##// END OF EJS Templates
Cambios en las operaciones de PulsePair_vRF read Note
avaldezp -
r1470:568f44d4930a
parent child
Show More
@@ -1,1861 +1,1885
1 1 import sys
2 2 import numpy,math
3 3 from scipy import interpolate
4 4 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
5 5 from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon
6 6 from schainpy.utils import log
7 7 from time import time
8 8
9 9
10 10
11 11 class VoltageProc(ProcessingUnit):
12 12
13 13 def __init__(self):
14 14
15 15 ProcessingUnit.__init__(self)
16 16
17 17 self.dataOut = Voltage()
18 18 self.flip = 1
19 19 self.setupReq = False
20 20
21 21 def run(self):
22 22
23 23 if self.dataIn.type == 'AMISR':
24 24 self.__updateObjFromAmisrInput()
25 25
26 26 if self.dataIn.type == 'Voltage':
27 27 self.dataOut.copy(self.dataIn)
28 28
29 29 def __updateObjFromAmisrInput(self):
30 30
31 31 self.dataOut.timeZone = self.dataIn.timeZone
32 32 self.dataOut.dstFlag = self.dataIn.dstFlag
33 33 self.dataOut.errorCount = self.dataIn.errorCount
34 34 self.dataOut.useLocalTime = self.dataIn.useLocalTime
35 35
36 36 self.dataOut.flagNoData = self.dataIn.flagNoData
37 37 self.dataOut.data = self.dataIn.data
38 38 self.dataOut.utctime = self.dataIn.utctime
39 39 self.dataOut.channelList = self.dataIn.channelList
40 40 #self.dataOut.timeInterval = self.dataIn.timeInterval
41 41 self.dataOut.heightList = self.dataIn.heightList
42 42 self.dataOut.nProfiles = self.dataIn.nProfiles
43 43
44 44 self.dataOut.nCohInt = self.dataIn.nCohInt
45 45 self.dataOut.ippSeconds = self.dataIn.ippSeconds
46 46 self.dataOut.frequency = self.dataIn.frequency
47 47
48 48 self.dataOut.azimuth = self.dataIn.azimuth
49 49 self.dataOut.zenith = self.dataIn.zenith
50 50
51 51 self.dataOut.beam.codeList = self.dataIn.beam.codeList
52 52 self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
53 53 self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
54 54
55 55
56 56 class selectChannels(Operation):
57 57
58 58 def run(self, dataOut, channelList):
59 59
60 60 channelIndexList = []
61 61 self.dataOut = dataOut
62 62 for channel in channelList:
63 63 if channel not in self.dataOut.channelList:
64 64 raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList)))
65 65
66 66 index = self.dataOut.channelList.index(channel)
67 67 channelIndexList.append(index)
68 68 self.selectChannelsByIndex(channelIndexList)
69 69 return self.dataOut
70 70
71 71 def selectChannelsByIndex(self, channelIndexList):
72 72 """
73 73 Selecciona un bloque de datos en base a canales segun el channelIndexList
74 74
75 75 Input:
76 76 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
77 77
78 78 Affected:
79 79 self.dataOut.data
80 80 self.dataOut.channelIndexList
81 81 self.dataOut.nChannels
82 82 self.dataOut.m_ProcessingHeader.totalSpectra
83 83 self.dataOut.systemHeaderObj.numChannels
84 84 self.dataOut.m_ProcessingHeader.blockSize
85 85
86 86 Return:
87 87 None
88 88 """
89 89
90 90 for channelIndex in channelIndexList:
91 91 if channelIndex not in self.dataOut.channelIndexList:
92 92 raise ValueError("The value %d in channelIndexList is not valid" %channelIndex)
93 93
94 94 if self.dataOut.type == 'Voltage':
95 95 if self.dataOut.flagDataAsBlock:
96 96 """
97 97 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
98 98 """
99 99 data = self.dataOut.data[channelIndexList,:,:]
100 100 else:
101 101 data = self.dataOut.data[channelIndexList,:]
102 102
103 103 self.dataOut.data = data
104 104 # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
105 105 self.dataOut.channelList = range(len(channelIndexList))
106 106
107 107 elif self.dataOut.type == 'Spectra':
108 108 data_spc = self.dataOut.data_spc[channelIndexList, :]
109 109 data_dc = self.dataOut.data_dc[channelIndexList, :]
110 110
111 111 self.dataOut.data_spc = data_spc
112 112 self.dataOut.data_dc = data_dc
113 113
114 114 # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
115 115 self.dataOut.channelList = range(len(channelIndexList))
116 116 self.__selectPairsByChannel(channelIndexList)
117 117
118 118 return 1
119 119
120 120 def __selectPairsByChannel(self, channelList=None):
121 121
122 122 if channelList == None:
123 123 return
124 124
125 125 pairsIndexListSelected = []
126 126 for pairIndex in self.dataOut.pairsIndexList:
127 127 # First pair
128 128 if self.dataOut.pairsList[pairIndex][0] not in channelList:
129 129 continue
130 130 # Second pair
131 131 if self.dataOut.pairsList[pairIndex][1] not in channelList:
132 132 continue
133 133
134 134 pairsIndexListSelected.append(pairIndex)
135 135
136 136 if not pairsIndexListSelected:
137 137 self.dataOut.data_cspc = None
138 138 self.dataOut.pairsList = []
139 139 return
140 140
141 141 self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
142 142 self.dataOut.pairsList = [self.dataOut.pairsList[i]
143 143 for i in pairsIndexListSelected]
144 144
145 145 return
146 146
147 147 class selectHeights(Operation):
148 148
149 149 def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None):
150 150 """
151 151 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
152 152 minHei <= height <= maxHei
153 153
154 154 Input:
155 155 minHei : valor minimo de altura a considerar
156 156 maxHei : valor maximo de altura a considerar
157 157
158 158 Affected:
159 159 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
160 160
161 161 Return:
162 162 1 si el metodo se ejecuto con exito caso contrario devuelve 0
163 163 """
164 164
165 165 self.dataOut = dataOut
166 166
167 167 if minHei and maxHei:
168 168
169 169 if (minHei < self.dataOut.heightList[0]):
170 170 minHei = self.dataOut.heightList[0]
171 171
172 172 if (maxHei > self.dataOut.heightList[-1]):
173 173 maxHei = self.dataOut.heightList[-1]
174 174
175 175 minIndex = 0
176 176 maxIndex = 0
177 177 heights = self.dataOut.heightList
178 178
179 179 inda = numpy.where(heights >= minHei)
180 180 indb = numpy.where(heights <= maxHei)
181 181
182 182 try:
183 183 minIndex = inda[0][0]
184 184 except:
185 185 minIndex = 0
186 186
187 187 try:
188 188 maxIndex = indb[0][-1]
189 189 except:
190 190 maxIndex = len(heights)
191 191
192 192 self.selectHeightsByIndex(minIndex, maxIndex)
193 193
194 194 return self.dataOut
195 195
196 196 def selectHeightsByIndex(self, minIndex, maxIndex):
197 197 """
198 198 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
199 199 minIndex <= index <= maxIndex
200 200
201 201 Input:
202 202 minIndex : valor de indice minimo de altura a considerar
203 203 maxIndex : valor de indice maximo de altura a considerar
204 204
205 205 Affected:
206 206 self.dataOut.data
207 207 self.dataOut.heightList
208 208
209 209 Return:
210 210 1 si el metodo se ejecuto con exito caso contrario devuelve 0
211 211 """
212 212
213 213 if self.dataOut.type == 'Voltage':
214 214 if (minIndex < 0) or (minIndex > maxIndex):
215 215 raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex))
216 216
217 217 if (maxIndex >= self.dataOut.nHeights):
218 218 maxIndex = self.dataOut.nHeights
219 219 #print("shapeeee",self.dataOut.data.shape)
220 220 #voltage
221 221 if self.dataOut.flagDataAsBlock:
222 222 """
223 223 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
224 224 """
225 225 data = self.dataOut.data[:,:, minIndex:maxIndex]
226 226 else:
227 227 data = self.dataOut.data[:, minIndex:maxIndex]
228 228
229 229 # firstHeight = self.dataOut.heightList[minIndex]
230 230
231 231 self.dataOut.data = data
232 232 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex]
233 233
234 234 if self.dataOut.nHeights <= 1:
235 235 raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights))
236 236 elif self.dataOut.type == 'Spectra':
237 237 if (minIndex < 0) or (minIndex > maxIndex):
238 238 raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (
239 239 minIndex, maxIndex))
240 240
241 241 if (maxIndex >= self.dataOut.nHeights):
242 242 maxIndex = self.dataOut.nHeights - 1
243 243
244 244 # Spectra
245 245 data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
246 246
247 247 data_cspc = None
248 248 if self.dataOut.data_cspc is not None:
249 249 data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
250 250
251 251 data_dc = None
252 252 if self.dataOut.data_dc is not None:
253 253 data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
254 254
255 255 self.dataOut.data_spc = data_spc
256 256 self.dataOut.data_cspc = data_cspc
257 257 self.dataOut.data_dc = data_dc
258 258
259 259 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
260 260
261 261 return 1
262 262
263 263
264 264 class filterByHeights(Operation):
265 265
266 266 def run(self, dataOut, window):
267 267
268 268 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
269 269
270 270 if window == None:
271 271 window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
272 272
273 273 newdelta = deltaHeight * window
274 274 r = dataOut.nHeights % window
275 275 newheights = (dataOut.nHeights-r)/window
276 276
277 277 if newheights <= 1:
278 278 raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window))
279 279
280 280 if dataOut.flagDataAsBlock:
281 281 """
282 282 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
283 283 """
284 284 buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)]
285 285 buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window)
286 286 buffer = numpy.sum(buffer,3)
287 287
288 288 else:
289 289 buffer = dataOut.data[:,0:int(dataOut.nHeights-r)]
290 290 buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window))
291 291 buffer = numpy.sum(buffer,2)
292 292
293 293 dataOut.data = buffer
294 294 dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta
295 295 dataOut.windowOfFilter = window
296 296
297 297 return dataOut
298 298
299 299
300 300 class setH0(Operation):
301 301
302 302 def run(self, dataOut, h0, deltaHeight = None):
303 303
304 304 if not deltaHeight:
305 305 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
306 306
307 307 nHeights = dataOut.nHeights
308 308
309 309 newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight
310 310
311 311 dataOut.heightList = newHeiRange
312 312
313 313 return dataOut
314 314
315 315
316 316 class deFlip(Operation):
317 317
318 318 def run(self, dataOut, channelList = []):
319 319
320 320 data = dataOut.data.copy()
321 321
322 322 if dataOut.flagDataAsBlock:
323 323 flip = self.flip
324 324 profileList = list(range(dataOut.nProfiles))
325 325
326 326 if not channelList:
327 327 for thisProfile in profileList:
328 328 data[:,thisProfile,:] = data[:,thisProfile,:]*flip
329 329 flip *= -1.0
330 330 else:
331 331 for thisChannel in channelList:
332 332 if thisChannel not in dataOut.channelList:
333 333 continue
334 334
335 335 for thisProfile in profileList:
336 336 data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip
337 337 flip *= -1.0
338 338
339 339 self.flip = flip
340 340
341 341 else:
342 342 if not channelList:
343 343 data[:,:] = data[:,:]*self.flip
344 344 else:
345 345 for thisChannel in channelList:
346 346 if thisChannel not in dataOut.channelList:
347 347 continue
348 348
349 349 data[thisChannel,:] = data[thisChannel,:]*self.flip
350 350
351 351 self.flip *= -1.
352 352
353 353 dataOut.data = data
354 354
355 355 return dataOut
356 356
357 357
358 358 class setAttribute(Operation):
359 359 '''
360 360 Set an arbitrary attribute(s) to dataOut
361 361 '''
362 362
363 363 def __init__(self):
364 364
365 365 Operation.__init__(self)
366 366 self._ready = False
367 367
368 368 def run(self, dataOut, **kwargs):
369 369
370 370 for key, value in kwargs.items():
371 371 setattr(dataOut, key, value)
372 372
373 373 return dataOut
374 374
375 375
376 376 @MPDecorator
377 377 class printAttribute(Operation):
378 378 '''
379 379 Print an arbitrary attribute of dataOut
380 380 '''
381 381
382 382 def __init__(self):
383 383
384 384 Operation.__init__(self)
385 385
386 386 def run(self, dataOut, attributes):
387 387
388 388 if isinstance(attributes, str):
389 389 attributes = [attributes]
390 390 for attr in attributes:
391 391 if hasattr(dataOut, attr):
392 392 log.log(getattr(dataOut, attr), attr)
393 393
394 394
395 395 class interpolateHeights(Operation):
396 396
397 397 def run(self, dataOut, topLim, botLim):
398 398 #69 al 72 para julia
399 399 #82-84 para meteoros
400 400 if len(numpy.shape(dataOut.data))==2:
401 401 sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2
402 402 sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1)))
403 403 #dataOut.data[:,botLim:limSup+1] = sampInterp
404 404 dataOut.data[:,botLim:topLim+1] = sampInterp
405 405 else:
406 406 nHeights = dataOut.data.shape[2]
407 407 x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights)))
408 408 y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))]
409 409 f = interpolate.interp1d(x, y, axis = 2)
410 410 xnew = numpy.arange(botLim,topLim+1)
411 411 ynew = f(xnew)
412 412 dataOut.data[:,:,botLim:topLim+1] = ynew
413 413
414 414 return dataOut
415 415
416 416
417 417 class CohInt(Operation):
418 418
419 419 isConfig = False
420 420 __profIndex = 0
421 421 __byTime = False
422 422 __initime = None
423 423 __lastdatatime = None
424 424 __integrationtime = None
425 425 __buffer = None
426 426 __bufferStride = []
427 427 __dataReady = False
428 428 __profIndexStride = 0
429 429 __dataToPutStride = False
430 430 n = None
431 431
432 432 def __init__(self, **kwargs):
433 433
434 434 Operation.__init__(self, **kwargs)
435 435
436 436 def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False):
437 437 """
438 438 Set the parameters of the integration class.
439 439
440 440 Inputs:
441 441
442 442 n : Number of coherent integrations
443 443 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
444 444 overlapping :
445 445 """
446 446
447 447 self.__initime = None
448 448 self.__lastdatatime = 0
449 449 self.__buffer = None
450 450 self.__dataReady = False
451 451 self.byblock = byblock
452 452 self.stride = stride
453 453
454 454 if n == None and timeInterval == None:
455 455 raise ValueError("n or timeInterval should be specified ...")
456 456
457 457 if n != None:
458 458 self.n = n
459 459 self.__byTime = False
460 460 else:
461 461 self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
462 462 self.n = 9999
463 463 self.__byTime = True
464 464
465 465 if overlapping:
466 466 self.__withOverlapping = True
467 467 self.__buffer = None
468 468 else:
469 469 self.__withOverlapping = False
470 470 self.__buffer = 0
471 471
472 472 self.__profIndex = 0
473 473
474 474 def putData(self, data):
475 475
476 476 """
477 477 Add a profile to the __buffer and increase in one the __profileIndex
478 478
479 479 """
480 480
481 481 if not self.__withOverlapping:
482 482 self.__buffer += data.copy()
483 483 self.__profIndex += 1
484 484 return
485 485
486 486 #Overlapping data
487 487 nChannels, nHeis = data.shape
488 488 data = numpy.reshape(data, (1, nChannels, nHeis))
489 489
490 490 #If the buffer is empty then it takes the data value
491 491 if self.__buffer is None:
492 492 self.__buffer = data
493 493 self.__profIndex += 1
494 494 return
495 495
496 496 #If the buffer length is lower than n then stakcing the data value
497 497 if self.__profIndex < self.n:
498 498 self.__buffer = numpy.vstack((self.__buffer, data))
499 499 self.__profIndex += 1
500 500 return
501 501
502 502 #If the buffer length is equal to n then replacing the last buffer value with the data value
503 503 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
504 504 self.__buffer[self.n-1] = data
505 505 self.__profIndex = self.n
506 506 return
507 507
508 508
509 509 def pushData(self):
510 510 """
511 511 Return the sum of the last profiles and the profiles used in the sum.
512 512
513 513 Affected:
514 514
515 515 self.__profileIndex
516 516
517 517 """
518 518
519 519 if not self.__withOverlapping:
520 520 data = self.__buffer
521 521 n = self.__profIndex
522 522
523 523 self.__buffer = 0
524 524 self.__profIndex = 0
525 525
526 526 return data, n
527 527
528 528 #Integration with Overlapping
529 529 data = numpy.sum(self.__buffer, axis=0)
530 530 # print data
531 531 # raise
532 532 n = self.__profIndex
533 533
534 534 return data, n
535 535
536 536 def byProfiles(self, data):
537 537
538 538 self.__dataReady = False
539 539 avgdata = None
540 540 # n = None
541 541 # print data
542 542 # raise
543 543 self.putData(data)
544 544
545 545 if self.__profIndex == self.n:
546 546 avgdata, n = self.pushData()
547 547 self.__dataReady = True
548 548
549 549 return avgdata
550 550
551 551 def byTime(self, data, datatime):
552 552
553 553 self.__dataReady = False
554 554 avgdata = None
555 555 n = None
556 556
557 557 self.putData(data)
558 558
559 559 if (datatime - self.__initime) >= self.__integrationtime:
560 560 avgdata, n = self.pushData()
561 561 self.n = n
562 562 self.__dataReady = True
563 563
564 564 return avgdata
565 565
566 566 def integrateByStride(self, data, datatime):
567 567 # print data
568 568 if self.__profIndex == 0:
569 569 self.__buffer = [[data.copy(), datatime]]
570 570 else:
571 571 self.__buffer.append([data.copy(),datatime])
572 572 self.__profIndex += 1
573 573 self.__dataReady = False
574 574
575 575 if self.__profIndex == self.n * self.stride :
576 576 self.__dataToPutStride = True
577 577 self.__profIndexStride = 0
578 578 self.__profIndex = 0
579 579 self.__bufferStride = []
580 580 for i in range(self.stride):
581 581 current = self.__buffer[i::self.stride]
582 582 data = numpy.sum([t[0] for t in current], axis=0)
583 583 avgdatatime = numpy.average([t[1] for t in current])
584 584 # print data
585 585 self.__bufferStride.append((data, avgdatatime))
586 586
587 587 if self.__dataToPutStride:
588 588 self.__dataReady = True
589 589 self.__profIndexStride += 1
590 590 if self.__profIndexStride == self.stride:
591 591 self.__dataToPutStride = False
592 592 # print self.__bufferStride[self.__profIndexStride - 1]
593 593 # raise
594 594 return self.__bufferStride[self.__profIndexStride - 1]
595 595
596 596
597 597 return None, None
598 598
599 599 def integrate(self, data, datatime=None):
600 600
601 601 if self.__initime == None:
602 602 self.__initime = datatime
603 603
604 604 if self.__byTime:
605 605 avgdata = self.byTime(data, datatime)
606 606 else:
607 607 avgdata = self.byProfiles(data)
608 608
609 609
610 610 self.__lastdatatime = datatime
611 611
612 612 if avgdata is None:
613 613 return None, None
614 614
615 615 avgdatatime = self.__initime
616 616
617 617 deltatime = datatime - self.__lastdatatime
618 618
619 619 if not self.__withOverlapping:
620 620 self.__initime = datatime
621 621 else:
622 622 self.__initime += deltatime
623 623
624 624 return avgdata, avgdatatime
625 625
626 626 def integrateByBlock(self, dataOut):
627 627
628 628 times = int(dataOut.data.shape[1]/self.n)
629 629 avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex)
630 630
631 631 id_min = 0
632 632 id_max = self.n
633 633
634 634 for i in range(times):
635 635 junk = dataOut.data[:,id_min:id_max,:]
636 636 avgdata[:,i,:] = junk.sum(axis=1)
637 637 id_min += self.n
638 638 id_max += self.n
639 639
640 640 timeInterval = dataOut.ippSeconds*self.n
641 641 avgdatatime = (times - 1) * timeInterval + dataOut.utctime
642 642 self.__dataReady = True
643 643 return avgdata, avgdatatime
644 644
645 645 def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs):
646 646
647 647 if not self.isConfig:
648 648 self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs)
649 649 self.isConfig = True
650 650
651 651 if dataOut.flagDataAsBlock:
652 652 """
653 653 Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis]
654 654 """
655 655 avgdata, avgdatatime = self.integrateByBlock(dataOut)
656 656 dataOut.nProfiles /= self.n
657 657 else:
658 658 if stride is None:
659 659 avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
660 660 else:
661 661 avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime)
662 662
663 663
664 664 # dataOut.timeInterval *= n
665 665 dataOut.flagNoData = True
666 666
667 667 if self.__dataReady:
668 668 dataOut.data = avgdata
669 669 if not dataOut.flagCohInt:
670 670 dataOut.nCohInt *= self.n
671 671 dataOut.flagCohInt = True
672 672 ####################################dataOut.utctime = avgdatatime
673 673 # print avgdata, avgdatatime
674 674 # raise
675 675 # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
676 676 dataOut.flagNoData = False
677 677 return dataOut
678 678
679 679 class Decoder(Operation):
680 680
681 681 isConfig = False
682 682 __profIndex = 0
683 683
684 684 code = None
685 685
686 686 nCode = None
687 687 nBaud = None
688 688
689 689 def __init__(self, **kwargs):
690 690
691 691 Operation.__init__(self, **kwargs)
692 692
693 693 self.times = None
694 694 self.osamp = None
695 695 # self.__setValues = False
696 696 self.isConfig = False
697 697 self.setupReq = False
698 698 def setup(self, code, osamp, dataOut):
699 699
700 700 self.__profIndex = 0
701 701
702 702 self.code = code
703 703
704 704 self.nCode = len(code)
705 705 self.nBaud = len(code[0])
706 706
707 707 if (osamp != None) and (osamp >1):
708 708 self.osamp = osamp
709 709 self.code = numpy.repeat(code, repeats=self.osamp, axis=1)
710 710 self.nBaud = self.nBaud*self.osamp
711 711
712 712 self.__nChannels = dataOut.nChannels
713 713 self.__nProfiles = dataOut.nProfiles
714 714 self.__nHeis = dataOut.nHeights
715 715
716 716 if self.__nHeis < self.nBaud:
717 717 raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud))
718 718
719 719 #Frequency
720 720 __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
721 721
722 722 __codeBuffer[:,0:self.nBaud] = self.code
723 723
724 724 self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
725 725
726 726 if dataOut.flagDataAsBlock:
727 727
728 728 self.ndatadec = self.__nHeis #- self.nBaud + 1
729 729
730 730 self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex)
731 731
732 732 else:
733 733
734 734 #Time
735 735 self.ndatadec = self.__nHeis #- self.nBaud + 1
736 736
737 737 self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
738 738
739 739 def __convolutionInFreq(self, data):
740 740
741 741 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
742 742
743 743 fft_data = numpy.fft.fft(data, axis=1)
744 744
745 745 conv = fft_data*fft_code
746 746
747 747 data = numpy.fft.ifft(conv,axis=1)
748 748
749 749 return data
750 750
751 751 def __convolutionInFreqOpt(self, data):
752 752
753 753 raise NotImplementedError
754 754
755 755 def __convolutionInTime(self, data):
756 756
757 757 code = self.code[self.__profIndex]
758 758 for i in range(self.__nChannels):
759 759 self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:]
760 760
761 761 return self.datadecTime
762 762
763 763 def __convolutionByBlockInTime(self, data):
764 764
765 765 repetitions = int(self.__nProfiles / self.nCode)
766 766 junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize))
767 767 junk = junk.flatten()
768 768 code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud))
769 769 profilesList = range(self.__nProfiles)
770 770
771 771 for i in range(self.__nChannels):
772 772 for j in profilesList:
773 773 self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:]
774 774 return self.datadecTime
775 775
776 776 def __convolutionByBlockInFreq(self, data):
777 777
778 778 raise NotImplementedError("Decoder by frequency fro Blocks not implemented")
779 779
780 780
781 781 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
782 782
783 783 fft_data = numpy.fft.fft(data, axis=2)
784 784
785 785 conv = fft_data*fft_code
786 786
787 787 data = numpy.fft.ifft(conv,axis=2)
788 788
789 789 return data
790 790
791 791
792 792 def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None):
793 793
794 794 if dataOut.flagDecodeData:
795 795 print("This data is already decoded, recoding again ...")
796 796
797 797 if not self.isConfig:
798 798
799 799 if code is None:
800 800 if dataOut.code is None:
801 801 raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type)
802 802
803 803 code = dataOut.code
804 804 else:
805 805 code = numpy.array(code).reshape(nCode,nBaud)
806 806 self.setup(code, osamp, dataOut)
807 807
808 808 self.isConfig = True
809 809
810 810 if mode == 3:
811 811 sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode)
812 812
813 813 if times != None:
814 814 sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n")
815 815
816 816 if self.code is None:
817 817 print("Fail decoding: Code is not defined.")
818 818 return
819 819
820 820 self.__nProfiles = dataOut.nProfiles
821 821 datadec = None
822 822
823 823 if mode == 3:
824 824 mode = 0
825 825
826 826 if dataOut.flagDataAsBlock:
827 827 """
828 828 Decoding when data have been read as block,
829 829 """
830 830
831 831 if mode == 0:
832 832 datadec = self.__convolutionByBlockInTime(dataOut.data)
833 833 if mode == 1:
834 834 datadec = self.__convolutionByBlockInFreq(dataOut.data)
835 835 else:
836 836 """
837 837 Decoding when data have been read profile by profile
838 838 """
839 839 if mode == 0:
840 840 datadec = self.__convolutionInTime(dataOut.data)
841 841
842 842 if mode == 1:
843 843 datadec = self.__convolutionInFreq(dataOut.data)
844 844
845 845 if mode == 2:
846 846 datadec = self.__convolutionInFreqOpt(dataOut.data)
847 847
848 848 if datadec is None:
849 849 raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode)
850 850
851 851 dataOut.code = self.code
852 852 dataOut.nCode = self.nCode
853 853 dataOut.nBaud = self.nBaud
854 854
855 855 dataOut.data = datadec
856 856
857 857 dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]]
858 858
859 859 dataOut.flagDecodeData = True #asumo q la data esta decodificada
860 860
861 861 if self.__profIndex == self.nCode-1:
862 862 self.__profIndex = 0
863 863 return dataOut
864 864
865 865 self.__profIndex += 1
866 866
867 867 return dataOut
868 868 # dataOut.flagDeflipData = True #asumo q la data no esta sin flip
869 869
870 870
871 871 class ProfileConcat(Operation):
872 872
873 873 isConfig = False
874 874 buffer = None
875 875
876 876 def __init__(self, **kwargs):
877 877
878 878 Operation.__init__(self, **kwargs)
879 879 self.profileIndex = 0
880 880
881 881 def reset(self):
882 882 self.buffer = numpy.zeros_like(self.buffer)
883 883 self.start_index = 0
884 884 self.times = 1
885 885
886 886 def setup(self, data, m, n=1):
887 887 self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
888 888 self.nHeights = data.shape[1]#.nHeights
889 889 self.start_index = 0
890 890 self.times = 1
891 891
892 892 def concat(self, data):
893 893
894 894 self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy()
895 895 self.start_index = self.start_index + self.nHeights
896 896
897 897 def run(self, dataOut, m):
898 898 dataOut.flagNoData = True
899 899
900 900 if not self.isConfig:
901 901 self.setup(dataOut.data, m, 1)
902 902 self.isConfig = True
903 903
904 904 if dataOut.flagDataAsBlock:
905 905 raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False")
906 906
907 907 else:
908 908 self.concat(dataOut.data)
909 909 self.times += 1
910 910 if self.times > m:
911 911 dataOut.data = self.buffer
912 912 self.reset()
913 913 dataOut.flagNoData = False
914 914 # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
915 915 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
916 916 xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m
917 917 dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
918 918 dataOut.ippSeconds *= m
919 919 return dataOut
920 920
921 921 class ProfileSelector(Operation):
922 922
923 923 profileIndex = None
924 924 # Tamanho total de los perfiles
925 925 nProfiles = None
926 926
927 927 def __init__(self, **kwargs):
928 928
929 929 Operation.__init__(self, **kwargs)
930 930 self.profileIndex = 0
931 931
932 932 def incProfileIndex(self):
933 933
934 934 self.profileIndex += 1
935 935
936 936 if self.profileIndex >= self.nProfiles:
937 937 self.profileIndex = 0
938 938
939 939 def isThisProfileInRange(self, profileIndex, minIndex, maxIndex):
940 940
941 941 if profileIndex < minIndex:
942 942 return False
943 943
944 944 if profileIndex > maxIndex:
945 945 return False
946 946
947 947 return True
948 948
949 949 def isThisProfileInList(self, profileIndex, profileList):
950 950
951 951 if profileIndex not in profileList:
952 952 return False
953 953
954 954 return True
955 955
956 956 def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None):
957 957 #print("before",dataOut.data.shape)
958 958 """
959 959 ProfileSelector:
960 960
961 961 Inputs:
962 962 profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8)
963 963
964 964 profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30)
965 965
966 966 rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256))
967 967
968 968 """
969 969
970 970 if rangeList is not None:
971 971 if type(rangeList[0]) not in (tuple, list):
972 972 rangeList = [rangeList]
973 973
974 974 dataOut.flagNoData = True
975 975
976 976 if dataOut.flagDataAsBlock:
977 977 """
978 978 data dimension = [nChannels, nProfiles, nHeis]
979 979 """
980 980 if profileList != None:
981 981 dataOut.data = dataOut.data[:,profileList,:]
982 982
983 983 if profileRangeList != None:
984 984 minIndex = profileRangeList[0]
985 985 maxIndex = profileRangeList[1]
986 986 profileList = list(range(minIndex, maxIndex+1))
987 987
988 988 dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:]
989 989
990 990 if rangeList != None:
991 991
992 992 profileList = []
993 993
994 994 for thisRange in rangeList:
995 995 minIndex = thisRange[0]
996 996 maxIndex = thisRange[1]
997 997
998 998 profileList.extend(list(range(minIndex, maxIndex+1)))
999 999
1000 1000 dataOut.data = dataOut.data[:,profileList,:]
1001 1001
1002 1002 dataOut.nProfiles = len(profileList)
1003 1003 dataOut.profileIndex = dataOut.nProfiles - 1
1004 1004 dataOut.flagNoData = False
1005 1005 #print(dataOut.data.shape)
1006 1006 return dataOut
1007 1007
1008 1008 """
1009 1009 data dimension = [nChannels, nHeis]
1010 1010 """
1011 1011
1012 1012 if profileList != None:
1013 1013
1014 1014 if self.isThisProfileInList(dataOut.profileIndex, profileList):
1015 1015
1016 1016 self.nProfiles = len(profileList)
1017 1017 dataOut.nProfiles = self.nProfiles
1018 1018 dataOut.profileIndex = self.profileIndex
1019 1019 dataOut.flagNoData = False
1020 1020
1021 1021 self.incProfileIndex()
1022 1022 return dataOut
1023 1023
1024 1024 if profileRangeList != None:
1025 1025
1026 1026 minIndex = profileRangeList[0]
1027 1027 maxIndex = profileRangeList[1]
1028 1028
1029 1029 if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
1030 1030
1031 1031 self.nProfiles = maxIndex - minIndex + 1
1032 1032 dataOut.nProfiles = self.nProfiles
1033 1033 dataOut.profileIndex = self.profileIndex
1034 1034 dataOut.flagNoData = False
1035 1035
1036 1036 self.incProfileIndex()
1037 1037 return dataOut
1038 1038
1039 1039 if rangeList != None:
1040 1040
1041 1041 nProfiles = 0
1042 1042
1043 1043 for thisRange in rangeList:
1044 1044 minIndex = thisRange[0]
1045 1045 maxIndex = thisRange[1]
1046 1046
1047 1047 nProfiles += maxIndex - minIndex + 1
1048 1048
1049 1049 for thisRange in rangeList:
1050 1050
1051 1051 minIndex = thisRange[0]
1052 1052 maxIndex = thisRange[1]
1053 1053
1054 1054 if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
1055 1055
1056 1056 self.nProfiles = nProfiles
1057 1057 dataOut.nProfiles = self.nProfiles
1058 1058 dataOut.profileIndex = self.profileIndex
1059 1059 dataOut.flagNoData = False
1060 1060
1061 1061 self.incProfileIndex()
1062 1062
1063 1063 break
1064 1064
1065 1065 return dataOut
1066 1066
1067 1067
1068 1068 if beam != None: #beam is only for AMISR data
1069 1069 if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]):
1070 1070 dataOut.flagNoData = False
1071 1071 dataOut.profileIndex = self.profileIndex
1072 1072
1073 1073 self.incProfileIndex()
1074 1074
1075 1075 return dataOut
1076 1076
1077 1077 raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter")
1078 1078
1079 1079
1080 1080 class Reshaper(Operation):
1081 1081
1082 1082 def __init__(self, **kwargs):
1083 1083
1084 1084 Operation.__init__(self, **kwargs)
1085 1085
1086 1086 self.__buffer = None
1087 1087 self.__nitems = 0
1088 1088
1089 1089 def __appendProfile(self, dataOut, nTxs):
1090 1090
1091 1091 if self.__buffer is None:
1092 1092 shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) )
1093 1093 self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype)
1094 1094
1095 1095 ini = dataOut.nHeights * self.__nitems
1096 1096 end = ini + dataOut.nHeights
1097 1097
1098 1098 self.__buffer[:, ini:end] = dataOut.data
1099 1099
1100 1100 self.__nitems += 1
1101 1101
1102 1102 return int(self.__nitems*nTxs)
1103 1103
1104 1104 def __getBuffer(self):
1105 1105
1106 1106 if self.__nitems == int(1./self.__nTxs):
1107 1107
1108 1108 self.__nitems = 0
1109 1109
1110 1110 return self.__buffer.copy()
1111 1111
1112 1112 return None
1113 1113
1114 1114 def __checkInputs(self, dataOut, shape, nTxs):
1115 1115
1116 1116 if shape is None and nTxs is None:
1117 1117 raise ValueError("Reshaper: shape of factor should be defined")
1118 1118
1119 1119 if nTxs:
1120 1120 if nTxs < 0:
1121 1121 raise ValueError("nTxs should be greater than 0")
1122 1122
1123 1123 if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0:
1124 1124 raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)))
1125 1125
1126 1126 shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs]
1127 1127
1128 1128 return shape, nTxs
1129 1129
1130 1130 if len(shape) != 2 and len(shape) != 3:
1131 1131 raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights))
1132 1132
1133 1133 if len(shape) == 2:
1134 1134 shape_tuple = [dataOut.nChannels]
1135 1135 shape_tuple.extend(shape)
1136 1136 else:
1137 1137 shape_tuple = list(shape)
1138 1138
1139 1139 nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles
1140 1140
1141 1141 return shape_tuple, nTxs
1142 1142
1143 1143 def run(self, dataOut, shape=None, nTxs=None):
1144 1144
1145 1145 shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs)
1146 1146
1147 1147 dataOut.flagNoData = True
1148 1148 profileIndex = None
1149 1149
1150 1150 if dataOut.flagDataAsBlock:
1151 1151
1152 1152 dataOut.data = numpy.reshape(dataOut.data, shape_tuple)
1153 1153 dataOut.flagNoData = False
1154 1154
1155 1155 profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1
1156 1156
1157 1157 else:
1158 1158
1159 1159 if self.__nTxs < 1:
1160 1160
1161 1161 self.__appendProfile(dataOut, self.__nTxs)
1162 1162 new_data = self.__getBuffer()
1163 1163
1164 1164 if new_data is not None:
1165 1165 dataOut.data = new_data
1166 1166 dataOut.flagNoData = False
1167 1167
1168 1168 profileIndex = dataOut.profileIndex*nTxs
1169 1169
1170 1170 else:
1171 1171 raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)")
1172 1172
1173 1173 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1174 1174
1175 1175 dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0]
1176 1176
1177 1177 dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs)
1178 1178
1179 1179 dataOut.profileIndex = profileIndex
1180 1180
1181 1181 dataOut.ippSeconds /= self.__nTxs
1182 1182
1183 1183 return dataOut
1184 1184
1185 1185 class SplitProfiles(Operation):
1186 1186
1187 1187 def __init__(self, **kwargs):
1188 1188
1189 1189 Operation.__init__(self, **kwargs)
1190 1190
1191 1191 def run(self, dataOut, n):
1192 1192
1193 1193 dataOut.flagNoData = True
1194 1194 profileIndex = None
1195 1195
1196 1196 if dataOut.flagDataAsBlock:
1197 1197
1198 1198 #nchannels, nprofiles, nsamples
1199 1199 shape = dataOut.data.shape
1200 1200
1201 1201 if shape[2] % n != 0:
1202 1202 raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]))
1203 1203
1204 1204 new_shape = shape[0], shape[1]*n, int(shape[2]/n)
1205 1205
1206 1206 dataOut.data = numpy.reshape(dataOut.data, new_shape)
1207 1207 dataOut.flagNoData = False
1208 1208
1209 1209 profileIndex = int(dataOut.nProfiles/n) - 1
1210 1210
1211 1211 else:
1212 1212
1213 1213 raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)")
1214 1214
1215 1215 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1216 1216
1217 1217 dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0]
1218 1218
1219 1219 dataOut.nProfiles = int(dataOut.nProfiles*n)
1220 1220
1221 1221 dataOut.profileIndex = profileIndex
1222 1222
1223 1223 dataOut.ippSeconds /= n
1224 1224
1225 1225 return dataOut
1226 1226
1227 1227 class CombineProfiles(Operation):
1228 1228 def __init__(self, **kwargs):
1229 1229
1230 1230 Operation.__init__(self, **kwargs)
1231 1231
1232 1232 self.__remData = None
1233 1233 self.__profileIndex = 0
1234 1234
1235 1235 def run(self, dataOut, n):
1236 1236
1237 1237 dataOut.flagNoData = True
1238 1238 profileIndex = None
1239 1239
1240 1240 if dataOut.flagDataAsBlock:
1241 1241
1242 1242 #nchannels, nprofiles, nsamples
1243 1243 shape = dataOut.data.shape
1244 1244 new_shape = shape[0], shape[1]/n, shape[2]*n
1245 1245
1246 1246 if shape[1] % n != 0:
1247 1247 raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]))
1248 1248
1249 1249 dataOut.data = numpy.reshape(dataOut.data, new_shape)
1250 1250 dataOut.flagNoData = False
1251 1251
1252 1252 profileIndex = int(dataOut.nProfiles*n) - 1
1253 1253
1254 1254 else:
1255 1255
1256 1256 #nchannels, nsamples
1257 1257 if self.__remData is None:
1258 1258 newData = dataOut.data
1259 1259 else:
1260 1260 newData = numpy.concatenate((self.__remData, dataOut.data), axis=1)
1261 1261
1262 1262 self.__profileIndex += 1
1263 1263
1264 1264 if self.__profileIndex < n:
1265 1265 self.__remData = newData
1266 1266 #continue
1267 1267 return
1268 1268
1269 1269 self.__profileIndex = 0
1270 1270 self.__remData = None
1271 1271
1272 1272 dataOut.data = newData
1273 1273 dataOut.flagNoData = False
1274 1274
1275 1275 profileIndex = dataOut.profileIndex/n
1276 1276
1277 1277
1278 1278 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1279 1279
1280 1280 dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0]
1281 1281
1282 1282 dataOut.nProfiles = int(dataOut.nProfiles/n)
1283 1283
1284 1284 dataOut.profileIndex = profileIndex
1285 1285
1286 1286 dataOut.ippSeconds *= n
1287 1287
1288 1288 return dataOut
1289 1289
1290 1290 class PulsePair(Operation):
1291 1291 '''
1292 1292 Function PulsePair(Signal Power, Velocity)
1293 1293 The real component of Lag[0] provides Intensity Information
1294 1294 The imag component of Lag[1] Phase provides Velocity Information
1295 1295
1296 1296 Configuration Parameters:
1297 1297 nPRF = Number of Several PRF
1298 1298 theta = Degree Azimuth angel Boundaries
1299 1299
1300 1300 Input:
1301 1301 self.dataOut
1302 1302 lag[N]
1303 1303 Affected:
1304 1304 self.dataOut.spc
1305 1305 '''
1306 1306 isConfig = False
1307 1307 __profIndex = 0
1308 1308 __initime = None
1309 1309 __lastdatatime = None
1310 1310 __buffer = None
1311 1311 noise = None
1312 1312 __dataReady = False
1313 1313 n = None
1314 1314 __nch = 0
1315 1315 __nHeis = 0
1316 1316 removeDC = False
1317 1317 ipp = None
1318 1318 lambda_ = 0
1319 1319
1320 1320 def __init__(self,**kwargs):
1321 1321 Operation.__init__(self,**kwargs)
1322 1322
1323 1323 def setup(self, dataOut, n = None, removeDC=False):
1324 1324 '''
1325 1325 n= Numero de PRF's de entrada
1326 1326 '''
1327 1327 self.__initime = None
1328 1328 ####print("[INICIO]-setup del METODO PULSE PAIR")
1329 1329 self.__lastdatatime = 0
1330 1330 self.__dataReady = False
1331 1331 self.__buffer = 0
1332 1332 self.__profIndex = 0
1333 1333 self.noise = None
1334 1334 self.__nch = dataOut.nChannels
1335 1335 self.__nHeis = dataOut.nHeights
1336 1336 self.removeDC = removeDC
1337 1337 self.lambda_ = 3.0e8/(9345.0e6)
1338 1338 self.ippSec = dataOut.ippSeconds
1339 1339 self.nCohInt = dataOut.nCohInt
1340 1340 ####print("IPPseconds",dataOut.ippSeconds)
1341 1341 ####print("ELVALOR DE n es:", n)
1342 1342 if n == None:
1343 1343 raise ValueError("n should be specified.")
1344 1344
1345 1345 if n != None:
1346 1346 if n<2:
1347 1347 raise ValueError("n should be greater than 2")
1348 1348
1349 1349 self.n = n
1350 1350 self.__nProf = n
1351 1351
1352 1352 self.__buffer = numpy.zeros((dataOut.nChannels,
1353 1353 n,
1354 1354 dataOut.nHeights),
1355 1355 dtype='complex')
1356 1356
1357 1357 def putData(self,data):
1358 1358 '''
1359 1359 Add a profile to he __buffer and increase in one the __profiel Index
1360 1360 '''
1361 1361 self.__buffer[:,self.__profIndex,:]= data
1362 1362 self.__profIndex += 1
1363 1363 return
1364 1364
1365 1365 def pushData(self,dataOut):
1366 1366 '''
1367 1367 Return the PULSEPAIR and the profiles used in the operation
1368 1368 Affected : self.__profileIndex
1369 1369 '''
1370 1370 #----------------- Remove DC-----------------------------------
1371 1371 if self.removeDC==True:
1372 1372 mean = numpy.mean(self.__buffer,1)
1373 1373 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1374 1374 dc= numpy.tile(tmp,[1,self.__nProf,1])
1375 1375 self.__buffer = self.__buffer - dc
1376 1376 #------------------Calculo de Potencia ------------------------
1377 1377 pair0 = self.__buffer*numpy.conj(self.__buffer)
1378 1378 pair0 = pair0.real
1379 1379 lag_0 = numpy.sum(pair0,1)
1380 1380 #-----------------Calculo de Cscp------------------------------ New
1381 1381 cspc_pair01 = self.__buffer[0]*self.__buffer[1]
1382 1382 #------------------Calculo de Ruido x canal--------------------
1383 1383 self.noise = numpy.zeros(self.__nch)
1384 1384 for i in range(self.__nch):
1385 1385 daux = numpy.sort(pair0[i,:,:],axis= None)
1386 1386 self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
1387 1387
1388 1388 self.noise = self.noise.reshape(self.__nch,1)
1389 1389 self.noise = numpy.tile(self.noise,[1,self.__nHeis])
1390 1390 noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
1391 1391 noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
1392 1392 #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N--
1393 1393 #------------------ P= S+N ,P=lag_0/N ---------------------------------
1394 1394 #-------------------- Power --------------------------------------------------
1395 1395 data_power = lag_0/(self.n*self.nCohInt)
1396 1396 #--------------------CCF------------------------------------------------------
1397 1397 data_ccf =numpy.sum(cspc_pair01,axis=0)/(self.n*self.nCohInt)
1398 1398 #------------------ Senal --------------------------------------------------
1399 1399 data_intensity = pair0 - noise_buffer
1400 1400 data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
1401 1401 #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
1402 1402 for i in range(self.__nch):
1403 1403 for j in range(self.__nHeis):
1404 1404 if data_intensity[i][j] < 0:
1405 1405 data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
1406 1406
1407 1407 #----------------- Calculo de Frecuencia y Velocidad doppler--------
1408 1408 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1409 1409 lag_1 = numpy.sum(pair1,1)
1410 1410 data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
1411 1411 data_velocity = (self.lambda_/2.0)*data_freq
1412 1412
1413 1413 #---------------- Potencia promedio estimada de la Senal-----------
1414 1414 lag_0 = lag_0/self.n
1415 1415 S = lag_0-self.noise
1416 1416
1417 1417 #---------------- Frecuencia Doppler promedio ---------------------
1418 1418 lag_1 = lag_1/(self.n-1)
1419 1419 R1 = numpy.abs(lag_1)
1420 1420
1421 1421 #---------------- Calculo del SNR----------------------------------
1422 1422 data_snrPP = S/self.noise
1423 1423 for i in range(self.__nch):
1424 1424 for j in range(self.__nHeis):
1425 1425 if data_snrPP[i][j] < 1.e-20:
1426 1426 data_snrPP[i][j] = 1.e-20
1427 1427
1428 1428 #----------------- Calculo del ancho espectral ----------------------
1429 1429 L = S/R1
1430 1430 L = numpy.where(L<0,1,L)
1431 1431 L = numpy.log(L)
1432 1432 tmp = numpy.sqrt(numpy.absolute(L))
1433 1433 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
1434 1434 n = self.__profIndex
1435 1435
1436 1436 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1437 1437 self.__profIndex = 0
1438 1438 return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,data_ccf,n
1439 1439
1440 1440
1441 1441 def pulsePairbyProfiles(self,dataOut):
1442 1442
1443 1443 self.__dataReady = False
1444 1444 data_power = None
1445 1445 data_intensity = None
1446 1446 data_velocity = None
1447 1447 data_specwidth = None
1448 1448 data_snrPP = None
1449 1449 data_ccf = None
1450 1450 self.putData(data=dataOut.data)
1451 1451 if self.__profIndex == self.n:
1452 1452 data_power,data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, n = self.pushData(dataOut=dataOut)
1453 1453 self.__dataReady = True
1454 1454
1455 1455 return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf
1456 1456
1457 1457
1458 1458 def pulsePairOp(self, dataOut, datatime= None):
1459 1459
1460 1460 if self.__initime == None:
1461 1461 self.__initime = datatime
1462 1462 data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf = self.pulsePairbyProfiles(dataOut)
1463 1463 self.__lastdatatime = datatime
1464 1464
1465 1465 if data_power is None:
1466 1466 return None, None, None,None,None,None,None
1467 1467
1468 1468 avgdatatime = self.__initime
1469 1469 deltatime = datatime - self.__lastdatatime
1470 1470 self.__initime = datatime
1471 1471
1472 1472 return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf, avgdatatime
1473 1473
1474 1474 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1475 1475 #print("hey")
1476 1476 #print(dataOut.data.shape)
1477 1477 #exit(1)
1478 1478 #print(self.__profIndex)
1479 1479 if not self.isConfig:
1480 1480 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1481 1481 self.isConfig = True
1482 1482 data_power, data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1483 1483 dataOut.flagNoData = True
1484 1484
1485 1485 if self.__dataReady:
1486 1486 ###print("READY ----------------------------------")
1487 1487 dataOut.nCohInt *= self.n
1488 1488 dataOut.dataPP_POW = data_intensity # S
1489 1489 dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO
1490 1490 dataOut.dataPP_DOP = data_velocity
1491 1491 dataOut.dataPP_SNR = data_snrPP
1492 1492 dataOut.dataPP_WIDTH = data_specwidth
1493 1493 dataOut.dataPP_CCF = data_ccf
1494 1494 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1495 1495 dataOut.nProfiles = int(dataOut.nProfiles/n)
1496 1496 dataOut.utctime = avgdatatime
1497 1497 dataOut.flagNoData = False
1498 1498 return dataOut
1499 1499
1500 1500 class PulsePair_vRF(Operation):
1501 1501 '''
1502 1502 Function PulsePair(Signal Power, Velocity)
1503 1503 The real component of Lag[0] provides Intensity Information
1504 1504 The imag component of Lag[1] Phase provides Velocity Information
1505 1505
1506 1506 Configuration Parameters:
1507 1507 nPRF = Number of Several PRF
1508 1508 theta = Degree Azimuth angel Boundaries
1509 1509
1510 1510 Input:
1511 1511 self.dataOut
1512 1512 lag[N]
1513 1513 Affected:
1514 1514 self.dataOut.spc
1515 1515 '''
1516 1516 isConfig = False
1517 1517 __profIndex = 0
1518 1518 __initime = None
1519 1519 __lastdatatime = None
1520 1520 __buffer = None
1521 1521 noise = None
1522 1522 __dataReady = False
1523 1523 n = None
1524 1524 __nch = 0
1525 1525 __nHeis = 0
1526 1526 removeDC = False
1527 1527 ipp = None
1528 1528 lambda_ = 0
1529 1529
1530 1530 def __init__(self,**kwargs):
1531 1531 Operation.__init__(self,**kwargs)
1532 1532
1533 1533 def setup(self, dataOut, n = None, removeDC=False):
1534 1534 '''
1535 1535 n= Numero de PRF's de entrada
1536 1536 '''
1537 1537 self.__initime = None
1538 1538 ####print("[INICIO]-setup del METODO PULSE PAIR")
1539 1539 self.__lastdatatime = 0
1540 1540 self.__dataReady = False
1541 1541 self.__buffer = 0
1542 1542 self.__profIndex = 0
1543 1543 self.noise = None
1544 1544 self.__nch = dataOut.nChannels
1545 1545 self.__nHeis = dataOut.nHeights
1546 1546 self.removeDC = removeDC
1547 1547 self.lambda_ = 3.0e8/(9345.0e6)
1548 1548 self.ippSec = dataOut.ippSeconds
1549 1549 self.nCohInt = dataOut.nCohInt
1550 1550 ####print("IPPseconds",dataOut.ippSeconds)
1551 1551 ####print("ELVALOR DE n es:", n)
1552 1552 if n == None:
1553 1553 raise ValueError("n should be specified.")
1554 1554
1555 1555 if n != None:
1556 1556 if n<2:
1557 1557 raise ValueError("n should be greater than 2")
1558 1558
1559 1559 self.n = n
1560 1560 self.__nProf = n
1561 1561
1562 1562 self.__buffer = numpy.zeros((dataOut.nChannels,
1563 1563 n,
1564 1564 dataOut.nHeights),
1565 1565 dtype='complex')
1566 1566
1567 1567 def putData(self,data):
1568 1568 '''
1569 1569 Add a profile to he __buffer and increase in one the __profiel Index
1570 1570 '''
1571 1571 self.__buffer[:,self.__profIndex,:]= data
1572 1572 self.__profIndex += 1
1573 1573 return
1574 1574
1575 1575 def putDataByBlock(self,data,n):
1576 1576 '''
1577 1577 Add a profile to he __buffer and increase in one the __profiel Index
1578 1578 '''
1579 1579 self.__buffer[:]= data
1580 1580 self.__profIndex = n
1581 1581 return
1582 1582
1583 1583 def pushData(self,dataOut):
1584 1584 '''
1585 1585 Return the PULSEPAIR and the profiles used in the operation
1586 1586 Affected : self.__profileIndex
1587 NOTA:
1588 1.) Calculo de Potencia
1589 PdBm = 10 *log10(10*(I**2 + Q**2)) Unidades dBm
1590 self.__buffer = I + Qj
1591
1592 2.) Data decodificada
1593 Se toma como referencia el factor estimado en jrodata.py y se adiciona
1594 en PulsePair solo pwcode.
1595 if self.flagDecodeData:
1596 pwcode = numpy.sum(self.code[0]**2)
1597 normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter
1598 3.) hildebrand_sekhon
1599 Se pasa el arreglo de Potencia pair0 que contiene canales perfiles y altura dividiendole entre el
1600 factor pwcode.
1601 4.) data_power
1602 Este parametro esta dividido por los factores: nro. perfiles, nro intCoh y pwcode
1603 5.) lag_0
1604 Este parametro esta dividido por los factores: nro. perfiles, nro intCoh y pwcode
1605 Igual a data_power
1606
1587 1607 '''
1588 1608 #----------------- Remove DC-----------------------------------
1589 1609 if self.removeDC==True:
1590 1610 mean = numpy.mean(self.__buffer,1)
1591 1611 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1592 1612 dc= numpy.tile(tmp,[1,self.__nProf,1])
1593 1613 self.__buffer = self.__buffer - dc
1594 1614 #------------------Calculo de Potencia ------------------------
1595 pair0 = self.__buffer*numpy.conj(self.__buffer)
1615 pair0 = self.__buffer*numpy.conj(self.__buffer) * 10.0
1596 1616 pair0 = pair0.real
1597 1617 lag_0 = numpy.sum(pair0,1)
1598 1618 #-----------------Calculo de Cscp------------------------------ New
1599 1619 cspc_pair01 = self.__buffer[0]*self.__buffer[1]
1620 #------------------ Data Decodificada------------------------
1621 pwcode = 1
1622 if dataOut.flagDecodeData == True:
1623 pwcode = numpy.sum(dataOut.code[0]**2)
1600 1624 #------------------Calculo de Ruido x canal--------------------
1601 1625 self.noise = numpy.zeros(self.__nch)
1602 1626 for i in range(self.__nch):
1603 1627 daux = numpy.sort(pair0[i,:,:],axis= None)
1604 self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
1628 self.noise[i]=hildebrand_sekhon( daux/pwcode ,self.nCohInt)
1605 1629
1606 1630 self.noise = self.noise.reshape(self.__nch,1)
1607 1631 self.noise = numpy.tile(self.noise,[1,self.__nHeis])
1608 1632 noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
1609 1633 noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
1610 1634 #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N--
1611 1635 #------------------ P= S+N ,P=lag_0/N ---------------------------------
1612 1636 #-------------------- Power --------------------------------------------------
1613 data_power = lag_0/(self.n*self.nCohInt)
1637 data_power = lag_0/(self.n*self.nCohInt*pwcode)
1614 1638 #--------------------CCF------------------------------------------------------
1615 1639 data_ccf =numpy.sum(cspc_pair01,axis=0)/(self.n*self.nCohInt)
1616 1640 #------------------ Senal --------------------------------------------------
1617 1641 data_intensity = pair0 - noise_buffer
1618 1642 data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
1619 1643 #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
1620 1644 for i in range(self.__nch):
1621 1645 for j in range(self.__nHeis):
1622 1646 if data_intensity[i][j] < 0:
1623 1647 data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
1624 1648
1625 1649 #----------------- Calculo de Frecuencia y Velocidad doppler--------
1626 1650 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1627 1651 lag_1 = numpy.sum(pair1,1)
1628 1652 data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
1629 1653 data_velocity = (self.lambda_/2.0)*data_freq
1630 1654
1631 1655 #---------------- Potencia promedio estimada de la Senal-----------
1632 lag_0 = lag_0/self.n
1656 lag_0 = data_power
1633 1657 S = lag_0-self.noise
1634 1658
1635 1659 #---------------- Frecuencia Doppler promedio ---------------------
1636 1660 lag_1 = lag_1/(self.n-1)
1637 1661 R1 = numpy.abs(lag_1)
1638 1662
1639 1663 #---------------- Calculo del SNR----------------------------------
1640 1664 data_snrPP = S/self.noise
1641 1665 for i in range(self.__nch):
1642 1666 for j in range(self.__nHeis):
1643 1667 if data_snrPP[i][j] < 1.e-20:
1644 1668 data_snrPP[i][j] = 1.e-20
1645 1669
1646 1670 #----------------- Calculo del ancho espectral ----------------------
1647 1671 L = S/R1
1648 1672 L = numpy.where(L<0,1,L)
1649 1673 L = numpy.log(L)
1650 1674 tmp = numpy.sqrt(numpy.absolute(L))
1651 1675 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
1652 1676 n = self.__profIndex
1653 1677
1654 1678 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1655 1679 self.__profIndex = 0
1656 1680 return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,data_ccf,n
1657 1681
1658 1682
1659 1683 def pulsePairbyProfiles(self,dataOut,n):
1660 1684
1661 1685 self.__dataReady = False
1662 1686 data_power = None
1663 1687 data_intensity = None
1664 1688 data_velocity = None
1665 1689 data_specwidth = None
1666 1690 data_snrPP = None
1667 1691 data_ccf = None
1668 1692
1669 1693 if dataOut.flagDataAsBlock:
1670 1694 self.putDataByBlock(data=dataOut.data,n=n)
1671 1695 else:
1672 1696 self.putData(data=dataOut.data)
1673 1697 if self.__profIndex == self.n:
1674 1698 data_power,data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, n = self.pushData(dataOut=dataOut)
1675 1699 self.__dataReady = True
1676 1700
1677 1701 return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf
1678 1702
1679 1703
1680 1704 def pulsePairOp(self, dataOut, n, datatime= None):
1681 1705
1682 1706 if self.__initime == None:
1683 1707 self.__initime = datatime
1684 1708 data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf = self.pulsePairbyProfiles(dataOut,n)
1685 1709 self.__lastdatatime = datatime
1686 1710
1687 1711 if data_power is None:
1688 1712 return None, None, None,None,None,None,None
1689 1713
1690 1714 avgdatatime = self.__initime
1691 1715 deltatime = datatime - self.__lastdatatime
1692 1716 self.__initime = datatime
1693 1717
1694 1718 return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf, avgdatatime
1695 1719
1696 1720 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1697 1721
1698 1722 if dataOut.flagDataAsBlock:
1699 1723 n = int(dataOut.nProfiles)
1700 1724 #print("n",n)
1701 1725
1702 1726 if not self.isConfig:
1703 1727 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1704 1728 self.isConfig = True
1705 1729
1706 1730
1707 1731 data_power, data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, avgdatatime = self.pulsePairOp(dataOut, n, dataOut.utctime)
1708 1732
1709 1733
1710 1734 dataOut.flagNoData = True
1711 1735
1712 1736 if self.__dataReady:
1713 1737 ###print("READY ----------------------------------")
1714 1738 dataOut.nCohInt *= self.n
1715 1739 dataOut.dataPP_POW = data_intensity # S
1716 1740 dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO
1717 1741 dataOut.dataPP_DOP = data_velocity
1718 1742 dataOut.dataPP_SNR = data_snrPP
1719 1743 dataOut.dataPP_WIDTH = data_specwidth
1720 1744 dataOut.dataPP_CCF = data_ccf
1721 1745 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1722 1746 dataOut.nProfiles = int(dataOut.nProfiles/n)
1723 1747 dataOut.utctime = avgdatatime
1724 1748 dataOut.flagNoData = False
1725 1749 return dataOut
1726 1750
1727 1751 # import collections
1728 1752 # from scipy.stats import mode
1729 1753 #
1730 1754 # class Synchronize(Operation):
1731 1755 #
1732 1756 # isConfig = False
1733 1757 # __profIndex = 0
1734 1758 #
1735 1759 # def __init__(self, **kwargs):
1736 1760 #
1737 1761 # Operation.__init__(self, **kwargs)
1738 1762 # # self.isConfig = False
1739 1763 # self.__powBuffer = None
1740 1764 # self.__startIndex = 0
1741 1765 # self.__pulseFound = False
1742 1766 #
1743 1767 # def __findTxPulse(self, dataOut, channel=0, pulse_with = None):
1744 1768 #
1745 1769 # #Read data
1746 1770 #
1747 1771 # powerdB = dataOut.getPower(channel = channel)
1748 1772 # noisedB = dataOut.getNoise(channel = channel)[0]
1749 1773 #
1750 1774 # self.__powBuffer.extend(powerdB.flatten())
1751 1775 #
1752 1776 # dataArray = numpy.array(self.__powBuffer)
1753 1777 #
1754 1778 # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same")
1755 1779 #
1756 1780 # maxValue = numpy.nanmax(filteredPower)
1757 1781 #
1758 1782 # if maxValue < noisedB + 10:
1759 1783 # #No se encuentra ningun pulso de transmision
1760 1784 # return None
1761 1785 #
1762 1786 # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0]
1763 1787 #
1764 1788 # if len(maxValuesIndex) < 2:
1765 1789 # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX
1766 1790 # return None
1767 1791 #
1768 1792 # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples
1769 1793 #
1770 1794 # #Seleccionar solo valores con un espaciamiento de nSamples
1771 1795 # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex)
1772 1796 #
1773 1797 # if len(pulseIndex) < 2:
1774 1798 # #Solo se encontro un pulso de transmision con ancho mayor a 1
1775 1799 # return None
1776 1800 #
1777 1801 # spacing = pulseIndex[1:] - pulseIndex[:-1]
1778 1802 #
1779 1803 # #remover senales que se distancien menos de 10 unidades o muestras
1780 1804 # #(No deberian existir IPP menor a 10 unidades)
1781 1805 #
1782 1806 # realIndex = numpy.where(spacing > 10 )[0]
1783 1807 #
1784 1808 # if len(realIndex) < 2:
1785 1809 # #Solo se encontro un pulso de transmision con ancho mayor a 1
1786 1810 # return None
1787 1811 #
1788 1812 # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs)
1789 1813 # realPulseIndex = pulseIndex[realIndex]
1790 1814 #
1791 1815 # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0]
1792 1816 #
1793 1817 # print "IPP = %d samples" %period
1794 1818 #
1795 1819 # self.__newNSamples = dataOut.nHeights #int(period)
1796 1820 # self.__startIndex = int(realPulseIndex[0])
1797 1821 #
1798 1822 # return 1
1799 1823 #
1800 1824 #
1801 1825 # def setup(self, nSamples, nChannels, buffer_size = 4):
1802 1826 #
1803 1827 # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float),
1804 1828 # maxlen = buffer_size*nSamples)
1805 1829 #
1806 1830 # bufferList = []
1807 1831 #
1808 1832 # for i in range(nChannels):
1809 1833 # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN,
1810 1834 # maxlen = buffer_size*nSamples)
1811 1835 #
1812 1836 # bufferList.append(bufferByChannel)
1813 1837 #
1814 1838 # self.__nSamples = nSamples
1815 1839 # self.__nChannels = nChannels
1816 1840 # self.__bufferList = bufferList
1817 1841 #
1818 1842 # def run(self, dataOut, channel = 0):
1819 1843 #
1820 1844 # if not self.isConfig:
1821 1845 # nSamples = dataOut.nHeights
1822 1846 # nChannels = dataOut.nChannels
1823 1847 # self.setup(nSamples, nChannels)
1824 1848 # self.isConfig = True
1825 1849 #
1826 1850 # #Append new data to internal buffer
1827 1851 # for thisChannel in range(self.__nChannels):
1828 1852 # bufferByChannel = self.__bufferList[thisChannel]
1829 1853 # bufferByChannel.extend(dataOut.data[thisChannel])
1830 1854 #
1831 1855 # if self.__pulseFound:
1832 1856 # self.__startIndex -= self.__nSamples
1833 1857 #
1834 1858 # #Finding Tx Pulse
1835 1859 # if not self.__pulseFound:
1836 1860 # indexFound = self.__findTxPulse(dataOut, channel)
1837 1861 #
1838 1862 # if indexFound == None:
1839 1863 # dataOut.flagNoData = True
1840 1864 # return
1841 1865 #
1842 1866 # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex)
1843 1867 # self.__pulseFound = True
1844 1868 # self.__startIndex = indexFound
1845 1869 #
1846 1870 # #If pulse was found ...
1847 1871 # for thisChannel in range(self.__nChannels):
1848 1872 # bufferByChannel = self.__bufferList[thisChannel]
1849 1873 # #print self.__startIndex
1850 1874 # x = numpy.array(bufferByChannel)
1851 1875 # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples]
1852 1876 #
1853 1877 # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1854 1878 # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight
1855 1879 # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6
1856 1880 #
1857 1881 # dataOut.data = self.__arrayBuffer
1858 1882 #
1859 1883 # self.__startIndex += self.__newNSamples
1860 1884 #
1861 1885 # return
General Comments 0
You need to be logged in to leave comments. Login now