocksPerFile=120, nWindows=1, processFlags=0, nCohInt=1, |
|
297 | 306 | nIncohInt=1, totalSpectra=0, nHeights=samples, firstHeight=AcqH0_0, |
|
298 | 307 | deltaHeight=AcqDH_0, samplesWin=samples, spectraComb=0, nCode=0, |
|
299 | 308 | code=0, nBaud=None, shif_fft=False, flag_dc=False, |
|
300 | 309 | flag_cspc=False, flag_decode=False, flag_deflip=False) |
|
301 | 310 | |
|
302 | 311 | self.set_SH(nSamples=samples, nProfiles=300, nChannels=channels) |
|
303 | 312 | |
|
313 | ||
|
314 | self.frequency = frequency | |
|
304 | 315 | self.incIntFactor = incIntFactor |
|
305 | 316 | self.nFFTPoints = nFFTPoints |
|
306 | 317 | self.FixPP_IncInt = FixPP_IncInt |
|
307 | 318 | self.FixRCP_IPP = FixRCP_IPP |
|
308 | 319 | self.FixPP_CohInt = FixPP_CohInt |
|
309 | 320 | self.Tau_0 = Tau_0 |
|
310 | 321 | self.AcqH0_0 = AcqH0_0 |
|
311 | 322 | self.H0 = AcqH0_0 |
|
312 | 323 | self.AcqDH_0 = AcqDH_0 |
|
313 | 324 | self.DH0 = AcqDH_0 |
|
314 | 325 | self.Bauds = Bauds |
|
315 | 326 | self.FixRCP_TXA = FixRCP_TXA |
|
316 | 327 | self.FixRCP_TXB = FixRCP_TXB |
|
317 | 328 | self.fAngle = fAngle |
|
318 | 329 | self.DC_level = DC_level |
|
319 | 330 | self.stdev = stdev |
|
320 | 331 | self.Num_Codes = Num_Codes |
|
321 | 332 | self.Dyn_snCode = Dyn_snCode |
|
322 | 333 | self.samples = samples |
|
323 | 334 | self.channels = channels |
|
324 | 335 | self.profiles = None |
|
325 | 336 | self.m_nReference = None |
|
326 | 337 | self.Baudwidth = None |
|
327 | 338 | self.Fdoppler = Fdoppler |
|
328 | 339 | self.Hdoppler = Hdoppler |
|
340 | self.Adoppler = Adoppler | |
|
329 | 341 | |
|
330 | 342 | print("IPP ", self.FixRCP_IPP) |
|
331 | 343 | print("Tau_0 ",self.Tau_0) |
|
332 | 344 | print("AcqH0_0",self.AcqH0_0) |
|
333 | 345 | print("samples,window ",self.samples) |
|
334 | 346 | print("AcqDH_0",AcqDH_0) |
|
335 | 347 | print("FixRCP_TXA",self.FixRCP_TXA) |
|
336 | 348 | print("FixRCP_TXB",self.FixRCP_TXB) |
|
337 | 349 | print("Dyn_snCode",Dyn_snCode) |
|
338 | 350 | print("Fdoppler", Fdoppler) |
|
339 | 351 | print("Hdoppler",Hdoppler) |
|
352 | print("Vdopplermax",Fdoppler*(3.0e8/self.frequency)/2.0) | |
|
340 | 353 | |
|
341 | 354 | self.init_acquisition() |
|
342 | 355 | self.pulses,self.pulse_size=self.init_pulse(Num_Codes=self.Num_Codes,Bauds=self.Bauds,BaudWidth=self.BaudWidth,Dyn_snCode=Dyn_snCode) |
|
343 | 356 | print(" [ END ] - SETUP metodo") |
|
344 | 357 | return |
|
345 | 358 | |
|
346 | 359 | def run(self,**kwargs): # metodo propio |
|
347 | 360 | if not(self.isConfig): |
|
348 | 361 | self.setup(**kwargs) |
|
349 | 362 | self.isConfig = True |
|
350 | 363 | self.getData() |
|
351 | 364 | |
|
352 | 365 | ################################################################## |
|
353 | 366 | ###### Aqui ingresamos las clases y metodos propios del simulador |
|
354 | 367 | ################################################################## |
|
355 | 368 | |
|
356 | 369 | ############################################# |
|
357 | 370 | ############## INIT_ACQUISITION############## |
|
358 | 371 | ############################################# |
|
359 | 372 | def init_acquisition(self): |
|
360 | 373 | |
|
361 | 374 | if self.nFFTPoints != 0: |
|
362 | 375 | self.incIntFactor = m_nProfilesperBlock/self.nFFTPoints |
|
363 | 376 | if (self.FixPP_IncInt > self.incIntFactor): |
|
364 | 377 | self.incIntFactor = self.FixPP_IncInt/ self.incIntFactor |
|
365 | 378 | elif(self.FixPP_IncInt< self.incIntFactor): |
|
366 | 379 | print("False alert...") |
|
367 | 380 | |
|
368 | 381 | ProfilesperBlock = self.processingHeaderObj.profilesPerBlock |
|
369 | 382 | |
|
370 | 383 | self.timeperblock =int(((self.FixRCP_IPP |
|
371 | 384 | *ProfilesperBlock |
|
372 | 385 | *self.FixPP_CohInt |
|
373 | 386 | *self.incIntFactor) |
|
374 | 387 | /150.0) |
|
375 | 388 | *0.9 |
|
376 | 389 | +0.5) |
|
377 | 390 | # para cada canal |
|
378 | 391 | self.profiles = ProfilesperBlock*self.FixPP_CohInt |
|
379 | 392 | self.profiles = ProfilesperBlock |
|
380 | 393 | self.Reference = int((self.Tau_0-self.AcqH0_0)/(self.AcqDH_0)+0.5) |
|
381 | 394 | self.BaudWidth = int((self.FixRCP_TXA/self.AcqDH_0)/self.Bauds + 0.5 ) |
|
382 | 395 | |
|
383 | 396 | if (self.BaudWidth==0): |
|
384 | 397 | self.BaudWidth=1 |
|
385 | 398 | ################################################################# |
|
386 | 399 | ####################### init_pulse ############################## |
|
387 | 400 | ################################################################ |
|
388 | 401 | |
|
389 | 402 | def init_pulse(self,Num_Codes=Num_Codes,Bauds=Bauds,BaudWidth=BaudWidth,Dyn_snCode=Dyn_snCode): |
|
390 | 403 | |
|
391 | 404 | Num_Codes = Num_Codes |
|
392 | 405 | Bauds = Bauds |
|
393 | 406 | BaudWidth = BaudWidth |
|
394 | 407 | Dyn_snCode = Dyn_snCode |
|
395 | 408 | |
|
396 | 409 | if Dyn_snCode: |
|
397 | 410 | print("EXISTE") |
|
398 | 411 | else: |
|
399 | 412 | print("No existe") |
|
400 | 413 | |
|
401 | 414 | if Dyn_snCode: # if Bauds: |
|
402 | 415 | pulses = list(range(0,Num_Codes)) |
|
403 | 416 | num_codes = Num_Codes |
|
404 | 417 | for i in range(num_codes): |
|
405 | 418 | pulse_size = Bauds*BaudWidth |
|
406 | 419 | pulses[i] = numpy.zeros(pulse_size) |
|
407 | 420 | for j in range(Bauds): |
|
408 | 421 | for k in range(BaudWidth): |
|
409 | 422 | pulses[i][j*BaudWidth+k] = int(Dyn_snCode[i][j]*600) |
|
410 | 423 | else: |
|
411 | 424 | print("sin code") |
|
412 | 425 | pulses = list(range(1)) |
|
413 | 426 | pulse_size = int(self.FixRCP_TXB/0.15+0.5) |
|
414 | 427 | pulses[0] = numpy.ones(pulse_size) |
|
415 | 428 | pulses = 600*pulses[0] |
|
416 | 429 | |
|
417 | 430 | return pulses,pulse_size |
|
418 | 431 | |
|
419 | 432 | ################################################################# |
|
420 | 433 | ##################### Generate block data |
|
421 | 434 | ################################################################ |
|
422 | 435 | |
|
423 | 436 | def jro_GenerateBlockOfData(self,Samples=Samples,DC_level= DC_level,stdev=stdev, |
|
424 | 437 | Reference= Reference,pulses= pulses, |
|
425 | 438 | Num_Codes= Num_Codes,pulse_size=pulse_size, |
|
426 |
prof_gen= prof_gen,H0 = H0,DH0=DH0, |
|
|
439 | prof_gen= prof_gen,H0 = H0,DH0=DH0, | |
|
440 | Adoppler=Adoppler,Fdoppler= Fdoppler,Hdoppler=Hdoppler): | |
|
427 | 441 | Samples = Samples |
|
428 | 442 | DC_level = DC_level |
|
429 | 443 | stdev = stdev |
|
430 | 444 | m_nR = Reference |
|
431 | 445 | pulses = pulses |
|
432 | 446 | num_codes = Num_Codes |
|
433 | 447 | ps = pulse_size |
|
434 | 448 | prof_gen = prof_gen |
|
435 | 449 | channels = self.channels |
|
436 | 450 | H0 = H0 |
|
437 | 451 | DH0 = DH0 |
|
438 | 452 | ippSec = self.radarControllerHeaderObj.ippSeconds |
|
439 | 453 | Fdoppler = self.Fdoppler |
|
440 | 454 | Hdoppler = self.Hdoppler |
|
455 | Adoppler = self.Adoppler | |
|
441 | 456 | |
|
442 | 457 | self.datablock = numpy.zeros([channels,prof_gen,Samples],dtype= numpy.complex64) |
|
443 | 458 | for i in range(channels): |
|
444 | 459 | for k in range(prof_gen): |
|
445 | 460 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·NOISEΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
446 | 461 | Noise_r = numpy.random.normal(DC_level,stdev,Samples) |
|
447 | 462 | Noise_i = numpy.random.normal(DC_level,stdev,Samples) |
|
448 | 463 | Noise = numpy.zeros(Samples,dtype=complex) |
|
449 | 464 | Noise.real = Noise_r |
|
450 | 465 | Noise.imag = Noise_i |
|
451 | 466 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·PULSOSΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
452 | 467 | Pulso = numpy.zeros(pulse_size,dtype=complex) |
|
453 | 468 | Pulso.real = pulses[k%num_codes] |
|
454 | 469 | Pulso.imag = pulses[k%num_codes] |
|
455 | 470 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· PULSES+NOISEΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
456 | 471 | InBuffer = numpy.zeros(Samples,dtype=complex) |
|
457 | 472 | InBuffer[m_nR:m_nR+ps] = Pulso |
|
458 |
InBuffer = Noise |
|
|
473 | InBuffer = InBuffer+Noise | |
|
459 | 474 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· ANGLE Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
460 | 475 | InBuffer.real[m_nR:m_nR+ps] = InBuffer.real[m_nR:m_nR+ps]*(math.cos( self.fAngle)*5) |
|
461 | 476 | InBuffer.imag[m_nR:m_nR+ps] = InBuffer.imag[m_nR:m_nR+ps]*(math.sin( self.fAngle)*5) |
|
462 | 477 | InBuffer=InBuffer |
|
463 | 478 | self.datablock[i][k]= InBuffer |
|
464 | 479 | #plot_cts(InBuffer,H0=H0,DH0=DH0) |
|
465 | 480 | #wave_fft(x=InBuffer,plot_show=True) |
|
466 | 481 | #time.sleep(1) |
|
467 | 482 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·DOPPLER SIGNAL............................................... |
|
468 | time_vec = numpy.linspace(0,(prof_gen-1)*ippSec,int(prof_gen))+self.nReadBlocks*ippSec*prof_gen | |
|
483 | time_vec = numpy.linspace(0,(prof_gen-1)*ippSec,int(prof_gen))+self.nReadBlocks*ippSec*prof_gen+(self.nReadFiles-1)*ippSec*prof_gen | |
|
469 | 484 | fd = Fdoppler #+(600.0/120)*self.nReadBlocks |
|
470 |
d_signal = |
|
|
485 | d_signal = Adoppler*numpy.array(numpy.exp(1.0j*2.0*math.pi*fd*time_vec),dtype=numpy.complex64) | |
|
471 | 486 | #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DATABLOCK + DOPPLERΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·........................... |
|
472 | 487 | HD=int(Hdoppler/self.AcqDH_0) |
|
473 | self.datablock[0,:,HD]=self.datablock[0,:,HD]+ d_signal # RESULT | |
|
488 | for i in range(12): | |
|
489 | self.datablock[:,:,HD+i]=self.datablock[:,:,HD+i]+ d_signal # RESULT | |
|
474 | 490 | ''' |
|
475 | 491 | a= numpy.zeros(10) |
|
476 | 492 | for i in range(10): |
|
477 | 493 | a[i]=i+self.nReadBlocks+20 |
|
478 | 494 | for i in a: |
|
479 | 495 | self.datablock[0,:,int(i)]=self.datablock[0,:,int(i)]+ d_signal # RESULT |
|
480 | 496 | ''' |
@@ -1,1266 +1,1266 | |||
|
1 | 1 | import itertools |
|
2 | 2 | |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Spectra |
|
7 | 7 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
8 | 8 | from schainpy.utils import log |
|
9 | 9 | |
|
10 | 10 | @MPDecorator |
|
11 | 11 | class SpectraProc(ProcessingUnit): |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | def __init__(self): |
|
15 | 15 | |
|
16 | 16 | ProcessingUnit.__init__(self) |
|
17 | 17 | |
|
18 | 18 | self.buffer = None |
|
19 | 19 | self.firstdatatime = None |
|
20 | 20 | self.profIndex = 0 |
|
21 | 21 | self.dataOut = Spectra() |
|
22 | 22 | self.id_min = None |
|
23 | 23 | self.id_max = None |
|
24 | 24 | self.setupReq = False #Agregar a todas las unidades de proc |
|
25 | 25 | |
|
26 | 26 | def __updateSpecFromVoltage(self): |
|
27 | 27 | |
|
28 | 28 | self.dataOut.timeZone = self.dataIn.timeZone |
|
29 | 29 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
30 | 30 | self.dataOut.errorCount = self.dataIn.errorCount |
|
31 | 31 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
32 | 32 | try: |
|
33 | 33 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
34 | 34 | except: |
|
35 | 35 | pass |
|
36 | 36 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
37 | 37 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
38 | 38 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | 39 | self.dataOut.heightList = self.dataIn.heightList |
|
40 | 40 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
41 | 41 | |
|
42 | 42 | self.dataOut.nBaud = self.dataIn.nBaud |
|
43 | 43 | self.dataOut.nCode = self.dataIn.nCode |
|
44 | 44 | self.dataOut.code = self.dataIn.code |
|
45 | 45 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
46 | 46 | |
|
47 | 47 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
48 | 48 | self.dataOut.utctime = self.firstdatatime |
|
49 | 49 | # asumo q la data esta decodificada |
|
50 | 50 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
51 | 51 | # asumo q la data esta sin flip |
|
52 | 52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
53 | 53 | self.dataOut.flagShiftFFT = False |
|
54 | 54 | |
|
55 | 55 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
56 | 56 | self.dataOut.nIncohInt = 1 |
|
57 | 57 | |
|
58 | 58 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
59 | 59 | |
|
60 | 60 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | 61 | self.dataOut.realtime = self.dataIn.realtime |
|
62 | 62 | |
|
63 | 63 | self.dataOut.azimuth = self.dataIn.azimuth |
|
64 | 64 | self.dataOut.zenith = self.dataIn.zenith |
|
65 | 65 | |
|
66 | 66 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
67 | 67 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
68 | 68 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
69 | 69 | |
|
70 | 70 | def __getFft(self): |
|
71 | 71 | """ |
|
72 | 72 | Convierte valores de Voltaje a Spectra |
|
73 | 73 | |
|
74 | 74 | Affected: |
|
75 | 75 | self.dataOut.data_spc |
|
76 | 76 | self.dataOut.data_cspc |
|
77 | 77 | self.dataOut.data_dc |
|
78 | 78 | self.dataOut.heightList |
|
79 | 79 | self.profIndex |
|
80 | 80 | self.buffer |
|
81 | 81 | self.dataOut.flagNoData |
|
82 | 82 | """ |
|
83 | 83 | fft_volt = numpy.fft.fft( |
|
84 | 84 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | 85 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | 86 | dc = fft_volt[:, 0, :] |
|
87 | 87 | |
|
88 | 88 | # calculo de self-spectra |
|
89 | 89 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | 90 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | 91 | #print("spcch0",spc[0]) |
|
92 | 92 | spc = spc.real |
|
93 | 93 | |
|
94 | 94 | blocksize = 0 |
|
95 | 95 | blocksize += dc.size |
|
96 | 96 | blocksize += spc.size |
|
97 | 97 | |
|
98 | 98 | #print("spc :",spc.shape) |
|
99 | 99 | data_wr = None |
|
100 | 100 | if self.dataOut.flagWR: |
|
101 |
data_wr = |
|
|
101 | data_wr = self.buffer | |
|
102 | 102 | blocksize = fft_volt.size |
|
103 | 103 | |
|
104 | 104 | cspc = None |
|
105 | 105 | pairIndex = 0 |
|
106 | 106 | if self.dataOut.pairsList != None: |
|
107 | 107 | # calculo de cross-spectra |
|
108 | 108 | cspc = numpy.zeros( |
|
109 | 109 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
110 | 110 | for pair in self.dataOut.pairsList: |
|
111 | 111 | if pair[0] not in self.dataOut.channelList: |
|
112 | 112 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
113 | 113 | str(pair), str(self.dataOut.channelList))) |
|
114 | 114 | if pair[1] not in self.dataOut.channelList: |
|
115 | 115 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
116 | 116 | str(pair), str(self.dataOut.channelList))) |
|
117 | 117 | |
|
118 | 118 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
119 | 119 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
120 | 120 | pairIndex += 1 |
|
121 | 121 | blocksize += cspc.size |
|
122 | 122 | |
|
123 | 123 | self.dataOut.data_spc = spc |
|
124 | 124 | self.dataOut.data_cspc = cspc |
|
125 | 125 | self.dataOut.data_wr = data_wr |
|
126 | 126 | self.dataOut.data_dc = dc |
|
127 | 127 | self.dataOut.blockSize = blocksize |
|
128 | 128 | self.dataOut.flagShiftFFT = False |
|
129 | 129 | |
|
130 | 130 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False,flagWR= 0): |
|
131 | 131 | |
|
132 | 132 | self.dataOut.flagWR = flagWR |
|
133 | 133 | |
|
134 | 134 | if self.dataIn.type == "Spectra": |
|
135 | 135 | self.dataOut.copy(self.dataIn) |
|
136 | 136 | |
|
137 | 137 | if shift_fft: |
|
138 | 138 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
139 | 139 | shift = int(self.dataOut.nFFTPoints/2) |
|
140 | 140 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
141 | 141 | |
|
142 | 142 | if self.dataOut.data_cspc is not None: |
|
143 | 143 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
144 | 144 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
145 | 145 | |
|
146 | 146 | return True |
|
147 | 147 | |
|
148 | 148 | if self.dataIn.type == "Voltage": |
|
149 | 149 | #print("VOLTAGE INPUT SPECTRA") |
|
150 | 150 | self.dataOut.flagNoData = True |
|
151 | 151 | |
|
152 | 152 | if nFFTPoints == None: |
|
153 | 153 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
154 | 154 | |
|
155 | 155 | if nProfiles == None: |
|
156 | 156 | nProfiles = nFFTPoints |
|
157 | 157 | |
|
158 | 158 | if ippFactor == None: |
|
159 | 159 | ippFactor = 1 |
|
160 | 160 | |
|
161 | 161 | self.dataOut.ippFactor = ippFactor |
|
162 | 162 | |
|
163 | 163 | self.dataOut.nFFTPoints = nFFTPoints |
|
164 | 164 | self.dataOut.pairsList = pairsList |
|
165 | 165 | |
|
166 | 166 | if self.buffer is None: |
|
167 | 167 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
168 | 168 | nProfiles, |
|
169 | 169 | self.dataIn.nHeights), |
|
170 | 170 | dtype='complex') |
|
171 | 171 | #print("buffer :",self.buffer.shape) |
|
172 | 172 | |
|
173 | 173 | if self.dataIn.flagDataAsBlock: |
|
174 | 174 | nVoltProfiles = self.dataIn.data.shape[1] |
|
175 | 175 | |
|
176 | 176 | if nVoltProfiles == nProfiles: |
|
177 | 177 | self.buffer = self.dataIn.data.copy() |
|
178 | 178 | self.profIndex = nVoltProfiles |
|
179 | 179 | |
|
180 | 180 | elif nVoltProfiles < nProfiles: |
|
181 | 181 | |
|
182 | 182 | if self.profIndex == 0: |
|
183 | 183 | self.id_min = 0 |
|
184 | 184 | self.id_max = nVoltProfiles |
|
185 | 185 | |
|
186 | 186 | self.buffer[:, self.id_min:self.id_max, |
|
187 | 187 | :] = self.dataIn.data |
|
188 | 188 | self.profIndex += nVoltProfiles |
|
189 | 189 | self.id_min += nVoltProfiles |
|
190 | 190 | self.id_max += nVoltProfiles |
|
191 | 191 | else: |
|
192 | 192 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
193 | 193 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
194 | 194 | self.dataOut.flagNoData = True |
|
195 | 195 | return 0 |
|
196 | 196 | else: |
|
197 | 197 | #print("Spectra ",self.profIndex) |
|
198 | 198 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
199 | 199 | self.profIndex += 1 |
|
200 | 200 | |
|
201 | 201 | if self.firstdatatime == None: |
|
202 | 202 | self.firstdatatime = self.dataIn.utctime |
|
203 | 203 | |
|
204 | 204 | if self.profIndex == nProfiles: |
|
205 | 205 | self.__updateSpecFromVoltage() |
|
206 | 206 | self.__getFft() |
|
207 | 207 | #print(" DATAOUT SHAPE SPEC",self.dataOut.data_spc.shape) |
|
208 | 208 | |
|
209 | 209 | self.dataOut.flagNoData = False |
|
210 | 210 | self.firstdatatime = None |
|
211 | 211 | self.profIndex = 0 |
|
212 | 212 | |
|
213 | 213 | return True |
|
214 | 214 | |
|
215 | 215 | raise ValueError("The type of input object '%s' is not valid" % ( |
|
216 | 216 | self.dataIn.type)) |
|
217 | 217 | |
|
218 | 218 | def __selectPairs(self, pairsList): |
|
219 | 219 | |
|
220 | 220 | if not pairsList: |
|
221 | 221 | return |
|
222 | 222 | |
|
223 | 223 | pairs = [] |
|
224 | 224 | pairsIndex = [] |
|
225 | 225 | |
|
226 | 226 | for pair in pairsList: |
|
227 | 227 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
228 | 228 | continue |
|
229 | 229 | pairs.append(pair) |
|
230 | 230 | pairsIndex.append(pairs.index(pair)) |
|
231 | 231 | |
|
232 | 232 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
233 | 233 | self.dataOut.pairsList = pairs |
|
234 | 234 | |
|
235 | 235 | return |
|
236 | 236 | |
|
237 | 237 | def __selectPairsByChannel(self, channelList=None): |
|
238 | 238 | |
|
239 | 239 | if channelList == None: |
|
240 | 240 | return |
|
241 | 241 | |
|
242 | 242 | pairsIndexListSelected = [] |
|
243 | 243 | for pairIndex in self.dataOut.pairsIndexList: |
|
244 | 244 | # First pair |
|
245 | 245 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
246 | 246 | continue |
|
247 | 247 | # Second pair |
|
248 | 248 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
249 | 249 | continue |
|
250 | 250 | |
|
251 | 251 | pairsIndexListSelected.append(pairIndex) |
|
252 | 252 | |
|
253 | 253 | if not pairsIndexListSelected: |
|
254 | 254 | self.dataOut.data_cspc = None |
|
255 | 255 | self.dataOut.pairsList = [] |
|
256 | 256 | return |
|
257 | 257 | |
|
258 | 258 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
259 | 259 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
260 | 260 | for i in pairsIndexListSelected] |
|
261 | 261 | |
|
262 | 262 | return |
|
263 | 263 | |
|
264 | 264 | def selectChannels(self, channelList): |
|
265 | 265 | |
|
266 | 266 | channelIndexList = [] |
|
267 | 267 | |
|
268 | 268 | for channel in channelList: |
|
269 | 269 | if channel not in self.dataOut.channelList: |
|
270 | 270 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" % ( |
|
271 | 271 | channel, str(self.dataOut.channelList))) |
|
272 | 272 | |
|
273 | 273 | index = self.dataOut.channelList.index(channel) |
|
274 | 274 | channelIndexList.append(index) |
|
275 | 275 | |
|
276 | 276 | self.selectChannelsByIndex(channelIndexList) |
|
277 | 277 | |
|
278 | 278 | def selectChannelsByIndex(self, channelIndexList): |
|
279 | 279 | """ |
|
280 | 280 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
281 | 281 | |
|
282 | 282 | Input: |
|
283 | 283 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
284 | 284 | |
|
285 | 285 | Affected: |
|
286 | 286 | self.dataOut.data_spc |
|
287 | 287 | self.dataOut.channelIndexList |
|
288 | 288 | self.dataOut.nChannels |
|
289 | 289 | |
|
290 | 290 | Return: |
|
291 | 291 | None |
|
292 | 292 | """ |
|
293 | 293 | |
|
294 | 294 | for channelIndex in channelIndexList: |
|
295 | 295 | if channelIndex not in self.dataOut.channelIndexList: |
|
296 | 296 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " % ( |
|
297 | 297 | channelIndex, self.dataOut.channelIndexList)) |
|
298 | 298 | |
|
299 | 299 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
300 | 300 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
301 | 301 | |
|
302 | 302 | self.dataOut.data_spc = data_spc |
|
303 | 303 | self.dataOut.data_dc = data_dc |
|
304 | 304 | |
|
305 | 305 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
306 | 306 | self.dataOut.channelList = range(len(channelIndexList)) |
|
307 | 307 | self.__selectPairsByChannel(channelIndexList) |
|
308 | 308 | |
|
309 | 309 | return 1 |
|
310 | 310 | |
|
311 | 311 | |
|
312 | 312 | def selectFFTs(self, minFFT, maxFFT ): |
|
313 | 313 | """ |
|
314 | 314 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
315 | 315 | minFFT<= FFT <= maxFFT |
|
316 | 316 | """ |
|
317 | 317 | |
|
318 | 318 | if (minFFT > maxFFT): |
|
319 | 319 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
320 | 320 | |
|
321 | 321 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
322 | 322 | minFFT = self.dataOut.getFreqRange()[0] |
|
323 | 323 | |
|
324 | 324 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
325 | 325 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
326 | 326 | |
|
327 | 327 | minIndex = 0 |
|
328 | 328 | maxIndex = 0 |
|
329 | 329 | FFTs = self.dataOut.getFreqRange() |
|
330 | 330 | |
|
331 | 331 | inda = numpy.where(FFTs >= minFFT) |
|
332 | 332 | indb = numpy.where(FFTs <= maxFFT) |
|
333 | 333 | |
|
334 | 334 | try: |
|
335 | 335 | minIndex = inda[0][0] |
|
336 | 336 | except: |
|
337 | 337 | minIndex = 0 |
|
338 | 338 | |
|
339 | 339 | try: |
|
340 | 340 | maxIndex = indb[0][-1] |
|
341 | 341 | except: |
|
342 | 342 | maxIndex = len(FFTs) |
|
343 | 343 | |
|
344 | 344 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
345 | 345 | |
|
346 | 346 | return 1 |
|
347 | 347 | |
|
348 | 348 | |
|
349 | 349 | def setH0(self, h0, deltaHeight = None): |
|
350 | 350 | |
|
351 | 351 | if not deltaHeight: |
|
352 | 352 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
353 | 353 | |
|
354 | 354 | nHeights = self.dataOut.nHeights |
|
355 | 355 | |
|
356 | 356 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
357 | 357 | |
|
358 | 358 | self.dataOut.heightList = newHeiRange |
|
359 | 359 | |
|
360 | 360 | |
|
361 | 361 | def selectHeights(self, minHei, maxHei): |
|
362 | 362 | """ |
|
363 | 363 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
364 | 364 | minHei <= height <= maxHei |
|
365 | 365 | |
|
366 | 366 | Input: |
|
367 | 367 | minHei : valor minimo de altura a considerar |
|
368 | 368 | maxHei : valor maximo de altura a considerar |
|
369 | 369 | |
|
370 | 370 | Affected: |
|
371 | 371 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
372 | 372 | |
|
373 | 373 | Return: |
|
374 | 374 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
375 | 375 | """ |
|
376 | 376 | |
|
377 | 377 | |
|
378 | 378 | if (minHei > maxHei): |
|
379 | 379 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) |
|
380 | 380 | |
|
381 | 381 | if (minHei < self.dataOut.heightList[0]): |
|
382 | 382 | minHei = self.dataOut.heightList[0] |
|
383 | 383 | |
|
384 | 384 | if (maxHei > self.dataOut.heightList[-1]): |
|
385 | 385 | maxHei = self.dataOut.heightList[-1] |
|
386 | 386 | |
|
387 | 387 | minIndex = 0 |
|
388 | 388 | maxIndex = 0 |
|
389 | 389 | heights = self.dataOut.heightList |
|
390 | 390 | |
|
391 | 391 | inda = numpy.where(heights >= minHei) |
|
392 | 392 | indb = numpy.where(heights <= maxHei) |
|
393 | 393 | |
|
394 | 394 | try: |
|
395 | 395 | minIndex = inda[0][0] |
|
396 | 396 | except: |
|
397 | 397 | minIndex = 0 |
|
398 | 398 | |
|
399 | 399 | try: |
|
400 | 400 | maxIndex = indb[0][-1] |
|
401 | 401 | except: |
|
402 | 402 | maxIndex = len(heights) |
|
403 | 403 | |
|
404 | 404 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
405 | 405 | |
|
406 | 406 | |
|
407 | 407 | return 1 |
|
408 | 408 | |
|
409 | 409 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
410 | 410 | newheis = numpy.where( |
|
411 | 411 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
412 | 412 | |
|
413 | 413 | if hei_ref != None: |
|
414 | 414 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
415 | 415 | |
|
416 | 416 | minIndex = min(newheis[0]) |
|
417 | 417 | maxIndex = max(newheis[0]) |
|
418 | 418 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
419 | 419 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
420 | 420 | |
|
421 | 421 | # determina indices |
|
422 | 422 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
423 | 423 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
424 | 424 | avg_dB = 10 * \ |
|
425 | 425 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
426 | 426 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
427 | 427 | beacon_heiIndexList = [] |
|
428 | 428 | for val in avg_dB.tolist(): |
|
429 | 429 | if val >= beacon_dB[0]: |
|
430 | 430 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
431 | 431 | |
|
432 | 432 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
433 | 433 | data_cspc = None |
|
434 | 434 | if self.dataOut.data_cspc is not None: |
|
435 | 435 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
436 | 436 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
437 | 437 | |
|
438 | 438 | data_dc = None |
|
439 | 439 | if self.dataOut.data_dc is not None: |
|
440 | 440 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
441 | 441 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
442 | 442 | |
|
443 | 443 | self.dataOut.data_spc = data_spc |
|
444 | 444 | self.dataOut.data_cspc = data_cspc |
|
445 | 445 | self.dataOut.data_dc = data_dc |
|
446 | 446 | self.dataOut.heightList = heightList |
|
447 | 447 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
448 | 448 | |
|
449 | 449 | return 1 |
|
450 | 450 | |
|
451 | 451 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
452 | 452 | """ |
|
453 | 453 | |
|
454 | 454 | """ |
|
455 | 455 | |
|
456 | 456 | if (minIndex < 0) or (minIndex > maxIndex): |
|
457 | 457 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
458 | 458 | |
|
459 | 459 | if (maxIndex >= self.dataOut.nProfiles): |
|
460 | 460 | maxIndex = self.dataOut.nProfiles-1 |
|
461 | 461 | |
|
462 | 462 | #Spectra |
|
463 | 463 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
464 | 464 | |
|
465 | 465 | data_cspc = None |
|
466 | 466 | if self.dataOut.data_cspc is not None: |
|
467 | 467 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
468 | 468 | |
|
469 | 469 | data_dc = None |
|
470 | 470 | if self.dataOut.data_dc is not None: |
|
471 | 471 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
472 | 472 | |
|
473 | 473 | self.dataOut.data_spc = data_spc |
|
474 | 474 | self.dataOut.data_cspc = data_cspc |
|
475 | 475 | self.dataOut.data_dc = data_dc |
|
476 | 476 | |
|
477 | 477 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
478 | 478 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
479 | 479 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
480 | 480 | |
|
481 | 481 | return 1 |
|
482 | 482 | |
|
483 | 483 | |
|
484 | 484 | |
|
485 | 485 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
486 | 486 | """ |
|
487 | 487 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
488 | 488 | minIndex <= index <= maxIndex |
|
489 | 489 | |
|
490 | 490 | Input: |
|
491 | 491 | minIndex : valor de indice minimo de altura a considerar |
|
492 | 492 | maxIndex : valor de indice maximo de altura a considerar |
|
493 | 493 | |
|
494 | 494 | Affected: |
|
495 | 495 | self.dataOut.data_spc |
|
496 | 496 | self.dataOut.data_cspc |
|
497 | 497 | self.dataOut.data_dc |
|
498 | 498 | self.dataOut.heightList |
|
499 | 499 | |
|
500 | 500 | Return: |
|
501 | 501 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
502 | 502 | """ |
|
503 | 503 | |
|
504 | 504 | if (minIndex < 0) or (minIndex > maxIndex): |
|
505 | 505 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
506 | 506 | minIndex, maxIndex)) |
|
507 | 507 | |
|
508 | 508 | if (maxIndex >= self.dataOut.nHeights): |
|
509 | 509 | maxIndex = self.dataOut.nHeights - 1 |
|
510 | 510 | |
|
511 | 511 | # Spectra |
|
512 | 512 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
513 | 513 | |
|
514 | 514 | data_cspc = None |
|
515 | 515 | if self.dataOut.data_cspc is not None: |
|
516 | 516 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
517 | 517 | |
|
518 | 518 | data_dc = None |
|
519 | 519 | if self.dataOut.data_dc is not None: |
|
520 | 520 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
521 | 521 | |
|
522 | 522 | self.dataOut.data_spc = data_spc |
|
523 | 523 | self.dataOut.data_cspc = data_cspc |
|
524 | 524 | self.dataOut.data_dc = data_dc |
|
525 | 525 | |
|
526 | 526 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
527 | 527 | |
|
528 | 528 | return 1 |
|
529 | 529 | |
|
530 | 530 | def removeDC(self, mode=2): |
|
531 | 531 | jspectra = self.dataOut.data_spc |
|
532 | 532 | jcspectra = self.dataOut.data_cspc |
|
533 | 533 | |
|
534 | 534 | num_chan = jspectra.shape[0] |
|
535 | 535 | num_hei = jspectra.shape[2] |
|
536 | 536 | |
|
537 | 537 | if jcspectra is not None: |
|
538 | 538 | jcspectraExist = True |
|
539 | 539 | num_pairs = jcspectra.shape[0] |
|
540 | 540 | else: |
|
541 | 541 | jcspectraExist = False |
|
542 | 542 | |
|
543 | 543 | freq_dc = int(jspectra.shape[1] / 2) |
|
544 | 544 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
545 | 545 | ind_vel = ind_vel.astype(int) |
|
546 | 546 | |
|
547 | 547 | if ind_vel[0] < 0: |
|
548 | 548 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
549 | 549 | |
|
550 | 550 | if mode == 1: |
|
551 | 551 | jspectra[:, freq_dc, :] = ( |
|
552 | 552 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
553 | 553 | |
|
554 | 554 | if jcspectraExist: |
|
555 | 555 | jcspectra[:, freq_dc, :] = ( |
|
556 | 556 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
557 | 557 | |
|
558 | 558 | if mode == 2: |
|
559 | 559 | |
|
560 | 560 | vel = numpy.array([-2, -1, 1, 2]) |
|
561 | 561 | xx = numpy.zeros([4, 4]) |
|
562 | 562 | |
|
563 | 563 | for fil in range(4): |
|
564 | 564 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
565 | 565 | |
|
566 | 566 | xx_inv = numpy.linalg.inv(xx) |
|
567 | 567 | xx_aux = xx_inv[0, :] |
|
568 | 568 | |
|
569 | 569 | for ich in range(num_chan): |
|
570 | 570 | yy = jspectra[ich, ind_vel, :] |
|
571 | 571 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
572 | 572 | |
|
573 | 573 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
574 | 574 | cjunkid = sum(junkid) |
|
575 | 575 | |
|
576 | 576 | if cjunkid.any(): |
|
577 | 577 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
578 | 578 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
579 | 579 | |
|
580 | 580 | if jcspectraExist: |
|
581 | 581 | for ip in range(num_pairs): |
|
582 | 582 | yy = jcspectra[ip, ind_vel, :] |
|
583 | 583 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
584 | 584 | |
|
585 | 585 | self.dataOut.data_spc = jspectra |
|
586 | 586 | self.dataOut.data_cspc = jcspectra |
|
587 | 587 | |
|
588 | 588 | return 1 |
|
589 | 589 | |
|
590 | 590 | def removeInterference2(self): |
|
591 | 591 | |
|
592 | 592 | cspc = self.dataOut.data_cspc |
|
593 | 593 | spc = self.dataOut.data_spc |
|
594 | 594 | Heights = numpy.arange(cspc.shape[2]) |
|
595 | 595 | realCspc = numpy.abs(cspc) |
|
596 | 596 | |
|
597 | 597 | for i in range(cspc.shape[0]): |
|
598 | 598 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
599 | 599 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
600 | 600 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
601 | 601 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
602 | 602 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
603 | 603 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
604 | 604 | |
|
605 | 605 | |
|
606 | 606 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
607 | 607 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
608 | 608 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
609 | 609 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
610 | 610 | |
|
611 | 611 | |
|
612 | 612 | |
|
613 | 613 | self.dataOut.data_cspc = cspc |
|
614 | 614 | |
|
615 | 615 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
616 | 616 | |
|
617 | 617 | jspectra = self.dataOut.data_spc |
|
618 | 618 | jcspectra = self.dataOut.data_cspc |
|
619 | 619 | jnoise = self.dataOut.getNoise() |
|
620 | 620 | num_incoh = self.dataOut.nIncohInt |
|
621 | 621 | |
|
622 | 622 | num_channel = jspectra.shape[0] |
|
623 | 623 | num_prof = jspectra.shape[1] |
|
624 | 624 | num_hei = jspectra.shape[2] |
|
625 | 625 | |
|
626 | 626 | # hei_interf |
|
627 | 627 | if hei_interf is None: |
|
628 | 628 | count_hei = int(num_hei / 2) |
|
629 | 629 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
630 | 630 | hei_interf = numpy.asarray(hei_interf)[0] |
|
631 | 631 | # nhei_interf |
|
632 | 632 | if (nhei_interf == None): |
|
633 | 633 | nhei_interf = 5 |
|
634 | 634 | if (nhei_interf < 1): |
|
635 | 635 | nhei_interf = 1 |
|
636 | 636 | if (nhei_interf > count_hei): |
|
637 | 637 | nhei_interf = count_hei |
|
638 | 638 | if (offhei_interf == None): |
|
639 | 639 | offhei_interf = 0 |
|
640 | 640 | |
|
641 | 641 | ind_hei = list(range(num_hei)) |
|
642 | 642 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
643 | 643 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
644 | 644 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
645 | 645 | num_mask_prof = mask_prof.size |
|
646 | 646 | comp_mask_prof = [0, num_prof / 2] |
|
647 | 647 | |
|
648 | 648 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
649 | 649 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
650 | 650 | jnoise = numpy.nan |
|
651 | 651 | noise_exist = jnoise[0] < numpy.Inf |
|
652 | 652 | |
|
653 | 653 | # Subrutina de Remocion de la Interferencia |
|
654 | 654 | for ich in range(num_channel): |
|
655 | 655 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
656 | 656 | power = jspectra[ich, mask_prof, :] |
|
657 | 657 | power = power[:, hei_interf] |
|
658 | 658 | power = power.sum(axis=0) |
|
659 | 659 | psort = power.ravel().argsort() |
|
660 | 660 | |
|
661 | 661 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
662 | 662 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
663 | 663 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
664 | 664 | |
|
665 | 665 | if noise_exist: |
|
666 | 666 | # tmp_noise = jnoise[ich] / num_prof |
|
667 | 667 | tmp_noise = jnoise[ich] |
|
668 | 668 | junkspc_interf = junkspc_interf - tmp_noise |
|
669 | 669 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
670 | 670 | |
|
671 | 671 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
672 | 672 | jspc_interf = jspc_interf.transpose() |
|
673 | 673 | # Calculando el espectro de interferencia promedio |
|
674 | 674 | noiseid = numpy.where( |
|
675 | 675 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
676 | 676 | noiseid = noiseid[0] |
|
677 | 677 | cnoiseid = noiseid.size |
|
678 | 678 | interfid = numpy.where( |
|
679 | 679 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
680 | 680 | interfid = interfid[0] |
|
681 | 681 | cinterfid = interfid.size |
|
682 | 682 | |
|
683 | 683 | if (cnoiseid > 0): |
|
684 | 684 | jspc_interf[noiseid] = 0 |
|
685 | 685 | |
|
686 | 686 | # Expandiendo los perfiles a limpiar |
|
687 | 687 | if (cinterfid > 0): |
|
688 | 688 | new_interfid = ( |
|
689 | 689 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
690 | 690 | new_interfid = numpy.asarray(new_interfid) |
|
691 | 691 | new_interfid = {x for x in new_interfid} |
|
692 | 692 | new_interfid = numpy.array(list(new_interfid)) |
|
693 | 693 | new_cinterfid = new_interfid.size |
|
694 | 694 | else: |
|
695 | 695 | new_cinterfid = 0 |
|
696 | 696 | |
|
697 | 697 | for ip in range(new_cinterfid): |
|
698 | 698 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
699 | 699 | jspc_interf[new_interfid[ip] |
|
700 | 700 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
701 | 701 | |
|
702 | 702 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
703 | 703 | ind_hei] - jspc_interf # Corregir indices |
|
704 | 704 | |
|
705 | 705 | # Removiendo la interferencia del punto de mayor interferencia |
|
706 | 706 | ListAux = jspc_interf[mask_prof].tolist() |
|
707 | 707 | maxid = ListAux.index(max(ListAux)) |
|
708 | 708 | |
|
709 | 709 | if cinterfid > 0: |
|
710 | 710 | for ip in range(cinterfid * (interf == 2) - 1): |
|
711 | 711 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
712 | 712 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
713 | 713 | cind = len(ind) |
|
714 | 714 | |
|
715 | 715 | if (cind > 0): |
|
716 | 716 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
717 | 717 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
718 | 718 | numpy.sqrt(num_incoh)) |
|
719 | 719 | |
|
720 | 720 | ind = numpy.array([-2, -1, 1, 2]) |
|
721 | 721 | xx = numpy.zeros([4, 4]) |
|
722 | 722 | |
|
723 | 723 | for id1 in range(4): |
|
724 | 724 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
725 | 725 | |
|
726 | 726 | xx_inv = numpy.linalg.inv(xx) |
|
727 | 727 | xx = xx_inv[:, 0] |
|
728 | 728 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
729 | 729 | yy = jspectra[ich, mask_prof[ind], :] |
|
730 | 730 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
731 | 731 | yy.transpose(), xx) |
|
732 | 732 | |
|
733 | 733 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
734 | 734 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
735 | 735 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
736 | 736 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
737 | 737 | |
|
738 | 738 | # Remocion de Interferencia en el Cross Spectra |
|
739 | 739 | if jcspectra is None: |
|
740 | 740 | return jspectra, jcspectra |
|
741 | 741 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
742 | 742 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
743 | 743 | |
|
744 | 744 | for ip in range(num_pairs): |
|
745 | 745 | |
|
746 | 746 | #------------------------------------------- |
|
747 | 747 | |
|
748 | 748 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
749 | 749 | cspower = cspower[:, hei_interf] |
|
750 | 750 | cspower = cspower.sum(axis=0) |
|
751 | 751 | |
|
752 | 752 | cspsort = cspower.ravel().argsort() |
|
753 | 753 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
754 | 754 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
755 | 755 | junkcspc_interf = junkcspc_interf.transpose() |
|
756 | 756 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
757 | 757 | |
|
758 | 758 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
759 | 759 | |
|
760 | 760 | median_real = int(numpy.median(numpy.real( |
|
761 | 761 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
762 | 762 | median_imag = int(numpy.median(numpy.imag( |
|
763 | 763 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
764 | 764 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
765 | 765 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
766 | 766 | median_real, median_imag) |
|
767 | 767 | |
|
768 | 768 | for iprof in range(num_prof): |
|
769 | 769 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
770 | 770 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
771 | 771 | |
|
772 | 772 | # Removiendo la Interferencia |
|
773 | 773 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
774 | 774 | :, ind_hei] - jcspc_interf |
|
775 | 775 | |
|
776 | 776 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
777 | 777 | maxid = ListAux.index(max(ListAux)) |
|
778 | 778 | |
|
779 | 779 | ind = numpy.array([-2, -1, 1, 2]) |
|
780 | 780 | xx = numpy.zeros([4, 4]) |
|
781 | 781 | |
|
782 | 782 | for id1 in range(4): |
|
783 | 783 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
784 | 784 | |
|
785 | 785 | xx_inv = numpy.linalg.inv(xx) |
|
786 | 786 | xx = xx_inv[:, 0] |
|
787 | 787 | |
|
788 | 788 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
789 | 789 | yy = jcspectra[ip, mask_prof[ind], :] |
|
790 | 790 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
791 | 791 | |
|
792 | 792 | # Guardar Resultados |
|
793 | 793 | self.dataOut.data_spc = jspectra |
|
794 | 794 | self.dataOut.data_cspc = jcspectra |
|
795 | 795 | |
|
796 | 796 | return 1 |
|
797 | 797 | |
|
798 | 798 | def setRadarFrequency(self, frequency=None): |
|
799 | 799 | |
|
800 | 800 | if frequency != None: |
|
801 | 801 | self.dataOut.frequency = frequency |
|
802 | 802 | |
|
803 | 803 | return 1 |
|
804 | 804 | |
|
805 | 805 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
806 | 806 | # validacion de rango |
|
807 | 807 | if minHei == None: |
|
808 | 808 | minHei = self.dataOut.heightList[0] |
|
809 | 809 | |
|
810 | 810 | if maxHei == None: |
|
811 | 811 | maxHei = self.dataOut.heightList[-1] |
|
812 | 812 | |
|
813 | 813 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
814 | 814 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
815 | 815 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
816 | 816 | minHei = self.dataOut.heightList[0] |
|
817 | 817 | |
|
818 | 818 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
819 | 819 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
820 | 820 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
821 | 821 | maxHei = self.dataOut.heightList[-1] |
|
822 | 822 | |
|
823 | 823 | # validacion de velocidades |
|
824 | 824 | velrange = self.dataOut.getVelRange(1) |
|
825 | 825 | |
|
826 | 826 | if minVel == None: |
|
827 | 827 | minVel = velrange[0] |
|
828 | 828 | |
|
829 | 829 | if maxVel == None: |
|
830 | 830 | maxVel = velrange[-1] |
|
831 | 831 | |
|
832 | 832 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
833 | 833 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
834 | 834 | print('minVel is setting to %.2f' % (velrange[0])) |
|
835 | 835 | minVel = velrange[0] |
|
836 | 836 | |
|
837 | 837 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
838 | 838 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
839 | 839 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
840 | 840 | maxVel = velrange[-1] |
|
841 | 841 | |
|
842 | 842 | # seleccion de indices para rango |
|
843 | 843 | minIndex = 0 |
|
844 | 844 | maxIndex = 0 |
|
845 | 845 | heights = self.dataOut.heightList |
|
846 | 846 | |
|
847 | 847 | inda = numpy.where(heights >= minHei) |
|
848 | 848 | indb = numpy.where(heights <= maxHei) |
|
849 | 849 | |
|
850 | 850 | try: |
|
851 | 851 | minIndex = inda[0][0] |
|
852 | 852 | except: |
|
853 | 853 | minIndex = 0 |
|
854 | 854 | |
|
855 | 855 | try: |
|
856 | 856 | maxIndex = indb[0][-1] |
|
857 | 857 | except: |
|
858 | 858 | maxIndex = len(heights) |
|
859 | 859 | |
|
860 | 860 | if (minIndex < 0) or (minIndex > maxIndex): |
|
861 | 861 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
862 | 862 | minIndex, maxIndex)) |
|
863 | 863 | |
|
864 | 864 | if (maxIndex >= self.dataOut.nHeights): |
|
865 | 865 | maxIndex = self.dataOut.nHeights - 1 |
|
866 | 866 | |
|
867 | 867 | # seleccion de indices para velocidades |
|
868 | 868 | indminvel = numpy.where(velrange >= minVel) |
|
869 | 869 | indmaxvel = numpy.where(velrange <= maxVel) |
|
870 | 870 | try: |
|
871 | 871 | minIndexVel = indminvel[0][0] |
|
872 | 872 | except: |
|
873 | 873 | minIndexVel = 0 |
|
874 | 874 | |
|
875 | 875 | try: |
|
876 | 876 | maxIndexVel = indmaxvel[0][-1] |
|
877 | 877 | except: |
|
878 | 878 | maxIndexVel = len(velrange) |
|
879 | 879 | |
|
880 | 880 | # seleccion del espectro |
|
881 | 881 | data_spc = self.dataOut.data_spc[:, |
|
882 | 882 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
883 | 883 | # estimacion de ruido |
|
884 | 884 | noise = numpy.zeros(self.dataOut.nChannels) |
|
885 | 885 | |
|
886 | 886 | for channel in range(self.dataOut.nChannels): |
|
887 | 887 | daux = data_spc[channel, :, :] |
|
888 | 888 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
889 | 889 | |
|
890 | 890 | self.dataOut.noise_estimation = noise.copy() |
|
891 | 891 | |
|
892 | 892 | return 1 |
|
893 | 893 | |
|
894 | 894 | |
|
895 | 895 | class IncohInt(Operation): |
|
896 | 896 | |
|
897 | 897 | __profIndex = 0 |
|
898 | 898 | __withOverapping = False |
|
899 | 899 | |
|
900 | 900 | __byTime = False |
|
901 | 901 | __initime = None |
|
902 | 902 | __lastdatatime = None |
|
903 | 903 | __integrationtime = None |
|
904 | 904 | |
|
905 | 905 | __buffer_spc = None |
|
906 | 906 | __buffer_cspc = None |
|
907 | 907 | __buffer_dc = None |
|
908 | 908 | |
|
909 | 909 | __dataReady = False |
|
910 | 910 | |
|
911 | 911 | __timeInterval = None |
|
912 | 912 | |
|
913 | 913 | n = None |
|
914 | 914 | |
|
915 | 915 | def __init__(self): |
|
916 | 916 | |
|
917 | 917 | Operation.__init__(self) |
|
918 | 918 | |
|
919 | 919 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
920 | 920 | """ |
|
921 | 921 | Set the parameters of the integration class. |
|
922 | 922 | |
|
923 | 923 | Inputs: |
|
924 | 924 | |
|
925 | 925 | n : Number of coherent integrations |
|
926 | 926 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
927 | 927 | overlapping : |
|
928 | 928 | |
|
929 | 929 | """ |
|
930 | 930 | |
|
931 | 931 | self.__initime = None |
|
932 | 932 | self.__lastdatatime = 0 |
|
933 | 933 | |
|
934 | 934 | self.__buffer_spc = 0 |
|
935 | 935 | self.__buffer_cspc = 0 |
|
936 | 936 | self.__buffer_dc = 0 |
|
937 | 937 | |
|
938 | 938 | self.__profIndex = 0 |
|
939 | 939 | self.__dataReady = False |
|
940 | 940 | self.__byTime = False |
|
941 | 941 | |
|
942 | 942 | if n is None and timeInterval is None: |
|
943 | 943 | raise ValueError("n or timeInterval should be specified ...") |
|
944 | 944 | |
|
945 | 945 | if n is not None: |
|
946 | 946 | self.n = int(n) |
|
947 | 947 | else: |
|
948 | 948 | |
|
949 | 949 | self.__integrationtime = int(timeInterval) |
|
950 | 950 | self.n = None |
|
951 | 951 | self.__byTime = True |
|
952 | 952 | |
|
953 | 953 | def putData(self, data_spc, data_cspc, data_dc): |
|
954 | 954 | """ |
|
955 | 955 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
956 | 956 | |
|
957 | 957 | """ |
|
958 | 958 | print("profIndex: ",self.__profIndex) |
|
959 | 959 | print("data_spc.shape: ",data_spc.shape) |
|
960 | 960 | print("data_spc.shape: ",data_spc[0,0,:]) |
|
961 | 961 | |
|
962 | 962 | self.__buffer_spc += data_spc |
|
963 | 963 | |
|
964 | 964 | if data_cspc is None: |
|
965 | 965 | self.__buffer_cspc = None |
|
966 | 966 | else: |
|
967 | 967 | self.__buffer_cspc += data_cspc |
|
968 | 968 | |
|
969 | 969 | if data_dc is None: |
|
970 | 970 | self.__buffer_dc = None |
|
971 | 971 | else: |
|
972 | 972 | self.__buffer_dc += data_dc |
|
973 | 973 | |
|
974 | 974 | self.__profIndex += 1 |
|
975 | 975 | |
|
976 | 976 | return |
|
977 | 977 | |
|
978 | 978 | def pushData(self): |
|
979 | 979 | """ |
|
980 | 980 | Return the sum of the last profiles and the profiles used in the sum. |
|
981 | 981 | |
|
982 | 982 | Affected: |
|
983 | 983 | |
|
984 | 984 | self.__profileIndex |
|
985 | 985 | |
|
986 | 986 | """ |
|
987 | 987 | |
|
988 | 988 | data_spc = self.__buffer_spc |
|
989 | 989 | data_cspc = self.__buffer_cspc |
|
990 | 990 | data_dc = self.__buffer_dc |
|
991 | 991 | n = self.__profIndex |
|
992 | 992 | |
|
993 | 993 | self.__buffer_spc = 0 |
|
994 | 994 | self.__buffer_cspc = 0 |
|
995 | 995 | self.__buffer_dc = 0 |
|
996 | 996 | self.__profIndex = 0 |
|
997 | 997 | |
|
998 | 998 | return data_spc, data_cspc, data_dc, n |
|
999 | 999 | |
|
1000 | 1000 | def byProfiles(self, *args): |
|
1001 | 1001 | |
|
1002 | 1002 | self.__dataReady = False |
|
1003 | 1003 | avgdata_spc = None |
|
1004 | 1004 | avgdata_cspc = None |
|
1005 | 1005 | avgdata_dc = None |
|
1006 | 1006 | |
|
1007 | 1007 | self.putData(*args) |
|
1008 | 1008 | |
|
1009 | 1009 | if self.__profIndex == self.n: |
|
1010 | 1010 | |
|
1011 | 1011 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1012 | 1012 | self.n = n |
|
1013 | 1013 | self.__dataReady = True |
|
1014 | 1014 | |
|
1015 | 1015 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1016 | 1016 | |
|
1017 | 1017 | def byTime(self, datatime, *args): |
|
1018 | 1018 | |
|
1019 | 1019 | self.__dataReady = False |
|
1020 | 1020 | avgdata_spc = None |
|
1021 | 1021 | avgdata_cspc = None |
|
1022 | 1022 | avgdata_dc = None |
|
1023 | 1023 | |
|
1024 | 1024 | self.putData(*args) |
|
1025 | 1025 | |
|
1026 | 1026 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1027 | 1027 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1028 | 1028 | self.n = n |
|
1029 | 1029 | self.__dataReady = True |
|
1030 | 1030 | |
|
1031 | 1031 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1032 | 1032 | |
|
1033 | 1033 | def integrate(self, datatime, *args): |
|
1034 | 1034 | |
|
1035 | 1035 | if self.__profIndex == 0: |
|
1036 | 1036 | self.__initime = datatime |
|
1037 | 1037 | |
|
1038 | 1038 | if self.__byTime: |
|
1039 | 1039 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1040 | 1040 | datatime, *args) |
|
1041 | 1041 | else: |
|
1042 | 1042 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1043 | 1043 | |
|
1044 | 1044 | if not self.__dataReady: |
|
1045 | 1045 | return None, None, None, None |
|
1046 | 1046 | |
|
1047 | 1047 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1048 | 1048 | |
|
1049 | 1049 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1050 | 1050 | if n == 1: |
|
1051 | 1051 | return |
|
1052 | 1052 | |
|
1053 | 1053 | dataOut.flagNoData = True |
|
1054 | 1054 | |
|
1055 | 1055 | if not self.isConfig: |
|
1056 | 1056 | self.setup(n, timeInterval, overlapping) |
|
1057 | 1057 | self.isConfig = True |
|
1058 | 1058 | |
|
1059 | 1059 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1060 | 1060 | dataOut.data_spc, |
|
1061 | 1061 | dataOut.data_cspc, |
|
1062 | 1062 | dataOut.data_dc) |
|
1063 | 1063 | |
|
1064 | 1064 | if self.__dataReady: |
|
1065 | 1065 | |
|
1066 | 1066 | dataOut.data_spc = avgdata_spc |
|
1067 | 1067 | dataOut.data_cspc = avgdata_cspc |
|
1068 | 1068 | dataOut.data_dc = avgdata_dc |
|
1069 | 1069 | dataOut.nIncohInt *= self.n |
|
1070 | 1070 | dataOut.utctime = avgdatatime |
|
1071 | 1071 | dataOut.flagNoData = False |
|
1072 | 1072 | |
|
1073 | 1073 | return dataOut |
|
1074 | 1074 | |
|
1075 | 1075 | |
|
1076 | 1076 | class PulsePair(Operation): |
|
1077 | 1077 | isConfig = False |
|
1078 | 1078 | __profIndex = 0 |
|
1079 | 1079 | __profIndex2 = 0 |
|
1080 | 1080 | __initime = None |
|
1081 | 1081 | __lastdatatime = None |
|
1082 | 1082 | __buffer = None |
|
1083 | 1083 | __buffer2 = [] |
|
1084 | 1084 | __buffer3 = None |
|
1085 | 1085 | __dataReady = False |
|
1086 | 1086 | n = None |
|
1087 | 1087 | |
|
1088 | 1088 | __nch =0 |
|
1089 | 1089 | __nProf =0 |
|
1090 | 1090 | __nHeis =0 |
|
1091 | 1091 | |
|
1092 | 1092 | def __init__(self,**kwargs): |
|
1093 | 1093 | Operation.__init__(self,**kwargs) |
|
1094 | 1094 | |
|
1095 | 1095 | def setup(self,dataOut,n =None, m = None): |
|
1096 | 1096 | |
|
1097 | 1097 | self.__initime = None |
|
1098 | 1098 | self.__lastdatatime = 0 |
|
1099 | 1099 | self.__buffer = 0 |
|
1100 | 1100 | self.__bufferV = 0 |
|
1101 | 1101 | #self.__buffer2 = [] |
|
1102 | 1102 | self.__buffer3 = 0 |
|
1103 | 1103 | self.__dataReady = False |
|
1104 | 1104 | self.__profIndex = 0 |
|
1105 | 1105 | self.__profIndex2 = 0 |
|
1106 | 1106 | self.count = 0 |
|
1107 | 1107 | |
|
1108 | 1108 | |
|
1109 | 1109 | self.__nch = dataOut.nChannels |
|
1110 | 1110 | self.__nHeis = dataOut.nHeights |
|
1111 | 1111 | self.__nProf = dataOut.nProfiles |
|
1112 | 1112 | self.__nFFT = dataOut.nFFTPoints |
|
1113 | 1113 | #print("Valores de Ch,Samples,Perfiles,nFFT",self.__nch,self.__nHeis,self.__nProf, self.__nFFT) |
|
1114 | 1114 | #print("EL VALOR DE n es:",n) |
|
1115 | 1115 | if n == None: |
|
1116 | 1116 | raise ValueError("n Should be specified.") |
|
1117 | 1117 | |
|
1118 | 1118 | if n != None: |
|
1119 | 1119 | if n<2: |
|
1120 | 1120 | raise ValueError("n Should be greather than 2 ") |
|
1121 | 1121 | self.n = n |
|
1122 | 1122 | if m == None: |
|
1123 | 1123 | m = n |
|
1124 | 1124 | if m != None: |
|
1125 | 1125 | if m<2: |
|
1126 | 1126 | raise ValueError("n Should be greather than 2 ") |
|
1127 | 1127 | |
|
1128 | 1128 | self.m = m |
|
1129 | 1129 | self.__buffer2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) |
|
1130 | 1130 | self.__bufferV2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) |
|
1131 | 1131 | |
|
1132 | 1132 | |
|
1133 | 1133 | |
|
1134 | 1134 | def putData(self,data): |
|
1135 | 1135 | #print("###################################################") |
|
1136 | 1136 | ''' |
|
1137 | 1137 | data_tmp = numpy.zeros(self.__nch,self.n,self.__nHeis, dtype= complex) |
|
1138 | 1138 | if self.count < self.__nProf: |
|
1139 | 1139 | |
|
1140 | 1140 | for i in range(self.n): |
|
1141 | 1141 | data_tmp[:,i,:] = data[:,i+self.count,:] |
|
1142 | 1142 | |
|
1143 | 1143 | self.__buffer = data_tmp*numpy.conjugate(data_tmp) |
|
1144 | 1144 | |
|
1145 | 1145 | |
|
1146 | 1146 | #####self.__buffer = data*numpy.conjugate(data) |
|
1147 | 1147 | #####self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) |
|
1148 | 1148 | |
|
1149 | 1149 | #self.__buffer2.append(numpy.conjugate(data)) |
|
1150 | 1150 | |
|
1151 | 1151 | #####self.__profIndex = data.shape[1] |
|
1152 | 1152 | self.count = self.count + self.n -1 |
|
1153 | 1153 | self.__profIndex = self.n |
|
1154 | 1154 | ''' |
|
1155 | 1155 | self.__buffer = data*numpy.conjugate(data) |
|
1156 | 1156 | self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) |
|
1157 | 1157 | self.__profIndex = self.n |
|
1158 | 1158 | #print("spcch0",self.__buffer) |
|
1159 | 1159 | return |
|
1160 | 1160 | |
|
1161 | 1161 | def pushData(self): |
|
1162 | 1162 | |
|
1163 | 1163 | data_I = numpy.zeros((self.__nch,self.__nHeis)) |
|
1164 | 1164 | data_IV = numpy.zeros((self.__nch,self.__nHeis)) |
|
1165 | 1165 | |
|
1166 | 1166 | for i in range(self.__nch): |
|
1167 | 1167 | data_I[i,:] = numpy.sum(self.__buffer[i],axis=0)/self.n |
|
1168 | 1168 | data_IV[i,:] = numpy.sum(self.__bufferV[i],axis=0)/(self.n-1) |
|
1169 | 1169 | ##print("******") |
|
1170 | 1170 | #print("data_I",data_I[0]) |
|
1171 | 1171 | #print(self.__buffer.shape) |
|
1172 | 1172 | #a=numpy.average(self.__buffer,axis=1) |
|
1173 | 1173 | #print("average", a) |
|
1174 | 1174 | n = self.__profIndex |
|
1175 | 1175 | ####data_intensity = numpy.sum(numpy.sum(self.__buffer,axis=0),axis=0)/self.n |
|
1176 | 1176 | #print("data_intensity push data",data_intensity.shape) |
|
1177 | 1177 | #data_velocity = self.__buffer3/(self.n-1) |
|
1178 | 1178 | ####n = self.__profIndex |
|
1179 | 1179 | |
|
1180 | 1180 | self.__buffer = 0 |
|
1181 | 1181 | self.__buffer3 = 0 |
|
1182 | 1182 | self.__profIndex = 0 |
|
1183 | 1183 | |
|
1184 | 1184 | #return data_intensity,data_velocity,n |
|
1185 | 1185 | return data_I,data_IV,n |
|
1186 | 1186 | |
|
1187 | 1187 | def pulsePairbyProfiles(self,data): |
|
1188 | 1188 | self.__dataReady = False |
|
1189 | 1189 | data_intensity = None |
|
1190 | 1190 | data_velocity = None |
|
1191 | 1191 | |
|
1192 | 1192 | self.putData(data) |
|
1193 | 1193 | |
|
1194 | 1194 | if self.__profIndex == self.n: |
|
1195 | 1195 | #data_intensity,data_velocity,n = self.pushData() |
|
1196 | 1196 | data_intensity,data_velocity,n = self.pushData() |
|
1197 | 1197 | #print(data_intensity.shape) |
|
1198 | 1198 | #print("self.__profIndex2", self.__profIndex2) |
|
1199 | 1199 | if self.__profIndex2 == 0: |
|
1200 | 1200 | #print("PRIMERA VEZ") |
|
1201 | 1201 | #print("self.__buffer2",self.__buffer2) |
|
1202 | 1202 | for i in range(self.__nch): |
|
1203 | 1203 | self.__buffer2[i][self.__profIndex2] = data_intensity[i] |
|
1204 | 1204 | self.__bufferV2[i][self.__profIndex2] = data_velocity[i] |
|
1205 | 1205 | self.__profIndex2 += 1 |
|
1206 | 1206 | return None,None |
|
1207 | 1207 | |
|
1208 | 1208 | if self.__profIndex2 > 0: |
|
1209 | 1209 | for i in range(self.__nch): |
|
1210 | 1210 | self.__buffer2[i][self.__profIndex2] = data_intensity[i] |
|
1211 | 1211 | self.__bufferV2[i][self.__profIndex2] = data_velocity[i] |
|
1212 | 1212 | #print("Dentro del bucle",self.__buffer2) |
|
1213 | 1213 | self.__profIndex2 += 1 |
|
1214 | 1214 | if self.__profIndex2 == self.m : |
|
1215 | 1215 | data_i = self.__buffer2 |
|
1216 | 1216 | data_v = self.__bufferV2 |
|
1217 | 1217 | #print(data_i.shape) |
|
1218 | 1218 | self.__dataReady = True |
|
1219 | 1219 | self.__profIndex2 = 0 |
|
1220 | 1220 | self.__buffer2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) |
|
1221 | 1221 | self.__bufferV2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) |
|
1222 | 1222 | return data_i,data_v |
|
1223 | 1223 | return None,None |
|
1224 | 1224 | |
|
1225 | 1225 | def pulsePairOp(self,data,datatime=None): |
|
1226 | 1226 | if self.__initime == None: |
|
1227 | 1227 | self.__initime = datatime |
|
1228 | 1228 | |
|
1229 | 1229 | data_intensity,data_velocity = self.pulsePairbyProfiles(data) |
|
1230 | 1230 | self.__lastdatatime = datatime |
|
1231 | 1231 | |
|
1232 | 1232 | if data_intensity is None: |
|
1233 | 1233 | return None,None,None |
|
1234 | 1234 | |
|
1235 | 1235 | avgdatatime = self.__initime |
|
1236 | 1236 | self.__initime = datatime |
|
1237 | 1237 | |
|
1238 | 1238 | return data_intensity,data_velocity,avgdatatime |
|
1239 | 1239 | |
|
1240 | 1240 | def run(self,dataOut,n =None,m=None): |
|
1241 | 1241 | |
|
1242 | 1242 | if not self.isConfig: |
|
1243 | 1243 | self.setup(dataOut = dataOut, n = n, m = m) |
|
1244 | 1244 | self.isConfig = True |
|
1245 | 1245 | |
|
1246 | 1246 | data_intensity,data_velocity,avgdatatime = self.pulsePairOp(dataOut.data_wr,dataOut.utctime) |
|
1247 | 1247 | dataOut.flagNoData = True |
|
1248 | 1248 | |
|
1249 | 1249 | if self.__dataReady: |
|
1250 | 1250 | #print(" DATA " , data_intensity.shape) |
|
1251 | 1251 | #dataOut.data = numpy.array([data_intensity])#aqui amigo revisa |
|
1252 | 1252 | #tmp = numpy.zeros([1,data_intensity.shape[0],data_intensity.shape[1]]) |
|
1253 | 1253 | #tmp[0] = data_intensity |
|
1254 | 1254 | dataOut.data = data_intensity |
|
1255 | 1255 | dataOut.data_velocity = data_velocity |
|
1256 | 1256 | #dataOut.data = tmp |
|
1257 | 1257 | #print(" DATA " , dataOut.data.shape) |
|
1258 | 1258 | dataOut.nIncohInt *= self.n |
|
1259 | 1259 | dataOut.nProfiles = self.m |
|
1260 | 1260 | dataOut.nFFTPoints = self.m |
|
1261 | 1261 | #dataOut.data_intensity = data_intensity |
|
1262 | 1262 | dataOut.PRFbyAngle = self.n |
|
1263 | 1263 | dataOut.utctime = avgdatatime |
|
1264 | 1264 | dataOut.flagNoData = False |
|
1265 | 1265 | #####print("TIEMPO: ",dataOut.utctime) |
|
1266 | 1266 | return dataOut |
@@ -1,1623 +1,1431 | |||
|
1 | 1 | import sys |
|
2 |
import |
|
|
2 | import time | |
|
3 | import numpy,math | |
|
3 | 4 | from scipy import interpolate |
|
4 | 5 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
5 | 6 | from schainpy.model.data.jrodata import Voltage |
|
6 | 7 | from schainpy.utils import log |
|
7 | 8 | from time import time |
|
8 | 9 | |
|
9 | 10 | |
|
10 | 11 | @MPDecorator |
|
11 | 12 | class VoltageProc(ProcessingUnit): |
|
12 | 13 | |
|
13 | 14 | def __init__(self): |
|
14 | 15 | |
|
15 | 16 | ProcessingUnit.__init__(self) |
|
16 | 17 | |
|
17 | 18 | self.dataOut = Voltage() |
|
18 | 19 | self.flip = 1 |
|
19 | 20 | self.setupReq = False |
|
20 | 21 | |
|
21 | 22 | def run(self): |
|
22 | 23 | |
|
23 | 24 | if self.dataIn.type == 'AMISR': |
|
24 | 25 | self.__updateObjFromAmisrInput() |
|
25 | 26 | |
|
26 | 27 | if self.dataIn.type == 'Voltage': |
|
27 | 28 | self.dataOut.copy(self.dataIn) |
|
28 | 29 | |
|
29 | 30 | # self.dataOut.copy(self.dataIn) |
|
30 | 31 | |
|
31 | 32 | def __updateObjFromAmisrInput(self): |
|
32 | 33 | |
|
33 | 34 | self.dataOut.timeZone = self.dataIn.timeZone |
|
34 | 35 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
35 | 36 | self.dataOut.errorCount = self.dataIn.errorCount |
|
36 | 37 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
37 | 38 | |
|
38 | 39 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
39 | 40 | self.dataOut.data = self.dataIn.data |
|
40 | 41 | self.dataOut.utctime = self.dataIn.utctime |
|
41 | 42 | self.dataOut.channelList = self.dataIn.channelList |
|
42 | 43 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
43 | 44 | self.dataOut.heightList = self.dataIn.heightList |
|
44 | 45 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
45 | 46 | |
|
46 | 47 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
47 | 48 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
48 | 49 | self.dataOut.frequency = self.dataIn.frequency |
|
49 | 50 | |
|
50 | 51 | self.dataOut.azimuth = self.dataIn.azimuth |
|
51 | 52 | self.dataOut.zenith = self.dataIn.zenith |
|
52 | 53 | |
|
53 | 54 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
54 | 55 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
55 | 56 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
56 | 57 | # |
|
57 | 58 | # pass# |
|
58 | 59 | # |
|
59 | 60 | # def init(self): |
|
60 | 61 | # |
|
61 | 62 | # |
|
62 | 63 | # if self.dataIn.type == 'AMISR': |
|
63 | 64 | # self.__updateObjFromAmisrInput() |
|
64 | 65 | # |
|
65 | 66 | # if self.dataIn.type == 'Voltage': |
|
66 | 67 | # self.dataOut.copy(self.dataIn) |
|
67 | 68 | # # No necesita copiar en cada init() los atributos de dataIn |
|
68 | 69 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
69 | 70 | |
|
70 | 71 | def selectChannels(self, channelList): |
|
71 | 72 | |
|
72 | 73 | channelIndexList = [] |
|
73 | 74 | |
|
74 | 75 | for channel in channelList: |
|
75 | 76 | if channel not in self.dataOut.channelList: |
|
76 | 77 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
77 | 78 | |
|
78 | 79 | index = self.dataOut.channelList.index(channel) |
|
79 | 80 | channelIndexList.append(index) |
|
80 | 81 | |
|
81 | 82 | self.selectChannelsByIndex(channelIndexList) |
|
82 | 83 | |
|
83 | 84 | def selectChannelsByIndex(self, channelIndexList): |
|
84 | 85 | """ |
|
85 | 86 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
86 | 87 | |
|
87 | 88 | Input: |
|
88 | 89 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
89 | 90 | |
|
90 | 91 | Affected: |
|
91 | 92 | self.dataOut.data |
|
92 | 93 | self.dataOut.channelIndexList |
|
93 | 94 | self.dataOut.nChannels |
|
94 | 95 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
95 | 96 | self.dataOut.systemHeaderObj.numChannels |
|
96 | 97 | self.dataOut.m_ProcessingHeader.blockSize |
|
97 | 98 | |
|
98 | 99 | Return: |
|
99 | 100 | None |
|
100 | 101 | """ |
|
101 | 102 | |
|
102 | 103 | for channelIndex in channelIndexList: |
|
103 | 104 | if channelIndex not in self.dataOut.channelIndexList: |
|
104 | 105 | print(channelIndexList) |
|
105 | 106 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
106 | 107 | |
|
107 | 108 | if self.dataOut.flagDataAsBlock: |
|
108 | 109 | """ |
|
109 | 110 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
110 | 111 | """ |
|
111 | 112 | data = self.dataOut.data[channelIndexList,:,:] |
|
112 | 113 | else: |
|
113 | 114 | data = self.dataOut.data[channelIndexList,:] |
|
114 | 115 | |
|
115 | 116 | self.dataOut.data = data |
|
116 | 117 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
117 | 118 | self.dataOut.channelList = range(len(channelIndexList)) |
|
118 | 119 | |
|
119 | 120 | return 1 |
|
120 | 121 | |
|
121 | 122 | def selectHeights(self, minHei=None, maxHei=None): |
|
122 | 123 | """ |
|
123 | 124 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
124 | 125 | minHei <= height <= maxHei |
|
125 | 126 | |
|
126 | 127 | Input: |
|
127 | 128 | minHei : valor minimo de altura a considerar |
|
128 | 129 | maxHei : valor maximo de altura a considerar |
|
129 | 130 | |
|
130 | 131 | Affected: |
|
131 | 132 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
132 | 133 | |
|
133 | 134 | Return: |
|
134 | 135 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
135 | 136 | """ |
|
136 | 137 | |
|
137 | 138 | if minHei == None: |
|
138 | 139 | minHei = self.dataOut.heightList[0] |
|
139 | 140 | |
|
140 | 141 | if maxHei == None: |
|
141 | 142 | maxHei = self.dataOut.heightList[-1] |
|
142 | 143 | |
|
143 | 144 | if (minHei < self.dataOut.heightList[0]): |
|
144 | 145 | minHei = self.dataOut.heightList[0] |
|
145 | 146 | |
|
146 | 147 | if (maxHei > self.dataOut.heightList[-1]): |
|
147 | 148 | maxHei = self.dataOut.heightList[-1] |
|
148 | 149 | |
|
149 | 150 | minIndex = 0 |
|
150 | 151 | maxIndex = 0 |
|
151 | 152 | heights = self.dataOut.heightList |
|
152 | 153 | |
|
153 | 154 | inda = numpy.where(heights >= minHei) |
|
154 | 155 | indb = numpy.where(heights <= maxHei) |
|
155 | 156 | |
|
156 | 157 | try: |
|
157 | 158 | minIndex = inda[0][0] |
|
158 | 159 | except: |
|
159 | 160 | minIndex = 0 |
|
160 | 161 | |
|
161 | 162 | try: |
|
162 | 163 | maxIndex = indb[0][-1] |
|
163 | 164 | except: |
|
164 | 165 | maxIndex = len(heights) |
|
165 | 166 | |
|
166 | 167 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
167 | 168 | |
|
168 | 169 | return 1 |
|
169 | 170 | |
|
170 | 171 | |
|
171 | 172 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
172 | 173 | """ |
|
173 | 174 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
174 | 175 | minIndex <= index <= maxIndex |
|
175 | 176 | |
|
176 | 177 | Input: |
|
177 | 178 | minIndex : valor de indice minimo de altura a considerar |
|
178 | 179 | maxIndex : valor de indice maximo de altura a considerar |
|
179 | 180 | |
|
180 | 181 | Affected: |
|
181 | 182 | self.dataOut.data |
|
182 | 183 | self.dataOut.heightList |
|
183 | 184 | |
|
184 | 185 | Return: |
|
185 | 186 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
186 | 187 | """ |
|
187 | 188 | |
|
188 | 189 | if (minIndex < 0) or (minIndex > maxIndex): |
|
189 | 190 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
190 | 191 | |
|
191 | 192 | if (maxIndex >= self.dataOut.nHeights): |
|
192 | 193 | maxIndex = self.dataOut.nHeights |
|
193 | 194 | |
|
194 | 195 | #voltage |
|
195 | 196 | if self.dataOut.flagDataAsBlock: |
|
196 | 197 | """ |
|
197 | 198 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
198 | 199 | """ |
|
199 | 200 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
200 | 201 | else: |
|
201 | 202 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
202 | 203 | |
|
203 | 204 | # firstHeight = self.dataOut.heightList[minIndex] |
|
204 | 205 | |
|
205 | 206 | self.dataOut.data = data |
|
206 | 207 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
207 | 208 | |
|
208 | 209 | if self.dataOut.nHeights <= 1: |
|
209 | 210 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
210 | 211 | |
|
211 | 212 | return 1 |
|
212 | 213 | |
|
213 | 214 | |
|
214 | 215 | def filterByHeights(self, window): |
|
215 | 216 | |
|
216 | 217 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
217 | 218 | |
|
218 | 219 | if window == None: |
|
219 | 220 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
220 | 221 | |
|
221 | 222 | newdelta = deltaHeight * window |
|
222 | 223 | r = self.dataOut.nHeights % window |
|
223 | 224 | newheights = (self.dataOut.nHeights-r)/window |
|
224 | 225 | |
|
225 | 226 | if newheights <= 1: |
|
226 | 227 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window)) |
|
227 | 228 | |
|
228 | 229 | if self.dataOut.flagDataAsBlock: |
|
229 | 230 | """ |
|
230 | 231 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
231 | 232 | """ |
|
232 | 233 | buffer = self.dataOut.data[:, :, 0:int(self.dataOut.nHeights-r)] |
|
233 | 234 | buffer = buffer.reshape(self.dataOut.nChannels, self.dataOut.nProfiles, int(self.dataOut.nHeights/window), window) |
|
234 | 235 | buffer = numpy.sum(buffer,3) |
|
235 | 236 | |
|
236 | 237 | else: |
|
237 | 238 | buffer = self.dataOut.data[:,0:int(self.dataOut.nHeights-r)] |
|
238 | 239 | buffer = buffer.reshape(self.dataOut.nChannels,int(self.dataOut.nHeights/window),int(window)) |
|
239 | 240 | buffer = numpy.sum(buffer,2) |
|
240 | 241 | |
|
241 | 242 | self.dataOut.data = buffer |
|
242 | 243 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
243 | 244 | self.dataOut.windowOfFilter = window |
|
244 | 245 | |
|
245 | 246 | def setH0(self, h0, deltaHeight = None): |
|
246 | 247 | |
|
247 | 248 | if not deltaHeight: |
|
248 | 249 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
249 | 250 | |
|
250 | 251 | nHeights = self.dataOut.nHeights |
|
251 | 252 | |
|
252 | 253 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
253 | 254 | |
|
254 | 255 | self.dataOut.heightList = newHeiRange |
|
255 | 256 | |
|
256 | 257 | def deFlip(self, channelList = []): |
|
257 | 258 | |
|
258 | 259 | data = self.dataOut.data.copy() |
|
259 | 260 | |
|
260 | 261 | if self.dataOut.flagDataAsBlock: |
|
261 | 262 | flip = self.flip |
|
262 | 263 | profileList = list(range(self.dataOut.nProfiles)) |
|
263 | 264 | |
|
264 | 265 | if not channelList: |
|
265 | 266 | for thisProfile in profileList: |
|
266 | 267 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
267 | 268 | flip *= -1.0 |
|
268 | 269 | else: |
|
269 | 270 | for thisChannel in channelList: |
|
270 | 271 | if thisChannel not in self.dataOut.channelList: |
|
271 | 272 | continue |
|
272 | 273 | |
|
273 | 274 | for thisProfile in profileList: |
|
274 | 275 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
275 | 276 | flip *= -1.0 |
|
276 | 277 | |
|
277 | 278 | self.flip = flip |
|
278 | 279 | |
|
279 | 280 | else: |
|
280 | 281 | if not channelList: |
|
281 | 282 | data[:,:] = data[:,:]*self.flip |
|
282 | 283 | else: |
|
283 | 284 | for thisChannel in channelList: |
|
284 | 285 | if thisChannel not in self.dataOut.channelList: |
|
285 | 286 | continue |
|
286 | 287 | |
|
287 | 288 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
288 | 289 | |
|
289 | 290 | self.flip *= -1. |
|
290 | 291 | |
|
291 | 292 | self.dataOut.data = data |
|
292 | 293 | |
|
293 | 294 | def setRadarFrequency(self, frequency=None): |
|
294 | 295 | |
|
295 | 296 | if frequency != None: |
|
296 | 297 | self.dataOut.frequency = frequency |
|
297 | 298 | |
|
298 | 299 | return 1 |
|
299 | 300 | |
|
300 | 301 | def interpolateHeights(self, topLim, botLim): |
|
301 | 302 | #69 al 72 para julia |
|
302 | 303 | #82-84 para meteoros |
|
303 | 304 | if len(numpy.shape(self.dataOut.data))==2: |
|
304 | 305 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
305 | 306 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
306 | 307 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
307 | 308 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
308 | 309 | else: |
|
309 | 310 | nHeights = self.dataOut.data.shape[2] |
|
310 | 311 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
311 | 312 | y = self.dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
312 | 313 | f = interpolate.interp1d(x, y, axis = 2) |
|
313 | 314 | xnew = numpy.arange(botLim,topLim+1) |
|
314 | 315 | ynew = f(xnew) |
|
315 | 316 | |
|
316 | 317 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
317 | 318 | |
|
318 | 319 | # import collections |
|
319 | 320 | |
|
320 | 321 | class CohInt(Operation): |
|
321 | 322 | |
|
322 | 323 | isConfig = False |
|
323 | 324 | __profIndex = 0 |
|
324 | 325 | __byTime = False |
|
325 | 326 | __initime = None |
|
326 | 327 | __lastdatatime = None |
|
327 | 328 | __integrationtime = None |
|
328 | 329 | __buffer = None |
|
329 | 330 | __bufferStride = [] |
|
330 | 331 | __dataReady = False |
|
331 | 332 | __profIndexStride = 0 |
|
332 | 333 | __dataToPutStride = False |
|
333 | 334 | n = None |
|
334 | 335 | |
|
335 | 336 | def __init__(self, **kwargs): |
|
336 | 337 | |
|
337 | 338 | Operation.__init__(self, **kwargs) |
|
338 | 339 | |
|
339 | 340 | # self.isConfig = False |
|
340 | 341 | |
|
341 | 342 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
342 | 343 | """ |
|
343 | 344 | Set the parameters of the integration class. |
|
344 | 345 | |
|
345 | 346 | Inputs: |
|
346 | 347 | |
|
347 | 348 | n : Number of coherent integrations |
|
348 | 349 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
349 | 350 | overlapping : |
|
350 | 351 | """ |
|
351 | 352 | |
|
352 | 353 | self.__initime = None |
|
353 | 354 | self.__lastdatatime = 0 |
|
354 | 355 | self.__buffer = None |
|
355 | 356 | self.__dataReady = False |
|
356 | 357 | self.byblock = byblock |
|
357 | 358 | self.stride = stride |
|
358 | 359 | |
|
359 | 360 | if n == None and timeInterval == None: |
|
360 | 361 | raise ValueError("n or timeInterval should be specified ...") |
|
361 | 362 | |
|
362 | 363 | if n != None: |
|
363 | 364 | self.n = n |
|
364 | 365 | self.__byTime = False |
|
365 | 366 | else: |
|
366 | 367 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
367 | 368 | self.n = 9999 |
|
368 | 369 | self.__byTime = True |
|
369 | 370 | |
|
370 | 371 | if overlapping: |
|
371 | 372 | self.__withOverlapping = True |
|
372 | 373 | self.__buffer = None |
|
373 | 374 | else: |
|
374 | 375 | self.__withOverlapping = False |
|
375 | 376 | self.__buffer = 0 |
|
376 | 377 | |
|
377 | 378 | self.__profIndex = 0 |
|
378 | 379 | |
|
379 | 380 | def putData(self, data): |
|
380 | 381 | |
|
381 | 382 | """ |
|
382 | 383 | Add a profile to the __buffer and increase in one the __profileIndex |
|
383 | 384 | |
|
384 | 385 | """ |
|
385 | 386 | |
|
386 | 387 | if not self.__withOverlapping: |
|
387 | print("inside over") | |
|
388 | #print("inside over") | |
|
388 | 389 | self.__buffer += data.copy() |
|
389 | 390 | self.__profIndex += 1 |
|
390 | 391 | return |
|
391 | 392 | |
|
392 | 393 | #Overlapping data |
|
393 | 394 | nChannels, nHeis = data.shape |
|
394 | print("show me the light",data.shape) | |
|
395 | #print("show me the light",data.shape) | |
|
395 | 396 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
396 | print(data.shape) | |
|
397 | #print(data.shape) | |
|
397 | 398 | #If the buffer is empty then it takes the data value |
|
398 | 399 | if self.__buffer is None: |
|
399 | 400 | self.__buffer = data |
|
400 | 401 | self.__profIndex += 1 |
|
401 | 402 | return |
|
402 | 403 | |
|
403 | 404 | #If the buffer length is lower than n then stakcing the data value |
|
404 | 405 | if self.__profIndex < self.n: |
|
405 | 406 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
406 | 407 | self.__profIndex += 1 |
|
407 | 408 | return |
|
408 | 409 | |
|
409 | 410 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
410 | 411 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
411 | 412 | self.__buffer[self.n-1] = data |
|
412 | 413 | self.__profIndex = self.n |
|
413 | 414 | return |
|
414 | 415 | |
|
415 | 416 | |
|
416 | 417 | def pushData(self): |
|
417 | 418 | """ |
|
418 | 419 | Return the sum of the last profiles and the profiles used in the sum. |
|
419 | 420 | |
|
420 | 421 | Affected: |
|
421 | 422 | |
|
422 | 423 | self.__profileIndex |
|
423 | 424 | |
|
424 | 425 | """ |
|
425 | 426 | |
|
426 | 427 | if not self.__withOverlapping: |
|
427 |
|
|
|
428 | print("ahora que fue") | |
|
428 | 429 | data = self.__buffer |
|
429 | 430 | n = self.__profIndex |
|
430 | 431 | |
|
431 | 432 | self.__buffer = 0 |
|
432 | 433 | self.__profIndex = 0 |
|
433 | 434 | |
|
434 | 435 | return data, n |
|
435 | 436 | |
|
436 | 437 | #print("cual funciona") |
|
437 | 438 | #Integration with Overlapping |
|
438 | 439 | data = numpy.sum(self.__buffer, axis=0) |
|
439 | 440 | # print data |
|
440 | 441 | # raise |
|
441 | 442 | n = self.__profIndex |
|
442 | 443 | |
|
443 | 444 | return data, n |
|
444 | 445 | |
|
445 | 446 | def byProfiles(self, data): |
|
446 | 447 | |
|
447 | 448 | self.__dataReady = False |
|
448 | 449 | avgdata = None |
|
449 | 450 | # n = None |
|
450 | 451 | # print data |
|
451 | 452 | # raise |
|
452 | 453 | #print("beforeputdata") |
|
453 | 454 | self.putData(data) |
|
454 | 455 | |
|
455 | 456 | if self.__profIndex == self.n: |
|
456 | 457 | avgdata, n = self.pushData() |
|
457 | 458 | self.__dataReady = True |
|
458 | 459 | |
|
459 | 460 | return avgdata |
|
460 | 461 | |
|
461 | 462 | def byTime(self, data, datatime): |
|
462 | 463 | |
|
463 | 464 | self.__dataReady = False |
|
464 | 465 | avgdata = None |
|
465 | 466 | n = None |
|
466 | 467 | |
|
467 | 468 | self.putData(data) |
|
468 | 469 | |
|
469 | 470 | if (datatime - self.__initime) >= self.__integrationtime: |
|
470 | 471 | avgdata, n = self.pushData() |
|
471 | 472 | self.n = n |
|
472 | 473 | self.__dataReady = True |
|
473 | 474 | |
|
474 | 475 | return avgdata |
|
475 | 476 | |
|
476 | 477 | def integrateByStride(self, data, datatime): |
|
477 | 478 | # print data |
|
478 | 479 | if self.__profIndex == 0: |
|
479 | 480 | self.__buffer = [[data.copy(), datatime]] |
|
480 | 481 | else: |
|
481 | 482 | self.__buffer.append([data.copy(),datatime]) |
|
482 | 483 | self.__profIndex += 1 |
|
483 | 484 | self.__dataReady = False |
|
484 | 485 | |
|
485 | 486 | if self.__profIndex == self.n * self.stride : |
|
486 | 487 | self.__dataToPutStride = True |
|
487 | 488 | self.__profIndexStride = 0 |
|
488 | 489 | self.__profIndex = 0 |
|
489 | 490 | self.__bufferStride = [] |
|
490 | 491 | for i in range(self.stride): |
|
491 | 492 | current = self.__buffer[i::self.stride] |
|
492 | 493 | data = numpy.sum([t[0] for t in current], axis=0) |
|
493 | 494 | avgdatatime = numpy.average([t[1] for t in current]) |
|
494 | 495 | # print data |
|
495 | 496 | self.__bufferStride.append((data, avgdatatime)) |
|
496 | 497 | |
|
497 | 498 | if self.__dataToPutStride: |
|
498 | 499 | self.__dataReady = True |
|
499 | 500 | self.__profIndexStride += 1 |
|
500 | 501 | if self.__profIndexStride == self.stride: |
|
501 | 502 | self.__dataToPutStride = False |
|
502 | 503 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
503 | 504 | # raise |
|
504 | 505 | return self.__bufferStride[self.__profIndexStride - 1] |
|
505 | 506 | |
|
506 | 507 | |
|
507 | 508 | return None, None |
|
508 | 509 | |
|
509 | 510 | def integrate(self, data, datatime=None): |
|
510 | 511 | |
|
511 | 512 | if self.__initime == None: |
|
512 | 513 | self.__initime = datatime |
|
513 | 514 | |
|
514 | 515 | if self.__byTime: |
|
515 | 516 | avgdata = self.byTime(data, datatime) |
|
516 | 517 | else: |
|
517 | 518 | avgdata = self.byProfiles(data) |
|
518 | 519 | |
|
519 | 520 | |
|
520 | 521 | self.__lastdatatime = datatime |
|
521 | 522 | |
|
522 | 523 | if avgdata is None: |
|
523 | 524 | return None, None |
|
524 | 525 | |
|
525 | 526 | avgdatatime = self.__initime |
|
526 | 527 | |
|
527 | 528 | deltatime = datatime - self.__lastdatatime |
|
528 | 529 | |
|
529 | 530 | if not self.__withOverlapping: |
|
530 | 531 | self.__initime = datatime |
|
531 | 532 | else: |
|
532 | 533 | self.__initime += deltatime |
|
533 | 534 | |
|
534 | 535 | return avgdata, avgdatatime |
|
535 | 536 | |
|
536 | 537 | def integrateByBlock(self, dataOut): |
|
537 | 538 | |
|
538 | 539 | times = int(dataOut.data.shape[1]/self.n) |
|
539 | 540 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
540 | 541 | |
|
541 | 542 | id_min = 0 |
|
542 | 543 | id_max = self.n |
|
543 | 544 | |
|
544 | 545 | for i in range(times): |
|
545 | 546 | junk = dataOut.data[:,id_min:id_max,:] |
|
546 | 547 | avgdata[:,i,:] = junk.sum(axis=1) |
|
547 | 548 | id_min += self.n |
|
548 | 549 | id_max += self.n |
|
549 | 550 | |
|
550 | 551 | timeInterval = dataOut.ippSeconds*self.n |
|
551 | 552 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
552 | 553 | self.__dataReady = True |
|
553 | 554 | return avgdata, avgdatatime |
|
554 | 555 | |
|
555 | 556 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
556 | 557 | |
|
557 | 558 | if not self.isConfig: |
|
558 | 559 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
559 | 560 | self.isConfig = True |
|
560 | 561 | |
|
561 | 562 | if dataOut.flagDataAsBlock: |
|
562 | 563 | """ |
|
563 | 564 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
564 | 565 | """ |
|
565 | 566 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
566 | 567 | dataOut.nProfiles /= self.n |
|
567 | 568 | else: |
|
568 | 569 | if stride is None: |
|
569 | 570 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
570 | 571 | else: |
|
571 | 572 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
572 | 573 | |
|
573 | 574 | |
|
574 | 575 | # dataOut.timeInterval *= n |
|
575 | 576 | dataOut.flagNoData = True |
|
576 | 577 | |
|
577 | 578 | if self.__dataReady: |
|
578 | 579 | dataOut.data = avgdata |
|
579 | 580 | dataOut.nCohInt *= self.n |
|
580 | 581 | dataOut.utctime = avgdatatime |
|
581 | 582 | # print avgdata, avgdatatime |
|
582 | 583 | # raise |
|
583 | 584 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
584 | 585 | dataOut.flagNoData = False |
|
585 | 586 | return dataOut |
|
586 | 587 | |
|
587 | 588 | class Decoder(Operation): |
|
588 | 589 | |
|
589 | 590 | isConfig = False |
|
590 | 591 | __profIndex = 0 |
|
591 | 592 | |
|
592 | 593 | code = None |
|
593 | 594 | |
|
594 | 595 | nCode = None |
|
595 | 596 | nBaud = None |
|
596 | 597 | |
|
597 | 598 | def __init__(self, **kwargs): |
|
598 | 599 | |
|
599 | 600 | Operation.__init__(self, **kwargs) |
|
600 | 601 | |
|
601 | 602 | self.times = None |
|
602 | 603 | self.osamp = None |
|
603 | 604 | # self.__setValues = False |
|
604 | 605 | self.isConfig = False |
|
605 | 606 | self.setupReq = False |
|
606 | 607 | def setup(self, code, osamp, dataOut): |
|
607 | 608 | |
|
608 | 609 | self.__profIndex = 0 |
|
609 | 610 | |
|
610 | 611 | self.code = code |
|
611 | 612 | |
|
612 | 613 | self.nCode = len(code) |
|
613 | 614 | self.nBaud = len(code[0]) |
|
614 | 615 | |
|
615 | 616 | if (osamp != None) and (osamp >1): |
|
616 | 617 | self.osamp = osamp |
|
617 | 618 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
618 | 619 | self.nBaud = self.nBaud*self.osamp |
|
619 | 620 | |
|
620 | 621 | self.__nChannels = dataOut.nChannels |
|
621 | 622 | self.__nProfiles = dataOut.nProfiles |
|
622 | 623 | self.__nHeis = dataOut.nHeights |
|
623 | 624 | |
|
624 | 625 | if self.__nHeis < self.nBaud: |
|
625 | 626 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
626 | 627 | |
|
627 | 628 | #Frequency |
|
628 | 629 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
629 | 630 | |
|
630 | 631 | __codeBuffer[:,0:self.nBaud] = self.code |
|
631 | 632 | |
|
632 | 633 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
633 | 634 | |
|
634 | 635 | if dataOut.flagDataAsBlock: |
|
635 | 636 | |
|
636 | 637 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
637 | 638 | |
|
638 | 639 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
639 | 640 | |
|
640 | 641 | else: |
|
641 | 642 | |
|
642 | 643 | #Time |
|
643 | 644 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
644 | 645 | |
|
645 | 646 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
646 | 647 | |
|
647 | 648 | def __convolutionInFreq(self, data): |
|
648 | 649 | |
|
649 | 650 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
650 | 651 | |
|
651 | 652 | fft_data = numpy.fft.fft(data, axis=1) |
|
652 | 653 | |
|
653 | 654 | conv = fft_data*fft_code |
|
654 | 655 | |
|
655 | 656 | data = numpy.fft.ifft(conv,axis=1) |
|
656 | 657 | |
|
657 | 658 | return data |
|
658 | 659 | |
|
659 | 660 | def __convolutionInFreqOpt(self, data): |
|
660 | 661 | |
|
661 | 662 | raise NotImplementedError |
|
662 | 663 | |
|
663 | 664 | def __convolutionInTime(self, data): |
|
664 | 665 | |
|
665 | 666 | code = self.code[self.__profIndex] |
|
666 | 667 | for i in range(self.__nChannels): |
|
667 | 668 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
668 | 669 | |
|
669 | 670 | return self.datadecTime |
|
670 | 671 | |
|
671 | 672 | def __convolutionByBlockInTime(self, data): |
|
672 | 673 | |
|
673 | 674 | repetitions = int(self.__nProfiles / self.nCode) |
|
674 | 675 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
675 | 676 | junk = junk.flatten() |
|
676 | 677 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
677 | 678 | profilesList = range(self.__nProfiles) |
|
678 | 679 | |
|
679 | 680 | for i in range(self.__nChannels): |
|
680 | 681 | for j in profilesList: |
|
681 | 682 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
682 | 683 | return self.datadecTime |
|
683 | 684 | |
|
684 | 685 | def __convolutionByBlockInFreq(self, data): |
|
685 | 686 | |
|
686 | 687 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
687 | 688 | |
|
688 | 689 | |
|
689 | 690 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
690 | 691 | |
|
691 | 692 | fft_data = numpy.fft.fft(data, axis=2) |
|
692 | 693 | |
|
693 | 694 | conv = fft_data*fft_code |
|
694 | 695 | |
|
695 | 696 | data = numpy.fft.ifft(conv,axis=2) |
|
696 | 697 | |
|
697 | 698 | return data |
|
698 | 699 | |
|
699 | 700 | |
|
700 | 701 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
701 | 702 | |
|
702 | 703 | if dataOut.flagDecodeData: |
|
703 | 704 | print("This data is already decoded, recoding again ...") |
|
704 | 705 | |
|
705 | 706 | if not self.isConfig: |
|
706 | 707 | |
|
707 | 708 | if code is None: |
|
708 | 709 | if dataOut.code is None: |
|
709 | 710 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
710 | 711 | |
|
711 | 712 | code = dataOut.code |
|
712 | 713 | else: |
|
713 | 714 | code = numpy.array(code).reshape(nCode,nBaud) |
|
714 | 715 | self.setup(code, osamp, dataOut) |
|
715 | 716 | |
|
716 | 717 | self.isConfig = True |
|
717 | 718 | |
|
718 | 719 | if mode == 3: |
|
719 | 720 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
720 | 721 | |
|
721 | 722 | if times != None: |
|
722 | 723 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
723 | 724 | |
|
724 | 725 | if self.code is None: |
|
725 | 726 | print("Fail decoding: Code is not defined.") |
|
726 | 727 | return |
|
727 | 728 | |
|
728 | 729 | self.__nProfiles = dataOut.nProfiles |
|
729 | 730 | datadec = None |
|
730 | 731 | |
|
731 | 732 | if mode == 3: |
|
732 | 733 | mode = 0 |
|
733 | 734 | |
|
734 | 735 | if dataOut.flagDataAsBlock: |
|
735 | 736 | """ |
|
736 | 737 | Decoding when data have been read as block, |
|
737 | 738 | """ |
|
738 | 739 | |
|
739 | 740 | if mode == 0: |
|
740 | 741 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
741 | 742 | if mode == 1: |
|
742 | 743 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
743 | 744 | else: |
|
744 | 745 | """ |
|
745 | 746 | Decoding when data have been read profile by profile |
|
746 | 747 | """ |
|
747 | 748 | if mode == 0: |
|
748 | 749 | datadec = self.__convolutionInTime(dataOut.data) |
|
749 | 750 | |
|
750 | 751 | if mode == 1: |
|
751 | 752 | datadec = self.__convolutionInFreq(dataOut.data) |
|
752 | 753 | |
|
753 | 754 | if mode == 2: |
|
754 | 755 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
755 | 756 | |
|
756 | 757 | if datadec is None: |
|
757 | 758 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
758 | 759 | |
|
759 | 760 | dataOut.code = self.code |
|
760 | 761 | dataOut.nCode = self.nCode |
|
761 | 762 | dataOut.nBaud = self.nBaud |
|
762 | 763 | |
|
763 | 764 | dataOut.data = datadec |
|
764 | 765 | |
|
765 | 766 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
766 | 767 | |
|
767 | 768 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
768 | 769 | |
|
769 | 770 | if self.__profIndex == self.nCode-1: |
|
770 | 771 | self.__profIndex = 0 |
|
771 | 772 | return dataOut |
|
772 | 773 | |
|
773 | 774 | self.__profIndex += 1 |
|
774 | 775 | |
|
775 | 776 | return dataOut |
|
776 | 777 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
777 | 778 | |
|
778 | 779 | |
|
779 | 780 | class ProfileConcat(Operation): |
|
780 | 781 | |
|
781 | 782 | isConfig = False |
|
782 | 783 | buffer = None |
|
783 | 784 | |
|
784 | 785 | def __init__(self, **kwargs): |
|
785 | 786 | |
|
786 | 787 | Operation.__init__(self, **kwargs) |
|
787 | 788 | self.profileIndex = 0 |
|
788 | 789 | |
|
789 | 790 | def reset(self): |
|
790 | 791 | self.buffer = numpy.zeros_like(self.buffer) |
|
791 | 792 | self.start_index = 0 |
|
792 | 793 | self.times = 1 |
|
793 | 794 | |
|
794 | 795 | def setup(self, data, m, n=1): |
|
795 | 796 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
796 | 797 | self.nHeights = data.shape[1]#.nHeights |
|
797 | 798 | self.start_index = 0 |
|
798 | 799 | self.times = 1 |
|
799 | 800 | |
|
800 | 801 | def concat(self, data): |
|
801 | 802 | |
|
802 | 803 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
803 | 804 | self.start_index = self.start_index + self.nHeights |
|
804 | 805 | |
|
805 | 806 | def run(self, dataOut, m): |
|
806 | 807 | dataOut.flagNoData = True |
|
807 | 808 | |
|
808 | 809 | if not self.isConfig: |
|
809 | 810 | self.setup(dataOut.data, m, 1) |
|
810 | 811 | self.isConfig = True |
|
811 | 812 | |
|
812 | 813 | if dataOut.flagDataAsBlock: |
|
813 | 814 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
814 | 815 | |
|
815 | 816 | else: |
|
816 | 817 | self.concat(dataOut.data) |
|
817 | 818 | self.times += 1 |
|
818 | 819 | if self.times > m: |
|
819 | 820 | dataOut.data = self.buffer |
|
820 | 821 | self.reset() |
|
821 | 822 | dataOut.flagNoData = False |
|
822 | 823 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
823 | 824 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
824 | 825 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
825 | 826 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
826 | 827 | dataOut.ippSeconds *= m |
|
827 | 828 | return dataOut |
|
828 | 829 | |
|
829 | 830 | class ProfileSelector(Operation): |
|
830 | 831 | |
|
831 | 832 | profileIndex = None |
|
832 | 833 | # Tamanho total de los perfiles |
|
833 | 834 | nProfiles = None |
|
834 | 835 | |
|
835 | 836 | def __init__(self, **kwargs): |
|
836 | 837 | |
|
837 | 838 | Operation.__init__(self, **kwargs) |
|
838 | 839 | self.profileIndex = 0 |
|
839 | 840 | |
|
840 | 841 | def incProfileIndex(self): |
|
841 | 842 | |
|
842 | 843 | self.profileIndex += 1 |
|
843 | 844 | |
|
844 | 845 | if self.profileIndex >= self.nProfiles: |
|
845 | 846 | self.profileIndex = 0 |
|
846 | 847 | |
|
847 | 848 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
848 | 849 | |
|
849 | 850 | if profileIndex < minIndex: |
|
850 | 851 | return False |
|
851 | 852 | |
|
852 | 853 | if profileIndex > maxIndex: |
|
853 | 854 | return False |
|
854 | 855 | |
|
855 | 856 | return True |
|
856 | 857 | |
|
857 | 858 | def isThisProfileInList(self, profileIndex, profileList): |
|
858 | 859 | |
|
859 | 860 | if profileIndex not in profileList: |
|
860 | 861 | return False |
|
861 | 862 | |
|
862 | 863 | return True |
|
863 | 864 | |
|
864 | 865 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
865 | 866 | |
|
866 | 867 | """ |
|
867 | 868 | ProfileSelector: |
|
868 | 869 | |
|
869 | 870 | Inputs: |
|
870 | 871 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
871 | 872 | |
|
872 | 873 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
873 | 874 | |
|
874 | 875 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
875 | 876 | |
|
876 | 877 | """ |
|
877 | 878 | |
|
878 | 879 | if rangeList is not None: |
|
879 | 880 | if type(rangeList[0]) not in (tuple, list): |
|
880 | 881 | rangeList = [rangeList] |
|
881 | 882 | |
|
882 | 883 | dataOut.flagNoData = True |
|
883 | 884 | |
|
884 | 885 | if dataOut.flagDataAsBlock: |
|
885 | 886 | """ |
|
886 | 887 | data dimension = [nChannels, nProfiles, nHeis] |
|
887 | 888 | """ |
|
888 | 889 | if profileList != None: |
|
889 | 890 | dataOut.data = dataOut.data[:,profileList,:] |
|
890 | 891 | |
|
891 | 892 | if profileRangeList != None: |
|
892 | 893 | minIndex = profileRangeList[0] |
|
893 | 894 | maxIndex = profileRangeList[1] |
|
894 | 895 | profileList = list(range(minIndex, maxIndex+1)) |
|
895 | 896 | |
|
896 | 897 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
897 | 898 | |
|
898 | 899 | if rangeList != None: |
|
899 | 900 | |
|
900 | 901 | profileList = [] |
|
901 | 902 | |
|
902 | 903 | for thisRange in rangeList: |
|
903 | 904 | minIndex = thisRange[0] |
|
904 | 905 | maxIndex = thisRange[1] |
|
905 | 906 | |
|
906 | 907 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
907 | 908 | |
|
908 | 909 | dataOut.data = dataOut.data[:,profileList,:] |
|
909 | 910 | |
|
910 | 911 | dataOut.nProfiles = len(profileList) |
|
911 | 912 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
912 | 913 | dataOut.flagNoData = False |
|
913 | 914 | |
|
914 | 915 | return dataOut |
|
915 | 916 | |
|
916 | 917 | """ |
|
917 | 918 | data dimension = [nChannels, nHeis] |
|
918 | 919 | """ |
|
919 | 920 | |
|
920 | 921 | if profileList != None: |
|
921 | 922 | |
|
922 | 923 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
923 | 924 | |
|
924 | 925 | self.nProfiles = len(profileList) |
|
925 | 926 | dataOut.nProfiles = self.nProfiles |
|
926 | 927 | dataOut.profileIndex = self.profileIndex |
|
927 | 928 | dataOut.flagNoData = False |
|
928 | 929 | |
|
929 | 930 | self.incProfileIndex() |
|
930 | 931 | return dataOut |
|
931 | 932 | |
|
932 | 933 | if profileRangeList != None: |
|
933 | 934 | |
|
934 | 935 | minIndex = profileRangeList[0] |
|
935 | 936 | maxIndex = profileRangeList[1] |
|
936 | 937 | |
|
937 | 938 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
938 | 939 | |
|
939 | 940 | self.nProfiles = maxIndex - minIndex + 1 |
|
940 | 941 | dataOut.nProfiles = self.nProfiles |
|
941 | 942 | dataOut.profileIndex = self.profileIndex |
|
942 | 943 | dataOut.flagNoData = False |
|
943 | 944 | |
|
944 | 945 | self.incProfileIndex() |
|
945 | 946 | return dataOut |
|
946 | 947 | |
|
947 | 948 | if rangeList != None: |
|
948 | 949 | |
|
949 | 950 | nProfiles = 0 |
|
950 | 951 | |
|
951 | 952 | for thisRange in rangeList: |
|
952 | 953 | minIndex = thisRange[0] |
|
953 | 954 | maxIndex = thisRange[1] |
|
954 | 955 | |
|
955 | 956 | nProfiles += maxIndex - minIndex + 1 |
|
956 | 957 | |
|
957 | 958 | for thisRange in rangeList: |
|
958 | 959 | |
|
959 | 960 | minIndex = thisRange[0] |
|
960 | 961 | maxIndex = thisRange[1] |
|
961 | 962 | |
|
962 | 963 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
963 | 964 | |
|
964 | 965 | self.nProfiles = nProfiles |
|
965 | 966 | dataOut.nProfiles = self.nProfiles |
|
966 | 967 | dataOut.profileIndex = self.profileIndex |
|
967 | 968 | dataOut.flagNoData = False |
|
968 | 969 | |
|
969 | 970 | self.incProfileIndex() |
|
970 | 971 | |
|
971 | 972 | break |
|
972 | 973 | |
|
973 | 974 | return dataOut |
|
974 | 975 | |
|
975 | 976 | |
|
976 | 977 | if beam != None: #beam is only for AMISR data |
|
977 | 978 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
978 | 979 | dataOut.flagNoData = False |
|
979 | 980 | dataOut.profileIndex = self.profileIndex |
|
980 | 981 | |
|
981 | 982 | self.incProfileIndex() |
|
982 | 983 | |
|
983 | 984 | return dataOut |
|
984 | 985 | |
|
985 | 986 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
986 | 987 | |
|
987 | 988 | #return False |
|
988 | 989 | return dataOut |
|
989 | 990 | |
|
990 | 991 | class Reshaper(Operation): |
|
991 | 992 | |
|
992 | 993 | def __init__(self, **kwargs): |
|
993 | 994 | |
|
994 | 995 | Operation.__init__(self, **kwargs) |
|
995 | 996 | |
|
996 | 997 | self.__buffer = None |
|
997 | 998 | self.__nitems = 0 |
|
998 | 999 | |
|
999 | 1000 | def __appendProfile(self, dataOut, nTxs): |
|
1000 | 1001 | |
|
1001 | 1002 | if self.__buffer is None: |
|
1002 | 1003 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1003 | 1004 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1004 | 1005 | |
|
1005 | 1006 | ini = dataOut.nHeights * self.__nitems |
|
1006 | 1007 | end = ini + dataOut.nHeights |
|
1007 | 1008 | |
|
1008 | 1009 | self.__buffer[:, ini:end] = dataOut.data |
|
1009 | 1010 | |
|
1010 | 1011 | self.__nitems += 1 |
|
1011 | 1012 | |
|
1012 | 1013 | return int(self.__nitems*nTxs) |
|
1013 | 1014 | |
|
1014 | 1015 | def __getBuffer(self): |
|
1015 | 1016 | |
|
1016 | 1017 | if self.__nitems == int(1./self.__nTxs): |
|
1017 | 1018 | |
|
1018 | 1019 | self.__nitems = 0 |
|
1019 | 1020 | |
|
1020 | 1021 | return self.__buffer.copy() |
|
1021 | 1022 | |
|
1022 | 1023 | return None |
|
1023 | 1024 | |
|
1024 | 1025 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1025 | 1026 | |
|
1026 | 1027 | if shape is None and nTxs is None: |
|
1027 | 1028 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1028 | 1029 | |
|
1029 | 1030 | if nTxs: |
|
1030 | 1031 | if nTxs < 0: |
|
1031 | 1032 | raise ValueError("nTxs should be greater than 0") |
|
1032 | 1033 | |
|
1033 | 1034 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1034 | 1035 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1035 | 1036 | |
|
1036 | 1037 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1037 | 1038 | |
|
1038 | 1039 | return shape, nTxs |
|
1039 | 1040 | |
|
1040 | 1041 | if len(shape) != 2 and len(shape) != 3: |
|
1041 | 1042 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1042 | 1043 | |
|
1043 | 1044 | if len(shape) == 2: |
|
1044 | 1045 | shape_tuple = [dataOut.nChannels] |
|
1045 | 1046 | shape_tuple.extend(shape) |
|
1046 | 1047 | else: |
|
1047 | 1048 | shape_tuple = list(shape) |
|
1048 | 1049 | |
|
1049 | 1050 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1050 | 1051 | |
|
1051 | 1052 | return shape_tuple, nTxs |
|
1052 | 1053 | |
|
1053 | 1054 | def run(self, dataOut, shape=None, nTxs=None): |
|
1054 | 1055 | |
|
1055 | 1056 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1056 | 1057 | |
|
1057 | 1058 | dataOut.flagNoData = True |
|
1058 | 1059 | profileIndex = None |
|
1059 | 1060 | |
|
1060 | 1061 | if dataOut.flagDataAsBlock: |
|
1061 | 1062 | |
|
1062 | 1063 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1063 | 1064 | dataOut.flagNoData = False |
|
1064 | 1065 | |
|
1065 | 1066 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1066 | 1067 | |
|
1067 | 1068 | else: |
|
1068 | 1069 | |
|
1069 | 1070 | if self.__nTxs < 1: |
|
1070 | 1071 | |
|
1071 | 1072 | self.__appendProfile(dataOut, self.__nTxs) |
|
1072 | 1073 | new_data = self.__getBuffer() |
|
1073 | 1074 | |
|
1074 | 1075 | if new_data is not None: |
|
1075 | 1076 | dataOut.data = new_data |
|
1076 | 1077 | dataOut.flagNoData = False |
|
1077 | 1078 | |
|
1078 | 1079 | profileIndex = dataOut.profileIndex*nTxs |
|
1079 | 1080 | |
|
1080 | 1081 | else: |
|
1081 | 1082 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1082 | 1083 | |
|
1083 | 1084 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1084 | 1085 | |
|
1085 | 1086 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1086 | 1087 | |
|
1087 | 1088 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1088 | 1089 | |
|
1089 | 1090 | dataOut.profileIndex = profileIndex |
|
1090 | 1091 | |
|
1091 | 1092 | dataOut.ippSeconds /= self.__nTxs |
|
1092 | 1093 | |
|
1093 | 1094 | return dataOut |
|
1094 | 1095 | |
|
1095 | 1096 | class SplitProfiles(Operation): |
|
1096 | 1097 | |
|
1097 | 1098 | def __init__(self, **kwargs): |
|
1098 | 1099 | |
|
1099 | 1100 | Operation.__init__(self, **kwargs) |
|
1100 | 1101 | |
|
1101 | 1102 | def run(self, dataOut, n): |
|
1102 | 1103 | |
|
1103 | 1104 | dataOut.flagNoData = True |
|
1104 | 1105 | profileIndex = None |
|
1105 | 1106 | |
|
1106 | 1107 | if dataOut.flagDataAsBlock: |
|
1107 | 1108 | |
|
1108 | 1109 | #nchannels, nprofiles, nsamples |
|
1109 | 1110 | shape = dataOut.data.shape |
|
1110 | 1111 | |
|
1111 | 1112 | if shape[2] % n != 0: |
|
1112 | 1113 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1113 | 1114 | |
|
1114 | 1115 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1115 | 1116 | |
|
1116 | 1117 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1117 | 1118 | dataOut.flagNoData = False |
|
1118 | 1119 | |
|
1119 | 1120 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1120 | 1121 | |
|
1121 | 1122 | else: |
|
1122 | 1123 | |
|
1123 | 1124 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1124 | 1125 | |
|
1125 | 1126 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1126 | 1127 | |
|
1127 | 1128 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1128 | 1129 | |
|
1129 | 1130 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1130 | 1131 | |
|
1131 | 1132 | dataOut.profileIndex = profileIndex |
|
1132 | 1133 | |
|
1133 | 1134 | dataOut.ippSeconds /= n |
|
1134 | 1135 | |
|
1135 | 1136 | return dataOut |
|
1136 | 1137 | |
|
1137 | 1138 | class CombineProfiles(Operation): |
|
1138 | 1139 | def __init__(self, **kwargs): |
|
1139 | 1140 | |
|
1140 | 1141 | Operation.__init__(self, **kwargs) |
|
1141 | 1142 | |
|
1142 | 1143 | self.__remData = None |
|
1143 | 1144 | self.__profileIndex = 0 |
|
1144 | 1145 | |
|
1145 | 1146 | def run(self, dataOut, n): |
|
1146 | 1147 | |
|
1147 | 1148 | dataOut.flagNoData = True |
|
1148 | 1149 | profileIndex = None |
|
1149 | 1150 | |
|
1150 | 1151 | if dataOut.flagDataAsBlock: |
|
1151 | 1152 | |
|
1152 | 1153 | #nchannels, nprofiles, nsamples |
|
1153 | 1154 | shape = dataOut.data.shape |
|
1154 | 1155 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1155 | 1156 | |
|
1156 | 1157 | if shape[1] % n != 0: |
|
1157 | 1158 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1158 | 1159 | |
|
1159 | 1160 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1160 | 1161 | dataOut.flagNoData = False |
|
1161 | 1162 | |
|
1162 | 1163 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1163 | 1164 | |
|
1164 | 1165 | else: |
|
1165 | 1166 | |
|
1166 | 1167 | #nchannels, nsamples |
|
1167 | 1168 | if self.__remData is None: |
|
1168 | 1169 | newData = dataOut.data |
|
1169 | 1170 | else: |
|
1170 | 1171 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1171 | 1172 | |
|
1172 | 1173 | self.__profileIndex += 1 |
|
1173 | 1174 | |
|
1174 | 1175 | if self.__profileIndex < n: |
|
1175 | 1176 | self.__remData = newData |
|
1176 | 1177 | #continue |
|
1177 | 1178 | return |
|
1178 | 1179 | |
|
1179 | 1180 | self.__profileIndex = 0 |
|
1180 | 1181 | self.__remData = None |
|
1181 | 1182 | |
|
1182 | 1183 | dataOut.data = newData |
|
1183 | 1184 | dataOut.flagNoData = False |
|
1184 | 1185 | |
|
1185 | 1186 | profileIndex = dataOut.profileIndex/n |
|
1186 | 1187 | |
|
1187 | 1188 | |
|
1188 | 1189 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1189 | 1190 | |
|
1190 | 1191 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1191 | 1192 | |
|
1192 | 1193 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1193 | 1194 | |
|
1194 | 1195 | dataOut.profileIndex = profileIndex |
|
1195 | 1196 | |
|
1196 | 1197 | dataOut.ippSeconds *= n |
|
1197 | 1198 | |
|
1198 | 1199 | return dataOut |
|
1199 | 1200 | |
|
1200 | 1201 | |
|
1201 | 1202 | |
|
1202 | 1203 | class CreateBlockVoltage(Operation): |
|
1203 | 1204 | |
|
1204 | 1205 | isConfig = False |
|
1205 | 1206 | __Index = 0 |
|
1206 | 1207 | bufferShape = None |
|
1207 | 1208 | buffer = None |
|
1208 | 1209 | firstdatatime = None |
|
1209 | 1210 | |
|
1210 | 1211 | def __init__(self,**kwargs): |
|
1211 | 1212 | Operation.__init__(self,**kwargs) |
|
1212 | 1213 | self.isConfig = False |
|
1213 | 1214 | self.__Index = 0 |
|
1214 | 1215 | self.firstdatatime = None |
|
1215 | 1216 | |
|
1216 | 1217 | def setup(self,dataOut, m = None ): |
|
1217 | 1218 | ''' |
|
1218 | 1219 | m= Numero perfiles |
|
1219 | 1220 | ''' |
|
1220 | 1221 | #print("CONFIGURANDO CBV") |
|
1221 | 1222 | self.__nChannels = dataOut.nChannels |
|
1222 | 1223 | self.__nHeis = dataOut.nHeights |
|
1223 | 1224 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples |
|
1224 | 1225 | #print("input nChannels",self.__nChannels) |
|
1225 | 1226 | #print("input nHeis",self.__nHeis) |
|
1226 | 1227 | #print("SETUP CREATE BLOCK VOLTAGE") |
|
1227 | 1228 | #print("input Shape",shape) |
|
1228 | 1229 | #print("dataOut.nProfiles",dataOut.nProfiles) |
|
1229 | 1230 | numberSamples = self.__nHeis |
|
1230 | 1231 | numberProfile = int(m) |
|
1231 | 1232 | dataOut.nProfiles = numberProfile |
|
1232 | 1233 | #print("new numberProfile",numberProfile) |
|
1233 | 1234 | #print("new numberSamples",numberSamples) |
|
1234 | 1235 | |
|
1235 | 1236 | self.bufferShape = shape[0], numberProfile, numberSamples # nchannels,nprofiles,nsamples |
|
1236 |
self.buffer = numpy.zeros( |
|
|
1237 |
self.bufferVel = numpy.zeros( |
|
|
1237 | self.buffer = numpy.zeros([shape[0], numberProfile, numberSamples]) | |
|
1238 | self.bufferVel = numpy.zeros([shape[0], numberProfile, numberSamples]) | |
|
1238 | 1239 | |
|
1239 | 1240 | def run(self, dataOut, m=None): |
|
1240 | 1241 | #print("RUN") |
|
1241 | 1242 | dataOut.flagNoData = True |
|
1242 | 1243 | dataOut.flagDataAsBlock = False |
|
1243 | 1244 | #print("BLOCK INDEX ",self.__Index) |
|
1244 | 1245 | |
|
1245 | 1246 | if not self.isConfig: |
|
1246 | 1247 | self.setup(dataOut, m= m) |
|
1247 | 1248 | self.isConfig = True |
|
1248 | 1249 | if self.__Index < m: |
|
1249 | 1250 | #print("PROFINDEX BLOCK CBV",self.__Index) |
|
1250 | 1251 | self.buffer[:,self.__Index,:] = dataOut.data |
|
1252 | #corregir porque debe tener un perfil menos ojo | |
|
1251 | 1253 | self.bufferVel[:,self.__Index,:] = dataOut.data_velocity |
|
1252 | 1254 | self.__Index += 1 |
|
1253 | 1255 | dataOut.flagNoData = True |
|
1254 | 1256 | |
|
1255 | 1257 | if self.firstdatatime == None: |
|
1256 | 1258 | self.firstdatatime = dataOut.utctime |
|
1257 | 1259 | |
|
1258 | 1260 | if self.__Index == m: |
|
1259 | 1261 | #print("**********************************************") |
|
1260 | 1262 | #print("self.buffer.shape ",self.buffer.shape) |
|
1261 | 1263 | #print("##############",self.firstdatatime) |
|
1262 | 1264 | ##print("*********************************************") |
|
1263 | 1265 | ##print("*********************************************") |
|
1264 | 1266 | ##print("******* nProfiles *******", dataOut.nProfiles) |
|
1265 | 1267 | ##print("*********************************************") |
|
1266 | 1268 | ##print("*********************************************") |
|
1267 | 1269 | dataOut.data = self.buffer |
|
1268 | 1270 | dataOut.data_velocity = self.bufferVel |
|
1269 | 1271 | dataOut.utctime = self.firstdatatime |
|
1270 | 1272 | dataOut.nProfiles = m |
|
1271 | 1273 | self.firstdatatime = None |
|
1272 | 1274 | dataOut.flagNoData = False |
|
1273 | 1275 | dataOut.flagDataAsBlock = True |
|
1274 | 1276 | self.__Index = 0 |
|
1275 | 1277 | dataOut.identifierWR = True |
|
1276 | 1278 | return dataOut |
|
1277 | 1279 | |
|
1278 | 1280 | class PulsePairVoltage(Operation): |
|
1279 | 1281 | ''' |
|
1280 | 1282 | Function PulsePair(Signal Power, Velocity) |
|
1281 | 1283 | The real component of Lag[0] provides Intensity Information |
|
1282 | 1284 | The imag component of Lag[1] Phase provides Velocity Information |
|
1283 | 1285 | |
|
1284 | 1286 | Configuration Parameters: |
|
1285 | 1287 | nPRF = Number of Several PRF |
|
1286 | 1288 | theta = Degree Azimuth angel Boundaries |
|
1287 | 1289 | |
|
1288 | 1290 | Input: |
|
1289 | 1291 | self.dataOut |
|
1290 | 1292 | lag[N] |
|
1291 | 1293 | Affected: |
|
1292 | 1294 | self.dataOut.spc |
|
1293 | 1295 | ''' |
|
1294 | 1296 | isConfig = False |
|
1295 | 1297 | __profIndex = 0 |
|
1296 | 1298 | __initime = None |
|
1297 | 1299 | __lastdatatime = None |
|
1298 | 1300 | __buffer = None |
|
1299 | 1301 | __buffer2 = [] |
|
1300 | 1302 | __buffer3 = None |
|
1301 | 1303 | __dataReady = False |
|
1302 | 1304 | n = None |
|
1303 | 1305 | __nch = 0 |
|
1304 | 1306 | __nHeis = 0 |
|
1307 | removeDC = False | |
|
1308 | ipp = None | |
|
1309 | lambda_ = 0 | |
|
1305 | 1310 | |
|
1306 | 1311 | def __init__(self,**kwargs): |
|
1307 | 1312 | Operation.__init__(self,**kwargs) |
|
1308 | 1313 | |
|
1309 | def setup(self, dataOut, n = None ): | |
|
1314 | def setup(self, dataOut, n = None, removeDC=False): | |
|
1310 | 1315 | ''' |
|
1311 | 1316 | n= Numero de PRF's de entrada |
|
1312 | 1317 | ''' |
|
1313 | 1318 | self.__initime = None |
|
1314 | 1319 | self.__lastdatatime = 0 |
|
1315 | 1320 | self.__dataReady = False |
|
1316 | 1321 | self.__buffer = 0 |
|
1317 | 1322 | self.__buffer2 = [] |
|
1318 | 1323 | self.__buffer3 = 0 |
|
1319 | 1324 | self.__profIndex = 0 |
|
1320 | 1325 | |
|
1321 | 1326 | self.__nch = dataOut.nChannels |
|
1322 | 1327 | self.__nHeis = dataOut.nHeights |
|
1328 | self.removeDC = removeDC | |
|
1329 | self.lambda_ = 3.0e8/(9345.0e6) | |
|
1330 | self.ippSec = dataOut.ippSeconds | |
|
1331 | print("IPPseconds",dataOut.ippSeconds) | |
|
1323 | 1332 | |
|
1324 | 1333 | print("ELVALOR DE n es:", n) |
|
1325 | 1334 | if n == None: |
|
1326 | 1335 | raise ValueError("n should be specified.") |
|
1327 | 1336 | |
|
1328 | 1337 | if n != None: |
|
1329 | 1338 | if n<2: |
|
1330 | 1339 | raise ValueError("n should be greater than 2") |
|
1331 | 1340 | |
|
1332 | 1341 | self.n = n |
|
1333 | 1342 | self.__nProf = n |
|
1334 | ''' | |
|
1335 | if overlapping: | |
|
1336 | self.__withOverlapping = True | |
|
1337 | self.__buffer = None | |
|
1338 | 1343 | |
|
1339 | else: | |
|
1340 | #print ("estoy sin __withO") | |
|
1341 | self.__withOverlapping = False | |
|
1342 | self.__buffer = 0 | |
|
1343 | self.__buffer2 = [] | |
|
1344 | self.__buffer3 = 0 | |
|
1345 | ''' | |
|
1344 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
|
1345 | n, | |
|
1346 | dataOut.nHeights), | |
|
1347 | dtype='complex') | |
|
1348 | ||
|
1349 | ||
|
1346 | 1350 | |
|
1347 | 1351 | def putData(self,data): |
|
1348 | 1352 | ''' |
|
1349 | 1353 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1350 | 1354 | ''' |
|
1351 | #print("self.__profIndex :",self.__profIndex) | |
|
1352 | self.__buffer += data*numpy.conjugate(data) | |
|
1353 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1354 | if self.__profIndex > 0: | |
|
1355 | self.__buffer3 += self.__buffer2[self.__profIndex-1]*data | |
|
1356 | self.__profIndex += 1 | |
|
1357 | return | |
|
1358 | ''' | |
|
1359 | if not self.__withOverlapping: | |
|
1360 | #print("Putdata inside over") | |
|
1361 | self.__buffer += data* numpy.conjugate(data) | |
|
1362 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1363 | ||
|
1364 | if self.__profIndex >0: | |
|
1365 | self.__buffer3 += self.__buffer2[self.__profIndex-1]*data | |
|
1355 | self.__buffer[:,self.__profIndex,:]= data | |
|
1366 | 1356 |
|
|
1367 | 1357 |
|
|
1368 | 1358 | |
|
1369 | if self.__buffer is None: | |
|
1370 | #print("aqui bro") | |
|
1371 | self.__buffer = data* numpy.conjugate(data) | |
|
1372 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1373 | self.__profIndex += 1 | |
|
1374 | ||
|
1375 | return | |
|
1376 | ||
|
1377 | if self.__profIndex < self.n: | |
|
1378 | self.__buffer = numpy.vstack(self.__buffer,data* numpy.conjugate(data)) | |
|
1379 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1380 | ||
|
1381 | if self.__profIndex == 1: | |
|
1382 | self.__buffer3 = self.__buffer2[self.__profIndex -1] * data | |
|
1383 | else: | |
|
1384 | self.__buffer3 = numpy.vstack(self.__buffer3, self.__buffer2[self.profIndex-1]*data) | |
|
1385 | ||
|
1386 | self.__profIndex += 1 | |
|
1387 | return | |
|
1388 | ''' | |
|
1389 | ||
|
1390 | 1359 | def pushData(self): |
|
1391 | 1360 | ''' |
|
1392 | 1361 | Return the PULSEPAIR and the profiles used in the operation |
|
1393 | 1362 | Affected : self.__profileIndex |
|
1394 | 1363 | ''' |
|
1395 | #print("************************************************") | |
|
1396 | #print("push data int vel n") | |
|
1397 | data_intensity = self.__buffer/self.n | |
|
1398 | data_velocity = self.__buffer3/(self.n-1) | |
|
1399 | n = self.__profIndex | |
|
1400 | 1364 | |
|
1401 | self.__buffer = 0 | |
|
1402 | self.__buffer2 = [] | |
|
1403 | self.__buffer3 = 0 | |
|
1404 | self.__profIndex = 0 | |
|
1405 | ||
|
1406 | return data_intensity, data_velocity,n | |
|
1407 | ''' | |
|
1408 | if not self.__withOverlapping: | |
|
1409 | #print("ahora que fue") | |
|
1410 | data_intensity = self.__buffer/self.n | |
|
1411 | data_velocity = self.__buffer3/(self.n-1) | |
|
1365 | if self.removeDC==True: | |
|
1366 | mean = numpy.mean(self.__buffer,1) | |
|
1367 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
|
1368 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
|
1369 | self.__buffer = self.__buffer - dc | |
|
1370 | ||
|
1371 | data_intensity = numpy.sum(self.__buffer*numpy.conj(self.__buffer),1)/self.n | |
|
1372 | pair1 = self.__buffer[:,1:,:]*numpy.conjugate(self.__buffer[:,:-1,:]) | |
|
1373 | angle=numpy.angle(numpy.sum(pair1,1))*180/(math.pi) | |
|
1374 | #print(angle.shape)#print("__ANGLE__") #print("angle",angle[:,:10]) | |
|
1375 | data_velocity = (self.lambda_/(4*math.pi*self.ippSec))*numpy.angle(numpy.sum(pair1,1)) | |
|
1412 | 1376 |
|
|
1413 | 1377 | |
|
1414 | self.__buffer = 0 | |
|
1415 | self.__buffer2 = [] | |
|
1416 | self.__buffer3 = 0 | |
|
1378 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
|
1417 | 1379 |
|
|
1418 | 1380 |
|
|
1419 | 1381 | |
|
1420 | data_intensity = numpy.sum(self.__buffer,axis = 0) | |
|
1421 | data_velocity = numpy.sum(self.__buffer3,axis = 0) | |
|
1422 | n = self.__profIndex | |
|
1423 | #self.__buffer = 0 | |
|
1424 | #self.__buffer2 = [] | |
|
1425 | #self.__buffer3 = 0 | |
|
1426 | #self.__profIndex = 0 | |
|
1427 | return data_intensity, data_velocity,n | |
|
1428 | ''' | |
|
1429 | ||
|
1430 | 1382 | def pulsePairbyProfiles(self,data): |
|
1431 | 1383 | |
|
1432 | 1384 | self.__dataReady = False |
|
1433 | 1385 | data_intensity = None |
|
1434 | 1386 | data_velocity = None |
|
1435 | #print("beforeputada") | |
|
1436 | 1387 | self.putData(data) |
|
1437 | #print("ProfileIndex:",self.__profIndex) | |
|
1438 | 1388 | if self.__profIndex == self.n: |
|
1439 | 1389 | data_intensity, data_velocity, n = self.pushData() |
|
1440 | 1390 | self.__dataReady = True |
|
1441 | #print("-----------------------------------------------") | |
|
1442 | #print("data_intensity",data_intensity.shape,"data_velocity",data_velocity.shape) | |
|
1391 | ||
|
1443 | 1392 | return data_intensity, data_velocity |
|
1444 | 1393 | |
|
1445 | 1394 | def pulsePairOp(self, data, datatime= None): |
|
1446 | 1395 | |
|
1447 | 1396 | if self.__initime == None: |
|
1448 | 1397 | self.__initime = datatime |
|
1449 | 1398 | |
|
1450 | 1399 | data_intensity, data_velocity = self.pulsePairbyProfiles(data) |
|
1451 | 1400 | self.__lastdatatime = datatime |
|
1452 | 1401 | |
|
1453 | 1402 | if data_intensity is None: |
|
1454 | 1403 | return None, None, None |
|
1455 | 1404 | |
|
1456 | 1405 | avgdatatime = self.__initime |
|
1457 | 1406 | deltatime = datatime - self.__lastdatatime |
|
1458 | 1407 | self.__initime = datatime |
|
1459 | ''' | |
|
1460 | if not self.__withOverlapping: | |
|
1461 | self.__initime = datatime | |
|
1462 | else: | |
|
1463 | self.__initime += deltatime | |
|
1464 | ''' | |
|
1408 | ||
|
1465 | 1409 | return data_intensity, data_velocity, avgdatatime |
|
1466 | 1410 | |
|
1467 | def run(self, dataOut,n = None, overlapping= False,**kwargs): | |
|
1411 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
|
1468 | 1412 | |
|
1469 | 1413 | if not self.isConfig: |
|
1470 | self.setup(dataOut = dataOut, n = n , **kwargs) | |
|
1414 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
|
1471 | 1415 | self.isConfig = True |
|
1472 | 1416 | #print("*******************") |
|
1473 | 1417 | #print("print Shape input data:",dataOut.data.shape) |
|
1474 | 1418 | data_intensity, data_velocity, avgdatatime = self.pulsePairOp(dataOut.data, dataOut.utctime) |
|
1475 | 1419 | dataOut.flagNoData = True |
|
1476 | 1420 | |
|
1477 | 1421 | if self.__dataReady: |
|
1478 | 1422 | #print("#------------------------------------------------------") |
|
1479 | 1423 | #print("data_ready",data_intensity.shape) |
|
1480 | 1424 | dataOut.data = data_intensity #valor para plotear RTI |
|
1481 | 1425 | dataOut.nCohInt *= self.n |
|
1482 | 1426 | dataOut.data_intensity = data_intensity #valor para intensidad |
|
1483 | 1427 | dataOut.data_velocity = data_velocity #valor para velocidad |
|
1484 | 1428 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1485 | 1429 | dataOut.utctime = avgdatatime |
|
1486 | 1430 | dataOut.flagNoData = False |
|
1487 | 1431 | return dataOut |
|
1488 | ||
|
1489 | # import collections | |
|
1490 | # from scipy.stats import mode | |
|
1491 | # | |
|
1492 | # class Synchronize(Operation): | |
|
1493 | # | |
|
1494 | # isConfig = False | |
|
1495 | # __profIndex = 0 | |
|
1496 | # | |
|
1497 | # def __init__(self, **kwargs): | |
|
1498 | # | |
|
1499 | # Operation.__init__(self, **kwargs) | |
|
1500 | # # self.isConfig = False | |
|
1501 | # self.__powBuffer = None | |
|
1502 | # self.__startIndex = 0 | |
|
1503 | # self.__pulseFound = False | |
|
1504 | # | |
|
1505 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
|
1506 | # | |
|
1507 | # #Read data | |
|
1508 | # | |
|
1509 | # powerdB = dataOut.getPower(channel = channel) | |
|
1510 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
|
1511 | # | |
|
1512 | # self.__powBuffer.extend(powerdB.flatten()) | |
|
1513 | # | |
|
1514 | # dataArray = numpy.array(self.__powBuffer) | |
|
1515 | # | |
|
1516 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
|
1517 | # | |
|
1518 | # maxValue = numpy.nanmax(filteredPower) | |
|
1519 | # | |
|
1520 | # if maxValue < noisedB + 10: | |
|
1521 | # #No se encuentra ningun pulso de transmision | |
|
1522 | # return None | |
|
1523 | # | |
|
1524 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
|
1525 | # | |
|
1526 | # if len(maxValuesIndex) < 2: | |
|
1527 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
|
1528 | # return None | |
|
1529 | # | |
|
1530 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
|
1531 | # | |
|
1532 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
|
1533 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
|
1534 | # | |
|
1535 | # if len(pulseIndex) < 2: | |
|
1536 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
|
1537 | # return None | |
|
1538 | # | |
|
1539 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
|
1540 | # | |
|
1541 | # #remover senales que se distancien menos de 10 unidades o muestras | |
|
1542 | # #(No deberian existir IPP menor a 10 unidades) | |
|
1543 | # | |
|
1544 | # realIndex = numpy.where(spacing > 10 )[0] | |
|
1545 | # | |
|
1546 | # if len(realIndex) < 2: | |
|
1547 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
|
1548 | # return None | |
|
1549 | # | |
|
1550 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
|
1551 | # realPulseIndex = pulseIndex[realIndex] | |
|
1552 | # | |
|
1553 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
|
1554 | # | |
|
1555 | # print "IPP = %d samples" %period | |
|
1556 | # | |
|
1557 | # self.__newNSamples = dataOut.nHeights #int(period) | |
|
1558 | # self.__startIndex = int(realPulseIndex[0]) | |
|
1559 | # | |
|
1560 | # return 1 | |
|
1561 | # | |
|
1562 | # | |
|
1563 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
|
1564 | # | |
|
1565 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
|
1566 | # maxlen = buffer_size*nSamples) | |
|
1567 | # | |
|
1568 | # bufferList = [] | |
|
1569 | # | |
|
1570 | # for i in range(nChannels): | |
|
1571 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
|
1572 | # maxlen = buffer_size*nSamples) | |
|
1573 | # | |
|
1574 | # bufferList.append(bufferByChannel) | |
|
1575 | # | |
|
1576 | # self.__nSamples = nSamples | |
|
1577 | # self.__nChannels = nChannels | |
|
1578 | # self.__bufferList = bufferList | |
|
1579 | # | |
|
1580 | # def run(self, dataOut, channel = 0): | |
|
1581 | # | |
|
1582 | # if not self.isConfig: | |
|
1583 | # nSamples = dataOut.nHeights | |
|
1584 | # nChannels = dataOut.nChannels | |
|
1585 | # self.setup(nSamples, nChannels) | |
|
1586 | # self.isConfig = True | |
|
1587 | # | |
|
1588 | # #Append new data to internal buffer | |
|
1589 | # for thisChannel in range(self.__nChannels): | |
|
1590 | # bufferByChannel = self.__bufferList[thisChannel] | |
|
1591 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
|
1592 | # | |
|
1593 | # if self.__pulseFound: | |
|
1594 | # self.__startIndex -= self.__nSamples | |
|
1595 | # | |
|
1596 | # #Finding Tx Pulse | |
|
1597 | # if not self.__pulseFound: | |
|
1598 | # indexFound = self.__findTxPulse(dataOut, channel) | |
|
1599 | # | |
|
1600 | # if indexFound == None: | |
|
1601 | # dataOut.flagNoData = True | |
|
1602 | # return | |
|
1603 | # | |
|
1604 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
|
1605 | # self.__pulseFound = True | |
|
1606 | # self.__startIndex = indexFound | |
|
1607 | # | |
|
1608 | # #If pulse was found ... | |
|
1609 | # for thisChannel in range(self.__nChannels): | |
|
1610 | # bufferByChannel = self.__bufferList[thisChannel] | |
|
1611 | # #print self.__startIndex | |
|
1612 | # x = numpy.array(bufferByChannel) | |
|
1613 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
|
1614 | # | |
|
1615 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
|
1616 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
|
1617 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
|
1618 | # | |
|
1619 | # dataOut.data = self.__arrayBuffer | |
|
1620 | # | |
|
1621 | # self.__startIndex += self.__newNSamples | |
|
1622 | # | |
|
1623 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now