@@ -1,5597 +1,5583 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | from scipy.fftpack import fft |
|
4 | from scipy.fftpack import fft | |
5 | import scipy |
|
5 | import scipy | |
6 | import re |
|
6 | import re | |
7 | import datetime |
|
7 | import datetime | |
8 | import copy |
|
8 | import copy | |
9 | import sys |
|
9 | import sys | |
10 | import importlib |
|
10 | import importlib | |
11 | import itertools |
|
11 | import itertools | |
12 | from multiprocessing import Pool, TimeoutError |
|
12 | from multiprocessing import Pool, TimeoutError | |
13 | from multiprocessing.pool import ThreadPool |
|
13 | from multiprocessing.pool import ThreadPool | |
14 | import time |
|
14 | import time | |
15 |
|
15 | |||
16 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
16 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
17 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
17 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
18 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
18 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
19 | from scipy import asarray as ar,exp |
|
19 | from scipy import asarray as ar,exp | |
20 | from scipy.optimize import fmin, curve_fit |
|
20 | from scipy.optimize import fmin, curve_fit | |
21 | from schainpy.utils import log |
|
21 | from schainpy.utils import log | |
22 | import warnings |
|
22 | import warnings | |
23 | from numpy import NaN |
|
23 | from numpy import NaN | |
24 | from scipy.optimize.optimize import OptimizeWarning |
|
24 | from scipy.optimize.optimize import OptimizeWarning | |
25 | warnings.filterwarnings('ignore') |
|
25 | warnings.filterwarnings('ignore') | |
26 |
|
26 | |||
27 |
|
27 | |||
28 | SPEED_OF_LIGHT = 299792458 |
|
28 | SPEED_OF_LIGHT = 299792458 | |
29 |
|
29 | |||
30 | '''solving pickling issue''' |
|
30 | '''solving pickling issue''' | |
31 |
|
31 | |||
32 | def _pickle_method(method): |
|
32 | def _pickle_method(method): | |
33 | func_name = method.__func__.__name__ |
|
33 | func_name = method.__func__.__name__ | |
34 | obj = method.__self__ |
|
34 | obj = method.__self__ | |
35 | cls = method.__self__.__class__ |
|
35 | cls = method.__self__.__class__ | |
36 | return _unpickle_method, (func_name, obj, cls) |
|
36 | return _unpickle_method, (func_name, obj, cls) | |
37 |
|
37 | |||
38 | def _unpickle_method(func_name, obj, cls): |
|
38 | def _unpickle_method(func_name, obj, cls): | |
39 | for cls in cls.mro(): |
|
39 | for cls in cls.mro(): | |
40 | try: |
|
40 | try: | |
41 | func = cls.__dict__[func_name] |
|
41 | func = cls.__dict__[func_name] | |
42 | except KeyError: |
|
42 | except KeyError: | |
43 | pass |
|
43 | pass | |
44 | else: |
|
44 | else: | |
45 | break |
|
45 | break | |
46 | return func.__get__(obj, cls) |
|
46 | return func.__get__(obj, cls) | |
47 |
|
47 | |||
48 | # @MPDecorator |
|
48 | # @MPDecorator | |
49 | class ParametersProc(ProcessingUnit): |
|
49 | class ParametersProc(ProcessingUnit): | |
50 |
|
50 | |||
51 | METHODS = {} |
|
51 | METHODS = {} | |
52 | nSeconds = None |
|
52 | nSeconds = None | |
53 |
|
53 | |||
54 | def __init__(self): |
|
54 | def __init__(self): | |
55 | ProcessingUnit.__init__(self) |
|
55 | ProcessingUnit.__init__(self) | |
56 |
|
56 | |||
57 | self.buffer = None |
|
57 | self.buffer = None | |
58 | self.firstdatatime = None |
|
58 | self.firstdatatime = None | |
59 | self.profIndex = 0 |
|
59 | self.profIndex = 0 | |
60 | self.dataOut = Parameters() |
|
60 | self.dataOut = Parameters() | |
61 | self.setupReq = False #Agregar a todas las unidades de proc |
|
61 | self.setupReq = False #Agregar a todas las unidades de proc | |
62 |
|
62 | |||
63 | def __updateObjFromInput(self): |
|
63 | def __updateObjFromInput(self): | |
64 |
|
64 | |||
65 | self.dataOut.inputUnit = self.dataIn.type |
|
65 | self.dataOut.inputUnit = self.dataIn.type | |
66 |
|
66 | |||
67 | self.dataOut.timeZone = self.dataIn.timeZone |
|
67 | self.dataOut.timeZone = self.dataIn.timeZone | |
68 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
68 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
69 | self.dataOut.errorCount = self.dataIn.errorCount |
|
69 | self.dataOut.errorCount = self.dataIn.errorCount | |
70 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
70 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
71 |
|
71 | |||
72 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
72 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
73 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
73 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
74 | self.dataOut.channelList = self.dataIn.channelList |
|
74 | self.dataOut.channelList = self.dataIn.channelList | |
75 | self.dataOut.heightList = self.dataIn.heightList |
|
75 | self.dataOut.heightList = self.dataIn.heightList | |
76 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
76 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
77 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
77 | # self.dataOut.nHeights = self.dataIn.nHeights | |
78 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
78 | # self.dataOut.nChannels = self.dataIn.nChannels | |
79 | # self.dataOut.nBaud = self.dataIn.nBaud |
|
79 | # self.dataOut.nBaud = self.dataIn.nBaud | |
80 | # self.dataOut.nCode = self.dataIn.nCode |
|
80 | # self.dataOut.nCode = self.dataIn.nCode | |
81 | # self.dataOut.code = self.dataIn.code |
|
81 | # self.dataOut.code = self.dataIn.code | |
82 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
82 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
83 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
83 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
84 | # self.dataOut.utctime = self.firstdatatime |
|
84 | # self.dataOut.utctime = self.firstdatatime | |
85 | self.dataOut.utctime = self.dataIn.utctime |
|
85 | self.dataOut.utctime = self.dataIn.utctime | |
86 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
86 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
87 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
87 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
88 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
88 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
89 | # self.dataOut.nIncohInt = 1 |
|
89 | # self.dataOut.nIncohInt = 1 | |
90 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
90 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
91 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
91 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
92 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
92 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
93 | self.dataOut.heightList = self.dataIn.heightList |
|
93 | self.dataOut.heightList = self.dataIn.heightList | |
94 | self.dataOut.frequency = self.dataIn.frequency |
|
94 | self.dataOut.frequency = self.dataIn.frequency | |
95 | #self.dataOut.noise = self.dataIn.noise |
|
95 | #self.dataOut.noise = self.dataIn.noise | |
96 |
|
96 | |||
97 | def run(self): |
|
97 | def run(self): | |
98 |
|
98 | |||
99 | #---------------------- Voltage Data --------------------------- |
|
99 | #---------------------- Voltage Data --------------------------- | |
100 |
|
100 | |||
101 | if self.dataIn.type == "Voltage": |
|
101 | if self.dataIn.type == "Voltage": | |
102 |
|
102 | |||
103 | self.__updateObjFromInput() |
|
103 | self.__updateObjFromInput() | |
104 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
104 | self.dataOut.data_pre = self.dataIn.data.copy() | |
105 | self.dataOut.flagNoData = False |
|
105 | self.dataOut.flagNoData = False | |
106 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
106 | self.dataOut.utctimeInit = self.dataIn.utctime | |
107 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
107 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
108 | if hasattr(self.dataIn, 'dataPP_POW'): |
|
108 | if hasattr(self.dataIn, 'dataPP_POW'): | |
109 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW |
|
109 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW | |
110 |
|
110 | |||
111 | if hasattr(self.dataIn, 'dataPP_POWER'): |
|
111 | if hasattr(self.dataIn, 'dataPP_POWER'): | |
112 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER |
|
112 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER | |
113 |
|
113 | |||
114 | if hasattr(self.dataIn, 'dataPP_DOP'): |
|
114 | if hasattr(self.dataIn, 'dataPP_DOP'): | |
115 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP |
|
115 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP | |
116 |
|
116 | |||
117 | if hasattr(self.dataIn, 'dataPP_SNR'): |
|
117 | if hasattr(self.dataIn, 'dataPP_SNR'): | |
118 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR |
|
118 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR | |
119 |
|
119 | |||
120 | if hasattr(self.dataIn, 'dataPP_WIDTH'): |
|
120 | if hasattr(self.dataIn, 'dataPP_WIDTH'): | |
121 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH |
|
121 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH | |
122 | return |
|
122 | return | |
123 |
|
123 | |||
124 | #---------------------- Spectra Data --------------------------- |
|
124 | #---------------------- Spectra Data --------------------------- | |
125 |
|
125 | |||
126 | if self.dataIn.type == "Spectra": |
|
126 | if self.dataIn.type == "Spectra": | |
127 |
|
127 | |||
128 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] |
|
128 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] | |
129 | self.dataOut.data_spc = self.dataIn.data_spc |
|
129 | self.dataOut.data_spc = self.dataIn.data_spc | |
130 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
130 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
131 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
131 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
132 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
132 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
133 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
133 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
134 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
134 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
135 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
135 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
136 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
136 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
137 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
137 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
138 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
138 | # self.dataOut.normFactor = self.dataIn.normFactor | |
139 | self.dataOut.pairsList = self.dataIn.pairsList |
|
139 | self.dataOut.pairsList = self.dataIn.pairsList | |
140 | self.dataOut.groupList = self.dataIn.pairsList |
|
140 | self.dataOut.groupList = self.dataIn.pairsList | |
141 | self.dataOut.flagNoData = False |
|
141 | self.dataOut.flagNoData = False | |
142 |
|
142 | |||
143 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
143 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
144 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
144 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
145 | else: self.dataOut.ChanDist = None |
|
145 | else: self.dataOut.ChanDist = None | |
146 |
|
146 | |||
147 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
147 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
148 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
148 | # self.dataOut.VelRange = self.dataIn.VelRange | |
149 | #else: self.dataOut.VelRange = None |
|
149 | #else: self.dataOut.VelRange = None | |
150 |
|
150 | |||
151 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
151 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
152 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
152 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
153 |
|
153 | |||
154 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
154 | if hasattr(self.dataIn, 'NPW'): #NPW | |
155 | self.dataOut.NPW = self.dataIn.NPW |
|
155 | self.dataOut.NPW = self.dataIn.NPW | |
156 |
|
156 | |||
157 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
157 | if hasattr(self.dataIn, 'COFA'): #COFA | |
158 | self.dataOut.COFA = self.dataIn.COFA |
|
158 | self.dataOut.COFA = self.dataIn.COFA | |
159 |
|
159 | |||
160 |
|
160 | |||
161 |
|
161 | |||
162 | #---------------------- Correlation Data --------------------------- |
|
162 | #---------------------- Correlation Data --------------------------- | |
163 |
|
163 | |||
164 | if self.dataIn.type == "Correlation": |
|
164 | if self.dataIn.type == "Correlation": | |
165 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
165 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
166 |
|
166 | |||
167 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
167 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
168 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
168 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
169 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
169 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
170 |
|
170 | |||
171 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
171 | self.dataOut.abscissaList = self.dataIn.lagRange | |
172 | self.dataOut.noise = self.dataIn.noise |
|
172 | self.dataOut.noise = self.dataIn.noise | |
173 | self.dataOut.data_snr = self.dataIn.SNR |
|
173 | self.dataOut.data_snr = self.dataIn.SNR | |
174 | self.dataOut.flagNoData = False |
|
174 | self.dataOut.flagNoData = False | |
175 | self.dataOut.nAvg = self.dataIn.nAvg |
|
175 | self.dataOut.nAvg = self.dataIn.nAvg | |
176 |
|
176 | |||
177 | #---------------------- Parameters Data --------------------------- |
|
177 | #---------------------- Parameters Data --------------------------- | |
178 |
|
178 | |||
179 | if self.dataIn.type == "Parameters": |
|
179 | if self.dataIn.type == "Parameters": | |
180 | self.dataOut.copy(self.dataIn) |
|
180 | self.dataOut.copy(self.dataIn) | |
181 | self.dataOut.flagNoData = False |
|
181 | self.dataOut.flagNoData = False | |
182 |
|
182 | |||
183 | return True |
|
183 | return True | |
184 |
|
184 | |||
185 | self.__updateObjFromInput() |
|
185 | self.__updateObjFromInput() | |
186 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
186 | self.dataOut.utctimeInit = self.dataIn.utctime | |
187 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
187 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
188 |
|
188 | |||
189 | return |
|
189 | return | |
190 |
|
190 | |||
191 |
|
191 | |||
192 | def target(tups): |
|
192 | def target(tups): | |
193 |
|
193 | |||
194 | obj, args = tups |
|
194 | obj, args = tups | |
195 |
|
195 | |||
196 | return obj.FitGau(args) |
|
196 | return obj.FitGau(args) | |
197 |
|
197 | |||
198 | class RemoveWideGC(Operation): |
|
198 | class RemoveWideGC(Operation): | |
199 | ''' This class remove the wide clutter and replace it with a simple interpolation points |
|
199 | ''' This class remove the wide clutter and replace it with a simple interpolation points | |
200 | This mainly applies to CLAIRE radar |
|
200 | This mainly applies to CLAIRE radar | |
201 |
|
201 | |||
202 | ClutterWidth : Width to look for the clutter peak |
|
202 | ClutterWidth : Width to look for the clutter peak | |
203 |
|
203 | |||
204 | Input: |
|
204 | Input: | |
205 |
|
205 | |||
206 | self.dataOut.data_pre : SPC and CSPC |
|
206 | self.dataOut.data_pre : SPC and CSPC | |
207 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
207 | self.dataOut.spc_range : To select wind and rainfall velocities | |
208 |
|
208 | |||
209 | Affected: |
|
209 | Affected: | |
210 |
|
210 | |||
211 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
211 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
212 |
|
212 | |||
213 | Written by D. ScipiΓ³n 25.02.2021 |
|
213 | Written by D. ScipiΓ³n 25.02.2021 | |
214 | ''' |
|
214 | ''' | |
215 | def __init__(self): |
|
215 | def __init__(self): | |
216 | Operation.__init__(self) |
|
216 | Operation.__init__(self) | |
217 | self.i = 0 |
|
217 | self.i = 0 | |
218 | self.ich = 0 |
|
218 | self.ich = 0 | |
219 | self.ir = 0 |
|
219 | self.ir = 0 | |
220 |
|
220 | |||
221 | def run(self, dataOut, ClutterWidth=2.5): |
|
221 | def run(self, dataOut, ClutterWidth=2.5): | |
222 |
|
222 | |||
223 | self.spc = dataOut.data_pre[0].copy() |
|
223 | self.spc = dataOut.data_pre[0].copy() | |
224 | self.spc_out = dataOut.data_pre[0].copy() |
|
224 | self.spc_out = dataOut.data_pre[0].copy() | |
225 | self.Num_Chn = self.spc.shape[0] |
|
225 | self.Num_Chn = self.spc.shape[0] | |
226 | self.Num_Hei = self.spc.shape[2] |
|
226 | self.Num_Hei = self.spc.shape[2] | |
227 | VelRange = dataOut.spc_range[2][:-1] |
|
227 | VelRange = dataOut.spc_range[2][:-1] | |
228 | dv = VelRange[1]-VelRange[0] |
|
228 | dv = VelRange[1]-VelRange[0] | |
229 |
|
229 | |||
230 | # Find the velocities that corresponds to zero |
|
230 | # Find the velocities that corresponds to zero | |
231 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) |
|
231 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) | |
232 |
|
232 | |||
233 | # Removing novalid data from the spectra |
|
233 | # Removing novalid data from the spectra | |
234 | for ich in range(self.Num_Chn) : |
|
234 | for ich in range(self.Num_Chn) : | |
235 | for ir in range(self.Num_Hei) : |
|
235 | for ir in range(self.Num_Hei) : | |
236 | # Estimate the noise at each range |
|
236 | # Estimate the noise at each range | |
237 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) |
|
237 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) | |
238 |
|
238 | |||
239 | # Removing the noise floor at each range |
|
239 | # Removing the noise floor at each range | |
240 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) |
|
240 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) | |
241 | self.spc[ich,novalid,ir] = HSn |
|
241 | self.spc[ich,novalid,ir] = HSn | |
242 |
|
242 | |||
243 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) |
|
243 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) | |
244 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) |
|
244 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) | |
245 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) |
|
245 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) | |
246 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : |
|
246 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : | |
247 | continue |
|
247 | continue | |
248 | junk3 = numpy.squeeze(numpy.diff(j1index)) |
|
248 | junk3 = numpy.squeeze(numpy.diff(j1index)) | |
249 | junk4 = numpy.squeeze(numpy.diff(j2index)) |
|
249 | junk4 = numpy.squeeze(numpy.diff(j2index)) | |
250 |
|
250 | |||
251 | valleyindex = j2index[numpy.where(junk4>1)] |
|
251 | valleyindex = j2index[numpy.where(junk4>1)] | |
252 | peakindex = j1index[numpy.where(junk3>1)] |
|
252 | peakindex = j1index[numpy.where(junk3>1)] | |
253 |
|
253 | |||
254 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) |
|
254 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) | |
255 | if numpy.size(isvalid) == 0 : |
|
255 | if numpy.size(isvalid) == 0 : | |
256 | continue |
|
256 | continue | |
257 | if numpy.size(isvalid) >1 : |
|
257 | if numpy.size(isvalid) >1 : | |
258 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) |
|
258 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) | |
259 | isvalid = isvalid[vindex] |
|
259 | isvalid = isvalid[vindex] | |
260 |
|
260 | |||
261 | # clutter peak |
|
261 | # clutter peak | |
262 | gcpeak = peakindex[isvalid] |
|
262 | gcpeak = peakindex[isvalid] | |
263 | vl = numpy.where(valleyindex < gcpeak) |
|
263 | vl = numpy.where(valleyindex < gcpeak) | |
264 | if numpy.size(vl) == 0: |
|
264 | if numpy.size(vl) == 0: | |
265 | continue |
|
265 | continue | |
266 | gcvl = valleyindex[vl[0][-1]] |
|
266 | gcvl = valleyindex[vl[0][-1]] | |
267 | vr = numpy.where(valleyindex > gcpeak) |
|
267 | vr = numpy.where(valleyindex > gcpeak) | |
268 | if numpy.size(vr) == 0: |
|
268 | if numpy.size(vr) == 0: | |
269 | continue |
|
269 | continue | |
270 | gcvr = valleyindex[vr[0][0]] |
|
270 | gcvr = valleyindex[vr[0][0]] | |
271 |
|
271 | |||
272 | # Removing the clutter |
|
272 | # Removing the clutter | |
273 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) |
|
273 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) | |
274 | gcindex = gc_values[gcvl+1:gcvr-1] |
|
274 | gcindex = gc_values[gcvl+1:gcvr-1] | |
275 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) |
|
275 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) | |
276 |
|
276 | |||
277 | dataOut.data_pre[0] = self.spc_out |
|
277 | dataOut.data_pre[0] = self.spc_out | |
278 |
|
278 | |||
279 | return dataOut |
|
279 | return dataOut | |
280 |
|
280 | |||
281 | class SpectralFilters(Operation): |
|
281 | class SpectralFilters(Operation): | |
282 | ''' This class allows to replace the novalid values with noise for each channel |
|
282 | ''' This class allows to replace the novalid values with noise for each channel | |
283 | This applies to CLAIRE RADAR |
|
283 | This applies to CLAIRE RADAR | |
284 |
|
284 | |||
285 | PositiveLimit : RightLimit of novalid data |
|
285 | PositiveLimit : RightLimit of novalid data | |
286 | NegativeLimit : LeftLimit of novalid data |
|
286 | NegativeLimit : LeftLimit of novalid data | |
287 |
|
287 | |||
288 | Input: |
|
288 | Input: | |
289 |
|
289 | |||
290 | self.dataOut.data_pre : SPC and CSPC |
|
290 | self.dataOut.data_pre : SPC and CSPC | |
291 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
291 | self.dataOut.spc_range : To select wind and rainfall velocities | |
292 |
|
292 | |||
293 | Affected: |
|
293 | Affected: | |
294 |
|
294 | |||
295 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
295 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
296 |
|
296 | |||
297 | Written by D. ScipiΓ³n 29.01.2021 |
|
297 | Written by D. ScipiΓ³n 29.01.2021 | |
298 | ''' |
|
298 | ''' | |
299 | def __init__(self): |
|
299 | def __init__(self): | |
300 | Operation.__init__(self) |
|
300 | Operation.__init__(self) | |
301 | self.i = 0 |
|
301 | self.i = 0 | |
302 |
|
302 | |||
303 | def run(self, dataOut, ): |
|
303 | def run(self, dataOut, ): | |
304 |
|
304 | |||
305 | self.spc = dataOut.data_pre[0].copy() |
|
305 | self.spc = dataOut.data_pre[0].copy() | |
306 | self.Num_Chn = self.spc.shape[0] |
|
306 | self.Num_Chn = self.spc.shape[0] | |
307 | VelRange = dataOut.spc_range[2] |
|
307 | VelRange = dataOut.spc_range[2] | |
308 |
|
308 | |||
309 | # novalid corresponds to data within the Negative and PositiveLimit |
|
309 | # novalid corresponds to data within the Negative and PositiveLimit | |
310 |
|
310 | |||
311 |
|
311 | |||
312 | # Removing novalid data from the spectra |
|
312 | # Removing novalid data from the spectra | |
313 | for i in range(self.Num_Chn): |
|
313 | for i in range(self.Num_Chn): | |
314 | self.spc[i,novalid,:] = dataOut.noise[i] |
|
314 | self.spc[i,novalid,:] = dataOut.noise[i] | |
315 | dataOut.data_pre[0] = self.spc |
|
315 | dataOut.data_pre[0] = self.spc | |
316 | return dataOut |
|
316 | return dataOut | |
317 |
|
317 | |||
318 |
|
318 | |||
319 |
|
319 | |||
320 | class GaussianFit(Operation): |
|
320 | class GaussianFit(Operation): | |
321 |
|
321 | |||
322 | ''' |
|
322 | ''' | |
323 | Function that fit of one and two generalized gaussians (gg) based |
|
323 | Function that fit of one and two generalized gaussians (gg) based | |
324 | on the PSD shape across an "power band" identified from a cumsum of |
|
324 | on the PSD shape across an "power band" identified from a cumsum of | |
325 | the measured spectrum - noise. |
|
325 | the measured spectrum - noise. | |
326 |
|
326 | |||
327 | Input: |
|
327 | Input: | |
328 | self.dataOut.data_pre : SelfSpectra |
|
328 | self.dataOut.data_pre : SelfSpectra | |
329 |
|
329 | |||
330 | Output: |
|
330 | Output: | |
331 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
331 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
332 |
|
332 | |||
333 | ''' |
|
333 | ''' | |
334 | def __init__(self): |
|
334 | def __init__(self): | |
335 | Operation.__init__(self) |
|
335 | Operation.__init__(self) | |
336 | self.i=0 |
|
336 | self.i=0 | |
337 |
|
337 | |||
338 |
|
338 | |||
339 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
339 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
340 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): |
|
340 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |
341 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
341 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
342 | methods: generalized, squared |
|
342 | methods: generalized, squared | |
343 | input: spc |
|
343 | input: spc | |
344 | output: |
|
344 | output: | |
345 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 |
|
345 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |
346 | """ |
|
346 | """ | |
347 | print ('Entering ',method,' double Gaussian fit') |
|
347 | print ('Entering ',method,' double Gaussian fit') | |
348 | self.spc = dataOut.data_pre[0].copy() |
|
348 | self.spc = dataOut.data_pre[0].copy() | |
349 | self.Num_Hei = self.spc.shape[2] |
|
349 | self.Num_Hei = self.spc.shape[2] | |
350 | self.Num_Bin = self.spc.shape[1] |
|
350 | self.Num_Bin = self.spc.shape[1] | |
351 | self.Num_Chn = self.spc.shape[0] |
|
351 | self.Num_Chn = self.spc.shape[0] | |
352 |
|
352 | |||
353 | start_time = time.time() |
|
353 | start_time = time.time() | |
354 |
|
354 | |||
355 | pool = Pool(processes=self.Num_Chn) |
|
355 | pool = Pool(processes=self.Num_Chn) | |
356 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] |
|
356 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |
357 | objs = [self for __ in range(self.Num_Chn)] |
|
357 | objs = [self for __ in range(self.Num_Chn)] | |
358 | attrs = list(zip(objs, args)) |
|
358 | attrs = list(zip(objs, args)) | |
359 | DGauFitParam = pool.map(target, attrs) |
|
359 | DGauFitParam = pool.map(target, attrs) | |
360 | # Parameters: |
|
360 | # Parameters: | |
361 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power |
|
361 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | |
362 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) |
|
362 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |
363 |
|
363 | |||
364 | # Double Gaussian Curves |
|
364 | # Double Gaussian Curves | |
365 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
365 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
366 | gau0[:] = numpy.NaN |
|
366 | gau0[:] = numpy.NaN | |
367 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
367 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
368 | gau1[:] = numpy.NaN |
|
368 | gau1[:] = numpy.NaN | |
369 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) |
|
369 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |
370 | for iCh in range(self.Num_Chn): |
|
370 | for iCh in range(self.Num_Chn): | |
371 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) |
|
371 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |
372 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) |
|
372 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |
373 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) |
|
373 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |
374 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) |
|
374 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |
375 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) |
|
375 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |
376 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) |
|
376 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |
377 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) |
|
377 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |
378 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) |
|
378 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |
379 | if method == 'generalized': |
|
379 | if method == 'generalized': | |
380 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) |
|
380 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |
381 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) |
|
381 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |
382 | elif method == 'squared': |
|
382 | elif method == 'squared': | |
383 | p0 = 2. |
|
383 | p0 = 2. | |
384 | p1 = 2. |
|
384 | p1 = 2. | |
385 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 |
|
385 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |
386 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 |
|
386 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |
387 | dataOut.GaussFit0 = gau0 |
|
387 | dataOut.GaussFit0 = gau0 | |
388 | dataOut.GaussFit1 = gau1 |
|
388 | dataOut.GaussFit1 = gau1 | |
389 |
|
389 | |||
390 | print('Leaving ',method ,' double Gaussian fit') |
|
390 | print('Leaving ',method ,' double Gaussian fit') | |
391 | return dataOut |
|
391 | return dataOut | |
392 |
|
392 | |||
393 | def FitGau(self, X): |
|
393 | def FitGau(self, X): | |
394 | # print('Entering FitGau') |
|
394 | # print('Entering FitGau') | |
395 | # Assigning the variables |
|
395 | # Assigning the variables | |
396 | Vrange, ch, wnoise, num_intg, SNRlimit = X |
|
396 | Vrange, ch, wnoise, num_intg, SNRlimit = X | |
397 | # Noise Limits |
|
397 | # Noise Limits | |
398 | noisebl = wnoise * 0.9 |
|
398 | noisebl = wnoise * 0.9 | |
399 | noisebh = wnoise * 1.1 |
|
399 | noisebh = wnoise * 1.1 | |
400 | # Radar Velocity |
|
400 | # Radar Velocity | |
401 | Va = max(Vrange) |
|
401 | Va = max(Vrange) | |
402 | deltav = Vrange[1] - Vrange[0] |
|
402 | deltav = Vrange[1] - Vrange[0] | |
403 | x = numpy.arange(self.Num_Bin) |
|
403 | x = numpy.arange(self.Num_Bin) | |
404 |
|
404 | |||
405 | # print ('stop 0') |
|
405 | # print ('stop 0') | |
406 |
|
406 | |||
407 | # 5 parameters, 2 Gaussians |
|
407 | # 5 parameters, 2 Gaussians | |
408 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) |
|
408 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |
409 | DGauFitParam[:] = numpy.NaN |
|
409 | DGauFitParam[:] = numpy.NaN | |
410 |
|
410 | |||
411 | # SPCparam = [] |
|
411 | # SPCparam = [] | |
412 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
412 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
413 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
413 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
414 | # SPC_ch1[:] = 0 #numpy.NaN |
|
414 | # SPC_ch1[:] = 0 #numpy.NaN | |
415 | # SPC_ch2[:] = 0 #numpy.NaN |
|
415 | # SPC_ch2[:] = 0 #numpy.NaN | |
416 | # print ('stop 1') |
|
416 | # print ('stop 1') | |
417 | for ht in range(self.Num_Hei): |
|
417 | for ht in range(self.Num_Hei): | |
418 | # print (ht) |
|
418 | # print (ht) | |
419 | # print ('stop 2') |
|
419 | # print ('stop 2') | |
420 | # Spectra at each range |
|
420 | # Spectra at each range | |
421 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
421 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
422 | snr = ( spc.mean() - wnoise ) / wnoise |
|
422 | snr = ( spc.mean() - wnoise ) / wnoise | |
423 | snrdB = 10.*numpy.log10(snr) |
|
423 | snrdB = 10.*numpy.log10(snr) | |
424 |
|
424 | |||
425 | #print ('stop 3') |
|
425 | #print ('stop 3') | |
426 | if snrdB < SNRlimit : |
|
426 | if snrdB < SNRlimit : | |
427 | # snr = numpy.NaN |
|
427 | # snr = numpy.NaN | |
428 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
428 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
429 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
429 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
430 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
430 | # SPCparam = (SPC_ch1,SPC_ch2) | |
431 | # print ('SNR less than SNRth') |
|
431 | # print ('SNR less than SNRth') | |
432 | continue |
|
432 | continue | |
433 | # wnoise = hildebrand_sekhon(spc,num_intg) |
|
433 | # wnoise = hildebrand_sekhon(spc,num_intg) | |
434 | # print ('stop 2.01') |
|
434 | # print ('stop 2.01') | |
435 | ############################################# |
|
435 | ############################################# | |
436 | # normalizing spc and noise |
|
436 | # normalizing spc and noise | |
437 | # This part differs from gg1 |
|
437 | # This part differs from gg1 | |
438 | # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021 |
|
438 | # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021 | |
439 | #spc = spc / spc_norm_max |
|
439 | #spc = spc / spc_norm_max | |
440 | # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 |
|
440 | # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 | |
441 | ############################################# |
|
441 | ############################################# | |
442 |
|
442 | |||
443 | # print ('stop 2.1') |
|
443 | # print ('stop 2.1') | |
444 | fatspectra=1.0 |
|
444 | fatspectra=1.0 | |
445 | # noise per channel.... we might want to use the noise at each range |
|
445 | # noise per channel.... we might want to use the noise at each range | |
446 |
|
446 | |||
447 | # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 |
|
447 | # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 | |
448 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
448 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
449 | #if wnoise>1.1*pnoise: # to be tested later |
|
449 | #if wnoise>1.1*pnoise: # to be tested later | |
450 | # wnoise=pnoise |
|
450 | # wnoise=pnoise | |
451 | # noisebl = wnoise*0.9 |
|
451 | # noisebl = wnoise*0.9 | |
452 | # noisebh = wnoise*1.1 |
|
452 | # noisebh = wnoise*1.1 | |
453 | spc = spc - wnoise # signal |
|
453 | spc = spc - wnoise # signal | |
454 |
|
454 | |||
455 | # print ('stop 2.2') |
|
455 | # print ('stop 2.2') | |
456 | minx = numpy.argmin(spc) |
|
456 | minx = numpy.argmin(spc) | |
457 | #spcs=spc.copy() |
|
457 | #spcs=spc.copy() | |
458 | spcs = numpy.roll(spc,-minx) |
|
458 | spcs = numpy.roll(spc,-minx) | |
459 | cum = numpy.cumsum(spcs) |
|
459 | cum = numpy.cumsum(spcs) | |
460 | # tot_noise = wnoise * self.Num_Bin #64; |
|
460 | # tot_noise = wnoise * self.Num_Bin #64; | |
461 |
|
461 | |||
462 | # print ('stop 2.3') |
|
462 | # print ('stop 2.3') | |
463 | # snr = sum(spcs) / tot_noise |
|
463 | # snr = sum(spcs) / tot_noise | |
464 | # snrdB = 10.*numpy.log10(snr) |
|
464 | # snrdB = 10.*numpy.log10(snr) | |
465 | #print ('stop 3') |
|
465 | #print ('stop 3') | |
466 | # if snrdB < SNRlimit : |
|
466 | # if snrdB < SNRlimit : | |
467 | # snr = numpy.NaN |
|
467 | # snr = numpy.NaN | |
468 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
468 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
469 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
469 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
470 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
470 | # SPCparam = (SPC_ch1,SPC_ch2) | |
471 | # print ('SNR less than SNRth') |
|
471 | # print ('SNR less than SNRth') | |
472 | # continue |
|
472 | # continue | |
473 |
|
473 | |||
474 |
|
474 | |||
475 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
475 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
476 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
476 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
477 | # print ('stop 4') |
|
477 | # print ('stop 4') | |
478 | cummax = max(cum) |
|
478 | cummax = max(cum) | |
479 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region |
|
479 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |
480 | cumlo = cummax * epsi |
|
480 | cumlo = cummax * epsi | |
481 | cumhi = cummax * (1-epsi) |
|
481 | cumhi = cummax * (1-epsi) | |
482 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
482 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
483 |
|
483 | |||
484 | # print ('stop 5') |
|
484 | # print ('stop 5') | |
485 | if len(powerindex) < 1:# case for powerindex 0 |
|
485 | if len(powerindex) < 1:# case for powerindex 0 | |
486 | # print ('powerindex < 1') |
|
486 | # print ('powerindex < 1') | |
487 | continue |
|
487 | continue | |
488 | powerlo = powerindex[0] |
|
488 | powerlo = powerindex[0] | |
489 | powerhi = powerindex[-1] |
|
489 | powerhi = powerindex[-1] | |
490 | powerwidth = powerhi-powerlo |
|
490 | powerwidth = powerhi-powerlo | |
491 | if powerwidth <= 1: |
|
491 | if powerwidth <= 1: | |
492 | # print('powerwidth <= 1') |
|
492 | # print('powerwidth <= 1') | |
493 | continue |
|
493 | continue | |
494 |
|
494 | |||
495 | # print ('stop 6') |
|
495 | # print ('stop 6') | |
496 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location |
|
496 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |
497 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location |
|
497 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |
498 | midpeak = (firstpeak + secondpeak)/2. |
|
498 | midpeak = (firstpeak + secondpeak)/2. | |
499 | firstamp = spcs[int(firstpeak)] |
|
499 | firstamp = spcs[int(firstpeak)] | |
500 | secondamp = spcs[int(secondpeak)] |
|
500 | secondamp = spcs[int(secondpeak)] | |
501 | midamp = spcs[int(midpeak)] |
|
501 | midamp = spcs[int(midpeak)] | |
502 |
|
502 | |||
503 | y_data = spc + wnoise |
|
503 | y_data = spc + wnoise | |
504 |
|
504 | |||
505 | ''' single Gaussian ''' |
|
505 | ''' single Gaussian ''' | |
506 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) |
|
506 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) | |
507 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
507 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
508 | power0 = 2. |
|
508 | power0 = 2. | |
509 | amplitude0 = midamp |
|
509 | amplitude0 = midamp | |
510 | state0 = [shift0,width0,amplitude0,power0,wnoise] |
|
510 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |
511 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
511 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
512 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) |
|
512 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |
513 | # print ('stop 7.1') |
|
513 | # print ('stop 7.1') | |
514 | # print (bnds) |
|
514 | # print (bnds) | |
515 |
|
515 | |||
516 | chiSq1=lsq1[1] |
|
516 | chiSq1=lsq1[1] | |
517 |
|
517 | |||
518 | # print ('stop 8') |
|
518 | # print ('stop 8') | |
519 | if fatspectra<1.0 and powerwidth<4: |
|
519 | if fatspectra<1.0 and powerwidth<4: | |
520 | choice=0 |
|
520 | choice=0 | |
521 | Amplitude0=lsq1[0][2] |
|
521 | Amplitude0=lsq1[0][2] | |
522 | shift0=lsq1[0][0] |
|
522 | shift0=lsq1[0][0] | |
523 | width0=lsq1[0][1] |
|
523 | width0=lsq1[0][1] | |
524 | p0=lsq1[0][3] |
|
524 | p0=lsq1[0][3] | |
525 | Amplitude1=0. |
|
525 | Amplitude1=0. | |
526 | shift1=0. |
|
526 | shift1=0. | |
527 | width1=0. |
|
527 | width1=0. | |
528 | p1=0. |
|
528 | p1=0. | |
529 | noise=lsq1[0][4] |
|
529 | noise=lsq1[0][4] | |
530 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
530 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
531 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
531 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
532 | # print ('stop 9') |
|
532 | # print ('stop 9') | |
533 | ''' two Gaussians ''' |
|
533 | ''' two Gaussians ''' | |
534 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
534 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
535 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) |
|
535 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |
536 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
536 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |
537 | width0 = powerwidth/6. |
|
537 | width0 = powerwidth/6. | |
538 | width1 = width0 |
|
538 | width1 = width0 | |
539 | power0 = 2. |
|
539 | power0 = 2. | |
540 | power1 = power0 |
|
540 | power1 = power0 | |
541 | amplitude0 = firstamp |
|
541 | amplitude0 = firstamp | |
542 | amplitude1 = secondamp |
|
542 | amplitude1 = secondamp | |
543 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
543 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
544 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
544 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
545 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
545 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
546 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
546 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
547 |
|
547 | |||
548 | # print ('stop 10') |
|
548 | # print ('stop 10') | |
549 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
549 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
550 |
|
550 | |||
551 | # print ('stop 11') |
|
551 | # print ('stop 11') | |
552 | chiSq2 = lsq2[1] |
|
552 | chiSq2 = lsq2[1] | |
553 |
|
553 | |||
554 | # print ('stop 12') |
|
554 | # print ('stop 12') | |
555 |
|
555 | |||
556 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
556 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
557 |
|
557 | |||
558 | # print ('stop 13') |
|
558 | # print ('stop 13') | |
559 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
559 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
560 | if oneG: |
|
560 | if oneG: | |
561 | choice = 0 |
|
561 | choice = 0 | |
562 | else: |
|
562 | else: | |
563 | w1 = lsq2[0][1]; w2 = lsq2[0][5] |
|
563 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |
564 | a1 = lsq2[0][2]; a2 = lsq2[0][6] |
|
564 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |
565 | p1 = lsq2[0][3]; p2 = lsq2[0][7] |
|
565 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |
566 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 |
|
566 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |
567 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 |
|
567 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |
568 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
568 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |
569 |
|
569 | |||
570 | if gp1>gp2: |
|
570 | if gp1>gp2: | |
571 | if a1>0.7*a2: |
|
571 | if a1>0.7*a2: | |
572 | choice = 1 |
|
572 | choice = 1 | |
573 | else: |
|
573 | else: | |
574 | choice = 2 |
|
574 | choice = 2 | |
575 | elif gp2>gp1: |
|
575 | elif gp2>gp1: | |
576 | if a2>0.7*a1: |
|
576 | if a2>0.7*a1: | |
577 | choice = 2 |
|
577 | choice = 2 | |
578 | else: |
|
578 | else: | |
579 | choice = 1 |
|
579 | choice = 1 | |
580 | else: |
|
580 | else: | |
581 | choice = numpy.argmax([a1,a2])+1 |
|
581 | choice = numpy.argmax([a1,a2])+1 | |
582 | #else: |
|
582 | #else: | |
583 | #choice=argmin([std2a,std2b])+1 |
|
583 | #choice=argmin([std2a,std2b])+1 | |
584 |
|
584 | |||
585 | else: # with low SNR go to the most energetic peak |
|
585 | else: # with low SNR go to the most energetic peak | |
586 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
586 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
587 |
|
587 | |||
588 | # print ('stop 14') |
|
588 | # print ('stop 14') | |
589 | shift0 = lsq2[0][0] |
|
589 | shift0 = lsq2[0][0] | |
590 | vel0 = Vrange[0] + shift0 * deltav |
|
590 | vel0 = Vrange[0] + shift0 * deltav | |
591 | shift1 = lsq2[0][4] |
|
591 | shift1 = lsq2[0][4] | |
592 | # vel1=Vrange[0] + shift1 * deltav |
|
592 | # vel1=Vrange[0] + shift1 * deltav | |
593 |
|
593 | |||
594 | # max_vel = 1.0 |
|
594 | # max_vel = 1.0 | |
595 | # Va = max(Vrange) |
|
595 | # Va = max(Vrange) | |
596 | # deltav = Vrange[1]-Vrange[0] |
|
596 | # deltav = Vrange[1]-Vrange[0] | |
597 | # print ('stop 15') |
|
597 | # print ('stop 15') | |
598 | #first peak will be 0, second peak will be 1 |
|
598 | #first peak will be 0, second peak will be 1 | |
599 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021 |
|
599 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021 | |
600 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range |
|
600 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |
601 | shift0 = lsq2[0][0] |
|
601 | shift0 = lsq2[0][0] | |
602 | width0 = lsq2[0][1] |
|
602 | width0 = lsq2[0][1] | |
603 | Amplitude0 = lsq2[0][2] |
|
603 | Amplitude0 = lsq2[0][2] | |
604 | p0 = lsq2[0][3] |
|
604 | p0 = lsq2[0][3] | |
605 |
|
605 | |||
606 | shift1 = lsq2[0][4] |
|
606 | shift1 = lsq2[0][4] | |
607 | width1 = lsq2[0][5] |
|
607 | width1 = lsq2[0][5] | |
608 | Amplitude1 = lsq2[0][6] |
|
608 | Amplitude1 = lsq2[0][6] | |
609 | p1 = lsq2[0][7] |
|
609 | p1 = lsq2[0][7] | |
610 | noise = lsq2[0][8] |
|
610 | noise = lsq2[0][8] | |
611 | else: |
|
611 | else: | |
612 | shift1 = lsq2[0][0] |
|
612 | shift1 = lsq2[0][0] | |
613 | width1 = lsq2[0][1] |
|
613 | width1 = lsq2[0][1] | |
614 | Amplitude1 = lsq2[0][2] |
|
614 | Amplitude1 = lsq2[0][2] | |
615 | p1 = lsq2[0][3] |
|
615 | p1 = lsq2[0][3] | |
616 |
|
616 | |||
617 | shift0 = lsq2[0][4] |
|
617 | shift0 = lsq2[0][4] | |
618 | width0 = lsq2[0][5] |
|
618 | width0 = lsq2[0][5] | |
619 | Amplitude0 = lsq2[0][6] |
|
619 | Amplitude0 = lsq2[0][6] | |
620 | p0 = lsq2[0][7] |
|
620 | p0 = lsq2[0][7] | |
621 | noise = lsq2[0][8] |
|
621 | noise = lsq2[0][8] | |
622 |
|
622 | |||
623 | if Amplitude0<0.05: # in case the peak is noise |
|
623 | if Amplitude0<0.05: # in case the peak is noise | |
624 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] |
|
624 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
625 | if Amplitude1<0.05: |
|
625 | if Amplitude1<0.05: | |
626 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] |
|
626 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
627 |
|
627 | |||
628 | # print ('stop 16 ') |
|
628 | # print ('stop 16 ') | |
629 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) |
|
629 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |
630 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) |
|
630 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |
631 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
631 | # SPCparam = (SPC_ch1,SPC_ch2) | |
632 |
|
632 | |||
633 | DGauFitParam[0,ht,0] = noise |
|
633 | DGauFitParam[0,ht,0] = noise | |
634 | DGauFitParam[0,ht,1] = noise |
|
634 | DGauFitParam[0,ht,1] = noise | |
635 | DGauFitParam[1,ht,0] = Amplitude0 |
|
635 | DGauFitParam[1,ht,0] = Amplitude0 | |
636 | DGauFitParam[1,ht,1] = Amplitude1 |
|
636 | DGauFitParam[1,ht,1] = Amplitude1 | |
637 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav |
|
637 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |
638 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav |
|
638 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |
639 | DGauFitParam[3,ht,0] = width0 * deltav |
|
639 | DGauFitParam[3,ht,0] = width0 * deltav | |
640 | DGauFitParam[3,ht,1] = width1 * deltav |
|
640 | DGauFitParam[3,ht,1] = width1 * deltav | |
641 | DGauFitParam[4,ht,0] = p0 |
|
641 | DGauFitParam[4,ht,0] = p0 | |
642 | DGauFitParam[4,ht,1] = p1 |
|
642 | DGauFitParam[4,ht,1] = p1 | |
643 |
|
643 | |||
644 | return DGauFitParam |
|
644 | return DGauFitParam | |
645 |
|
645 | |||
646 | def y_model1(self,x,state): |
|
646 | def y_model1(self,x,state): | |
647 | shift0, width0, amplitude0, power0, noise = state |
|
647 | shift0, width0, amplitude0, power0, noise = state | |
648 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) |
|
648 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |
649 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) |
|
649 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
650 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) |
|
650 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
651 | return model0 + model0u + model0d + noise |
|
651 | return model0 + model0u + model0d + noise | |
652 |
|
652 | |||
653 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
653 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
654 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state |
|
654 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |
655 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
655 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
656 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) |
|
656 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
657 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) |
|
657 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
658 |
|
658 | |||
659 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) |
|
659 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |
660 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) |
|
660 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |
661 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) |
|
661 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | |
662 | return model0 + model0u + model0d + model1 + model1u + model1d + noise |
|
662 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |
663 |
|
663 | |||
664 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
664 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
665 |
|
665 | |||
666 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
666 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
667 |
|
667 | |||
668 | def misfit2(self,state,y_data,x,num_intg): |
|
668 | def misfit2(self,state,y_data,x,num_intg): | |
669 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
669 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
670 |
|
670 | |||
671 | class Oblique_Gauss_Fit(Operation): |
|
671 | class Oblique_Gauss_Fit(Operation): | |
672 |
|
672 | |||
673 | def __init__(self): |
|
673 | def __init__(self): | |
674 | Operation.__init__(self) |
|
674 | Operation.__init__(self) | |
675 |
|
675 | |||
676 | def Gauss_fit(self,spc,x,nGauss): |
|
676 | def Gauss_fit(self,spc,x,nGauss): | |
677 |
|
677 | |||
678 |
|
678 | |||
679 | def gaussian(x, a, b, c, d): |
|
679 | def gaussian(x, a, b, c, d): | |
680 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d |
|
680 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |
681 | return val |
|
681 | return val | |
682 |
|
682 | |||
683 | if nGauss == 'first': |
|
683 | if nGauss == 'first': | |
684 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) |
|
684 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) | |
685 | spc_2_aux = numpy.flip(spc_1_aux) |
|
685 | spc_2_aux = numpy.flip(spc_1_aux) | |
686 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) |
|
686 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) | |
687 |
|
687 | |||
688 | len_dif = len(x)-len(spc_3_aux) |
|
688 | len_dif = len(x)-len(spc_3_aux) | |
689 |
|
689 | |||
690 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] |
|
690 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] | |
691 |
|
691 | |||
692 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) |
|
692 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) | |
693 |
|
693 | |||
694 | y = spc_new |
|
694 | y = spc_new | |
695 |
|
695 | |||
696 | elif nGauss == 'second': |
|
696 | elif nGauss == 'second': | |
697 | y = spc |
|
697 | y = spc | |
698 |
|
698 | |||
699 |
|
699 | |||
700 | # estimate starting values from the data |
|
700 | # estimate starting values from the data | |
701 | a = y.max() |
|
701 | a = y.max() | |
702 | b = x[numpy.argmax(y)] |
|
702 | b = x[numpy.argmax(y)] | |
703 | if nGauss == 'first': |
|
703 | if nGauss == 'first': | |
704 | c = 1.#b#b#numpy.std(spc) |
|
704 | c = 1.#b#b#numpy.std(spc) | |
705 | elif nGauss == 'second': |
|
705 | elif nGauss == 'second': | |
706 | c = b |
|
706 | c = b | |
707 | else: |
|
707 | else: | |
708 | print("ERROR") |
|
708 | print("ERROR") | |
709 |
|
709 | |||
710 | d = numpy.mean(y[-100:]) |
|
710 | d = numpy.mean(y[-100:]) | |
711 |
|
711 | |||
712 | # define a least squares function to optimize |
|
712 | # define a least squares function to optimize | |
713 | def minfunc(params): |
|
713 | def minfunc(params): | |
714 | return sum((y-gaussian(x,params[0],params[1],params[2],params[3]))**2) |
|
714 | return sum((y-gaussian(x,params[0],params[1],params[2],params[3]))**2) | |
715 |
|
715 | |||
716 | # fit |
|
716 | # fit | |
717 | popt = fmin(minfunc,[a,b,c,d],disp=False) |
|
717 | popt = fmin(minfunc,[a,b,c,d],disp=False) | |
718 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) |
|
718 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) | |
719 |
|
719 | |||
720 |
|
720 | |||
721 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] |
|
721 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] | |
722 |
|
722 | |||
723 |
|
723 | |||
724 | def Gauss_fit_2(self,spc,x,nGauss): |
|
724 | def Gauss_fit_2(self,spc,x,nGauss): | |
725 |
|
725 | |||
726 |
|
726 | |||
727 | def gaussian(x, a, b, c, d): |
|
727 | def gaussian(x, a, b, c, d): | |
728 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d |
|
728 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |
729 | return val |
|
729 | return val | |
730 |
|
730 | |||
731 | if nGauss == 'first': |
|
731 | if nGauss == 'first': | |
732 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) |
|
732 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) | |
733 | spc_2_aux = numpy.flip(spc_1_aux) |
|
733 | spc_2_aux = numpy.flip(spc_1_aux) | |
734 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) |
|
734 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) | |
735 |
|
735 | |||
736 | len_dif = len(x)-len(spc_3_aux) |
|
736 | len_dif = len(x)-len(spc_3_aux) | |
737 |
|
737 | |||
738 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] |
|
738 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] | |
739 |
|
739 | |||
740 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) |
|
740 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) | |
741 |
|
741 | |||
742 | y = spc_new |
|
742 | y = spc_new | |
743 |
|
743 | |||
744 | elif nGauss == 'second': |
|
744 | elif nGauss == 'second': | |
745 | y = spc |
|
745 | y = spc | |
746 |
|
746 | |||
747 |
|
747 | |||
748 | # estimate starting values from the data |
|
748 | # estimate starting values from the data | |
749 | a = y.max() |
|
749 | a = y.max() | |
750 | b = x[numpy.argmax(y)] |
|
750 | b = x[numpy.argmax(y)] | |
751 | if nGauss == 'first': |
|
751 | if nGauss == 'first': | |
752 | c = 1.#b#b#numpy.std(spc) |
|
752 | c = 1.#b#b#numpy.std(spc) | |
753 | elif nGauss == 'second': |
|
753 | elif nGauss == 'second': | |
754 | c = b |
|
754 | c = b | |
755 | else: |
|
755 | else: | |
756 | print("ERROR") |
|
756 | print("ERROR") | |
757 |
|
757 | |||
758 | d = numpy.mean(y[-100:]) |
|
758 | d = numpy.mean(y[-100:]) | |
759 |
|
759 | |||
760 | # define a least squares function to optimize |
|
760 | # define a least squares function to optimize | |
761 | popt,pcov = curve_fit(gaussian,x,y,p0=[a,b,c,d]) |
|
761 | popt,pcov = curve_fit(gaussian,x,y,p0=[a,b,c,d]) | |
762 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) |
|
762 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) | |
763 |
|
763 | |||
764 |
|
764 | |||
765 | #return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] |
|
765 | #return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] | |
766 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]),popt[0], popt[1], popt[2], popt[3] |
|
766 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]),popt[0], popt[1], popt[2], popt[3] | |
767 |
|
767 | |||
768 | def Double_Gauss_fit(self,spc,x,A1,B1,C1,A2,B2,C2,D): |
|
768 | def Double_Gauss_fit(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |
769 |
|
769 | |||
770 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): |
|
770 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |
771 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d |
|
771 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |
772 | return val |
|
772 | return val | |
773 |
|
773 | |||
774 |
|
774 | |||
775 | y = spc |
|
775 | y = spc | |
776 |
|
776 | |||
777 | # estimate starting values from the data |
|
777 | # estimate starting values from the data | |
778 | a1 = A1 |
|
778 | a1 = A1 | |
779 | b1 = B1 |
|
779 | b1 = B1 | |
780 | c1 = C1#numpy.std(spc) |
|
780 | c1 = C1#numpy.std(spc) | |
781 |
|
781 | |||
782 | a2 = A2#y.max() |
|
782 | a2 = A2#y.max() | |
783 | b2 = B2#x[numpy.argmax(y)] |
|
783 | b2 = B2#x[numpy.argmax(y)] | |
784 | c2 = C2#numpy.std(spc) |
|
784 | c2 = C2#numpy.std(spc) | |
785 | d = D |
|
785 | d = D | |
786 |
|
786 | |||
787 | # define a least squares function to optimize |
|
787 | # define a least squares function to optimize | |
788 | def minfunc(params): |
|
788 | def minfunc(params): | |
789 | return sum((y-double_gaussian(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2) |
|
789 | return sum((y-double_gaussian(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2) | |
790 |
|
790 | |||
791 | # fit |
|
791 | # fit | |
792 | popt = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d],disp=False) |
|
792 | popt = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d],disp=False) | |
793 |
|
793 | |||
794 | return double_gaussian(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] |
|
794 | return double_gaussian(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |
795 |
|
795 | |||
796 | def Double_Gauss_fit_2(self,spc,x,A1,B1,C1,A2,B2,C2,D): |
|
796 | def Double_Gauss_fit_2(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |
797 |
|
797 | |||
798 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): |
|
798 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |
799 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d |
|
799 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |
800 | return val |
|
800 | return val | |
801 |
|
801 | |||
802 |
|
802 | |||
803 | y = spc |
|
803 | y = spc | |
804 |
|
804 | |||
805 | # estimate starting values from the data |
|
805 | # estimate starting values from the data | |
806 | a1 = A1 |
|
806 | a1 = A1 | |
807 | b1 = B1 |
|
807 | b1 = B1 | |
808 | c1 = C1#numpy.std(spc) |
|
808 | c1 = C1#numpy.std(spc) | |
809 |
|
809 | |||
810 | a2 = A2#y.max() |
|
810 | a2 = A2#y.max() | |
811 | b2 = B2#x[numpy.argmax(y)] |
|
811 | b2 = B2#x[numpy.argmax(y)] | |
812 | c2 = C2#numpy.std(spc) |
|
812 | c2 = C2#numpy.std(spc) | |
813 | d = D |
|
813 | d = D | |
814 |
|
814 | |||
815 | # fit |
|
815 | # fit | |
816 |
|
816 | |||
817 | popt,pcov = curve_fit(double_gaussian,x,y,p0=[a1,b1,c1,a2,b2,c2,d]) |
|
817 | popt,pcov = curve_fit(double_gaussian,x,y,p0=[a1,b1,c1,a2,b2,c2,d]) | |
818 |
|
818 | |||
819 | error = numpy.sqrt(numpy.diag(pcov)) |
|
819 | error = numpy.sqrt(numpy.diag(pcov)) | |
820 |
|
820 | |||
821 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6], error[0], error[1], error[2], error[3], error[4], error[5], error[6] |
|
821 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6], error[0], error[1], error[2], error[3], error[4], error[5], error[6] | |
822 |
|
822 | |||
823 | def run(self, dataOut): |
|
823 | def run(self, dataOut): | |
824 |
|
824 | |||
825 | pwcode = 1 |
|
825 | pwcode = 1 | |
826 |
|
826 | |||
827 | if dataOut.flagDecodeData: |
|
827 | if dataOut.flagDecodeData: | |
828 | pwcode = numpy.sum(dataOut.code[0]**2) |
|
828 | pwcode = numpy.sum(dataOut.code[0]**2) | |
829 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
829 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
830 | normFactor = dataOut.nProfiles * dataOut.nIncohInt * dataOut.nCohInt * pwcode * dataOut.windowOfFilter |
|
830 | normFactor = dataOut.nProfiles * dataOut.nIncohInt * dataOut.nCohInt * pwcode * dataOut.windowOfFilter | |
831 | factor = normFactor |
|
831 | factor = normFactor | |
832 | z = dataOut.data_spc / factor |
|
832 | z = dataOut.data_spc / factor | |
833 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
833 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
834 | dataOut.power = numpy.average(z, axis=1) |
|
834 | dataOut.power = numpy.average(z, axis=1) | |
835 | dataOut.powerdB = 10 * numpy.log10(dataOut.power) |
|
835 | dataOut.powerdB = 10 * numpy.log10(dataOut.power) | |
836 |
|
836 | |||
837 |
|
837 | |||
838 | x = dataOut.getVelRange(0) |
|
838 | x = dataOut.getVelRange(0) | |
839 |
|
839 | |||
840 | dataOut.Oblique_params = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN |
|
840 | dataOut.Oblique_params = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |
841 | dataOut.Oblique_param_errors = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN |
|
841 | dataOut.Oblique_param_errors = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |
842 |
|
842 | |||
843 | dataOut.VelRange = x |
|
843 | dataOut.VelRange = x | |
844 |
|
844 | |||
845 |
|
845 | |||
846 | l1=range(22,36) |
|
846 | l1=range(22,36) | |
847 | l2=range(58,99) |
|
847 | l2=range(58,99) | |
848 |
|
848 | |||
849 | for hei in itertools.chain(l1, l2): |
|
849 | for hei in itertools.chain(l1, l2): | |
850 |
|
850 | |||
851 | try: |
|
851 | try: | |
852 | spc = dataOut.data_spc[0,:,hei] |
|
852 | spc = dataOut.data_spc[0,:,hei] | |
853 |
|
853 | |||
854 | spc_fit, A1, B1, C1, D1 = self.Gauss_fit_2(spc,x,'first') |
|
854 | spc_fit, A1, B1, C1, D1 = self.Gauss_fit_2(spc,x,'first') | |
855 |
|
855 | |||
856 | spc_diff = spc - spc_fit |
|
856 | spc_diff = spc - spc_fit | |
857 | spc_diff[spc_diff < 0] = 0 |
|
857 | spc_diff[spc_diff < 0] = 0 | |
858 |
|
858 | |||
859 | spc_fit_diff, A2, B2, C2, D2 = self.Gauss_fit_2(spc_diff,x,'second') |
|
859 | spc_fit_diff, A2, B2, C2, D2 = self.Gauss_fit_2(spc_diff,x,'second') | |
860 |
|
860 | |||
861 | D = (D1+D2) |
|
861 | D = (D1+D2) | |
862 |
|
862 | |||
863 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_param_errors[0,0,hei],dataOut.Oblique_param_errors[0,1,hei],dataOut.Oblique_param_errors[0,2,hei],dataOut.Oblique_param_errors[0,3,hei],dataOut.Oblique_param_errors[0,4,hei],dataOut.Oblique_param_errors[0,5,hei],dataOut.Oblique_param_errors[0,6,hei] = self.Double_Gauss_fit_2(spc,x,A1,B1,C1,A2,B2,C2,D) |
|
863 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_param_errors[0,0,hei],dataOut.Oblique_param_errors[0,1,hei],dataOut.Oblique_param_errors[0,2,hei],dataOut.Oblique_param_errors[0,3,hei],dataOut.Oblique_param_errors[0,4,hei],dataOut.Oblique_param_errors[0,5,hei],dataOut.Oblique_param_errors[0,6,hei] = self.Double_Gauss_fit_2(spc,x,A1,B1,C1,A2,B2,C2,D) | |
864 | #spc_double_fit,dataOut.Oblique_params = self.Double_Gauss_fit(spc,x,A1,B1,C1,A2,B2,C2,D) |
|
864 | #spc_double_fit,dataOut.Oblique_params = self.Double_Gauss_fit(spc,x,A1,B1,C1,A2,B2,C2,D) | |
865 |
|
865 | |||
866 | except: |
|
866 | except: | |
867 | ###dataOut.Oblique_params[0,:,hei] = dataOut.Oblique_params[0,:,hei]*numpy.NAN |
|
867 | ###dataOut.Oblique_params[0,:,hei] = dataOut.Oblique_params[0,:,hei]*numpy.NAN | |
868 | pass |
|
868 | pass | |
869 |
|
869 | |||
870 | return dataOut |
|
870 | return dataOut | |
871 |
|
871 | |||
872 | class PrecipitationProc(Operation): |
|
872 | class PrecipitationProc(Operation): | |
873 |
|
873 | |||
874 | ''' |
|
874 | ''' | |
875 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
875 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
876 |
|
876 | |||
877 | Input: |
|
877 | Input: | |
878 | self.dataOut.data_pre : SelfSpectra |
|
878 | self.dataOut.data_pre : SelfSpectra | |
879 |
|
879 | |||
880 | Output: |
|
880 | Output: | |
881 |
|
881 | |||
882 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
882 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
883 |
|
883 | |||
884 |
|
884 | |||
885 | Parameters affected: |
|
885 | Parameters affected: | |
886 | ''' |
|
886 | ''' | |
887 |
|
887 | |||
888 | def __init__(self): |
|
888 | def __init__(self): | |
889 | Operation.__init__(self) |
|
889 | Operation.__init__(self) | |
890 | self.i=0 |
|
890 | self.i=0 | |
891 |
|
891 | |||
892 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
892 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
893 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350, SNRdBlimit=-30, |
|
893 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350, SNRdBlimit=-30, | |
894 | channel=None): |
|
894 | channel=None): | |
895 |
|
895 | |||
896 | # print ('Entering PrecepitationProc ... ') |
|
896 | # print ('Entering PrecepitationProc ... ') | |
897 |
|
897 | |||
898 | if radar == "MIRA35C" : |
|
898 | if radar == "MIRA35C" : | |
899 |
|
899 | |||
900 | self.spc = dataOut.data_pre[0].copy() |
|
900 | self.spc = dataOut.data_pre[0].copy() | |
901 | self.Num_Hei = self.spc.shape[2] |
|
901 | self.Num_Hei = self.spc.shape[2] | |
902 | self.Num_Bin = self.spc.shape[1] |
|
902 | self.Num_Bin = self.spc.shape[1] | |
903 | self.Num_Chn = self.spc.shape[0] |
|
903 | self.Num_Chn = self.spc.shape[0] | |
904 | Ze = self.dBZeMODE2(dataOut) |
|
904 | Ze = self.dBZeMODE2(dataOut) | |
905 |
|
905 | |||
906 | else: |
|
906 | else: | |
907 |
|
907 | |||
908 | self.spc = dataOut.data_pre[0].copy() |
|
908 | self.spc = dataOut.data_pre[0].copy() | |
909 |
|
909 | |||
910 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX |
|
910 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX | |
911 | self.spc[:,:,0:7]= numpy.NaN |
|
911 | self.spc[:,:,0:7]= numpy.NaN | |
912 |
|
912 | |||
913 | self.Num_Hei = self.spc.shape[2] |
|
913 | self.Num_Hei = self.spc.shape[2] | |
914 | self.Num_Bin = self.spc.shape[1] |
|
914 | self.Num_Bin = self.spc.shape[1] | |
915 | self.Num_Chn = self.spc.shape[0] |
|
915 | self.Num_Chn = self.spc.shape[0] | |
916 |
|
916 | |||
917 | VelRange = dataOut.spc_range[2] |
|
917 | VelRange = dataOut.spc_range[2] | |
918 |
|
918 | |||
919 | ''' Se obtiene la constante del RADAR ''' |
|
919 | ''' Se obtiene la constante del RADAR ''' | |
920 |
|
920 | |||
921 | self.Pt = Pt |
|
921 | self.Pt = Pt | |
922 | self.Gt = Gt |
|
922 | self.Gt = Gt | |
923 | self.Gr = Gr |
|
923 | self.Gr = Gr | |
924 | self.Lambda = Lambda |
|
924 | self.Lambda = Lambda | |
925 | self.aL = aL |
|
925 | self.aL = aL | |
926 | self.tauW = tauW |
|
926 | self.tauW = tauW | |
927 | self.ThetaT = ThetaT |
|
927 | self.ThetaT = ThetaT | |
928 | self.ThetaR = ThetaR |
|
928 | self.ThetaR = ThetaR | |
929 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB |
|
929 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB | |
930 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB |
|
930 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB | |
931 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB |
|
931 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB | |
932 |
|
932 | |||
933 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
933 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
934 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
934 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
935 | RadarConstant = 10e-26 * Numerator / Denominator # |
|
935 | RadarConstant = 10e-26 * Numerator / Denominator # | |
936 | ExpConstant = 10**(40/10) #Constante Experimental |
|
936 | ExpConstant = 10**(40/10) #Constante Experimental | |
937 |
|
937 | |||
938 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
938 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
939 | for i in range(self.Num_Chn): |
|
939 | for i in range(self.Num_Chn): | |
940 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] |
|
940 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] | |
941 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 |
|
941 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 | |
942 |
|
942 | |||
943 | if channel is None: |
|
943 | if channel is None: | |
944 | SPCmean = numpy.mean(SignalPower, 0) |
|
944 | SPCmean = numpy.mean(SignalPower, 0) | |
945 | else: |
|
945 | else: | |
946 | SPCmean = SignalPower[channel] |
|
946 | SPCmean = SignalPower[channel] | |
947 | Pr = SPCmean[:,:]/dataOut.normFactor |
|
947 | Pr = SPCmean[:,:]/dataOut.normFactor | |
948 |
|
948 | |||
949 | # Declaring auxiliary variables |
|
949 | # Declaring auxiliary variables | |
950 | Range = dataOut.heightList*1000. #Range in m |
|
950 | Range = dataOut.heightList*1000. #Range in m | |
951 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] |
|
951 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] | |
952 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) |
|
952 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) | |
953 | zMtrx = rMtrx+Altitude |
|
953 | zMtrx = rMtrx+Altitude | |
954 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] |
|
954 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] | |
955 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) |
|
955 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) | |
956 |
|
956 | |||
957 | # height dependence to air density Foote and Du Toit (1969) |
|
957 | # height dependence to air density Foote and Du Toit (1969) | |
958 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 |
|
958 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 | |
959 | VMtrx = VelMtrx / delv_z #Normalized velocity |
|
959 | VMtrx = VelMtrx / delv_z #Normalized velocity | |
960 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN |
|
960 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN | |
961 | # Diameter is related to the fall speed of falling drops |
|
961 | # Diameter is related to the fall speed of falling drops | |
962 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] |
|
962 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] | |
963 | # Only valid for D>= 0.16 mm |
|
963 | # Only valid for D>= 0.16 mm | |
964 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN |
|
964 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN | |
965 |
|
965 | |||
966 | #Calculate Radar Reflectivity ETAn |
|
966 | #Calculate Radar Reflectivity ETAn | |
967 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) |
|
967 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) | |
968 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z |
|
968 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z | |
969 | # Radar Cross Section |
|
969 | # Radar Cross Section | |
970 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 |
|
970 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 | |
971 | # Drop Size Distribution |
|
971 | # Drop Size Distribution | |
972 | DSD = ETAn / sigmaD |
|
972 | DSD = ETAn / sigmaD | |
973 | # Equivalente Reflectivy |
|
973 | # Equivalente Reflectivy | |
974 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) |
|
974 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) | |
975 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] |
|
975 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] | |
976 | # RainFall Rate |
|
976 | # RainFall Rate | |
977 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr |
|
977 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr | |
978 |
|
978 | |||
979 | # Censoring the data |
|
979 | # Censoring the data | |
980 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal |
|
980 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal | |
981 | SNRth = 10**(SNRdBlimit/10) #-30dB |
|
981 | SNRth = 10**(SNRdBlimit/10) #-30dB | |
982 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better |
|
982 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better | |
983 | W = numpy.nanmean(dataOut.data_dop,0) |
|
983 | W = numpy.nanmean(dataOut.data_dop,0) | |
984 | W[novalid] = numpy.NaN |
|
984 | W[novalid] = numpy.NaN | |
985 | Ze_org[novalid] = numpy.NaN |
|
985 | Ze_org[novalid] = numpy.NaN | |
986 | RR[novalid] = numpy.NaN |
|
986 | RR[novalid] = numpy.NaN | |
987 |
|
987 | |||
988 | dataOut.data_output = RR[8] |
|
988 | dataOut.data_output = RR[8] | |
989 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
989 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
990 | dataOut.channelList = [0,1,2] |
|
990 | dataOut.channelList = [0,1,2] | |
991 |
|
991 | |||
992 | dataOut.data_param[0]=10*numpy.log10(Ze_org) |
|
992 | dataOut.data_param[0]=10*numpy.log10(Ze_org) | |
993 | dataOut.data_param[1]=-W |
|
993 | dataOut.data_param[1]=-W | |
994 | dataOut.data_param[2]=RR |
|
994 | dataOut.data_param[2]=RR | |
995 |
|
995 | |||
996 | # print ('Leaving PrecepitationProc ... ') |
|
996 | # print ('Leaving PrecepitationProc ... ') | |
997 | return dataOut |
|
997 | return dataOut | |
998 |
|
998 | |||
999 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
999 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
1000 |
|
1000 | |||
1001 | NPW = dataOut.NPW |
|
1001 | NPW = dataOut.NPW | |
1002 | COFA = dataOut.COFA |
|
1002 | COFA = dataOut.COFA | |
1003 |
|
1003 | |||
1004 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
1004 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
1005 | RadarConst = dataOut.RadarConst |
|
1005 | RadarConst = dataOut.RadarConst | |
1006 | #frequency = 34.85*10**9 |
|
1006 | #frequency = 34.85*10**9 | |
1007 |
|
1007 | |||
1008 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
1008 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
1009 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
1009 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
1010 |
|
1010 | |||
1011 | ETA = numpy.sum(SNR,1) |
|
1011 | ETA = numpy.sum(SNR,1) | |
1012 |
|
1012 | |||
1013 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) |
|
1013 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) | |
1014 |
|
1014 | |||
1015 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
1015 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
1016 |
|
1016 | |||
1017 | for r in range(self.Num_Hei): |
|
1017 | for r in range(self.Num_Hei): | |
1018 |
|
1018 | |||
1019 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
1019 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
1020 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
1020 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
1021 |
|
1021 | |||
1022 | return Ze |
|
1022 | return Ze | |
1023 |
|
1023 | |||
1024 | # def GetRadarConstant(self): |
|
1024 | # def GetRadarConstant(self): | |
1025 | # |
|
1025 | # | |
1026 | # """ |
|
1026 | # """ | |
1027 | # Constants: |
|
1027 | # Constants: | |
1028 | # |
|
1028 | # | |
1029 | # Pt: Transmission Power dB 5kW 5000 |
|
1029 | # Pt: Transmission Power dB 5kW 5000 | |
1030 | # Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
1030 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
1031 | # Gr: Reception Gain dB 18.5 dB 70.7945 |
|
1031 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
1032 | # Lambda: Wavelenght m 0.6741 m 0.6741 |
|
1032 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
1033 | # aL: Attenuation loses dB 4dB 2.5118 |
|
1033 | # aL: Attenuation loses dB 4dB 2.5118 | |
1034 | # tauW: Width of transmission pulse s 4us 4e-6 |
|
1034 | # tauW: Width of transmission pulse s 4us 4e-6 | |
1035 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
1035 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
1036 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
1036 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
1037 | # |
|
1037 | # | |
1038 | # """ |
|
1038 | # """ | |
1039 | # |
|
1039 | # | |
1040 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
1040 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
1041 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
1041 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
1042 | # RadarConstant = Numerator / Denominator |
|
1042 | # RadarConstant = Numerator / Denominator | |
1043 | # |
|
1043 | # | |
1044 | # return RadarConstant |
|
1044 | # return RadarConstant | |
1045 |
|
1045 | |||
1046 |
|
1046 | |||
1047 | class FullSpectralAnalysis(Operation): |
|
1047 | class FullSpectralAnalysis(Operation): | |
1048 |
|
1048 | |||
1049 | """ |
|
1049 | """ | |
1050 | Function that implements Full Spectral Analysis technique. |
|
1050 | Function that implements Full Spectral Analysis technique. | |
1051 |
|
1051 | |||
1052 | Input: |
|
1052 | Input: | |
1053 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data |
|
1053 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data | |
1054 | self.dataOut.groupList : Pairlist of channels |
|
1054 | self.dataOut.groupList : Pairlist of channels | |
1055 | self.dataOut.ChanDist : Physical distance between receivers |
|
1055 | self.dataOut.ChanDist : Physical distance between receivers | |
1056 |
|
1056 | |||
1057 |
|
1057 | |||
1058 | Output: |
|
1058 | Output: | |
1059 |
|
1059 | |||
1060 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind |
|
1060 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind | |
1061 |
|
1061 | |||
1062 |
|
1062 | |||
1063 | Parameters affected: Winds, height range, SNR |
|
1063 | Parameters affected: Winds, height range, SNR | |
1064 |
|
1064 | |||
1065 | """ |
|
1065 | """ | |
1066 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, |
|
1066 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, | |
1067 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): |
|
1067 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): | |
1068 |
|
1068 | |||
1069 | spc = dataOut.data_pre[0].copy() |
|
1069 | spc = dataOut.data_pre[0].copy() | |
1070 | cspc = dataOut.data_pre[1] |
|
1070 | cspc = dataOut.data_pre[1] | |
1071 | nHeights = spc.shape[2] |
|
1071 | nHeights = spc.shape[2] | |
1072 |
|
1072 | |||
1073 | # first_height = 0.75 #km (ref: data header 20170822) |
|
1073 | # first_height = 0.75 #km (ref: data header 20170822) | |
1074 | # resolution_height = 0.075 #km |
|
1074 | # resolution_height = 0.075 #km | |
1075 | ''' |
|
1075 | ''' | |
1076 | finding height range. check this when radar parameters are changed! |
|
1076 | finding height range. check this when radar parameters are changed! | |
1077 | ''' |
|
1077 | ''' | |
1078 | if maxheight is not None: |
|
1078 | if maxheight is not None: | |
1079 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical |
|
1079 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical | |
1080 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better |
|
1080 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better | |
1081 | else: |
|
1081 | else: | |
1082 | range_max = nHeights |
|
1082 | range_max = nHeights | |
1083 | if minheight is not None: |
|
1083 | if minheight is not None: | |
1084 | # range_min = int((minheight - first_height) / resolution_height) # theoretical |
|
1084 | # range_min = int((minheight - first_height) / resolution_height) # theoretical | |
1085 | range_min = int(13.26 * minheight - 5) # empirical, works better |
|
1085 | range_min = int(13.26 * minheight - 5) # empirical, works better | |
1086 | if range_min < 0: |
|
1086 | if range_min < 0: | |
1087 | range_min = 0 |
|
1087 | range_min = 0 | |
1088 | else: |
|
1088 | else: | |
1089 | range_min = 0 |
|
1089 | range_min = 0 | |
1090 |
|
1090 | |||
1091 | pairsList = dataOut.groupList |
|
1091 | pairsList = dataOut.groupList | |
1092 | if dataOut.ChanDist is not None : |
|
1092 | if dataOut.ChanDist is not None : | |
1093 | ChanDist = dataOut.ChanDist |
|
1093 | ChanDist = dataOut.ChanDist | |
1094 | else: |
|
1094 | else: | |
1095 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) |
|
1095 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
1096 |
|
1096 | |||
1097 | # 4 variables: zonal, meridional, vertical, and average SNR |
|
1097 | # 4 variables: zonal, meridional, vertical, and average SNR | |
1098 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN |
|
1098 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN | |
1099 | velocityX = numpy.zeros([nHeights]) * numpy.NaN |
|
1099 | velocityX = numpy.zeros([nHeights]) * numpy.NaN | |
1100 | velocityY = numpy.zeros([nHeights]) * numpy.NaN |
|
1100 | velocityY = numpy.zeros([nHeights]) * numpy.NaN | |
1101 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN |
|
1101 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN | |
1102 |
|
1102 | |||
1103 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) |
|
1103 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) | |
1104 |
|
1104 | |||
1105 | '''***********************************************WIND ESTIMATION**************************************''' |
|
1105 | '''***********************************************WIND ESTIMATION**************************************''' | |
1106 | for Height in range(nHeights): |
|
1106 | for Height in range(nHeights): | |
1107 |
|
1107 | |||
1108 | if Height >= range_min and Height < range_max: |
|
1108 | if Height >= range_min and Height < range_max: | |
1109 | # error_code will be useful in future analysis |
|
1109 | # error_code will be useful in future analysis | |
1110 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, |
|
1110 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, | |
1111 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) |
|
1111 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) | |
1112 |
|
1112 | |||
1113 | if abs(Vzon) < 100. and abs(Vmer) < 100.: |
|
1113 | if abs(Vzon) < 100. and abs(Vmer) < 100.: | |
1114 | velocityX[Height] = Vzon |
|
1114 | velocityX[Height] = Vzon | |
1115 | velocityY[Height] = -Vmer |
|
1115 | velocityY[Height] = -Vmer | |
1116 | velocityZ[Height] = Vver |
|
1116 | velocityZ[Height] = Vver | |
1117 |
|
1117 | |||
1118 | # Censoring data with SNR threshold |
|
1118 | # Censoring data with SNR threshold | |
1119 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN |
|
1119 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN | |
1120 |
|
1120 | |||
1121 | data_param[0] = velocityX |
|
1121 | data_param[0] = velocityX | |
1122 | data_param[1] = velocityY |
|
1122 | data_param[1] = velocityY | |
1123 | data_param[2] = velocityZ |
|
1123 | data_param[2] = velocityZ | |
1124 | data_param[3] = dbSNR |
|
1124 | data_param[3] = dbSNR | |
1125 | dataOut.data_param = data_param |
|
1125 | dataOut.data_param = data_param | |
1126 | return dataOut |
|
1126 | return dataOut | |
1127 |
|
1127 | |||
1128 | def moving_average(self,x, N=2): |
|
1128 | def moving_average(self,x, N=2): | |
1129 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ |
|
1129 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ | |
1130 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
1130 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
1131 |
|
1131 | |||
1132 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
1132 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
1133 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) |
|
1133 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) | |
1134 |
|
1134 | |||
1135 | def Moments(self, ySamples, xSamples): |
|
1135 | def Moments(self, ySamples, xSamples): | |
1136 | Power = numpy.nanmean(ySamples) # Power, 0th Moment |
|
1136 | Power = numpy.nanmean(ySamples) # Power, 0th Moment | |
1137 | yNorm = ySamples / numpy.nansum(ySamples) |
|
1137 | yNorm = ySamples / numpy.nansum(ySamples) | |
1138 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment |
|
1138 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment | |
1139 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment |
|
1139 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment | |
1140 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral |
|
1140 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral | |
1141 | return numpy.array([Power,RadVel,StdDev]) |
|
1141 | return numpy.array([Power,RadVel,StdDev]) | |
1142 |
|
1142 | |||
1143 | def StopWindEstimation(self, error_code): |
|
1143 | def StopWindEstimation(self, error_code): | |
1144 | Vzon = numpy.NaN |
|
1144 | Vzon = numpy.NaN | |
1145 | Vmer = numpy.NaN |
|
1145 | Vmer = numpy.NaN | |
1146 | Vver = numpy.NaN |
|
1146 | Vver = numpy.NaN | |
1147 | return Vzon, Vmer, Vver, error_code |
|
1147 | return Vzon, Vmer, Vver, error_code | |
1148 |
|
1148 | |||
1149 | def AntiAliasing(self, interval, maxstep): |
|
1149 | def AntiAliasing(self, interval, maxstep): | |
1150 | """ |
|
1150 | """ | |
1151 | function to prevent errors from aliased values when computing phaseslope |
|
1151 | function to prevent errors from aliased values when computing phaseslope | |
1152 | """ |
|
1152 | """ | |
1153 | antialiased = numpy.zeros(len(interval)) |
|
1153 | antialiased = numpy.zeros(len(interval)) | |
1154 | copyinterval = interval.copy() |
|
1154 | copyinterval = interval.copy() | |
1155 |
|
1155 | |||
1156 | antialiased[0] = copyinterval[0] |
|
1156 | antialiased[0] = copyinterval[0] | |
1157 |
|
1157 | |||
1158 | for i in range(1,len(antialiased)): |
|
1158 | for i in range(1,len(antialiased)): | |
1159 | step = interval[i] - interval[i-1] |
|
1159 | step = interval[i] - interval[i-1] | |
1160 | if step > maxstep: |
|
1160 | if step > maxstep: | |
1161 | copyinterval -= 2*numpy.pi |
|
1161 | copyinterval -= 2*numpy.pi | |
1162 | antialiased[i] = copyinterval[i] |
|
1162 | antialiased[i] = copyinterval[i] | |
1163 | elif step < maxstep*(-1): |
|
1163 | elif step < maxstep*(-1): | |
1164 | copyinterval += 2*numpy.pi |
|
1164 | copyinterval += 2*numpy.pi | |
1165 | antialiased[i] = copyinterval[i] |
|
1165 | antialiased[i] = copyinterval[i] | |
1166 | else: |
|
1166 | else: | |
1167 | antialiased[i] = copyinterval[i].copy() |
|
1167 | antialiased[i] = copyinterval[i].copy() | |
1168 |
|
1168 | |||
1169 | return antialiased |
|
1169 | return antialiased | |
1170 |
|
1170 | |||
1171 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): |
|
1171 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): | |
1172 | """ |
|
1172 | """ | |
1173 | Function that Calculates Zonal, Meridional and Vertical wind velocities. |
|
1173 | Function that Calculates Zonal, Meridional and Vertical wind velocities. | |
1174 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. |
|
1174 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. | |
1175 |
|
1175 | |||
1176 | Input: |
|
1176 | Input: | |
1177 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. |
|
1177 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. | |
1178 | pairsList : Pairlist of channels |
|
1178 | pairsList : Pairlist of channels | |
1179 | ChanDist : array of xi_ij and eta_ij |
|
1179 | ChanDist : array of xi_ij and eta_ij | |
1180 | Height : height at which data is processed |
|
1180 | Height : height at which data is processed | |
1181 | noise : noise in [channels] format for specific height |
|
1181 | noise : noise in [channels] format for specific height | |
1182 | Abbsisarange : range of the frequencies or velocities |
|
1182 | Abbsisarange : range of the frequencies or velocities | |
1183 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit |
|
1183 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit | |
1184 |
|
1184 | |||
1185 | Output: |
|
1185 | Output: | |
1186 | Vzon, Vmer, Vver : wind velocities |
|
1186 | Vzon, Vmer, Vver : wind velocities | |
1187 | error_code : int that states where code is terminated |
|
1187 | error_code : int that states where code is terminated | |
1188 |
|
1188 | |||
1189 | 0 : no error detected |
|
1189 | 0 : no error detected | |
1190 | 1 : Gaussian of mean spc exceeds widthlimit |
|
1190 | 1 : Gaussian of mean spc exceeds widthlimit | |
1191 | 2 : no Gaussian of mean spc found |
|
1191 | 2 : no Gaussian of mean spc found | |
1192 | 3 : SNR to low or velocity to high -> prec. e.g. |
|
1192 | 3 : SNR to low or velocity to high -> prec. e.g. | |
1193 | 4 : at least one Gaussian of cspc exceeds widthlimit |
|
1193 | 4 : at least one Gaussian of cspc exceeds widthlimit | |
1194 | 5 : zero out of three cspc Gaussian fits converged |
|
1194 | 5 : zero out of three cspc Gaussian fits converged | |
1195 | 6 : phase slope fit could not be found |
|
1195 | 6 : phase slope fit could not be found | |
1196 | 7 : arrays used to fit phase have different length |
|
1196 | 7 : arrays used to fit phase have different length | |
1197 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) |
|
1197 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) | |
1198 |
|
1198 | |||
1199 | """ |
|
1199 | """ | |
1200 |
|
1200 | |||
1201 | error_code = 0 |
|
1201 | error_code = 0 | |
1202 |
|
1202 | |||
1203 | nChan = spc.shape[0] |
|
1203 | nChan = spc.shape[0] | |
1204 | nProf = spc.shape[1] |
|
1204 | nProf = spc.shape[1] | |
1205 | nPair = cspc.shape[0] |
|
1205 | nPair = cspc.shape[0] | |
1206 |
|
1206 | |||
1207 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height |
|
1207 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height | |
1208 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values |
|
1208 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values | |
1209 | phase = numpy.zeros([nPair, nProf]) # phase between channels |
|
1209 | phase = numpy.zeros([nPair, nProf]) # phase between channels | |
1210 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise |
|
1210 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise | |
1211 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise |
|
1211 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise | |
1212 | xFrec = AbbsisaRange[0][:-1] # frequency range |
|
1212 | xFrec = AbbsisaRange[0][:-1] # frequency range | |
1213 | xVel = AbbsisaRange[2][:-1] # velocity range |
|
1213 | xVel = AbbsisaRange[2][:-1] # velocity range | |
1214 | xSamples = xFrec # the frequency range is taken |
|
1214 | xSamples = xFrec # the frequency range is taken | |
1215 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x |
|
1215 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x | |
1216 |
|
1216 | |||
1217 | # only consider velocities with in NegativeLimit and PositiveLimit |
|
1217 | # only consider velocities with in NegativeLimit and PositiveLimit | |
1218 | if (NegativeLimit is None): |
|
1218 | if (NegativeLimit is None): | |
1219 | NegativeLimit = numpy.min(xVel) |
|
1219 | NegativeLimit = numpy.min(xVel) | |
1220 | if (PositiveLimit is None): |
|
1220 | if (PositiveLimit is None): | |
1221 | PositiveLimit = numpy.max(xVel) |
|
1221 | PositiveLimit = numpy.max(xVel) | |
1222 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) |
|
1222 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) | |
1223 | xSamples_zoom = xSamples[xvalid] |
|
1223 | xSamples_zoom = xSamples[xvalid] | |
1224 |
|
1224 | |||
1225 | '''Getting Eij and Nij''' |
|
1225 | '''Getting Eij and Nij''' | |
1226 | Xi01, Xi02, Xi12 = ChanDist[:,0] |
|
1226 | Xi01, Xi02, Xi12 = ChanDist[:,0] | |
1227 | Eta01, Eta02, Eta12 = ChanDist[:,1] |
|
1227 | Eta01, Eta02, Eta12 = ChanDist[:,1] | |
1228 |
|
1228 | |||
1229 | # spwd limit - updated by D. ScipiΓ³n 30.03.2021 |
|
1229 | # spwd limit - updated by D. ScipiΓ³n 30.03.2021 | |
1230 | widthlimit = 10 |
|
1230 | widthlimit = 10 | |
1231 | '''************************* SPC is normalized ********************************''' |
|
1231 | '''************************* SPC is normalized ********************************''' | |
1232 | spc_norm = spc.copy() |
|
1232 | spc_norm = spc.copy() | |
1233 | # For each channel |
|
1233 | # For each channel | |
1234 | for i in range(nChan): |
|
1234 | for i in range(nChan): | |
1235 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power |
|
1235 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power | |
1236 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) |
|
1236 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) | |
1237 |
|
1237 | |||
1238 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' |
|
1238 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' | |
1239 |
|
1239 | |||
1240 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because |
|
1240 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because | |
1241 | you only fit the curve and don't need the absolute value of height for calculation, |
|
1241 | you only fit the curve and don't need the absolute value of height for calculation, | |
1242 | only for estimation of width. for normalization of cross spectra, you need initial, |
|
1242 | only for estimation of width. for normalization of cross spectra, you need initial, | |
1243 | unnormalized self-spectra With noise. |
|
1243 | unnormalized self-spectra With noise. | |
1244 |
|
1244 | |||
1245 | Technically, you don't even need to normalize the self-spectra, as you only need the |
|
1245 | Technically, you don't even need to normalize the self-spectra, as you only need the | |
1246 | width of the peak. However, it was left this way. Note that the normalization has a flaw: |
|
1246 | width of the peak. However, it was left this way. Note that the normalization has a flaw: | |
1247 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1247 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be | |
1248 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1248 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) | |
1249 | """ |
|
1249 | """ | |
1250 | # initial conditions |
|
1250 | # initial conditions | |
1251 | popt = [1e-10,0,1e-10] |
|
1251 | popt = [1e-10,0,1e-10] | |
1252 | # Spectra average |
|
1252 | # Spectra average | |
1253 | SPCMean = numpy.average(SPC_Samples,0) |
|
1253 | SPCMean = numpy.average(SPC_Samples,0) | |
1254 | # Moments in frequency |
|
1254 | # Moments in frequency | |
1255 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) |
|
1255 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) | |
1256 |
|
1256 | |||
1257 | # Gauss Fit SPC in frequency domain |
|
1257 | # Gauss Fit SPC in frequency domain | |
1258 | if dbSNR > SNRlimit: # only if SNR > SNRth |
|
1258 | if dbSNR > SNRlimit: # only if SNR > SNRth | |
1259 | try: |
|
1259 | try: | |
1260 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) |
|
1260 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) | |
1261 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION |
|
1261 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION | |
1262 | return self.StopWindEstimation(error_code = 1) |
|
1262 | return self.StopWindEstimation(error_code = 1) | |
1263 | FitGauss = self.gaus(xSamples_zoom,*popt) |
|
1263 | FitGauss = self.gaus(xSamples_zoom,*popt) | |
1264 | except :#RuntimeError: |
|
1264 | except :#RuntimeError: | |
1265 | return self.StopWindEstimation(error_code = 2) |
|
1265 | return self.StopWindEstimation(error_code = 2) | |
1266 | else: |
|
1266 | else: | |
1267 | return self.StopWindEstimation(error_code = 3) |
|
1267 | return self.StopWindEstimation(error_code = 3) | |
1268 |
|
1268 | |||
1269 | '''***************************** CSPC Normalization ************************* |
|
1269 | '''***************************** CSPC Normalization ************************* | |
1270 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1270 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation | |
1271 | influence the norm which is not desired. First, a range is identified where the |
|
1271 | influence the norm which is not desired. First, a range is identified where the | |
1272 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
|
1272 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |
1273 | around it gets cut off and values replaced by mean determined by the boundary |
|
1273 | around it gets cut off and values replaced by mean determined by the boundary | |
1274 | data -> sum_noise (spc is not normalized here, thats why the noise is important) |
|
1274 | data -> sum_noise (spc is not normalized here, thats why the noise is important) | |
1275 |
|
1275 | |||
1276 | The sums are then added and multiplied by range/datapoints, because you need |
|
1276 | The sums are then added and multiplied by range/datapoints, because you need | |
1277 | an integral and not a sum for normalization. |
|
1277 | an integral and not a sum for normalization. | |
1278 |
|
1278 | |||
1279 | A norm is found according to Briggs 92. |
|
1279 | A norm is found according to Briggs 92. | |
1280 | ''' |
|
1280 | ''' | |
1281 | # for each pair |
|
1281 | # for each pair | |
1282 | for i in range(nPair): |
|
1282 | for i in range(nPair): | |
1283 | cspc_norm = cspc[i,:].copy() |
|
1283 | cspc_norm = cspc[i,:].copy() | |
1284 | chan_index0 = pairsList[i][0] |
|
1284 | chan_index0 = pairsList[i][0] | |
1285 | chan_index1 = pairsList[i][1] |
|
1285 | chan_index1 = pairsList[i][1] | |
1286 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) |
|
1286 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) | |
1287 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) |
|
1287 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) | |
1288 |
|
1288 | |||
1289 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), |
|
1289 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), | |
1290 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), |
|
1290 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), | |
1291 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) |
|
1291 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) | |
1292 |
|
1292 | |||
1293 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] |
|
1293 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] | |
1294 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) |
|
1294 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) | |
1295 |
|
1295 | |||
1296 | '''*******************************FIT GAUSS CSPC************************************''' |
|
1296 | '''*******************************FIT GAUSS CSPC************************************''' | |
1297 | try: |
|
1297 | try: | |
1298 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) |
|
1298 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) | |
1299 | if popt01[2] > widthlimit: # CONDITION |
|
1299 | if popt01[2] > widthlimit: # CONDITION | |
1300 | return self.StopWindEstimation(error_code = 4) |
|
1300 | return self.StopWindEstimation(error_code = 4) | |
1301 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) |
|
1301 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) | |
1302 | if popt02[2] > widthlimit: # CONDITION |
|
1302 | if popt02[2] > widthlimit: # CONDITION | |
1303 | return self.StopWindEstimation(error_code = 4) |
|
1303 | return self.StopWindEstimation(error_code = 4) | |
1304 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) |
|
1304 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) | |
1305 | if popt12[2] > widthlimit: # CONDITION |
|
1305 | if popt12[2] > widthlimit: # CONDITION | |
1306 | return self.StopWindEstimation(error_code = 4) |
|
1306 | return self.StopWindEstimation(error_code = 4) | |
1307 |
|
1307 | |||
1308 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) |
|
1308 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) | |
1309 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) |
|
1309 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) | |
1310 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) |
|
1310 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) | |
1311 | except: |
|
1311 | except: | |
1312 | return self.StopWindEstimation(error_code = 5) |
|
1312 | return self.StopWindEstimation(error_code = 5) | |
1313 |
|
1313 | |||
1314 |
|
1314 | |||
1315 | '''************* Getting Fij ***************''' |
|
1315 | '''************* Getting Fij ***************''' | |
1316 | # x-axis point of the gaussian where the center is located from GaussFit of spectra |
|
1316 | # x-axis point of the gaussian where the center is located from GaussFit of spectra | |
1317 | GaussCenter = popt[1] |
|
1317 | GaussCenter = popt[1] | |
1318 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] |
|
1318 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] | |
1319 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] |
|
1319 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] | |
1320 |
|
1320 | |||
1321 | # Point where e^-1 is located in the gaussian |
|
1321 | # Point where e^-1 is located in the gaussian | |
1322 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) |
|
1322 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) | |
1323 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" |
|
1323 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" | |
1324 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1324 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1325 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) |
|
1325 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) | |
1326 |
|
1326 | |||
1327 | '''********** Taking frequency ranges from mean SPCs **********''' |
|
1327 | '''********** Taking frequency ranges from mean SPCs **********''' | |
1328 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 |
|
1328 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 | |
1329 | Range = numpy.empty(2) |
|
1329 | Range = numpy.empty(2) | |
1330 | Range[0] = GaussCenter - GauWidth |
|
1330 | Range[0] = GaussCenter - GauWidth | |
1331 | Range[1] = GaussCenter + GauWidth |
|
1331 | Range[1] = GaussCenter + GauWidth | |
1332 | # Point in x-axis where the bandwidth is located (min:max) |
|
1332 | # Point in x-axis where the bandwidth is located (min:max) | |
1333 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] |
|
1333 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] | |
1334 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] |
|
1334 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] | |
1335 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] |
|
1335 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] | |
1336 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] |
|
1336 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] | |
1337 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1337 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) | |
1338 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] |
|
1338 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] | |
1339 |
|
1339 | |||
1340 | '''************************** Getting Phase Slope ***************************''' |
|
1340 | '''************************** Getting Phase Slope ***************************''' | |
1341 | for i in range(nPair): |
|
1341 | for i in range(nPair): | |
1342 | if len(FrecRange) > 5: |
|
1342 | if len(FrecRange) > 5: | |
1343 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() |
|
1343 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() | |
1344 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1344 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1345 | if len(FrecRange) == len(PhaseRange): |
|
1345 | if len(FrecRange) == len(PhaseRange): | |
1346 | try: |
|
1346 | try: | |
1347 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) |
|
1347 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) | |
1348 | PhaseSlope[i] = slope |
|
1348 | PhaseSlope[i] = slope | |
1349 | PhaseInter[i] = intercept |
|
1349 | PhaseInter[i] = intercept | |
1350 | except: |
|
1350 | except: | |
1351 | return self.StopWindEstimation(error_code = 6) |
|
1351 | return self.StopWindEstimation(error_code = 6) | |
1352 | else: |
|
1352 | else: | |
1353 | return self.StopWindEstimation(error_code = 7) |
|
1353 | return self.StopWindEstimation(error_code = 7) | |
1354 | else: |
|
1354 | else: | |
1355 | return self.StopWindEstimation(error_code = 8) |
|
1355 | return self.StopWindEstimation(error_code = 8) | |
1356 |
|
1356 | |||
1357 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' |
|
1357 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' | |
1358 |
|
1358 | |||
1359 | '''Getting constant C''' |
|
1359 | '''Getting constant C''' | |
1360 | cC=(Fij*numpy.pi)**2 |
|
1360 | cC=(Fij*numpy.pi)**2 | |
1361 |
|
1361 | |||
1362 | '''****** Getting constants F and G ******''' |
|
1362 | '''****** Getting constants F and G ******''' | |
1363 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) |
|
1363 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1364 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) |
|
1364 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) | |
1365 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) |
|
1365 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) | |
1366 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) |
|
1366 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
1367 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) |
|
1367 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |
1368 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) |
|
1368 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) | |
1369 | MijResults = numpy.array([MijResult1, MijResult2]) |
|
1369 | MijResults = numpy.array([MijResult1, MijResult2]) | |
1370 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1370 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1371 |
|
1371 | |||
1372 | '''****** Getting constants A, B and H ******''' |
|
1372 | '''****** Getting constants A, B and H ******''' | |
1373 | W01 = numpy.nanmax( FitGauss01 ) |
|
1373 | W01 = numpy.nanmax( FitGauss01 ) | |
1374 | W02 = numpy.nanmax( FitGauss02 ) |
|
1374 | W02 = numpy.nanmax( FitGauss02 ) | |
1375 | W12 = numpy.nanmax( FitGauss12 ) |
|
1375 | W12 = numpy.nanmax( FitGauss12 ) | |
1376 |
|
1376 | |||
1377 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) |
|
1377 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
1378 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) |
|
1378 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |
1379 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) |
|
1379 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
1380 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) |
|
1380 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) | |
1381 |
|
1381 | |||
1382 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) |
|
1382 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1383 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1383 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1384 |
|
1384 | |||
1385 | VxVy = numpy.array([[cA,cH],[cH,cB]]) |
|
1385 | VxVy = numpy.array([[cA,cH],[cH,cB]]) | |
1386 | VxVyResults = numpy.array([-cF,-cG]) |
|
1386 | VxVyResults = numpy.array([-cF,-cG]) | |
1387 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1387 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) | |
1388 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) |
|
1388 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) | |
1389 | error_code = 0 |
|
1389 | error_code = 0 | |
1390 |
|
1390 | |||
1391 | return Vzon, Vmer, Vver, error_code |
|
1391 | return Vzon, Vmer, Vver, error_code | |
1392 |
|
1392 | |||
1393 | class SpectralMoments(Operation): |
|
1393 | class SpectralMoments(Operation): | |
1394 |
|
1394 | |||
1395 | ''' |
|
1395 | ''' | |
1396 | Function SpectralMoments() |
|
1396 | Function SpectralMoments() | |
1397 |
|
1397 | |||
1398 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1398 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1399 |
|
1399 | |||
1400 | Type of dataIn: Spectra |
|
1400 | Type of dataIn: Spectra | |
1401 |
|
1401 | |||
1402 | Configuration Parameters: |
|
1402 | Configuration Parameters: | |
1403 |
|
1403 | |||
1404 | dirCosx : Cosine director in X axis |
|
1404 | dirCosx : Cosine director in X axis | |
1405 | dirCosy : Cosine director in Y axis |
|
1405 | dirCosy : Cosine director in Y axis | |
1406 |
|
1406 | |||
1407 | elevation : |
|
1407 | elevation : | |
1408 | azimuth : |
|
1408 | azimuth : | |
1409 |
|
1409 | |||
1410 | Input: |
|
1410 | Input: | |
1411 | channelList : simple channel list to select e.g. [2,3,7] |
|
1411 | channelList : simple channel list to select e.g. [2,3,7] | |
1412 | self.dataOut.data_pre : Spectral data |
|
1412 | self.dataOut.data_pre : Spectral data | |
1413 | self.dataOut.abscissaList : List of frequencies |
|
1413 | self.dataOut.abscissaList : List of frequencies | |
1414 | self.dataOut.noise : Noise level per channel |
|
1414 | self.dataOut.noise : Noise level per channel | |
1415 |
|
1415 | |||
1416 | Affected: |
|
1416 | Affected: | |
1417 | self.dataOut.moments : Parameters per channel |
|
1417 | self.dataOut.moments : Parameters per channel | |
1418 | self.dataOut.data_snr : SNR per channel |
|
1418 | self.dataOut.data_snr : SNR per channel | |
1419 |
|
1419 | |||
1420 | ''' |
|
1420 | ''' | |
1421 |
|
1421 | |||
1422 | def run(self, dataOut, proc_type=0): |
|
1422 | def run(self, dataOut, proc_type=0): | |
1423 |
|
1423 | |||
1424 | absc = dataOut.abscissaList[:-1] |
|
1424 | absc = dataOut.abscissaList[:-1] | |
1425 | #noise = dataOut.noise |
|
1425 | #noise = dataOut.noise | |
1426 | nChannel = dataOut.data_pre[0].shape[0] |
|
1426 | nChannel = dataOut.data_pre[0].shape[0] | |
1427 | nHei = dataOut.data_pre[0].shape[2] |
|
1427 | nHei = dataOut.data_pre[0].shape[2] | |
1428 | data_param = numpy.zeros((nChannel, 4 + proc_type*3, nHei)) |
|
1428 | data_param = numpy.zeros((nChannel, 4 + proc_type*3, nHei)) | |
1429 |
|
1429 | |||
1430 | if proc_type == 1: |
|
1430 | if proc_type == 1: | |
1431 | fwindow = numpy.zeros(absc.size) + 1 |
|
1431 | fwindow = numpy.zeros(absc.size) + 1 | |
1432 | b=64 |
|
1432 | b=64 | |
1433 | #b=16 |
|
1433 | #b=16 | |
1434 | fwindow[0:absc.size//2 - b] = 0 |
|
1434 | fwindow[0:absc.size//2 - b] = 0 | |
1435 | fwindow[absc.size//2 + b:] = 0 |
|
1435 | fwindow[absc.size//2 + b:] = 0 | |
1436 | type1 = 1 # moments calculation |
|
1436 | type1 = 1 # moments calculation | |
1437 | nProfiles = dataOut.nProfiles |
|
1437 | nProfiles = dataOut.nProfiles | |
1438 | nCohInt = dataOut.nCohInt |
|
1438 | nCohInt = dataOut.nCohInt | |
1439 | nIncohInt = dataOut.nIncohInt |
|
1439 | nIncohInt = dataOut.nIncohInt | |
1440 | M = numpy.power(numpy.array(1/(nProfiles * nCohInt) ,dtype='float32'),2) |
|
1440 | M = numpy.power(numpy.array(1/(nProfiles * nCohInt) ,dtype='float32'),2) | |
1441 | N = numpy.array(M / nIncohInt,dtype='float32') |
|
1441 | N = numpy.array(M / nIncohInt,dtype='float32') | |
1442 | data = dataOut.data_pre[0] * N |
|
1442 | data = dataOut.data_pre[0] * N | |
1443 | #noise = dataOut.noise * N |
|
1443 | #noise = dataOut.noise * N | |
1444 | noise = numpy.zeros(nChannel) |
|
1444 | noise = numpy.zeros(nChannel) | |
1445 | for ind in range(nChannel): |
|
1445 | for ind in range(nChannel): | |
1446 | noise[ind] = self.__NoiseByChannel(nProfiles, nIncohInt, data[ind,:,:]) |
|
1446 | noise[ind] = self.__NoiseByChannel(nProfiles, nIncohInt, data[ind,:,:]) | |
1447 | smooth=3 |
|
1447 | smooth=3 | |
1448 | else: |
|
1448 | else: | |
1449 | data = dataOut.data_pre[0] |
|
1449 | data = dataOut.data_pre[0] | |
1450 | noise = dataOut.noise |
|
1450 | noise = dataOut.noise | |
1451 | fwindow = None |
|
1451 | fwindow = None | |
1452 | type1 = 0 |
|
1452 | type1 = 0 | |
1453 | nIncohInt = None |
|
1453 | nIncohInt = None | |
1454 | smooth=None |
|
1454 | smooth=None | |
1455 |
|
1455 | |||
1456 | for ind in range(nChannel): |
|
1456 | for ind in range(nChannel): | |
1457 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind], nicoh=nIncohInt, smooth=smooth, type1=type1, fwindow=fwindow) |
|
1457 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind], nicoh=nIncohInt, smooth=smooth, type1=type1, fwindow=fwindow) | |
|
1458 | #print('snr:',data_param[:,0]) | |||
1458 |
|
1459 | |||
1459 | if proc_type == 1: |
|
1460 | if proc_type == 1: | |
1460 | dataOut.moments = data_param[:,1:,:] |
|
1461 | dataOut.moments = data_param[:,1:,:] | |
1461 | #dataOut.data_dop = data_param[:,0] |
|
1462 | #dataOut.data_dop = data_param[:,0] | |
1462 | dataOut.data_dop = data_param[:,2] |
|
1463 | dataOut.data_dop = data_param[:,2] | |
1463 | dataOut.data_width = data_param[:,1] |
|
1464 | dataOut.data_width = data_param[:,1] | |
1464 | # dataOut.data_snr = data_param[:,2] |
|
1465 | # dataOut.data_snr = data_param[:,2] | |
1465 | dataOut.data_snr = data_param[:,0] |
|
1466 | dataOut.data_snr = data_param[:,0] | |
1466 | dataOut.data_pow = data_param[:,6] # to compare with type0 proccessing |
|
1467 | dataOut.data_pow = data_param[:,6] # to compare with type0 proccessing | |
1467 | dataOut.spcpar=numpy.stack((dataOut.data_dop,dataOut.data_width,dataOut.data_snr, data_param[:,3], data_param[:,4],data_param[:,5]),axis=2) |
|
1468 | dataOut.spcpar=numpy.stack((dataOut.data_dop,dataOut.data_width,dataOut.data_snr, data_param[:,3], data_param[:,4],data_param[:,5]),axis=2) | |
1468 |
|
1469 | |||
1469 | else: |
|
1470 | else: | |
1470 | dataOut.moments = data_param[:,1:,:] |
|
1471 | dataOut.moments = data_param[:,1:,:] | |
1471 | dataOut.data_snr = data_param[:,0] |
|
1472 | dataOut.data_snr = data_param[:,0] | |
1472 | dataOut.data_pow = data_param[:,1] |
|
1473 | dataOut.data_pow = data_param[:,1] | |
1473 | dataOut.data_dop = data_param[:,2] |
|
1474 | dataOut.data_dop = data_param[:,2] | |
1474 | dataOut.data_width = data_param[:,3] |
|
1475 | dataOut.data_width = data_param[:,3] | |
1475 | dataOut.spcpar=numpy.stack((dataOut.data_dop,dataOut.data_width,dataOut.data_snr, dataOut.data_pow),axis=2) |
|
1476 | dataOut.spcpar=numpy.stack((dataOut.data_dop,dataOut.data_width,dataOut.data_snr, dataOut.data_pow),axis=2) | |
1476 |
|
1477 | |||
1477 | return dataOut |
|
1478 | return dataOut | |
1478 |
|
1479 | |||
1479 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1480 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1480 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1481 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1481 |
|
1482 | |||
1482 | def __GAUSSWINFIT1(A, flagPDER=0): |
|
1483 | def __GAUSSWINFIT1(A, flagPDER=0): | |
1483 | nonlocal truex, xvalid |
|
1484 | nonlocal truex, xvalid | |
1484 | nparams = 4 |
|
1485 | nparams = 4 | |
1485 | M=truex.size |
|
1486 | M=truex.size | |
1486 | mm=numpy.arange(M,dtype='f4') |
|
1487 | mm=numpy.arange(M,dtype='f4') | |
1487 | delta = numpy.zeros(M,dtype='f4') |
|
1488 | delta = numpy.zeros(M,dtype='f4') | |
1488 | delta[0] = 1.0 |
|
1489 | delta[0] = 1.0 | |
1489 | Ts = numpy.array([1.0/(2*truex[0])],dtype='f4')[0] |
|
1490 | Ts = numpy.array([1.0/(2*truex[0])],dtype='f4')[0] | |
1490 | jj = -1j |
|
1491 | jj = -1j | |
1491 | #if self.winauto is None: self.winauto = (1.0 - mm/M) |
|
1492 | #if self.winauto is None: self.winauto = (1.0 - mm/M) | |
1492 | winauto = (1.0 - mm/M) |
|
1493 | winauto = (1.0 - mm/M) | |
1493 | winauto = winauto/winauto.max() # Normalized to 1 |
|
1494 | winauto = winauto/winauto.max() # Normalized to 1 | |
1494 | #ON_ERROR,2 # IDL sentence: Return to caller if an error occurs |
|
1495 | #ON_ERROR,2 # IDL sentence: Return to caller if an error occurs | |
1495 | A[0] = numpy.abs(A[0]) |
|
1496 | A[0] = numpy.abs(A[0]) | |
1496 | A[2] = numpy.abs(A[2]) |
|
1497 | A[2] = numpy.abs(A[2]) | |
1497 | A[3] = numpy.abs(A[3]) |
|
1498 | A[3] = numpy.abs(A[3]) | |
1498 | pi=numpy.array([numpy.pi],dtype='f4')[0] |
|
1499 | pi=numpy.array([numpy.pi],dtype='f4')[0] | |
1499 | if A[2] != 0: |
|
1500 | if A[2] != 0: | |
1500 | Z = numpy.exp(-2*numpy.power((pi*A[2]*mm*Ts),2,dtype='f4')+jj*2*pi*A[1]*mm*Ts, dtype='c8') # Get Z |
|
1501 | Z = numpy.exp(-2*numpy.power((pi*A[2]*mm*Ts),2,dtype='f4')+jj*2*pi*A[1]*mm*Ts, dtype='c8') # Get Z | |
1501 | else: |
|
1502 | else: | |
1502 | Z = mm*0.0 |
|
1503 | Z = mm*0.0 | |
1503 | A[0] = 0.0 |
|
1504 | A[0] = 0.0 | |
1504 | junkF = numpy.roll(2*fft(winauto*(A[0]*Z+A[3]*delta)).real - \ |
|
1505 | junkF = numpy.roll(2*fft(winauto*(A[0]*Z+A[3]*delta)).real - \ | |
1505 | winauto[0]*(A[0]+A[3]), M//2) # *M scale for fft not needed in python |
|
1506 | winauto[0]*(A[0]+A[3]), M//2) # *M scale for fft not needed in python | |
1506 | F = junkF[xvalid] |
|
1507 | F = junkF[xvalid] | |
1507 | if flagPDER == 0: #NEED PARTIAL? |
|
1508 | if flagPDER == 0: #NEED PARTIAL? | |
1508 | return F |
|
1509 | return F | |
1509 | PDER = numpy.zeros((M,nparams)) #YES, MAKE ARRAY. |
|
1510 | PDER = numpy.zeros((M,nparams)) #YES, MAKE ARRAY. | |
1510 | PDER[:,0] = numpy.shift(2*(fft(winauto*Z)*M) - winauto[0], M/2) |
|
1511 | PDER[:,0] = numpy.shift(2*(fft(winauto*Z)*M) - winauto[0], M/2) | |
1511 | PDER[:,1] = numpy.shift(2*(fft(winauto*jj*2*numpy.pi*mm*Ts*A[0]*Z)*M), M/2) |
|
1512 | PDER[:,1] = numpy.shift(2*(fft(winauto*jj*2*numpy.pi*mm*Ts*A[0]*Z)*M), M/2) | |
1512 | PDER[:,2] = numpy.shift(2*(fft(winauto*(-4*numpy.power(numpy.pi*mm*Ts,2)*A[2]*A[0]*Z))*M), M/2) |
|
1513 | PDER[:,2] = numpy.shift(2*(fft(winauto*(-4*numpy.power(numpy.pi*mm*Ts,2)*A[2]*A[0]*Z))*M), M/2) | |
1513 | PDER[:,3] = numpy.shift(2*(fft(winauto*delta)*M) - winauto[0], M/2) |
|
1514 | PDER[:,3] = numpy.shift(2*(fft(winauto*delta)*M) - winauto[0], M/2) | |
1514 | PDER = PDER[xvalid,:] |
|
1515 | PDER = PDER[xvalid,:] | |
1515 | return F, PDER |
|
1516 | return F, PDER | |
1516 |
|
1517 | |||
1517 | def __curvefit_koki(y, a, Weights, FlagNoDerivative=1, |
|
1518 | def __curvefit_koki(y, a, Weights, FlagNoDerivative=1, | |
1518 | itmax=20, tol=None): |
|
1519 | itmax=20, tol=None): | |
1519 | #ON_ERROR,2 IDL SENTENCE: RETURN TO THE CALLER IF ERROR |
|
1520 | #ON_ERROR,2 IDL SENTENCE: RETURN TO THE CALLER IF ERROR | |
1520 | if tol == None: |
|
1521 | if tol == None: | |
1521 | tol = numpy.array([1.e-3],dtype='f4')[0] |
|
1522 | tol = numpy.array([1.e-3],dtype='f4')[0] | |
1522 | typ=a.dtype |
|
1523 | typ=a.dtype | |
1523 | double = 1 if typ == numpy.float64 else 0 |
|
1524 | double = 1 if typ == numpy.float64 else 0 | |
1524 | if typ != numpy.float32: |
|
1525 | if typ != numpy.float32: | |
1525 | a=a.astype(numpy.float32) #Make params floating |
|
1526 | a=a.astype(numpy.float32) #Make params floating | |
1526 | # if we will be estimating partial derivates then compute machine precision |
|
1527 | # if we will be estimating partial derivates then compute machine precision | |
1527 | if FlagNoDerivative == 1: |
|
1528 | if FlagNoDerivative == 1: | |
1528 | res=numpy.MachAr(float_conv=numpy.float32) |
|
1529 | res=numpy.MachAr(float_conv=numpy.float32) | |
1529 | eps=numpy.sqrt(res.eps) |
|
1530 | eps=numpy.sqrt(res.eps) | |
1530 |
|
1531 | |||
1531 | nterms = a.size # Number of parameters |
|
1532 | nterms = a.size # Number of parameters | |
1532 | nfree=numpy.array([numpy.size(y) - nterms],dtype='f4')[0] # Degrees of freedom |
|
1533 | nfree=numpy.array([numpy.size(y) - nterms],dtype='f4')[0] # Degrees of freedom | |
1533 | if nfree <= 0: print('Curvefit - not enough data points.') |
|
1534 | if nfree <= 0: print('Curvefit - not enough data points.') | |
1534 | flambda= numpy.array([0.001],dtype='f4')[0] # Initial lambda |
|
1535 | flambda= numpy.array([0.001],dtype='f4')[0] # Initial lambda | |
1535 | #diag=numpy.arange(nterms)*(nterms+1) # Subscripta of diagonal elements |
|
1536 | #diag=numpy.arange(nterms)*(nterms+1) # Subscripta of diagonal elements | |
1536 | # Use diag method in python |
|
1537 | # Use diag method in python | |
1537 | converge=1 |
|
1538 | converge=1 | |
1538 |
|
1539 | |||
1539 | #Define the partial derivative array |
|
1540 | #Define the partial derivative array | |
1540 | PDER = numpy.zeros((nterms,numpy.size(y)),dtype='f8') if double == 1 else numpy.zeros((nterms,numpy.size(y)),dtype='f4') |
|
1541 | PDER = numpy.zeros((nterms,numpy.size(y)),dtype='f8') if double == 1 else numpy.zeros((nterms,numpy.size(y)),dtype='f4') | |
1541 |
|
1542 | |||
1542 | for Niter in range(itmax): #Iteration loop |
|
1543 | for Niter in range(itmax): #Iteration loop | |
1543 |
|
1544 | |||
1544 | if FlagNoDerivative == 1: |
|
1545 | if FlagNoDerivative == 1: | |
1545 | #Evaluate function and estimate partial derivatives |
|
1546 | #Evaluate function and estimate partial derivatives | |
1546 | yfit = __GAUSSWINFIT1(a) |
|
1547 | yfit = __GAUSSWINFIT1(a) | |
1547 | for term in range(nterms): |
|
1548 | for term in range(nterms): | |
1548 | p=a.copy() # Copy current parameters |
|
1549 | p=a.copy() # Copy current parameters | |
1549 | #Increment size for forward difference derivative |
|
1550 | #Increment size for forward difference derivative | |
1550 | inc = eps * abs(p[term]) |
|
1551 | inc = eps * abs(p[term]) | |
1551 | if inc == 0: inc = eps |
|
1552 | if inc == 0: inc = eps | |
1552 | p[term] = p[term] + inc |
|
1553 | p[term] = p[term] + inc | |
1553 | yfit1 = __GAUSSWINFIT1(p) |
|
1554 | yfit1 = __GAUSSWINFIT1(p) | |
1554 | PDER[term,:] = (yfit1-yfit)/inc |
|
1555 | PDER[term,:] = (yfit1-yfit)/inc | |
1555 | else: |
|
1556 | else: | |
1556 | #The user's procedure will return partial derivatives |
|
1557 | #The user's procedure will return partial derivatives | |
1557 | yfit,PDER=__GAUSSWINFIT1(a, flagPDER=1) |
|
1558 | yfit,PDER=__GAUSSWINFIT1(a, flagPDER=1) | |
1558 |
|
1559 | |||
1559 | beta = numpy.dot(PDER,(y-yfit)*Weights) |
|
1560 | beta = numpy.dot(PDER,(y-yfit)*Weights) | |
1560 | alpha = numpy.dot(PDER * numpy.tile(Weights,(nterms,1)), numpy.transpose(PDER)) |
|
1561 | alpha = numpy.dot(PDER * numpy.tile(Weights,(nterms,1)), numpy.transpose(PDER)) | |
1561 | # save current values of return parameters |
|
1562 | # save current values of return parameters | |
1562 | sigma1 = numpy.sqrt( 1.0 / numpy.diag(alpha) ) # Current sigma. |
|
1563 | sigma1 = numpy.sqrt( 1.0 / numpy.diag(alpha) ) # Current sigma. | |
1563 | sigma = sigma1 |
|
1564 | sigma = sigma1 | |
1564 |
|
1565 | |||
1565 | chisq1 = numpy.sum(Weights*numpy.power(y-yfit,2,dtype='f4'),dtype='f4')/nfree # Current chi squared. |
|
1566 | chisq1 = numpy.sum(Weights*numpy.power(y-yfit,2,dtype='f4'),dtype='f4')/nfree # Current chi squared. | |
1566 | chisq = chisq1 |
|
1567 | chisq = chisq1 | |
1567 | yfit1 = yfit |
|
1568 | yfit1 = yfit | |
1568 | elev7=numpy.array([1.0e7],dtype='f4')[0] |
|
1569 | elev7=numpy.array([1.0e7],dtype='f4')[0] | |
1569 | compara =numpy.sum(abs(y))/elev7/nfree |
|
1570 | compara =numpy.sum(abs(y))/elev7/nfree | |
1570 | done_early = chisq1 < compara |
|
1571 | done_early = chisq1 < compara | |
1571 |
|
1572 | |||
1572 | if done_early: |
|
1573 | if done_early: | |
1573 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) |
|
1574 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) | |
1574 | if done_early: Niter -= 1 |
|
1575 | if done_early: Niter -= 1 | |
1575 | #save_tp(chisq,Niter,yfit) |
|
1576 | #save_tp(chisq,Niter,yfit) | |
1576 | return yfit, a, converge, sigma, chisq # return result |
|
1577 | return yfit, a, converge, sigma, chisq # return result | |
1577 | #c = numpy.dot(c, c) # this operator implemented at the next lines |
|
1578 | #c = numpy.dot(c, c) # this operator implemented at the next lines | |
1578 | c_tmp = numpy.sqrt(numpy.diag(alpha)) |
|
1579 | c_tmp = numpy.sqrt(numpy.diag(alpha)) | |
1579 | siz=len(c_tmp) |
|
1580 | siz=len(c_tmp) | |
1580 | c=numpy.dot(c_tmp.reshape(siz,1),c_tmp.reshape(1,siz)) |
|
1581 | c=numpy.dot(c_tmp.reshape(siz,1),c_tmp.reshape(1,siz)) | |
1581 | lambdaCount = 0 |
|
1582 | lambdaCount = 0 | |
1582 | while True: |
|
1583 | while True: | |
1583 | lambdaCount += 1 |
|
1584 | lambdaCount += 1 | |
1584 | # Normalize alpha to have unit diagonal. |
|
1585 | # Normalize alpha to have unit diagonal. | |
1585 | array = alpha / c |
|
1586 | array = alpha / c | |
1586 | # Augment the diagonal. |
|
1587 | # Augment the diagonal. | |
1587 | one=numpy.array([1.],dtype='f4')[0] |
|
1588 | one=numpy.array([1.],dtype='f4')[0] | |
1588 | numpy.fill_diagonal(array,numpy.diag(array)*(one+flambda)) |
|
1589 | numpy.fill_diagonal(array,numpy.diag(array)*(one+flambda)) | |
1589 | # Invert modified curvature matrix to find new parameters. |
|
1590 | # Invert modified curvature matrix to find new parameters. | |
1590 |
|
1591 | |||
1591 | try: |
|
1592 | try: | |
1592 | array = (1.0/array) if array.size == 1 else numpy.linalg.inv(array) |
|
1593 | array = (1.0/array) if array.size == 1 else numpy.linalg.inv(array) | |
1593 | except Exception as e: |
|
1594 | except Exception as e: | |
1594 | print(e) |
|
1595 | print(e) | |
1595 | array[:]=numpy.NaN |
|
1596 | array[:]=numpy.NaN | |
1596 |
|
1597 | |||
1597 | b = a + numpy.dot(numpy.transpose(beta),array/c) # New params |
|
1598 | b = a + numpy.dot(numpy.transpose(beta),array/c) # New params | |
1598 | yfit = __GAUSSWINFIT1(b) # Evaluate function |
|
1599 | yfit = __GAUSSWINFIT1(b) # Evaluate function | |
1599 | chisq = numpy.sum(Weights*numpy.power(y-yfit,2,dtype='f4'),dtype='f4')/nfree # New chisq |
|
1600 | chisq = numpy.sum(Weights*numpy.power(y-yfit,2,dtype='f4'),dtype='f4')/nfree # New chisq | |
1600 | sigma = numpy.sqrt(numpy.diag(array)/numpy.diag(alpha)) # New sigma |
|
1601 | sigma = numpy.sqrt(numpy.diag(array)/numpy.diag(alpha)) # New sigma | |
1601 | if (numpy.isfinite(chisq) == 0) or \ |
|
1602 | if (numpy.isfinite(chisq) == 0) or \ | |
1602 | (lambdaCount > 30 and chisq >= chisq1): |
|
1603 | (lambdaCount > 30 and chisq >= chisq1): | |
1603 | # Reject changes made this iteration, use old values. |
|
1604 | # Reject changes made this iteration, use old values. | |
1604 | yfit = yfit1 |
|
1605 | yfit = yfit1 | |
1605 | sigma = sigma1 |
|
1606 | sigma = sigma1 | |
1606 | chisq = chisq1 |
|
1607 | chisq = chisq1 | |
1607 | converge = 0 |
|
1608 | converge = 0 | |
1608 | #print('Failed to converge.') |
|
1609 | #print('Failed to converge.') | |
1609 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) |
|
1610 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) | |
1610 | if done_early: Niter -= 1 |
|
1611 | if done_early: Niter -= 1 | |
1611 | #save_tp(chisq,Niter,yfit) |
|
1612 | #save_tp(chisq,Niter,yfit) | |
1612 | return yfit, a, converge, sigma, chisq, chi2 # return result |
|
1613 | return yfit, a, converge, sigma, chisq, chi2 # return result | |
1613 | ten=numpy.array([10.0],dtype='f4')[0] |
|
1614 | ten=numpy.array([10.0],dtype='f4')[0] | |
1614 | flambda *= ten # Assume fit got worse |
|
1615 | flambda *= ten # Assume fit got worse | |
1615 | if chisq <= chisq1: |
|
1616 | if chisq <= chisq1: | |
1616 | break |
|
1617 | break | |
1617 | hundred=numpy.array([100.0],dtype='f4')[0] |
|
1618 | hundred=numpy.array([100.0],dtype='f4')[0] | |
1618 | flambda /= hundred |
|
1619 | flambda /= hundred | |
1619 |
|
1620 | |||
1620 | a=b # Save new parameter estimate. |
|
1621 | a=b # Save new parameter estimate. | |
1621 | if ((chisq1-chisq)/chisq1) <= tol: # Finished? |
|
1622 | if ((chisq1-chisq)/chisq1) <= tol: # Finished? | |
1622 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) |
|
1623 | chi2 = chisq # Return chi-squared (chi2 obsolete-still works) | |
1623 | if done_early: Niter -= 1 |
|
1624 | if done_early: Niter -= 1 | |
1624 | #save_tp(chisq,Niter,yfit) |
|
1625 | #save_tp(chisq,Niter,yfit) | |
1625 | return yfit, a, converge, sigma, chisq, chi2 # return result |
|
1626 | return yfit, a, converge, sigma, chisq, chi2 # return result | |
1626 | converge = 0 |
|
1627 | converge = 0 | |
1627 | chi2 = chisq |
|
1628 | chi2 = chisq | |
1628 | #print('Failed to converge.') |
|
1629 | #print('Failed to converge.') | |
1629 | #save_tp(chisq,Niter,yfit) |
|
1630 | #save_tp(chisq,Niter,yfit) | |
1630 | return yfit, a, converge, sigma, chisq, chi2 |
|
1631 | return yfit, a, converge, sigma, chisq, chi2 | |
1631 |
|
1632 | |||
1632 | if (nicoh is None): nicoh = 1 |
|
1633 | if (nicoh is None): nicoh = 1 | |
1633 | if (smooth is None): smooth = 0 |
|
1634 | if (smooth is None): smooth = 0 | |
1634 | if (type1 is None): type1 = 0 |
|
1635 | if (type1 is None): type1 = 0 | |
1635 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
1636 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1636 | if (snrth is None): snrth = -20.0 |
|
1637 | if (snrth is None): snrth = -20.0 | |
1637 | if (dc is None): dc = 0 |
|
1638 | if (dc is None): dc = 0 | |
1638 | if (aliasing is None): aliasing = 0 |
|
1639 | if (aliasing is None): aliasing = 0 | |
1639 | if (oldfd is None): oldfd = 0 |
|
1640 | if (oldfd is None): oldfd = 0 | |
1640 | if (wwauto is None): wwauto = 0 |
|
1641 | if (wwauto is None): wwauto = 0 | |
1641 |
|
1642 | |||
1642 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1643 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1643 |
|
1644 | |||
1644 | xvalid = numpy.where(fwindow == 1)[0] |
|
1645 | xvalid = numpy.where(fwindow == 1)[0] | |
1645 | freq = oldfreq |
|
1646 | freq = oldfreq | |
1646 | truex = oldfreq |
|
1647 | truex = oldfreq | |
1647 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1648 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1648 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1649 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1649 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1650 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1650 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1651 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1651 | vec_n1 = numpy.empty(oldspec.shape[1]) |
|
1652 | vec_n1 = numpy.empty(oldspec.shape[1]) | |
1652 | vec_fp = numpy.empty(oldspec.shape[1]) |
|
1653 | vec_fp = numpy.empty(oldspec.shape[1]) | |
1653 | vec_sigma_fd = numpy.empty(oldspec.shape[1]) |
|
1654 | vec_sigma_fd = numpy.empty(oldspec.shape[1]) | |
1654 |
|
1655 | |||
1655 | for ind in range(oldspec.shape[1]): |
|
1656 | for ind in range(oldspec.shape[1]): | |
1656 |
|
1657 | |||
1657 | spec = oldspec[:,ind] |
|
1658 | spec = oldspec[:,ind] | |
1658 | if (smooth == 0): |
|
1659 | if (smooth == 0): | |
1659 | spec2 = spec |
|
1660 | spec2 = spec | |
1660 | else: |
|
1661 | else: | |
1661 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1662 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1662 |
|
1663 | |||
1663 | aux = spec2*fwindow |
|
1664 | aux = spec2*fwindow | |
1664 | max_spec = aux.max() |
|
1665 | max_spec = aux.max() | |
1665 | m = aux.tolist().index(max_spec) |
|
1666 | m = aux.tolist().index(max_spec) | |
1666 |
|
1667 | |||
1667 | if m > 2 and m < oldfreq.size - 3: |
|
1668 | if m > 2 and m < oldfreq.size - 3: | |
1668 | newindex = m + numpy.array([-2,-1,0,1,2]) |
|
1669 | newindex = m + numpy.array([-2,-1,0,1,2]) | |
1669 | newfreq = numpy.arange(20)/20.0*(numpy.max(freq[newindex])-numpy.min(freq[newindex]))+numpy.min(freq[newindex]) |
|
1670 | newfreq = numpy.arange(20)/20.0*(numpy.max(freq[newindex])-numpy.min(freq[newindex]))+numpy.min(freq[newindex]) | |
1670 | #peakspec = SPLINE(,) |
|
1671 | #peakspec = SPLINE(,) | |
1671 | tck = interpolate.splrep(freq[newindex], spec2[newindex]) |
|
1672 | tck = interpolate.splrep(freq[newindex], spec2[newindex]) | |
1672 | peakspec = interpolate.splev(newfreq, tck) |
|
1673 | peakspec = interpolate.splev(newfreq, tck) | |
1673 | # max_spec = MAX(peakspec,) |
|
1674 | # max_spec = MAX(peakspec,) | |
1674 | max_spec = numpy.max(peakspec) |
|
1675 | max_spec = numpy.max(peakspec) | |
1675 | mnew = numpy.argmax(peakspec) |
|
1676 | mnew = numpy.argmax(peakspec) | |
1676 | #fp = newfreq(mnew) |
|
1677 | #fp = newfreq(mnew) | |
1677 | fp = newfreq[mnew] |
|
1678 | fp = newfreq[mnew] | |
1678 | else: |
|
1679 | else: | |
1679 | fp = freq[m] |
|
1680 | fp = freq[m] | |
1680 |
|
1681 | |||
1681 | if type1==0: |
|
1682 | if type1==0: | |
1682 |
|
1683 | |||
1683 | # Moments Estimation |
|
1684 | # Moments Estimation | |
1684 | bb = spec2[numpy.arange(m,spec2.size)] |
|
1685 | bb = spec2[numpy.arange(m,spec2.size)] | |
1685 | bb = (bb<n0).nonzero() |
|
1686 | bb = (bb<n0).nonzero() | |
1686 | bb = bb[0] |
|
1687 | bb = bb[0] | |
1687 |
|
1688 | |||
1688 | ss = spec2[numpy.arange(0,m + 1)] |
|
1689 | ss = spec2[numpy.arange(0,m + 1)] | |
1689 | ss = (ss<n0).nonzero() |
|
1690 | ss = (ss<n0).nonzero() | |
1690 | ss = ss[0] |
|
1691 | ss = ss[0] | |
1691 |
|
1692 | |||
1692 | if (bb.size == 0): |
|
1693 | if (bb.size == 0): | |
1693 | bb0 = spec.size - 1 - m |
|
1694 | bb0 = spec.size - 1 - m | |
1694 | else: |
|
1695 | else: | |
1695 | bb0 = bb[0] - 1 |
|
1696 | bb0 = bb[0] - 1 | |
1696 | if (bb0 < 0): |
|
1697 | if (bb0 < 0): | |
1697 | bb0 = 0 |
|
1698 | bb0 = 0 | |
1698 |
|
1699 | |||
1699 | if (ss.size == 0): |
|
1700 | if (ss.size == 0): | |
1700 | ss1 = 1 |
|
1701 | ss1 = 1 | |
1701 | else: |
|
1702 | else: | |
1702 | ss1 = max(ss) + 1 |
|
1703 | ss1 = max(ss) + 1 | |
1703 |
|
1704 | |||
1704 | if (ss1 > m): |
|
1705 | if (ss1 > m): | |
1705 | ss1 = m |
|
1706 | ss1 = m | |
1706 |
|
1707 | |||
1707 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 |
|
1708 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |
1708 |
|
1709 | |||
1709 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition |
|
1710 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition | |
1710 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition |
|
1711 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition | |
1711 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() |
|
1712 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() | |
1712 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power |
|
1713 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power | |
1713 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) |
|
1714 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) | |
1714 | snr = (spec2.mean()-n0)/n0 |
|
1715 | snr = (spec2.mean()-n0)/n0 | |
1715 | if (snr < 1.e-20): snr = 1.e-20 |
|
1716 | if (snr < 1.e-20): snr = 1.e-20 | |
1716 |
|
1717 | |||
1717 | vec_power[ind] = total_power |
|
1718 | vec_power[ind] = total_power | |
1718 | vec_fd[ind] = fd |
|
1719 | vec_fd[ind] = fd | |
1719 | vec_w[ind] = w |
|
1720 | vec_w[ind] = w | |
1720 | vec_snr[ind] = snr |
|
1721 | vec_snr[ind] = snr | |
1721 | else: |
|
1722 | else: | |
1722 | # Noise by heights |
|
1723 | # Noise by heights | |
1723 | n1, stdv = self.__get_noise2(spec, nicoh) |
|
1724 | n1, stdv = self.__get_noise2(spec, nicoh) | |
1724 | # Moments Estimation |
|
1725 | # Moments Estimation | |
1725 | bb = spec2[numpy.arange(m,spec2.size)] |
|
1726 | bb = spec2[numpy.arange(m,spec2.size)] | |
1726 | bb = (bb<n1).nonzero() |
|
1727 | bb = (bb<n1).nonzero() | |
1727 | bb = bb[0] |
|
1728 | bb = bb[0] | |
1728 |
|
1729 | |||
1729 | ss = spec2[numpy.arange(0,m + 1)] |
|
1730 | ss = spec2[numpy.arange(0,m + 1)] | |
1730 | ss = (ss<n1).nonzero() |
|
1731 | ss = (ss<n1).nonzero() | |
1731 | ss = ss[0] |
|
1732 | ss = ss[0] | |
1732 |
|
1733 | |||
1733 | if (bb.size == 0): |
|
1734 | if (bb.size == 0): | |
1734 | bb0 = spec.size - 1 - m |
|
1735 | bb0 = spec.size - 1 - m | |
1735 | else: |
|
1736 | else: | |
1736 | bb0 = bb[0] - 1 |
|
1737 | bb0 = bb[0] - 1 | |
1737 | if (bb0 < 0): |
|
1738 | if (bb0 < 0): | |
1738 | bb0 = 0 |
|
1739 | bb0 = 0 | |
1739 |
|
1740 | |||
1740 | if (ss.size == 0): |
|
1741 | if (ss.size == 0): | |
1741 | ss1 = 1 |
|
1742 | ss1 = 1 | |
1742 | else: |
|
1743 | else: | |
1743 | ss1 = max(ss) + 1 |
|
1744 | ss1 = max(ss) + 1 | |
1744 |
|
1745 | |||
1745 | if (ss1 > m): |
|
1746 | if (ss1 > m): | |
1746 | ss1 = m |
|
1747 | ss1 = m | |
1747 |
|
1748 | |||
1748 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 |
|
1749 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |
1749 |
|
1750 | |||
1750 | power = ((spec[valid] - n1)*fwindow[valid]).sum() |
|
1751 | power = ((spec[valid] - n1)*fwindow[valid]).sum() | |
1751 | fd = ((spec[valid]- n1)*freq[valid]*fwindow[valid]).sum()/power |
|
1752 | fd = ((spec[valid]- n1)*freq[valid]*fwindow[valid]).sum()/power | |
1752 | try: |
|
1753 | try: | |
1753 | w = numpy.sqrt(((spec[valid] - n1)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1754 | w = numpy.sqrt(((spec[valid] - n1)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1754 | except: |
|
1755 | except: | |
1755 | w = float("NaN") |
|
1756 | w = float("NaN") | |
1756 | snr = power/(n0*fwindow.sum()) |
|
1757 | snr = power/(n0*fwindow.sum()) | |
1757 | if snr < 1.e-20: snr = 1.e-20 |
|
1758 | if snr < 1.e-20: snr = 1.e-20 | |
1758 |
|
1759 | |||
1759 | # Here start gaussean adjustment |
|
1760 | # Here start gaussean adjustment | |
1760 |
|
1761 | |||
1761 | if snr > numpy.power(10,0.1*snrth): |
|
1762 | if snr > numpy.power(10,0.1*snrth): | |
1762 |
|
1763 | |||
1763 | a = numpy.zeros(4,dtype='f4') |
|
1764 | a = numpy.zeros(4,dtype='f4') | |
1764 | a[0] = snr * n0 |
|
1765 | a[0] = snr * n0 | |
1765 | a[1] = fd |
|
1766 | a[1] = fd | |
1766 | a[2] = w |
|
1767 | a[2] = w | |
1767 | a[3] = n0 |
|
1768 | a[3] = n0 | |
1768 |
|
1769 | |||
1769 | np = spec.size |
|
1770 | np = spec.size | |
1770 | aold = a.copy() |
|
1771 | aold = a.copy() | |
1771 | spec2 = spec.copy() |
|
1772 | spec2 = spec.copy() | |
1772 | oldxvalid = xvalid.copy() |
|
1773 | oldxvalid = xvalid.copy() | |
1773 |
|
1774 | |||
1774 | for i in range(2): |
|
1775 | for i in range(2): | |
1775 |
|
1776 | |||
1776 | ww = 1.0/(numpy.power(spec2,2)/nicoh) |
|
1777 | ww = 1.0/(numpy.power(spec2,2)/nicoh) | |
1777 | ww[np//2] = 0.0 |
|
1778 | ww[np//2] = 0.0 | |
1778 |
|
1779 | |||
1779 | a = aold.copy() |
|
1780 | a = aold.copy() | |
1780 | xvalid = oldxvalid.copy() |
|
1781 | xvalid = oldxvalid.copy() | |
1781 | #self.show_var(xvalid) |
|
1782 | #self.show_var(xvalid) | |
1782 |
|
1783 | |||
1783 | gaussfn = __curvefit_koki(spec[xvalid], a, ww[xvalid]) |
|
1784 | gaussfn = __curvefit_koki(spec[xvalid], a, ww[xvalid]) | |
1784 | a = gaussfn[1] |
|
1785 | a = gaussfn[1] | |
1785 | converge = gaussfn[2] |
|
1786 | converge = gaussfn[2] | |
1786 |
|
1787 | |||
1787 | xvalid = numpy.arange(np) |
|
1788 | xvalid = numpy.arange(np) | |
1788 | spec2 = __GAUSSWINFIT1(a) |
|
1789 | spec2 = __GAUSSWINFIT1(a) | |
1789 |
|
1790 | |||
1790 | xvalid = oldxvalid.copy() |
|
1791 | xvalid = oldxvalid.copy() | |
1791 | power = a[0] * np |
|
1792 | power = a[0] * np | |
1792 | fd = a[1] |
|
1793 | fd = a[1] | |
1793 | sigma_fd = gaussfn[3][1] |
|
1794 | sigma_fd = gaussfn[3][1] | |
1794 | snr = max(power/ (max(a[3],n0) * len(oldxvalid)) * converge, 1e-20) |
|
1795 | snr = max(power/ (max(a[3],n0) * len(oldxvalid)) * converge, 1e-20) | |
1795 | w = numpy.abs(a[2]) |
|
1796 | w = numpy.abs(a[2]) | |
1796 | n1 = max(a[3], n0) |
|
1797 | n1 = max(a[3], n0) | |
1797 |
|
1798 | |||
1798 | #gauss_adj=[fd,w,snr,n1,fp,sigma_fd] |
|
1799 | #gauss_adj=[fd,w,snr,n1,fp,sigma_fd] | |
1799 | else: |
|
1800 | else: | |
1800 | sigma_fd=numpy.nan # to avoid UnboundLocalError: local variable 'sigma_fd' referenced before assignment |
|
1801 | sigma_fd=numpy.nan # to avoid UnboundLocalError: local variable 'sigma_fd' referenced before assignment | |
1801 |
|
1802 | |||
1802 | vec_fd[ind] = fd |
|
1803 | vec_fd[ind] = fd | |
1803 | vec_w[ind] = w |
|
1804 | vec_w[ind] = w | |
1804 | vec_snr[ind] = snr |
|
1805 | vec_snr[ind] = snr | |
1805 | vec_n1[ind] = n1 |
|
1806 | vec_n1[ind] = n1 | |
1806 | vec_fp[ind] = fp |
|
1807 | vec_fp[ind] = fp | |
1807 | vec_sigma_fd[ind] = sigma_fd |
|
1808 | vec_sigma_fd[ind] = sigma_fd | |
1808 | vec_power[ind] = power # to compare with type 0 proccessing |
|
1809 | vec_power[ind] = power # to compare with type 0 proccessing | |
1809 |
|
1810 | |||
1810 | if type1==1: |
|
1811 | if type1==1: | |
1811 | #return numpy.vstack((vec_fd, vec_w, vec_snr, vec_n1, vec_fp, vec_sigma_fd, vec_power)) |
|
1812 | #return numpy.vstack((vec_fd, vec_w, vec_snr, vec_n1, vec_fp, vec_sigma_fd, vec_power)) | |
1812 | return numpy.vstack((vec_snr, vec_w, vec_fd, vec_n1, vec_fp, vec_sigma_fd, vec_power)) # snr and fd exchanged to compare doppler of both types |
|
1813 | return numpy.vstack((vec_snr, vec_w, vec_fd, vec_n1, vec_fp, vec_sigma_fd, vec_power)) # snr and fd exchanged to compare doppler of both types | |
1813 | else: |
|
1814 | else: | |
1814 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1815 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1815 |
|
1816 | |||
1816 | def __get_noise2(self,POWER, fft_avg, TALK=0): |
|
1817 | def __get_noise2(self,POWER, fft_avg, TALK=0): | |
1817 | ''' |
|
1818 | ''' | |
1818 | Rutina para cΓ‘lculo de ruido por alturas(n1). Similar a IDL |
|
1819 | Rutina para cΓ‘lculo de ruido por alturas(n1). Similar a IDL | |
1819 | ''' |
|
1820 | ''' | |
1820 | SPECT_PTS = len(POWER) |
|
1821 | SPECT_PTS = len(POWER) | |
1821 | fft_avg = fft_avg*1.0 |
|
1822 | fft_avg = fft_avg*1.0 | |
1822 | NOMIT = 0 |
|
1823 | NOMIT = 0 | |
1823 | NN = SPECT_PTS - NOMIT |
|
1824 | NN = SPECT_PTS - NOMIT | |
1824 | N = NN//2 |
|
1825 | N = NN//2 | |
1825 | ARR = numpy.concatenate((POWER[0:N+1],POWER[N+NOMIT+1:SPECT_PTS])) |
|
1826 | ARR = numpy.concatenate((POWER[0:N+1],POWER[N+NOMIT+1:SPECT_PTS])) | |
1826 | ARR = numpy.sort(ARR) |
|
1827 | ARR = numpy.sort(ARR) | |
1827 | NUMS_MIN = (SPECT_PTS+7)//8 |
|
1828 | NUMS_MIN = (SPECT_PTS+7)//8 | |
1828 | RTEST = (1.0+1.0/fft_avg) |
|
1829 | RTEST = (1.0+1.0/fft_avg) | |
1829 | SUM = 0.0 |
|
1830 | SUM = 0.0 | |
1830 | SUMSQ = 0.0 |
|
1831 | SUMSQ = 0.0 | |
1831 | J = 0 |
|
1832 | J = 0 | |
1832 | for I in range(NN): |
|
1833 | for I in range(NN): | |
1833 | J = J + 1 |
|
1834 | J = J + 1 | |
1834 | SUM = SUM + ARR[I] |
|
1835 | SUM = SUM + ARR[I] | |
1835 | SUMSQ = SUMSQ + ARR[I]*ARR[I] |
|
1836 | SUMSQ = SUMSQ + ARR[I]*ARR[I] | |
1836 | AVE = SUM*1.0/J |
|
1837 | AVE = SUM*1.0/J | |
1837 | if J > NUMS_MIN: |
|
1838 | if J > NUMS_MIN: | |
1838 | if (SUMSQ*J <= RTEST*SUM*SUM): RNOISE = AVE |
|
1839 | if (SUMSQ*J <= RTEST*SUM*SUM): RNOISE = AVE | |
1839 | else: |
|
1840 | else: | |
1840 | if J == NUMS_MIN: RNOISE = AVE |
|
1841 | if J == NUMS_MIN: RNOISE = AVE | |
1841 | if TALK == 1: print('Noise Power (2):%4.4f' %RNOISE) |
|
1842 | if TALK == 1: print('Noise Power (2):%4.4f' %RNOISE) | |
1842 | stdv = numpy.sqrt(SUMSQ/J - numpy.power(SUM/J,2)) |
|
1843 | stdv = numpy.sqrt(SUMSQ/J - numpy.power(SUM/J,2)) | |
1843 | return RNOISE, stdv |
|
1844 | return RNOISE, stdv | |
1844 |
|
1845 | |||
1845 | def __get_noise1(self, power, fft_avg, TALK=0): |
|
1846 | def __get_noise1(self, power, fft_avg, TALK=0): | |
1846 | ''' |
|
1847 | ''' | |
1847 | Rutina para cΓ‘lculo de ruido por alturas(n0). Similar a IDL |
|
1848 | Rutina para cΓ‘lculo de ruido por alturas(n0). Similar a IDL | |
1848 | ''' |
|
1849 | ''' | |
1849 | num_pts = numpy.size(power) |
|
1850 | num_pts = numpy.size(power) | |
1850 | #print('num_pts',num_pts) |
|
1851 | #print('num_pts',num_pts) | |
1851 | #print('power',power.shape) |
|
1852 | #print('power',power.shape) | |
1852 | #print(power[256:267,0:2]) |
|
1853 | #print(power[256:267,0:2]) | |
1853 | fft_avg = fft_avg*1.0 |
|
1854 | fft_avg = fft_avg*1.0 | |
1854 |
|
1855 | |||
1855 | ind = numpy.argsort(power, axis=None, kind='stable') |
|
1856 | ind = numpy.argsort(power, axis=None, kind='stable') | |
1856 | #ind = numpy.argsort(numpy.reshape(power,-1)) |
|
1857 | #ind = numpy.argsort(numpy.reshape(power,-1)) | |
1857 | #print(ind.shape) |
|
1858 | #print(ind.shape) | |
1858 | #print(ind[0:11]) |
|
1859 | #print(ind[0:11]) | |
1859 | #print(numpy.reshape(power,-1)[ind[0:11]]) |
|
1860 | #print(numpy.reshape(power,-1)[ind[0:11]]) | |
1860 | ARR = numpy.reshape(power,-1)[ind] |
|
1861 | ARR = numpy.reshape(power,-1)[ind] | |
1861 | #print('ARR',len(ARR)) |
|
1862 | #print('ARR',len(ARR)) | |
1862 | #print('ARR',ARR.shape) |
|
1863 | #print('ARR',ARR.shape) | |
1863 | NUMS_MIN = num_pts//10 |
|
1864 | NUMS_MIN = num_pts//10 | |
1864 | RTEST = (1.0+1.0/fft_avg) |
|
1865 | RTEST = (1.0+1.0/fft_avg) | |
1865 | SUM = 0.0 |
|
1866 | SUM = 0.0 | |
1866 | SUMSQ = 0.0 |
|
1867 | SUMSQ = 0.0 | |
1867 | J = 0 |
|
1868 | J = 0 | |
1868 | cont = 1 |
|
1869 | cont = 1 | |
1869 | while cont == 1 and J < num_pts: |
|
1870 | while cont == 1 and J < num_pts: | |
1870 |
|
1871 | |||
1871 | SUM = SUM + ARR[J] |
|
1872 | SUM = SUM + ARR[J] | |
1872 | SUMSQ = SUMSQ + ARR[J]*ARR[J] |
|
1873 | SUMSQ = SUMSQ + ARR[J]*ARR[J] | |
1873 | J = J + 1 |
|
1874 | J = J + 1 | |
1874 |
|
1875 | |||
1875 | if J > NUMS_MIN: |
|
1876 | if J > NUMS_MIN: | |
1876 | if (SUMSQ*J <= RTEST*SUM*SUM): |
|
1877 | if (SUMSQ*J <= RTEST*SUM*SUM): | |
1877 | LNOISE = SUM*1.0/J |
|
1878 | LNOISE = SUM*1.0/J | |
1878 | else: |
|
1879 | else: | |
1879 | J = J - 1 |
|
1880 | J = J - 1 | |
1880 | SUM = SUM - ARR[J] |
|
1881 | SUM = SUM - ARR[J] | |
1881 | SUMSQ = SUMSQ - ARR[J]*ARR[J] |
|
1882 | SUMSQ = SUMSQ - ARR[J]*ARR[J] | |
1882 | cont = 0 |
|
1883 | cont = 0 | |
1883 | else: |
|
1884 | else: | |
1884 | if J == NUMS_MIN: LNOISE = SUM*1.0/J |
|
1885 | if J == NUMS_MIN: LNOISE = SUM*1.0/J | |
1885 | if TALK == 1: print('Noise Power (1):%8.8f' %LNOISE) |
|
1886 | if TALK == 1: print('Noise Power (1):%8.8f' %LNOISE) | |
1886 | stdv = numpy.sqrt(SUMSQ/J - numpy.power(SUM/J,2)) |
|
1887 | stdv = numpy.sqrt(SUMSQ/J - numpy.power(SUM/J,2)) | |
1887 | return LNOISE, stdv |
|
1888 | return LNOISE, stdv | |
1888 |
|
1889 | |||
1889 | def __NoiseByChannel(self, num_prof, num_incoh, spectra,talk=0): |
|
1890 | def __NoiseByChannel(self, num_prof, num_incoh, spectra,talk=0): | |
1890 |
|
1891 | |||
1891 | val_frq = numpy.arange(num_prof-2)+1 |
|
1892 | val_frq = numpy.arange(num_prof-2)+1 | |
1892 | val_frq[(num_prof-2)//2:] = val_frq[(num_prof-2)//2:] + 1 |
|
1893 | val_frq[(num_prof-2)//2:] = val_frq[(num_prof-2)//2:] + 1 | |
1893 | junkspc = numpy.sum(spectra[val_frq,:], axis=1) |
|
1894 | junkspc = numpy.sum(spectra[val_frq,:], axis=1) | |
1894 | junkid = numpy.argsort(junkspc) |
|
1895 | junkid = numpy.argsort(junkspc) | |
1895 | noisezone = val_frq[junkid[0:num_prof//2]] |
|
1896 | noisezone = val_frq[junkid[0:num_prof//2]] | |
1896 | specnoise = spectra[noisezone,:] |
|
1897 | specnoise = spectra[noisezone,:] | |
1897 | noise, stdvnoise = self.__get_noise1(specnoise,num_incoh) |
|
1898 | noise, stdvnoise = self.__get_noise1(specnoise,num_incoh) | |
1898 |
|
1899 | |||
1899 | if talk: |
|
1900 | if talk: | |
1900 | print('noise =', noise) |
|
1901 | print('noise =', noise) | |
1901 | return noise |
|
1902 | return noise | |
1902 |
|
1903 | |||
1903 | class JULIADriftsEstimation(Operation): |
|
1904 | class JULIADriftsEstimation(Operation): | |
1904 |
|
1905 | |||
1905 | def __init__(self): |
|
1906 | def __init__(self): | |
1906 | Operation.__init__(self) |
|
1907 | Operation.__init__(self) | |
1907 |
|
1908 | |||
1908 |
|
1909 | |||
1909 | def newtotal(self, data): |
|
1910 | def newtotal(self, data): | |
1910 | return numpy.nansum(data) |
|
1911 | return numpy.nansum(data) | |
1911 |
|
1912 | |||
1912 | #def data_filter(self, parm, snrth=-19.5, swth=20, wErrth=500): |
|
1913 | #def data_filter(self, parm, snrth=-19.5, swth=20, wErrth=500): | |
1913 | def data_filter(self, parm, snrth=-20, swth=20, wErrth=500): |
|
1914 | def data_filter(self, parm, snrth=-20, swth=20, wErrth=500): | |
1914 |
|
1915 | |||
1915 | Sz0 = parm.shape # Sz0: h,p |
|
1916 | Sz0 = parm.shape # Sz0: h,p | |
1916 | drift = parm[:,0] |
|
1917 | drift = parm[:,0] | |
1917 | sw = 2*parm[:,1] |
|
1918 | sw = 2*parm[:,1] | |
1918 | snr = 10*numpy.log10(parm[:,2]) |
|
1919 | snr = 10*numpy.log10(parm[:,2]) | |
1919 | Sz = drift.shape # Sz: h |
|
1920 | Sz = drift.shape # Sz: h | |
1920 | mask = numpy.ones((Sz[0])) |
|
1921 | mask = numpy.ones((Sz[0])) | |
1921 | th=0 |
|
1922 | th=0 | |
1922 | valid=numpy.where(numpy.isfinite(snr)) |
|
1923 | valid=numpy.where(numpy.isfinite(snr)) | |
1923 | cvalid = len(valid[0]) |
|
1924 | cvalid = len(valid[0]) | |
1924 | if cvalid >= 1: |
|
1925 | if cvalid >= 1: | |
1925 | # CΓ‘lculo del ruido promedio de snr para el i-Γ©simo grupo de alturas |
|
1926 | # CΓ‘lculo del ruido promedio de snr para el i-Γ©simo grupo de alturas | |
1926 | nbins = int(numpy.max(snr)-numpy.min(snr))+1 # bin size = 1, similar to IDL |
|
1927 | nbins = int(numpy.max(snr)-numpy.min(snr))+1 # bin size = 1, similar to IDL | |
1927 | h = numpy.histogram(snr,bins=nbins) |
|
1928 | h = numpy.histogram(snr,bins=nbins) | |
1928 | hist = h[0] |
|
1929 | hist = h[0] | |
1929 | values = numpy.round_(h[1]) |
|
1930 | values = numpy.round_(h[1]) | |
1930 | moda = values[numpy.where(hist == numpy.max(hist))] |
|
1931 | moda = values[numpy.where(hist == numpy.max(hist))] | |
1931 | indNoise = numpy.where(numpy.abs(snr - numpy.min(moda)) < 3)[0] |
|
1932 | indNoise = numpy.where(numpy.abs(snr - numpy.min(moda)) < 3)[0] | |
1932 |
|
1933 | |||
1933 | noise = snr[indNoise] |
|
1934 | noise = snr[indNoise] | |
1934 | noise_mean = numpy.sum(noise)/len(noise) |
|
1935 | noise_mean = numpy.sum(noise)/len(noise) | |
1935 | # CΓ‘lculo de media de snr |
|
1936 | # CΓ‘lculo de media de snr | |
1936 | med = numpy.median(snr) |
|
1937 | med = numpy.median(snr) | |
1937 | # Establece el umbral de snr |
|
1938 | # Establece el umbral de snr | |
1938 | if noise_mean > med + 3: |
|
1939 | if noise_mean > med + 3: | |
1939 | th = med |
|
1940 | th = med | |
1940 | else: |
|
1941 | else: | |
1941 | th = noise_mean + 3 |
|
1942 | th = noise_mean + 3 | |
1942 | # Establece mΓ‘scara |
|
1943 | # Establece mΓ‘scara | |
1943 | novalid = numpy.where(snr <= th)[0] |
|
1944 | novalid = numpy.where(snr <= th)[0] | |
1944 | mask[novalid] = numpy.nan |
|
1945 | mask[novalid] = numpy.nan | |
1945 | # Elimina datos que no sobrepasen el umbral: PARAMETRO |
|
1946 | # Elimina datos que no sobrepasen el umbral: PARAMETRO | |
1946 | novalid = numpy.where(snr <= snrth) |
|
1947 | novalid = numpy.where(snr <= snrth) | |
1947 | cnovalid = len(novalid[0]) |
|
1948 | cnovalid = len(novalid[0]) | |
1948 | if cnovalid > 0: |
|
1949 | if cnovalid > 0: | |
1949 | mask[novalid] = numpy.nan |
|
1950 | mask[novalid] = numpy.nan | |
1950 | novalid = numpy.where(numpy.isnan(snr)) |
|
1951 | novalid = numpy.where(numpy.isnan(snr)) | |
1951 | cnovalid = len(novalid[0]) |
|
1952 | cnovalid = len(novalid[0]) | |
1952 | if cnovalid > 0: |
|
1953 | if cnovalid > 0: | |
1953 | mask[novalid] = numpy.nan |
|
1954 | mask[novalid] = numpy.nan | |
1954 | new_parm = numpy.zeros((Sz0[0],Sz0[1])) |
|
1955 | new_parm = numpy.zeros((Sz0[0],Sz0[1])) | |
1955 | for h in range(Sz0[0]): |
|
1956 | for h in range(Sz0[0]): | |
1956 | for p in range(Sz0[1]): |
|
1957 | for p in range(Sz0[1]): | |
1957 | if numpy.isnan(mask[h]): |
|
1958 | if numpy.isnan(mask[h]): | |
1958 | new_parm[h,p]=numpy.nan |
|
1959 | new_parm[h,p]=numpy.nan | |
1959 | else: |
|
1960 | else: | |
1960 | new_parm[h,p]=parm[h,p] |
|
1961 | new_parm[h,p]=parm[h,p] | |
1961 |
|
1962 | |||
1962 | return new_parm, th |
|
1963 | return new_parm, th | |
1963 |
|
1964 | |||
1964 | def run(self, dataOut, zenith, zenithCorrection,heights=None, statistics=0, otype=0): |
|
1965 | def run(self, dataOut, zenith, zenithCorrection,heights=None, statistics=0, otype=0): | |
1965 |
|
1966 | |||
1966 | nCh=dataOut.spcpar.shape[0] |
|
1967 | ||
|
1968 | dataOut.lat=-11.95 | |||
|
1969 | dataOut.lon=-76.87 | |||
1967 |
|
1970 | |||
|
1971 | nCh=dataOut.spcpar.shape[0] | |||
1968 | nHei=dataOut.spcpar.shape[1] |
|
1972 | nHei=dataOut.spcpar.shape[1] | |
1969 | nParam=dataOut.spcpar.shape[2] |
|
1973 | nParam=dataOut.spcpar.shape[2] | |
1970 |
# S |
|
1974 | # SelecciΓ³n de alturas | |
1971 | hei=dataOut.heightList |
|
1975 | ||
1972 | hvalid=numpy.where([hei >= heights[0]][0] & [hei <= heights[1]][0])[0] |
|
1976 | if not heights: | |
1973 | nhvalid=len(hvalid) |
|
1977 | parm = numpy.zeros((nCh,nHei,nParam)) | |
1974 | parm = numpy.zeros((nCh,nhvalid,nParam)) |
|
1978 | parm[:] = dataOut.spcpar[:] | |
1975 | parm = dataOut.spcpar[:,hvalid,:] |
|
1979 | else: | |
|
1980 | hei=dataOut.heightList | |||
|
1981 | hvalid=numpy.where([hei >= heights[0]][0] & [hei <= heights[1]][0])[0] | |||
|
1982 | nhvalid=len(hvalid) | |||
|
1983 | dataOut.heightList = hei[hvalid] | |||
|
1984 | parm = numpy.zeros((nCh,nhvalid,nParam)) | |||
|
1985 | parm[:] = dataOut.spcpar[:,hvalid,:] | |||
|
1986 | ||||
1976 |
|
1987 | |||
1977 | # Primer filtrado: Umbral de SNR |
|
1988 | # Primer filtrado: Umbral de SNR | |
1978 | #snrth=-19 |
|
|||
1979 | for i in range(nCh): |
|
1989 | for i in range(nCh): | |
1980 | #print('snr:',parm[i,:,2]) |
|
1990 | parm[i,:,:] = self.data_filter(parm[i,:,:])[0] | |
1981 | #dataOut.spcpar[i,hvalid,:] = self.data_filter(parm[i,:,:],snrth)[0] |
|
1991 | ||
1982 | dataOut.spcpar[i,hvalid,:] = self.data_filter(parm[i,:,:])[0] |
|
|||
1983 | #print('dataOut.spcpar[0,:,2]',dataOut.spcpar[0,:,2]) |
|
|||
1984 | #print('dataOut.spcpar[1,:,2]',dataOut.spcpar[1,:,2]) |
|
|||
1985 | zenith = numpy.array(zenith) |
|
1992 | zenith = numpy.array(zenith) | |
1986 | zenith -= zenithCorrection |
|
1993 | zenith -= zenithCorrection | |
1987 | zenith *= numpy.pi/180 |
|
1994 | zenith *= numpy.pi/180 | |
1988 | alpha = zenith[0] |
|
1995 | alpha = zenith[0] | |
1989 | beta = zenith[1] |
|
1996 | beta = zenith[1] | |
1990 |
|
1997 | dopplerCH0 = parm[0,:,0] | ||
1991 |
dopplerCH |
|
1998 | dopplerCH1 = parm[1,:,0] | |
1992 |
|
|
1999 | swCH0 = parm[0,:,1] | |
1993 |
swCH |
|
2000 | swCH1 = parm[1,:,1] | |
1994 |
s |
|
2001 | snrCH0 = 10*numpy.log10(parm[0,:,2]) | |
1995 |
snrCH |
|
2002 | snrCH1 = 10*numpy.log10(parm[1,:,2]) | |
1996 | snrCH1 = 10*numpy.log10(dataOut.spcpar[1,:,2]) |
|
2003 | noiseCH0 = parm[0,:,3] | |
1997 |
noiseCH |
|
2004 | noiseCH1 = parm[1,:,3] | |
1998 |
|
|
2005 | wErrCH0 = parm[0,:,5] | |
1999 |
wErrCH |
|
2006 | wErrCH1 = parm[1,:,5] | |
2000 | wErrCH1 = dataOut.spcpar[1,:,5] |
|
|||
2001 |
|
2007 | |||
2002 | # Vertical and zonal calculation according to geometry |
|
2008 | # Vertical and zonal calculation according to geometry | |
2003 | sinB_A = numpy.sin(beta)*numpy.cos(alpha) - numpy.sin(alpha)* numpy.cos(beta) |
|
2009 | sinB_A = numpy.sin(beta)*numpy.cos(alpha) - numpy.sin(alpha)* numpy.cos(beta) | |
2004 | drift = -(dopplerCH0 * numpy.sin(beta) - dopplerCH1 * numpy.sin(alpha))/ sinB_A |
|
2010 | drift = -(dopplerCH0 * numpy.sin(beta) - dopplerCH1 * numpy.sin(alpha))/ sinB_A | |
2005 | ''' |
|
|||
2006 | print('drift.shape:',drift.shape) |
|
|||
2007 | print('drift min:', numpy.nanmin(drift)) |
|
|||
2008 | print('drift max:', numpy.nanmax(drift)) |
|
|||
2009 | ''' |
|
|||
2010 |
|
||||
2011 | ''' |
|
|||
2012 | print('shape:', dopplerCH0[hvalid].shape) |
|
|||
2013 | print('dopplerCH0:', dopplerCH0[hvalid]) |
|
|||
2014 | print('dopplerCH1:', dopplerCH1[hvalid]) |
|
|||
2015 | print('drift:', drift[hvalid]) |
|
|||
2016 | ''' |
|
|||
2017 | zonal = (dopplerCH0 * numpy.cos(beta) - dopplerCH1 * numpy.cos(alpha))/ sinB_A |
|
2011 | zonal = (dopplerCH0 * numpy.cos(beta) - dopplerCH1 * numpy.cos(alpha))/ sinB_A | |
2018 | ''' |
|
|||
2019 | print('zonal min:', numpy.nanmin(zonal)) |
|
|||
2020 | print('zonal max:', numpy.nanmax(zonal)) |
|
|||
2021 | ''' |
|
|||
2022 | #print('zonal:', zonal[hvalid]) |
|
|||
2023 | snr = (snrCH0 + snrCH1)/2 |
|
2012 | snr = (snrCH0 + snrCH1)/2 | |
2024 | ''' |
|
|||
2025 | print('snr min:', 10*numpy.log10(numpy.nanmin(snr))) |
|
|||
2026 | print('snr max:', 10*numpy.log10(numpy.nanmax(snr))) |
|
|||
2027 | ''' |
|
|||
2028 | noise = (noiseCH0 + noiseCH1)/2 |
|
2013 | noise = (noiseCH0 + noiseCH1)/2 | |
2029 | sw = (swCH0 + swCH1)/2 |
|
2014 | sw = (swCH0 + swCH1)/2 | |
2030 | w_w_err= numpy.sqrt(numpy.power(wErrCH0 * numpy.sin(beta)/numpy.abs(sinB_A),2) + numpy.power(wErrCH1 * numpy.sin(alpha)/numpy.abs(sinB_A),2)) |
|
2015 | w_w_err= numpy.sqrt(numpy.power(wErrCH0 * numpy.sin(beta)/numpy.abs(sinB_A),2) + numpy.power(wErrCH1 * numpy.sin(alpha)/numpy.abs(sinB_A),2)) | |
2031 | w_e_err= numpy.sqrt(numpy.power(wErrCH0 * numpy.cos(beta)/numpy.abs(-1*sinB_A),2) + numpy.power(wErrCH1 * numpy.cos(alpha)/numpy.abs(-1*sinB_A),2)) |
|
2016 | w_e_err= numpy.sqrt(numpy.power(wErrCH0 * numpy.cos(beta)/numpy.abs(-1*sinB_A),2) + numpy.power(wErrCH1 * numpy.cos(alpha)/numpy.abs(-1*sinB_A),2)) | |
2032 |
|
2017 | |||
2033 | # for statistics150km |
|
2018 | # for statistics150km | |
2034 | if statistics: |
|
2019 | if statistics: | |
2035 | print('Implemented offline.') |
|
2020 | print('Implemented offline.') | |
2036 |
|
2021 | |||
2037 | if otype == 0: |
|
2022 | if otype == 0: | |
2038 | winds = numpy.vstack((snr, drift, zonal, noise, sw, w_w_err, w_e_err)) # to process statistics drifts |
|
2023 | winds = numpy.vstack((snr, drift, zonal, noise, sw, w_w_err, w_e_err)) # to process statistics drifts | |
2039 | elif otype == 3: |
|
2024 | elif otype == 3: | |
2040 | winds = numpy.vstack((snr, drift, zonal)) # to generic plot: 3 RTI's |
|
2025 | winds = numpy.vstack((snr, drift, zonal)) # to generic plot: 3 RTI's | |
2041 | elif otype == 4: |
|
2026 | elif otype == 4: | |
2042 | winds = numpy.vstack((snrCH0, drift, snrCH1, zonal)) # to generic plot: 4 RTI's |
|
2027 | winds = numpy.vstack((snrCH0, drift, snrCH1, zonal)) # to generic plot: 4 RTI's | |
2043 |
|
2028 | |||
2044 | snr1 = numpy.vstack((snrCH0, snrCH1)) |
|
2029 | snr1 = numpy.vstack((snrCH0, snrCH1)) | |
2045 |
|
||||
2046 | dataOut.data_output = winds |
|
2030 | dataOut.data_output = winds | |
2047 | dataOut.data_snr = snr1 |
|
2031 | dataOut.data_snr = snr1 | |
2048 |
|
2032 | |||
2049 | dataOut.utctimeInit = dataOut.utctime |
|
2033 | dataOut.utctimeInit = dataOut.utctime | |
2050 | dataOut.outputInterval = dataOut.timeInterval |
|
2034 | dataOut.outputInterval = dataOut.timeInterval | |
2051 |
|
2035 | |||
|
2036 | dataOut.flagNoData = numpy.all(numpy.isnan(dataOut.data_output[0])) # NAN vectors are not written | |||
|
2037 | ||||
2052 | return dataOut |
|
2038 | return dataOut | |
2053 |
|
2039 | |||
2054 | class SALags(Operation): |
|
2040 | class SALags(Operation): | |
2055 | ''' |
|
2041 | ''' | |
2056 | Function GetMoments() |
|
2042 | Function GetMoments() | |
2057 |
|
2043 | |||
2058 | Input: |
|
2044 | Input: | |
2059 | self.dataOut.data_pre |
|
2045 | self.dataOut.data_pre | |
2060 | self.dataOut.abscissaList |
|
2046 | self.dataOut.abscissaList | |
2061 | self.dataOut.noise |
|
2047 | self.dataOut.noise | |
2062 | self.dataOut.normFactor |
|
2048 | self.dataOut.normFactor | |
2063 | self.dataOut.data_snr |
|
2049 | self.dataOut.data_snr | |
2064 | self.dataOut.groupList |
|
2050 | self.dataOut.groupList | |
2065 | self.dataOut.nChannels |
|
2051 | self.dataOut.nChannels | |
2066 |
|
2052 | |||
2067 | Affected: |
|
2053 | Affected: | |
2068 | self.dataOut.data_param |
|
2054 | self.dataOut.data_param | |
2069 |
|
2055 | |||
2070 | ''' |
|
2056 | ''' | |
2071 | def run(self, dataOut): |
|
2057 | def run(self, dataOut): | |
2072 | data_acf = dataOut.data_pre[0] |
|
2058 | data_acf = dataOut.data_pre[0] | |
2073 | data_ccf = dataOut.data_pre[1] |
|
2059 | data_ccf = dataOut.data_pre[1] | |
2074 | normFactor_acf = dataOut.normFactor[0] |
|
2060 | normFactor_acf = dataOut.normFactor[0] | |
2075 | normFactor_ccf = dataOut.normFactor[1] |
|
2061 | normFactor_ccf = dataOut.normFactor[1] | |
2076 | pairs_acf = dataOut.groupList[0] |
|
2062 | pairs_acf = dataOut.groupList[0] | |
2077 | pairs_ccf = dataOut.groupList[1] |
|
2063 | pairs_ccf = dataOut.groupList[1] | |
2078 |
|
2064 | |||
2079 | nHeights = dataOut.nHeights |
|
2065 | nHeights = dataOut.nHeights | |
2080 | absc = dataOut.abscissaList |
|
2066 | absc = dataOut.abscissaList | |
2081 | noise = dataOut.noise |
|
2067 | noise = dataOut.noise | |
2082 | SNR = dataOut.data_snr |
|
2068 | SNR = dataOut.data_snr | |
2083 | nChannels = dataOut.nChannels |
|
2069 | nChannels = dataOut.nChannels | |
2084 | # pairsList = dataOut.groupList |
|
2070 | # pairsList = dataOut.groupList | |
2085 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
2071 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
2086 |
|
2072 | |||
2087 | for l in range(len(pairs_acf)): |
|
2073 | for l in range(len(pairs_acf)): | |
2088 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
2074 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
2089 |
|
2075 | |||
2090 | for l in range(len(pairs_ccf)): |
|
2076 | for l in range(len(pairs_ccf)): | |
2091 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
2077 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
2092 |
|
2078 | |||
2093 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
2079 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
2094 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
2080 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
2095 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
2081 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
2096 | return |
|
2082 | return | |
2097 |
|
2083 | |||
2098 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
2084 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
2099 | # |
|
2085 | # | |
2100 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
2086 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
2101 | # |
|
2087 | # | |
2102 | # for l in range(len(pairsList)): |
|
2088 | # for l in range(len(pairsList)): | |
2103 | # firstChannel = pairsList[l][0] |
|
2089 | # firstChannel = pairsList[l][0] | |
2104 | # secondChannel = pairsList[l][1] |
|
2090 | # secondChannel = pairsList[l][1] | |
2105 | # |
|
2091 | # | |
2106 | # #Obteniendo pares de Autocorrelacion |
|
2092 | # #Obteniendo pares de Autocorrelacion | |
2107 | # if firstChannel == secondChannel: |
|
2093 | # if firstChannel == secondChannel: | |
2108 | # pairsAutoCorr[firstChannel] = int(l) |
|
2094 | # pairsAutoCorr[firstChannel] = int(l) | |
2109 | # |
|
2095 | # | |
2110 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
2096 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
2111 | # |
|
2097 | # | |
2112 | # pairsCrossCorr = range(len(pairsList)) |
|
2098 | # pairsCrossCorr = range(len(pairsList)) | |
2113 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
2099 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
2114 | # |
|
2100 | # | |
2115 | # return pairsAutoCorr, pairsCrossCorr |
|
2101 | # return pairsAutoCorr, pairsCrossCorr | |
2116 |
|
2102 | |||
2117 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
2103 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
2118 |
|
2104 | |||
2119 | lag0 = data_acf.shape[1]/2 |
|
2105 | lag0 = data_acf.shape[1]/2 | |
2120 | #Funcion de Autocorrelacion |
|
2106 | #Funcion de Autocorrelacion | |
2121 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
2107 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
2122 |
|
2108 | |||
2123 | #Obtencion Indice de TauCross |
|
2109 | #Obtencion Indice de TauCross | |
2124 | ind_ccf = data_ccf.argmax(axis = 1) |
|
2110 | ind_ccf = data_ccf.argmax(axis = 1) | |
2125 | #Obtencion Indice de TauAuto |
|
2111 | #Obtencion Indice de TauAuto | |
2126 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
2112 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
2127 | ccf_lag0 = data_ccf[:,lag0,:] |
|
2113 | ccf_lag0 = data_ccf[:,lag0,:] | |
2128 |
|
2114 | |||
2129 | for i in range(ccf_lag0.shape[0]): |
|
2115 | for i in range(ccf_lag0.shape[0]): | |
2130 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
2116 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
2131 |
|
2117 | |||
2132 | #Obtencion de TauCross y TauAuto |
|
2118 | #Obtencion de TauCross y TauAuto | |
2133 | tau_ccf = lagRange[ind_ccf] |
|
2119 | tau_ccf = lagRange[ind_ccf] | |
2134 | tau_acf = lagRange[ind_acf] |
|
2120 | tau_acf = lagRange[ind_acf] | |
2135 |
|
2121 | |||
2136 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
2122 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
2137 |
|
2123 | |||
2138 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
2124 | tau_ccf[Nan1,Nan2] = numpy.nan | |
2139 | tau_acf[Nan1,Nan2] = numpy.nan |
|
2125 | tau_acf[Nan1,Nan2] = numpy.nan | |
2140 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
2126 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
2141 |
|
2127 | |||
2142 | return tau |
|
2128 | return tau | |
2143 |
|
2129 | |||
2144 | def __calculateLag1Phase(self, data, lagTRange): |
|
2130 | def __calculateLag1Phase(self, data, lagTRange): | |
2145 | data1 = stats.nanmean(data, axis = 0) |
|
2131 | data1 = stats.nanmean(data, axis = 0) | |
2146 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
2132 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
2147 |
|
2133 | |||
2148 | phase = numpy.angle(data1[lag1,:]) |
|
2134 | phase = numpy.angle(data1[lag1,:]) | |
2149 |
|
2135 | |||
2150 | return phase |
|
2136 | return phase | |
2151 |
|
2137 | |||
2152 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
2138 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
2153 | z = (x - a1) / a2 |
|
2139 | z = (x - a1) / a2 | |
2154 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
2140 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
2155 | return y |
|
2141 | return y | |
2156 |
|
2142 | |||
2157 |
|
2143 | |||
2158 | class SpectralFitting(Operation): |
|
2144 | class SpectralFitting(Operation): | |
2159 | ''' |
|
2145 | ''' | |
2160 | Function GetMoments() |
|
2146 | Function GetMoments() | |
2161 |
|
2147 | |||
2162 | Input: |
|
2148 | Input: | |
2163 | Output: |
|
2149 | Output: | |
2164 | Variables modified: |
|
2150 | Variables modified: | |
2165 | ''' |
|
2151 | ''' | |
2166 | def __calculateMoments(self,oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
2152 | def __calculateMoments(self,oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
2167 |
|
2153 | |||
2168 | if (nicoh is None): nicoh = 1 |
|
2154 | if (nicoh is None): nicoh = 1 | |
2169 | if (graph is None): graph = 0 |
|
2155 | if (graph is None): graph = 0 | |
2170 | if (smooth is None): smooth = 0 |
|
2156 | if (smooth is None): smooth = 0 | |
2171 | elif (self.smooth < 3): smooth = 0 |
|
2157 | elif (self.smooth < 3): smooth = 0 | |
2172 |
|
2158 | |||
2173 | if (type1 is None): type1 = 0 |
|
2159 | if (type1 is None): type1 = 0 | |
2174 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
2160 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
2175 | if (snrth is None): snrth = -3 |
|
2161 | if (snrth is None): snrth = -3 | |
2176 | if (dc is None): dc = 0 |
|
2162 | if (dc is None): dc = 0 | |
2177 | if (aliasing is None): aliasing = 0 |
|
2163 | if (aliasing is None): aliasing = 0 | |
2178 | if (oldfd is None): oldfd = 0 |
|
2164 | if (oldfd is None): oldfd = 0 | |
2179 | if (wwauto is None): wwauto = 0 |
|
2165 | if (wwauto is None): wwauto = 0 | |
2180 |
|
2166 | |||
2181 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
2167 | if (n0 < 1.e-20): n0 = 1.e-20 | |
2182 |
|
2168 | |||
2183 | freq = oldfreq |
|
2169 | freq = oldfreq | |
2184 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
2170 | vec_power = numpy.zeros(oldspec.shape[1]) | |
2185 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
2171 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
2186 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
2172 | vec_w = numpy.zeros(oldspec.shape[1]) | |
2187 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
2173 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
2188 |
|
2174 | |||
2189 | oldspec = numpy.ma.masked_invalid(oldspec) |
|
2175 | oldspec = numpy.ma.masked_invalid(oldspec) | |
2190 |
|
2176 | |||
2191 | for ind in range(oldspec.shape[1]): |
|
2177 | for ind in range(oldspec.shape[1]): | |
2192 |
|
2178 | |||
2193 | spec = oldspec[:,ind] |
|
2179 | spec = oldspec[:,ind] | |
2194 | aux = spec*fwindow |
|
2180 | aux = spec*fwindow | |
2195 | max_spec = aux.max() |
|
2181 | max_spec = aux.max() | |
2196 | m = list(aux).index(max_spec) |
|
2182 | m = list(aux).index(max_spec) | |
2197 |
|
2183 | |||
2198 | #Smooth |
|
2184 | #Smooth | |
2199 | if (smooth == 0): spec2 = spec |
|
2185 | if (smooth == 0): spec2 = spec | |
2200 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
2186 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
2201 |
|
2187 | |||
2202 | # Calculo de Momentos |
|
2188 | # Calculo de Momentos | |
2203 | bb = spec2[list(range(m,spec2.size))] |
|
2189 | bb = spec2[list(range(m,spec2.size))] | |
2204 | bb = (bb<n0).nonzero() |
|
2190 | bb = (bb<n0).nonzero() | |
2205 | bb = bb[0] |
|
2191 | bb = bb[0] | |
2206 |
|
2192 | |||
2207 | ss = spec2[list(range(0,m + 1))] |
|
2193 | ss = spec2[list(range(0,m + 1))] | |
2208 | ss = (ss<n0).nonzero() |
|
2194 | ss = (ss<n0).nonzero() | |
2209 | ss = ss[0] |
|
2195 | ss = ss[0] | |
2210 |
|
2196 | |||
2211 | if (bb.size == 0): |
|
2197 | if (bb.size == 0): | |
2212 | bb0 = spec.size - 1 - m |
|
2198 | bb0 = spec.size - 1 - m | |
2213 | else: |
|
2199 | else: | |
2214 | bb0 = bb[0] - 1 |
|
2200 | bb0 = bb[0] - 1 | |
2215 | if (bb0 < 0): |
|
2201 | if (bb0 < 0): | |
2216 | bb0 = 0 |
|
2202 | bb0 = 0 | |
2217 |
|
2203 | |||
2218 | if (ss.size == 0): ss1 = 1 |
|
2204 | if (ss.size == 0): ss1 = 1 | |
2219 | else: ss1 = max(ss) + 1 |
|
2205 | else: ss1 = max(ss) + 1 | |
2220 |
|
2206 | |||
2221 | if (ss1 > m): ss1 = m |
|
2207 | if (ss1 > m): ss1 = m | |
2222 |
|
2208 | |||
2223 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 |
|
2209 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 | |
2224 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
2210 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
2225 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
2211 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
2226 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
2212 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
2227 | snr = (spec2.mean()-n0)/n0 |
|
2213 | snr = (spec2.mean()-n0)/n0 | |
2228 |
|
2214 | |||
2229 | if (snr < 1.e-20) : |
|
2215 | if (snr < 1.e-20) : | |
2230 | snr = 1.e-20 |
|
2216 | snr = 1.e-20 | |
2231 |
|
2217 | |||
2232 | vec_power[ind] = power |
|
2218 | vec_power[ind] = power | |
2233 | vec_fd[ind] = fd |
|
2219 | vec_fd[ind] = fd | |
2234 | vec_w[ind] = w |
|
2220 | vec_w[ind] = w | |
2235 | vec_snr[ind] = snr |
|
2221 | vec_snr[ind] = snr | |
2236 |
|
2222 | |||
2237 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
2223 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
2238 | return moments |
|
2224 | return moments | |
2239 |
|
2225 | |||
2240 | #def __DiffCoherent(self,snrth, spectra, cspectra, nProf, heights,nChan, nHei, nPairs, channels, noise, crosspairs): |
|
2226 | #def __DiffCoherent(self,snrth, spectra, cspectra, nProf, heights,nChan, nHei, nPairs, channels, noise, crosspairs): | |
2241 | def __DiffCoherent(self, spectra, cspectra, dataOut, noise, snrth, coh_th, hei_th): |
|
2227 | def __DiffCoherent(self, spectra, cspectra, dataOut, noise, snrth, coh_th, hei_th): | |
2242 |
|
2228 | |||
2243 | import matplotlib.pyplot as plt |
|
2229 | import matplotlib.pyplot as plt | |
2244 | nProf = dataOut.nProfiles |
|
2230 | nProf = dataOut.nProfiles | |
2245 | heights = dataOut.heightList |
|
2231 | heights = dataOut.heightList | |
2246 | nHei = len(heights) |
|
2232 | nHei = len(heights) | |
2247 | channels = dataOut.channelList |
|
2233 | channels = dataOut.channelList | |
2248 | nChan = len(channels) |
|
2234 | nChan = len(channels) | |
2249 | crosspairs = dataOut.groupList |
|
2235 | crosspairs = dataOut.groupList | |
2250 | nPairs = len(crosspairs) |
|
2236 | nPairs = len(crosspairs) | |
2251 | #Separar espectros incoherentes de coherentes snr > 20 dB' |
|
2237 | #Separar espectros incoherentes de coherentes snr > 20 dB' | |
2252 | snr_th = 10**(snrth/10.0) |
|
2238 | snr_th = 10**(snrth/10.0) | |
2253 | my_incoh_spectra = numpy.zeros([nChan, nProf,nHei], dtype='float') |
|
2239 | my_incoh_spectra = numpy.zeros([nChan, nProf,nHei], dtype='float') | |
2254 | my_incoh_cspectra = numpy.zeros([nPairs,nProf, nHei], dtype='complex') |
|
2240 | my_incoh_cspectra = numpy.zeros([nPairs,nProf, nHei], dtype='complex') | |
2255 | my_incoh_aver = numpy.zeros([nChan, nHei]) |
|
2241 | my_incoh_aver = numpy.zeros([nChan, nHei]) | |
2256 | my_coh_aver = numpy.zeros([nChan, nHei]) |
|
2242 | my_coh_aver = numpy.zeros([nChan, nHei]) | |
2257 |
|
2243 | |||
2258 | coh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') |
|
2244 | coh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |
2259 | coh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') |
|
2245 | coh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |
2260 | coh_aver = numpy.zeros([nChan, nHei]) |
|
2246 | coh_aver = numpy.zeros([nChan, nHei]) | |
2261 |
|
2247 | |||
2262 | incoh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') |
|
2248 | incoh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |
2263 | incoh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') |
|
2249 | incoh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |
2264 | incoh_aver = numpy.zeros([nChan, nHei]) |
|
2250 | incoh_aver = numpy.zeros([nChan, nHei]) | |
2265 | power = numpy.sum(spectra, axis=1) |
|
2251 | power = numpy.sum(spectra, axis=1) | |
2266 |
|
2252 | |||
2267 | if coh_th == None : coh_th = numpy.array([0.75,0.65,0.15]) # 0.65 |
|
2253 | if coh_th == None : coh_th = numpy.array([0.75,0.65,0.15]) # 0.65 | |
2268 | if hei_th == None : hei_th = numpy.array([60,300,650]) |
|
2254 | if hei_th == None : hei_th = numpy.array([60,300,650]) | |
2269 | for ic in range(2): |
|
2255 | for ic in range(2): | |
2270 | pair = crosspairs[ic] |
|
2256 | pair = crosspairs[ic] | |
2271 | #si el SNR es mayor que el SNR threshold los datos se toman coherentes |
|
2257 | #si el SNR es mayor que el SNR threshold los datos se toman coherentes | |
2272 | s_n0 = power[pair[0],:]/noise[pair[0]] |
|
2258 | s_n0 = power[pair[0],:]/noise[pair[0]] | |
2273 | s_n1 = power[pair[1],:]/noise[pair[1]] |
|
2259 | s_n1 = power[pair[1],:]/noise[pair[1]] | |
2274 |
|
2260 | |||
2275 | valid1 =(s_n0>=snr_th).nonzero() |
|
2261 | valid1 =(s_n0>=snr_th).nonzero() | |
2276 | valid2 = (s_n1>=snr_th).nonzero() |
|
2262 | valid2 = (s_n1>=snr_th).nonzero() | |
2277 | #valid = valid2 + valid1 #numpy.concatenate((valid1,valid2), axis=None) |
|
2263 | #valid = valid2 + valid1 #numpy.concatenate((valid1,valid2), axis=None) | |
2278 | valid1 = numpy.array(valid1[0]) |
|
2264 | valid1 = numpy.array(valid1[0]) | |
2279 | valid2 = numpy.array(valid2[0]) |
|
2265 | valid2 = numpy.array(valid2[0]) | |
2280 | valid = valid1 |
|
2266 | valid = valid1 | |
2281 | for iv in range(len(valid2)): |
|
2267 | for iv in range(len(valid2)): | |
2282 | #for ivv in range(len(valid1)) : |
|
2268 | #for ivv in range(len(valid1)) : | |
2283 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) |
|
2269 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |
2284 | if len(indv[0]) == 0 : |
|
2270 | if len(indv[0]) == 0 : | |
2285 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) |
|
2271 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |
2286 | if len(valid)>0: |
|
2272 | if len(valid)>0: | |
2287 | my_coh_aver[pair[0],valid]=1 |
|
2273 | my_coh_aver[pair[0],valid]=1 | |
2288 | my_coh_aver[pair[1],valid]=1 |
|
2274 | my_coh_aver[pair[1],valid]=1 | |
2289 | # si la coherencia es mayor a la coherencia threshold los datos se toman |
|
2275 | # si la coherencia es mayor a la coherencia threshold los datos se toman | |
2290 | #print my_coh_aver[0,:] |
|
2276 | #print my_coh_aver[0,:] | |
2291 | coh = numpy.squeeze(numpy.nansum(cspectra[ic,:,:], axis=0)/numpy.sqrt(numpy.nansum(spectra[pair[0],:,:], axis=0)*numpy.nansum(spectra[pair[1],:,:], axis=0))) |
|
2277 | coh = numpy.squeeze(numpy.nansum(cspectra[ic,:,:], axis=0)/numpy.sqrt(numpy.nansum(spectra[pair[0],:,:], axis=0)*numpy.nansum(spectra[pair[1],:,:], axis=0))) | |
2292 | #print('coh',numpy.absolute(coh)) |
|
2278 | #print('coh',numpy.absolute(coh)) | |
2293 | for ih in range(len(hei_th)): |
|
2279 | for ih in range(len(hei_th)): | |
2294 | hvalid = (heights>hei_th[ih]).nonzero() |
|
2280 | hvalid = (heights>hei_th[ih]).nonzero() | |
2295 | hvalid = hvalid[0] |
|
2281 | hvalid = hvalid[0] | |
2296 | if len(hvalid)>0: |
|
2282 | if len(hvalid)>0: | |
2297 | valid = (numpy.absolute(coh[hvalid])>coh_th[ih]).nonzero() |
|
2283 | valid = (numpy.absolute(coh[hvalid])>coh_th[ih]).nonzero() | |
2298 | valid = valid[0] |
|
2284 | valid = valid[0] | |
2299 | #print('hvalid:',hvalid) |
|
2285 | #print('hvalid:',hvalid) | |
2300 | #print('valid', valid) |
|
2286 | #print('valid', valid) | |
2301 | if len(valid)>0: |
|
2287 | if len(valid)>0: | |
2302 | my_coh_aver[pair[0],hvalid[valid]] =1 |
|
2288 | my_coh_aver[pair[0],hvalid[valid]] =1 | |
2303 | my_coh_aver[pair[1],hvalid[valid]] =1 |
|
2289 | my_coh_aver[pair[1],hvalid[valid]] =1 | |
2304 |
|
2290 | |||
2305 | coh_echoes = (my_coh_aver[pair[0],:] == 1).nonzero() |
|
2291 | coh_echoes = (my_coh_aver[pair[0],:] == 1).nonzero() | |
2306 | incoh_echoes = (my_coh_aver[pair[0],:] != 1).nonzero() |
|
2292 | incoh_echoes = (my_coh_aver[pair[0],:] != 1).nonzero() | |
2307 | incoh_echoes = incoh_echoes[0] |
|
2293 | incoh_echoes = incoh_echoes[0] | |
2308 | if len(incoh_echoes) > 0: |
|
2294 | if len(incoh_echoes) > 0: | |
2309 | my_incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] |
|
2295 | my_incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |
2310 | my_incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] |
|
2296 | my_incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |
2311 | my_incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] |
|
2297 | my_incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |
2312 | my_incoh_aver[pair[0],incoh_echoes] = 1 |
|
2298 | my_incoh_aver[pair[0],incoh_echoes] = 1 | |
2313 | my_incoh_aver[pair[1],incoh_echoes] = 1 |
|
2299 | my_incoh_aver[pair[1],incoh_echoes] = 1 | |
2314 |
|
2300 | |||
2315 |
|
2301 | |||
2316 | for ic in range(2): |
|
2302 | for ic in range(2): | |
2317 | pair = crosspairs[ic] |
|
2303 | pair = crosspairs[ic] | |
2318 |
|
2304 | |||
2319 | valid1 =(my_coh_aver[pair[0],:]==1 ).nonzero() |
|
2305 | valid1 =(my_coh_aver[pair[0],:]==1 ).nonzero() | |
2320 | valid2 = (my_coh_aver[pair[1],:]==1).nonzero() |
|
2306 | valid2 = (my_coh_aver[pair[1],:]==1).nonzero() | |
2321 | valid1 = numpy.array(valid1[0]) |
|
2307 | valid1 = numpy.array(valid1[0]) | |
2322 | valid2 = numpy.array(valid2[0]) |
|
2308 | valid2 = numpy.array(valid2[0]) | |
2323 | valid = valid1 |
|
2309 | valid = valid1 | |
2324 | #print valid1 , valid2 |
|
2310 | #print valid1 , valid2 | |
2325 | for iv in range(len(valid2)): |
|
2311 | for iv in range(len(valid2)): | |
2326 | #for ivv in range(len(valid1)) : |
|
2312 | #for ivv in range(len(valid1)) : | |
2327 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) |
|
2313 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |
2328 | if len(indv[0]) == 0 : |
|
2314 | if len(indv[0]) == 0 : | |
2329 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) |
|
2315 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |
2330 | #print valid |
|
2316 | #print valid | |
2331 | #valid = numpy.concatenate((valid1,valid2), axis=None) |
|
2317 | #valid = numpy.concatenate((valid1,valid2), axis=None) | |
2332 | valid1 =(my_coh_aver[pair[0],:] !=1 ).nonzero() |
|
2318 | valid1 =(my_coh_aver[pair[0],:] !=1 ).nonzero() | |
2333 | valid2 = (my_coh_aver[pair[1],:] !=1).nonzero() |
|
2319 | valid2 = (my_coh_aver[pair[1],:] !=1).nonzero() | |
2334 | valid1 = numpy.array(valid1[0]) |
|
2320 | valid1 = numpy.array(valid1[0]) | |
2335 | valid2 = numpy.array(valid2[0]) |
|
2321 | valid2 = numpy.array(valid2[0]) | |
2336 | incoh_echoes = valid1 |
|
2322 | incoh_echoes = valid1 | |
2337 | #print valid1, valid2 |
|
2323 | #print valid1, valid2 | |
2338 | #incoh_echoes= numpy.concatenate((valid1,valid2), axis=None) |
|
2324 | #incoh_echoes= numpy.concatenate((valid1,valid2), axis=None) | |
2339 | for iv in range(len(valid2)): |
|
2325 | for iv in range(len(valid2)): | |
2340 | #for ivv in range(len(valid1)) : |
|
2326 | #for ivv in range(len(valid1)) : | |
2341 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) |
|
2327 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |
2342 | if len(indv[0]) == 0 : |
|
2328 | if len(indv[0]) == 0 : | |
2343 | incoh_echoes = numpy.concatenate(( incoh_echoes,valid2[iv]), axis=None) |
|
2329 | incoh_echoes = numpy.concatenate(( incoh_echoes,valid2[iv]), axis=None) | |
2344 | #print incoh_echoes |
|
2330 | #print incoh_echoes | |
2345 | if len(valid)>0: |
|
2331 | if len(valid)>0: | |
2346 | #print pair |
|
2332 | #print pair | |
2347 | coh_spectra[pair[0],:,valid] = spectra[pair[0],:,valid] |
|
2333 | coh_spectra[pair[0],:,valid] = spectra[pair[0],:,valid] | |
2348 | coh_spectra[pair[1],:,valid] = spectra[pair[1],:,valid] |
|
2334 | coh_spectra[pair[1],:,valid] = spectra[pair[1],:,valid] | |
2349 | coh_cspectra[ic,:,valid] = cspectra[ic,:,valid] |
|
2335 | coh_cspectra[ic,:,valid] = cspectra[ic,:,valid] | |
2350 | coh_aver[pair[0],valid]=1 |
|
2336 | coh_aver[pair[0],valid]=1 | |
2351 | coh_aver[pair[1],valid]=1 |
|
2337 | coh_aver[pair[1],valid]=1 | |
2352 | if len(incoh_echoes)>0: |
|
2338 | if len(incoh_echoes)>0: | |
2353 | incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] |
|
2339 | incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |
2354 | incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] |
|
2340 | incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |
2355 | incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] |
|
2341 | incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |
2356 | incoh_aver[pair[0],incoh_echoes]=1 |
|
2342 | incoh_aver[pair[0],incoh_echoes]=1 | |
2357 | incoh_aver[pair[1],incoh_echoes]=1 |
|
2343 | incoh_aver[pair[1],incoh_echoes]=1 | |
2358 | #plt.imshow(spectra[0,:,:],vmin=20000000) |
|
2344 | #plt.imshow(spectra[0,:,:],vmin=20000000) | |
2359 | #plt.show() |
|
2345 | #plt.show() | |
2360 | #my_incoh_aver = my_incoh_aver+1 |
|
2346 | #my_incoh_aver = my_incoh_aver+1 | |
2361 |
|
2347 | |||
2362 | #spec = my_incoh_spectra.copy() |
|
2348 | #spec = my_incoh_spectra.copy() | |
2363 | #cspec = my_incoh_cspectra.copy() |
|
2349 | #cspec = my_incoh_cspectra.copy() | |
2364 | #print('######################', spec) |
|
2350 | #print('######################', spec) | |
2365 | #print(self.numpy) |
|
2351 | #print(self.numpy) | |
2366 | #return spec, cspec,coh_aver |
|
2352 | #return spec, cspec,coh_aver | |
2367 | return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver |
|
2353 | return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver | |
2368 |
|
2354 | |||
2369 | def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index): |
|
2355 | def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index): | |
2370 |
|
2356 | |||
2371 | import matplotlib.pyplot as plt |
|
2357 | import matplotlib.pyplot as plt | |
2372 | nProf = dataOut.nProfiles |
|
2358 | nProf = dataOut.nProfiles | |
2373 | heights = dataOut.heightList |
|
2359 | heights = dataOut.heightList | |
2374 | nHei = len(heights) |
|
2360 | nHei = len(heights) | |
2375 | channels = dataOut.channelList |
|
2361 | channels = dataOut.channelList | |
2376 | nChan = len(channels) |
|
2362 | nChan = len(channels) | |
2377 | crosspairs = dataOut.groupList |
|
2363 | crosspairs = dataOut.groupList | |
2378 | nPairs = len(crosspairs) |
|
2364 | nPairs = len(crosspairs) | |
2379 |
|
2365 | |||
2380 | #data = dataOut.data_pre[0] |
|
2366 | #data = dataOut.data_pre[0] | |
2381 | absc = dataOut.abscissaList[:-1] |
|
2367 | absc = dataOut.abscissaList[:-1] | |
2382 | #noise = dataOut.noise |
|
2368 | #noise = dataOut.noise | |
2383 | #nChannel = data.shape[0] |
|
2369 | #nChannel = data.shape[0] | |
2384 | data_param = numpy.zeros((nChan, 4, spectra.shape[2])) |
|
2370 | data_param = numpy.zeros((nChan, 4, spectra.shape[2])) | |
2385 |
|
2371 | |||
2386 |
|
2372 | |||
2387 | #plt.plot(absc) |
|
2373 | #plt.plot(absc) | |
2388 | #plt.show() |
|
2374 | #plt.show() | |
2389 | clean_coh_spectra = spectra.copy() |
|
2375 | clean_coh_spectra = spectra.copy() | |
2390 | clean_coh_cspectra = cspectra.copy() |
|
2376 | clean_coh_cspectra = cspectra.copy() | |
2391 | clean_coh_aver = coh_aver.copy() |
|
2377 | clean_coh_aver = coh_aver.copy() | |
2392 |
|
2378 | |||
2393 | spwd_th=[10,6] #spwd_th[0] --> For satellites ; spwd_th[1] --> For special events like SUN. |
|
2379 | spwd_th=[10,6] #spwd_th[0] --> For satellites ; spwd_th[1] --> For special events like SUN. | |
2394 | coh_th = 0.75 |
|
2380 | coh_th = 0.75 | |
2395 |
|
2381 | |||
2396 | rtime0 = [6,18] # periodo sin ESF |
|
2382 | rtime0 = [6,18] # periodo sin ESF | |
2397 | rtime1 = [10.5,13.5] # periodo con alta coherencia y alto ancho espectral (esperado): SOL. |
|
2383 | rtime1 = [10.5,13.5] # periodo con alta coherencia y alto ancho espectral (esperado): SOL. | |
2398 |
|
2384 | |||
2399 | time = index*5./60 |
|
2385 | time = index*5./60 | |
2400 | if clean_coh_echoes == 1 : |
|
2386 | if clean_coh_echoes == 1 : | |
2401 | for ind in range(nChan): |
|
2387 | for ind in range(nChan): | |
2402 | data_param[ind,:,:] = self.__calculateMoments( spectra[ind,:,:] , absc , noise[ind] ) |
|
2388 | data_param[ind,:,:] = self.__calculateMoments( spectra[ind,:,:] , absc , noise[ind] ) | |
2403 | #print data_param[:,3] |
|
2389 | #print data_param[:,3] | |
2404 | spwd = data_param[:,3] |
|
2390 | spwd = data_param[:,3] | |
2405 | #print spwd.shape |
|
2391 | #print spwd.shape | |
2406 | # SPECB_JULIA,header=anal_header,jspectra=spectra,vel=velocities,hei=heights, num_aver=1, mode_fit=0,smoothing=smoothing,jvelr=velr,jspwd=spwd,jsnr=snr,jnoise=noise,jstdvnoise=stdvnoise |
|
2392 | # SPECB_JULIA,header=anal_header,jspectra=spectra,vel=velocities,hei=heights, num_aver=1, mode_fit=0,smoothing=smoothing,jvelr=velr,jspwd=spwd,jsnr=snr,jnoise=noise,jstdvnoise=stdvnoise | |
2407 | #spwd1=[ 1.65607, 1.43416, 0.500373, 0.208361, 0.000000, 26.7767, 22.5936, 26.7530, 20.6962, 29.1098, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 28.0300, 27.0511, 27.8810, 26.3126, 27.8445, 24.6181, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] |
|
2393 | #spwd1=[ 1.65607, 1.43416, 0.500373, 0.208361, 0.000000, 26.7767, 22.5936, 26.7530, 20.6962, 29.1098, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 28.0300, 27.0511, 27.8810, 26.3126, 27.8445, 24.6181, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] | |
2408 | #spwd=numpy.array([spwd1,spwd1,spwd1,spwd1]) |
|
2394 | #spwd=numpy.array([spwd1,spwd1,spwd1,spwd1]) | |
2409 | #print spwd.shape, heights.shape,coh_aver.shape |
|
2395 | #print spwd.shape, heights.shape,coh_aver.shape | |
2410 | # para obtener spwd |
|
2396 | # para obtener spwd | |
2411 | for ic in range(nPairs): |
|
2397 | for ic in range(nPairs): | |
2412 | pair = crosspairs[ic] |
|
2398 | pair = crosspairs[ic] | |
2413 | coh = numpy.squeeze(numpy.sum(cspectra[ic,:,:], axis=1)/numpy.sqrt(numpy.sum(spectra[pair[0],:,:], axis=1)*numpy.sum(spectra[pair[1],:,:], axis=1))) |
|
2399 | coh = numpy.squeeze(numpy.sum(cspectra[ic,:,:], axis=1)/numpy.sqrt(numpy.sum(spectra[pair[0],:,:], axis=1)*numpy.sum(spectra[pair[1],:,:], axis=1))) | |
2414 | for ih in range(nHei) : |
|
2400 | for ih in range(nHei) : | |
2415 | # Considering heights higher than 200km in order to avoid removing phenomena like EEJ. |
|
2401 | # Considering heights higher than 200km in order to avoid removing phenomena like EEJ. | |
2416 | if heights[ih] >= 200 and coh_aver[pair[0],ih] == 1 and coh_aver[pair[1],ih] == 1 : |
|
2402 | if heights[ih] >= 200 and coh_aver[pair[0],ih] == 1 and coh_aver[pair[1],ih] == 1 : | |
2417 | # Checking coherence |
|
2403 | # Checking coherence | |
2418 | if (numpy.abs(coh[ih]) <= coh_th) or (time >= rtime0[0] and time <= rtime0[1]) : |
|
2404 | if (numpy.abs(coh[ih]) <= coh_th) or (time >= rtime0[0] and time <= rtime0[1]) : | |
2419 | # Checking spectral widths |
|
2405 | # Checking spectral widths | |
2420 | if (spwd[pair[0],ih] > spwd_th[0]) or (spwd[pair[1],ih] > spwd_th[0]) : |
|
2406 | if (spwd[pair[0],ih] > spwd_th[0]) or (spwd[pair[1],ih] > spwd_th[0]) : | |
2421 | # satelite |
|
2407 | # satelite | |
2422 | clean_coh_spectra[pair,ih,:] = 0.0 |
|
2408 | clean_coh_spectra[pair,ih,:] = 0.0 | |
2423 | clean_coh_cspectra[ic,ih,:] = 0.0 |
|
2409 | clean_coh_cspectra[ic,ih,:] = 0.0 | |
2424 | clean_coh_aver[pair,ih] = 0 |
|
2410 | clean_coh_aver[pair,ih] = 0 | |
2425 | else : |
|
2411 | else : | |
2426 | if ((spwd[pair[0],ih] < spwd_th[1]) or (spwd[pair[1],ih] < spwd_th[1])) : |
|
2412 | if ((spwd[pair[0],ih] < spwd_th[1]) or (spwd[pair[1],ih] < spwd_th[1])) : | |
2427 | # Especial event like sun. |
|
2413 | # Especial event like sun. | |
2428 | clean_coh_spectra[pair,ih,:] = 0.0 |
|
2414 | clean_coh_spectra[pair,ih,:] = 0.0 | |
2429 | clean_coh_cspectra[ic,ih,:] = 0.0 |
|
2415 | clean_coh_cspectra[ic,ih,:] = 0.0 | |
2430 | clean_coh_aver[pair,ih] = 0 |
|
2416 | clean_coh_aver[pair,ih] = 0 | |
2431 |
|
2417 | |||
2432 | return clean_coh_spectra, clean_coh_cspectra, clean_coh_aver |
|
2418 | return clean_coh_spectra, clean_coh_cspectra, clean_coh_aver | |
2433 |
|
2419 | |||
2434 | isConfig = False |
|
2420 | isConfig = False | |
2435 | __dataReady = False |
|
2421 | __dataReady = False | |
2436 | bloques = None |
|
2422 | bloques = None | |
2437 | bloque0 = None |
|
2423 | bloque0 = None | |
2438 |
|
2424 | |||
2439 | def __init__(self): |
|
2425 | def __init__(self): | |
2440 | Operation.__init__(self) |
|
2426 | Operation.__init__(self) | |
2441 | self.i=0 |
|
2427 | self.i=0 | |
2442 | self.isConfig = False |
|
2428 | self.isConfig = False | |
2443 |
|
2429 | |||
2444 |
|
2430 | |||
2445 | def setup(self,nChan,nProf,nHei,nBlocks): |
|
2431 | def setup(self,nChan,nProf,nHei,nBlocks): | |
2446 | self.__dataReady = False |
|
2432 | self.__dataReady = False | |
2447 | self.bloques = numpy.zeros([2, nProf, nHei,nBlocks], dtype= complex) |
|
2433 | self.bloques = numpy.zeros([2, nProf, nHei,nBlocks], dtype= complex) | |
2448 | self.bloque0 = numpy.zeros([nChan, nProf, nHei, nBlocks]) |
|
2434 | self.bloque0 = numpy.zeros([nChan, nProf, nHei, nBlocks]) | |
2449 |
|
2435 | |||
2450 | #def CleanRayleigh(self,dataOut,spectra,cspectra,out_spectra,out_cspectra,sat_spectra,sat_cspectra,crosspairs,heights, channels, nProf,nHei,nChan,nPairs,nIncohInt,nBlocks): |
|
2436 | #def CleanRayleigh(self,dataOut,spectra,cspectra,out_spectra,out_cspectra,sat_spectra,sat_cspectra,crosspairs,heights, channels, nProf,nHei,nChan,nPairs,nIncohInt,nBlocks): | |
2451 | def CleanRayleigh(self,dataOut,spectra,cspectra,save_drifts): |
|
2437 | def CleanRayleigh(self,dataOut,spectra,cspectra,save_drifts): | |
2452 | #import matplotlib.pyplot as plt |
|
2438 | #import matplotlib.pyplot as plt | |
2453 | #for k in range(149): |
|
2439 | #for k in range(149): | |
2454 |
|
2440 | |||
2455 | # self.bloque0[:,:,:,k] = spectra[:,:,0:nHei] |
|
2441 | # self.bloque0[:,:,:,k] = spectra[:,:,0:nHei] | |
2456 | # self.bloques[:,:,:,k] = cspectra[:,:,0:nHei] |
|
2442 | # self.bloques[:,:,:,k] = cspectra[:,:,0:nHei] | |
2457 | #if self.i==nBlocks: |
|
2443 | #if self.i==nBlocks: | |
2458 | # self.i==0 |
|
2444 | # self.i==0 | |
2459 | rfunc = cspectra.copy() #self.bloques |
|
2445 | rfunc = cspectra.copy() #self.bloques | |
2460 | n_funct = len(rfunc[0,:,0,0]) |
|
2446 | n_funct = len(rfunc[0,:,0,0]) | |
2461 | val_spc = spectra*0.0 #self.bloque0*0.0 |
|
2447 | val_spc = spectra*0.0 #self.bloque0*0.0 | |
2462 | val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
2448 | val_cspc = cspectra*0.0 #self.bloques*0.0 | |
2463 | in_sat_spectra = spectra.copy() #self.bloque0 |
|
2449 | in_sat_spectra = spectra.copy() #self.bloque0 | |
2464 | in_sat_cspectra = cspectra.copy() #self.bloques |
|
2450 | in_sat_cspectra = cspectra.copy() #self.bloques | |
2465 |
|
2451 | |||
2466 | #print( rfunc.shape) |
|
2452 | #print( rfunc.shape) | |
2467 | min_hei = 200 |
|
2453 | min_hei = 200 | |
2468 | nProf = dataOut.nProfiles |
|
2454 | nProf = dataOut.nProfiles | |
2469 | heights = dataOut.heightList |
|
2455 | heights = dataOut.heightList | |
2470 | nHei = len(heights) |
|
2456 | nHei = len(heights) | |
2471 | channels = dataOut.channelList |
|
2457 | channels = dataOut.channelList | |
2472 | nChan = len(channels) |
|
2458 | nChan = len(channels) | |
2473 | crosspairs = dataOut.groupList |
|
2459 | crosspairs = dataOut.groupList | |
2474 | nPairs = len(crosspairs) |
|
2460 | nPairs = len(crosspairs) | |
2475 | hval=(heights >= min_hei).nonzero() |
|
2461 | hval=(heights >= min_hei).nonzero() | |
2476 | ih=hval[0] |
|
2462 | ih=hval[0] | |
2477 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
2463 | #print numpy.absolute(rfunc[:,0,0,14]) | |
2478 | for ih in range(hval[0][0],nHei): |
|
2464 | for ih in range(hval[0][0],nHei): | |
2479 | for ifreq in range(nProf): |
|
2465 | for ifreq in range(nProf): | |
2480 | for ii in range(n_funct): |
|
2466 | for ii in range(n_funct): | |
2481 |
|
2467 | |||
2482 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) |
|
2468 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) | |
2483 | #print numpy.amin(func2clean) |
|
2469 | #print numpy.amin(func2clean) | |
2484 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
2470 | val = (numpy.isfinite(func2clean)==True).nonzero() | |
2485 | if len(val)>0: |
|
2471 | if len(val)>0: | |
2486 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
2472 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
2487 | if min_val <= -40 : min_val = -40 |
|
2473 | if min_val <= -40 : min_val = -40 | |
2488 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
2474 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
2489 | if max_val >= 200 : max_val = 200 |
|
2475 | if max_val >= 200 : max_val = 200 | |
2490 | #print min_val, max_val |
|
2476 | #print min_val, max_val | |
2491 | step = 1 |
|
2477 | step = 1 | |
2492 | #Getting bins and the histogram |
|
2478 | #Getting bins and the histogram | |
2493 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
2479 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
2494 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
2480 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
2495 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
2481 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
2496 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
2482 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
2497 | parg = [numpy.amax(y_dist),mean,sigma] |
|
2483 | parg = [numpy.amax(y_dist),mean,sigma] | |
2498 | try : |
|
2484 | try : | |
2499 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
2485 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
2500 | mode = gauss_fit[1] |
|
2486 | mode = gauss_fit[1] | |
2501 | stdv = gauss_fit[2] |
|
2487 | stdv = gauss_fit[2] | |
2502 | except: |
|
2488 | except: | |
2503 | mode = mean |
|
2489 | mode = mean | |
2504 | stdv = sigma |
|
2490 | stdv = sigma | |
2505 | # if ih == 14 and ii == 0 and ifreq ==0 : |
|
2491 | # if ih == 14 and ii == 0 and ifreq ==0 : | |
2506 | # print x_dist.shape, y_dist.shape |
|
2492 | # print x_dist.shape, y_dist.shape | |
2507 | # print x_dist, y_dist |
|
2493 | # print x_dist, y_dist | |
2508 | # print min_val, max_val, binstep |
|
2494 | # print min_val, max_val, binstep | |
2509 | # print func2clean |
|
2495 | # print func2clean | |
2510 | # print mean,sigma |
|
2496 | # print mean,sigma | |
2511 | # mean1,std = norm.fit(y_dist) |
|
2497 | # mean1,std = norm.fit(y_dist) | |
2512 | # print mean1, std, gauss_fit |
|
2498 | # print mean1, std, gauss_fit | |
2513 | # print fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
2499 | # print fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
2514 | # 7.84616 53.9307 3.61863 |
|
2500 | # 7.84616 53.9307 3.61863 | |
2515 | #stdv = 3.61863 # 2.99089 |
|
2501 | #stdv = 3.61863 # 2.99089 | |
2516 | #mode = 53.9307 #7.79008 |
|
2502 | #mode = 53.9307 #7.79008 | |
2517 |
|
2503 | |||
2518 | #Removing echoes greater than mode + 3*stdv |
|
2504 | #Removing echoes greater than mode + 3*stdv | |
2519 | factor_stdv = 2.5 |
|
2505 | factor_stdv = 2.5 | |
2520 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
2506 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
2521 |
|
2507 | |||
2522 | if len(noval[0]) > 0: |
|
2508 | if len(noval[0]) > 0: | |
2523 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
2509 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
2524 | cross_pairs = crosspairs[ii] |
|
2510 | cross_pairs = crosspairs[ii] | |
2525 | #Getting coherent echoes which are removed. |
|
2511 | #Getting coherent echoes which are removed. | |
2526 | if len(novall[0]) > 0: |
|
2512 | if len(novall[0]) > 0: | |
2527 | #val_spc[(0,1),novall[a],ih] = 1 |
|
2513 | #val_spc[(0,1),novall[a],ih] = 1 | |
2528 | #val_spc[,(2,3),novall[a],ih] = 1 |
|
2514 | #val_spc[,(2,3),novall[a],ih] = 1 | |
2529 | val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
2515 | val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
2530 | val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
2516 | val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
2531 | val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
2517 | val_cspc[novall[0],ii,ifreq,ih] = 1 | |
2532 | #print("OUT NOVALL 1") |
|
2518 | #print("OUT NOVALL 1") | |
2533 | #Removing coherent from ISR data |
|
2519 | #Removing coherent from ISR data | |
2534 | # if ih == 17 and ii == 0 and ifreq ==0 : |
|
2520 | # if ih == 17 and ii == 0 and ifreq ==0 : | |
2535 | # print spectra[:,cross_pairs[0],ifreq,ih] |
|
2521 | # print spectra[:,cross_pairs[0],ifreq,ih] | |
2536 | spectra[noval,cross_pairs[0],ifreq,ih] = numpy.nan |
|
2522 | spectra[noval,cross_pairs[0],ifreq,ih] = numpy.nan | |
2537 | spectra[noval,cross_pairs[1],ifreq,ih] = numpy.nan |
|
2523 | spectra[noval,cross_pairs[1],ifreq,ih] = numpy.nan | |
2538 | cspectra[noval,ii,ifreq,ih] = numpy.nan |
|
2524 | cspectra[noval,ii,ifreq,ih] = numpy.nan | |
2539 | # if ih == 17 and ii == 0 and ifreq ==0 : |
|
2525 | # if ih == 17 and ii == 0 and ifreq ==0 : | |
2540 | # print spectra[:,cross_pairs[0],ifreq,ih] |
|
2526 | # print spectra[:,cross_pairs[0],ifreq,ih] | |
2541 | # print noval, len(noval[0]) |
|
2527 | # print noval, len(noval[0]) | |
2542 | # print novall, len(novall[0]) |
|
2528 | # print novall, len(novall[0]) | |
2543 | # print factor_stdv*stdv |
|
2529 | # print factor_stdv*stdv | |
2544 | # print func2clean-mode |
|
2530 | # print func2clean-mode | |
2545 | # print val_spc[:,cross_pairs[0],ifreq,ih] |
|
2531 | # print val_spc[:,cross_pairs[0],ifreq,ih] | |
2546 | # print spectra[:,cross_pairs[0],ifreq,ih] |
|
2532 | # print spectra[:,cross_pairs[0],ifreq,ih] | |
2547 | #no sale es para savedrifts >2 |
|
2533 | #no sale es para savedrifts >2 | |
2548 | ''' channels = channels |
|
2534 | ''' channels = channels | |
2549 | cross_pairs = cross_pairs |
|
2535 | cross_pairs = cross_pairs | |
2550 | #print("OUT NOVALL 2") |
|
2536 | #print("OUT NOVALL 2") | |
2551 |
|
2537 | |||
2552 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() |
|
2538 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() | |
2553 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() |
|
2539 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() | |
2554 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) |
|
2540 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) | |
2555 | #print('vcros =', vcross) |
|
2541 | #print('vcros =', vcross) | |
2556 |
|
2542 | |||
2557 | #Getting coherent echoes which are removed. |
|
2543 | #Getting coherent echoes which are removed. | |
2558 | if len(novall) > 0: |
|
2544 | if len(novall) > 0: | |
2559 | #val_spc[novall,ii,ifreq,ih] = 1 |
|
2545 | #val_spc[novall,ii,ifreq,ih] = 1 | |
2560 | val_spc[ii,ifreq,ih,novall] = 1 |
|
2546 | val_spc[ii,ifreq,ih,novall] = 1 | |
2561 | if len(vcross) > 0: |
|
2547 | if len(vcross) > 0: | |
2562 | val_cspc[vcross,ifreq,ih,novall] = 1 |
|
2548 | val_cspc[vcross,ifreq,ih,novall] = 1 | |
2563 |
|
2549 | |||
2564 | #Removing coherent from ISR data. |
|
2550 | #Removing coherent from ISR data. | |
2565 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan |
|
2551 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan | |
2566 | if len(vcross) > 0: |
|
2552 | if len(vcross) > 0: | |
2567 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan |
|
2553 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan | |
2568 | ''' |
|
2554 | ''' | |
2569 | #Getting average of the spectra and cross-spectra from incoherent echoes. |
|
2555 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |
2570 | out_spectra = numpy.zeros([nChan,nProf,nHei], dtype=float) #+numpy.nan |
|
2556 | out_spectra = numpy.zeros([nChan,nProf,nHei], dtype=float) #+numpy.nan | |
2571 | out_cspectra = numpy.zeros([nPairs,nProf,nHei], dtype=complex) #+numpy.nan |
|
2557 | out_cspectra = numpy.zeros([nPairs,nProf,nHei], dtype=complex) #+numpy.nan | |
2572 | for ih in range(nHei): |
|
2558 | for ih in range(nHei): | |
2573 | for ifreq in range(nProf): |
|
2559 | for ifreq in range(nProf): | |
2574 | for ich in range(nChan): |
|
2560 | for ich in range(nChan): | |
2575 | tmp = spectra[:,ich,ifreq,ih] |
|
2561 | tmp = spectra[:,ich,ifreq,ih] | |
2576 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
2562 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
2577 | # if ich == 0 and ifreq == 0 and ih == 17 : |
|
2563 | # if ich == 0 and ifreq == 0 and ih == 17 : | |
2578 | # print tmp |
|
2564 | # print tmp | |
2579 | # print valid |
|
2565 | # print valid | |
2580 | # print len(valid[0]) |
|
2566 | # print len(valid[0]) | |
2581 | #print('TMP',tmp) |
|
2567 | #print('TMP',tmp) | |
2582 | if len(valid[0]) >0 : |
|
2568 | if len(valid[0]) >0 : | |
2583 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
2569 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
2584 | #for icr in range(nPairs): |
|
2570 | #for icr in range(nPairs): | |
2585 | for icr in range(nPairs): |
|
2571 | for icr in range(nPairs): | |
2586 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
2572 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
2587 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
2573 | valid = (numpy.isfinite(tmp)==True).nonzero() | |
2588 | if len(valid[0]) > 0: |
|
2574 | if len(valid[0]) > 0: | |
2589 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
2575 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
2590 | # print('##########################################################') |
|
2576 | # print('##########################################################') | |
2591 | #Removing fake coherent echoes (at least 4 points around the point) |
|
2577 | #Removing fake coherent echoes (at least 4 points around the point) | |
2592 |
|
2578 | |||
2593 | val_spectra = numpy.sum(val_spc,0) |
|
2579 | val_spectra = numpy.sum(val_spc,0) | |
2594 | val_cspectra = numpy.sum(val_cspc,0) |
|
2580 | val_cspectra = numpy.sum(val_cspc,0) | |
2595 |
|
2581 | |||
2596 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) |
|
2582 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) | |
2597 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) |
|
2583 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) | |
2598 |
|
2584 | |||
2599 | for i in range(nChan): |
|
2585 | for i in range(nChan): | |
2600 | for j in range(nProf): |
|
2586 | for j in range(nProf): | |
2601 | for k in range(nHei): |
|
2587 | for k in range(nHei): | |
2602 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : |
|
2588 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : | |
2603 | val_spc[:,i,j,k] = 0.0 |
|
2589 | val_spc[:,i,j,k] = 0.0 | |
2604 | for i in range(nPairs): |
|
2590 | for i in range(nPairs): | |
2605 | for j in range(nProf): |
|
2591 | for j in range(nProf): | |
2606 | for k in range(nHei): |
|
2592 | for k in range(nHei): | |
2607 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : |
|
2593 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : | |
2608 | val_cspc[:,i,j,k] = 0.0 |
|
2594 | val_cspc[:,i,j,k] = 0.0 | |
2609 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHei*nChan)) |
|
2595 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHei*nChan)) | |
2610 | # if numpy.isfinite(val_spectra)==str(True): |
|
2596 | # if numpy.isfinite(val_spectra)==str(True): | |
2611 | # noval = (val_spectra<1).nonzero() |
|
2597 | # noval = (val_spectra<1).nonzero() | |
2612 | # if len(noval) > 0: |
|
2598 | # if len(noval) > 0: | |
2613 | # val_spc[:,noval] = 0.0 |
|
2599 | # val_spc[:,noval] = 0.0 | |
2614 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHei)) |
|
2600 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHei)) | |
2615 |
|
2601 | |||
2616 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHei*nProf)) |
|
2602 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHei*nProf)) | |
2617 | #if numpy.isfinite(val_cspectra)==str(True): |
|
2603 | #if numpy.isfinite(val_cspectra)==str(True): | |
2618 | # noval = (val_cspectra<1).nonzero() |
|
2604 | # noval = (val_cspectra<1).nonzero() | |
2619 | # if len(noval) > 0: |
|
2605 | # if len(noval) > 0: | |
2620 | # val_cspc[:,noval] = 0.0 |
|
2606 | # val_cspc[:,noval] = 0.0 | |
2621 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHei)) |
|
2607 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHei)) | |
2622 |
|
2608 | |||
2623 | tmp_sat_spectra = spectra.copy() |
|
2609 | tmp_sat_spectra = spectra.copy() | |
2624 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan |
|
2610 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan | |
2625 | tmp_sat_cspectra = cspectra.copy() |
|
2611 | tmp_sat_cspectra = cspectra.copy() | |
2626 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan |
|
2612 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan | |
2627 |
|
2613 | |||
2628 | # fig = plt.figure(figsize=(6,5)) |
|
2614 | # fig = plt.figure(figsize=(6,5)) | |
2629 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
2615 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
2630 | # ax = fig.add_axes([left, bottom, width, height]) |
|
2616 | # ax = fig.add_axes([left, bottom, width, height]) | |
2631 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) |
|
2617 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) | |
2632 | # ax.clabel(cp, inline=True,fontsize=10) |
|
2618 | # ax.clabel(cp, inline=True,fontsize=10) | |
2633 | # plt.show() |
|
2619 | # plt.show() | |
2634 |
|
2620 | |||
2635 | val = (val_spc > 0).nonzero() |
|
2621 | val = (val_spc > 0).nonzero() | |
2636 | if len(val[0]) > 0: |
|
2622 | if len(val[0]) > 0: | |
2637 | tmp_sat_spectra[val] = in_sat_spectra[val] |
|
2623 | tmp_sat_spectra[val] = in_sat_spectra[val] | |
2638 |
|
2624 | |||
2639 | val = (val_cspc > 0).nonzero() |
|
2625 | val = (val_cspc > 0).nonzero() | |
2640 | if len(val[0]) > 0: |
|
2626 | if len(val[0]) > 0: | |
2641 | tmp_sat_cspectra[val] = in_sat_cspectra[val] |
|
2627 | tmp_sat_cspectra[val] = in_sat_cspectra[val] | |
2642 |
|
2628 | |||
2643 | #Getting average of the spectra and cross-spectra from incoherent echoes. |
|
2629 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |
2644 | sat_spectra = numpy.zeros((nChan,nProf,nHei), dtype=float) |
|
2630 | sat_spectra = numpy.zeros((nChan,nProf,nHei), dtype=float) | |
2645 | sat_cspectra = numpy.zeros((nPairs,nProf,nHei), dtype=complex) |
|
2631 | sat_cspectra = numpy.zeros((nPairs,nProf,nHei), dtype=complex) | |
2646 | for ih in range(nHei): |
|
2632 | for ih in range(nHei): | |
2647 | for ifreq in range(nProf): |
|
2633 | for ifreq in range(nProf): | |
2648 | for ich in range(nChan): |
|
2634 | for ich in range(nChan): | |
2649 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) |
|
2635 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) | |
2650 | valid = (numpy.isfinite(tmp)).nonzero() |
|
2636 | valid = (numpy.isfinite(tmp)).nonzero() | |
2651 | if len(valid[0]) > 0: |
|
2637 | if len(valid[0]) > 0: | |
2652 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
2638 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
2653 |
|
2639 | |||
2654 | for icr in range(nPairs): |
|
2640 | for icr in range(nPairs): | |
2655 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) |
|
2641 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) | |
2656 | valid = (numpy.isfinite(tmp)).nonzero() |
|
2642 | valid = (numpy.isfinite(tmp)).nonzero() | |
2657 | if len(valid[0]) > 0: |
|
2643 | if len(valid[0]) > 0: | |
2658 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
2644 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
2659 | #self.__dataReady= True |
|
2645 | #self.__dataReady= True | |
2660 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra |
|
2646 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra | |
2661 | #if not self.__dataReady: |
|
2647 | #if not self.__dataReady: | |
2662 | #return None, None |
|
2648 | #return None, None | |
2663 | return out_spectra, out_cspectra,sat_spectra,sat_cspectra |
|
2649 | return out_spectra, out_cspectra,sat_spectra,sat_cspectra | |
2664 | def REM_ISOLATED_POINTS(self,array,rth): |
|
2650 | def REM_ISOLATED_POINTS(self,array,rth): | |
2665 | # import matplotlib.pyplot as plt |
|
2651 | # import matplotlib.pyplot as plt | |
2666 | if rth == None : rth = 4 |
|
2652 | if rth == None : rth = 4 | |
2667 |
|
2653 | |||
2668 | num_prof = len(array[0,:,0]) |
|
2654 | num_prof = len(array[0,:,0]) | |
2669 | num_hei = len(array[0,0,:]) |
|
2655 | num_hei = len(array[0,0,:]) | |
2670 | n2d = len(array[:,0,0]) |
|
2656 | n2d = len(array[:,0,0]) | |
2671 |
|
2657 | |||
2672 | for ii in range(n2d) : |
|
2658 | for ii in range(n2d) : | |
2673 | #print ii,n2d |
|
2659 | #print ii,n2d | |
2674 | tmp = array[ii,:,:] |
|
2660 | tmp = array[ii,:,:] | |
2675 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
2661 | #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
2676 |
|
2662 | |||
2677 | # fig = plt.figure(figsize=(6,5)) |
|
2663 | # fig = plt.figure(figsize=(6,5)) | |
2678 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
2664 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
2679 | # ax = fig.add_axes([left, bottom, width, height]) |
|
2665 | # ax = fig.add_axes([left, bottom, width, height]) | |
2680 | # x = range(num_prof) |
|
2666 | # x = range(num_prof) | |
2681 | # y = range(num_hei) |
|
2667 | # y = range(num_hei) | |
2682 | # cp = ax.contour(y,x,tmp) |
|
2668 | # cp = ax.contour(y,x,tmp) | |
2683 | # ax.clabel(cp, inline=True,fontsize=10) |
|
2669 | # ax.clabel(cp, inline=True,fontsize=10) | |
2684 | # plt.show() |
|
2670 | # plt.show() | |
2685 |
|
2671 | |||
2686 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
2672 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
2687 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
2673 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |
2688 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
2674 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
2689 | indxs2 = (tmp > 0).nonzero() |
|
2675 | indxs2 = (tmp > 0).nonzero() | |
2690 |
|
2676 | |||
2691 | indxs1 = (indxs1[0]) |
|
2677 | indxs1 = (indxs1[0]) | |
2692 | indxs2 = indxs2[0] |
|
2678 | indxs2 = indxs2[0] | |
2693 | #indxs1 = numpy.array(indxs1[0]) |
|
2679 | #indxs1 = numpy.array(indxs1[0]) | |
2694 | #indxs2 = numpy.array(indxs2[0]) |
|
2680 | #indxs2 = numpy.array(indxs2[0]) | |
2695 | indxs = None |
|
2681 | indxs = None | |
2696 | #print indxs1 , indxs2 |
|
2682 | #print indxs1 , indxs2 | |
2697 | for iv in range(len(indxs2)): |
|
2683 | for iv in range(len(indxs2)): | |
2698 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
2684 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
2699 | #print len(indxs2), indv |
|
2685 | #print len(indxs2), indv | |
2700 | if len(indv[0]) > 0 : |
|
2686 | if len(indv[0]) > 0 : | |
2701 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
2687 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
2702 | # print indxs |
|
2688 | # print indxs | |
2703 | indxs = indxs[1:] |
|
2689 | indxs = indxs[1:] | |
2704 | #print indxs, len(indxs) |
|
2690 | #print indxs, len(indxs) | |
2705 | if len(indxs) < 4 : |
|
2691 | if len(indxs) < 4 : | |
2706 | array[ii,:,:] = 0. |
|
2692 | array[ii,:,:] = 0. | |
2707 | return |
|
2693 | return | |
2708 |
|
2694 | |||
2709 | xpos = numpy.mod(indxs ,num_hei) |
|
2695 | xpos = numpy.mod(indxs ,num_hei) | |
2710 | ypos = (indxs / num_hei) |
|
2696 | ypos = (indxs / num_hei) | |
2711 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
2697 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
2712 | #print sx |
|
2698 | #print sx | |
2713 | xpos = xpos[sx] |
|
2699 | xpos = xpos[sx] | |
2714 | ypos = ypos[sx] |
|
2700 | ypos = ypos[sx] | |
2715 |
|
2701 | |||
2716 | # *********************************** Cleaning isolated points ********************************** |
|
2702 | # *********************************** Cleaning isolated points ********************************** | |
2717 | ic = 0 |
|
2703 | ic = 0 | |
2718 | while True : |
|
2704 | while True : | |
2719 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
2705 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
2720 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
2706 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
2721 | #plt.plot(r) |
|
2707 | #plt.plot(r) | |
2722 | #plt.show() |
|
2708 | #plt.show() | |
2723 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
2709 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
2724 | no_coh2 = (r <= rth).nonzero() |
|
2710 | no_coh2 = (r <= rth).nonzero() | |
2725 | #print r, no_coh1, no_coh2 |
|
2711 | #print r, no_coh1, no_coh2 | |
2726 | no_coh1 = numpy.array(no_coh1[0]) |
|
2712 | no_coh1 = numpy.array(no_coh1[0]) | |
2727 | no_coh2 = numpy.array(no_coh2[0]) |
|
2713 | no_coh2 = numpy.array(no_coh2[0]) | |
2728 | no_coh = None |
|
2714 | no_coh = None | |
2729 | #print valid1 , valid2 |
|
2715 | #print valid1 , valid2 | |
2730 | for iv in range(len(no_coh2)): |
|
2716 | for iv in range(len(no_coh2)): | |
2731 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
2717 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
2732 | if len(indv[0]) > 0 : |
|
2718 | if len(indv[0]) > 0 : | |
2733 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
2719 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
2734 | no_coh = no_coh[1:] |
|
2720 | no_coh = no_coh[1:] | |
2735 | #print len(no_coh), no_coh |
|
2721 | #print len(no_coh), no_coh | |
2736 | if len(no_coh) < 4 : |
|
2722 | if len(no_coh) < 4 : | |
2737 | #print xpos[ic], ypos[ic], ic |
|
2723 | #print xpos[ic], ypos[ic], ic | |
2738 | # plt.plot(r) |
|
2724 | # plt.plot(r) | |
2739 | # plt.show() |
|
2725 | # plt.show() | |
2740 | xpos[ic] = numpy.nan |
|
2726 | xpos[ic] = numpy.nan | |
2741 | ypos[ic] = numpy.nan |
|
2727 | ypos[ic] = numpy.nan | |
2742 |
|
2728 | |||
2743 | ic = ic + 1 |
|
2729 | ic = ic + 1 | |
2744 | if (ic == len(indxs)) : |
|
2730 | if (ic == len(indxs)) : | |
2745 | break |
|
2731 | break | |
2746 | #print( xpos, ypos) |
|
2732 | #print( xpos, ypos) | |
2747 |
|
2733 | |||
2748 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
2734 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
2749 | #print indxs[0] |
|
2735 | #print indxs[0] | |
2750 | if len(indxs[0]) < 4 : |
|
2736 | if len(indxs[0]) < 4 : | |
2751 | array[ii,:,:] = 0. |
|
2737 | array[ii,:,:] = 0. | |
2752 | return |
|
2738 | return | |
2753 |
|
2739 | |||
2754 | xpos = xpos[indxs[0]] |
|
2740 | xpos = xpos[indxs[0]] | |
2755 | ypos = ypos[indxs[0]] |
|
2741 | ypos = ypos[indxs[0]] | |
2756 | for i in range(0,len(ypos)): |
|
2742 | for i in range(0,len(ypos)): | |
2757 | ypos[i]=int(ypos[i]) |
|
2743 | ypos[i]=int(ypos[i]) | |
2758 | junk = tmp |
|
2744 | junk = tmp | |
2759 | tmp = junk*0.0 |
|
2745 | tmp = junk*0.0 | |
2760 |
|
2746 | |||
2761 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
2747 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
2762 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
2748 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
2763 |
|
2749 | |||
2764 | #print array.shape |
|
2750 | #print array.shape | |
2765 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
2751 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
2766 | #print tmp.shape |
|
2752 | #print tmp.shape | |
2767 |
|
2753 | |||
2768 | # fig = plt.figure(figsize=(6,5)) |
|
2754 | # fig = plt.figure(figsize=(6,5)) | |
2769 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
2755 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
2770 | # ax = fig.add_axes([left, bottom, width, height]) |
|
2756 | # ax = fig.add_axes([left, bottom, width, height]) | |
2771 | # x = range(num_prof) |
|
2757 | # x = range(num_prof) | |
2772 | # y = range(num_hei) |
|
2758 | # y = range(num_hei) | |
2773 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
2759 | # cp = ax.contour(y,x,array[ii,:,:]) | |
2774 | # ax.clabel(cp, inline=True,fontsize=10) |
|
2760 | # ax.clabel(cp, inline=True,fontsize=10) | |
2775 | # plt.show() |
|
2761 | # plt.show() | |
2776 | return array |
|
2762 | return array | |
2777 | def moments(self,doppler,yarray,npoints): |
|
2763 | def moments(self,doppler,yarray,npoints): | |
2778 | ytemp = yarray |
|
2764 | ytemp = yarray | |
2779 | #val = WHERE(ytemp GT 0,cval) |
|
2765 | #val = WHERE(ytemp GT 0,cval) | |
2780 | #if cval == 0 : val = range(npoints-1) |
|
2766 | #if cval == 0 : val = range(npoints-1) | |
2781 | val = (ytemp > 0).nonzero() |
|
2767 | val = (ytemp > 0).nonzero() | |
2782 | val = val[0] |
|
2768 | val = val[0] | |
2783 | #print('hvalid:',hvalid) |
|
2769 | #print('hvalid:',hvalid) | |
2784 | #print('valid', valid) |
|
2770 | #print('valid', valid) | |
2785 | if len(val) == 0 : val = range(npoints-1) |
|
2771 | if len(val) == 0 : val = range(npoints-1) | |
2786 |
|
2772 | |||
2787 | ynew = 0.5*(ytemp[val[0]]+ytemp[val[len(val)-1]]) |
|
2773 | ynew = 0.5*(ytemp[val[0]]+ytemp[val[len(val)-1]]) | |
2788 | ytemp[len(ytemp):] = [ynew] |
|
2774 | ytemp[len(ytemp):] = [ynew] | |
2789 |
|
2775 | |||
2790 | index = 0 |
|
2776 | index = 0 | |
2791 | index = numpy.argmax(ytemp) |
|
2777 | index = numpy.argmax(ytemp) | |
2792 | ytemp = numpy.roll(ytemp,int(npoints/2)-1-index) |
|
2778 | ytemp = numpy.roll(ytemp,int(npoints/2)-1-index) | |
2793 | ytemp = ytemp[0:npoints-1] |
|
2779 | ytemp = ytemp[0:npoints-1] | |
2794 |
|
2780 | |||
2795 | fmom = numpy.sum(doppler*ytemp)/numpy.sum(ytemp)+(index-(npoints/2-1))*numpy.abs(doppler[1]-doppler[0]) |
|
2781 | fmom = numpy.sum(doppler*ytemp)/numpy.sum(ytemp)+(index-(npoints/2-1))*numpy.abs(doppler[1]-doppler[0]) | |
2796 | smom = numpy.sum(doppler*doppler*ytemp)/numpy.sum(ytemp) |
|
2782 | smom = numpy.sum(doppler*doppler*ytemp)/numpy.sum(ytemp) | |
2797 | return [fmom,numpy.sqrt(smom)] |
|
2783 | return [fmom,numpy.sqrt(smom)] | |
2798 | # ********************************************************************************************** |
|
2784 | # ********************************************************************************************** | |
2799 | index = 0 |
|
2785 | index = 0 | |
2800 | fint = 0 |
|
2786 | fint = 0 | |
2801 | buffer = 0 |
|
2787 | buffer = 0 | |
2802 | buffer2 = 0 |
|
2788 | buffer2 = 0 | |
2803 | buffer3 = 0 |
|
2789 | buffer3 = 0 | |
2804 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
2790 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
2805 | nChannels = dataOut.nChannels |
|
2791 | nChannels = dataOut.nChannels | |
2806 | nHeights= dataOut.heightList.size |
|
2792 | nHeights= dataOut.heightList.size | |
2807 | nProf = dataOut.nProfiles |
|
2793 | nProf = dataOut.nProfiles | |
2808 | tini=time.localtime(dataOut.utctime) |
|
2794 | tini=time.localtime(dataOut.utctime) | |
2809 | if (tini.tm_min % 5) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
2795 | if (tini.tm_min % 5) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
2810 | # print tini.tm_min |
|
2796 | # print tini.tm_min | |
2811 | self.index = 0 |
|
2797 | self.index = 0 | |
2812 | jspc = self.buffer |
|
2798 | jspc = self.buffer | |
2813 | jcspc = self.buffer2 |
|
2799 | jcspc = self.buffer2 | |
2814 | jnoise = self.buffer3 |
|
2800 | jnoise = self.buffer3 | |
2815 | self.buffer = dataOut.data_spc |
|
2801 | self.buffer = dataOut.data_spc | |
2816 | self.buffer2 = dataOut.data_cspc |
|
2802 | self.buffer2 = dataOut.data_cspc | |
2817 | self.buffer3 = dataOut.noise |
|
2803 | self.buffer3 = dataOut.noise | |
2818 | self.fint = 1 |
|
2804 | self.fint = 1 | |
2819 | if numpy.any(jspc) : |
|
2805 | if numpy.any(jspc) : | |
2820 | jspc= numpy.reshape(jspc,(int(len(jspc)/4),nChannels,nProf,nHeights)) |
|
2806 | jspc= numpy.reshape(jspc,(int(len(jspc)/4),nChannels,nProf,nHeights)) | |
2821 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/2),2,nProf,nHeights)) |
|
2807 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/2),2,nProf,nHeights)) | |
2822 | jnoise= numpy.reshape(jnoise,(int(len(jnoise)/4),nChannels)) |
|
2808 | jnoise= numpy.reshape(jnoise,(int(len(jnoise)/4),nChannels)) | |
2823 | else: |
|
2809 | else: | |
2824 | dataOut.flagNoData = True |
|
2810 | dataOut.flagNoData = True | |
2825 | return dataOut |
|
2811 | return dataOut | |
2826 | else : |
|
2812 | else : | |
2827 | if (tini.tm_min % 5) == 0 : self.fint = 1 |
|
2813 | if (tini.tm_min % 5) == 0 : self.fint = 1 | |
2828 | else : self.fint = 0 |
|
2814 | else : self.fint = 0 | |
2829 | self.index += 1 |
|
2815 | self.index += 1 | |
2830 | if numpy.any(self.buffer): |
|
2816 | if numpy.any(self.buffer): | |
2831 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
2817 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
2832 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
2818 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
2833 | self.buffer3 = numpy.concatenate((self.buffer3,dataOut.noise), axis=0) |
|
2819 | self.buffer3 = numpy.concatenate((self.buffer3,dataOut.noise), axis=0) | |
2834 | else: |
|
2820 | else: | |
2835 | self.buffer = dataOut.data_spc |
|
2821 | self.buffer = dataOut.data_spc | |
2836 | self.buffer2 = dataOut.data_cspc |
|
2822 | self.buffer2 = dataOut.data_cspc | |
2837 | self.buffer3 = dataOut.noise |
|
2823 | self.buffer3 = dataOut.noise | |
2838 | dataOut.flagNoData = True |
|
2824 | dataOut.flagNoData = True | |
2839 | return dataOut |
|
2825 | return dataOut | |
2840 | if path != None: |
|
2826 | if path != None: | |
2841 | sys.path.append(path) |
|
2827 | sys.path.append(path) | |
2842 | self.library = importlib.import_module(file) |
|
2828 | self.library = importlib.import_module(file) | |
2843 |
|
2829 | |||
2844 | #To be inserted as a parameter |
|
2830 | #To be inserted as a parameter | |
2845 | groupArray = numpy.array(groupList) |
|
2831 | groupArray = numpy.array(groupList) | |
2846 | #groupArray = numpy.array([[0,1],[2,3]]) |
|
2832 | #groupArray = numpy.array([[0,1],[2,3]]) | |
2847 | dataOut.groupList = groupArray |
|
2833 | dataOut.groupList = groupArray | |
2848 |
|
2834 | |||
2849 | nGroups = groupArray.shape[0] |
|
2835 | nGroups = groupArray.shape[0] | |
2850 | nChannels = dataOut.nChannels |
|
2836 | nChannels = dataOut.nChannels | |
2851 | nHeights = dataOut.heightList.size |
|
2837 | nHeights = dataOut.heightList.size | |
2852 |
|
2838 | |||
2853 | #Parameters Array |
|
2839 | #Parameters Array | |
2854 | dataOut.data_param = None |
|
2840 | dataOut.data_param = None | |
2855 | dataOut.data_paramC = None |
|
2841 | dataOut.data_paramC = None | |
2856 |
|
2842 | |||
2857 | #Set constants |
|
2843 | #Set constants | |
2858 | constants = self.library.setConstants(dataOut) |
|
2844 | constants = self.library.setConstants(dataOut) | |
2859 | dataOut.constants = constants |
|
2845 | dataOut.constants = constants | |
2860 | M = dataOut.normFactor |
|
2846 | M = dataOut.normFactor | |
2861 | N = dataOut.nFFTPoints |
|
2847 | N = dataOut.nFFTPoints | |
2862 | ippSeconds = dataOut.ippSeconds |
|
2848 | ippSeconds = dataOut.ippSeconds | |
2863 | K = dataOut.nIncohInt |
|
2849 | K = dataOut.nIncohInt | |
2864 | pairsArray = numpy.array(dataOut.pairsList) |
|
2850 | pairsArray = numpy.array(dataOut.pairsList) | |
2865 |
|
2851 | |||
2866 | snrth= 20 |
|
2852 | snrth= 20 | |
2867 | spectra = dataOut.data_spc |
|
2853 | spectra = dataOut.data_spc | |
2868 | cspectra = dataOut.data_cspc |
|
2854 | cspectra = dataOut.data_cspc | |
2869 | nProf = dataOut.nProfiles |
|
2855 | nProf = dataOut.nProfiles | |
2870 | heights = dataOut.heightList |
|
2856 | heights = dataOut.heightList | |
2871 | nHei = len(heights) |
|
2857 | nHei = len(heights) | |
2872 | channels = dataOut.channelList |
|
2858 | channels = dataOut.channelList | |
2873 | nChan = len(channels) |
|
2859 | nChan = len(channels) | |
2874 | nIncohInt = dataOut.nIncohInt |
|
2860 | nIncohInt = dataOut.nIncohInt | |
2875 | crosspairs = dataOut.groupList |
|
2861 | crosspairs = dataOut.groupList | |
2876 | noise = dataOut.noise |
|
2862 | noise = dataOut.noise | |
2877 | jnoise = jnoise/N |
|
2863 | jnoise = jnoise/N | |
2878 | noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) |
|
2864 | noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) | |
2879 | power = numpy.sum(spectra, axis=1) |
|
2865 | power = numpy.sum(spectra, axis=1) | |
2880 | nPairs = len(crosspairs) |
|
2866 | nPairs = len(crosspairs) | |
2881 | absc = dataOut.abscissaList[:-1] |
|
2867 | absc = dataOut.abscissaList[:-1] | |
2882 |
|
2868 | |||
2883 | if not self.isConfig: |
|
2869 | if not self.isConfig: | |
2884 | self.isConfig = True |
|
2870 | self.isConfig = True | |
2885 |
|
2871 | |||
2886 | index = tini.tm_hour*12+tini.tm_min/5 |
|
2872 | index = tini.tm_hour*12+tini.tm_min/5 | |
2887 | jspc = jspc/N/N |
|
2873 | jspc = jspc/N/N | |
2888 | jcspc = jcspc/N/N |
|
2874 | jcspc = jcspc/N/N | |
2889 | tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.CleanRayleigh(dataOut,jspc,jcspc,2) |
|
2875 | tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.CleanRayleigh(dataOut,jspc,jcspc,2) | |
2890 | jspectra = tmp_spectra*len(jspc[:,0,0,0]) |
|
2876 | jspectra = tmp_spectra*len(jspc[:,0,0,0]) | |
2891 | jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) |
|
2877 | jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) | |
2892 | my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver = self.__DiffCoherent(jspectra, jcspectra, dataOut, noise, snrth, None, None) |
|
2878 | my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver = self.__DiffCoherent(jspectra, jcspectra, dataOut, noise, snrth, None, None) | |
2893 | clean_coh_spectra, clean_coh_cspectra, clean_coh_aver = self.__CleanCoherent(snrth, coh_spectra, coh_cspectra, coh_aver, dataOut, noise,1,index) |
|
2879 | clean_coh_spectra, clean_coh_cspectra, clean_coh_aver = self.__CleanCoherent(snrth, coh_spectra, coh_cspectra, coh_aver, dataOut, noise,1,index) | |
2894 | dataOut.data_spc = incoh_spectra |
|
2880 | dataOut.data_spc = incoh_spectra | |
2895 | dataOut.data_cspc = incoh_cspectra |
|
2881 | dataOut.data_cspc = incoh_cspectra | |
2896 |
|
2882 | |||
2897 | clean_num_aver = incoh_aver*len(jspc[:,0,0,0]) |
|
2883 | clean_num_aver = incoh_aver*len(jspc[:,0,0,0]) | |
2898 | coh_num_aver = clean_coh_aver*len(jspc[:,0,0,0]) |
|
2884 | coh_num_aver = clean_coh_aver*len(jspc[:,0,0,0]) | |
2899 | #List of possible combinations |
|
2885 | #List of possible combinations | |
2900 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
2886 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
2901 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
2887 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
2902 |
|
2888 | |||
2903 | if getSNR: |
|
2889 | if getSNR: | |
2904 | listChannels = groupArray.reshape((groupArray.size)) |
|
2890 | listChannels = groupArray.reshape((groupArray.size)) | |
2905 | listChannels.sort() |
|
2891 | listChannels.sort() | |
2906 | dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels]) |
|
2892 | dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels]) | |
2907 | if dataOut.data_paramC is None: |
|
2893 | if dataOut.data_paramC is None: | |
2908 | dataOut.data_paramC = numpy.zeros((nGroups*4, nHeights,2))*numpy.nan |
|
2894 | dataOut.data_paramC = numpy.zeros((nGroups*4, nHeights,2))*numpy.nan | |
2909 | for i in range(nGroups): |
|
2895 | for i in range(nGroups): | |
2910 | coord = groupArray[i,:] |
|
2896 | coord = groupArray[i,:] | |
2911 | #Input data array |
|
2897 | #Input data array | |
2912 | data = dataOut.data_spc[coord,:,:]/(M*N) |
|
2898 | data = dataOut.data_spc[coord,:,:]/(M*N) | |
2913 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
2899 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
2914 |
|
2900 | |||
2915 | #Cross Spectra data array for Covariance Matrixes |
|
2901 | #Cross Spectra data array for Covariance Matrixes | |
2916 | ind = 0 |
|
2902 | ind = 0 | |
2917 | for pairs in listComb: |
|
2903 | for pairs in listComb: | |
2918 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
2904 | pairsSel = numpy.array([coord[x],coord[y]]) | |
2919 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
2905 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
2920 | ind += 1 |
|
2906 | ind += 1 | |
2921 | dataCross = dataOut.data_cspc[indCross,:,:]/(M*N) |
|
2907 | dataCross = dataOut.data_cspc[indCross,:,:]/(M*N) | |
2922 | dataCross = dataCross**2 |
|
2908 | dataCross = dataCross**2 | |
2923 | nhei = nHeights |
|
2909 | nhei = nHeights | |
2924 | poweri = numpy.sum(dataOut.data_spc[:,1:nProf-0,:],axis=1)/clean_num_aver[:,:] |
|
2910 | poweri = numpy.sum(dataOut.data_spc[:,1:nProf-0,:],axis=1)/clean_num_aver[:,:] | |
2925 | if i == 0 : my_noises = numpy.zeros(4,dtype=float) #FLTARR(4) |
|
2911 | if i == 0 : my_noises = numpy.zeros(4,dtype=float) #FLTARR(4) | |
2926 | n0i = numpy.nanmin(poweri[0+i*2,0:nhei-0])/(nProf-1) |
|
2912 | n0i = numpy.nanmin(poweri[0+i*2,0:nhei-0])/(nProf-1) | |
2927 | n1i = numpy.nanmin(poweri[1+i*2,0:nhei-0])/(nProf-1) |
|
2913 | n1i = numpy.nanmin(poweri[1+i*2,0:nhei-0])/(nProf-1) | |
2928 | n0 = n0i |
|
2914 | n0 = n0i | |
2929 | n1= n1i |
|
2915 | n1= n1i | |
2930 | my_noises[2*i+0] = n0 |
|
2916 | my_noises[2*i+0] = n0 | |
2931 | my_noises[2*i+1] = n1 |
|
2917 | my_noises[2*i+1] = n1 | |
2932 | snrth = -16.0 |
|
2918 | snrth = -16.0 | |
2933 | snrth = 10**(snrth/10.0) |
|
2919 | snrth = 10**(snrth/10.0) | |
2934 |
|
2920 | |||
2935 | for h in range(nHeights): |
|
2921 | for h in range(nHeights): | |
2936 | d = data[:,h] |
|
2922 | d = data[:,h] | |
2937 | smooth = clean_num_aver[i+1,h] #dataOut.data_spc[:,1:nProf-0,:] |
|
2923 | smooth = clean_num_aver[i+1,h] #dataOut.data_spc[:,1:nProf-0,:] | |
2938 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth |
|
2924 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth | |
2939 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth |
|
2925 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth | |
2940 | signal0 = signalpn0-n0 |
|
2926 | signal0 = signalpn0-n0 | |
2941 | signal1 = signalpn1-n1 |
|
2927 | signal1 = signalpn1-n1 | |
2942 | snr0 = numpy.sum(signal0/n0)/(nProf-1) |
|
2928 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |
2943 | snr1 = numpy.sum(signal1/n1)/(nProf-1) |
|
2929 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |
2944 | if snr0 > snrth and snr1 > snrth and clean_num_aver[i+1,h] > 0 : |
|
2930 | if snr0 > snrth and snr1 > snrth and clean_num_aver[i+1,h] > 0 : | |
2945 | #Covariance Matrix |
|
2931 | #Covariance Matrix | |
2946 | D = numpy.diag(d**2) |
|
2932 | D = numpy.diag(d**2) | |
2947 | ind = 0 |
|
2933 | ind = 0 | |
2948 | for pairs in listComb: |
|
2934 | for pairs in listComb: | |
2949 | #Coordinates in Covariance Matrix |
|
2935 | #Coordinates in Covariance Matrix | |
2950 | x = pairs[0] |
|
2936 | x = pairs[0] | |
2951 | y = pairs[1] |
|
2937 | y = pairs[1] | |
2952 | #Channel Index |
|
2938 | #Channel Index | |
2953 | S12 = dataCross[ind,:,h] |
|
2939 | S12 = dataCross[ind,:,h] | |
2954 | D12 = numpy.diag(S12) |
|
2940 | D12 = numpy.diag(S12) | |
2955 | #Completing Covariance Matrix with Cross Spectras |
|
2941 | #Completing Covariance Matrix with Cross Spectras | |
2956 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
2942 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
2957 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
2943 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
2958 | ind += 1 |
|
2944 | ind += 1 | |
2959 | diagD = numpy.zeros(256) |
|
2945 | diagD = numpy.zeros(256) | |
2960 | if h == 17 : |
|
2946 | if h == 17 : | |
2961 | for ii in range(256): diagD[ii] = D[ii,ii] |
|
2947 | for ii in range(256): diagD[ii] = D[ii,ii] | |
2962 | #Dinv=numpy.linalg.inv(D) |
|
2948 | #Dinv=numpy.linalg.inv(D) | |
2963 | #L=numpy.linalg.cholesky(Dinv) |
|
2949 | #L=numpy.linalg.cholesky(Dinv) | |
2964 | try: |
|
2950 | try: | |
2965 | Dinv=numpy.linalg.inv(D) |
|
2951 | Dinv=numpy.linalg.inv(D) | |
2966 | L=numpy.linalg.cholesky(Dinv) |
|
2952 | L=numpy.linalg.cholesky(Dinv) | |
2967 | except: |
|
2953 | except: | |
2968 | Dinv = D*numpy.nan |
|
2954 | Dinv = D*numpy.nan | |
2969 | L= D*numpy.nan |
|
2955 | L= D*numpy.nan | |
2970 | LT=L.T |
|
2956 | LT=L.T | |
2971 |
|
2957 | |||
2972 | dp = numpy.dot(LT,d) |
|
2958 | dp = numpy.dot(LT,d) | |
2973 |
|
2959 | |||
2974 | #Initial values |
|
2960 | #Initial values | |
2975 | data_spc = dataOut.data_spc[coord,:,h] |
|
2961 | data_spc = dataOut.data_spc[coord,:,h] | |
2976 |
|
2962 | |||
2977 | if (h>0)and(error1[3]<5): |
|
2963 | if (h>0)and(error1[3]<5): | |
2978 | p0 = dataOut.data_param[i,:,h-1] |
|
2964 | p0 = dataOut.data_param[i,:,h-1] | |
2979 | else: |
|
2965 | else: | |
2980 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants))# sin el i(data_spc, constants, i) |
|
2966 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants))# sin el i(data_spc, constants, i) | |
2981 | try: |
|
2967 | try: | |
2982 | #Least Squares |
|
2968 | #Least Squares | |
2983 | #print (dp,LT,constants) |
|
2969 | #print (dp,LT,constants) | |
2984 | #value =self.__residFunction(p0,dp,LT,constants) |
|
2970 | #value =self.__residFunction(p0,dp,LT,constants) | |
2985 | #print ("valueREADY",value.shape, type(value)) |
|
2971 | #print ("valueREADY",value.shape, type(value)) | |
2986 | #optimize.leastsq(value) |
|
2972 | #optimize.leastsq(value) | |
2987 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
2973 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
2988 | #minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
2974 | #minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
2989 | #Chi square error |
|
2975 | #Chi square error | |
2990 | #print(minp,covp.infodict,mesg,ier) |
|
2976 | #print(minp,covp.infodict,mesg,ier) | |
2991 | #print("REALIZA OPTIMIZ") |
|
2977 | #print("REALIZA OPTIMIZ") | |
2992 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
2978 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
2993 | #Error with Jacobian |
|
2979 | #Error with Jacobian | |
2994 | error1 = self.library.errorFunction(minp,constants,LT) |
|
2980 | error1 = self.library.errorFunction(minp,constants,LT) | |
2995 | # print self.__residFunction(p0,dp,LT, constants) |
|
2981 | # print self.__residFunction(p0,dp,LT, constants) | |
2996 | # print infodict['fvec'] |
|
2982 | # print infodict['fvec'] | |
2997 | # print self.__residFunction(minp,dp,LT,constants) |
|
2983 | # print self.__residFunction(minp,dp,LT,constants) | |
2998 |
|
2984 | |||
2999 | except: |
|
2985 | except: | |
3000 | minp = p0*numpy.nan |
|
2986 | minp = p0*numpy.nan | |
3001 | error0 = numpy.nan |
|
2987 | error0 = numpy.nan | |
3002 | error1 = p0*numpy.nan |
|
2988 | error1 = p0*numpy.nan | |
3003 | #print ("EXCEPT 0000000000") |
|
2989 | #print ("EXCEPT 0000000000") | |
3004 | # s_sq = (self.__residFunction(minp,dp,LT,constants)).sum()/(len(dp)-len(p0)) |
|
2990 | # s_sq = (self.__residFunction(minp,dp,LT,constants)).sum()/(len(dp)-len(p0)) | |
3005 | # covp = covp*s_sq |
|
2991 | # covp = covp*s_sq | |
3006 | # #print("TRY___________________________________________1") |
|
2992 | # #print("TRY___________________________________________1") | |
3007 | # error = [] |
|
2993 | # error = [] | |
3008 | # for ip in range(len(minp)): |
|
2994 | # for ip in range(len(minp)): | |
3009 | # try: |
|
2995 | # try: | |
3010 | # error.append(numpy.absolute(covp[ip][ip])**0.5) |
|
2996 | # error.append(numpy.absolute(covp[ip][ip])**0.5) | |
3011 | # except: |
|
2997 | # except: | |
3012 | # error.append( 0.00 ) |
|
2998 | # error.append( 0.00 ) | |
3013 | else : |
|
2999 | else : | |
3014 | data_spc = dataOut.data_spc[coord,:,h] |
|
3000 | data_spc = dataOut.data_spc[coord,:,h] | |
3015 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants)) |
|
3001 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants)) | |
3016 | minp = p0*numpy.nan |
|
3002 | minp = p0*numpy.nan | |
3017 | error0 = numpy.nan |
|
3003 | error0 = numpy.nan | |
3018 | error1 = p0*numpy.nan |
|
3004 | error1 = p0*numpy.nan | |
3019 | #Save |
|
3005 | #Save | |
3020 | if dataOut.data_param is None: |
|
3006 | if dataOut.data_param is None: | |
3021 | dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
3007 | dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
3022 | dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
3008 | dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
3023 |
|
3009 | |||
3024 | dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
3010 | dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
3025 | dataOut.data_param[i,:,h] = minp |
|
3011 | dataOut.data_param[i,:,h] = minp | |
3026 |
|
3012 | |||
3027 | for ht in range(nHeights-1) : |
|
3013 | for ht in range(nHeights-1) : | |
3028 | smooth = coh_num_aver[i+1,ht] #datc[0,ht,0,beam] |
|
3014 | smooth = coh_num_aver[i+1,ht] #datc[0,ht,0,beam] | |
3029 | dataOut.data_paramC[4*i,ht,1] = smooth |
|
3015 | dataOut.data_paramC[4*i,ht,1] = smooth | |
3030 | signalpn0 = (coh_spectra[i*2 ,1:(nProf-0),ht])/smooth #coh_spectra |
|
3016 | signalpn0 = (coh_spectra[i*2 ,1:(nProf-0),ht])/smooth #coh_spectra | |
3031 | signalpn1 = (coh_spectra[i*2+1,1:(nProf-0),ht])/smooth |
|
3017 | signalpn1 = (coh_spectra[i*2+1,1:(nProf-0),ht])/smooth | |
3032 |
|
3018 | |||
3033 | #val0 = WHERE(signalpn0 > 0,cval0) |
|
3019 | #val0 = WHERE(signalpn0 > 0,cval0) | |
3034 | val0 = (signalpn0 > 0).nonzero() |
|
3020 | val0 = (signalpn0 > 0).nonzero() | |
3035 | val0 = val0[0] |
|
3021 | val0 = val0[0] | |
3036 | #print('hvalid:',hvalid) |
|
3022 | #print('hvalid:',hvalid) | |
3037 | #print('valid', valid) |
|
3023 | #print('valid', valid) | |
3038 | if len(val0) == 0 : val0_npoints = nProf |
|
3024 | if len(val0) == 0 : val0_npoints = nProf | |
3039 | else : val0_npoints = len(val0) |
|
3025 | else : val0_npoints = len(val0) | |
3040 |
|
3026 | |||
3041 | #val1 = WHERE(signalpn1 > 0,cval1) |
|
3027 | #val1 = WHERE(signalpn1 > 0,cval1) | |
3042 | val1 = (signalpn1 > 0).nonzero() |
|
3028 | val1 = (signalpn1 > 0).nonzero() | |
3043 | val1 = val1[0] |
|
3029 | val1 = val1[0] | |
3044 | if len(val1) == 0 : val1_npoints = nProf |
|
3030 | if len(val1) == 0 : val1_npoints = nProf | |
3045 | else : val1_npoints = len(val1) |
|
3031 | else : val1_npoints = len(val1) | |
3046 |
|
3032 | |||
3047 | dataOut.data_paramC[0+4*i,ht,0] = numpy.sum((signalpn0/val0_npoints))/n0 |
|
3033 | dataOut.data_paramC[0+4*i,ht,0] = numpy.sum((signalpn0/val0_npoints))/n0 | |
3048 | dataOut.data_paramC[1+4*i,ht,0] = numpy.sum((signalpn1/val1_npoints))/n1 |
|
3034 | dataOut.data_paramC[1+4*i,ht,0] = numpy.sum((signalpn1/val1_npoints))/n1 | |
3049 |
|
3035 | |||
3050 | signal0 = (signalpn0-n0) # > 0 |
|
3036 | signal0 = (signalpn0-n0) # > 0 | |
3051 | vali = (signal0 < 0).nonzero() |
|
3037 | vali = (signal0 < 0).nonzero() | |
3052 | vali = vali[0] |
|
3038 | vali = vali[0] | |
3053 | if len(vali) > 0 : signal0[vali] = 0 |
|
3039 | if len(vali) > 0 : signal0[vali] = 0 | |
3054 | signal1 = (signalpn1-n1) #> 0 |
|
3040 | signal1 = (signalpn1-n1) #> 0 | |
3055 | vali = (signal1 < 0).nonzero() |
|
3041 | vali = (signal1 < 0).nonzero() | |
3056 | vali = vali[0] |
|
3042 | vali = vali[0] | |
3057 | if len(vali) > 0 : signal1[vali] = 0 |
|
3043 | if len(vali) > 0 : signal1[vali] = 0 | |
3058 | snr0 = numpy.sum(signal0/n0)/(nProf-1) |
|
3044 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |
3059 | snr1 = numpy.sum(signal1/n1)/(nProf-1) |
|
3045 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |
3060 | doppler = absc[1:] |
|
3046 | doppler = absc[1:] | |
3061 | if snr0 >= snrth and snr1 >= snrth and smooth : |
|
3047 | if snr0 >= snrth and snr1 >= snrth and smooth : | |
3062 | signalpn0_n0 = signalpn0 |
|
3048 | signalpn0_n0 = signalpn0 | |
3063 | signalpn0_n0[val0] = signalpn0[val0] - n0 |
|
3049 | signalpn0_n0[val0] = signalpn0[val0] - n0 | |
3064 | mom0 = self.moments(doppler,signalpn0-n0,nProf) |
|
3050 | mom0 = self.moments(doppler,signalpn0-n0,nProf) | |
3065 | # sigtmp= numpy.transpose(numpy.tile(signalpn0, [4,1])) |
|
3051 | # sigtmp= numpy.transpose(numpy.tile(signalpn0, [4,1])) | |
3066 | # momt= self.__calculateMoments( sigtmp, doppler , n0 ) |
|
3052 | # momt= self.__calculateMoments( sigtmp, doppler , n0 ) | |
3067 | signalpn1_n1 = signalpn1 |
|
3053 | signalpn1_n1 = signalpn1 | |
3068 | signalpn1_n1[val1] = signalpn1[val1] - n1 |
|
3054 | signalpn1_n1[val1] = signalpn1[val1] - n1 | |
3069 | mom1 = self.moments(doppler,signalpn1_n1,nProf) |
|
3055 | mom1 = self.moments(doppler,signalpn1_n1,nProf) | |
3070 | dataOut.data_paramC[2+4*i,ht,0] = (mom0[0]+mom1[0])/2. |
|
3056 | dataOut.data_paramC[2+4*i,ht,0] = (mom0[0]+mom1[0])/2. | |
3071 | dataOut.data_paramC[3+4*i,ht,0] = (mom0[1]+mom1[1])/2. |
|
3057 | dataOut.data_paramC[3+4*i,ht,0] = (mom0[1]+mom1[1])/2. | |
3072 | # if graph == 1 : |
|
3058 | # if graph == 1 : | |
3073 | # window, 13 |
|
3059 | # window, 13 | |
3074 | # plot,doppler,signalpn0 |
|
3060 | # plot,doppler,signalpn0 | |
3075 | # oplot,doppler,signalpn1,linest=1 |
|
3061 | # oplot,doppler,signalpn1,linest=1 | |
3076 | # oplot,mom0(0)*doppler/doppler,signalpn0 |
|
3062 | # oplot,mom0(0)*doppler/doppler,signalpn0 | |
3077 | # oplot,mom1(0)*doppler/doppler,signalpn1 |
|
3063 | # oplot,mom1(0)*doppler/doppler,signalpn1 | |
3078 | # print,interval/12.,beam,45+ht*15,snr0,snr1,mom0(0),mom1(0),mom0(1),mom1(1) |
|
3064 | # print,interval/12.,beam,45+ht*15,snr0,snr1,mom0(0),mom1(0),mom0(1),mom1(1) | |
3079 | #ENDIF |
|
3065 | #ENDIF | |
3080 | #ENDIF |
|
3066 | #ENDIF | |
3081 | #ENDFOR End height |
|
3067 | #ENDFOR End height | |
3082 |
|
3068 | |||
3083 | dataOut.data_spc = jspectra |
|
3069 | dataOut.data_spc = jspectra | |
3084 | if getSNR: |
|
3070 | if getSNR: | |
3085 | listChannels = groupArray.reshape((groupArray.size)) |
|
3071 | listChannels = groupArray.reshape((groupArray.size)) | |
3086 | listChannels.sort() |
|
3072 | listChannels.sort() | |
3087 |
|
3073 | |||
3088 | dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], my_noises[listChannels]) |
|
3074 | dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], my_noises[listChannels]) | |
3089 | return dataOut |
|
3075 | return dataOut | |
3090 |
|
3076 | |||
3091 | def __residFunction(self, p, dp, LT, constants): |
|
3077 | def __residFunction(self, p, dp, LT, constants): | |
3092 |
|
3078 | |||
3093 | fm = self.library.modelFunction(p, constants) |
|
3079 | fm = self.library.modelFunction(p, constants) | |
3094 | fmp=numpy.dot(LT,fm) |
|
3080 | fmp=numpy.dot(LT,fm) | |
3095 | return dp-fmp |
|
3081 | return dp-fmp | |
3096 |
|
3082 | |||
3097 | def __getSNR(self, z, noise): |
|
3083 | def __getSNR(self, z, noise): | |
3098 |
|
3084 | |||
3099 | avg = numpy.average(z, axis=1) |
|
3085 | avg = numpy.average(z, axis=1) | |
3100 | SNR = (avg.T-noise)/noise |
|
3086 | SNR = (avg.T-noise)/noise | |
3101 | SNR = SNR.T |
|
3087 | SNR = SNR.T | |
3102 | return SNR |
|
3088 | return SNR | |
3103 |
|
3089 | |||
3104 | def __chisq(self, p, chindex, hindex): |
|
3090 | def __chisq(self, p, chindex, hindex): | |
3105 | #similar to Resid but calculates CHI**2 |
|
3091 | #similar to Resid but calculates CHI**2 | |
3106 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
3092 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
3107 | dp=numpy.dot(LT,d) |
|
3093 | dp=numpy.dot(LT,d) | |
3108 | fmp=numpy.dot(LT,fm) |
|
3094 | fmp=numpy.dot(LT,fm) | |
3109 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
3095 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
3110 | return chisq |
|
3096 | return chisq | |
3111 |
|
3097 | |||
3112 | class WindProfiler(Operation): |
|
3098 | class WindProfiler(Operation): | |
3113 |
|
3099 | |||
3114 | __isConfig = False |
|
3100 | __isConfig = False | |
3115 |
|
3101 | |||
3116 | __initime = None |
|
3102 | __initime = None | |
3117 | __lastdatatime = None |
|
3103 | __lastdatatime = None | |
3118 | __integrationtime = None |
|
3104 | __integrationtime = None | |
3119 |
|
3105 | |||
3120 | __buffer = None |
|
3106 | __buffer = None | |
3121 |
|
3107 | |||
3122 | __dataReady = False |
|
3108 | __dataReady = False | |
3123 |
|
3109 | |||
3124 | __firstdata = None |
|
3110 | __firstdata = None | |
3125 |
|
3111 | |||
3126 | n = None |
|
3112 | n = None | |
3127 |
|
3113 | |||
3128 | def __init__(self): |
|
3114 | def __init__(self): | |
3129 | Operation.__init__(self) |
|
3115 | Operation.__init__(self) | |
3130 |
|
3116 | |||
3131 | def __calculateCosDir(self, elev, azim): |
|
3117 | def __calculateCosDir(self, elev, azim): | |
3132 | zen = (90 - elev)*numpy.pi/180 |
|
3118 | zen = (90 - elev)*numpy.pi/180 | |
3133 | azim = azim*numpy.pi/180 |
|
3119 | azim = azim*numpy.pi/180 | |
3134 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
3120 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
3135 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
3121 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
3136 |
|
3122 | |||
3137 | signX = numpy.sign(numpy.cos(azim)) |
|
3123 | signX = numpy.sign(numpy.cos(azim)) | |
3138 | signY = numpy.sign(numpy.sin(azim)) |
|
3124 | signY = numpy.sign(numpy.sin(azim)) | |
3139 |
|
3125 | |||
3140 | cosDirX = numpy.copysign(cosDirX, signX) |
|
3126 | cosDirX = numpy.copysign(cosDirX, signX) | |
3141 | cosDirY = numpy.copysign(cosDirY, signY) |
|
3127 | cosDirY = numpy.copysign(cosDirY, signY) | |
3142 | return cosDirX, cosDirY |
|
3128 | return cosDirX, cosDirY | |
3143 |
|
3129 | |||
3144 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
3130 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
3145 |
|
3131 | |||
3146 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
3132 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
3147 | zenith_arr = numpy.arccos(dir_cosw) |
|
3133 | zenith_arr = numpy.arccos(dir_cosw) | |
3148 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
3134 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
3149 |
|
3135 | |||
3150 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
3136 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
3151 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
3137 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
3152 |
|
3138 | |||
3153 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
3139 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
3154 |
|
3140 | |||
3155 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
3141 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
3156 |
|
3142 | |||
3157 | if horOnly: |
|
3143 | if horOnly: | |
3158 | A = numpy.c_[dir_cosu,dir_cosv] |
|
3144 | A = numpy.c_[dir_cosu,dir_cosv] | |
3159 | else: |
|
3145 | else: | |
3160 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
3146 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
3161 | A = numpy.asmatrix(A) |
|
3147 | A = numpy.asmatrix(A) | |
3162 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
3148 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
3163 |
|
3149 | |||
3164 | return A1 |
|
3150 | return A1 | |
3165 |
|
3151 | |||
3166 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
3152 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
3167 | listPhi = phi.tolist() |
|
3153 | listPhi = phi.tolist() | |
3168 | maxid = listPhi.index(max(listPhi)) |
|
3154 | maxid = listPhi.index(max(listPhi)) | |
3169 | minid = listPhi.index(min(listPhi)) |
|
3155 | minid = listPhi.index(min(listPhi)) | |
3170 |
|
3156 | |||
3171 | rango = list(range(len(phi))) |
|
3157 | rango = list(range(len(phi))) | |
3172 | # rango = numpy.delete(rango,maxid) |
|
3158 | # rango = numpy.delete(rango,maxid) | |
3173 |
|
3159 | |||
3174 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
3160 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
3175 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
3161 | heiRangAux = heiRang*math.cos(phi[minid]) | |
3176 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
3162 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
3177 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
3163 | heiRang1 = numpy.delete(heiRang1,indOut) | |
3178 |
|
3164 | |||
3179 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
3165 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
3180 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
3166 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
3181 |
|
3167 | |||
3182 | for i in rango: |
|
3168 | for i in rango: | |
3183 | x = heiRang*math.cos(phi[i]) |
|
3169 | x = heiRang*math.cos(phi[i]) | |
3184 | y1 = velRadial[i,:] |
|
3170 | y1 = velRadial[i,:] | |
3185 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
3171 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
3186 |
|
3172 | |||
3187 | x1 = heiRang1 |
|
3173 | x1 = heiRang1 | |
3188 | y11 = f1(x1) |
|
3174 | y11 = f1(x1) | |
3189 |
|
3175 | |||
3190 | y2 = SNR[i,:] |
|
3176 | y2 = SNR[i,:] | |
3191 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
3177 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
3192 | y21 = f2(x1) |
|
3178 | y21 = f2(x1) | |
3193 |
|
3179 | |||
3194 | velRadial1[i,:] = y11 |
|
3180 | velRadial1[i,:] = y11 | |
3195 | SNR1[i,:] = y21 |
|
3181 | SNR1[i,:] = y21 | |
3196 |
|
3182 | |||
3197 | return heiRang1, velRadial1, SNR1 |
|
3183 | return heiRang1, velRadial1, SNR1 | |
3198 |
|
3184 | |||
3199 | def __calculateVelUVW(self, A, velRadial): |
|
3185 | def __calculateVelUVW(self, A, velRadial): | |
3200 |
|
3186 | |||
3201 | #Operacion Matricial |
|
3187 | #Operacion Matricial | |
3202 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
3188 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
3203 | # for ind in range(velRadial.shape[1]): |
|
3189 | # for ind in range(velRadial.shape[1]): | |
3204 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
3190 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
3205 | # velUVW = velUVW.transpose() |
|
3191 | # velUVW = velUVW.transpose() | |
3206 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
3192 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
3207 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
3193 | velUVW[:,:] = numpy.dot(A,velRadial) | |
3208 |
|
3194 | |||
3209 |
|
3195 | |||
3210 | return velUVW |
|
3196 | return velUVW | |
3211 |
|
3197 | |||
3212 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
3198 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
3213 |
|
3199 | |||
3214 | def techniqueDBS(self, kwargs): |
|
3200 | def techniqueDBS(self, kwargs): | |
3215 | """ |
|
3201 | """ | |
3216 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
3202 | Function that implements Doppler Beam Swinging (DBS) technique. | |
3217 |
|
3203 | |||
3218 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
3204 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
3219 | Direction correction (if necessary), Ranges and SNR |
|
3205 | Direction correction (if necessary), Ranges and SNR | |
3220 |
|
3206 | |||
3221 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
3207 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
3222 |
|
3208 | |||
3223 | Parameters affected: Winds, height range, SNR |
|
3209 | Parameters affected: Winds, height range, SNR | |
3224 | """ |
|
3210 | """ | |
3225 | velRadial0 = kwargs['velRadial'] |
|
3211 | velRadial0 = kwargs['velRadial'] | |
3226 | heiRang = kwargs['heightList'] |
|
3212 | heiRang = kwargs['heightList'] | |
3227 | SNR0 = kwargs['SNR'] |
|
3213 | SNR0 = kwargs['SNR'] | |
3228 |
|
3214 | |||
3229 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: |
|
3215 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: | |
3230 | theta_x = numpy.array(kwargs['dirCosx']) |
|
3216 | theta_x = numpy.array(kwargs['dirCosx']) | |
3231 | theta_y = numpy.array(kwargs['dirCosy']) |
|
3217 | theta_y = numpy.array(kwargs['dirCosy']) | |
3232 | else: |
|
3218 | else: | |
3233 | elev = numpy.array(kwargs['elevation']) |
|
3219 | elev = numpy.array(kwargs['elevation']) | |
3234 | azim = numpy.array(kwargs['azimuth']) |
|
3220 | azim = numpy.array(kwargs['azimuth']) | |
3235 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
3221 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
3236 | azimuth = kwargs['correctAzimuth'] |
|
3222 | azimuth = kwargs['correctAzimuth'] | |
3237 | if 'horizontalOnly' in kwargs: |
|
3223 | if 'horizontalOnly' in kwargs: | |
3238 | horizontalOnly = kwargs['horizontalOnly'] |
|
3224 | horizontalOnly = kwargs['horizontalOnly'] | |
3239 | else: horizontalOnly = False |
|
3225 | else: horizontalOnly = False | |
3240 | if 'correctFactor' in kwargs: |
|
3226 | if 'correctFactor' in kwargs: | |
3241 | correctFactor = kwargs['correctFactor'] |
|
3227 | correctFactor = kwargs['correctFactor'] | |
3242 | else: correctFactor = 1 |
|
3228 | else: correctFactor = 1 | |
3243 | if 'channelList' in kwargs: |
|
3229 | if 'channelList' in kwargs: | |
3244 | channelList = kwargs['channelList'] |
|
3230 | channelList = kwargs['channelList'] | |
3245 | if len(channelList) == 2: |
|
3231 | if len(channelList) == 2: | |
3246 | horizontalOnly = True |
|
3232 | horizontalOnly = True | |
3247 | arrayChannel = numpy.array(channelList) |
|
3233 | arrayChannel = numpy.array(channelList) | |
3248 | param = param[arrayChannel,:,:] |
|
3234 | param = param[arrayChannel,:,:] | |
3249 | theta_x = theta_x[arrayChannel] |
|
3235 | theta_x = theta_x[arrayChannel] | |
3250 | theta_y = theta_y[arrayChannel] |
|
3236 | theta_y = theta_y[arrayChannel] | |
3251 |
|
3237 | |||
3252 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
3238 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
3253 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
3239 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
3254 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
3240 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
3255 |
|
3241 | |||
3256 | #Calculo de Componentes de la velocidad con DBS |
|
3242 | #Calculo de Componentes de la velocidad con DBS | |
3257 | winds = self.__calculateVelUVW(A,velRadial1) |
|
3243 | winds = self.__calculateVelUVW(A,velRadial1) | |
3258 |
|
3244 | |||
3259 | return winds, heiRang1, SNR1 |
|
3245 | return winds, heiRang1, SNR1 | |
3260 |
|
3246 | |||
3261 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
3247 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
3262 |
|
3248 | |||
3263 | nPairs = len(pairs_ccf) |
|
3249 | nPairs = len(pairs_ccf) | |
3264 | posx = numpy.asarray(posx) |
|
3250 | posx = numpy.asarray(posx) | |
3265 | posy = numpy.asarray(posy) |
|
3251 | posy = numpy.asarray(posy) | |
3266 |
|
3252 | |||
3267 | #Rotacion Inversa para alinear con el azimuth |
|
3253 | #Rotacion Inversa para alinear con el azimuth | |
3268 | if azimuth!= None: |
|
3254 | if azimuth!= None: | |
3269 | azimuth = azimuth*math.pi/180 |
|
3255 | azimuth = azimuth*math.pi/180 | |
3270 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
3256 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
3271 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
3257 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
3272 | else: |
|
3258 | else: | |
3273 | posx1 = posx |
|
3259 | posx1 = posx | |
3274 | posy1 = posy |
|
3260 | posy1 = posy | |
3275 |
|
3261 | |||
3276 | #Calculo de Distancias |
|
3262 | #Calculo de Distancias | |
3277 | distx = numpy.zeros(nPairs) |
|
3263 | distx = numpy.zeros(nPairs) | |
3278 | disty = numpy.zeros(nPairs) |
|
3264 | disty = numpy.zeros(nPairs) | |
3279 | dist = numpy.zeros(nPairs) |
|
3265 | dist = numpy.zeros(nPairs) | |
3280 | ang = numpy.zeros(nPairs) |
|
3266 | ang = numpy.zeros(nPairs) | |
3281 |
|
3267 | |||
3282 | for i in range(nPairs): |
|
3268 | for i in range(nPairs): | |
3283 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
3269 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
3284 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
3270 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
3285 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
3271 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
3286 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
3272 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
3287 |
|
3273 | |||
3288 | return distx, disty, dist, ang |
|
3274 | return distx, disty, dist, ang | |
3289 | #Calculo de Matrices |
|
3275 | #Calculo de Matrices | |
3290 | # nPairs = len(pairs) |
|
3276 | # nPairs = len(pairs) | |
3291 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
3277 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
3292 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
3278 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
3293 | # |
|
3279 | # | |
3294 | # for j in range(nPairs): |
|
3280 | # for j in range(nPairs): | |
3295 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
3281 | # dist1[j,0,0] = dist[pairs[j][0]] | |
3296 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
3282 | # dist1[j,1,0] = dist[pairs[j][1]] | |
3297 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
3283 | # ang1[j,0,0] = ang[pairs[j][0]] | |
3298 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
3284 | # ang1[j,1,0] = ang[pairs[j][1]] | |
3299 | # |
|
3285 | # | |
3300 | # return distx,disty, dist1,ang1 |
|
3286 | # return distx,disty, dist1,ang1 | |
3301 |
|
3287 | |||
3302 |
|
3288 | |||
3303 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
3289 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
3304 |
|
3290 | |||
3305 | Ts = lagTRange[1] - lagTRange[0] |
|
3291 | Ts = lagTRange[1] - lagTRange[0] | |
3306 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
3292 | velW = -_lambda*phase/(4*math.pi*Ts) | |
3307 |
|
3293 | |||
3308 | return velW |
|
3294 | return velW | |
3309 |
|
3295 | |||
3310 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
3296 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
3311 | nPairs = tau1.shape[0] |
|
3297 | nPairs = tau1.shape[0] | |
3312 | nHeights = tau1.shape[1] |
|
3298 | nHeights = tau1.shape[1] | |
3313 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
3299 | vel = numpy.zeros((nPairs,3,nHeights)) | |
3314 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
3300 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
3315 |
|
3301 | |||
3316 | angCos = numpy.cos(ang) |
|
3302 | angCos = numpy.cos(ang) | |
3317 | angSin = numpy.sin(ang) |
|
3303 | angSin = numpy.sin(ang) | |
3318 |
|
3304 | |||
3319 | vel0 = dist1*tau1/(2*tau2**2) |
|
3305 | vel0 = dist1*tau1/(2*tau2**2) | |
3320 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
3306 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
3321 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
3307 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
3322 |
|
3308 | |||
3323 | ind = numpy.where(numpy.isinf(vel)) |
|
3309 | ind = numpy.where(numpy.isinf(vel)) | |
3324 | vel[ind] = numpy.nan |
|
3310 | vel[ind] = numpy.nan | |
3325 |
|
3311 | |||
3326 | return vel |
|
3312 | return vel | |
3327 |
|
3313 | |||
3328 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
3314 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
3329 | # |
|
3315 | # | |
3330 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
3316 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
3331 | # |
|
3317 | # | |
3332 | # for l in range(len(pairsList)): |
|
3318 | # for l in range(len(pairsList)): | |
3333 | # firstChannel = pairsList[l][0] |
|
3319 | # firstChannel = pairsList[l][0] | |
3334 | # secondChannel = pairsList[l][1] |
|
3320 | # secondChannel = pairsList[l][1] | |
3335 | # |
|
3321 | # | |
3336 | # #Obteniendo pares de Autocorrelacion |
|
3322 | # #Obteniendo pares de Autocorrelacion | |
3337 | # if firstChannel == secondChannel: |
|
3323 | # if firstChannel == secondChannel: | |
3338 | # pairsAutoCorr[firstChannel] = int(l) |
|
3324 | # pairsAutoCorr[firstChannel] = int(l) | |
3339 | # |
|
3325 | # | |
3340 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
3326 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
3341 | # |
|
3327 | # | |
3342 | # pairsCrossCorr = range(len(pairsList)) |
|
3328 | # pairsCrossCorr = range(len(pairsList)) | |
3343 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
3329 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
3344 | # |
|
3330 | # | |
3345 | # return pairsAutoCorr, pairsCrossCorr |
|
3331 | # return pairsAutoCorr, pairsCrossCorr | |
3346 |
|
3332 | |||
3347 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
3333 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
3348 | def techniqueSA(self, kwargs): |
|
3334 | def techniqueSA(self, kwargs): | |
3349 |
|
3335 | |||
3350 | """ |
|
3336 | """ | |
3351 | Function that implements Spaced Antenna (SA) technique. |
|
3337 | Function that implements Spaced Antenna (SA) technique. | |
3352 |
|
3338 | |||
3353 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
3339 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
3354 | Direction correction (if necessary), Ranges and SNR |
|
3340 | Direction correction (if necessary), Ranges and SNR | |
3355 |
|
3341 | |||
3356 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
3342 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
3357 |
|
3343 | |||
3358 | Parameters affected: Winds |
|
3344 | Parameters affected: Winds | |
3359 | """ |
|
3345 | """ | |
3360 | position_x = kwargs['positionX'] |
|
3346 | position_x = kwargs['positionX'] | |
3361 | position_y = kwargs['positionY'] |
|
3347 | position_y = kwargs['positionY'] | |
3362 | azimuth = kwargs['azimuth'] |
|
3348 | azimuth = kwargs['azimuth'] | |
3363 |
|
3349 | |||
3364 | if 'correctFactor' in kwargs: |
|
3350 | if 'correctFactor' in kwargs: | |
3365 | correctFactor = kwargs['correctFactor'] |
|
3351 | correctFactor = kwargs['correctFactor'] | |
3366 | else: |
|
3352 | else: | |
3367 | correctFactor = 1 |
|
3353 | correctFactor = 1 | |
3368 |
|
3354 | |||
3369 | groupList = kwargs['groupList'] |
|
3355 | groupList = kwargs['groupList'] | |
3370 | pairs_ccf = groupList[1] |
|
3356 | pairs_ccf = groupList[1] | |
3371 | tau = kwargs['tau'] |
|
3357 | tau = kwargs['tau'] | |
3372 | _lambda = kwargs['_lambda'] |
|
3358 | _lambda = kwargs['_lambda'] | |
3373 |
|
3359 | |||
3374 | #Cross Correlation pairs obtained |
|
3360 | #Cross Correlation pairs obtained | |
3375 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
3361 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
3376 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
3362 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
3377 | # pairsSelArray = numpy.array(pairsSelected) |
|
3363 | # pairsSelArray = numpy.array(pairsSelected) | |
3378 | # pairs = [] |
|
3364 | # pairs = [] | |
3379 | # |
|
3365 | # | |
3380 | # #Wind estimation pairs obtained |
|
3366 | # #Wind estimation pairs obtained | |
3381 | # for i in range(pairsSelArray.shape[0]/2): |
|
3367 | # for i in range(pairsSelArray.shape[0]/2): | |
3382 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
3368 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
3383 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
3369 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
3384 | # pairs.append((ind1,ind2)) |
|
3370 | # pairs.append((ind1,ind2)) | |
3385 |
|
3371 | |||
3386 | indtau = tau.shape[0]/2 |
|
3372 | indtau = tau.shape[0]/2 | |
3387 | tau1 = tau[:indtau,:] |
|
3373 | tau1 = tau[:indtau,:] | |
3388 | tau2 = tau[indtau:-1,:] |
|
3374 | tau2 = tau[indtau:-1,:] | |
3389 | # tau1 = tau1[pairs,:] |
|
3375 | # tau1 = tau1[pairs,:] | |
3390 | # tau2 = tau2[pairs,:] |
|
3376 | # tau2 = tau2[pairs,:] | |
3391 | phase1 = tau[-1,:] |
|
3377 | phase1 = tau[-1,:] | |
3392 |
|
3378 | |||
3393 | #--------------------------------------------------------------------- |
|
3379 | #--------------------------------------------------------------------- | |
3394 | #Metodo Directo |
|
3380 | #Metodo Directo | |
3395 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
3381 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
3396 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
3382 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
3397 | winds = stats.nanmean(winds, axis=0) |
|
3383 | winds = stats.nanmean(winds, axis=0) | |
3398 | #--------------------------------------------------------------------- |
|
3384 | #--------------------------------------------------------------------- | |
3399 | #Metodo General |
|
3385 | #Metodo General | |
3400 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
3386 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
3401 | # #Calculo Coeficientes de Funcion de Correlacion |
|
3387 | # #Calculo Coeficientes de Funcion de Correlacion | |
3402 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
3388 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
3403 | # #Calculo de Velocidades |
|
3389 | # #Calculo de Velocidades | |
3404 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
3390 | # winds = self.calculateVelUV(F,G,A,B,H) | |
3405 |
|
3391 | |||
3406 | #--------------------------------------------------------------------- |
|
3392 | #--------------------------------------------------------------------- | |
3407 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
3393 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
3408 | winds = correctFactor*winds |
|
3394 | winds = correctFactor*winds | |
3409 | return winds |
|
3395 | return winds | |
3410 |
|
3396 | |||
3411 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
3397 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
3412 |
|
3398 | |||
3413 | dataTime = currentTime + paramInterval |
|
3399 | dataTime = currentTime + paramInterval | |
3414 | deltaTime = dataTime - self.__initime |
|
3400 | deltaTime = dataTime - self.__initime | |
3415 |
|
3401 | |||
3416 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3402 | if deltaTime >= outputInterval or deltaTime < 0: | |
3417 | self.__dataReady = True |
|
3403 | self.__dataReady = True | |
3418 | return |
|
3404 | return | |
3419 |
|
3405 | |||
3420 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
3406 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
3421 | ''' |
|
3407 | ''' | |
3422 | Function that implements winds estimation technique with detected meteors. |
|
3408 | Function that implements winds estimation technique with detected meteors. | |
3423 |
|
3409 | |||
3424 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
3410 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
3425 |
|
3411 | |||
3426 | Output: Winds estimation (Zonal and Meridional) |
|
3412 | Output: Winds estimation (Zonal and Meridional) | |
3427 |
|
3413 | |||
3428 | Parameters affected: Winds |
|
3414 | Parameters affected: Winds | |
3429 | ''' |
|
3415 | ''' | |
3430 | #Settings |
|
3416 | #Settings | |
3431 | nInt = (heightMax - heightMin)/2 |
|
3417 | nInt = (heightMax - heightMin)/2 | |
3432 | nInt = int(nInt) |
|
3418 | nInt = int(nInt) | |
3433 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
3419 | winds = numpy.zeros((2,nInt))*numpy.nan | |
3434 |
|
3420 | |||
3435 | #Filter errors |
|
3421 | #Filter errors | |
3436 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
3422 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
3437 | finalMeteor = arrayMeteor[error,:] |
|
3423 | finalMeteor = arrayMeteor[error,:] | |
3438 |
|
3424 | |||
3439 | #Meteor Histogram |
|
3425 | #Meteor Histogram | |
3440 | finalHeights = finalMeteor[:,2] |
|
3426 | finalHeights = finalMeteor[:,2] | |
3441 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
3427 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
3442 | nMeteorsPerI = hist[0] |
|
3428 | nMeteorsPerI = hist[0] | |
3443 | heightPerI = hist[1] |
|
3429 | heightPerI = hist[1] | |
3444 |
|
3430 | |||
3445 | #Sort of meteors |
|
3431 | #Sort of meteors | |
3446 | indSort = finalHeights.argsort() |
|
3432 | indSort = finalHeights.argsort() | |
3447 | finalMeteor2 = finalMeteor[indSort,:] |
|
3433 | finalMeteor2 = finalMeteor[indSort,:] | |
3448 |
|
3434 | |||
3449 | # Calculating winds |
|
3435 | # Calculating winds | |
3450 | ind1 = 0 |
|
3436 | ind1 = 0 | |
3451 | ind2 = 0 |
|
3437 | ind2 = 0 | |
3452 |
|
3438 | |||
3453 | for i in range(nInt): |
|
3439 | for i in range(nInt): | |
3454 | nMet = nMeteorsPerI[i] |
|
3440 | nMet = nMeteorsPerI[i] | |
3455 | ind1 = ind2 |
|
3441 | ind1 = ind2 | |
3456 | ind2 = ind1 + nMet |
|
3442 | ind2 = ind1 + nMet | |
3457 |
|
3443 | |||
3458 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
3444 | meteorAux = finalMeteor2[ind1:ind2,:] | |
3459 |
|
3445 | |||
3460 | if meteorAux.shape[0] >= meteorThresh: |
|
3446 | if meteorAux.shape[0] >= meteorThresh: | |
3461 | vel = meteorAux[:, 6] |
|
3447 | vel = meteorAux[:, 6] | |
3462 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
3448 | zen = meteorAux[:, 4]*numpy.pi/180 | |
3463 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
3449 | azim = meteorAux[:, 3]*numpy.pi/180 | |
3464 |
|
3450 | |||
3465 | n = numpy.cos(zen) |
|
3451 | n = numpy.cos(zen) | |
3466 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
3452 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
3467 | # l = m*numpy.tan(azim) |
|
3453 | # l = m*numpy.tan(azim) | |
3468 | l = numpy.sin(zen)*numpy.sin(azim) |
|
3454 | l = numpy.sin(zen)*numpy.sin(azim) | |
3469 | m = numpy.sin(zen)*numpy.cos(azim) |
|
3455 | m = numpy.sin(zen)*numpy.cos(azim) | |
3470 |
|
3456 | |||
3471 | A = numpy.vstack((l, m)).transpose() |
|
3457 | A = numpy.vstack((l, m)).transpose() | |
3472 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
3458 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
3473 | windsAux = numpy.dot(A1, vel) |
|
3459 | windsAux = numpy.dot(A1, vel) | |
3474 |
|
3460 | |||
3475 | winds[0,i] = windsAux[0] |
|
3461 | winds[0,i] = windsAux[0] | |
3476 | winds[1,i] = windsAux[1] |
|
3462 | winds[1,i] = windsAux[1] | |
3477 |
|
3463 | |||
3478 | return winds, heightPerI[:-1] |
|
3464 | return winds, heightPerI[:-1] | |
3479 |
|
3465 | |||
3480 | def techniqueNSM_SA(self, **kwargs): |
|
3466 | def techniqueNSM_SA(self, **kwargs): | |
3481 | metArray = kwargs['metArray'] |
|
3467 | metArray = kwargs['metArray'] | |
3482 | heightList = kwargs['heightList'] |
|
3468 | heightList = kwargs['heightList'] | |
3483 | timeList = kwargs['timeList'] |
|
3469 | timeList = kwargs['timeList'] | |
3484 |
|
3470 | |||
3485 | rx_location = kwargs['rx_location'] |
|
3471 | rx_location = kwargs['rx_location'] | |
3486 | groupList = kwargs['groupList'] |
|
3472 | groupList = kwargs['groupList'] | |
3487 | azimuth = kwargs['azimuth'] |
|
3473 | azimuth = kwargs['azimuth'] | |
3488 | dfactor = kwargs['dfactor'] |
|
3474 | dfactor = kwargs['dfactor'] | |
3489 | k = kwargs['k'] |
|
3475 | k = kwargs['k'] | |
3490 |
|
3476 | |||
3491 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
3477 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
3492 | d = dist*dfactor |
|
3478 | d = dist*dfactor | |
3493 | #Phase calculation |
|
3479 | #Phase calculation | |
3494 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
3480 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
3495 |
|
3481 | |||
3496 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
3482 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
3497 |
|
3483 | |||
3498 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
3484 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
3499 | azimuth1 = azimuth1*numpy.pi/180 |
|
3485 | azimuth1 = azimuth1*numpy.pi/180 | |
3500 |
|
3486 | |||
3501 | for i in range(heightList.size): |
|
3487 | for i in range(heightList.size): | |
3502 | h = heightList[i] |
|
3488 | h = heightList[i] | |
3503 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
3489 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
3504 | metHeight = metArray1[indH,:] |
|
3490 | metHeight = metArray1[indH,:] | |
3505 | if metHeight.shape[0] >= 2: |
|
3491 | if metHeight.shape[0] >= 2: | |
3506 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
3492 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
3507 | iazim = metHeight[:,1].astype(int) |
|
3493 | iazim = metHeight[:,1].astype(int) | |
3508 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
3494 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
3509 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
3495 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
3510 | A = numpy.asmatrix(A) |
|
3496 | A = numpy.asmatrix(A) | |
3511 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
3497 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
3512 | velHor = numpy.dot(A1,velAux) |
|
3498 | velHor = numpy.dot(A1,velAux) | |
3513 |
|
3499 | |||
3514 | velEst[i,:] = numpy.squeeze(velHor) |
|
3500 | velEst[i,:] = numpy.squeeze(velHor) | |
3515 | return velEst |
|
3501 | return velEst | |
3516 |
|
3502 | |||
3517 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
3503 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
3518 | meteorList = [] |
|
3504 | meteorList = [] | |
3519 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
3505 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
3520 | #Putting back together the meteor matrix |
|
3506 | #Putting back together the meteor matrix | |
3521 | utctime = metArray[:,0] |
|
3507 | utctime = metArray[:,0] | |
3522 | uniqueTime = numpy.unique(utctime) |
|
3508 | uniqueTime = numpy.unique(utctime) | |
3523 |
|
3509 | |||
3524 | phaseDerThresh = 0.5 |
|
3510 | phaseDerThresh = 0.5 | |
3525 | ippSeconds = timeList[1] - timeList[0] |
|
3511 | ippSeconds = timeList[1] - timeList[0] | |
3526 | sec = numpy.where(timeList>1)[0][0] |
|
3512 | sec = numpy.where(timeList>1)[0][0] | |
3527 | nPairs = metArray.shape[1] - 6 |
|
3513 | nPairs = metArray.shape[1] - 6 | |
3528 | nHeights = len(heightList) |
|
3514 | nHeights = len(heightList) | |
3529 |
|
3515 | |||
3530 | for t in uniqueTime: |
|
3516 | for t in uniqueTime: | |
3531 | metArray1 = metArray[utctime==t,:] |
|
3517 | metArray1 = metArray[utctime==t,:] | |
3532 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
3518 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
3533 | tmet = metArray1[:,1].astype(int) |
|
3519 | tmet = metArray1[:,1].astype(int) | |
3534 | hmet = metArray1[:,2].astype(int) |
|
3520 | hmet = metArray1[:,2].astype(int) | |
3535 |
|
3521 | |||
3536 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
3522 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
3537 | metPhase[:,:] = numpy.nan |
|
3523 | metPhase[:,:] = numpy.nan | |
3538 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
3524 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
3539 |
|
3525 | |||
3540 | #Delete short trails |
|
3526 | #Delete short trails | |
3541 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
3527 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
3542 | heightVect = numpy.sum(metBool, axis = 1) |
|
3528 | heightVect = numpy.sum(metBool, axis = 1) | |
3543 | metBool[heightVect<sec,:] = False |
|
3529 | metBool[heightVect<sec,:] = False | |
3544 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
3530 | metPhase[:,heightVect<sec,:] = numpy.nan | |
3545 |
|
3531 | |||
3546 | #Derivative |
|
3532 | #Derivative | |
3547 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
3533 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
3548 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
3534 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
3549 | metPhase[phDerAux] = numpy.nan |
|
3535 | metPhase[phDerAux] = numpy.nan | |
3550 |
|
3536 | |||
3551 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
3537 | #--------------------------METEOR DETECTION ----------------------------------------- | |
3552 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
3538 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
3553 |
|
3539 | |||
3554 | for p in numpy.arange(nPairs): |
|
3540 | for p in numpy.arange(nPairs): | |
3555 | phase = metPhase[p,:,:] |
|
3541 | phase = metPhase[p,:,:] | |
3556 | phDer = metDer[p,:,:] |
|
3542 | phDer = metDer[p,:,:] | |
3557 |
|
3543 | |||
3558 | for h in indMet: |
|
3544 | for h in indMet: | |
3559 | height = heightList[h] |
|
3545 | height = heightList[h] | |
3560 | phase1 = phase[h,:] #82 |
|
3546 | phase1 = phase[h,:] #82 | |
3561 | phDer1 = phDer[h,:] |
|
3547 | phDer1 = phDer[h,:] | |
3562 |
|
3548 | |||
3563 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
3549 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
3564 |
|
3550 | |||
3565 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
3551 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
3566 | initMet = indValid[0] |
|
3552 | initMet = indValid[0] | |
3567 | endMet = 0 |
|
3553 | endMet = 0 | |
3568 |
|
3554 | |||
3569 | for i in range(len(indValid)-1): |
|
3555 | for i in range(len(indValid)-1): | |
3570 |
|
3556 | |||
3571 | #Time difference |
|
3557 | #Time difference | |
3572 | inow = indValid[i] |
|
3558 | inow = indValid[i] | |
3573 | inext = indValid[i+1] |
|
3559 | inext = indValid[i+1] | |
3574 | idiff = inext - inow |
|
3560 | idiff = inext - inow | |
3575 | #Phase difference |
|
3561 | #Phase difference | |
3576 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
3562 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
3577 |
|
3563 | |||
3578 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
3564 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
3579 | sizeTrail = inow - initMet + 1 |
|
3565 | sizeTrail = inow - initMet + 1 | |
3580 | if sizeTrail>3*sec: #Too short meteors |
|
3566 | if sizeTrail>3*sec: #Too short meteors | |
3581 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
3567 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
3582 | y = phase1[initMet:inow+1] |
|
3568 | y = phase1[initMet:inow+1] | |
3583 | ynnan = ~numpy.isnan(y) |
|
3569 | ynnan = ~numpy.isnan(y) | |
3584 | x = x[ynnan] |
|
3570 | x = x[ynnan] | |
3585 | y = y[ynnan] |
|
3571 | y = y[ynnan] | |
3586 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
3572 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
3587 | ylin = x*slope + intercept |
|
3573 | ylin = x*slope + intercept | |
3588 | rsq = r_value**2 |
|
3574 | rsq = r_value**2 | |
3589 | if rsq > 0.5: |
|
3575 | if rsq > 0.5: | |
3590 | vel = slope#*height*1000/(k*d) |
|
3576 | vel = slope#*height*1000/(k*d) | |
3591 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
3577 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
3592 | meteorList.append(estAux) |
|
3578 | meteorList.append(estAux) | |
3593 | initMet = inext |
|
3579 | initMet = inext | |
3594 | metArray2 = numpy.array(meteorList) |
|
3580 | metArray2 = numpy.array(meteorList) | |
3595 |
|
3581 | |||
3596 | return metArray2 |
|
3582 | return metArray2 | |
3597 |
|
3583 | |||
3598 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
3584 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
3599 |
|
3585 | |||
3600 | azimuth1 = numpy.zeros(len(pairslist)) |
|
3586 | azimuth1 = numpy.zeros(len(pairslist)) | |
3601 | dist = numpy.zeros(len(pairslist)) |
|
3587 | dist = numpy.zeros(len(pairslist)) | |
3602 |
|
3588 | |||
3603 | for i in range(len(rx_location)): |
|
3589 | for i in range(len(rx_location)): | |
3604 | ch0 = pairslist[i][0] |
|
3590 | ch0 = pairslist[i][0] | |
3605 | ch1 = pairslist[i][1] |
|
3591 | ch1 = pairslist[i][1] | |
3606 |
|
3592 | |||
3607 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
3593 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
3608 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
3594 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
3609 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
3595 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
3610 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
3596 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
3611 |
|
3597 | |||
3612 | azimuth1 -= azimuth0 |
|
3598 | azimuth1 -= azimuth0 | |
3613 | return azimuth1, dist |
|
3599 | return azimuth1, dist | |
3614 |
|
3600 | |||
3615 | def techniqueNSM_DBS(self, **kwargs): |
|
3601 | def techniqueNSM_DBS(self, **kwargs): | |
3616 | metArray = kwargs['metArray'] |
|
3602 | metArray = kwargs['metArray'] | |
3617 | heightList = kwargs['heightList'] |
|
3603 | heightList = kwargs['heightList'] | |
3618 | timeList = kwargs['timeList'] |
|
3604 | timeList = kwargs['timeList'] | |
3619 | azimuth = kwargs['azimuth'] |
|
3605 | azimuth = kwargs['azimuth'] | |
3620 | theta_x = numpy.array(kwargs['theta_x']) |
|
3606 | theta_x = numpy.array(kwargs['theta_x']) | |
3621 | theta_y = numpy.array(kwargs['theta_y']) |
|
3607 | theta_y = numpy.array(kwargs['theta_y']) | |
3622 |
|
3608 | |||
3623 | utctime = metArray[:,0] |
|
3609 | utctime = metArray[:,0] | |
3624 | cmet = metArray[:,1].astype(int) |
|
3610 | cmet = metArray[:,1].astype(int) | |
3625 | hmet = metArray[:,3].astype(int) |
|
3611 | hmet = metArray[:,3].astype(int) | |
3626 | SNRmet = metArray[:,4] |
|
3612 | SNRmet = metArray[:,4] | |
3627 | vmet = metArray[:,5] |
|
3613 | vmet = metArray[:,5] | |
3628 | spcmet = metArray[:,6] |
|
3614 | spcmet = metArray[:,6] | |
3629 |
|
3615 | |||
3630 | nChan = numpy.max(cmet) + 1 |
|
3616 | nChan = numpy.max(cmet) + 1 | |
3631 | nHeights = len(heightList) |
|
3617 | nHeights = len(heightList) | |
3632 |
|
3618 | |||
3633 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
3619 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
3634 | hmet = heightList[hmet] |
|
3620 | hmet = heightList[hmet] | |
3635 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights |
|
3621 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights | |
3636 |
|
3622 | |||
3637 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
3623 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
3638 |
|
3624 | |||
3639 | for i in range(nHeights - 1): |
|
3625 | for i in range(nHeights - 1): | |
3640 | hmin = heightList[i] |
|
3626 | hmin = heightList[i] | |
3641 | hmax = heightList[i + 1] |
|
3627 | hmax = heightList[i + 1] | |
3642 |
|
3628 | |||
3643 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) |
|
3629 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |
3644 | indthisH = numpy.where(thisH) |
|
3630 | indthisH = numpy.where(thisH) | |
3645 |
|
3631 | |||
3646 | if numpy.size(indthisH) > 3: |
|
3632 | if numpy.size(indthisH) > 3: | |
3647 |
|
3633 | |||
3648 | vel_aux = vmet[thisH] |
|
3634 | vel_aux = vmet[thisH] | |
3649 | chan_aux = cmet[thisH] |
|
3635 | chan_aux = cmet[thisH] | |
3650 | cosu_aux = dir_cosu[chan_aux] |
|
3636 | cosu_aux = dir_cosu[chan_aux] | |
3651 | cosv_aux = dir_cosv[chan_aux] |
|
3637 | cosv_aux = dir_cosv[chan_aux] | |
3652 | cosw_aux = dir_cosw[chan_aux] |
|
3638 | cosw_aux = dir_cosw[chan_aux] | |
3653 |
|
3639 | |||
3654 | nch = numpy.size(numpy.unique(chan_aux)) |
|
3640 | nch = numpy.size(numpy.unique(chan_aux)) | |
3655 | if nch > 1: |
|
3641 | if nch > 1: | |
3656 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) |
|
3642 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |
3657 | velEst[i,:] = numpy.dot(A,vel_aux) |
|
3643 | velEst[i,:] = numpy.dot(A,vel_aux) | |
3658 |
|
3644 | |||
3659 | return velEst |
|
3645 | return velEst | |
3660 |
|
3646 | |||
3661 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): |
|
3647 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |
3662 |
|
3648 | |||
3663 | param = dataOut.data_param |
|
3649 | param = dataOut.data_param | |
3664 | if dataOut.abscissaList != None: |
|
3650 | if dataOut.abscissaList != None: | |
3665 | absc = dataOut.abscissaList[:-1] |
|
3651 | absc = dataOut.abscissaList[:-1] | |
3666 | # noise = dataOut.noise |
|
3652 | # noise = dataOut.noise | |
3667 | heightList = dataOut.heightList |
|
3653 | heightList = dataOut.heightList | |
3668 | SNR = dataOut.data_snr |
|
3654 | SNR = dataOut.data_snr | |
3669 |
|
3655 | |||
3670 | if technique == 'DBS': |
|
3656 | if technique == 'DBS': | |
3671 |
|
3657 | |||
3672 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
3658 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
3673 | kwargs['heightList'] = heightList |
|
3659 | kwargs['heightList'] = heightList | |
3674 | kwargs['SNR'] = SNR |
|
3660 | kwargs['SNR'] = SNR | |
3675 |
|
3661 | |||
3676 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function |
|
3662 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function | |
3677 | dataOut.utctimeInit = dataOut.utctime |
|
3663 | dataOut.utctimeInit = dataOut.utctime | |
3678 | dataOut.outputInterval = dataOut.paramInterval |
|
3664 | dataOut.outputInterval = dataOut.paramInterval | |
3679 |
|
3665 | |||
3680 | elif technique == 'SA': |
|
3666 | elif technique == 'SA': | |
3681 |
|
3667 | |||
3682 | #Parameters |
|
3668 | #Parameters | |
3683 | # position_x = kwargs['positionX'] |
|
3669 | # position_x = kwargs['positionX'] | |
3684 | # position_y = kwargs['positionY'] |
|
3670 | # position_y = kwargs['positionY'] | |
3685 | # azimuth = kwargs['azimuth'] |
|
3671 | # azimuth = kwargs['azimuth'] | |
3686 | # |
|
3672 | # | |
3687 | # if kwargs.has_key('crosspairsList'): |
|
3673 | # if kwargs.has_key('crosspairsList'): | |
3688 | # pairs = kwargs['crosspairsList'] |
|
3674 | # pairs = kwargs['crosspairsList'] | |
3689 | # else: |
|
3675 | # else: | |
3690 | # pairs = None |
|
3676 | # pairs = None | |
3691 | # |
|
3677 | # | |
3692 | # if kwargs.has_key('correctFactor'): |
|
3678 | # if kwargs.has_key('correctFactor'): | |
3693 | # correctFactor = kwargs['correctFactor'] |
|
3679 | # correctFactor = kwargs['correctFactor'] | |
3694 | # else: |
|
3680 | # else: | |
3695 | # correctFactor = 1 |
|
3681 | # correctFactor = 1 | |
3696 |
|
3682 | |||
3697 | # tau = dataOut.data_param |
|
3683 | # tau = dataOut.data_param | |
3698 | # _lambda = dataOut.C/dataOut.frequency |
|
3684 | # _lambda = dataOut.C/dataOut.frequency | |
3699 | # pairsList = dataOut.groupList |
|
3685 | # pairsList = dataOut.groupList | |
3700 | # nChannels = dataOut.nChannels |
|
3686 | # nChannels = dataOut.nChannels | |
3701 |
|
3687 | |||
3702 | kwargs['groupList'] = dataOut.groupList |
|
3688 | kwargs['groupList'] = dataOut.groupList | |
3703 | kwargs['tau'] = dataOut.data_param |
|
3689 | kwargs['tau'] = dataOut.data_param | |
3704 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
3690 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
3705 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
3691 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
3706 | dataOut.data_output = self.techniqueSA(kwargs) |
|
3692 | dataOut.data_output = self.techniqueSA(kwargs) | |
3707 | dataOut.utctimeInit = dataOut.utctime |
|
3693 | dataOut.utctimeInit = dataOut.utctime | |
3708 | dataOut.outputInterval = dataOut.timeInterval |
|
3694 | dataOut.outputInterval = dataOut.timeInterval | |
3709 |
|
3695 | |||
3710 | elif technique == 'Meteors': |
|
3696 | elif technique == 'Meteors': | |
3711 | dataOut.flagNoData = True |
|
3697 | dataOut.flagNoData = True | |
3712 | self.__dataReady = False |
|
3698 | self.__dataReady = False | |
3713 |
|
3699 | |||
3714 | if 'nHours' in kwargs: |
|
3700 | if 'nHours' in kwargs: | |
3715 | nHours = kwargs['nHours'] |
|
3701 | nHours = kwargs['nHours'] | |
3716 | else: |
|
3702 | else: | |
3717 | nHours = 1 |
|
3703 | nHours = 1 | |
3718 |
|
3704 | |||
3719 | if 'meteorsPerBin' in kwargs: |
|
3705 | if 'meteorsPerBin' in kwargs: | |
3720 | meteorThresh = kwargs['meteorsPerBin'] |
|
3706 | meteorThresh = kwargs['meteorsPerBin'] | |
3721 | else: |
|
3707 | else: | |
3722 | meteorThresh = 6 |
|
3708 | meteorThresh = 6 | |
3723 |
|
3709 | |||
3724 | if 'hmin' in kwargs: |
|
3710 | if 'hmin' in kwargs: | |
3725 | hmin = kwargs['hmin'] |
|
3711 | hmin = kwargs['hmin'] | |
3726 | else: hmin = 70 |
|
3712 | else: hmin = 70 | |
3727 | if 'hmax' in kwargs: |
|
3713 | if 'hmax' in kwargs: | |
3728 | hmax = kwargs['hmax'] |
|
3714 | hmax = kwargs['hmax'] | |
3729 | else: hmax = 110 |
|
3715 | else: hmax = 110 | |
3730 |
|
3716 | |||
3731 | dataOut.outputInterval = nHours*3600 |
|
3717 | dataOut.outputInterval = nHours*3600 | |
3732 |
|
3718 | |||
3733 | if self.__isConfig == False: |
|
3719 | if self.__isConfig == False: | |
3734 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3720 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3735 | #Get Initial LTC time |
|
3721 | #Get Initial LTC time | |
3736 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3722 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3737 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3723 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3738 |
|
3724 | |||
3739 | self.__isConfig = True |
|
3725 | self.__isConfig = True | |
3740 |
|
3726 | |||
3741 | if self.__buffer is None: |
|
3727 | if self.__buffer is None: | |
3742 | self.__buffer = dataOut.data_param |
|
3728 | self.__buffer = dataOut.data_param | |
3743 | self.__firstdata = copy.copy(dataOut) |
|
3729 | self.__firstdata = copy.copy(dataOut) | |
3744 |
|
3730 | |||
3745 | else: |
|
3731 | else: | |
3746 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3732 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3747 |
|
3733 | |||
3748 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3734 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3749 |
|
3735 | |||
3750 | if self.__dataReady: |
|
3736 | if self.__dataReady: | |
3751 | dataOut.utctimeInit = self.__initime |
|
3737 | dataOut.utctimeInit = self.__initime | |
3752 |
|
3738 | |||
3753 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3739 | self.__initime += dataOut.outputInterval #to erase time offset | |
3754 |
|
3740 | |||
3755 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
3741 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
3756 | dataOut.flagNoData = False |
|
3742 | dataOut.flagNoData = False | |
3757 | self.__buffer = None |
|
3743 | self.__buffer = None | |
3758 |
|
3744 | |||
3759 | elif technique == 'Meteors1': |
|
3745 | elif technique == 'Meteors1': | |
3760 | dataOut.flagNoData = True |
|
3746 | dataOut.flagNoData = True | |
3761 | self.__dataReady = False |
|
3747 | self.__dataReady = False | |
3762 |
|
3748 | |||
3763 | if 'nMins' in kwargs: |
|
3749 | if 'nMins' in kwargs: | |
3764 | nMins = kwargs['nMins'] |
|
3750 | nMins = kwargs['nMins'] | |
3765 | else: nMins = 20 |
|
3751 | else: nMins = 20 | |
3766 | if 'rx_location' in kwargs: |
|
3752 | if 'rx_location' in kwargs: | |
3767 | rx_location = kwargs['rx_location'] |
|
3753 | rx_location = kwargs['rx_location'] | |
3768 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
3754 | else: rx_location = [(0,1),(1,1),(1,0)] | |
3769 | if 'azimuth' in kwargs: |
|
3755 | if 'azimuth' in kwargs: | |
3770 | azimuth = kwargs['azimuth'] |
|
3756 | azimuth = kwargs['azimuth'] | |
3771 | else: azimuth = 51.06 |
|
3757 | else: azimuth = 51.06 | |
3772 | if 'dfactor' in kwargs: |
|
3758 | if 'dfactor' in kwargs: | |
3773 | dfactor = kwargs['dfactor'] |
|
3759 | dfactor = kwargs['dfactor'] | |
3774 | if 'mode' in kwargs: |
|
3760 | if 'mode' in kwargs: | |
3775 | mode = kwargs['mode'] |
|
3761 | mode = kwargs['mode'] | |
3776 | if 'theta_x' in kwargs: |
|
3762 | if 'theta_x' in kwargs: | |
3777 | theta_x = kwargs['theta_x'] |
|
3763 | theta_x = kwargs['theta_x'] | |
3778 | if 'theta_y' in kwargs: |
|
3764 | if 'theta_y' in kwargs: | |
3779 | theta_y = kwargs['theta_y'] |
|
3765 | theta_y = kwargs['theta_y'] | |
3780 | else: mode = 'SA' |
|
3766 | else: mode = 'SA' | |
3781 |
|
3767 | |||
3782 | #Borrar luego esto |
|
3768 | #Borrar luego esto | |
3783 | if dataOut.groupList is None: |
|
3769 | if dataOut.groupList is None: | |
3784 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
3770 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
3785 | groupList = dataOut.groupList |
|
3771 | groupList = dataOut.groupList | |
3786 | C = 3e8 |
|
3772 | C = 3e8 | |
3787 | freq = 50e6 |
|
3773 | freq = 50e6 | |
3788 | lamb = C/freq |
|
3774 | lamb = C/freq | |
3789 | k = 2*numpy.pi/lamb |
|
3775 | k = 2*numpy.pi/lamb | |
3790 |
|
3776 | |||
3791 | timeList = dataOut.abscissaList |
|
3777 | timeList = dataOut.abscissaList | |
3792 | heightList = dataOut.heightList |
|
3778 | heightList = dataOut.heightList | |
3793 |
|
3779 | |||
3794 | if self.__isConfig == False: |
|
3780 | if self.__isConfig == False: | |
3795 | dataOut.outputInterval = nMins*60 |
|
3781 | dataOut.outputInterval = nMins*60 | |
3796 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3782 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3797 | #Get Initial LTC time |
|
3783 | #Get Initial LTC time | |
3798 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3784 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3799 | minuteAux = initime.minute |
|
3785 | minuteAux = initime.minute | |
3800 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
3786 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
3801 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3787 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3802 |
|
3788 | |||
3803 | self.__isConfig = True |
|
3789 | self.__isConfig = True | |
3804 |
|
3790 | |||
3805 | if self.__buffer is None: |
|
3791 | if self.__buffer is None: | |
3806 | self.__buffer = dataOut.data_param |
|
3792 | self.__buffer = dataOut.data_param | |
3807 | self.__firstdata = copy.copy(dataOut) |
|
3793 | self.__firstdata = copy.copy(dataOut) | |
3808 |
|
3794 | |||
3809 | else: |
|
3795 | else: | |
3810 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3796 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3811 |
|
3797 | |||
3812 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3798 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3813 |
|
3799 | |||
3814 | if self.__dataReady: |
|
3800 | if self.__dataReady: | |
3815 | dataOut.utctimeInit = self.__initime |
|
3801 | dataOut.utctimeInit = self.__initime | |
3816 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3802 | self.__initime += dataOut.outputInterval #to erase time offset | |
3817 |
|
3803 | |||
3818 | metArray = self.__buffer |
|
3804 | metArray = self.__buffer | |
3819 | if mode == 'SA': |
|
3805 | if mode == 'SA': | |
3820 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
3806 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
3821 | elif mode == 'DBS': |
|
3807 | elif mode == 'DBS': | |
3822 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) |
|
3808 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) | |
3823 | dataOut.data_output = dataOut.data_output.T |
|
3809 | dataOut.data_output = dataOut.data_output.T | |
3824 | dataOut.flagNoData = False |
|
3810 | dataOut.flagNoData = False | |
3825 | self.__buffer = None |
|
3811 | self.__buffer = None | |
3826 |
|
3812 | |||
3827 | return |
|
3813 | return | |
3828 |
|
3814 | |||
3829 | class EWDriftsEstimation(Operation): |
|
3815 | class EWDriftsEstimation(Operation): | |
3830 |
|
3816 | |||
3831 | def __init__(self): |
|
3817 | def __init__(self): | |
3832 | Operation.__init__(self) |
|
3818 | Operation.__init__(self) | |
3833 |
|
3819 | |||
3834 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
3820 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
3835 | listPhi = phi.tolist() |
|
3821 | listPhi = phi.tolist() | |
3836 | maxid = listPhi.index(max(listPhi)) |
|
3822 | maxid = listPhi.index(max(listPhi)) | |
3837 | minid = listPhi.index(min(listPhi)) |
|
3823 | minid = listPhi.index(min(listPhi)) | |
3838 |
|
3824 | |||
3839 | rango = list(range(len(phi))) |
|
3825 | rango = list(range(len(phi))) | |
3840 | # rango = numpy.delete(rango,maxid) |
|
3826 | # rango = numpy.delete(rango,maxid) | |
3841 |
|
3827 | |||
3842 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
3828 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
3843 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
3829 | heiRangAux = heiRang*math.cos(phi[minid]) | |
3844 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
3830 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
3845 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
3831 | heiRang1 = numpy.delete(heiRang1,indOut) | |
3846 |
|
3832 | |||
3847 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
3833 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
3848 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
3834 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
3849 |
|
3835 | |||
3850 | for i in rango: |
|
3836 | for i in rango: | |
3851 | x = heiRang*math.cos(phi[i]) |
|
3837 | x = heiRang*math.cos(phi[i]) | |
3852 | y1 = velRadial[i,:] |
|
3838 | y1 = velRadial[i,:] | |
3853 | vali= (numpy.isfinite(y1)==True).nonzero() |
|
3839 | vali= (numpy.isfinite(y1)==True).nonzero() | |
3854 | y1=y1[vali] |
|
3840 | y1=y1[vali] | |
3855 | x = x[vali] |
|
3841 | x = x[vali] | |
3856 | f1 = interpolate.interp1d(x,y1,kind = 'cubic',bounds_error=False) |
|
3842 | f1 = interpolate.interp1d(x,y1,kind = 'cubic',bounds_error=False) | |
3857 |
|
3843 | |||
3858 | #heiRang1 = x*math.cos(phi[maxid]) |
|
3844 | #heiRang1 = x*math.cos(phi[maxid]) | |
3859 | x1 = heiRang1 |
|
3845 | x1 = heiRang1 | |
3860 | y11 = f1(x1) |
|
3846 | y11 = f1(x1) | |
3861 |
|
3847 | |||
3862 | y2 = SNR[i,:] |
|
3848 | y2 = SNR[i,:] | |
3863 | #print 'snr ', y2 |
|
3849 | #print 'snr ', y2 | |
3864 | x = heiRang*math.cos(phi[i]) |
|
3850 | x = heiRang*math.cos(phi[i]) | |
3865 | vali= (y2 != -1).nonzero() |
|
3851 | vali= (y2 != -1).nonzero() | |
3866 | y2 = y2[vali] |
|
3852 | y2 = y2[vali] | |
3867 | x = x[vali] |
|
3853 | x = x[vali] | |
3868 | #print 'snr ',y2 |
|
3854 | #print 'snr ',y2 | |
3869 | f2 = interpolate.interp1d(x,y2,kind = 'cubic',bounds_error=False) |
|
3855 | f2 = interpolate.interp1d(x,y2,kind = 'cubic',bounds_error=False) | |
3870 | y21 = f2(x1) |
|
3856 | y21 = f2(x1) | |
3871 |
|
3857 | |||
3872 | velRadial1[i,:] = y11 |
|
3858 | velRadial1[i,:] = y11 | |
3873 | SNR1[i,:] = y21 |
|
3859 | SNR1[i,:] = y21 | |
3874 |
|
3860 | |||
3875 | return heiRang1, velRadial1, SNR1 |
|
3861 | return heiRang1, velRadial1, SNR1 | |
3876 |
|
3862 | |||
3877 |
|
3863 | |||
3878 |
|
3864 | |||
3879 | def run(self, dataOut, zenith, zenithCorrection): |
|
3865 | def run(self, dataOut, zenith, zenithCorrection): | |
3880 |
|
3866 | |||
3881 | heiRang = dataOut.heightList |
|
3867 | heiRang = dataOut.heightList | |
3882 | velRadial = dataOut.data_param[:,3,:] |
|
3868 | velRadial = dataOut.data_param[:,3,:] | |
3883 | velRadialm = dataOut.data_param[:,2:4,:]*-1 |
|
3869 | velRadialm = dataOut.data_param[:,2:4,:]*-1 | |
3884 |
|
3870 | |||
3885 | rbufc=dataOut.data_paramC[:,:,0] |
|
3871 | rbufc=dataOut.data_paramC[:,:,0] | |
3886 | ebufc=dataOut.data_paramC[:,:,1] |
|
3872 | ebufc=dataOut.data_paramC[:,:,1] | |
3887 | SNR = dataOut.data_snr |
|
3873 | SNR = dataOut.data_snr | |
3888 | velRerr = dataOut.data_error[:,4,:] |
|
3874 | velRerr = dataOut.data_error[:,4,:] | |
3889 | moments=numpy.vstack(([velRadialm[0,:]],[velRadialm[0,:]],[velRadialm[1,:]],[velRadialm[1,:]])) |
|
3875 | moments=numpy.vstack(([velRadialm[0,:]],[velRadialm[0,:]],[velRadialm[1,:]],[velRadialm[1,:]])) | |
3890 | dataOut.moments=moments |
|
3876 | dataOut.moments=moments | |
3891 | # Coherent |
|
3877 | # Coherent | |
3892 | smooth_wC = ebufc[0,:] |
|
3878 | smooth_wC = ebufc[0,:] | |
3893 | p_w0C = rbufc[0,:] |
|
3879 | p_w0C = rbufc[0,:] | |
3894 | p_w1C = rbufc[1,:] |
|
3880 | p_w1C = rbufc[1,:] | |
3895 | w_wC = rbufc[2,:]*-1 #*radial_sign(radial EQ 1) |
|
3881 | w_wC = rbufc[2,:]*-1 #*radial_sign(radial EQ 1) | |
3896 | t_wC = rbufc[3,:] |
|
3882 | t_wC = rbufc[3,:] | |
3897 | my_nbeams = 2 |
|
3883 | my_nbeams = 2 | |
3898 |
|
3884 | |||
3899 | zenith = numpy.array(zenith) |
|
3885 | zenith = numpy.array(zenith) | |
3900 | zenith -= zenithCorrection |
|
3886 | zenith -= zenithCorrection | |
3901 | zenith *= numpy.pi/180 |
|
3887 | zenith *= numpy.pi/180 | |
3902 | if zenithCorrection != 0 : |
|
3888 | if zenithCorrection != 0 : | |
3903 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
3889 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
3904 | else : |
|
3890 | else : | |
3905 | heiRang1 = heiRang |
|
3891 | heiRang1 = heiRang | |
3906 | velRadial1 = velRadial |
|
3892 | velRadial1 = velRadial | |
3907 | SNR1 = SNR |
|
3893 | SNR1 = SNR | |
3908 |
|
3894 | |||
3909 | alp = zenith[0] |
|
3895 | alp = zenith[0] | |
3910 | bet = zenith[1] |
|
3896 | bet = zenith[1] | |
3911 |
|
3897 | |||
3912 | w_w = velRadial1[0,:] |
|
3898 | w_w = velRadial1[0,:] | |
3913 | w_e = velRadial1[1,:] |
|
3899 | w_e = velRadial1[1,:] | |
3914 | w_w_err = velRerr[0,:] |
|
3900 | w_w_err = velRerr[0,:] | |
3915 | w_e_err = velRerr[1,:] |
|
3901 | w_e_err = velRerr[1,:] | |
3916 |
|
3902 | |||
3917 | val = (numpy.isfinite(w_w)==False).nonzero() |
|
3903 | val = (numpy.isfinite(w_w)==False).nonzero() | |
3918 | val = val[0] |
|
3904 | val = val[0] | |
3919 | bad = val |
|
3905 | bad = val | |
3920 | if len(bad) > 0 : |
|
3906 | if len(bad) > 0 : | |
3921 | w_w[bad] = w_wC[bad] |
|
3907 | w_w[bad] = w_wC[bad] | |
3922 | w_w_err[bad]= numpy.nan |
|
3908 | w_w_err[bad]= numpy.nan | |
3923 | if my_nbeams == 2: |
|
3909 | if my_nbeams == 2: | |
3924 | smooth_eC=ebufc[4,:] |
|
3910 | smooth_eC=ebufc[4,:] | |
3925 | p_e0C = rbufc[4,:] |
|
3911 | p_e0C = rbufc[4,:] | |
3926 | p_e1C = rbufc[5,:] |
|
3912 | p_e1C = rbufc[5,:] | |
3927 | w_eC = rbufc[6,:]*-1 |
|
3913 | w_eC = rbufc[6,:]*-1 | |
3928 | t_eC = rbufc[7,:] |
|
3914 | t_eC = rbufc[7,:] | |
3929 | val = (numpy.isfinite(w_e)==False).nonzero() |
|
3915 | val = (numpy.isfinite(w_e)==False).nonzero() | |
3930 | val = val[0] |
|
3916 | val = val[0] | |
3931 | bad = val |
|
3917 | bad = val | |
3932 | if len(bad) > 0 : |
|
3918 | if len(bad) > 0 : | |
3933 | w_e[bad] = w_eC[bad] |
|
3919 | w_e[bad] = w_eC[bad] | |
3934 | w_e_err[bad]= numpy.nan |
|
3920 | w_e_err[bad]= numpy.nan | |
3935 |
|
3921 | |||
3936 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
3922 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
3937 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
3923 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
3938 |
|
3924 | |||
3939 | w_err = numpy.sqrt((w_w_err*numpy.sin(bet))**2.+(w_e_err*numpy.sin(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) |
|
3925 | w_err = numpy.sqrt((w_w_err*numpy.sin(bet))**2.+(w_e_err*numpy.sin(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) | |
3940 | u_err = numpy.sqrt((w_w_err*numpy.cos(bet))**2.+(w_e_err*numpy.cos(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) |
|
3926 | u_err = numpy.sqrt((w_w_err*numpy.cos(bet))**2.+(w_e_err*numpy.cos(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) | |
3941 |
|
3927 | |||
3942 | winds = numpy.vstack((w,u)) |
|
3928 | winds = numpy.vstack((w,u)) | |
3943 |
|
3929 | |||
3944 | dataOut.heightList = heiRang1 |
|
3930 | dataOut.heightList = heiRang1 | |
3945 | dataOut.data_output = winds |
|
3931 | dataOut.data_output = winds | |
3946 |
|
3932 | |||
3947 | snr1 = 10*numpy.log10(SNR1[0]) |
|
3933 | snr1 = 10*numpy.log10(SNR1[0]) | |
3948 | dataOut.data_snr1 = numpy.reshape(snr1,(1,snr1.shape[0])) |
|
3934 | dataOut.data_snr1 = numpy.reshape(snr1,(1,snr1.shape[0])) | |
3949 | dataOut.utctimeInit = dataOut.utctime |
|
3935 | dataOut.utctimeInit = dataOut.utctime | |
3950 | dataOut.outputInterval = dataOut.timeInterval |
|
3936 | dataOut.outputInterval = dataOut.timeInterval | |
3951 |
|
3937 | |||
3952 | hei_aver0 = 218 |
|
3938 | hei_aver0 = 218 | |
3953 | jrange = 450 #900 para HA drifts |
|
3939 | jrange = 450 #900 para HA drifts | |
3954 | deltah = 15.0 #dataOut.spacing(0) |
|
3940 | deltah = 15.0 #dataOut.spacing(0) | |
3955 | h0 = 0.0 #dataOut.first_height(0) |
|
3941 | h0 = 0.0 #dataOut.first_height(0) | |
3956 | heights = dataOut.heightList |
|
3942 | heights = dataOut.heightList | |
3957 | nhei = len(heights) |
|
3943 | nhei = len(heights) | |
3958 |
|
3944 | |||
3959 | range1 = numpy.arange(nhei) * deltah + h0 |
|
3945 | range1 = numpy.arange(nhei) * deltah + h0 | |
3960 |
|
3946 | |||
3961 | #jhei = WHERE(range1 GE hei_aver0 , jcount) |
|
3947 | #jhei = WHERE(range1 GE hei_aver0 , jcount) | |
3962 | jhei = (range1 >= hei_aver0).nonzero() |
|
3948 | jhei = (range1 >= hei_aver0).nonzero() | |
3963 | if len(jhei[0]) > 0 : |
|
3949 | if len(jhei[0]) > 0 : | |
3964 | h0_index = jhei[0][0] # Initial height for getting averages 218km |
|
3950 | h0_index = jhei[0][0] # Initial height for getting averages 218km | |
3965 |
|
3951 | |||
3966 | mynhei = 7 |
|
3952 | mynhei = 7 | |
3967 | nhei_avg = int(jrange/deltah) |
|
3953 | nhei_avg = int(jrange/deltah) | |
3968 | h_avgs = int(nhei_avg/mynhei) |
|
3954 | h_avgs = int(nhei_avg/mynhei) | |
3969 | nhei_avg = h_avgs*(mynhei-1)+mynhei |
|
3955 | nhei_avg = h_avgs*(mynhei-1)+mynhei | |
3970 |
|
3956 | |||
3971 | navgs = numpy.zeros(mynhei,dtype='float') |
|
3957 | navgs = numpy.zeros(mynhei,dtype='float') | |
3972 | delta_h = numpy.zeros(mynhei,dtype='float') |
|
3958 | delta_h = numpy.zeros(mynhei,dtype='float') | |
3973 | range_aver = numpy.zeros(mynhei,dtype='float') |
|
3959 | range_aver = numpy.zeros(mynhei,dtype='float') | |
3974 | for ih in range( mynhei-1 ): |
|
3960 | for ih in range( mynhei-1 ): | |
3975 | range_aver[ih] = numpy.sum(range1[h0_index+h_avgs*ih:h0_index+h_avgs*(ih+1)-0])/h_avgs |
|
3961 | range_aver[ih] = numpy.sum(range1[h0_index+h_avgs*ih:h0_index+h_avgs*(ih+1)-0])/h_avgs | |
3976 | navgs[ih] = h_avgs |
|
3962 | navgs[ih] = h_avgs | |
3977 | delta_h[ih] = deltah*h_avgs |
|
3963 | delta_h[ih] = deltah*h_avgs | |
3978 |
|
3964 | |||
3979 | range_aver[mynhei-1] = numpy.sum(range1[h0_index:h0_index+6*h_avgs-0])/(6*h_avgs) |
|
3965 | range_aver[mynhei-1] = numpy.sum(range1[h0_index:h0_index+6*h_avgs-0])/(6*h_avgs) | |
3980 | navgs[mynhei-1] = 6*h_avgs |
|
3966 | navgs[mynhei-1] = 6*h_avgs | |
3981 | delta_h[mynhei-1] = deltah*6*h_avgs |
|
3967 | delta_h[mynhei-1] = deltah*6*h_avgs | |
3982 |
|
3968 | |||
3983 | wA = w[h0_index:h0_index+nhei_avg-0] |
|
3969 | wA = w[h0_index:h0_index+nhei_avg-0] | |
3984 | wA_err = w_err[h0_index:h0_index+nhei_avg-0] |
|
3970 | wA_err = w_err[h0_index:h0_index+nhei_avg-0] | |
3985 |
|
3971 | |||
3986 | for i in range(5) : |
|
3972 | for i in range(5) : | |
3987 | vals = wA[i*h_avgs:(i+1)*h_avgs-0] |
|
3973 | vals = wA[i*h_avgs:(i+1)*h_avgs-0] | |
3988 | errs = wA_err[i*h_avgs:(i+1)*h_avgs-0] |
|
3974 | errs = wA_err[i*h_avgs:(i+1)*h_avgs-0] | |
3989 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) |
|
3975 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |
3990 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) |
|
3976 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |
3991 | wA[6*h_avgs+i] = avg |
|
3977 | wA[6*h_avgs+i] = avg | |
3992 | wA_err[6*h_avgs+i] = sigma |
|
3978 | wA_err[6*h_avgs+i] = sigma | |
3993 |
|
3979 | |||
3994 |
|
3980 | |||
3995 | vals = wA[0:6*h_avgs-0] |
|
3981 | vals = wA[0:6*h_avgs-0] | |
3996 | errs=wA_err[0:6*h_avgs-0] |
|
3982 | errs=wA_err[0:6*h_avgs-0] | |
3997 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2) |
|
3983 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2) | |
3998 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) |
|
3984 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |
3999 | wA[nhei_avg-1] = avg |
|
3985 | wA[nhei_avg-1] = avg | |
4000 | wA_err[nhei_avg-1] = sigma |
|
3986 | wA_err[nhei_avg-1] = sigma | |
4001 |
|
3987 | |||
4002 | wA = wA[6*h_avgs:nhei_avg-0] |
|
3988 | wA = wA[6*h_avgs:nhei_avg-0] | |
4003 | wA_err=wA_err[6*h_avgs:nhei_avg-0] |
|
3989 | wA_err=wA_err[6*h_avgs:nhei_avg-0] | |
4004 | if my_nbeams == 2 : |
|
3990 | if my_nbeams == 2 : | |
4005 |
|
3991 | |||
4006 | uA = u[h0_index:h0_index+nhei_avg] |
|
3992 | uA = u[h0_index:h0_index+nhei_avg] | |
4007 | uA_err=u_err[h0_index:h0_index+nhei_avg] |
|
3993 | uA_err=u_err[h0_index:h0_index+nhei_avg] | |
4008 |
|
3994 | |||
4009 | for i in range(5) : |
|
3995 | for i in range(5) : | |
4010 | vals = uA[i*h_avgs:(i+1)*h_avgs-0] |
|
3996 | vals = uA[i*h_avgs:(i+1)*h_avgs-0] | |
4011 | errs=uA_err[i*h_avgs:(i+1)*h_avgs-0] |
|
3997 | errs=uA_err[i*h_avgs:(i+1)*h_avgs-0] | |
4012 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) |
|
3998 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |
4013 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) |
|
3999 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |
4014 | uA[6*h_avgs+i] = avg |
|
4000 | uA[6*h_avgs+i] = avg | |
4015 | uA_err[6*h_avgs+i]=sigma |
|
4001 | uA_err[6*h_avgs+i]=sigma | |
4016 |
|
4002 | |||
4017 | vals = uA[0:6*h_avgs-0] |
|
4003 | vals = uA[0:6*h_avgs-0] | |
4018 | errs = uA_err[0:6*h_avgs-0] |
|
4004 | errs = uA_err[0:6*h_avgs-0] | |
4019 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) |
|
4005 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |
4020 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) |
|
4006 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |
4021 | uA[nhei_avg-1] = avg |
|
4007 | uA[nhei_avg-1] = avg | |
4022 | uA_err[nhei_avg-1] = sigma |
|
4008 | uA_err[nhei_avg-1] = sigma | |
4023 | uA = uA[6*h_avgs:nhei_avg-0] |
|
4009 | uA = uA[6*h_avgs:nhei_avg-0] | |
4024 | uA_err = uA_err[6*h_avgs:nhei_avg-0] |
|
4010 | uA_err = uA_err[6*h_avgs:nhei_avg-0] | |
4025 |
|
4011 | |||
4026 | dataOut.drifts_avg = numpy.vstack((wA,uA)) |
|
4012 | dataOut.drifts_avg = numpy.vstack((wA,uA)) | |
4027 |
|
4013 | |||
4028 | tini=time.localtime(dataOut.utctime) |
|
4014 | tini=time.localtime(dataOut.utctime) | |
4029 | datefile= str(tini[0]).zfill(4)+str(tini[1]).zfill(2)+str(tini[2]).zfill(2) |
|
4015 | datefile= str(tini[0]).zfill(4)+str(tini[1]).zfill(2)+str(tini[2]).zfill(2) | |
4030 | nfile = '/home/pcondor/Database/ewdriftsschain2019/jro'+datefile+'drifts_sch3.txt' |
|
4016 | nfile = '/home/pcondor/Database/ewdriftsschain2019/jro'+datefile+'drifts_sch3.txt' | |
4031 |
|
4017 | |||
4032 | f1 = open(nfile,'a') |
|
4018 | f1 = open(nfile,'a') | |
4033 |
|
4019 | |||
4034 | datedriftavg=str(tini[0])+' '+str(tini[1])+' '+str(tini[2])+' '+str(tini[3])+' '+str(tini[4]) |
|
4020 | datedriftavg=str(tini[0])+' '+str(tini[1])+' '+str(tini[2])+' '+str(tini[3])+' '+str(tini[4]) | |
4035 | driftavgstr=str(dataOut.drifts_avg) |
|
4021 | driftavgstr=str(dataOut.drifts_avg) | |
4036 |
|
4022 | |||
4037 | numpy.savetxt(f1,numpy.column_stack([tini[0],tini[1],tini[2],tini[3],tini[4]]),fmt='%4i') |
|
4023 | numpy.savetxt(f1,numpy.column_stack([tini[0],tini[1],tini[2],tini[3],tini[4]]),fmt='%4i') | |
4038 | numpy.savetxt(f1,dataOut.drifts_avg,fmt='%10.2f') |
|
4024 | numpy.savetxt(f1,dataOut.drifts_avg,fmt='%10.2f') | |
4039 | f1.close() |
|
4025 | f1.close() | |
4040 |
|
4026 | |||
4041 | return dataOut |
|
4027 | return dataOut | |
4042 |
|
4028 | |||
4043 | #--------------- Non Specular Meteor ---------------- |
|
4029 | #--------------- Non Specular Meteor ---------------- | |
4044 |
|
4030 | |||
4045 | class NonSpecularMeteorDetection(Operation): |
|
4031 | class NonSpecularMeteorDetection(Operation): | |
4046 |
|
4032 | |||
4047 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
4033 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
4048 | data_acf = dataOut.data_pre[0] |
|
4034 | data_acf = dataOut.data_pre[0] | |
4049 | data_ccf = dataOut.data_pre[1] |
|
4035 | data_ccf = dataOut.data_pre[1] | |
4050 | pairsList = dataOut.groupList[1] |
|
4036 | pairsList = dataOut.groupList[1] | |
4051 |
|
4037 | |||
4052 | lamb = dataOut.C/dataOut.frequency |
|
4038 | lamb = dataOut.C/dataOut.frequency | |
4053 | tSamp = dataOut.ippSeconds*dataOut.nCohInt |
|
4039 | tSamp = dataOut.ippSeconds*dataOut.nCohInt | |
4054 | paramInterval = dataOut.paramInterval |
|
4040 | paramInterval = dataOut.paramInterval | |
4055 |
|
4041 | |||
4056 | nChannels = data_acf.shape[0] |
|
4042 | nChannels = data_acf.shape[0] | |
4057 | nLags = data_acf.shape[1] |
|
4043 | nLags = data_acf.shape[1] | |
4058 | nProfiles = data_acf.shape[2] |
|
4044 | nProfiles = data_acf.shape[2] | |
4059 | nHeights = dataOut.nHeights |
|
4045 | nHeights = dataOut.nHeights | |
4060 | nCohInt = dataOut.nCohInt |
|
4046 | nCohInt = dataOut.nCohInt | |
4061 | sec = numpy.round(nProfiles/dataOut.paramInterval) |
|
4047 | sec = numpy.round(nProfiles/dataOut.paramInterval) | |
4062 | heightList = dataOut.heightList |
|
4048 | heightList = dataOut.heightList | |
4063 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg |
|
4049 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg | |
4064 | utctime = dataOut.utctime |
|
4050 | utctime = dataOut.utctime | |
4065 |
|
4051 | |||
4066 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
4052 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
4067 |
|
4053 | |||
4068 | #------------------------ SNR -------------------------------------- |
|
4054 | #------------------------ SNR -------------------------------------- | |
4069 | power = data_acf[:,0,:,:].real |
|
4055 | power = data_acf[:,0,:,:].real | |
4070 | noise = numpy.zeros(nChannels) |
|
4056 | noise = numpy.zeros(nChannels) | |
4071 | SNR = numpy.zeros(power.shape) |
|
4057 | SNR = numpy.zeros(power.shape) | |
4072 | for i in range(nChannels): |
|
4058 | for i in range(nChannels): | |
4073 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
4059 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
4074 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
4060 | SNR[i] = (power[i]-noise[i])/noise[i] | |
4075 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
4061 | SNRm = numpy.nanmean(SNR, axis = 0) | |
4076 | SNRdB = 10*numpy.log10(SNR) |
|
4062 | SNRdB = 10*numpy.log10(SNR) | |
4077 |
|
4063 | |||
4078 | if mode == 'SA': |
|
4064 | if mode == 'SA': | |
4079 | dataOut.groupList = dataOut.groupList[1] |
|
4065 | dataOut.groupList = dataOut.groupList[1] | |
4080 | nPairs = data_ccf.shape[0] |
|
4066 | nPairs = data_ccf.shape[0] | |
4081 | #---------------------- Coherence and Phase -------------------------- |
|
4067 | #---------------------- Coherence and Phase -------------------------- | |
4082 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
4068 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
4083 | # phase1 = numpy.copy(phase) |
|
4069 | # phase1 = numpy.copy(phase) | |
4084 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
4070 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
4085 |
|
4071 | |||
4086 | for p in range(nPairs): |
|
4072 | for p in range(nPairs): | |
4087 | ch0 = pairsList[p][0] |
|
4073 | ch0 = pairsList[p][0] | |
4088 | ch1 = pairsList[p][1] |
|
4074 | ch1 = pairsList[p][1] | |
4089 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
4075 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
4090 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
4076 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
4091 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
4077 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
4092 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
4078 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
4093 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
4079 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
4094 | coh = numpy.nanmax(coh1, axis = 0) |
|
4080 | coh = numpy.nanmax(coh1, axis = 0) | |
4095 | # struc = numpy.ones((5,1)) |
|
4081 | # struc = numpy.ones((5,1)) | |
4096 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
4082 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
4097 | #---------------------- Radial Velocity ---------------------------- |
|
4083 | #---------------------- Radial Velocity ---------------------------- | |
4098 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
4084 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
4099 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
4085 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
4100 |
|
4086 | |||
4101 | if allData: |
|
4087 | if allData: | |
4102 | boolMetFin = ~numpy.isnan(SNRm) |
|
4088 | boolMetFin = ~numpy.isnan(SNRm) | |
4103 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
4089 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
4104 | else: |
|
4090 | else: | |
4105 | #------------------------ Meteor mask --------------------------------- |
|
4091 | #------------------------ Meteor mask --------------------------------- | |
4106 | # #SNR mask |
|
4092 | # #SNR mask | |
4107 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
4093 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
4108 | # |
|
4094 | # | |
4109 | # #Erase small objects |
|
4095 | # #Erase small objects | |
4110 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
4096 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
4111 | # |
|
4097 | # | |
4112 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
4098 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
4113 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
4099 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
4114 | # indEEJ = numpy.where(indOver)[0] |
|
4100 | # indEEJ = numpy.where(indOver)[0] | |
4115 | # indNEEJ = numpy.where(~indOver)[0] |
|
4101 | # indNEEJ = numpy.where(~indOver)[0] | |
4116 | # |
|
4102 | # | |
4117 | # boolMetFin = boolMet1 |
|
4103 | # boolMetFin = boolMet1 | |
4118 | # |
|
4104 | # | |
4119 | # if indEEJ.size > 0: |
|
4105 | # if indEEJ.size > 0: | |
4120 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
4106 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
4121 | # |
|
4107 | # | |
4122 | # boolMet2 = coh > cohThresh |
|
4108 | # boolMet2 = coh > cohThresh | |
4123 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
4109 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
4124 | # |
|
4110 | # | |
4125 | # #Final Meteor mask |
|
4111 | # #Final Meteor mask | |
4126 | # boolMetFin = boolMet1|boolMet2 |
|
4112 | # boolMetFin = boolMet1|boolMet2 | |
4127 |
|
4113 | |||
4128 | #Coherence mask |
|
4114 | #Coherence mask | |
4129 | boolMet1 = coh > 0.75 |
|
4115 | boolMet1 = coh > 0.75 | |
4130 | struc = numpy.ones((30,1)) |
|
4116 | struc = numpy.ones((30,1)) | |
4131 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
4117 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
4132 |
|
4118 | |||
4133 | #Derivative mask |
|
4119 | #Derivative mask | |
4134 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
4120 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
4135 | boolMet2 = derPhase < 0.2 |
|
4121 | boolMet2 = derPhase < 0.2 | |
4136 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
4122 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
4137 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
4123 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
4138 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
4124 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
4139 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
4125 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
4140 | # #Final mask |
|
4126 | # #Final mask | |
4141 | # boolMetFin = boolMet2 |
|
4127 | # boolMetFin = boolMet2 | |
4142 | boolMetFin = boolMet1&boolMet2 |
|
4128 | boolMetFin = boolMet1&boolMet2 | |
4143 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
4129 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
4144 | #Creating data_param |
|
4130 | #Creating data_param | |
4145 | coordMet = numpy.where(boolMetFin) |
|
4131 | coordMet = numpy.where(boolMetFin) | |
4146 |
|
4132 | |||
4147 | tmet = coordMet[0] |
|
4133 | tmet = coordMet[0] | |
4148 | hmet = coordMet[1] |
|
4134 | hmet = coordMet[1] | |
4149 |
|
4135 | |||
4150 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
4136 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
4151 | data_param[:,0] = utctime |
|
4137 | data_param[:,0] = utctime | |
4152 | data_param[:,1] = tmet |
|
4138 | data_param[:,1] = tmet | |
4153 | data_param[:,2] = hmet |
|
4139 | data_param[:,2] = hmet | |
4154 | data_param[:,3] = SNRm[tmet,hmet] |
|
4140 | data_param[:,3] = SNRm[tmet,hmet] | |
4155 | data_param[:,4] = velRad[tmet,hmet] |
|
4141 | data_param[:,4] = velRad[tmet,hmet] | |
4156 | data_param[:,5] = coh[tmet,hmet] |
|
4142 | data_param[:,5] = coh[tmet,hmet] | |
4157 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
4143 | data_param[:,6:] = phase[:,tmet,hmet].T | |
4158 |
|
4144 | |||
4159 | elif mode == 'DBS': |
|
4145 | elif mode == 'DBS': | |
4160 | dataOut.groupList = numpy.arange(nChannels) |
|
4146 | dataOut.groupList = numpy.arange(nChannels) | |
4161 |
|
4147 | |||
4162 | #Radial Velocities |
|
4148 | #Radial Velocities | |
4163 | phase = numpy.angle(data_acf[:,1,:,:]) |
|
4149 | phase = numpy.angle(data_acf[:,1,:,:]) | |
4164 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
4150 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
4165 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
4151 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
4166 |
|
4152 | |||
4167 | #Spectral width |
|
4153 | #Spectral width | |
4168 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
4154 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
4169 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
4155 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
4170 | acf1 = data_acf[:,1,:,:] |
|
4156 | acf1 = data_acf[:,1,:,:] | |
4171 | acf2 = data_acf[:,2,:,:] |
|
4157 | acf2 = data_acf[:,2,:,:] | |
4172 |
|
4158 | |||
4173 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
4159 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
4174 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
4160 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
4175 | if allData: |
|
4161 | if allData: | |
4176 | boolMetFin = ~numpy.isnan(SNRdB) |
|
4162 | boolMetFin = ~numpy.isnan(SNRdB) | |
4177 | else: |
|
4163 | else: | |
4178 | #SNR |
|
4164 | #SNR | |
4179 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
4165 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
4180 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
4166 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
4181 |
|
4167 | |||
4182 | #Radial velocity |
|
4168 | #Radial velocity | |
4183 | boolMet2 = numpy.abs(velRad) < 20 |
|
4169 | boolMet2 = numpy.abs(velRad) < 20 | |
4184 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
4170 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
4185 |
|
4171 | |||
4186 | #Spectral Width |
|
4172 | #Spectral Width | |
4187 | boolMet3 = spcWidth < 30 |
|
4173 | boolMet3 = spcWidth < 30 | |
4188 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
4174 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
4189 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
4175 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
4190 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
4176 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
4191 |
|
4177 | |||
4192 | #Creating data_param |
|
4178 | #Creating data_param | |
4193 | coordMet = numpy.where(boolMetFin) |
|
4179 | coordMet = numpy.where(boolMetFin) | |
4194 |
|
4180 | |||
4195 | cmet = coordMet[0] |
|
4181 | cmet = coordMet[0] | |
4196 | tmet = coordMet[1] |
|
4182 | tmet = coordMet[1] | |
4197 | hmet = coordMet[2] |
|
4183 | hmet = coordMet[2] | |
4198 |
|
4184 | |||
4199 | data_param = numpy.zeros((tmet.size, 7)) |
|
4185 | data_param = numpy.zeros((tmet.size, 7)) | |
4200 | data_param[:,0] = utctime |
|
4186 | data_param[:,0] = utctime | |
4201 | data_param[:,1] = cmet |
|
4187 | data_param[:,1] = cmet | |
4202 | data_param[:,2] = tmet |
|
4188 | data_param[:,2] = tmet | |
4203 | data_param[:,3] = hmet |
|
4189 | data_param[:,3] = hmet | |
4204 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
4190 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
4205 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
4191 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
4206 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
4192 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
4207 |
|
4193 | |||
4208 | # self.dataOut.data_param = data_int |
|
4194 | # self.dataOut.data_param = data_int | |
4209 | if len(data_param) == 0: |
|
4195 | if len(data_param) == 0: | |
4210 | dataOut.flagNoData = True |
|
4196 | dataOut.flagNoData = True | |
4211 | else: |
|
4197 | else: | |
4212 | dataOut.data_param = data_param |
|
4198 | dataOut.data_param = data_param | |
4213 |
|
4199 | |||
4214 | def __erase_small(self, binArray, threshX, threshY): |
|
4200 | def __erase_small(self, binArray, threshX, threshY): | |
4215 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
4201 | labarray, numfeat = ndimage.measurements.label(binArray) | |
4216 | binArray1 = numpy.copy(binArray) |
|
4202 | binArray1 = numpy.copy(binArray) | |
4217 |
|
4203 | |||
4218 | for i in range(1,numfeat + 1): |
|
4204 | for i in range(1,numfeat + 1): | |
4219 | auxBin = (labarray==i) |
|
4205 | auxBin = (labarray==i) | |
4220 | auxSize = auxBin.sum() |
|
4206 | auxSize = auxBin.sum() | |
4221 |
|
4207 | |||
4222 | x,y = numpy.where(auxBin) |
|
4208 | x,y = numpy.where(auxBin) | |
4223 | widthX = x.max() - x.min() |
|
4209 | widthX = x.max() - x.min() | |
4224 | widthY = y.max() - y.min() |
|
4210 | widthY = y.max() - y.min() | |
4225 |
|
4211 | |||
4226 | #width X: 3 seg -> 12.5*3 |
|
4212 | #width X: 3 seg -> 12.5*3 | |
4227 | #width Y: |
|
4213 | #width Y: | |
4228 |
|
4214 | |||
4229 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
4215 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
4230 | binArray1[auxBin] = False |
|
4216 | binArray1[auxBin] = False | |
4231 |
|
4217 | |||
4232 | return binArray1 |
|
4218 | return binArray1 | |
4233 |
|
4219 | |||
4234 | #--------------- Specular Meteor ---------------- |
|
4220 | #--------------- Specular Meteor ---------------- | |
4235 |
|
4221 | |||
4236 | class SMDetection(Operation): |
|
4222 | class SMDetection(Operation): | |
4237 | ''' |
|
4223 | ''' | |
4238 | Function DetectMeteors() |
|
4224 | Function DetectMeteors() | |
4239 | Project developed with paper: |
|
4225 | Project developed with paper: | |
4240 | HOLDSWORTH ET AL. 2004 |
|
4226 | HOLDSWORTH ET AL. 2004 | |
4241 |
|
4227 | |||
4242 | Input: |
|
4228 | Input: | |
4243 | self.dataOut.data_pre |
|
4229 | self.dataOut.data_pre | |
4244 |
|
4230 | |||
4245 | centerReceiverIndex: From the channels, which is the center receiver |
|
4231 | centerReceiverIndex: From the channels, which is the center receiver | |
4246 |
|
4232 | |||
4247 | hei_ref: Height reference for the Beacon signal extraction |
|
4233 | hei_ref: Height reference for the Beacon signal extraction | |
4248 | tauindex: |
|
4234 | tauindex: | |
4249 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
4235 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
4250 |
|
4236 | |||
4251 | cohDetection: Whether to user Coherent detection or not |
|
4237 | cohDetection: Whether to user Coherent detection or not | |
4252 | cohDet_timeStep: Coherent Detection calculation time step |
|
4238 | cohDet_timeStep: Coherent Detection calculation time step | |
4253 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
4239 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
4254 |
|
4240 | |||
4255 | noise_timeStep: Noise calculation time step |
|
4241 | noise_timeStep: Noise calculation time step | |
4256 | noise_multiple: Noise multiple to define signal threshold |
|
4242 | noise_multiple: Noise multiple to define signal threshold | |
4257 |
|
4243 | |||
4258 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
4244 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
4259 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
4245 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
4260 |
|
4246 | |||
4261 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
4247 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
4262 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
4248 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
4263 |
|
4249 | |||
4264 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
4250 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
4265 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
4251 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
4266 | azimuth: Azimuth angle correction |
|
4252 | azimuth: Azimuth angle correction | |
4267 |
|
4253 | |||
4268 | Affected: |
|
4254 | Affected: | |
4269 | self.dataOut.data_param |
|
4255 | self.dataOut.data_param | |
4270 |
|
4256 | |||
4271 | Rejection Criteria (Errors): |
|
4257 | Rejection Criteria (Errors): | |
4272 | 0: No error; analysis OK |
|
4258 | 0: No error; analysis OK | |
4273 | 1: SNR < SNR threshold |
|
4259 | 1: SNR < SNR threshold | |
4274 | 2: angle of arrival (AOA) ambiguously determined |
|
4260 | 2: angle of arrival (AOA) ambiguously determined | |
4275 | 3: AOA estimate not feasible |
|
4261 | 3: AOA estimate not feasible | |
4276 | 4: Large difference in AOAs obtained from different antenna baselines |
|
4262 | 4: Large difference in AOAs obtained from different antenna baselines | |
4277 | 5: echo at start or end of time series |
|
4263 | 5: echo at start or end of time series | |
4278 | 6: echo less than 5 examples long; too short for analysis |
|
4264 | 6: echo less than 5 examples long; too short for analysis | |
4279 | 7: echo rise exceeds 0.3s |
|
4265 | 7: echo rise exceeds 0.3s | |
4280 | 8: echo decay time less than twice rise time |
|
4266 | 8: echo decay time less than twice rise time | |
4281 | 9: large power level before echo |
|
4267 | 9: large power level before echo | |
4282 | 10: large power level after echo |
|
4268 | 10: large power level after echo | |
4283 | 11: poor fit to amplitude for estimation of decay time |
|
4269 | 11: poor fit to amplitude for estimation of decay time | |
4284 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
4270 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
4285 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
4271 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
4286 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
4272 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
4287 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
4273 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
4288 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
4274 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
4289 |
|
4275 | |||
4290 | 17: phase difference in meteor Reestimation |
|
4276 | 17: phase difference in meteor Reestimation | |
4291 |
|
4277 | |||
4292 | Data Storage: |
|
4278 | Data Storage: | |
4293 | Meteors for Wind Estimation (8): |
|
4279 | Meteors for Wind Estimation (8): | |
4294 | Utc Time | Range Height |
|
4280 | Utc Time | Range Height | |
4295 | Azimuth Zenith errorCosDir |
|
4281 | Azimuth Zenith errorCosDir | |
4296 | VelRad errorVelRad |
|
4282 | VelRad errorVelRad | |
4297 | Phase0 Phase1 Phase2 Phase3 |
|
4283 | Phase0 Phase1 Phase2 Phase3 | |
4298 | TypeError |
|
4284 | TypeError | |
4299 |
|
4285 | |||
4300 | ''' |
|
4286 | ''' | |
4301 |
|
4287 | |||
4302 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
4288 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
4303 | phaseOffsets = None, |
|
4289 | phaseOffsets = None, | |
4304 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
4290 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
4305 | noise_timeStep = 4, noise_multiple = 4, |
|
4291 | noise_timeStep = 4, noise_multiple = 4, | |
4306 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
4292 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
4307 | phaseThresh = 20, SNRThresh = 5, |
|
4293 | phaseThresh = 20, SNRThresh = 5, | |
4308 | hmin = 50, hmax=150, azimuth = 0, |
|
4294 | hmin = 50, hmax=150, azimuth = 0, | |
4309 | channelPositions = None) : |
|
4295 | channelPositions = None) : | |
4310 |
|
4296 | |||
4311 |
|
4297 | |||
4312 | #Getting Pairslist |
|
4298 | #Getting Pairslist | |
4313 | if channelPositions is None: |
|
4299 | if channelPositions is None: | |
4314 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
4300 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
4315 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
4301 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
4316 | meteorOps = SMOperations() |
|
4302 | meteorOps = SMOperations() | |
4317 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
4303 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
4318 | heiRang = dataOut.heightList |
|
4304 | heiRang = dataOut.heightList | |
4319 | #Get Beacon signal - No Beacon signal anymore |
|
4305 | #Get Beacon signal - No Beacon signal anymore | |
4320 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
4306 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
4321 | # |
|
4307 | # | |
4322 | # if hei_ref != None: |
|
4308 | # if hei_ref != None: | |
4323 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
4309 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
4324 | # |
|
4310 | # | |
4325 |
|
4311 | |||
4326 |
|
4312 | |||
4327 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
4313 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
4328 | # see if the user put in pre defined phase shifts |
|
4314 | # see if the user put in pre defined phase shifts | |
4329 | voltsPShift = dataOut.data_pre.copy() |
|
4315 | voltsPShift = dataOut.data_pre.copy() | |
4330 |
|
4316 | |||
4331 | # if predefinedPhaseShifts != None: |
|
4317 | # if predefinedPhaseShifts != None: | |
4332 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
4318 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
4333 | # |
|
4319 | # | |
4334 | # # elif beaconPhaseShifts: |
|
4320 | # # elif beaconPhaseShifts: | |
4335 | # # #get hardware phase shifts using beacon signal |
|
4321 | # # #get hardware phase shifts using beacon signal | |
4336 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
4322 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
4337 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
4323 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
4338 | # |
|
4324 | # | |
4339 | # else: |
|
4325 | # else: | |
4340 | # hardwarePhaseShifts = numpy.zeros(5) |
|
4326 | # hardwarePhaseShifts = numpy.zeros(5) | |
4341 | # |
|
4327 | # | |
4342 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
4328 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
4343 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
4329 | # for i in range(self.dataOut.data_pre.shape[0]): | |
4344 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
4330 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
4345 |
|
4331 | |||
4346 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
4332 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
4347 |
|
4333 | |||
4348 | #Remove DC |
|
4334 | #Remove DC | |
4349 | voltsDC = numpy.mean(voltsPShift,1) |
|
4335 | voltsDC = numpy.mean(voltsPShift,1) | |
4350 | voltsDC = numpy.mean(voltsDC,1) |
|
4336 | voltsDC = numpy.mean(voltsDC,1) | |
4351 | for i in range(voltsDC.shape[0]): |
|
4337 | for i in range(voltsDC.shape[0]): | |
4352 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
4338 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
4353 |
|
4339 | |||
4354 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
4340 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
4355 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
4341 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
4356 |
|
4342 | |||
4357 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
4343 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
4358 | #Coherent Detection |
|
4344 | #Coherent Detection | |
4359 | if cohDetection: |
|
4345 | if cohDetection: | |
4360 | #use coherent detection to get the net power |
|
4346 | #use coherent detection to get the net power | |
4361 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
4347 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
4362 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
4348 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
4363 |
|
4349 | |||
4364 | #Non-coherent detection! |
|
4350 | #Non-coherent detection! | |
4365 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
4351 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
4366 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
4352 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
4367 |
|
4353 | |||
4368 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
4354 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
4369 | #Get noise |
|
4355 | #Get noise | |
4370 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
4356 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
4371 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
4357 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
4372 | #Get signal threshold |
|
4358 | #Get signal threshold | |
4373 | signalThresh = noise_multiple*noise |
|
4359 | signalThresh = noise_multiple*noise | |
4374 | #Meteor echoes detection |
|
4360 | #Meteor echoes detection | |
4375 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
4361 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
4376 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
4362 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
4377 |
|
4363 | |||
4378 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
4364 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
4379 | #Parameters |
|
4365 | #Parameters | |
4380 | heiRange = dataOut.heightList |
|
4366 | heiRange = dataOut.heightList | |
4381 | rangeInterval = heiRange[1] - heiRange[0] |
|
4367 | rangeInterval = heiRange[1] - heiRange[0] | |
4382 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
4368 | rangeLimit = multDet_rangeLimit/rangeInterval | |
4383 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
4369 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
4384 | #Multiple detection removals |
|
4370 | #Multiple detection removals | |
4385 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
4371 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
4386 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
4372 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
4387 |
|
4373 | |||
4388 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
4374 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
4389 | #Parameters |
|
4375 | #Parameters | |
4390 | phaseThresh = phaseThresh*numpy.pi/180 |
|
4376 | phaseThresh = phaseThresh*numpy.pi/180 | |
4391 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
4377 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
4392 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
4378 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
4393 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
4379 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
4394 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
4380 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
4395 | #Estimation of decay times (Errors N 7, 8, 11) |
|
4381 | #Estimation of decay times (Errors N 7, 8, 11) | |
4396 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
4382 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
4397 | #******************* END OF METEOR REESTIMATION ******************* |
|
4383 | #******************* END OF METEOR REESTIMATION ******************* | |
4398 |
|
4384 | |||
4399 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
4385 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
4400 | #Calculating Radial Velocity (Error N 15) |
|
4386 | #Calculating Radial Velocity (Error N 15) | |
4401 | radialStdThresh = 10 |
|
4387 | radialStdThresh = 10 | |
4402 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
4388 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
4403 |
|
4389 | |||
4404 | if len(listMeteors4) > 0: |
|
4390 | if len(listMeteors4) > 0: | |
4405 | #Setting New Array |
|
4391 | #Setting New Array | |
4406 | date = dataOut.utctime |
|
4392 | date = dataOut.utctime | |
4407 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
4393 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
4408 |
|
4394 | |||
4409 | #Correcting phase offset |
|
4395 | #Correcting phase offset | |
4410 | if phaseOffsets != None: |
|
4396 | if phaseOffsets != None: | |
4411 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
4397 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
4412 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
4398 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
4413 |
|
4399 | |||
4414 | #Second Pairslist |
|
4400 | #Second Pairslist | |
4415 | pairsList = [] |
|
4401 | pairsList = [] | |
4416 | pairx = (0,1) |
|
4402 | pairx = (0,1) | |
4417 | pairy = (2,3) |
|
4403 | pairy = (2,3) | |
4418 | pairsList.append(pairx) |
|
4404 | pairsList.append(pairx) | |
4419 | pairsList.append(pairy) |
|
4405 | pairsList.append(pairy) | |
4420 |
|
4406 | |||
4421 | jph = numpy.array([0,0,0,0]) |
|
4407 | jph = numpy.array([0,0,0,0]) | |
4422 | h = (hmin,hmax) |
|
4408 | h = (hmin,hmax) | |
4423 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
4409 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
4424 |
|
4410 | |||
4425 | # #Calculate AOA (Error N 3, 4) |
|
4411 | # #Calculate AOA (Error N 3, 4) | |
4426 | # #JONES ET AL. 1998 |
|
4412 | # #JONES ET AL. 1998 | |
4427 | # error = arrayParameters[:,-1] |
|
4413 | # error = arrayParameters[:,-1] | |
4428 | # AOAthresh = numpy.pi/8 |
|
4414 | # AOAthresh = numpy.pi/8 | |
4429 | # phases = -arrayParameters[:,9:13] |
|
4415 | # phases = -arrayParameters[:,9:13] | |
4430 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
4416 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
4431 | # |
|
4417 | # | |
4432 | # #Calculate Heights (Error N 13 and 14) |
|
4418 | # #Calculate Heights (Error N 13 and 14) | |
4433 | # error = arrayParameters[:,-1] |
|
4419 | # error = arrayParameters[:,-1] | |
4434 | # Ranges = arrayParameters[:,2] |
|
4420 | # Ranges = arrayParameters[:,2] | |
4435 | # zenith = arrayParameters[:,5] |
|
4421 | # zenith = arrayParameters[:,5] | |
4436 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
4422 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
4437 | # error = arrayParameters[:,-1] |
|
4423 | # error = arrayParameters[:,-1] | |
4438 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
4424 | #********************* END OF PARAMETERS CALCULATION ************************** | |
4439 |
|
4425 | |||
4440 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
4426 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
4441 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
4427 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
4442 | dataOut.data_param = arrayParameters |
|
4428 | dataOut.data_param = arrayParameters | |
4443 |
|
4429 | |||
4444 | if arrayParameters is None: |
|
4430 | if arrayParameters is None: | |
4445 | dataOut.flagNoData = True |
|
4431 | dataOut.flagNoData = True | |
4446 | else: |
|
4432 | else: | |
4447 | dataOut.flagNoData = True |
|
4433 | dataOut.flagNoData = True | |
4448 |
|
4434 | |||
4449 | return |
|
4435 | return | |
4450 |
|
4436 | |||
4451 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
4437 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
4452 |
|
4438 | |||
4453 | minIndex = min(newheis[0]) |
|
4439 | minIndex = min(newheis[0]) | |
4454 | maxIndex = max(newheis[0]) |
|
4440 | maxIndex = max(newheis[0]) | |
4455 |
|
4441 | |||
4456 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
4442 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
4457 | nLength = voltage.shape[1]/n |
|
4443 | nLength = voltage.shape[1]/n | |
4458 | nMin = 0 |
|
4444 | nMin = 0 | |
4459 | nMax = 0 |
|
4445 | nMax = 0 | |
4460 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
4446 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
4461 |
|
4447 | |||
4462 | for i in range(n): |
|
4448 | for i in range(n): | |
4463 | nMax += nLength |
|
4449 | nMax += nLength | |
4464 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
4450 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
4465 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
4451 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
4466 | phaseOffset[:,i] = phaseCCF.transpose() |
|
4452 | phaseOffset[:,i] = phaseCCF.transpose() | |
4467 | nMin = nMax |
|
4453 | nMin = nMax | |
4468 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
4454 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
4469 |
|
4455 | |||
4470 | #Remove Outliers |
|
4456 | #Remove Outliers | |
4471 | factor = 2 |
|
4457 | factor = 2 | |
4472 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
4458 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
4473 | dw = numpy.std(wt,axis = 1) |
|
4459 | dw = numpy.std(wt,axis = 1) | |
4474 | dw = dw.reshape((dw.size,1)) |
|
4460 | dw = dw.reshape((dw.size,1)) | |
4475 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
4461 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
4476 | phaseOffset[ind] = numpy.nan |
|
4462 | phaseOffset[ind] = numpy.nan | |
4477 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
4463 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
4478 |
|
4464 | |||
4479 | return phaseOffset |
|
4465 | return phaseOffset | |
4480 |
|
4466 | |||
4481 | def __shiftPhase(self, data, phaseShift): |
|
4467 | def __shiftPhase(self, data, phaseShift): | |
4482 | #this will shift the phase of a complex number |
|
4468 | #this will shift the phase of a complex number | |
4483 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
4469 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
4484 | return dataShifted |
|
4470 | return dataShifted | |
4485 |
|
4471 | |||
4486 | def __estimatePhaseDifference(self, array, pairslist): |
|
4472 | def __estimatePhaseDifference(self, array, pairslist): | |
4487 | nChannel = array.shape[0] |
|
4473 | nChannel = array.shape[0] | |
4488 | nHeights = array.shape[2] |
|
4474 | nHeights = array.shape[2] | |
4489 | numPairs = len(pairslist) |
|
4475 | numPairs = len(pairslist) | |
4490 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
4476 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
4491 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
4477 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
4492 |
|
4478 | |||
4493 | #Correct phases |
|
4479 | #Correct phases | |
4494 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
4480 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
4495 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
4481 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
4496 |
|
4482 | |||
4497 | if indDer[0].shape[0] > 0: |
|
4483 | if indDer[0].shape[0] > 0: | |
4498 | for i in range(indDer[0].shape[0]): |
|
4484 | for i in range(indDer[0].shape[0]): | |
4499 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
4485 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
4500 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
4486 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
4501 |
|
4487 | |||
4502 | # for j in range(numSides): |
|
4488 | # for j in range(numSides): | |
4503 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
4489 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
4504 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
4490 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
4505 | # |
|
4491 | # | |
4506 | #Linear |
|
4492 | #Linear | |
4507 | phaseInt = numpy.zeros((numPairs,1)) |
|
4493 | phaseInt = numpy.zeros((numPairs,1)) | |
4508 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
4494 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
4509 | for j in range(numPairs): |
|
4495 | for j in range(numPairs): | |
4510 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
4496 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
4511 | phaseInt[j] = fit[1] |
|
4497 | phaseInt[j] = fit[1] | |
4512 | #Phase Differences |
|
4498 | #Phase Differences | |
4513 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
4499 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
4514 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
4500 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
4515 |
|
4501 | |||
4516 | #Dealias |
|
4502 | #Dealias | |
4517 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
4503 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
4518 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
4504 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
4519 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
4505 | # phaseArrival[indAlias] -= 2*numpy.pi | |
4520 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
4506 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
4521 | # phaseArrival[indAlias] += 2*numpy.pi |
|
4507 | # phaseArrival[indAlias] += 2*numpy.pi | |
4522 |
|
4508 | |||
4523 | return phaseDiff, phaseArrival |
|
4509 | return phaseDiff, phaseArrival | |
4524 |
|
4510 | |||
4525 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
4511 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
4526 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
4512 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
4527 | #find the phase shifts of each channel over 1 second intervals |
|
4513 | #find the phase shifts of each channel over 1 second intervals | |
4528 | #only look at ranges below the beacon signal |
|
4514 | #only look at ranges below the beacon signal | |
4529 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
4515 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
4530 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
4516 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
4531 | numHeights = volts.shape[2] |
|
4517 | numHeights = volts.shape[2] | |
4532 | nChannel = volts.shape[0] |
|
4518 | nChannel = volts.shape[0] | |
4533 | voltsCohDet = volts.copy() |
|
4519 | voltsCohDet = volts.copy() | |
4534 |
|
4520 | |||
4535 | pairsarray = numpy.array(pairslist) |
|
4521 | pairsarray = numpy.array(pairslist) | |
4536 | indSides = pairsarray[:,1] |
|
4522 | indSides = pairsarray[:,1] | |
4537 | # indSides = numpy.array(range(nChannel)) |
|
4523 | # indSides = numpy.array(range(nChannel)) | |
4538 | # indSides = numpy.delete(indSides, indCenter) |
|
4524 | # indSides = numpy.delete(indSides, indCenter) | |
4539 | # |
|
4525 | # | |
4540 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
4526 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
4541 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
4527 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
4542 |
|
4528 | |||
4543 | startInd = 0 |
|
4529 | startInd = 0 | |
4544 | endInd = 0 |
|
4530 | endInd = 0 | |
4545 |
|
4531 | |||
4546 | for i in range(numBlocks): |
|
4532 | for i in range(numBlocks): | |
4547 | startInd = endInd |
|
4533 | startInd = endInd | |
4548 | endInd = endInd + listBlocks[i].shape[1] |
|
4534 | endInd = endInd + listBlocks[i].shape[1] | |
4549 |
|
4535 | |||
4550 | arrayBlock = listBlocks[i] |
|
4536 | arrayBlock = listBlocks[i] | |
4551 | # arrayBlockCenter = listCenter[i] |
|
4537 | # arrayBlockCenter = listCenter[i] | |
4552 |
|
4538 | |||
4553 | #Estimate the Phase Difference |
|
4539 | #Estimate the Phase Difference | |
4554 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
4540 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
4555 | #Phase Difference RMS |
|
4541 | #Phase Difference RMS | |
4556 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
4542 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
4557 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
4543 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
4558 | indPhase = numpy.where(phaseRMSaux==4) |
|
4544 | indPhase = numpy.where(phaseRMSaux==4) | |
4559 | #Shifting |
|
4545 | #Shifting | |
4560 | if indPhase[0].shape[0] > 0: |
|
4546 | if indPhase[0].shape[0] > 0: | |
4561 | for j in range(indSides.size): |
|
4547 | for j in range(indSides.size): | |
4562 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
4548 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
4563 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
4549 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
4564 |
|
4550 | |||
4565 | return voltsCohDet |
|
4551 | return voltsCohDet | |
4566 |
|
4552 | |||
4567 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
4553 | def __calculateCCF(self, volts, pairslist ,laglist): | |
4568 |
|
4554 | |||
4569 | nHeights = volts.shape[2] |
|
4555 | nHeights = volts.shape[2] | |
4570 | nPoints = volts.shape[1] |
|
4556 | nPoints = volts.shape[1] | |
4571 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
4557 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
4572 |
|
4558 | |||
4573 | for i in range(len(pairslist)): |
|
4559 | for i in range(len(pairslist)): | |
4574 | volts1 = volts[pairslist[i][0]] |
|
4560 | volts1 = volts[pairslist[i][0]] | |
4575 | volts2 = volts[pairslist[i][1]] |
|
4561 | volts2 = volts[pairslist[i][1]] | |
4576 |
|
4562 | |||
4577 | for t in range(len(laglist)): |
|
4563 | for t in range(len(laglist)): | |
4578 | idxT = laglist[t] |
|
4564 | idxT = laglist[t] | |
4579 | if idxT >= 0: |
|
4565 | if idxT >= 0: | |
4580 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
4566 | vStacked = numpy.vstack((volts2[idxT:,:], | |
4581 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
4567 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
4582 | else: |
|
4568 | else: | |
4583 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
4569 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
4584 | volts2[:(nPoints + idxT),:])) |
|
4570 | volts2[:(nPoints + idxT),:])) | |
4585 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
4571 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
4586 |
|
4572 | |||
4587 | vStacked = None |
|
4573 | vStacked = None | |
4588 | return voltsCCF |
|
4574 | return voltsCCF | |
4589 |
|
4575 | |||
4590 | def __getNoise(self, power, timeSegment, timeInterval): |
|
4576 | def __getNoise(self, power, timeSegment, timeInterval): | |
4591 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
4577 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
4592 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
4578 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
4593 | numHeights = power.shape[1] |
|
4579 | numHeights = power.shape[1] | |
4594 |
|
4580 | |||
4595 | listPower = numpy.array_split(power, numBlocks, 0) |
|
4581 | listPower = numpy.array_split(power, numBlocks, 0) | |
4596 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
4582 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
4597 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
4583 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
4598 |
|
4584 | |||
4599 | startInd = 0 |
|
4585 | startInd = 0 | |
4600 | endInd = 0 |
|
4586 | endInd = 0 | |
4601 |
|
4587 | |||
4602 | for i in range(numBlocks): #split por canal |
|
4588 | for i in range(numBlocks): #split por canal | |
4603 | startInd = endInd |
|
4589 | startInd = endInd | |
4604 | endInd = endInd + listPower[i].shape[0] |
|
4590 | endInd = endInd + listPower[i].shape[0] | |
4605 |
|
4591 | |||
4606 | arrayBlock = listPower[i] |
|
4592 | arrayBlock = listPower[i] | |
4607 | noiseAux = numpy.mean(arrayBlock, 0) |
|
4593 | noiseAux = numpy.mean(arrayBlock, 0) | |
4608 | # noiseAux = numpy.median(noiseAux) |
|
4594 | # noiseAux = numpy.median(noiseAux) | |
4609 | # noiseAux = numpy.mean(arrayBlock) |
|
4595 | # noiseAux = numpy.mean(arrayBlock) | |
4610 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
4596 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
4611 |
|
4597 | |||
4612 | noiseAux1 = numpy.mean(arrayBlock) |
|
4598 | noiseAux1 = numpy.mean(arrayBlock) | |
4613 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
4599 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
4614 |
|
4600 | |||
4615 | return noise, noise1 |
|
4601 | return noise, noise1 | |
4616 |
|
4602 | |||
4617 | def __findMeteors(self, power, thresh): |
|
4603 | def __findMeteors(self, power, thresh): | |
4618 | nProf = power.shape[0] |
|
4604 | nProf = power.shape[0] | |
4619 | nHeights = power.shape[1] |
|
4605 | nHeights = power.shape[1] | |
4620 | listMeteors = [] |
|
4606 | listMeteors = [] | |
4621 |
|
4607 | |||
4622 | for i in range(nHeights): |
|
4608 | for i in range(nHeights): | |
4623 | powerAux = power[:,i] |
|
4609 | powerAux = power[:,i] | |
4624 | threshAux = thresh[:,i] |
|
4610 | threshAux = thresh[:,i] | |
4625 |
|
4611 | |||
4626 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
4612 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
4627 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
4613 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
4628 |
|
4614 | |||
4629 | j = 0 |
|
4615 | j = 0 | |
4630 |
|
4616 | |||
4631 | while (j < indUPthresh.size - 2): |
|
4617 | while (j < indUPthresh.size - 2): | |
4632 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
4618 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
4633 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
4619 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
4634 | indDNthresh = indDNthresh[indDNAux] |
|
4620 | indDNthresh = indDNthresh[indDNAux] | |
4635 |
|
4621 | |||
4636 | if (indDNthresh.size > 0): |
|
4622 | if (indDNthresh.size > 0): | |
4637 | indEnd = indDNthresh[0] - 1 |
|
4623 | indEnd = indDNthresh[0] - 1 | |
4638 | indInit = indUPthresh[j] |
|
4624 | indInit = indUPthresh[j] | |
4639 |
|
4625 | |||
4640 | meteor = powerAux[indInit:indEnd + 1] |
|
4626 | meteor = powerAux[indInit:indEnd + 1] | |
4641 | indPeak = meteor.argmax() + indInit |
|
4627 | indPeak = meteor.argmax() + indInit | |
4642 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
4628 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
4643 |
|
4629 | |||
4644 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
4630 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
4645 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
4631 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
4646 | else: j+=1 |
|
4632 | else: j+=1 | |
4647 | else: j+=1 |
|
4633 | else: j+=1 | |
4648 |
|
4634 | |||
4649 | return listMeteors |
|
4635 | return listMeteors | |
4650 |
|
4636 | |||
4651 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
4637 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
4652 |
|
4638 | |||
4653 | arrayMeteors = numpy.asarray(listMeteors) |
|
4639 | arrayMeteors = numpy.asarray(listMeteors) | |
4654 | listMeteors1 = [] |
|
4640 | listMeteors1 = [] | |
4655 |
|
4641 | |||
4656 | while arrayMeteors.shape[0] > 0: |
|
4642 | while arrayMeteors.shape[0] > 0: | |
4657 | FLAs = arrayMeteors[:,4] |
|
4643 | FLAs = arrayMeteors[:,4] | |
4658 | maxFLA = FLAs.argmax() |
|
4644 | maxFLA = FLAs.argmax() | |
4659 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
4645 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
4660 |
|
4646 | |||
4661 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
4647 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
4662 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
4648 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
4663 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
4649 | MeteorHeight = arrayMeteors[maxFLA,0] | |
4664 |
|
4650 | |||
4665 | #Check neighborhood |
|
4651 | #Check neighborhood | |
4666 | maxHeightIndex = MeteorHeight + rangeLimit |
|
4652 | maxHeightIndex = MeteorHeight + rangeLimit | |
4667 | minHeightIndex = MeteorHeight - rangeLimit |
|
4653 | minHeightIndex = MeteorHeight - rangeLimit | |
4668 | minTimeIndex = MeteorInitTime - timeLimit |
|
4654 | minTimeIndex = MeteorInitTime - timeLimit | |
4669 | maxTimeIndex = MeteorEndTime + timeLimit |
|
4655 | maxTimeIndex = MeteorEndTime + timeLimit | |
4670 |
|
4656 | |||
4671 | #Check Heights |
|
4657 | #Check Heights | |
4672 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
4658 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
4673 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
4659 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
4674 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
4660 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
4675 |
|
4661 | |||
4676 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
4662 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
4677 |
|
4663 | |||
4678 | return listMeteors1 |
|
4664 | return listMeteors1 | |
4679 |
|
4665 | |||
4680 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
4666 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
4681 | numHeights = volts.shape[2] |
|
4667 | numHeights = volts.shape[2] | |
4682 | nChannel = volts.shape[0] |
|
4668 | nChannel = volts.shape[0] | |
4683 |
|
4669 | |||
4684 | thresholdPhase = thresh[0] |
|
4670 | thresholdPhase = thresh[0] | |
4685 | thresholdNoise = thresh[1] |
|
4671 | thresholdNoise = thresh[1] | |
4686 | thresholdDB = float(thresh[2]) |
|
4672 | thresholdDB = float(thresh[2]) | |
4687 |
|
4673 | |||
4688 | thresholdDB1 = 10**(thresholdDB/10) |
|
4674 | thresholdDB1 = 10**(thresholdDB/10) | |
4689 | pairsarray = numpy.array(pairslist) |
|
4675 | pairsarray = numpy.array(pairslist) | |
4690 | indSides = pairsarray[:,1] |
|
4676 | indSides = pairsarray[:,1] | |
4691 |
|
4677 | |||
4692 | pairslist1 = list(pairslist) |
|
4678 | pairslist1 = list(pairslist) | |
4693 | pairslist1.append((0,1)) |
|
4679 | pairslist1.append((0,1)) | |
4694 | pairslist1.append((3,4)) |
|
4680 | pairslist1.append((3,4)) | |
4695 |
|
4681 | |||
4696 | listMeteors1 = [] |
|
4682 | listMeteors1 = [] | |
4697 | listPowerSeries = [] |
|
4683 | listPowerSeries = [] | |
4698 | listVoltageSeries = [] |
|
4684 | listVoltageSeries = [] | |
4699 | #volts has the war data |
|
4685 | #volts has the war data | |
4700 |
|
4686 | |||
4701 | if frequency == 30e6: |
|
4687 | if frequency == 30e6: | |
4702 | timeLag = 45*10**-3 |
|
4688 | timeLag = 45*10**-3 | |
4703 | else: |
|
4689 | else: | |
4704 | timeLag = 15*10**-3 |
|
4690 | timeLag = 15*10**-3 | |
4705 | lag = numpy.ceil(timeLag/timeInterval) |
|
4691 | lag = numpy.ceil(timeLag/timeInterval) | |
4706 |
|
4692 | |||
4707 | for i in range(len(listMeteors)): |
|
4693 | for i in range(len(listMeteors)): | |
4708 |
|
4694 | |||
4709 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
4695 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
4710 | meteorAux = numpy.zeros(16) |
|
4696 | meteorAux = numpy.zeros(16) | |
4711 |
|
4697 | |||
4712 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
4698 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
4713 | mHeight = listMeteors[i][0] |
|
4699 | mHeight = listMeteors[i][0] | |
4714 | mStart = listMeteors[i][1] |
|
4700 | mStart = listMeteors[i][1] | |
4715 | mPeak = listMeteors[i][2] |
|
4701 | mPeak = listMeteors[i][2] | |
4716 | mEnd = listMeteors[i][3] |
|
4702 | mEnd = listMeteors[i][3] | |
4717 |
|
4703 | |||
4718 | #get the volt data between the start and end times of the meteor |
|
4704 | #get the volt data between the start and end times of the meteor | |
4719 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
4705 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
4720 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
4706 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
4721 |
|
4707 | |||
4722 | #3.6. Phase Difference estimation |
|
4708 | #3.6. Phase Difference estimation | |
4723 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
4709 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
4724 |
|
4710 | |||
4725 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
4711 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
4726 | #meteorVolts0.- all Channels, all Profiles |
|
4712 | #meteorVolts0.- all Channels, all Profiles | |
4727 | meteorVolts0 = volts[:,:,mHeight] |
|
4713 | meteorVolts0 = volts[:,:,mHeight] | |
4728 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
4714 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
4729 | meteorNoise = noise[:,mHeight] |
|
4715 | meteorNoise = noise[:,mHeight] | |
4730 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
4716 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
4731 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
4717 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
4732 |
|
4718 | |||
4733 | #Times reestimation |
|
4719 | #Times reestimation | |
4734 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
4720 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
4735 | if mStart1.size > 0: |
|
4721 | if mStart1.size > 0: | |
4736 | mStart1 = mStart1[-1] + 1 |
|
4722 | mStart1 = mStart1[-1] + 1 | |
4737 |
|
4723 | |||
4738 | else: |
|
4724 | else: | |
4739 | mStart1 = mPeak |
|
4725 | mStart1 = mPeak | |
4740 |
|
4726 | |||
4741 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
4727 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
4742 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
4728 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
4743 | if mEndDecayTime1.size == 0: |
|
4729 | if mEndDecayTime1.size == 0: | |
4744 | mEndDecayTime1 = powerNet0.size |
|
4730 | mEndDecayTime1 = powerNet0.size | |
4745 | else: |
|
4731 | else: | |
4746 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
4732 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
4747 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
4733 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
4748 |
|
4734 | |||
4749 | #meteorVolts1.- all Channels, from start to end |
|
4735 | #meteorVolts1.- all Channels, from start to end | |
4750 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
4736 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
4751 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
4737 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
4752 | if meteorVolts2.shape[1] == 0: |
|
4738 | if meteorVolts2.shape[1] == 0: | |
4753 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
4739 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
4754 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
4740 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
4755 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
4741 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
4756 | ##################### END PARAMETERS REESTIMATION ######################### |
|
4742 | ##################### END PARAMETERS REESTIMATION ######################### | |
4757 |
|
4743 | |||
4758 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
4744 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
4759 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
4745 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
4760 | if meteorVolts2.shape[1] > 0: |
|
4746 | if meteorVolts2.shape[1] > 0: | |
4761 | #Phase Difference re-estimation |
|
4747 | #Phase Difference re-estimation | |
4762 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
4748 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
4763 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
4749 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
4764 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
4750 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
4765 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
4751 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
4766 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
4752 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
4767 |
|
4753 | |||
4768 | #Phase Difference RMS |
|
4754 | #Phase Difference RMS | |
4769 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
4755 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
4770 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
4756 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
4771 | #Data from Meteor |
|
4757 | #Data from Meteor | |
4772 | mPeak1 = powerNet1.argmax() + mStart1 |
|
4758 | mPeak1 = powerNet1.argmax() + mStart1 | |
4773 | mPeakPower1 = powerNet1.max() |
|
4759 | mPeakPower1 = powerNet1.max() | |
4774 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
4760 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
4775 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
4761 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
4776 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
4762 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
4777 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
4763 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
4778 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
4764 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
4779 | #Vectorize |
|
4765 | #Vectorize | |
4780 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
4766 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
4781 | meteorAux[7:11] = phaseDiffint[0:4] |
|
4767 | meteorAux[7:11] = phaseDiffint[0:4] | |
4782 |
|
4768 | |||
4783 | #Rejection Criterions |
|
4769 | #Rejection Criterions | |
4784 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
4770 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
4785 | meteorAux[-1] = 17 |
|
4771 | meteorAux[-1] = 17 | |
4786 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
4772 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
4787 | meteorAux[-1] = 1 |
|
4773 | meteorAux[-1] = 1 | |
4788 |
|
4774 | |||
4789 |
|
4775 | |||
4790 | else: |
|
4776 | else: | |
4791 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
4777 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
4792 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
4778 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
4793 | PowerSeries = 0 |
|
4779 | PowerSeries = 0 | |
4794 |
|
4780 | |||
4795 | listMeteors1.append(meteorAux) |
|
4781 | listMeteors1.append(meteorAux) | |
4796 | listPowerSeries.append(PowerSeries) |
|
4782 | listPowerSeries.append(PowerSeries) | |
4797 | listVoltageSeries.append(meteorVolts1) |
|
4783 | listVoltageSeries.append(meteorVolts1) | |
4798 |
|
4784 | |||
4799 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
4785 | return listMeteors1, listPowerSeries, listVoltageSeries | |
4800 |
|
4786 | |||
4801 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
4787 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
4802 |
|
4788 | |||
4803 | threshError = 10 |
|
4789 | threshError = 10 | |
4804 | #Depending if it is 30 or 50 MHz |
|
4790 | #Depending if it is 30 or 50 MHz | |
4805 | if frequency == 30e6: |
|
4791 | if frequency == 30e6: | |
4806 | timeLag = 45*10**-3 |
|
4792 | timeLag = 45*10**-3 | |
4807 | else: |
|
4793 | else: | |
4808 | timeLag = 15*10**-3 |
|
4794 | timeLag = 15*10**-3 | |
4809 | lag = numpy.ceil(timeLag/timeInterval) |
|
4795 | lag = numpy.ceil(timeLag/timeInterval) | |
4810 |
|
4796 | |||
4811 | listMeteors1 = [] |
|
4797 | listMeteors1 = [] | |
4812 |
|
4798 | |||
4813 | for i in range(len(listMeteors)): |
|
4799 | for i in range(len(listMeteors)): | |
4814 | meteorPower = listPower[i] |
|
4800 | meteorPower = listPower[i] | |
4815 | meteorAux = listMeteors[i] |
|
4801 | meteorAux = listMeteors[i] | |
4816 |
|
4802 | |||
4817 | if meteorAux[-1] == 0: |
|
4803 | if meteorAux[-1] == 0: | |
4818 |
|
4804 | |||
4819 | try: |
|
4805 | try: | |
4820 | indmax = meteorPower.argmax() |
|
4806 | indmax = meteorPower.argmax() | |
4821 | indlag = indmax + lag |
|
4807 | indlag = indmax + lag | |
4822 |
|
4808 | |||
4823 | y = meteorPower[indlag:] |
|
4809 | y = meteorPower[indlag:] | |
4824 | x = numpy.arange(0, y.size)*timeLag |
|
4810 | x = numpy.arange(0, y.size)*timeLag | |
4825 |
|
4811 | |||
4826 | #first guess |
|
4812 | #first guess | |
4827 | a = y[0] |
|
4813 | a = y[0] | |
4828 | tau = timeLag |
|
4814 | tau = timeLag | |
4829 | #exponential fit |
|
4815 | #exponential fit | |
4830 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
4816 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
4831 | y1 = self.__exponential_function(x, *popt) |
|
4817 | y1 = self.__exponential_function(x, *popt) | |
4832 | #error estimation |
|
4818 | #error estimation | |
4833 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
4819 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
4834 |
|
4820 | |||
4835 | decayTime = popt[1] |
|
4821 | decayTime = popt[1] | |
4836 | riseTime = indmax*timeInterval |
|
4822 | riseTime = indmax*timeInterval | |
4837 | meteorAux[11:13] = [decayTime, error] |
|
4823 | meteorAux[11:13] = [decayTime, error] | |
4838 |
|
4824 | |||
4839 | #Table items 7, 8 and 11 |
|
4825 | #Table items 7, 8 and 11 | |
4840 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
4826 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
4841 | meteorAux[-1] = 7 |
|
4827 | meteorAux[-1] = 7 | |
4842 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
4828 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
4843 | meteorAux[-1] = 8 |
|
4829 | meteorAux[-1] = 8 | |
4844 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
4830 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
4845 | meteorAux[-1] = 11 |
|
4831 | meteorAux[-1] = 11 | |
4846 |
|
4832 | |||
4847 |
|
4833 | |||
4848 | except: |
|
4834 | except: | |
4849 | meteorAux[-1] = 11 |
|
4835 | meteorAux[-1] = 11 | |
4850 |
|
4836 | |||
4851 |
|
4837 | |||
4852 | listMeteors1.append(meteorAux) |
|
4838 | listMeteors1.append(meteorAux) | |
4853 |
|
4839 | |||
4854 | return listMeteors1 |
|
4840 | return listMeteors1 | |
4855 |
|
4841 | |||
4856 | #Exponential Function |
|
4842 | #Exponential Function | |
4857 |
|
4843 | |||
4858 | def __exponential_function(self, x, a, tau): |
|
4844 | def __exponential_function(self, x, a, tau): | |
4859 | y = a*numpy.exp(-x/tau) |
|
4845 | y = a*numpy.exp(-x/tau) | |
4860 | return y |
|
4846 | return y | |
4861 |
|
4847 | |||
4862 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
4848 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
4863 |
|
4849 | |||
4864 | pairslist1 = list(pairslist) |
|
4850 | pairslist1 = list(pairslist) | |
4865 | pairslist1.append((0,1)) |
|
4851 | pairslist1.append((0,1)) | |
4866 | pairslist1.append((3,4)) |
|
4852 | pairslist1.append((3,4)) | |
4867 | numPairs = len(pairslist1) |
|
4853 | numPairs = len(pairslist1) | |
4868 | #Time Lag |
|
4854 | #Time Lag | |
4869 | timeLag = 45*10**-3 |
|
4855 | timeLag = 45*10**-3 | |
4870 | c = 3e8 |
|
4856 | c = 3e8 | |
4871 | lag = numpy.ceil(timeLag/timeInterval) |
|
4857 | lag = numpy.ceil(timeLag/timeInterval) | |
4872 | freq = 30e6 |
|
4858 | freq = 30e6 | |
4873 |
|
4859 | |||
4874 | listMeteors1 = [] |
|
4860 | listMeteors1 = [] | |
4875 |
|
4861 | |||
4876 | for i in range(len(listMeteors)): |
|
4862 | for i in range(len(listMeteors)): | |
4877 | meteorAux = listMeteors[i] |
|
4863 | meteorAux = listMeteors[i] | |
4878 | if meteorAux[-1] == 0: |
|
4864 | if meteorAux[-1] == 0: | |
4879 | mStart = listMeteors[i][1] |
|
4865 | mStart = listMeteors[i][1] | |
4880 | mPeak = listMeteors[i][2] |
|
4866 | mPeak = listMeteors[i][2] | |
4881 | mLag = mPeak - mStart + lag |
|
4867 | mLag = mPeak - mStart + lag | |
4882 |
|
4868 | |||
4883 | #get the volt data between the start and end times of the meteor |
|
4869 | #get the volt data between the start and end times of the meteor | |
4884 | meteorVolts = listVolts[i] |
|
4870 | meteorVolts = listVolts[i] | |
4885 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
4871 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
4886 |
|
4872 | |||
4887 | #Get CCF |
|
4873 | #Get CCF | |
4888 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
4874 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
4889 |
|
4875 | |||
4890 | #Method 2 |
|
4876 | #Method 2 | |
4891 | slopes = numpy.zeros(numPairs) |
|
4877 | slopes = numpy.zeros(numPairs) | |
4892 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
4878 | time = numpy.array([-2,-1,1,2])*timeInterval | |
4893 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
4879 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
4894 |
|
4880 | |||
4895 | #Correct phases |
|
4881 | #Correct phases | |
4896 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
4882 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
4897 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
4883 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
4898 |
|
4884 | |||
4899 | if indDer[0].shape[0] > 0: |
|
4885 | if indDer[0].shape[0] > 0: | |
4900 | for i in range(indDer[0].shape[0]): |
|
4886 | for i in range(indDer[0].shape[0]): | |
4901 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
4887 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
4902 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
4888 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
4903 |
|
4889 | |||
4904 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
4890 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
4905 | for j in range(numPairs): |
|
4891 | for j in range(numPairs): | |
4906 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
4892 | fit = stats.linregress(time, angAllCCF[j,:]) | |
4907 | slopes[j] = fit[0] |
|
4893 | slopes[j] = fit[0] | |
4908 |
|
4894 | |||
4909 | #Remove Outlier |
|
4895 | #Remove Outlier | |
4910 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
4896 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
4911 | # slopes = numpy.delete(slopes,indOut) |
|
4897 | # slopes = numpy.delete(slopes,indOut) | |
4912 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
4898 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
4913 | # slopes = numpy.delete(slopes,indOut) |
|
4899 | # slopes = numpy.delete(slopes,indOut) | |
4914 |
|
4900 | |||
4915 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
4901 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
4916 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
4902 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
4917 | meteorAux[-2] = radialError |
|
4903 | meteorAux[-2] = radialError | |
4918 | meteorAux[-3] = radialVelocity |
|
4904 | meteorAux[-3] = radialVelocity | |
4919 |
|
4905 | |||
4920 | #Setting Error |
|
4906 | #Setting Error | |
4921 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
4907 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
4922 | if numpy.abs(radialVelocity) > 200: |
|
4908 | if numpy.abs(radialVelocity) > 200: | |
4923 | meteorAux[-1] = 15 |
|
4909 | meteorAux[-1] = 15 | |
4924 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
4910 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
4925 | elif radialError > radialStdThresh: |
|
4911 | elif radialError > radialStdThresh: | |
4926 | meteorAux[-1] = 12 |
|
4912 | meteorAux[-1] = 12 | |
4927 |
|
4913 | |||
4928 | listMeteors1.append(meteorAux) |
|
4914 | listMeteors1.append(meteorAux) | |
4929 | return listMeteors1 |
|
4915 | return listMeteors1 | |
4930 |
|
4916 | |||
4931 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
4917 | def __setNewArrays(self, listMeteors, date, heiRang): | |
4932 |
|
4918 | |||
4933 | #New arrays |
|
4919 | #New arrays | |
4934 | arrayMeteors = numpy.array(listMeteors) |
|
4920 | arrayMeteors = numpy.array(listMeteors) | |
4935 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
4921 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
4936 |
|
4922 | |||
4937 | #Date inclusion |
|
4923 | #Date inclusion | |
4938 | # date = re.findall(r'\((.*?)\)', date) |
|
4924 | # date = re.findall(r'\((.*?)\)', date) | |
4939 | # date = date[0].split(',') |
|
4925 | # date = date[0].split(',') | |
4940 | # date = map(int, date) |
|
4926 | # date = map(int, date) | |
4941 | # |
|
4927 | # | |
4942 | # if len(date)<6: |
|
4928 | # if len(date)<6: | |
4943 | # date.append(0) |
|
4929 | # date.append(0) | |
4944 | # |
|
4930 | # | |
4945 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
4931 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
4946 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
4932 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
4947 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
4933 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
4948 |
|
4934 | |||
4949 | #Meteor array |
|
4935 | #Meteor array | |
4950 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
4936 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
4951 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
4937 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
4952 |
|
4938 | |||
4953 | #Parameters Array |
|
4939 | #Parameters Array | |
4954 | arrayParameters[:,0] = arrayDate #Date |
|
4940 | arrayParameters[:,0] = arrayDate #Date | |
4955 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
4941 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
4956 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
4942 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
4957 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
4943 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
4958 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
4944 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
4959 |
|
4945 | |||
4960 |
|
4946 | |||
4961 | return arrayParameters |
|
4947 | return arrayParameters | |
4962 |
|
4948 | |||
4963 | class CorrectSMPhases(Operation): |
|
4949 | class CorrectSMPhases(Operation): | |
4964 |
|
4950 | |||
4965 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
4951 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
4966 |
|
4952 | |||
4967 | arrayParameters = dataOut.data_param |
|
4953 | arrayParameters = dataOut.data_param | |
4968 | pairsList = [] |
|
4954 | pairsList = [] | |
4969 | pairx = (0,1) |
|
4955 | pairx = (0,1) | |
4970 | pairy = (2,3) |
|
4956 | pairy = (2,3) | |
4971 | pairsList.append(pairx) |
|
4957 | pairsList.append(pairx) | |
4972 | pairsList.append(pairy) |
|
4958 | pairsList.append(pairy) | |
4973 | jph = numpy.zeros(4) |
|
4959 | jph = numpy.zeros(4) | |
4974 |
|
4960 | |||
4975 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
4961 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
4976 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
4962 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
4977 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
4963 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
4978 |
|
4964 | |||
4979 | meteorOps = SMOperations() |
|
4965 | meteorOps = SMOperations() | |
4980 | if channelPositions is None: |
|
4966 | if channelPositions is None: | |
4981 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
4967 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
4982 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
4968 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
4983 |
|
4969 | |||
4984 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
4970 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
4985 | h = (hmin,hmax) |
|
4971 | h = (hmin,hmax) | |
4986 |
|
4972 | |||
4987 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
4973 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
4988 |
|
4974 | |||
4989 | dataOut.data_param = arrayParameters |
|
4975 | dataOut.data_param = arrayParameters | |
4990 | return |
|
4976 | return | |
4991 |
|
4977 | |||
4992 | class SMPhaseCalibration(Operation): |
|
4978 | class SMPhaseCalibration(Operation): | |
4993 |
|
4979 | |||
4994 | __buffer = None |
|
4980 | __buffer = None | |
4995 |
|
4981 | |||
4996 | __initime = None |
|
4982 | __initime = None | |
4997 |
|
4983 | |||
4998 | __dataReady = False |
|
4984 | __dataReady = False | |
4999 |
|
4985 | |||
5000 | __isConfig = False |
|
4986 | __isConfig = False | |
5001 |
|
4987 | |||
5002 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
4988 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
5003 |
|
4989 | |||
5004 | dataTime = currentTime + paramInterval |
|
4990 | dataTime = currentTime + paramInterval | |
5005 | deltaTime = dataTime - initTime |
|
4991 | deltaTime = dataTime - initTime | |
5006 |
|
4992 | |||
5007 | if deltaTime >= outputInterval or deltaTime < 0: |
|
4993 | if deltaTime >= outputInterval or deltaTime < 0: | |
5008 | return True |
|
4994 | return True | |
5009 |
|
4995 | |||
5010 | return False |
|
4996 | return False | |
5011 |
|
4997 | |||
5012 | def __getGammas(self, pairs, d, phases): |
|
4998 | def __getGammas(self, pairs, d, phases): | |
5013 | gammas = numpy.zeros(2) |
|
4999 | gammas = numpy.zeros(2) | |
5014 |
|
5000 | |||
5015 | for i in range(len(pairs)): |
|
5001 | for i in range(len(pairs)): | |
5016 |
|
5002 | |||
5017 | pairi = pairs[i] |
|
5003 | pairi = pairs[i] | |
5018 |
|
5004 | |||
5019 | phip3 = phases[:,pairi[0]] |
|
5005 | phip3 = phases[:,pairi[0]] | |
5020 | d3 = d[pairi[0]] |
|
5006 | d3 = d[pairi[0]] | |
5021 | phip2 = phases[:,pairi[1]] |
|
5007 | phip2 = phases[:,pairi[1]] | |
5022 | d2 = d[pairi[1]] |
|
5008 | d2 = d[pairi[1]] | |
5023 | #Calculating gamma |
|
5009 | #Calculating gamma | |
5024 | # jdcos = alp1/(k*d1) |
|
5010 | # jdcos = alp1/(k*d1) | |
5025 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
5011 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
5026 | jgamma = -phip2*d3/d2 - phip3 |
|
5012 | jgamma = -phip2*d3/d2 - phip3 | |
5027 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
5013 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
5028 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
5014 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
5029 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
5015 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
5030 |
|
5016 | |||
5031 | #Revised distribution |
|
5017 | #Revised distribution | |
5032 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
5018 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
5033 |
|
5019 | |||
5034 | #Histogram |
|
5020 | #Histogram | |
5035 | nBins = 64 |
|
5021 | nBins = 64 | |
5036 | rmin = -0.5*numpy.pi |
|
5022 | rmin = -0.5*numpy.pi | |
5037 | rmax = 0.5*numpy.pi |
|
5023 | rmax = 0.5*numpy.pi | |
5038 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
5024 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
5039 |
|
5025 | |||
5040 | meteorsY = phaseHisto[0] |
|
5026 | meteorsY = phaseHisto[0] | |
5041 | phasesX = phaseHisto[1][:-1] |
|
5027 | phasesX = phaseHisto[1][:-1] | |
5042 | width = phasesX[1] - phasesX[0] |
|
5028 | width = phasesX[1] - phasesX[0] | |
5043 | phasesX += width/2 |
|
5029 | phasesX += width/2 | |
5044 |
|
5030 | |||
5045 | #Gaussian aproximation |
|
5031 | #Gaussian aproximation | |
5046 | bpeak = meteorsY.argmax() |
|
5032 | bpeak = meteorsY.argmax() | |
5047 | peak = meteorsY.max() |
|
5033 | peak = meteorsY.max() | |
5048 | jmin = bpeak - 5 |
|
5034 | jmin = bpeak - 5 | |
5049 | jmax = bpeak + 5 + 1 |
|
5035 | jmax = bpeak + 5 + 1 | |
5050 |
|
5036 | |||
5051 | if jmin<0: |
|
5037 | if jmin<0: | |
5052 | jmin = 0 |
|
5038 | jmin = 0 | |
5053 | jmax = 6 |
|
5039 | jmax = 6 | |
5054 | elif jmax > meteorsY.size: |
|
5040 | elif jmax > meteorsY.size: | |
5055 | jmin = meteorsY.size - 6 |
|
5041 | jmin = meteorsY.size - 6 | |
5056 | jmax = meteorsY.size |
|
5042 | jmax = meteorsY.size | |
5057 |
|
5043 | |||
5058 | x0 = numpy.array([peak,bpeak,50]) |
|
5044 | x0 = numpy.array([peak,bpeak,50]) | |
5059 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
5045 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
5060 |
|
5046 | |||
5061 | #Gammas |
|
5047 | #Gammas | |
5062 | gammas[i] = coeff[0][1] |
|
5048 | gammas[i] = coeff[0][1] | |
5063 |
|
5049 | |||
5064 | return gammas |
|
5050 | return gammas | |
5065 |
|
5051 | |||
5066 | def __residualFunction(self, coeffs, y, t): |
|
5052 | def __residualFunction(self, coeffs, y, t): | |
5067 |
|
5053 | |||
5068 | return y - self.__gauss_function(t, coeffs) |
|
5054 | return y - self.__gauss_function(t, coeffs) | |
5069 |
|
5055 | |||
5070 | def __gauss_function(self, t, coeffs): |
|
5056 | def __gauss_function(self, t, coeffs): | |
5071 |
|
5057 | |||
5072 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
5058 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
5073 |
|
5059 | |||
5074 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
5060 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
5075 | meteorOps = SMOperations() |
|
5061 | meteorOps = SMOperations() | |
5076 | nchan = 4 |
|
5062 | nchan = 4 | |
5077 | pairx = pairsList[0] #x es 0 |
|
5063 | pairx = pairsList[0] #x es 0 | |
5078 | pairy = pairsList[1] #y es 1 |
|
5064 | pairy = pairsList[1] #y es 1 | |
5079 | center_xangle = 0 |
|
5065 | center_xangle = 0 | |
5080 | center_yangle = 0 |
|
5066 | center_yangle = 0 | |
5081 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
5067 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
5082 | ntimes = len(range_angle) |
|
5068 | ntimes = len(range_angle) | |
5083 |
|
5069 | |||
5084 | nstepsx = 20 |
|
5070 | nstepsx = 20 | |
5085 | nstepsy = 20 |
|
5071 | nstepsy = 20 | |
5086 |
|
5072 | |||
5087 | for iz in range(ntimes): |
|
5073 | for iz in range(ntimes): | |
5088 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
5074 | min_xangle = -range_angle[iz]/2 + center_xangle | |
5089 | max_xangle = range_angle[iz]/2 + center_xangle |
|
5075 | max_xangle = range_angle[iz]/2 + center_xangle | |
5090 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
5076 | min_yangle = -range_angle[iz]/2 + center_yangle | |
5091 | max_yangle = range_angle[iz]/2 + center_yangle |
|
5077 | max_yangle = range_angle[iz]/2 + center_yangle | |
5092 |
|
5078 | |||
5093 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
5079 | inc_x = (max_xangle-min_xangle)/nstepsx | |
5094 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
5080 | inc_y = (max_yangle-min_yangle)/nstepsy | |
5095 |
|
5081 | |||
5096 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
5082 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
5097 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
5083 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
5098 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
5084 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
5099 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
5085 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
5100 | jph = numpy.zeros(nchan) |
|
5086 | jph = numpy.zeros(nchan) | |
5101 |
|
5087 | |||
5102 | # Iterations looking for the offset |
|
5088 | # Iterations looking for the offset | |
5103 | for iy in range(int(nstepsy)): |
|
5089 | for iy in range(int(nstepsy)): | |
5104 | for ix in range(int(nstepsx)): |
|
5090 | for ix in range(int(nstepsx)): | |
5105 | d3 = d[pairsList[1][0]] |
|
5091 | d3 = d[pairsList[1][0]] | |
5106 | d2 = d[pairsList[1][1]] |
|
5092 | d2 = d[pairsList[1][1]] | |
5107 | d5 = d[pairsList[0][0]] |
|
5093 | d5 = d[pairsList[0][0]] | |
5108 | d4 = d[pairsList[0][1]] |
|
5094 | d4 = d[pairsList[0][1]] | |
5109 |
|
5095 | |||
5110 | alp2 = alpha_y[iy] #gamma 1 |
|
5096 | alp2 = alpha_y[iy] #gamma 1 | |
5111 | alp4 = alpha_x[ix] #gamma 0 |
|
5097 | alp4 = alpha_x[ix] #gamma 0 | |
5112 |
|
5098 | |||
5113 | alp3 = -alp2*d3/d2 - gammas[1] |
|
5099 | alp3 = -alp2*d3/d2 - gammas[1] | |
5114 | alp5 = -alp4*d5/d4 - gammas[0] |
|
5100 | alp5 = -alp4*d5/d4 - gammas[0] | |
5115 | # jph[pairy[1]] = alpha_y[iy] |
|
5101 | # jph[pairy[1]] = alpha_y[iy] | |
5116 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
5102 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
5117 |
|
5103 | |||
5118 | # jph[pairx[1]] = alpha_x[ix] |
|
5104 | # jph[pairx[1]] = alpha_x[ix] | |
5119 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
5105 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
5120 | jph[pairsList[0][1]] = alp4 |
|
5106 | jph[pairsList[0][1]] = alp4 | |
5121 | jph[pairsList[0][0]] = alp5 |
|
5107 | jph[pairsList[0][0]] = alp5 | |
5122 | jph[pairsList[1][0]] = alp3 |
|
5108 | jph[pairsList[1][0]] = alp3 | |
5123 | jph[pairsList[1][1]] = alp2 |
|
5109 | jph[pairsList[1][1]] = alp2 | |
5124 | jph_array[:,ix,iy] = jph |
|
5110 | jph_array[:,ix,iy] = jph | |
5125 | # d = [2.0,2.5,2.5,2.0] |
|
5111 | # d = [2.0,2.5,2.5,2.0] | |
5126 | #falta chequear si va a leer bien los meteoros |
|
5112 | #falta chequear si va a leer bien los meteoros | |
5127 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
5113 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
5128 | error = meteorsArray1[:,-1] |
|
5114 | error = meteorsArray1[:,-1] | |
5129 | ind1 = numpy.where(error==0)[0] |
|
5115 | ind1 = numpy.where(error==0)[0] | |
5130 | penalty[ix,iy] = ind1.size |
|
5116 | penalty[ix,iy] = ind1.size | |
5131 |
|
5117 | |||
5132 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
5118 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
5133 | phOffset = jph_array[:,i,j] |
|
5119 | phOffset = jph_array[:,i,j] | |
5134 |
|
5120 | |||
5135 | center_xangle = phOffset[pairx[1]] |
|
5121 | center_xangle = phOffset[pairx[1]] | |
5136 | center_yangle = phOffset[pairy[1]] |
|
5122 | center_yangle = phOffset[pairy[1]] | |
5137 |
|
5123 | |||
5138 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
5124 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
5139 | phOffset = phOffset*180/numpy.pi |
|
5125 | phOffset = phOffset*180/numpy.pi | |
5140 | return phOffset |
|
5126 | return phOffset | |
5141 |
|
5127 | |||
5142 |
|
5128 | |||
5143 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
5129 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
5144 |
|
5130 | |||
5145 | dataOut.flagNoData = True |
|
5131 | dataOut.flagNoData = True | |
5146 | self.__dataReady = False |
|
5132 | self.__dataReady = False | |
5147 | dataOut.outputInterval = nHours*3600 |
|
5133 | dataOut.outputInterval = nHours*3600 | |
5148 |
|
5134 | |||
5149 | if self.__isConfig == False: |
|
5135 | if self.__isConfig == False: | |
5150 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
5136 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
5151 | #Get Initial LTC time |
|
5137 | #Get Initial LTC time | |
5152 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
5138 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
5153 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
5139 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
5154 |
|
5140 | |||
5155 | self.__isConfig = True |
|
5141 | self.__isConfig = True | |
5156 |
|
5142 | |||
5157 | if self.__buffer is None: |
|
5143 | if self.__buffer is None: | |
5158 | self.__buffer = dataOut.data_param.copy() |
|
5144 | self.__buffer = dataOut.data_param.copy() | |
5159 |
|
5145 | |||
5160 | else: |
|
5146 | else: | |
5161 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
5147 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
5162 |
|
5148 | |||
5163 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
5149 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
5164 |
|
5150 | |||
5165 | if self.__dataReady: |
|
5151 | if self.__dataReady: | |
5166 | dataOut.utctimeInit = self.__initime |
|
5152 | dataOut.utctimeInit = self.__initime | |
5167 | self.__initime += dataOut.outputInterval #to erase time offset |
|
5153 | self.__initime += dataOut.outputInterval #to erase time offset | |
5168 |
|
5154 | |||
5169 | freq = dataOut.frequency |
|
5155 | freq = dataOut.frequency | |
5170 | c = dataOut.C #m/s |
|
5156 | c = dataOut.C #m/s | |
5171 | lamb = c/freq |
|
5157 | lamb = c/freq | |
5172 | k = 2*numpy.pi/lamb |
|
5158 | k = 2*numpy.pi/lamb | |
5173 | azimuth = 0 |
|
5159 | azimuth = 0 | |
5174 | h = (hmin, hmax) |
|
5160 | h = (hmin, hmax) | |
5175 | # pairs = ((0,1),(2,3)) #Estrella |
|
5161 | # pairs = ((0,1),(2,3)) #Estrella | |
5176 | # pairs = ((1,0),(2,3)) #T |
|
5162 | # pairs = ((1,0),(2,3)) #T | |
5177 |
|
5163 | |||
5178 | if channelPositions is None: |
|
5164 | if channelPositions is None: | |
5179 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
5165 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
5180 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
5166 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
5181 | meteorOps = SMOperations() |
|
5167 | meteorOps = SMOperations() | |
5182 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
5168 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
5183 |
|
5169 | |||
5184 | #Checking correct order of pairs |
|
5170 | #Checking correct order of pairs | |
5185 | pairs = [] |
|
5171 | pairs = [] | |
5186 | if distances[1] > distances[0]: |
|
5172 | if distances[1] > distances[0]: | |
5187 | pairs.append((1,0)) |
|
5173 | pairs.append((1,0)) | |
5188 | else: |
|
5174 | else: | |
5189 | pairs.append((0,1)) |
|
5175 | pairs.append((0,1)) | |
5190 |
|
5176 | |||
5191 | if distances[3] > distances[2]: |
|
5177 | if distances[3] > distances[2]: | |
5192 | pairs.append((3,2)) |
|
5178 | pairs.append((3,2)) | |
5193 | else: |
|
5179 | else: | |
5194 | pairs.append((2,3)) |
|
5180 | pairs.append((2,3)) | |
5195 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
5181 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
5196 |
|
5182 | |||
5197 | meteorsArray = self.__buffer |
|
5183 | meteorsArray = self.__buffer | |
5198 | error = meteorsArray[:,-1] |
|
5184 | error = meteorsArray[:,-1] | |
5199 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
5185 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
5200 | ind1 = numpy.where(boolError)[0] |
|
5186 | ind1 = numpy.where(boolError)[0] | |
5201 | meteorsArray = meteorsArray[ind1,:] |
|
5187 | meteorsArray = meteorsArray[ind1,:] | |
5202 | meteorsArray[:,-1] = 0 |
|
5188 | meteorsArray[:,-1] = 0 | |
5203 | phases = meteorsArray[:,8:12] |
|
5189 | phases = meteorsArray[:,8:12] | |
5204 |
|
5190 | |||
5205 | #Calculate Gammas |
|
5191 | #Calculate Gammas | |
5206 | gammas = self.__getGammas(pairs, distances, phases) |
|
5192 | gammas = self.__getGammas(pairs, distances, phases) | |
5207 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
5193 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
5208 | #Calculate Phases |
|
5194 | #Calculate Phases | |
5209 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
5195 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
5210 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
5196 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
5211 | dataOut.data_output = -phasesOff |
|
5197 | dataOut.data_output = -phasesOff | |
5212 | dataOut.flagNoData = False |
|
5198 | dataOut.flagNoData = False | |
5213 | self.__buffer = None |
|
5199 | self.__buffer = None | |
5214 |
|
5200 | |||
5215 |
|
5201 | |||
5216 | return |
|
5202 | return | |
5217 |
|
5203 | |||
5218 | class SMOperations(): |
|
5204 | class SMOperations(): | |
5219 |
|
5205 | |||
5220 | def __init__(self): |
|
5206 | def __init__(self): | |
5221 |
|
5207 | |||
5222 | return |
|
5208 | return | |
5223 |
|
5209 | |||
5224 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
5210 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
5225 |
|
5211 | |||
5226 | arrayParameters = arrayParameters0.copy() |
|
5212 | arrayParameters = arrayParameters0.copy() | |
5227 | hmin = h[0] |
|
5213 | hmin = h[0] | |
5228 | hmax = h[1] |
|
5214 | hmax = h[1] | |
5229 |
|
5215 | |||
5230 | #Calculate AOA (Error N 3, 4) |
|
5216 | #Calculate AOA (Error N 3, 4) | |
5231 | #JONES ET AL. 1998 |
|
5217 | #JONES ET AL. 1998 | |
5232 | AOAthresh = numpy.pi/8 |
|
5218 | AOAthresh = numpy.pi/8 | |
5233 | error = arrayParameters[:,-1] |
|
5219 | error = arrayParameters[:,-1] | |
5234 | phases = -arrayParameters[:,8:12] + jph |
|
5220 | phases = -arrayParameters[:,8:12] + jph | |
5235 | # phases = numpy.unwrap(phases) |
|
5221 | # phases = numpy.unwrap(phases) | |
5236 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
5222 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
5237 |
|
5223 | |||
5238 | #Calculate Heights (Error N 13 and 14) |
|
5224 | #Calculate Heights (Error N 13 and 14) | |
5239 | error = arrayParameters[:,-1] |
|
5225 | error = arrayParameters[:,-1] | |
5240 | Ranges = arrayParameters[:,1] |
|
5226 | Ranges = arrayParameters[:,1] | |
5241 | zenith = arrayParameters[:,4] |
|
5227 | zenith = arrayParameters[:,4] | |
5242 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
5228 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
5243 |
|
5229 | |||
5244 | #----------------------- Get Final data ------------------------------------ |
|
5230 | #----------------------- Get Final data ------------------------------------ | |
5245 | # error = arrayParameters[:,-1] |
|
5231 | # error = arrayParameters[:,-1] | |
5246 | # ind1 = numpy.where(error==0)[0] |
|
5232 | # ind1 = numpy.where(error==0)[0] | |
5247 | # arrayParameters = arrayParameters[ind1,:] |
|
5233 | # arrayParameters = arrayParameters[ind1,:] | |
5248 |
|
5234 | |||
5249 | return arrayParameters |
|
5235 | return arrayParameters | |
5250 |
|
5236 | |||
5251 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
5237 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
5252 |
|
5238 | |||
5253 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
5239 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
5254 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
5240 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
5255 |
|
5241 | |||
5256 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
5242 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
5257 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
5243 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
5258 | arrayAOA[:,2] = cosDirError |
|
5244 | arrayAOA[:,2] = cosDirError | |
5259 |
|
5245 | |||
5260 | azimuthAngle = arrayAOA[:,0] |
|
5246 | azimuthAngle = arrayAOA[:,0] | |
5261 | zenithAngle = arrayAOA[:,1] |
|
5247 | zenithAngle = arrayAOA[:,1] | |
5262 |
|
5248 | |||
5263 | #Setting Error |
|
5249 | #Setting Error | |
5264 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
5250 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
5265 | error[indError] = 0 |
|
5251 | error[indError] = 0 | |
5266 | #Number 3: AOA not fesible |
|
5252 | #Number 3: AOA not fesible | |
5267 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
5253 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
5268 | error[indInvalid] = 3 |
|
5254 | error[indInvalid] = 3 | |
5269 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
5255 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
5270 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
5256 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
5271 | error[indInvalid] = 4 |
|
5257 | error[indInvalid] = 4 | |
5272 | return arrayAOA, error |
|
5258 | return arrayAOA, error | |
5273 |
|
5259 | |||
5274 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
5260 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
5275 |
|
5261 | |||
5276 | #Initializing some variables |
|
5262 | #Initializing some variables | |
5277 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
5263 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
5278 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
5264 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
5279 |
|
5265 | |||
5280 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
5266 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
5281 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
5267 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
5282 |
|
5268 | |||
5283 |
|
5269 | |||
5284 | for i in range(2): |
|
5270 | for i in range(2): | |
5285 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
5271 | ph0 = arrayPhase[:,pairsList[i][0]] | |
5286 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
5272 | ph1 = arrayPhase[:,pairsList[i][1]] | |
5287 | d0 = distances[pairsList[i][0]] |
|
5273 | d0 = distances[pairsList[i][0]] | |
5288 | d1 = distances[pairsList[i][1]] |
|
5274 | d1 = distances[pairsList[i][1]] | |
5289 |
|
5275 | |||
5290 | ph0_aux = ph0 + ph1 |
|
5276 | ph0_aux = ph0 + ph1 | |
5291 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
5277 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
5292 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
5278 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
5293 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
5279 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
5294 | #First Estimation |
|
5280 | #First Estimation | |
5295 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
5281 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
5296 |
|
5282 | |||
5297 | #Most-Accurate Second Estimation |
|
5283 | #Most-Accurate Second Estimation | |
5298 | phi1_aux = ph0 - ph1 |
|
5284 | phi1_aux = ph0 - ph1 | |
5299 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
5285 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
5300 | #Direction Cosine 1 |
|
5286 | #Direction Cosine 1 | |
5301 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
5287 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
5302 |
|
5288 | |||
5303 | #Searching the correct Direction Cosine |
|
5289 | #Searching the correct Direction Cosine | |
5304 | cosdir0_aux = cosdir0[:,i] |
|
5290 | cosdir0_aux = cosdir0[:,i] | |
5305 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
5291 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
5306 | #Minimum Distance |
|
5292 | #Minimum Distance | |
5307 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
5293 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
5308 | indcos = cosDiff.argmin(axis = 1) |
|
5294 | indcos = cosDiff.argmin(axis = 1) | |
5309 | #Saving Value obtained |
|
5295 | #Saving Value obtained | |
5310 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
5296 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
5311 |
|
5297 | |||
5312 | return cosdir0, cosdir |
|
5298 | return cosdir0, cosdir | |
5313 |
|
5299 | |||
5314 | def __calculateAOA(self, cosdir, azimuth): |
|
5300 | def __calculateAOA(self, cosdir, azimuth): | |
5315 | cosdirX = cosdir[:,0] |
|
5301 | cosdirX = cosdir[:,0] | |
5316 | cosdirY = cosdir[:,1] |
|
5302 | cosdirY = cosdir[:,1] | |
5317 |
|
5303 | |||
5318 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
5304 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
5319 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
5305 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
5320 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
5306 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
5321 |
|
5307 | |||
5322 | return angles |
|
5308 | return angles | |
5323 |
|
5309 | |||
5324 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
5310 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
5325 |
|
5311 | |||
5326 | Ramb = 375 #Ramb = c/(2*PRF) |
|
5312 | Ramb = 375 #Ramb = c/(2*PRF) | |
5327 | Re = 6371 #Earth Radius |
|
5313 | Re = 6371 #Earth Radius | |
5328 | heights = numpy.zeros(Ranges.shape) |
|
5314 | heights = numpy.zeros(Ranges.shape) | |
5329 |
|
5315 | |||
5330 | R_aux = numpy.array([0,1,2])*Ramb |
|
5316 | R_aux = numpy.array([0,1,2])*Ramb | |
5331 | R_aux = R_aux.reshape(1,R_aux.size) |
|
5317 | R_aux = R_aux.reshape(1,R_aux.size) | |
5332 |
|
5318 | |||
5333 | Ranges = Ranges.reshape(Ranges.size,1) |
|
5319 | Ranges = Ranges.reshape(Ranges.size,1) | |
5334 |
|
5320 | |||
5335 | Ri = Ranges + R_aux |
|
5321 | Ri = Ranges + R_aux | |
5336 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
5322 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
5337 |
|
5323 | |||
5338 | #Check if there is a height between 70 and 110 km |
|
5324 | #Check if there is a height between 70 and 110 km | |
5339 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
5325 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
5340 | ind_h = numpy.where(h_bool == 1)[0] |
|
5326 | ind_h = numpy.where(h_bool == 1)[0] | |
5341 |
|
5327 | |||
5342 | hCorr = hi[ind_h, :] |
|
5328 | hCorr = hi[ind_h, :] | |
5343 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
5329 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
5344 |
|
5330 | |||
5345 | hCorr = hi[ind_hCorr][:len(ind_h)] |
|
5331 | hCorr = hi[ind_hCorr][:len(ind_h)] | |
5346 | heights[ind_h] = hCorr |
|
5332 | heights[ind_h] = hCorr | |
5347 |
|
5333 | |||
5348 | #Setting Error |
|
5334 | #Setting Error | |
5349 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
5335 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
5350 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
5336 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
5351 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
5337 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
5352 | error[indError] = 0 |
|
5338 | error[indError] = 0 | |
5353 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
5339 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
5354 | error[indInvalid2] = 14 |
|
5340 | error[indInvalid2] = 14 | |
5355 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
5341 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
5356 | error[indInvalid1] = 13 |
|
5342 | error[indInvalid1] = 13 | |
5357 |
|
5343 | |||
5358 | return heights, error |
|
5344 | return heights, error | |
5359 |
|
5345 | |||
5360 | def getPhasePairs(self, channelPositions): |
|
5346 | def getPhasePairs(self, channelPositions): | |
5361 | chanPos = numpy.array(channelPositions) |
|
5347 | chanPos = numpy.array(channelPositions) | |
5362 | listOper = list(itertools.combinations(list(range(5)),2)) |
|
5348 | listOper = list(itertools.combinations(list(range(5)),2)) | |
5363 |
|
5349 | |||
5364 | distances = numpy.zeros(4) |
|
5350 | distances = numpy.zeros(4) | |
5365 | axisX = [] |
|
5351 | axisX = [] | |
5366 | axisY = [] |
|
5352 | axisY = [] | |
5367 | distX = numpy.zeros(3) |
|
5353 | distX = numpy.zeros(3) | |
5368 | distY = numpy.zeros(3) |
|
5354 | distY = numpy.zeros(3) | |
5369 | ix = 0 |
|
5355 | ix = 0 | |
5370 | iy = 0 |
|
5356 | iy = 0 | |
5371 |
|
5357 | |||
5372 | pairX = numpy.zeros((2,2)) |
|
5358 | pairX = numpy.zeros((2,2)) | |
5373 | pairY = numpy.zeros((2,2)) |
|
5359 | pairY = numpy.zeros((2,2)) | |
5374 |
|
5360 | |||
5375 | for i in range(len(listOper)): |
|
5361 | for i in range(len(listOper)): | |
5376 | pairi = listOper[i] |
|
5362 | pairi = listOper[i] | |
5377 |
|
5363 | |||
5378 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
5364 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
5379 |
|
5365 | |||
5380 | if posDif[0] == 0: |
|
5366 | if posDif[0] == 0: | |
5381 | axisY.append(pairi) |
|
5367 | axisY.append(pairi) | |
5382 | distY[iy] = posDif[1] |
|
5368 | distY[iy] = posDif[1] | |
5383 | iy += 1 |
|
5369 | iy += 1 | |
5384 | elif posDif[1] == 0: |
|
5370 | elif posDif[1] == 0: | |
5385 | axisX.append(pairi) |
|
5371 | axisX.append(pairi) | |
5386 | distX[ix] = posDif[0] |
|
5372 | distX[ix] = posDif[0] | |
5387 | ix += 1 |
|
5373 | ix += 1 | |
5388 |
|
5374 | |||
5389 | for i in range(2): |
|
5375 | for i in range(2): | |
5390 | if i==0: |
|
5376 | if i==0: | |
5391 | dist0 = distX |
|
5377 | dist0 = distX | |
5392 | axis0 = axisX |
|
5378 | axis0 = axisX | |
5393 | else: |
|
5379 | else: | |
5394 | dist0 = distY |
|
5380 | dist0 = distY | |
5395 | axis0 = axisY |
|
5381 | axis0 = axisY | |
5396 |
|
5382 | |||
5397 | side = numpy.argsort(dist0)[:-1] |
|
5383 | side = numpy.argsort(dist0)[:-1] | |
5398 | axis0 = numpy.array(axis0)[side,:] |
|
5384 | axis0 = numpy.array(axis0)[side,:] | |
5399 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
5385 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
5400 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
5386 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
5401 | side = axis1[axis1 != chanC] |
|
5387 | side = axis1[axis1 != chanC] | |
5402 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
5388 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
5403 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
5389 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
5404 | if diff1<0: |
|
5390 | if diff1<0: | |
5405 | chan2 = side[0] |
|
5391 | chan2 = side[0] | |
5406 | d2 = numpy.abs(diff1) |
|
5392 | d2 = numpy.abs(diff1) | |
5407 | chan1 = side[1] |
|
5393 | chan1 = side[1] | |
5408 | d1 = numpy.abs(diff2) |
|
5394 | d1 = numpy.abs(diff2) | |
5409 | else: |
|
5395 | else: | |
5410 | chan2 = side[1] |
|
5396 | chan2 = side[1] | |
5411 | d2 = numpy.abs(diff2) |
|
5397 | d2 = numpy.abs(diff2) | |
5412 | chan1 = side[0] |
|
5398 | chan1 = side[0] | |
5413 | d1 = numpy.abs(diff1) |
|
5399 | d1 = numpy.abs(diff1) | |
5414 |
|
5400 | |||
5415 | if i==0: |
|
5401 | if i==0: | |
5416 | chanCX = chanC |
|
5402 | chanCX = chanC | |
5417 | chan1X = chan1 |
|
5403 | chan1X = chan1 | |
5418 | chan2X = chan2 |
|
5404 | chan2X = chan2 | |
5419 | distances[0:2] = numpy.array([d1,d2]) |
|
5405 | distances[0:2] = numpy.array([d1,d2]) | |
5420 | else: |
|
5406 | else: | |
5421 | chanCY = chanC |
|
5407 | chanCY = chanC | |
5422 | chan1Y = chan1 |
|
5408 | chan1Y = chan1 | |
5423 | chan2Y = chan2 |
|
5409 | chan2Y = chan2 | |
5424 | distances[2:4] = numpy.array([d1,d2]) |
|
5410 | distances[2:4] = numpy.array([d1,d2]) | |
5425 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
5411 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
5426 | # |
|
5412 | # | |
5427 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
5413 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
5428 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
5414 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
5429 | # |
|
5415 | # | |
5430 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
5416 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
5431 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
5417 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
5432 | # channel25X = int(pairX[0,ind25X]) |
|
5418 | # channel25X = int(pairX[0,ind25X]) | |
5433 | # channel20X = int(pairX[1,ind20X]) |
|
5419 | # channel20X = int(pairX[1,ind20X]) | |
5434 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
5420 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
5435 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
5421 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
5436 | # channel25Y = int(pairY[0,ind25Y]) |
|
5422 | # channel25Y = int(pairY[0,ind25Y]) | |
5437 | # channel20Y = int(pairY[1,ind20Y]) |
|
5423 | # channel20Y = int(pairY[1,ind20Y]) | |
5438 |
|
5424 | |||
5439 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
5425 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
5440 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
5426 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
5441 |
|
5427 | |||
5442 | return pairslist, distances |
|
5428 | return pairslist, distances | |
5443 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
5429 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
5444 | # |
|
5430 | # | |
5445 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
5431 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
5446 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
5432 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
5447 | # |
|
5433 | # | |
5448 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
5434 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
5449 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
5435 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
5450 | # arrayAOA[:,2] = cosDirError |
|
5436 | # arrayAOA[:,2] = cosDirError | |
5451 | # |
|
5437 | # | |
5452 | # azimuthAngle = arrayAOA[:,0] |
|
5438 | # azimuthAngle = arrayAOA[:,0] | |
5453 | # zenithAngle = arrayAOA[:,1] |
|
5439 | # zenithAngle = arrayAOA[:,1] | |
5454 | # |
|
5440 | # | |
5455 | # #Setting Error |
|
5441 | # #Setting Error | |
5456 | # #Number 3: AOA not fesible |
|
5442 | # #Number 3: AOA not fesible | |
5457 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
5443 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
5458 | # error[indInvalid] = 3 |
|
5444 | # error[indInvalid] = 3 | |
5459 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
5445 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
5460 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
5446 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
5461 | # error[indInvalid] = 4 |
|
5447 | # error[indInvalid] = 4 | |
5462 | # return arrayAOA, error |
|
5448 | # return arrayAOA, error | |
5463 | # |
|
5449 | # | |
5464 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
5450 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
5465 | # |
|
5451 | # | |
5466 | # #Initializing some variables |
|
5452 | # #Initializing some variables | |
5467 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
5453 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
5468 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
5454 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
5469 | # |
|
5455 | # | |
5470 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
5456 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
5471 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
5457 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
5472 | # |
|
5458 | # | |
5473 | # |
|
5459 | # | |
5474 | # for i in range(2): |
|
5460 | # for i in range(2): | |
5475 | # #First Estimation |
|
5461 | # #First Estimation | |
5476 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
5462 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
5477 | # #Dealias |
|
5463 | # #Dealias | |
5478 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
5464 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
5479 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
5465 | # phi0_aux[indcsi] -= 2*numpy.pi | |
5480 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
5466 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
5481 | # phi0_aux[indcsi] += 2*numpy.pi |
|
5467 | # phi0_aux[indcsi] += 2*numpy.pi | |
5482 | # #Direction Cosine 0 |
|
5468 | # #Direction Cosine 0 | |
5483 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
5469 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
5484 | # |
|
5470 | # | |
5485 | # #Most-Accurate Second Estimation |
|
5471 | # #Most-Accurate Second Estimation | |
5486 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
5472 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
5487 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
5473 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
5488 | # #Direction Cosine 1 |
|
5474 | # #Direction Cosine 1 | |
5489 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
5475 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
5490 | # |
|
5476 | # | |
5491 | # #Searching the correct Direction Cosine |
|
5477 | # #Searching the correct Direction Cosine | |
5492 | # cosdir0_aux = cosdir0[:,i] |
|
5478 | # cosdir0_aux = cosdir0[:,i] | |
5493 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
5479 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
5494 | # #Minimum Distance |
|
5480 | # #Minimum Distance | |
5495 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
5481 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
5496 | # indcos = cosDiff.argmin(axis = 1) |
|
5482 | # indcos = cosDiff.argmin(axis = 1) | |
5497 | # #Saving Value obtained |
|
5483 | # #Saving Value obtained | |
5498 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
5484 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
5499 | # |
|
5485 | # | |
5500 | # return cosdir0, cosdir |
|
5486 | # return cosdir0, cosdir | |
5501 | # |
|
5487 | # | |
5502 | # def __calculateAOA(self, cosdir, azimuth): |
|
5488 | # def __calculateAOA(self, cosdir, azimuth): | |
5503 | # cosdirX = cosdir[:,0] |
|
5489 | # cosdirX = cosdir[:,0] | |
5504 | # cosdirY = cosdir[:,1] |
|
5490 | # cosdirY = cosdir[:,1] | |
5505 | # |
|
5491 | # | |
5506 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
5492 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
5507 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
5493 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
5508 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
5494 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
5509 | # |
|
5495 | # | |
5510 | # return angles |
|
5496 | # return angles | |
5511 | # |
|
5497 | # | |
5512 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
5498 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
5513 | # |
|
5499 | # | |
5514 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
5500 | # Ramb = 375 #Ramb = c/(2*PRF) | |
5515 | # Re = 6371 #Earth Radius |
|
5501 | # Re = 6371 #Earth Radius | |
5516 | # heights = numpy.zeros(Ranges.shape) |
|
5502 | # heights = numpy.zeros(Ranges.shape) | |
5517 | # |
|
5503 | # | |
5518 | # R_aux = numpy.array([0,1,2])*Ramb |
|
5504 | # R_aux = numpy.array([0,1,2])*Ramb | |
5519 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
5505 | # R_aux = R_aux.reshape(1,R_aux.size) | |
5520 | # |
|
5506 | # | |
5521 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
5507 | # Ranges = Ranges.reshape(Ranges.size,1) | |
5522 | # |
|
5508 | # | |
5523 | # Ri = Ranges + R_aux |
|
5509 | # Ri = Ranges + R_aux | |
5524 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
5510 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
5525 | # |
|
5511 | # | |
5526 | # #Check if there is a height between 70 and 110 km |
|
5512 | # #Check if there is a height between 70 and 110 km | |
5527 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
5513 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
5528 | # ind_h = numpy.where(h_bool == 1)[0] |
|
5514 | # ind_h = numpy.where(h_bool == 1)[0] | |
5529 | # |
|
5515 | # | |
5530 | # hCorr = hi[ind_h, :] |
|
5516 | # hCorr = hi[ind_h, :] | |
5531 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
5517 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
5532 | # |
|
5518 | # | |
5533 | # hCorr = hi[ind_hCorr] |
|
5519 | # hCorr = hi[ind_hCorr] | |
5534 | # heights[ind_h] = hCorr |
|
5520 | # heights[ind_h] = hCorr | |
5535 | # |
|
5521 | # | |
5536 | # #Setting Error |
|
5522 | # #Setting Error | |
5537 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
5523 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
5538 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
5524 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
5539 | # |
|
5525 | # | |
5540 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
5526 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
5541 | # error[indInvalid2] = 14 |
|
5527 | # error[indInvalid2] = 14 | |
5542 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
5528 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
5543 | # error[indInvalid1] = 13 |
|
5529 | # error[indInvalid1] = 13 | |
5544 | # |
|
5530 | # | |
5545 | # return heights, error |
|
5531 | # return heights, error | |
5546 |
|
5532 | |||
5547 |
|
5533 | |||
5548 |
|
5534 | |||
5549 | class IGRFModel(Operation): |
|
5535 | class IGRFModel(Operation): | |
5550 | """Operation to calculate Geomagnetic parameters. |
|
5536 | """Operation to calculate Geomagnetic parameters. | |
5551 |
|
5537 | |||
5552 | Parameters: |
|
5538 | Parameters: | |
5553 | ----------- |
|
5539 | ----------- | |
5554 | None |
|
5540 | None | |
5555 |
|
5541 | |||
5556 | Example |
|
5542 | Example | |
5557 | -------- |
|
5543 | -------- | |
5558 |
|
5544 | |||
5559 | op = proc_unit.addOperation(name='IGRFModel', optype='other') |
|
5545 | op = proc_unit.addOperation(name='IGRFModel', optype='other') | |
5560 |
|
5546 | |||
5561 | """ |
|
5547 | """ | |
5562 |
|
5548 | |||
5563 | def __init__(self, **kwargs): |
|
5549 | def __init__(self, **kwargs): | |
5564 |
|
5550 | |||
5565 | Operation.__init__(self, **kwargs) |
|
5551 | Operation.__init__(self, **kwargs) | |
5566 |
|
5552 | |||
5567 | self.aux=1 |
|
5553 | self.aux=1 | |
5568 |
|
5554 | |||
5569 | def run(self,dataOut): |
|
5555 | def run(self,dataOut): | |
5570 |
|
5556 | |||
5571 | try: |
|
5557 | try: | |
5572 | from schainpy.model.proc import mkfact_short_2020 |
|
5558 | from schainpy.model.proc import mkfact_short_2020 | |
5573 | except: |
|
5559 | except: | |
5574 | log.warning('You should install "mkfact_short_2020" module to process IGRF Model') |
|
5560 | log.warning('You should install "mkfact_short_2020" module to process IGRF Model') | |
5575 |
|
5561 | |||
5576 | if self.aux==1: |
|
5562 | if self.aux==1: | |
5577 |
|
5563 | |||
5578 | #dataOut.TimeBlockSeconds_First_Time=time.mktime(time.strptime(dataOut.TimeBlockDate)) |
|
5564 | #dataOut.TimeBlockSeconds_First_Time=time.mktime(time.strptime(dataOut.TimeBlockDate)) | |
5579 | #### we do not use dataOut.datatime.ctime() because it's the time of the second (next) block |
|
5565 | #### we do not use dataOut.datatime.ctime() because it's the time of the second (next) block | |
5580 | dataOut.TimeBlockSeconds_First_Time=dataOut.TimeBlockSeconds |
|
5566 | dataOut.TimeBlockSeconds_First_Time=dataOut.TimeBlockSeconds | |
5581 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_First_Time) |
|
5567 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_First_Time) | |
5582 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 |
|
5568 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 | |
5583 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 |
|
5569 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 | |
5584 |
|
5570 | |||
5585 | self.aux=0 |
|
5571 | self.aux=0 | |
5586 |
|
5572 | |||
5587 | dataOut.h=numpy.arange(0.0,15.0*dataOut.MAXNRANGENDT,15.0,dtype='float32') |
|
5573 | dataOut.h=numpy.arange(0.0,15.0*dataOut.MAXNRANGENDT,15.0,dtype='float32') | |
5588 | dataOut.bfm=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') |
|
5574 | dataOut.bfm=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |
5589 | dataOut.bfm=numpy.array(dataOut.bfm,order='F') |
|
5575 | dataOut.bfm=numpy.array(dataOut.bfm,order='F') | |
5590 | dataOut.thb=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') |
|
5576 | dataOut.thb=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |
5591 | dataOut.thb=numpy.array(dataOut.thb,order='F') |
|
5577 | dataOut.thb=numpy.array(dataOut.thb,order='F') | |
5592 | dataOut.bki=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') |
|
5578 | dataOut.bki=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |
5593 | dataOut.bki=numpy.array(dataOut.bki,order='F') |
|
5579 | dataOut.bki=numpy.array(dataOut.bki,order='F') | |
5594 |
|
5580 | |||
5595 | mkfact_short_2020.mkfact(dataOut.year,dataOut.h,dataOut.bfm,dataOut.thb,dataOut.bki,dataOut.MAXNRANGENDT) |
|
5581 | mkfact_short_2020.mkfact(dataOut.year,dataOut.h,dataOut.bfm,dataOut.thb,dataOut.bki,dataOut.MAXNRANGENDT) | |
5596 |
|
5582 | |||
5597 | return dataOut |
|
5583 | return dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now