@@ -1,1667 +1,1667 | |||||
1 | import sys |
|
1 | import sys | |
2 | import numpy |
|
2 | import numpy | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy import cSchain |
|
4 | from schainpy import cSchain | |
5 | from jroproc_base import ProcessingUnit, Operation |
|
5 | from jroproc_base import ProcessingUnit, Operation | |
6 | from schainpy.model.data.jrodata import Voltage |
|
6 | from schainpy.model.data.jrodata import Voltage | |
7 | from time import time |
|
7 | from time import time | |
8 |
|
8 | |||
9 | import math |
|
9 | import math | |
10 |
|
10 | |||
11 | def rep_seq(x, rep=10): |
|
11 | def rep_seq(x, rep=10): | |
12 | L = len(x) * rep |
|
12 | L = len(x) * rep | |
13 | res = numpy.zeros(L, dtype=x.dtype) |
|
13 | res = numpy.zeros(L, dtype=x.dtype) | |
14 | idx = numpy.arange(len(x)) * rep |
|
14 | idx = numpy.arange(len(x)) * rep | |
15 | for i in numpy.arange(rep): |
|
15 | for i in numpy.arange(rep): | |
16 | res[idx + i] = x |
|
16 | res[idx + i] = x | |
17 | return(res) |
|
17 | return(res) | |
18 |
|
18 | |||
19 |
|
19 | |||
20 | def create_pseudo_random_code(clen=10000, seed=0): |
|
20 | def create_pseudo_random_code(clen=10000, seed=0): | |
21 | """ |
|
21 | """ | |
22 | seed is a way of reproducing the random code without |
|
22 | seed is a way of reproducing the random code without | |
23 | having to store all actual codes. the seed can then |
|
23 | having to store all actual codes. the seed can then | |
24 | act as a sort of station_id. |
|
24 | act as a sort of station_id. | |
25 |
|
25 | |||
26 | """ |
|
26 | """ | |
27 | numpy.random.seed(seed) |
|
27 | numpy.random.seed(seed) | |
28 | phases = numpy.array( |
|
28 | phases = numpy.array( | |
29 | numpy.exp(1.0j * 2.0 * math.pi * numpy.random.random(clen)), |
|
29 | numpy.exp(1.0j * 2.0 * math.pi * numpy.random.random(clen)), | |
30 | dtype=numpy.complex64, |
|
30 | dtype=numpy.complex64, | |
31 | ) |
|
31 | ) | |
32 | return(phases) |
|
32 | return(phases) | |
33 |
|
33 | |||
34 |
|
34 | |||
35 | def periodic_convolution_matrix(envelope, rmin=0, rmax=100): |
|
35 | def periodic_convolution_matrix(envelope, rmin=0, rmax=100): | |
36 | """ |
|
36 | """ | |
37 | we imply that the number of measurements is equal to the number of elements |
|
37 | we imply that the number of measurements is equal to the number of elements | |
38 | in code |
|
38 | in code | |
39 |
|
39 | |||
40 | """ |
|
40 | """ | |
41 | L = len(envelope) |
|
41 | L = len(envelope) | |
42 | ridx = numpy.arange(rmin, rmax) |
|
42 | ridx = numpy.arange(rmin, rmax) | |
43 | A = numpy.zeros([L, rmax-rmin], dtype=numpy.complex64) |
|
43 | A = numpy.zeros([L, rmax-rmin], dtype=numpy.complex64) | |
44 | for i in numpy.arange(L): |
|
44 | for i in numpy.arange(L): | |
45 | A[i, :] = envelope[(i-ridx) % L] |
|
45 | A[i, :] = envelope[(i-ridx) % L] | |
46 | result = {} |
|
46 | result = {} | |
47 | result['A'] = A |
|
47 | result['A'] = A | |
48 | result['ridx'] = ridx |
|
48 | result['ridx'] = ridx | |
49 | return(result) |
|
49 | return(result) | |
50 |
|
50 | |||
51 |
|
51 | |||
52 | B_cache = 0 |
|
52 | B_cache = 0 | |
53 | r_cache = 0 |
|
53 | r_cache = 0 | |
54 | B_cached = False |
|
54 | B_cached = False | |
55 | def create_estimation_matrix(code, rmin=0, rmax=1000, cache=True): |
|
55 | def create_estimation_matrix(code, rmin=0, rmax=1000, cache=True): | |
56 | global B_cache |
|
56 | global B_cache | |
57 | global r_cache |
|
57 | global r_cache | |
58 | global B_cached |
|
58 | global B_cached | |
59 |
|
59 | |||
60 | if not cache or not B_cached: |
|
60 | if not cache or not B_cached: | |
61 | r_cache = periodic_convolution_matrix( |
|
61 | r_cache = periodic_convolution_matrix( | |
62 | envelope=code, rmin=rmin, rmax=rmax, |
|
62 | envelope=code, rmin=rmin, rmax=rmax, | |
63 | ) |
|
63 | ) | |
64 | A = r_cache['A'] |
|
64 | A = r_cache['A'] | |
65 | Ah = numpy.transpose(numpy.conjugate(A)) |
|
65 | Ah = numpy.transpose(numpy.conjugate(A)) | |
66 | B_cache = numpy.dot(numpy.linalg.inv(numpy.dot(Ah, A)), Ah) |
|
66 | B_cache = numpy.dot(numpy.linalg.inv(numpy.dot(Ah, A)), Ah) | |
67 | r_cache['B'] = B_cache |
|
67 | r_cache['B'] = B_cache | |
68 | B_cached = True |
|
68 | B_cached = True | |
69 | return(r_cache) |
|
69 | return(r_cache) | |
70 | else: |
|
70 | else: | |
71 | return(r_cache) |
|
71 | return(r_cache) | |
72 |
|
72 | |||
73 | class VoltageProc(ProcessingUnit): |
|
73 | class VoltageProc(ProcessingUnit): | |
74 |
|
74 | |||
75 |
|
75 | |||
76 | def __init__(self, **kwargs): |
|
76 | def __init__(self, **kwargs): | |
77 |
|
77 | |||
78 | ProcessingUnit.__init__(self, **kwargs) |
|
78 | ProcessingUnit.__init__(self, **kwargs) | |
79 |
|
79 | |||
80 | # self.objectDict = {} |
|
80 | # self.objectDict = {} | |
81 | self.dataOut = Voltage() |
|
81 | self.dataOut = Voltage() | |
82 | self.flip = 1 |
|
82 | self.flip = 1 | |
83 |
|
83 | |||
84 | def run(self): |
|
84 | def run(self): | |
85 | if self.dataIn.type == 'AMISR': |
|
85 | if self.dataIn.type == 'AMISR': | |
86 | self.__updateObjFromAmisrInput() |
|
86 | self.__updateObjFromAmisrInput() | |
87 |
|
87 | |||
88 | if self.dataIn.type == 'Voltage': |
|
88 | if self.dataIn.type == 'Voltage': | |
89 | self.dataOut.copy(self.dataIn) |
|
89 | self.dataOut.copy(self.dataIn) | |
90 |
|
90 | |||
91 | # self.dataOut.copy(self.dataIn) |
|
91 | # self.dataOut.copy(self.dataIn) | |
92 |
|
92 | |||
93 | def __updateObjFromAmisrInput(self): |
|
93 | def __updateObjFromAmisrInput(self): | |
94 |
|
94 | |||
95 | self.dataOut.timeZone = self.dataIn.timeZone |
|
95 | self.dataOut.timeZone = self.dataIn.timeZone | |
96 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
96 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
97 | self.dataOut.errorCount = self.dataIn.errorCount |
|
97 | self.dataOut.errorCount = self.dataIn.errorCount | |
98 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
98 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
99 |
|
99 | |||
100 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
100 | self.dataOut.flagNoData = self.dataIn.flagNoData | |
101 | self.dataOut.data = self.dataIn.data |
|
101 | self.dataOut.data = self.dataIn.data | |
102 | self.dataOut.utctime = self.dataIn.utctime |
|
102 | self.dataOut.utctime = self.dataIn.utctime | |
103 | self.dataOut.channelList = self.dataIn.channelList |
|
103 | self.dataOut.channelList = self.dataIn.channelList | |
104 | # self.dataOut.timeInterval = self.dataIn.timeInterval |
|
104 | # self.dataOut.timeInterval = self.dataIn.timeInterval | |
105 | self.dataOut.heightList = self.dataIn.heightList |
|
105 | self.dataOut.heightList = self.dataIn.heightList | |
106 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
106 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
107 |
|
107 | |||
108 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
108 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
109 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
109 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
110 | self.dataOut.frequency = self.dataIn.frequency |
|
110 | self.dataOut.frequency = self.dataIn.frequency | |
111 |
|
111 | |||
112 | self.dataOut.azimuth = self.dataIn.azimuth |
|
112 | self.dataOut.azimuth = self.dataIn.azimuth | |
113 | self.dataOut.zenith = self.dataIn.zenith |
|
113 | self.dataOut.zenith = self.dataIn.zenith | |
114 |
|
114 | |||
115 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
115 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
116 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
116 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
117 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
117 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
118 | # |
|
118 | # | |
119 | # pass# |
|
119 | # pass# | |
120 | # |
|
120 | # | |
121 | # def init(self): |
|
121 | # def init(self): | |
122 | # |
|
122 | # | |
123 | # |
|
123 | # | |
124 | # if self.dataIn.type == 'AMISR': |
|
124 | # if self.dataIn.type == 'AMISR': | |
125 | # self.__updateObjFromAmisrInput() |
|
125 | # self.__updateObjFromAmisrInput() | |
126 | # |
|
126 | # | |
127 | # if self.dataIn.type == 'Voltage': |
|
127 | # if self.dataIn.type == 'Voltage': | |
128 | # self.dataOut.copy(self.dataIn) |
|
128 | # self.dataOut.copy(self.dataIn) | |
129 | # # No necesita copiar en cada init() los atributos de dataIn |
|
129 | # # No necesita copiar en cada init() los atributos de dataIn | |
130 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
130 | # # la copia deberia hacerse por cada nuevo bloque de datos | |
131 |
|
131 | |||
132 | def selectChannels(self, channelList): |
|
132 | def selectChannels(self, channelList): | |
133 |
|
133 | |||
134 | channelIndexList = [] |
|
134 | channelIndexList = [] | |
135 |
|
135 | |||
136 | for channel in channelList: |
|
136 | for channel in channelList: | |
137 | if channel not in self.dataOut.channelList: |
|
137 | if channel not in self.dataOut.channelList: | |
138 | raise ValueError, "Channel %d is not in %s" %(channel, str(self.dataOut.channelList)) |
|
138 | raise ValueError, "Channel %d is not in %s" %(channel, str(self.dataOut.channelList)) | |
139 |
|
139 | |||
140 | index = self.dataOut.channelList.index(channel) |
|
140 | index = self.dataOut.channelList.index(channel) | |
141 | channelIndexList.append(index) |
|
141 | channelIndexList.append(index) | |
142 |
|
142 | |||
143 | self.selectChannelsByIndex(channelIndexList) |
|
143 | self.selectChannelsByIndex(channelIndexList) | |
144 |
|
144 | |||
145 | def selectChannelsByIndex(self, channelIndexList): |
|
145 | def selectChannelsByIndex(self, channelIndexList): | |
146 | """ |
|
146 | """ | |
147 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
147 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
148 |
|
148 | |||
149 | Input: |
|
149 | Input: | |
150 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
150 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
151 |
|
151 | |||
152 | Affected: |
|
152 | Affected: | |
153 | self.dataOut.data |
|
153 | self.dataOut.data | |
154 | self.dataOut.channelIndexList |
|
154 | self.dataOut.channelIndexList | |
155 | self.dataOut.nChannels |
|
155 | self.dataOut.nChannels | |
156 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
156 | self.dataOut.m_ProcessingHeader.totalSpectra | |
157 | self.dataOut.systemHeaderObj.numChannels |
|
157 | self.dataOut.systemHeaderObj.numChannels | |
158 | self.dataOut.m_ProcessingHeader.blockSize |
|
158 | self.dataOut.m_ProcessingHeader.blockSize | |
159 |
|
159 | |||
160 | Return: |
|
160 | Return: | |
161 | None |
|
161 | None | |
162 | """ |
|
162 | """ | |
163 |
|
163 | |||
164 | for channelIndex in channelIndexList: |
|
164 | for channelIndex in channelIndexList: | |
165 | if channelIndex not in self.dataOut.channelIndexList: |
|
165 | if channelIndex not in self.dataOut.channelIndexList: | |
166 | print channelIndexList |
|
166 | print channelIndexList | |
167 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
167 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | |
168 |
|
168 | |||
169 | if self.dataOut.flagDataAsBlock: |
|
169 | if self.dataOut.flagDataAsBlock: | |
170 | """ |
|
170 | """ | |
171 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
171 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
172 | """ |
|
172 | """ | |
173 | data = self.dataOut.data[channelIndexList,:,:] |
|
173 | data = self.dataOut.data[channelIndexList,:,:] | |
174 | else: |
|
174 | else: | |
175 | data = self.dataOut.data[channelIndexList,:] |
|
175 | data = self.dataOut.data[channelIndexList,:] | |
176 |
|
176 | |||
177 | self.dataOut.data = data |
|
177 | self.dataOut.data = data | |
178 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
178 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
179 | # self.dataOut.nChannels = nChannels |
|
179 | # self.dataOut.nChannels = nChannels | |
180 |
|
180 | |||
181 | return 1 |
|
181 | return 1 | |
182 |
|
182 | |||
183 | def selectHeights(self, minHei=None, maxHei=None): |
|
183 | def selectHeights(self, minHei=None, maxHei=None): | |
184 | """ |
|
184 | """ | |
185 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
185 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
186 | minHei <= height <= maxHei |
|
186 | minHei <= height <= maxHei | |
187 |
|
187 | |||
188 | Input: |
|
188 | Input: | |
189 | minHei : valor minimo de altura a considerar |
|
189 | minHei : valor minimo de altura a considerar | |
190 | maxHei : valor maximo de altura a considerar |
|
190 | maxHei : valor maximo de altura a considerar | |
191 |
|
191 | |||
192 | Affected: |
|
192 | Affected: | |
193 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
193 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
194 |
|
194 | |||
195 | Return: |
|
195 | Return: | |
196 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
196 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
197 | """ |
|
197 | """ | |
198 |
|
198 | |||
199 | if minHei == None: |
|
199 | if minHei == None: | |
200 | minHei = self.dataOut.heightList[0] |
|
200 | minHei = self.dataOut.heightList[0] | |
201 |
|
201 | |||
202 | if maxHei == None: |
|
202 | if maxHei == None: | |
203 | maxHei = self.dataOut.heightList[-1] |
|
203 | maxHei = self.dataOut.heightList[-1] | |
204 |
|
204 | |||
205 | if (minHei < self.dataOut.heightList[0]): |
|
205 | if (minHei < self.dataOut.heightList[0]): | |
206 | minHei = self.dataOut.heightList[0] |
|
206 | minHei = self.dataOut.heightList[0] | |
207 |
|
207 | |||
208 | if (maxHei > self.dataOut.heightList[-1]): |
|
208 | if (maxHei > self.dataOut.heightList[-1]): | |
209 | maxHei = self.dataOut.heightList[-1] |
|
209 | maxHei = self.dataOut.heightList[-1] | |
210 |
|
210 | |||
211 | minIndex = 0 |
|
211 | minIndex = 0 | |
212 | maxIndex = 0 |
|
212 | maxIndex = 0 | |
213 | heights = self.dataOut.heightList |
|
213 | heights = self.dataOut.heightList | |
214 |
|
214 | |||
215 | inda = numpy.where(heights >= minHei) |
|
215 | inda = numpy.where(heights >= minHei) | |
216 | indb = numpy.where(heights <= maxHei) |
|
216 | indb = numpy.where(heights <= maxHei) | |
217 |
|
217 | |||
218 | try: |
|
218 | try: | |
219 | minIndex = inda[0][0] |
|
219 | minIndex = inda[0][0] | |
220 | except: |
|
220 | except: | |
221 | minIndex = 0 |
|
221 | minIndex = 0 | |
222 |
|
222 | |||
223 | try: |
|
223 | try: | |
224 | maxIndex = indb[0][-1] |
|
224 | maxIndex = indb[0][-1] | |
225 | except: |
|
225 | except: | |
226 | maxIndex = len(heights) |
|
226 | maxIndex = len(heights) | |
227 |
|
227 | |||
228 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
228 | self.selectHeightsByIndex(minIndex, maxIndex) | |
229 |
|
229 | |||
230 | return 1 |
|
230 | return 1 | |
231 |
|
231 | |||
232 |
|
232 | |||
233 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
233 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
234 | """ |
|
234 | """ | |
235 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
235 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
236 | minIndex <= index <= maxIndex |
|
236 | minIndex <= index <= maxIndex | |
237 |
|
237 | |||
238 | Input: |
|
238 | Input: | |
239 | minIndex : valor de indice minimo de altura a considerar |
|
239 | minIndex : valor de indice minimo de altura a considerar | |
240 | maxIndex : valor de indice maximo de altura a considerar |
|
240 | maxIndex : valor de indice maximo de altura a considerar | |
241 |
|
241 | |||
242 | Affected: |
|
242 | Affected: | |
243 | self.dataOut.data |
|
243 | self.dataOut.data | |
244 | self.dataOut.heightList |
|
244 | self.dataOut.heightList | |
245 |
|
245 | |||
246 | Return: |
|
246 | Return: | |
247 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
247 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
248 | """ |
|
248 | """ | |
249 |
|
249 | |||
250 | if (minIndex < 0) or (minIndex > maxIndex): |
|
250 | if (minIndex < 0) or (minIndex > maxIndex): | |
251 | raise ValueError, "Height index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
251 | raise ValueError, "Height index range (%d,%d) is not valid" % (minIndex, maxIndex) | |
252 |
|
252 | |||
253 | if (maxIndex >= self.dataOut.nHeights): |
|
253 | if (maxIndex >= self.dataOut.nHeights): | |
254 | maxIndex = self.dataOut.nHeights |
|
254 | maxIndex = self.dataOut.nHeights | |
255 |
|
255 | |||
256 | #voltage |
|
256 | #voltage | |
257 | if self.dataOut.flagDataAsBlock: |
|
257 | if self.dataOut.flagDataAsBlock: | |
258 | """ |
|
258 | """ | |
259 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
259 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
260 | """ |
|
260 | """ | |
261 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
261 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |
262 | else: |
|
262 | else: | |
263 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
263 | data = self.dataOut.data[:, minIndex:maxIndex] | |
264 |
|
264 | |||
265 | # firstHeight = self.dataOut.heightList[minIndex] |
|
265 | # firstHeight = self.dataOut.heightList[minIndex] | |
266 |
|
266 | |||
267 | self.dataOut.data = data |
|
267 | self.dataOut.data = data | |
268 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
268 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |
269 |
|
269 | |||
270 | if self.dataOut.nHeights <= 1: |
|
270 | if self.dataOut.nHeights <= 1: | |
271 | raise ValueError, "selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights) |
|
271 | raise ValueError, "selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights) | |
272 |
|
272 | |||
273 | return 1 |
|
273 | return 1 | |
274 |
|
274 | |||
275 |
|
275 | |||
276 | def filterByHeights(self, window): |
|
276 | def filterByHeights(self, window): | |
277 |
|
277 | |||
278 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
278 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] | |
279 |
|
279 | |||
280 | if window == None: |
|
280 | if window == None: | |
281 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
281 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
282 |
|
282 | |||
283 | newdelta = deltaHeight * window |
|
283 | newdelta = deltaHeight * window | |
284 | r = self.dataOut.nHeights % window |
|
284 | r = self.dataOut.nHeights % window | |
285 | newheights = (self.dataOut.nHeights-r)/window |
|
285 | newheights = (self.dataOut.nHeights-r)/window | |
286 |
|
286 | |||
287 | if newheights <= 1: |
|
287 | if newheights <= 1: | |
288 | raise ValueError, "filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window) |
|
288 | raise ValueError, "filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window) | |
289 |
|
289 | |||
290 | if self.dataOut.flagDataAsBlock: |
|
290 | if self.dataOut.flagDataAsBlock: | |
291 | """ |
|
291 | """ | |
292 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
292 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
293 | """ |
|
293 | """ | |
294 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] |
|
294 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] | |
295 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) |
|
295 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) | |
296 | buffer = numpy.sum(buffer,3) |
|
296 | buffer = numpy.sum(buffer,3) | |
297 |
|
297 | |||
298 | else: |
|
298 | else: | |
299 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] |
|
299 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] | |
300 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) |
|
300 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) | |
301 | buffer = numpy.sum(buffer,2) |
|
301 | buffer = numpy.sum(buffer,2) | |
302 |
|
302 | |||
303 | self.dataOut.data = buffer |
|
303 | self.dataOut.data = buffer | |
304 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
304 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |
305 | self.dataOut.windowOfFilter = window |
|
305 | self.dataOut.windowOfFilter = window | |
306 |
|
306 | |||
307 | def setH0(self, h0, deltaHeight = None): |
|
307 | def setH0(self, h0, deltaHeight = None): | |
308 |
|
308 | |||
309 | if not deltaHeight: |
|
309 | if not deltaHeight: | |
310 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
310 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] | |
311 |
|
311 | |||
312 | nHeights = self.dataOut.nHeights |
|
312 | nHeights = self.dataOut.nHeights | |
313 |
|
313 | |||
314 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
314 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |
315 |
|
315 | |||
316 | self.dataOut.heightList = newHeiRange |
|
316 | self.dataOut.heightList = newHeiRange | |
317 |
|
317 | |||
318 | def deFlip(self, channelList = []): |
|
318 | def deFlip(self, channelList = []): | |
319 |
|
319 | |||
320 | data = self.dataOut.data.copy() |
|
320 | data = self.dataOut.data.copy() | |
321 |
|
321 | |||
322 | if self.dataOut.flagDataAsBlock: |
|
322 | if self.dataOut.flagDataAsBlock: | |
323 | flip = self.flip |
|
323 | flip = self.flip | |
324 | profileList = range(self.dataOut.nProfiles) |
|
324 | profileList = range(self.dataOut.nProfiles) | |
325 |
|
325 | |||
326 | if not channelList: |
|
326 | if not channelList: | |
327 | for thisProfile in profileList: |
|
327 | for thisProfile in profileList: | |
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |
329 | flip *= -1.0 |
|
329 | flip *= -1.0 | |
330 | else: |
|
330 | else: | |
331 | for thisChannel in channelList: |
|
331 | for thisChannel in channelList: | |
332 | if thisChannel not in self.dataOut.channelList: |
|
332 | if thisChannel not in self.dataOut.channelList: | |
333 | continue |
|
333 | continue | |
334 |
|
334 | |||
335 | for thisProfile in profileList: |
|
335 | for thisProfile in profileList: | |
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |
337 | flip *= -1.0 |
|
337 | flip *= -1.0 | |
338 |
|
338 | |||
339 | self.flip = flip |
|
339 | self.flip = flip | |
340 |
|
340 | |||
341 | else: |
|
341 | else: | |
342 | if not channelList: |
|
342 | if not channelList: | |
343 | data[:,:] = data[:,:]*self.flip |
|
343 | data[:,:] = data[:,:]*self.flip | |
344 | else: |
|
344 | else: | |
345 | for thisChannel in channelList: |
|
345 | for thisChannel in channelList: | |
346 | if thisChannel not in self.dataOut.channelList: |
|
346 | if thisChannel not in self.dataOut.channelList: | |
347 | continue |
|
347 | continue | |
348 |
|
348 | |||
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |
350 |
|
350 | |||
351 | self.flip *= -1. |
|
351 | self.flip *= -1. | |
352 |
|
352 | |||
353 | self.dataOut.data = data |
|
353 | self.dataOut.data = data | |
354 |
|
354 | |||
355 | def setRadarFrequency(self, frequency=None): |
|
355 | def setRadarFrequency(self, frequency=None): | |
356 |
|
356 | |||
357 | if frequency != None: |
|
357 | if frequency != None: | |
358 | self.dataOut.frequency = frequency |
|
358 | self.dataOut.frequency = frequency | |
359 |
|
359 | |||
360 | return 1 |
|
360 | return 1 | |
361 |
|
361 | |||
362 | def interpolateHeights(self, topLim, botLim): |
|
362 | def interpolateHeights(self, topLim, botLim): | |
363 | #69 al 72 para julia |
|
363 | #69 al 72 para julia | |
364 | #82-84 para meteoros |
|
364 | #82-84 para meteoros | |
365 | if len(numpy.shape(self.dataOut.data))==2: |
|
365 | if len(numpy.shape(self.dataOut.data))==2: | |
366 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
366 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 | |
367 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
367 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |
368 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
368 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp | |
369 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
369 | self.dataOut.data[:,botLim:topLim+1] = sampInterp | |
370 | else: |
|
370 | else: | |
371 | nHeights = self.dataOut.data.shape[2] |
|
371 | nHeights = self.dataOut.data.shape[2] | |
372 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
372 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |
373 | y = self.dataOut.data[:,:,range(botLim)+range(topLim+1,nHeights)] |
|
373 | y = self.dataOut.data[:,:,range(botLim)+range(topLim+1,nHeights)] | |
374 | f = interpolate.interp1d(x, y, axis = 2) |
|
374 | f = interpolate.interp1d(x, y, axis = 2) | |
375 | xnew = numpy.arange(botLim,topLim+1) |
|
375 | xnew = numpy.arange(botLim,topLim+1) | |
376 | ynew = f(xnew) |
|
376 | ynew = f(xnew) | |
377 |
|
377 | |||
378 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
378 | self.dataOut.data[:,:,botLim:topLim+1] = ynew | |
379 |
|
379 | |||
380 | # import collections |
|
380 | # import collections | |
381 |
|
381 | |||
382 | class CohInt(Operation): |
|
382 | class CohInt(Operation): | |
383 |
|
383 | |||
384 | isConfig = False |
|
384 | isConfig = False | |
385 | __profIndex = 0 |
|
385 | __profIndex = 0 | |
386 | __byTime = False |
|
386 | __byTime = False | |
387 | __initime = None |
|
387 | __initime = None | |
388 | __lastdatatime = None |
|
388 | __lastdatatime = None | |
389 | __integrationtime = None |
|
389 | __integrationtime = None | |
390 | __buffer = None |
|
390 | __buffer = None | |
391 | __bufferStride = [] |
|
391 | __bufferStride = [] | |
392 | __dataReady = False |
|
392 | __dataReady = False | |
393 | __profIndexStride = 0 |
|
393 | __profIndexStride = 0 | |
394 | __dataToPutStride = False |
|
394 | __dataToPutStride = False | |
395 | n = None |
|
395 | n = None | |
396 |
|
396 | |||
397 | def __init__(self, **kwargs): |
|
397 | def __init__(self, **kwargs): | |
398 |
|
398 | |||
399 | Operation.__init__(self, **kwargs) |
|
399 | Operation.__init__(self, **kwargs) | |
400 |
|
400 | |||
401 | # self.isConfig = False |
|
401 | # self.isConfig = False | |
402 |
|
402 | |||
403 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
403 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |
404 | """ |
|
404 | """ | |
405 | Set the parameters of the integration class. |
|
405 | Set the parameters of the integration class. | |
406 |
|
406 | |||
407 | Inputs: |
|
407 | Inputs: | |
408 |
|
408 | |||
409 | n : Number of coherent integrations |
|
409 | n : Number of coherent integrations | |
410 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
410 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
411 | overlapping : |
|
411 | overlapping : | |
412 | """ |
|
412 | """ | |
413 |
|
413 | |||
414 | self.__initime = None |
|
414 | self.__initime = None | |
415 | self.__lastdatatime = 0 |
|
415 | self.__lastdatatime = 0 | |
416 | self.__buffer = None |
|
416 | self.__buffer = None | |
417 | self.__dataReady = False |
|
417 | self.__dataReady = False | |
418 | self.byblock = byblock |
|
418 | self.byblock = byblock | |
419 | self.stride = stride |
|
419 | self.stride = stride | |
420 |
|
420 | |||
421 | if n == None and timeInterval == None: |
|
421 | if n == None and timeInterval == None: | |
422 | raise ValueError, "n or timeInterval should be specified ..." |
|
422 | raise ValueError, "n or timeInterval should be specified ..." | |
423 |
|
423 | |||
424 | if n != None: |
|
424 | if n != None: | |
425 | self.n = n |
|
425 | self.n = n | |
426 | self.__byTime = False |
|
426 | self.__byTime = False | |
427 | else: |
|
427 | else: | |
428 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
428 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
429 | self.n = 9999 |
|
429 | self.n = 9999 | |
430 | self.__byTime = True |
|
430 | self.__byTime = True | |
431 |
|
431 | |||
432 | if overlapping: |
|
432 | if overlapping: | |
433 | self.__withOverlapping = True |
|
433 | self.__withOverlapping = True | |
434 | self.__buffer = None |
|
434 | self.__buffer = None | |
435 | else: |
|
435 | else: | |
436 | self.__withOverlapping = False |
|
436 | self.__withOverlapping = False | |
437 | self.__buffer = 0 |
|
437 | self.__buffer = 0 | |
438 |
|
438 | |||
439 | self.__profIndex = 0 |
|
439 | self.__profIndex = 0 | |
440 |
|
440 | |||
441 | def putData(self, data): |
|
441 | def putData(self, data): | |
442 |
|
442 | |||
443 | """ |
|
443 | """ | |
444 | Add a profile to the __buffer and increase in one the __profileIndex |
|
444 | Add a profile to the __buffer and increase in one the __profileIndex | |
445 |
|
445 | |||
446 | """ |
|
446 | """ | |
447 |
|
447 | |||
448 | if not self.__withOverlapping: |
|
448 | if not self.__withOverlapping: | |
449 | self.__buffer += data.copy() |
|
449 | self.__buffer += data.copy() | |
450 | self.__profIndex += 1 |
|
450 | self.__profIndex += 1 | |
451 | return |
|
451 | return | |
452 |
|
452 | |||
453 | #Overlapping data |
|
453 | #Overlapping data | |
454 | nChannels, nHeis = data.shape |
|
454 | nChannels, nHeis = data.shape | |
455 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
455 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
456 |
|
456 | |||
457 | #If the buffer is empty then it takes the data value |
|
457 | #If the buffer is empty then it takes the data value | |
458 | if self.__buffer is None: |
|
458 | if self.__buffer is None: | |
459 | self.__buffer = data |
|
459 | self.__buffer = data | |
460 | self.__profIndex += 1 |
|
460 | self.__profIndex += 1 | |
461 | return |
|
461 | return | |
462 |
|
462 | |||
463 | #If the buffer length is lower than n then stakcing the data value |
|
463 | #If the buffer length is lower than n then stakcing the data value | |
464 | if self.__profIndex < self.n: |
|
464 | if self.__profIndex < self.n: | |
465 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
465 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
466 | self.__profIndex += 1 |
|
466 | self.__profIndex += 1 | |
467 | return |
|
467 | return | |
468 |
|
468 | |||
469 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
469 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
470 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
470 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
471 | self.__buffer[self.n-1] = data |
|
471 | self.__buffer[self.n-1] = data | |
472 | self.__profIndex = self.n |
|
472 | self.__profIndex = self.n | |
473 | return |
|
473 | return | |
474 |
|
474 | |||
475 |
|
475 | |||
476 | def pushData(self): |
|
476 | def pushData(self): | |
477 | """ |
|
477 | """ | |
478 | Return the sum of the last profiles and the profiles used in the sum. |
|
478 | Return the sum of the last profiles and the profiles used in the sum. | |
479 |
|
479 | |||
480 | Affected: |
|
480 | Affected: | |
481 |
|
481 | |||
482 | self.__profileIndex |
|
482 | self.__profileIndex | |
483 |
|
483 | |||
484 | """ |
|
484 | """ | |
485 |
|
485 | |||
486 | if not self.__withOverlapping: |
|
486 | if not self.__withOverlapping: | |
487 | data = self.__buffer |
|
487 | data = self.__buffer | |
488 | n = self.__profIndex |
|
488 | n = self.__profIndex | |
489 |
|
489 | |||
490 | self.__buffer = 0 |
|
490 | self.__buffer = 0 | |
491 | self.__profIndex = 0 |
|
491 | self.__profIndex = 0 | |
492 |
|
492 | |||
493 | return data, n |
|
493 | return data, n | |
494 |
|
494 | |||
495 | #Integration with Overlapping |
|
495 | #Integration with Overlapping | |
496 | data = numpy.sum(self.__buffer, axis=0) |
|
496 | data = numpy.sum(self.__buffer, axis=0) | |
497 | # print data |
|
497 | # print data | |
498 | # raise |
|
498 | # raise | |
499 | n = self.__profIndex |
|
499 | n = self.__profIndex | |
500 |
|
500 | |||
501 | return data, n |
|
501 | return data, n | |
502 |
|
502 | |||
503 | def byProfiles(self, data): |
|
503 | def byProfiles(self, data): | |
504 |
|
504 | |||
505 | self.__dataReady = False |
|
505 | self.__dataReady = False | |
506 | avgdata = None |
|
506 | avgdata = None | |
507 | # n = None |
|
507 | # n = None | |
508 | # print data |
|
508 | # print data | |
509 | # raise |
|
509 | # raise | |
510 | self.putData(data) |
|
510 | self.putData(data) | |
511 |
|
511 | |||
512 | if self.__profIndex == self.n: |
|
512 | if self.__profIndex == self.n: | |
513 | avgdata, n = self.pushData() |
|
513 | avgdata, n = self.pushData() | |
514 | self.__dataReady = True |
|
514 | self.__dataReady = True | |
515 |
|
515 | |||
516 | return avgdata |
|
516 | return avgdata | |
517 |
|
517 | |||
518 | def byTime(self, data, datatime): |
|
518 | def byTime(self, data, datatime): | |
519 |
|
519 | |||
520 | self.__dataReady = False |
|
520 | self.__dataReady = False | |
521 | avgdata = None |
|
521 | avgdata = None | |
522 | n = None |
|
522 | n = None | |
523 |
|
523 | |||
524 | self.putData(data) |
|
524 | self.putData(data) | |
525 |
|
525 | |||
526 | if (datatime - self.__initime) >= self.__integrationtime: |
|
526 | if (datatime - self.__initime) >= self.__integrationtime: | |
527 | avgdata, n = self.pushData() |
|
527 | avgdata, n = self.pushData() | |
528 | self.n = n |
|
528 | self.n = n | |
529 | self.__dataReady = True |
|
529 | self.__dataReady = True | |
530 |
|
530 | |||
531 | return avgdata |
|
531 | return avgdata | |
532 |
|
532 | |||
533 | def integrateByStride(self, data, datatime): |
|
533 | def integrateByStride(self, data, datatime): | |
534 | # print data |
|
534 | # print data | |
535 | if self.__profIndex == 0: |
|
535 | if self.__profIndex == 0: | |
536 | self.__buffer = [[data.copy(), datatime]] |
|
536 | self.__buffer = [[data.copy(), datatime]] | |
537 | else: |
|
537 | else: | |
538 | self.__buffer.append([data.copy(),datatime]) |
|
538 | self.__buffer.append([data.copy(),datatime]) | |
539 | self.__profIndex += 1 |
|
539 | self.__profIndex += 1 | |
540 | self.__dataReady = False |
|
540 | self.__dataReady = False | |
541 |
|
541 | |||
542 | if self.__profIndex == self.n * self.stride : |
|
542 | if self.__profIndex == self.n * self.stride : | |
543 | self.__dataToPutStride = True |
|
543 | self.__dataToPutStride = True | |
544 | self.__profIndexStride = 0 |
|
544 | self.__profIndexStride = 0 | |
545 | self.__profIndex = 0 |
|
545 | self.__profIndex = 0 | |
546 | self.__bufferStride = [] |
|
546 | self.__bufferStride = [] | |
547 | for i in range(self.stride): |
|
547 | for i in range(self.stride): | |
548 | current = self.__buffer[i::self.stride] |
|
548 | current = self.__buffer[i::self.stride] | |
549 | data = numpy.sum([t[0] for t in current], axis=0) |
|
549 | data = numpy.sum([t[0] for t in current], axis=0) | |
550 | avgdatatime = numpy.average([t[1] for t in current]) |
|
550 | avgdatatime = numpy.average([t[1] for t in current]) | |
551 | # print data |
|
551 | # print data | |
552 | self.__bufferStride.append((data, avgdatatime)) |
|
552 | self.__bufferStride.append((data, avgdatatime)) | |
553 |
|
553 | |||
554 | if self.__dataToPutStride: |
|
554 | if self.__dataToPutStride: | |
555 | self.__dataReady = True |
|
555 | self.__dataReady = True | |
556 | self.__profIndexStride += 1 |
|
556 | self.__profIndexStride += 1 | |
557 | if self.__profIndexStride == self.stride: |
|
557 | if self.__profIndexStride == self.stride: | |
558 | self.__dataToPutStride = False |
|
558 | self.__dataToPutStride = False | |
559 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
559 | # print self.__bufferStride[self.__profIndexStride - 1] | |
560 | # raise |
|
560 | # raise | |
561 | return self.__bufferStride[self.__profIndexStride - 1] |
|
561 | return self.__bufferStride[self.__profIndexStride - 1] | |
562 |
|
562 | |||
563 |
|
563 | |||
564 | return None, None |
|
564 | return None, None | |
565 |
|
565 | |||
566 | def integrate(self, data, datatime=None): |
|
566 | def integrate(self, data, datatime=None): | |
567 |
|
567 | |||
568 | if self.__initime == None: |
|
568 | if self.__initime == None: | |
569 | self.__initime = datatime |
|
569 | self.__initime = datatime | |
570 |
|
570 | |||
571 | if self.__byTime: |
|
571 | if self.__byTime: | |
572 | avgdata = self.byTime(data, datatime) |
|
572 | avgdata = self.byTime(data, datatime) | |
573 | else: |
|
573 | else: | |
574 | avgdata = self.byProfiles(data) |
|
574 | avgdata = self.byProfiles(data) | |
575 |
|
575 | |||
576 |
|
576 | |||
577 | self.__lastdatatime = datatime |
|
577 | self.__lastdatatime = datatime | |
578 |
|
578 | |||
579 | if avgdata is None: |
|
579 | if avgdata is None: | |
580 | return None, None |
|
580 | return None, None | |
581 |
|
581 | |||
582 | avgdatatime = self.__initime |
|
582 | avgdatatime = self.__initime | |
583 |
|
583 | |||
584 | deltatime = datatime - self.__lastdatatime |
|
584 | deltatime = datatime - self.__lastdatatime | |
585 |
|
585 | |||
586 | if not self.__withOverlapping: |
|
586 | if not self.__withOverlapping: | |
587 | self.__initime = datatime |
|
587 | self.__initime = datatime | |
588 | else: |
|
588 | else: | |
589 | self.__initime += deltatime |
|
589 | self.__initime += deltatime | |
590 |
|
590 | |||
591 | return avgdata, avgdatatime |
|
591 | return avgdata, avgdatatime | |
592 |
|
592 | |||
593 | def integrateByBlock(self, dataOut): |
|
593 | def integrateByBlock(self, dataOut): | |
594 |
|
594 | |||
595 | times = int(dataOut.data.shape[1]/self.n) |
|
595 | times = int(dataOut.data.shape[1]/self.n) | |
596 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
596 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |
597 |
|
597 | |||
598 | id_min = 0 |
|
598 | id_min = 0 | |
599 | id_max = self.n |
|
599 | id_max = self.n | |
600 |
|
600 | |||
601 | for i in range(times): |
|
601 | for i in range(times): | |
602 | junk = dataOut.data[:,id_min:id_max,:] |
|
602 | junk = dataOut.data[:,id_min:id_max,:] | |
603 | avgdata[:,i,:] = junk.sum(axis=1) |
|
603 | avgdata[:,i,:] = junk.sum(axis=1) | |
604 | id_min += self.n |
|
604 | id_min += self.n | |
605 | id_max += self.n |
|
605 | id_max += self.n | |
606 |
|
606 | |||
607 | timeInterval = dataOut.ippSeconds*self.n |
|
607 | timeInterval = dataOut.ippSeconds*self.n | |
608 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
608 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |
609 | self.__dataReady = True |
|
609 | self.__dataReady = True | |
610 | return avgdata, avgdatatime |
|
610 | return avgdata, avgdatatime | |
611 |
|
611 | |||
612 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
612 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |
613 | if not self.isConfig: |
|
613 | if not self.isConfig: | |
614 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
614 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |
615 | self.isConfig = True |
|
615 | self.isConfig = True | |
616 |
|
616 | |||
617 | if dataOut.flagDataAsBlock: |
|
617 | if dataOut.flagDataAsBlock: | |
618 | """ |
|
618 | """ | |
619 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
619 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
620 | """ |
|
620 | """ | |
621 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
621 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |
622 | dataOut.nProfiles /= self.n |
|
622 | dataOut.nProfiles /= self.n | |
623 | else: |
|
623 | else: | |
624 | if stride is None: |
|
624 | if stride is None: | |
625 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
625 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
626 | else: |
|
626 | else: | |
627 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
627 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |
628 |
|
628 | |||
629 |
|
629 | |||
630 | # dataOut.timeInterval *= n |
|
630 | # dataOut.timeInterval *= n | |
631 | dataOut.flagNoData = True |
|
631 | dataOut.flagNoData = True | |
632 |
|
632 | |||
633 | if self.__dataReady: |
|
633 | if self.__dataReady: | |
634 | dataOut.data = avgdata |
|
634 | dataOut.data = avgdata | |
635 | dataOut.nCohInt *= self.n |
|
635 | dataOut.nCohInt *= self.n | |
636 | dataOut.utctime = avgdatatime |
|
636 | dataOut.utctime = avgdatatime | |
637 | # print avgdata, avgdatatime |
|
637 | # print avgdata, avgdatatime | |
638 | # raise |
|
638 | # raise | |
639 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
639 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
640 | dataOut.flagNoData = False |
|
640 | dataOut.flagNoData = False | |
641 |
|
641 | |||
642 | class Decoder(Operation): |
|
642 | class Decoder(Operation): | |
643 |
|
643 | |||
644 | isConfig = False |
|
644 | isConfig = False | |
645 | __profIndex = 0 |
|
645 | __profIndex = 0 | |
646 |
|
646 | |||
647 | code = None |
|
647 | code = None | |
648 |
|
648 | |||
649 | nCode = None |
|
649 | nCode = None | |
650 | nBaud = None |
|
650 | nBaud = None | |
651 |
|
651 | |||
652 | def __init__(self, **kwargs): |
|
652 | def __init__(self, **kwargs): | |
653 |
|
653 | |||
654 | Operation.__init__(self, **kwargs) |
|
654 | Operation.__init__(self, **kwargs) | |
655 |
|
655 | |||
656 | self.times = None |
|
656 | self.times = None | |
657 | self.osamp = None |
|
657 | self.osamp = None | |
658 | # self.__setValues = False |
|
658 | # self.__setValues = False | |
659 | self.isConfig = False |
|
659 | self.isConfig = False | |
660 |
|
660 | |||
661 | def setup(self, code, osamp, dataOut): |
|
661 | def setup(self, code, osamp, dataOut): | |
662 |
|
662 | |||
663 | self.__profIndex = 0 |
|
663 | self.__profIndex = 0 | |
664 |
|
664 | |||
665 | self.code = code |
|
665 | self.code = code | |
666 |
|
666 | |||
667 | self.nCode = len(code) |
|
667 | self.nCode = len(code) | |
668 | self.nBaud = len(code[0]) |
|
668 | self.nBaud = len(code[0]) | |
669 |
|
669 | |||
670 | if (osamp != None) and (osamp >1): |
|
670 | if (osamp != None) and (osamp >1): | |
671 | self.osamp = osamp |
|
671 | self.osamp = osamp | |
672 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
672 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
673 | self.nBaud = self.nBaud*self.osamp |
|
673 | self.nBaud = self.nBaud*self.osamp | |
674 |
|
674 | |||
675 | self.__nChannels = dataOut.nChannels |
|
675 | self.__nChannels = dataOut.nChannels | |
676 | self.__nProfiles = dataOut.nProfiles |
|
676 | self.__nProfiles = dataOut.nProfiles | |
677 | self.__nHeis = dataOut.nHeights |
|
677 | self.__nHeis = dataOut.nHeights | |
678 |
|
678 | |||
679 | if self.__nHeis < self.nBaud: |
|
679 | if self.__nHeis < self.nBaud: | |
680 | raise ValueError, 'Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud) |
|
680 | raise ValueError, 'Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud) | |
681 |
|
681 | |||
682 | #Frequency |
|
682 | #Frequency | |
683 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
683 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
684 |
|
684 | |||
685 | __codeBuffer[:,0:self.nBaud] = self.code |
|
685 | __codeBuffer[:,0:self.nBaud] = self.code | |
686 |
|
686 | |||
687 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
687 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
688 |
|
688 | |||
689 | if dataOut.flagDataAsBlock: |
|
689 | if dataOut.flagDataAsBlock: | |
690 |
|
690 | |||
691 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
691 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
692 |
|
692 | |||
693 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
693 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
694 |
|
694 | |||
695 | else: |
|
695 | else: | |
696 |
|
696 | |||
697 | #Time |
|
697 | #Time | |
698 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
698 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
699 |
|
699 | |||
700 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
700 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
701 |
|
701 | |||
702 | def __convolutionInFreq(self, data): |
|
702 | def __convolutionInFreq(self, data): | |
703 |
|
703 | |||
704 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
704 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
705 |
|
705 | |||
706 | fft_data = numpy.fft.fft(data, axis=1) |
|
706 | fft_data = numpy.fft.fft(data, axis=1) | |
707 |
|
707 | |||
708 | conv = fft_data*fft_code |
|
708 | conv = fft_data*fft_code | |
709 |
|
709 | |||
710 | data = numpy.fft.ifft(conv,axis=1) |
|
710 | data = numpy.fft.ifft(conv,axis=1) | |
711 |
|
711 | |||
712 | return data |
|
712 | return data | |
713 |
|
713 | |||
714 | def __convolutionInFreqOpt(self, data): |
|
714 | def __convolutionInFreqOpt(self, data): | |
715 |
|
715 | |||
716 | raise NotImplementedError |
|
716 | raise NotImplementedError | |
717 |
|
717 | |||
718 | def __convolutionInTime(self, data): |
|
718 | def __convolutionInTime(self, data): | |
719 |
|
719 | |||
720 | code = self.code[self.__profIndex] |
|
720 | code = self.code[self.__profIndex] | |
721 | for i in range(self.__nChannels): |
|
721 | for i in range(self.__nChannels): | |
722 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
722 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |
723 |
|
723 | |||
724 | return self.datadecTime |
|
724 | return self.datadecTime | |
725 |
|
725 | |||
726 | def __convolutionByBlockInTime(self, data): |
|
726 | def __convolutionByBlockInTime(self, data): | |
727 |
|
727 | |||
728 | repetitions = self.__nProfiles / self.nCode |
|
728 | repetitions = self.__nProfiles / self.nCode | |
729 |
|
729 | |||
730 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
730 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
731 | junk = junk.flatten() |
|
731 | junk = junk.flatten() | |
732 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
732 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |
733 | profilesList = xrange(self.__nProfiles) |
|
733 | profilesList = xrange(self.__nProfiles) | |
734 |
|
734 | |||
735 | for i in range(self.__nChannels): |
|
735 | for i in range(self.__nChannels): | |
736 | for j in profilesList: |
|
736 | for j in profilesList: | |
737 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
737 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
738 | return self.datadecTime |
|
738 | return self.datadecTime | |
739 |
|
739 | |||
740 | def __convolutionByBlockInFreq(self, data): |
|
740 | def __convolutionByBlockInFreq(self, data): | |
741 |
|
741 | |||
742 | raise NotImplementedError, "Decoder by frequency fro Blocks not implemented" |
|
742 | raise NotImplementedError, "Decoder by frequency fro Blocks not implemented" | |
743 |
|
743 | |||
744 |
|
744 | |||
745 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
745 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
746 |
|
746 | |||
747 | fft_data = numpy.fft.fft(data, axis=2) |
|
747 | fft_data = numpy.fft.fft(data, axis=2) | |
748 |
|
748 | |||
749 | conv = fft_data*fft_code |
|
749 | conv = fft_data*fft_code | |
750 |
|
750 | |||
751 | data = numpy.fft.ifft(conv,axis=2) |
|
751 | data = numpy.fft.ifft(conv,axis=2) | |
752 |
|
752 | |||
753 | return data |
|
753 | return data | |
754 |
|
754 | |||
755 |
|
755 | |||
756 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
756 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |
757 |
|
757 | |||
758 | if dataOut.flagDecodeData: |
|
758 | if dataOut.flagDecodeData: | |
759 | print "This data is already decoded, recoding again ..." |
|
759 | print "This data is already decoded, recoding again ..." | |
760 |
|
760 | |||
761 | if not self.isConfig: |
|
761 | if not self.isConfig: | |
762 |
|
762 | |||
763 | if code is None: |
|
763 | if code is None: | |
764 | if dataOut.code is None: |
|
764 | if dataOut.code is None: | |
765 | raise ValueError, "Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type |
|
765 | raise ValueError, "Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type | |
766 |
|
766 | |||
767 | code = dataOut.code |
|
767 | code = dataOut.code | |
768 | else: |
|
768 | else: | |
769 | code = numpy.array(code).reshape(nCode,nBaud) |
|
769 | code = numpy.array(code).reshape(nCode,nBaud) | |
770 | self.setup(code, osamp, dataOut) |
|
770 | self.setup(code, osamp, dataOut) | |
771 |
|
771 | |||
772 | self.isConfig = True |
|
772 | self.isConfig = True | |
773 |
|
773 | |||
774 | if mode == 3: |
|
774 | if mode == 3: | |
775 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
775 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |
776 |
|
776 | |||
777 | if times != None: |
|
777 | if times != None: | |
778 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
778 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |
779 |
|
779 | |||
780 | if self.code is None: |
|
780 | if self.code is None: | |
781 | print "Fail decoding: Code is not defined." |
|
781 | print "Fail decoding: Code is not defined." | |
782 | return |
|
782 | return | |
783 |
|
783 | |||
784 | self.__nProfiles = dataOut.nProfiles |
|
784 | self.__nProfiles = dataOut.nProfiles | |
785 | datadec = None |
|
785 | datadec = None | |
786 |
|
786 | |||
787 | if mode == 3: |
|
787 | if mode == 3: | |
788 | mode = 0 |
|
788 | mode = 0 | |
789 |
|
789 | |||
790 | if dataOut.flagDataAsBlock: |
|
790 | if dataOut.flagDataAsBlock: | |
791 | """ |
|
791 | """ | |
792 | Decoding when data have been read as block, |
|
792 | Decoding when data have been read as block, | |
793 | """ |
|
793 | """ | |
794 |
|
794 | |||
795 | if mode == 0: |
|
795 | if mode == 0: | |
796 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
796 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |
797 | if mode == 1: |
|
797 | if mode == 1: | |
798 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
798 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |
799 | else: |
|
799 | else: | |
800 | """ |
|
800 | """ | |
801 | Decoding when data have been read profile by profile |
|
801 | Decoding when data have been read profile by profile | |
802 | """ |
|
802 | """ | |
803 | if mode == 0: |
|
803 | if mode == 0: | |
804 | datadec = self.__convolutionInTime(dataOut.data) |
|
804 | datadec = self.__convolutionInTime(dataOut.data) | |
805 |
|
805 | |||
806 | if mode == 1: |
|
806 | if mode == 1: | |
807 | datadec = self.__convolutionInFreq(dataOut.data) |
|
807 | datadec = self.__convolutionInFreq(dataOut.data) | |
808 |
|
808 | |||
809 | if mode == 2: |
|
809 | if mode == 2: | |
810 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
810 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |
811 |
|
811 | |||
812 | if datadec is None: |
|
812 | if datadec is None: | |
813 | raise ValueError, "Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode |
|
813 | raise ValueError, "Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode | |
814 |
|
814 | |||
815 | dataOut.code = self.code |
|
815 | dataOut.code = self.code | |
816 | dataOut.nCode = self.nCode |
|
816 | dataOut.nCode = self.nCode | |
817 | dataOut.nBaud = self.nBaud |
|
817 | dataOut.nBaud = self.nBaud | |
818 |
|
818 | |||
819 | dataOut.data = datadec |
|
819 | dataOut.data = datadec | |
820 |
|
820 | |||
821 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
821 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |
822 |
|
822 | |||
823 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
823 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |
824 |
|
824 | |||
825 | if self.__profIndex == self.nCode-1: |
|
825 | if self.__profIndex == self.nCode-1: | |
826 | self.__profIndex = 0 |
|
826 | self.__profIndex = 0 | |
827 | return 1 |
|
827 | return 1 | |
828 |
|
828 | |||
829 | self.__profIndex += 1 |
|
829 | self.__profIndex += 1 | |
830 |
|
830 | |||
831 | return 1 |
|
831 | return 1 | |
832 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
832 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
833 |
|
833 | |||
834 |
|
834 | |||
835 | class ProfileConcat(Operation): |
|
835 | class ProfileConcat(Operation): | |
836 |
|
836 | |||
837 | isConfig = False |
|
837 | isConfig = False | |
838 | buffer = None |
|
838 | buffer = None | |
839 | concat_m =None |
|
839 | concat_m =None | |
840 |
|
840 | |||
841 | def __init__(self, **kwargs): |
|
841 | def __init__(self, **kwargs): | |
842 |
|
842 | |||
843 | Operation.__init__(self, **kwargs) |
|
843 | Operation.__init__(self, **kwargs) | |
844 | self.profileIndex = 0 |
|
844 | self.profileIndex = 0 | |
845 |
|
845 | |||
846 | def reset(self): |
|
846 | def reset(self): | |
847 | self.buffer = numpy.zeros_like(self.buffer) |
|
847 | self.buffer = numpy.zeros_like(self.buffer) | |
848 | self.start_index = 0 |
|
848 | self.start_index = 0 | |
849 | self.times = 1 |
|
849 | self.times = 1 | |
850 |
|
850 | |||
851 | def setup(self, data, m, n=1): |
|
851 | def setup(self, data, m, n=1): | |
852 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
852 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |
853 | self.nHeights = data.shape[1]#.nHeights |
|
853 | self.nHeights = data.shape[1]#.nHeights | |
854 | self.start_index = 0 |
|
854 | self.start_index = 0 | |
855 | self.times = 1 |
|
855 | self.times = 1 | |
856 |
|
856 | |||
857 | def concat(self, data): |
|
857 | def concat(self, data): | |
858 |
|
858 | |||
859 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
859 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |
860 | self.start_index = self.start_index + self.nHeights |
|
860 | self.start_index = self.start_index + self.nHeights | |
861 |
|
861 | |||
862 | def run(self, dataOut, m): |
|
862 | def run(self, dataOut, m): | |
863 |
|
863 | |||
864 | self.concat_m= m |
|
864 | self.concat_m= m | |
865 | dataOut.flagNoData = True |
|
865 | dataOut.flagNoData = True | |
866 |
|
866 | |||
867 | if not self.isConfig: |
|
867 | if not self.isConfig: | |
868 | self.setup(dataOut.data, m, 1) |
|
868 | self.setup(dataOut.data, m, 1) | |
869 | self.isConfig = True |
|
869 | self.isConfig = True | |
870 |
|
870 | |||
871 | if dataOut.flagDataAsBlock: |
|
871 | if dataOut.flagDataAsBlock: | |
872 | raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False" |
|
872 | raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False" | |
873 |
|
873 | |||
874 | else: |
|
874 | else: | |
875 | self.concat(dataOut.data) |
|
875 | self.concat(dataOut.data) | |
876 | self.times += 1 |
|
876 | self.times += 1 | |
877 | if self.times > m: |
|
877 | if self.times > m: | |
878 | dataOut.data = self.buffer |
|
878 | dataOut.data = self.buffer | |
879 | self.reset() |
|
879 | self.reset() | |
880 | dataOut.flagNoData = False |
|
880 | dataOut.flagNoData = False | |
881 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
881 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
882 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
882 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
883 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
883 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |
884 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
884 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
885 | dataOut.ippSeconds *= m |
|
885 | dataOut.ippSeconds *= m | |
886 | dataOut.concat_m = int(m) |
|
886 | dataOut.concat_m = int(m) | |
887 |
|
887 | |||
888 | class ProfileSelector(Operation): |
|
888 | class ProfileSelector(Operation): | |
889 |
|
889 | |||
890 | profileIndex = None |
|
890 | profileIndex = None | |
891 | # Tamanho total de los perfiles |
|
891 | # Tamanho total de los perfiles | |
892 | nProfiles = None |
|
892 | nProfiles = None | |
893 |
|
893 | |||
894 | def __init__(self, **kwargs): |
|
894 | def __init__(self, **kwargs): | |
895 |
|
895 | |||
896 | Operation.__init__(self, **kwargs) |
|
896 | Operation.__init__(self, **kwargs) | |
897 | self.profileIndex = 0 |
|
897 | self.profileIndex = 0 | |
898 |
|
898 | |||
899 | def incProfileIndex(self): |
|
899 | def incProfileIndex(self): | |
900 |
|
900 | |||
901 | self.profileIndex += 1 |
|
901 | self.profileIndex += 1 | |
902 |
|
902 | |||
903 | if self.profileIndex >= self.nProfiles: |
|
903 | if self.profileIndex >= self.nProfiles: | |
904 | self.profileIndex = 0 |
|
904 | self.profileIndex = 0 | |
905 |
|
905 | |||
906 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
906 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |
907 |
|
907 | |||
908 | if profileIndex < minIndex: |
|
908 | if profileIndex < minIndex: | |
909 | return False |
|
909 | return False | |
910 |
|
910 | |||
911 | if profileIndex > maxIndex: |
|
911 | if profileIndex > maxIndex: | |
912 | return False |
|
912 | return False | |
913 |
|
913 | |||
914 | return True |
|
914 | return True | |
915 |
|
915 | |||
916 | def isThisProfileInList(self, profileIndex, profileList): |
|
916 | def isThisProfileInList(self, profileIndex, profileList): | |
917 |
|
917 | |||
918 | if profileIndex not in profileList: |
|
918 | if profileIndex not in profileList: | |
919 | return False |
|
919 | return False | |
920 |
|
920 | |||
921 | return True |
|
921 | return True | |
922 |
|
922 | |||
923 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
923 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |
924 |
|
924 | |||
925 | """ |
|
925 | """ | |
926 | ProfileSelector: |
|
926 | ProfileSelector: | |
927 |
|
927 | |||
928 | Inputs: |
|
928 | Inputs: | |
929 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
929 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |
930 |
|
930 | |||
931 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
931 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |
932 |
|
932 | |||
933 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
933 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |
934 |
|
934 | |||
935 | """ |
|
935 | """ | |
936 |
|
936 | |||
937 | if rangeList is not None: |
|
937 | if rangeList is not None: | |
938 | if type(rangeList[0]) not in (tuple, list): |
|
938 | if type(rangeList[0]) not in (tuple, list): | |
939 | rangeList = [rangeList] |
|
939 | rangeList = [rangeList] | |
940 |
|
940 | |||
941 | dataOut.flagNoData = True |
|
941 | dataOut.flagNoData = True | |
942 |
|
942 | |||
943 | if dataOut.flagDataAsBlock: |
|
943 | if dataOut.flagDataAsBlock: | |
944 | """ |
|
944 | """ | |
945 | data dimension = [nChannels, nProfiles, nHeis] |
|
945 | data dimension = [nChannels, nProfiles, nHeis] | |
946 | """ |
|
946 | """ | |
947 | if profileList != None: |
|
947 | if profileList != None: | |
948 | dataOut.data = dataOut.data[:,profileList,:] |
|
948 | dataOut.data = dataOut.data[:,profileList,:] | |
949 |
|
949 | |||
950 | if profileRangeList != None: |
|
950 | if profileRangeList != None: | |
951 | minIndex = profileRangeList[0] |
|
951 | minIndex = profileRangeList[0] | |
952 | maxIndex = profileRangeList[1] |
|
952 | maxIndex = profileRangeList[1] | |
953 | profileList = range(minIndex, maxIndex+1) |
|
953 | profileList = range(minIndex, maxIndex+1) | |
954 |
|
954 | |||
955 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
955 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |
956 |
|
956 | |||
957 | if rangeList != None: |
|
957 | if rangeList != None: | |
958 |
|
958 | |||
959 | profileList = [] |
|
959 | profileList = [] | |
960 |
|
960 | |||
961 | for thisRange in rangeList: |
|
961 | for thisRange in rangeList: | |
962 | minIndex = thisRange[0] |
|
962 | minIndex = thisRange[0] | |
963 | maxIndex = thisRange[1] |
|
963 | maxIndex = thisRange[1] | |
964 |
|
964 | |||
965 | profileList.extend(range(minIndex, maxIndex+1)) |
|
965 | profileList.extend(range(minIndex, maxIndex+1)) | |
966 |
|
966 | |||
967 | dataOut.data = dataOut.data[:,profileList,:] |
|
967 | dataOut.data = dataOut.data[:,profileList,:] | |
968 |
|
968 | |||
969 | dataOut.nProfiles = len(profileList) |
|
969 | dataOut.nProfiles = len(profileList) | |
970 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
970 | dataOut.profileIndex = dataOut.nProfiles - 1 | |
971 | dataOut.flagNoData = False |
|
971 | dataOut.flagNoData = False | |
972 |
|
972 | |||
973 | return True |
|
973 | return True | |
974 |
|
974 | |||
975 | """ |
|
975 | """ | |
976 | data dimension = [nChannels, nHeis] |
|
976 | data dimension = [nChannels, nHeis] | |
977 | """ |
|
977 | """ | |
978 |
|
978 | |||
979 | if profileList != None: |
|
979 | if profileList != None: | |
980 |
|
980 | |||
981 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
981 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |
982 |
|
982 | |||
983 | self.nProfiles = len(profileList) |
|
983 | self.nProfiles = len(profileList) | |
984 | dataOut.nProfiles = self.nProfiles |
|
984 | dataOut.nProfiles = self.nProfiles | |
985 | dataOut.profileIndex = self.profileIndex |
|
985 | dataOut.profileIndex = self.profileIndex | |
986 | dataOut.flagNoData = False |
|
986 | dataOut.flagNoData = False | |
987 |
|
987 | |||
988 | self.incProfileIndex() |
|
988 | self.incProfileIndex() | |
989 | return True |
|
989 | return True | |
990 |
|
990 | |||
991 | if profileRangeList != None: |
|
991 | if profileRangeList != None: | |
992 |
|
992 | |||
993 | minIndex = profileRangeList[0] |
|
993 | minIndex = profileRangeList[0] | |
994 | maxIndex = profileRangeList[1] |
|
994 | maxIndex = profileRangeList[1] | |
995 |
|
995 | |||
996 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
996 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
997 |
|
997 | |||
998 | self.nProfiles = maxIndex - minIndex + 1 |
|
998 | self.nProfiles = maxIndex - minIndex + 1 | |
999 | dataOut.nProfiles = self.nProfiles |
|
999 | dataOut.nProfiles = self.nProfiles | |
1000 | dataOut.profileIndex = self.profileIndex |
|
1000 | dataOut.profileIndex = self.profileIndex | |
1001 | dataOut.flagNoData = False |
|
1001 | dataOut.flagNoData = False | |
1002 |
|
1002 | |||
1003 | self.incProfileIndex() |
|
1003 | self.incProfileIndex() | |
1004 | return True |
|
1004 | return True | |
1005 |
|
1005 | |||
1006 | if rangeList != None: |
|
1006 | if rangeList != None: | |
1007 |
|
1007 | |||
1008 | nProfiles = 0 |
|
1008 | nProfiles = 0 | |
1009 |
|
1009 | |||
1010 | for thisRange in rangeList: |
|
1010 | for thisRange in rangeList: | |
1011 | minIndex = thisRange[0] |
|
1011 | minIndex = thisRange[0] | |
1012 | maxIndex = thisRange[1] |
|
1012 | maxIndex = thisRange[1] | |
1013 |
|
1013 | |||
1014 | nProfiles += maxIndex - minIndex + 1 |
|
1014 | nProfiles += maxIndex - minIndex + 1 | |
1015 |
|
1015 | |||
1016 | for thisRange in rangeList: |
|
1016 | for thisRange in rangeList: | |
1017 |
|
1017 | |||
1018 | minIndex = thisRange[0] |
|
1018 | minIndex = thisRange[0] | |
1019 | maxIndex = thisRange[1] |
|
1019 | maxIndex = thisRange[1] | |
1020 |
|
1020 | |||
1021 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1021 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1022 |
|
1022 | |||
1023 | self.nProfiles = nProfiles |
|
1023 | self.nProfiles = nProfiles | |
1024 | dataOut.nProfiles = self.nProfiles |
|
1024 | dataOut.nProfiles = self.nProfiles | |
1025 | dataOut.profileIndex = self.profileIndex |
|
1025 | dataOut.profileIndex = self.profileIndex | |
1026 | dataOut.flagNoData = False |
|
1026 | dataOut.flagNoData = False | |
1027 |
|
1027 | |||
1028 | self.incProfileIndex() |
|
1028 | self.incProfileIndex() | |
1029 |
|
1029 | |||
1030 | break |
|
1030 | break | |
1031 |
|
1031 | |||
1032 | return True |
|
1032 | return True | |
1033 |
|
1033 | |||
1034 |
|
1034 | |||
1035 | if beam != None: #beam is only for AMISR data |
|
1035 | if beam != None: #beam is only for AMISR data | |
1036 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1036 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |
1037 | dataOut.flagNoData = False |
|
1037 | dataOut.flagNoData = False | |
1038 | dataOut.profileIndex = self.profileIndex |
|
1038 | dataOut.profileIndex = self.profileIndex | |
1039 |
|
1039 | |||
1040 | self.incProfileIndex() |
|
1040 | self.incProfileIndex() | |
1041 |
|
1041 | |||
1042 | return True |
|
1042 | return True | |
1043 |
|
1043 | |||
1044 | raise ValueError, "ProfileSelector needs profileList, profileRangeList or rangeList parameter" |
|
1044 | raise ValueError, "ProfileSelector needs profileList, profileRangeList or rangeList parameter" | |
1045 |
|
1045 | |||
1046 | return False |
|
1046 | return False | |
1047 |
|
1047 | |||
1048 | class Reshaper(Operation): |
|
1048 | class Reshaper(Operation): | |
1049 |
|
1049 | |||
1050 | def __init__(self, **kwargs): |
|
1050 | def __init__(self, **kwargs): | |
1051 |
|
1051 | |||
1052 | Operation.__init__(self, **kwargs) |
|
1052 | Operation.__init__(self, **kwargs) | |
1053 |
|
1053 | |||
1054 | self.__buffer = None |
|
1054 | self.__buffer = None | |
1055 | self.__nitems = 0 |
|
1055 | self.__nitems = 0 | |
1056 |
|
1056 | |||
1057 | def __appendProfile(self, dataOut, nTxs): |
|
1057 | def __appendProfile(self, dataOut, nTxs): | |
1058 |
|
1058 | |||
1059 | if self.__buffer is None: |
|
1059 | if self.__buffer is None: | |
1060 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1060 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |
1061 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1061 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |
1062 |
|
1062 | |||
1063 | ini = dataOut.nHeights * self.__nitems |
|
1063 | ini = dataOut.nHeights * self.__nitems | |
1064 | end = ini + dataOut.nHeights |
|
1064 | end = ini + dataOut.nHeights | |
1065 |
|
1065 | |||
1066 | self.__buffer[:, ini:end] = dataOut.data |
|
1066 | self.__buffer[:, ini:end] = dataOut.data | |
1067 |
|
1067 | |||
1068 | self.__nitems += 1 |
|
1068 | self.__nitems += 1 | |
1069 |
|
1069 | |||
1070 | return int(self.__nitems*nTxs) |
|
1070 | return int(self.__nitems*nTxs) | |
1071 |
|
1071 | |||
1072 | def __getBuffer(self): |
|
1072 | def __getBuffer(self): | |
1073 |
|
1073 | |||
1074 | if self.__nitems == int(1./self.__nTxs): |
|
1074 | if self.__nitems == int(1./self.__nTxs): | |
1075 |
|
1075 | |||
1076 | self.__nitems = 0 |
|
1076 | self.__nitems = 0 | |
1077 |
|
1077 | |||
1078 | return self.__buffer.copy() |
|
1078 | return self.__buffer.copy() | |
1079 |
|
1079 | |||
1080 | return None |
|
1080 | return None | |
1081 |
|
1081 | |||
1082 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1082 | def __checkInputs(self, dataOut, shape, nTxs): | |
1083 |
|
1083 | |||
1084 | if shape is None and nTxs is None: |
|
1084 | if shape is None and nTxs is None: | |
1085 | raise ValueError, "Reshaper: shape of factor should be defined" |
|
1085 | raise ValueError, "Reshaper: shape of factor should be defined" | |
1086 |
|
1086 | |||
1087 | if nTxs: |
|
1087 | if nTxs: | |
1088 | if nTxs < 0: |
|
1088 | if nTxs < 0: | |
1089 | raise ValueError, "nTxs should be greater than 0" |
|
1089 | raise ValueError, "nTxs should be greater than 0" | |
1090 |
|
1090 | |||
1091 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1091 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |
1092 | raise ValueError, "nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)) |
|
1092 | raise ValueError, "nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)) | |
1093 |
|
1093 | |||
1094 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1094 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |
1095 |
|
1095 | |||
1096 | return shape, nTxs |
|
1096 | return shape, nTxs | |
1097 |
|
1097 | |||
1098 | if len(shape) != 2 and len(shape) != 3: |
|
1098 | if len(shape) != 2 and len(shape) != 3: | |
1099 | raise ValueError, "shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights) |
|
1099 | raise ValueError, "shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights) | |
1100 |
|
1100 | |||
1101 | if len(shape) == 2: |
|
1101 | if len(shape) == 2: | |
1102 | shape_tuple = [dataOut.nChannels] |
|
1102 | shape_tuple = [dataOut.nChannels] | |
1103 | shape_tuple.extend(shape) |
|
1103 | shape_tuple.extend(shape) | |
1104 | else: |
|
1104 | else: | |
1105 | shape_tuple = list(shape) |
|
1105 | shape_tuple = list(shape) | |
1106 |
|
1106 | |||
1107 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1107 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |
1108 |
|
1108 | |||
1109 | return shape_tuple, nTxs |
|
1109 | return shape_tuple, nTxs | |
1110 |
|
1110 | |||
1111 | def run(self, dataOut, shape=None, nTxs=None): |
|
1111 | def run(self, dataOut, shape=None, nTxs=None): | |
1112 |
|
1112 | |||
1113 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1113 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |
1114 |
|
1114 | |||
1115 | dataOut.flagNoData = True |
|
1115 | dataOut.flagNoData = True | |
1116 | profileIndex = None |
|
1116 | profileIndex = None | |
1117 |
|
1117 | |||
1118 | if dataOut.flagDataAsBlock: |
|
1118 | if dataOut.flagDataAsBlock: | |
1119 |
|
1119 | |||
1120 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1120 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |
1121 | dataOut.flagNoData = False |
|
1121 | dataOut.flagNoData = False | |
1122 |
|
1122 | |||
1123 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1123 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |
1124 |
|
1124 | |||
1125 | else: |
|
1125 | else: | |
1126 |
|
1126 | |||
1127 | if self.__nTxs < 1: |
|
1127 | if self.__nTxs < 1: | |
1128 |
|
1128 | |||
1129 | self.__appendProfile(dataOut, self.__nTxs) |
|
1129 | self.__appendProfile(dataOut, self.__nTxs) | |
1130 | new_data = self.__getBuffer() |
|
1130 | new_data = self.__getBuffer() | |
1131 |
|
1131 | |||
1132 | if new_data is not None: |
|
1132 | if new_data is not None: | |
1133 | dataOut.data = new_data |
|
1133 | dataOut.data = new_data | |
1134 | dataOut.flagNoData = False |
|
1134 | dataOut.flagNoData = False | |
1135 |
|
1135 | |||
1136 | profileIndex = dataOut.profileIndex*nTxs |
|
1136 | profileIndex = dataOut.profileIndex*nTxs | |
1137 |
|
1137 | |||
1138 | else: |
|
1138 | else: | |
1139 | raise ValueError, "nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)" |
|
1139 | raise ValueError, "nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)" | |
1140 |
|
1140 | |||
1141 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1141 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1142 |
|
1142 | |||
1143 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1143 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |
1144 |
|
1144 | |||
1145 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1145 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |
1146 |
|
1146 | |||
1147 | dataOut.profileIndex = profileIndex |
|
1147 | dataOut.profileIndex = profileIndex | |
1148 |
|
1148 | |||
1149 | dataOut.ippSeconds /= self.__nTxs |
|
1149 | dataOut.ippSeconds /= self.__nTxs | |
1150 |
|
1150 | |||
1151 | class SplitProfiles(Operation): |
|
1151 | class SplitProfiles(Operation): | |
1152 |
|
1152 | |||
1153 | def __init__(self, **kwargs): |
|
1153 | def __init__(self, **kwargs): | |
1154 |
|
1154 | |||
1155 | Operation.__init__(self, **kwargs) |
|
1155 | Operation.__init__(self, **kwargs) | |
1156 |
|
1156 | |||
1157 | def run(self, dataOut, n): |
|
1157 | def run(self, dataOut, n): | |
1158 |
|
1158 | |||
1159 | dataOut.flagNoData = True |
|
1159 | dataOut.flagNoData = True | |
1160 | profileIndex = None |
|
1160 | profileIndex = None | |
1161 |
|
1161 | |||
1162 | if dataOut.flagDataAsBlock: |
|
1162 | if dataOut.flagDataAsBlock: | |
1163 |
|
1163 | |||
1164 | #nchannels, nprofiles, nsamples |
|
1164 | #nchannels, nprofiles, nsamples | |
1165 | shape = dataOut.data.shape |
|
1165 | shape = dataOut.data.shape | |
1166 |
|
1166 | |||
1167 | if shape[2] % n != 0: |
|
1167 | if shape[2] % n != 0: | |
1168 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]) |
|
1168 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]) | |
1169 |
|
1169 | |||
1170 | new_shape = shape[0], shape[1]*n, shape[2]/n |
|
1170 | new_shape = shape[0], shape[1]*n, shape[2]/n | |
1171 |
|
1171 | |||
1172 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1172 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1173 | dataOut.flagNoData = False |
|
1173 | dataOut.flagNoData = False | |
1174 |
|
1174 | |||
1175 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1175 | profileIndex = int(dataOut.nProfiles/n) - 1 | |
1176 |
|
1176 | |||
1177 | else: |
|
1177 | else: | |
1178 |
|
1178 | |||
1179 | raise ValueError, "Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)" |
|
1179 | raise ValueError, "Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)" | |
1180 |
|
1180 | |||
1181 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1181 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1182 |
|
1182 | |||
1183 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1183 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |
1184 |
|
1184 | |||
1185 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1185 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |
1186 |
|
1186 | |||
1187 | dataOut.profileIndex = profileIndex |
|
1187 | dataOut.profileIndex = profileIndex | |
1188 |
|
1188 | |||
1189 | dataOut.ippSeconds /= n |
|
1189 | dataOut.ippSeconds /= n | |
1190 |
|
1190 | |||
1191 | class CombineProfiles(Operation): |
|
1191 | class CombineProfiles(Operation): | |
1192 |
|
1192 | |||
1193 | def __init__(self, **kwargs): |
|
1193 | def __init__(self, **kwargs): | |
1194 |
|
1194 | |||
1195 | Operation.__init__(self, **kwargs) |
|
1195 | Operation.__init__(self, **kwargs) | |
1196 |
|
1196 | |||
1197 | self.__remData = None |
|
1197 | self.__remData = None | |
1198 | self.__profileIndex = 0 |
|
1198 | self.__profileIndex = 0 | |
1199 |
|
1199 | |||
1200 | def run(self, dataOut, n): |
|
1200 | def run(self, dataOut, n): | |
1201 |
|
1201 | |||
1202 | dataOut.flagNoData = True |
|
1202 | dataOut.flagNoData = True | |
1203 | profileIndex = None |
|
1203 | profileIndex = None | |
1204 |
|
1204 | |||
1205 | if dataOut.flagDataAsBlock: |
|
1205 | if dataOut.flagDataAsBlock: | |
1206 |
|
1206 | |||
1207 | #nchannels, nprofiles, nsamples |
|
1207 | #nchannels, nprofiles, nsamples | |
1208 | shape = dataOut.data.shape |
|
1208 | shape = dataOut.data.shape | |
1209 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1209 | new_shape = shape[0], shape[1]/n, shape[2]*n | |
1210 |
|
1210 | |||
1211 | if shape[1] % n != 0: |
|
1211 | if shape[1] % n != 0: | |
1212 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]) |
|
1212 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]) | |
1213 |
|
1213 | |||
1214 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1214 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1215 | dataOut.flagNoData = False |
|
1215 | dataOut.flagNoData = False | |
1216 |
|
1216 | |||
1217 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1217 | profileIndex = int(dataOut.nProfiles*n) - 1 | |
1218 |
|
1218 | |||
1219 | else: |
|
1219 | else: | |
1220 |
|
1220 | |||
1221 | #nchannels, nsamples |
|
1221 | #nchannels, nsamples | |
1222 | if self.__remData is None: |
|
1222 | if self.__remData is None: | |
1223 | newData = dataOut.data |
|
1223 | newData = dataOut.data | |
1224 | else: |
|
1224 | else: | |
1225 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1225 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |
1226 |
|
1226 | |||
1227 | self.__profileIndex += 1 |
|
1227 | self.__profileIndex += 1 | |
1228 |
|
1228 | |||
1229 | if self.__profileIndex < n: |
|
1229 | if self.__profileIndex < n: | |
1230 | self.__remData = newData |
|
1230 | self.__remData = newData | |
1231 | #continue |
|
1231 | #continue | |
1232 | return |
|
1232 | return | |
1233 |
|
1233 | |||
1234 | self.__profileIndex = 0 |
|
1234 | self.__profileIndex = 0 | |
1235 | self.__remData = None |
|
1235 | self.__remData = None | |
1236 |
|
1236 | |||
1237 | dataOut.data = newData |
|
1237 | dataOut.data = newData | |
1238 | dataOut.flagNoData = False |
|
1238 | dataOut.flagNoData = False | |
1239 |
|
1239 | |||
1240 | profileIndex = dataOut.profileIndex/n |
|
1240 | profileIndex = dataOut.profileIndex/n | |
1241 |
|
1241 | |||
1242 |
|
1242 | |||
1243 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1243 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1244 |
|
1244 | |||
1245 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1245 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |
1246 |
|
1246 | |||
1247 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1247 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1248 |
|
1248 | |||
1249 | dataOut.profileIndex = profileIndex |
|
1249 | dataOut.profileIndex = profileIndex | |
1250 |
|
1250 | |||
1251 | dataOut.ippSeconds *= n |
|
1251 | dataOut.ippSeconds *= n | |
1252 |
|
1252 | |||
1253 |
|
1253 | |||
1254 | class SSheightProfiles(Operation): |
|
1254 | class SSheightProfiles(Operation): | |
1255 |
|
1255 | |||
1256 | step = None |
|
1256 | step = None | |
1257 | nsamples = None |
|
1257 | nsamples = None | |
1258 | bufferShape = None |
|
1258 | bufferShape = None | |
1259 | profileShape = None |
|
1259 | profileShape = None | |
1260 | sshProfiles = None |
|
1260 | sshProfiles = None | |
1261 | profileIndex = None |
|
1261 | profileIndex = None | |
1262 |
|
1262 | |||
1263 | def __init__(self, **kwargs): |
|
1263 | def __init__(self, **kwargs): | |
1264 |
|
1264 | |||
1265 | Operation.__init__(self, **kwargs) |
|
1265 | Operation.__init__(self, **kwargs) | |
1266 | self.isConfig = False |
|
1266 | self.isConfig = False | |
1267 |
|
1267 | |||
1268 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1268 | def setup(self,dataOut ,step = None , nsamples = None): | |
1269 |
|
1269 | |||
1270 | if step == None and nsamples == None: |
|
1270 | if step == None and nsamples == None: | |
1271 | raise ValueError, "step or nheights should be specified ..." |
|
1271 | raise ValueError, "step or nheights should be specified ..." | |
1272 |
|
1272 | |||
1273 | self.step = step |
|
1273 | self.step = step | |
1274 | self.nsamples = nsamples |
|
1274 | self.nsamples = nsamples | |
1275 | self.__nChannels = dataOut.nChannels |
|
1275 | self.__nChannels = dataOut.nChannels | |
1276 | self.__nProfiles = dataOut.nProfiles |
|
1276 | self.__nProfiles = dataOut.nProfiles | |
1277 | self.__nHeis = dataOut.nHeights |
|
1277 | self.__nHeis = dataOut.nHeights | |
1278 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples |
|
1278 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples | |
1279 | print "input nChannels",self.__nChannels |
|
1279 | print "input nChannels",self.__nChannels | |
1280 | print "input nProfiles",self.__nProfiles |
|
1280 | print "input nProfiles",self.__nProfiles | |
1281 | print "input nHeis",self.__nHeis |
|
1281 | print "input nHeis",self.__nHeis | |
1282 | print "input Shape",shape |
|
1282 | print "input Shape",shape | |
1283 |
|
1283 | |||
1284 |
|
1284 | |||
1285 |
|
1285 | |||
1286 | residue = (shape[1] - self.nsamples) % self.step |
|
1286 | residue = (shape[1] - self.nsamples) % self.step | |
1287 | if residue != 0: |
|
1287 | if residue != 0: | |
1288 | print "The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue) |
|
1288 | print "The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue) | |
1289 |
|
1289 | |||
1290 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1290 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1291 | numberProfile = self.nsamples |
|
1291 | numberProfile = self.nsamples | |
1292 | numberSamples = (shape[1] - self.nsamples)/self.step |
|
1292 | numberSamples = (shape[1] - self.nsamples)/self.step | |
1293 |
|
1293 | |||
1294 | print "new numberProfile",numberProfile |
|
1294 | print "new numberProfile",numberProfile | |
1295 | print "new numberSamples",numberSamples |
|
1295 | print "new numberSamples",numberSamples | |
1296 |
|
1296 | |||
1297 | print "New number of profile: %d, number of height: %d, Resolution %f Km"%(numberProfile,numberSamples,deltaHeight*self.step) |
|
1297 | print "New number of profile: %d, number of height: %d, Resolution %f Km"%(numberProfile,numberSamples,deltaHeight*self.step) | |
1298 |
|
1298 | |||
1299 | self.bufferShape = shape[0], numberSamples, numberProfile # nchannels, nsamples , nprofiles |
|
1299 | self.bufferShape = shape[0], numberSamples, numberProfile # nchannels, nsamples , nprofiles | |
1300 | self.profileShape = shape[0], numberProfile, numberSamples # nchannels, nprofiles, nsamples |
|
1300 | self.profileShape = shape[0], numberProfile, numberSamples # nchannels, nprofiles, nsamples | |
1301 |
|
1301 | |||
1302 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1302 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) | |
1303 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1303 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) | |
1304 |
|
1304 | |||
1305 | def run(self, dataOut, step, nsamples): |
|
1305 | def run(self, dataOut, step, nsamples): | |
1306 |
|
1306 | |||
1307 | dataOut.flagNoData = True |
|
1307 | dataOut.flagNoData = True | |
1308 | dataOut.flagDataAsBlock = False |
|
1308 | dataOut.flagDataAsBlock = False | |
1309 | profileIndex = None |
|
1309 | profileIndex = None | |
1310 |
|
1310 | |||
1311 |
|
1311 | |||
1312 | if not self.isConfig: |
|
1312 | if not self.isConfig: | |
1313 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1313 | self.setup(dataOut, step=step , nsamples=nsamples) | |
1314 | self.isConfig = True |
|
1314 | self.isConfig = True | |
1315 |
|
1315 | |||
1316 | for i in range(self.buffer.shape[1]): |
|
1316 | for i in range(self.buffer.shape[1]): | |
1317 | #self.buffer[:,i] = numpy.flip(dataOut.data[:,i*self.step:i*self.step + self.nsamples]) |
|
1317 | #self.buffer[:,i] = numpy.flip(dataOut.data[:,i*self.step:i*self.step + self.nsamples]) | |
1318 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples] |
|
1318 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples] | |
1319 | #self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights]) |
|
1319 | #self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights]) | |
1320 |
|
1320 | |||
1321 | for j in range(self.buffer.shape[0]): |
|
1321 | for j in range(self.buffer.shape[0]): | |
1322 | self.sshProfiles[j] = numpy.transpose(self.buffer[j]) |
|
1322 | self.sshProfiles[j] = numpy.transpose(self.buffer[j]) | |
1323 |
|
1323 | |||
1324 | profileIndex = self.nsamples |
|
1324 | profileIndex = self.nsamples | |
1325 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1325 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1326 | ippSeconds = (deltaHeight*1.0e-6)/(0.15) |
|
1326 | ippSeconds = (deltaHeight*1.0e-6)/(0.15) | |
1327 | #print "ippSeconds",ippSeconds |
|
1327 | #print "ippSeconds",ippSeconds | |
1328 | try: |
|
1328 | try: | |
1329 | if dataOut.concat_m is not None: |
|
1329 | if dataOut.concat_m is not None: | |
1330 | ippSeconds= ippSeconds/float(dataOut.concat_m) |
|
1330 | ippSeconds= ippSeconds/float(dataOut.concat_m) | |
1331 | #print "Profile concat %d"%dataOut.concat_m |
|
1331 | #print "Profile concat %d"%dataOut.concat_m | |
1332 | except: |
|
1332 | except: | |
1333 | pass |
|
1333 | pass | |
1334 |
|
1334 | |||
1335 | dataOut.data = self.sshProfiles |
|
1335 | dataOut.data = self.sshProfiles | |
1336 | dataOut.flagNoData = False |
|
1336 | dataOut.flagNoData = False | |
1337 | dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0] |
|
1337 | dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0] | |
1338 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
1338 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) | |
1339 | dataOut.profileIndex = profileIndex |
|
1339 | dataOut.profileIndex = profileIndex | |
1340 | dataOut.flagDataAsBlock = True |
|
1340 | dataOut.flagDataAsBlock = True | |
1341 | dataOut.ippSeconds = ippSeconds |
|
1341 | dataOut.ippSeconds = ippSeconds | |
1342 | dataOut.step = self.step |
|
1342 | dataOut.step = self.step | |
1343 |
|
1343 | |||
1344 | class voltACFLags(Operation): |
|
1344 | class voltACFLags(Operation): | |
1345 |
|
1345 | |||
1346 |
data_acf = None |
|
1346 | data_acf = None | |
1347 | lags = None |
|
1347 | lags = None | |
1348 | mode = None |
|
1348 | mode = None | |
1349 |
fullBuffer = None |
|
1349 | fullBuffer = None | |
1350 |
pairsList = None |
|
1350 | pairsList = None | |
1351 | tmp = None |
|
1351 | tmp = None | |
1352 |
|
1352 | |||
1353 | def __init__(self, **kwargs): |
|
1353 | def __init__(self, **kwargs): | |
1354 | Operation.__init__(self, **kwargs) |
|
1354 | Operation.__init__(self, **kwargs) | |
1355 | self.isConfig = False |
|
1355 | self.isConfig = False | |
1356 |
|
1356 | |||
1357 | def setup(self,dataOut ,lags = None,mode =None, fullBuffer= None ,pairsList = None,nAvg = 1): |
|
1357 | def setup(self,dataOut ,lags = None,mode =None, fullBuffer= None ,pairsList = None,nAvg = 1): | |
1358 |
|
1358 | |||
1359 | self.lags = lags |
|
1359 | self.lags = lags | |
1360 | self.mode = mode |
|
1360 | self.mode = mode | |
1361 |
self.fullBuffer= fullBuffer |
|
1361 | self.fullBuffer= fullBuffer | |
1362 | self.nAvg = nAvg |
|
1362 | self.nAvg = nAvg | |
1363 | nChannels = dataOut.nChannels |
|
1363 | nChannels = dataOut.nChannels | |
1364 | nProfiles = dataOut.nProfiles |
|
1364 | nProfiles = dataOut.nProfiles | |
1365 | nHeights = dataOut.nHeights |
|
1365 | nHeights = dataOut.nHeights | |
1366 | self.__nProfiles = dataOut.nProfiles |
|
1366 | self.__nProfiles = dataOut.nProfiles | |
1367 | self.__nHeis = dataOut.nHeights |
|
1367 | self.__nHeis = dataOut.nHeights | |
1368 |
|
1368 | |||
1369 | if mode == 'time': |
|
1369 | if mode == 'time': | |
1370 | print "Mode lags equal time for default." |
|
1370 | print "Mode lags equal time for default." | |
1371 | else: |
|
1371 | else: | |
1372 | print "Mode lags equal height." |
|
1372 | print "Mode lags equal height." | |
1373 |
|
1373 | |||
1374 | if pairsList == None: |
|
1374 | if pairsList == None: | |
1375 |
|
|
1375 | print "Pairs list selected by default (1,0)" | |
1376 | pairsList = [(0,1)] |
|
1376 | pairsList = [(0,1)] | |
1377 | else: |
|
1377 | pairList= pairsList | |
1378 | pairList= pairsList |
|
1378 | ||
1379 |
|
1379 | if lags == None: | ||
1380 | if lags == None: |
|
|||
1381 | if mode=='time': |
|
1380 | if mode=='time': | |
1382 | self.lags = numpy.arange(0,nProfiles)# -nProfiles+1, nProfiles |
|
1381 | self.lags = numpy.arange(0,nProfiles)# -nProfiles+1, nProfiles | |
1383 | print "self.lags", len(self.lags) |
|
1382 | print "self.lags", len(self.lags) | |
1384 | if mode=='height': |
|
1383 | if mode=='height': | |
1385 |
self.lags = numpy.arange(0,nHeights)# -nHeights+1, nHeights |
|
1384 | self.lags = numpy.arange(0,nHeights)# -nHeights+1, nHeights | |
1386 |
|
1385 | |||
1387 | if fullBuffer: |
|
1386 | if fullBuffer: | |
1388 |
self.tmp = numpy.zeros((len(pairsList), len(self.lags), nProfiles, nHeights), dtype = 'complex')*numpy.nan |
|
1387 | self.tmp = numpy.zeros((len(pairsList), len(self.lags), nProfiles, nHeights), dtype = 'complex')*numpy.nan | |
1389 | elif mode =='time': |
|
1388 | elif mode =='time': | |
1390 | self.tmp = numpy.zeros((len(pairsList), len(self.lags), nHeights),dtype='complex') |
|
1389 | self.tmp = numpy.zeros((len(pairsList), len(self.lags), nHeights),dtype='complex') | |
1391 | elif mode =='height': |
|
1390 | elif mode =='height': | |
1392 | self.tmp = numpy.zeros(len(pairsList), (len(self.lags), nProfiles),dtype='complex') |
|
1391 | self.tmp = numpy.zeros(len(pairsList), (len(self.lags), nProfiles),dtype='complex') | |
1393 |
|
1392 | |||
1394 | print "lags", len(self.lags) |
|
1393 | print "lags", len(self.lags) | |
1395 | print "mode",self.mode |
|
1394 | print "mode",self.mode | |
1396 | print "nChannels", nChannels |
|
1395 | print "nChannels", nChannels | |
1397 |
print "nProfiles", nProfiles |
|
1396 | print "nProfiles", nProfiles | |
1398 | print "nHeights" , nHeights |
|
1397 | print "nHeights" , nHeights | |
1399 | print "pairsList", pairsList |
|
1398 | print "pairsList", pairsList | |
1400 | print "fullBuffer", fullBuffer |
|
1399 | print "fullBuffer", fullBuffer | |
1401 | #print "type(pairsList)",type(pairsList) |
|
1400 | #print "type(pairsList)",type(pairsList) | |
1402 |
print "tmp.shape",self.tmp.shape |
|
1401 | print "tmp.shape",self.tmp.shape | |
|
1402 | ||||
1403 |
|
1403 | |||
1404 | def run(self, dataOut, lags =None,mode ='time',fullBuffer= False ,pairsList = None,nAvg = 1): |
|
1404 | def run(self, dataOut, lags =None,mode ='time',fullBuffer= False ,pairsList = None,nAvg = 1): | |
1405 |
|
1405 | |||
1406 | dataOut.flagNoData = True |
|
1406 | dataOut.flagNoData = True | |
1407 |
|
1407 | |||
1408 | if not self.isConfig: |
|
1408 | if not self.isConfig: | |
1409 | self.setup(dataOut, lags = lags,mode = mode, fullBuffer= fullBuffer ,pairsList = pairsList,nAvg=nAvg) |
|
1409 | self.setup(dataOut, lags = lags,mode = mode, fullBuffer= fullBuffer ,pairsList = pairsList,nAvg=nAvg) | |
1410 | self.isConfig = True |
|
1410 | self.isConfig = True | |
1411 |
|
1411 | |||
1412 |
if dataOut.type == "Voltage": |
|
1412 | if dataOut.type == "Voltage": | |
1413 |
|
1413 | |||
1414 | data_pre = dataOut.data #data |
|
1414 | data_pre = dataOut.data #data | |
1415 |
|
1415 | |||
1416 |
|
1416 | |||
1417 | # Here is the loop :D |
|
1417 | # Here is the loop :D | |
1418 | for l in range(len(pairsList)): |
|
1418 | for l in range(len(pairsList)): | |
1419 | ch0 = pairsList[l][0] |
|
1419 | ch0 = pairsList[l][0] | |
1420 | ch1 = pairsList[l][1] |
|
1420 | ch1 = pairsList[l][1] | |
1421 |
|
1421 | |||
1422 | for i in range(len(self.lags)): |
|
1422 | for i in range(len(self.lags)): | |
1423 | idx = self.lags[i] |
|
1423 | idx = self.lags[i] | |
1424 | if self.mode == 'time': |
|
1424 | if self.mode == 'time': | |
1425 | acf0 = data_pre[ch0,:self.__nProfiles-idx,:]*numpy.conj(data_pre[ch1,idx:,:]) # pair,lag,height |
|
1425 | acf0 = data_pre[ch0,:self.__nProfiles-idx,:]*numpy.conj(data_pre[ch1,idx:,:]) # pair,lag,height | |
1426 | else: |
|
1426 | else: | |
1427 | acf0 = data_pre[ch0,:,:self.__nHeights-idx]*numpy.conj(data_pre[ch1,:,idx:]) # pair,lag,profile |
|
1427 | acf0 = data_pre[ch0,:,:self.__nHeights-idx]*numpy.conj(data_pre[ch1,:,idx:]) # pair,lag,profile | |
1428 |
|
1428 | |||
1429 | if self.fullBuffer: |
|
1429 | if self.fullBuffer: | |
1430 | self.tmp[l,i,:acf0.shape[0],:]= acf0 |
|
1430 | self.tmp[l,i,:acf0.shape[0],:]= acf0 | |
1431 | else: |
|
1431 | else: | |
1432 | self.tmp[l,i,:]= numpy.sum(acf0,axis=0) |
|
1432 | self.tmp[l,i,:]= numpy.sum(acf0,axis=0) | |
1433 |
|
1433 | |||
1434 | if self.fullBuffer: |
|
1434 | if self.fullBuffer: | |
1435 |
|
1435 | |||
1436 | self.tmp = numpy.sum(numpy.reshape(self.tmp,(self.tmp.shape[0],self.tmp.shape[1],self.tmp.shape[2]/self.nAvg,self.nAvg,self.tmp.shape[3])),axis=3) |
|
1436 | self.tmp = numpy.sum(numpy.reshape(self.tmp,(self.tmp.shape[0],self.tmp.shape[1],self.tmp.shape[2]/self.nAvg,self.nAvg,self.tmp.shape[3])),axis=3) | |
1437 | dataOut.nAvg = self.nAvg |
|
1437 | dataOut.nAvg = self.nAvg | |
1438 |
|
1438 | |||
1439 | if self.mode == 'time': |
|
1439 | if self.mode == 'time': | |
1440 | delta = dataOut.ippSeconds*dataOut.nCohInt |
|
1440 | delta = dataOut.ippSeconds*dataOut.nCohInt | |
1441 | else: |
|
1441 | else: | |
1442 | delta = dataOut.heightList[1] - dataOut.heightList[0] |
|
1442 | delta = dataOut.heightList[1] - dataOut.heightList[0] | |
1443 |
|
1443 | |||
1444 | shape= self.tmp.shape # mode time |
|
1444 | shape= self.tmp.shape # mode time | |
1445 | # Normalizando |
|
1445 | # Normalizando | |
1446 | for i in range(len(pairsList)): |
|
1446 | for i in range(len(pairsList)): | |
1447 | for j in range(shape[2]): |
|
1447 | for j in range(shape[2]): | |
1448 | self.tmp[i,:,j]= self.tmp[i,:,j].real / numpy.max(numpy.abs(self.tmp[i,:,j])) |
|
1448 | self.tmp[i,:,j]= self.tmp[i,:,j].real / numpy.max(numpy.abs(self.tmp[i,:,j])) | |
1449 |
|
1449 | |||
1450 |
|
1450 | |||
1451 | #import matplotlib.pyplot as plt |
|
1451 | #import matplotlib.pyplot as plt | |
1452 | #print "test",self.tmp.shape |
|
1452 | #print "test",self.tmp.shape | |
1453 | #print self.tmp[0,0,0] |
|
1453 | #print self.tmp[0,0,0] | |
1454 | #print numpy.max(numpy.abs(self.tmp[0,:,0])) |
|
1454 | #print numpy.max(numpy.abs(self.tmp[0,:,0])) | |
1455 | #acf_tmp=self.tmp[0,:,100].real/numpy.max(numpy.abs(self.tmp[0,:,100])) |
|
1455 | #acf_tmp=self.tmp[0,:,100].real/numpy.max(numpy.abs(self.tmp[0,:,100])) | |
1456 | #print acf_tmp |
|
1456 | #print acf_tmp | |
1457 | #plt.plot(acf_tmp) |
|
1457 | #plt.plot(acf_tmp) | |
1458 | #plt.show() |
|
1458 | #plt.show() | |
1459 | #import time |
|
1459 | #import time | |
1460 | #time.sleep(20) |
|
1460 | #time.sleep(20) | |
1461 |
|
1461 | |||
1462 | dataOut.data = self.tmp |
|
1462 | dataOut.data = self.tmp | |
1463 | dataOut.mode = self.mode |
|
1463 | dataOut.mode = self.mode | |
1464 | dataOut.nLags = len(self.lags) |
|
1464 | dataOut.nLags = len(self.lags) | |
1465 | dataOut.nProfiles = len(self.lags) |
|
1465 | dataOut.nProfiles = len(self.lags) | |
1466 | dataOut.pairsList = pairsList |
|
1466 | dataOut.pairsList = pairsList | |
1467 | dataOut.nPairs = len(pairsList) |
|
1467 | dataOut.nPairs = len(pairsList) | |
1468 | dataOut.lagRange = numpy.array(self.lags)*delta |
|
1468 | dataOut.lagRange = numpy.array(self.lags)*delta | |
1469 | dataOut.flagDataAsBlock = True |
|
1469 | dataOut.flagDataAsBlock = True | |
1470 | dataOut.flagNoData = False |
|
1470 | dataOut.flagNoData = False | |
1471 |
|
1471 | |||
1472 | import time |
|
1472 | import time | |
1473 | ################################################# |
|
1473 | ################################################# | |
1474 |
|
1474 | |||
1475 | class decoPseudorandom(Operation): |
|
1475 | class decoPseudorandom(Operation): | |
1476 |
|
1476 | |||
1477 | nProfiles= 0 |
|
1477 | nProfiles= 0 | |
1478 | buffer= None |
|
1478 | buffer= None | |
1479 | isConfig = False |
|
1479 | isConfig = False | |
1480 |
|
1480 | |||
1481 | def setup(self, clen= 10000,seed= 0,Nranges= 1000,oversample=1): |
|
1481 | def setup(self, clen= 10000,seed= 0,Nranges= 1000,oversample=1): | |
1482 | #code = create_pseudo_random_code(clen=clen, seed=seed) |
|
1482 | #code = create_pseudo_random_code(clen=clen, seed=seed) | |
1483 | code= rep_seq(create_pseudo_random_code(clen=clen, seed=seed),rep=oversample) |
|
1483 | code= rep_seq(create_pseudo_random_code(clen=clen, seed=seed),rep=oversample) | |
1484 | #print ("code_rx", code.shape) |
|
1484 | #print ("code_rx", code.shape) | |
1485 | #N = int(an_len/clen) # 100 |
|
1485 | #N = int(an_len/clen) # 100 | |
1486 | B_cache = 0 |
|
1486 | B_cache = 0 | |
1487 | r_cache = 0 |
|
1487 | r_cache = 0 | |
1488 | B_cached = False |
|
1488 | B_cached = False | |
1489 | r = create_estimation_matrix(code=code, cache=True, rmax=Nranges) |
|
1489 | r = create_estimation_matrix(code=code, cache=True, rmax=Nranges) | |
1490 | #print ("code shape", code.shape) |
|
1490 | #print ("code shape", code.shape) | |
1491 | #print ("seed",seed) |
|
1491 | #print ("seed",seed) | |
1492 | #print ("Code", code[0:10]) |
|
1492 | #print ("Code", code[0:10]) | |
1493 | self.B = r['B'] |
|
1493 | self.B = r['B'] | |
1494 |
|
1494 | |||
1495 |
|
1495 | |||
1496 | def run (self,dataOut,length_code= 10000,seed= 0,Nranges= 1000,oversample=1): |
|
1496 | def run (self,dataOut,length_code= 10000,seed= 0,Nranges= 1000,oversample=1): | |
1497 | #print((dataOut.data.shape)) |
|
1497 | #print((dataOut.data.shape)) | |
1498 | if not self.isConfig: |
|
1498 | if not self.isConfig: | |
1499 | self.setup(clen= length_code,seed= seed,Nranges= Nranges,oversample=oversample) |
|
1499 | self.setup(clen= length_code,seed= seed,Nranges= Nranges,oversample=oversample) | |
1500 | self.isConfig = True |
|
1500 | self.isConfig = True | |
1501 |
|
1501 | |||
1502 | dataOut.flagNoData = True |
|
1502 | dataOut.flagNoData = True | |
1503 | data =dataOut.data |
|
1503 | data =dataOut.data | |
1504 | #print "length_CODE",length_code |
|
1504 | #print "length_CODE",length_code | |
1505 | data_shape = (data.shape[1]) |
|
1505 | data_shape = (data.shape[1]) | |
1506 | #print "data_shape",data_shape |
|
1506 | #print "data_shape",data_shape | |
1507 | n = (length_code /data_shape) |
|
1507 | n = (length_code /data_shape) | |
1508 | #print "we need this number of sample",n |
|
1508 | #print "we need this number of sample",n | |
1509 |
|
1509 | |||
1510 | if n>0 and self.buffer is None: |
|
1510 | if n>0 and self.buffer is None: | |
1511 | self.buffer = numpy.zeros([1, length_code], dtype=numpy.complex64) |
|
1511 | self.buffer = numpy.zeros([1, length_code], dtype=numpy.complex64) | |
1512 | self.buffer[0][0:data_shape] = data[0] |
|
1512 | self.buffer[0][0:data_shape] = data[0] | |
1513 | #print "FIRST CREATION",self.buffer.shape |
|
1513 | #print "FIRST CREATION",self.buffer.shape | |
1514 |
|
1514 | |||
1515 | else: |
|
1515 | else: | |
1516 | self.buffer[0][self.nProfiles*data_shape:(self.nProfiles+1)*data_shape]=data[0] |
|
1516 | self.buffer[0][self.nProfiles*data_shape:(self.nProfiles+1)*data_shape]=data[0] | |
1517 |
|
1517 | |||
1518 | #print "buffer_shape",(self.buffer.shape) |
|
1518 | #print "buffer_shape",(self.buffer.shape) | |
1519 | self.nProfiles += 1 |
|
1519 | self.nProfiles += 1 | |
1520 | #print "count",self.nProfiles |
|
1520 | #print "count",self.nProfiles | |
1521 |
|
1521 | |||
1522 | if self.nProfiles== n: |
|
1522 | if self.nProfiles== n: | |
1523 | temporal = numpy.dot(self.B, numpy.transpose(self.buffer)) |
|
1523 | temporal = numpy.dot(self.B, numpy.transpose(self.buffer)) | |
1524 | #print temporal.shape |
|
1524 | #print temporal.shape | |
1525 | #import time |
|
1525 | #import time | |
1526 | #time.sleep(40) |
|
1526 | #time.sleep(40) | |
1527 | dataOut.data=numpy.transpose(temporal) |
|
1527 | dataOut.data=numpy.transpose(temporal) | |
1528 |
|
1528 | |||
1529 | dataOut.flagNoData = False |
|
1529 | dataOut.flagNoData = False | |
1530 | self.buffer= None |
|
1530 | self.buffer= None | |
1531 | self.nProfiles = 0 |
|
1531 | self.nProfiles = 0 | |
1532 |
|
1532 | |||
1533 | # import collections |
|
1533 | # import collections | |
1534 | # from scipy.stats import mode |
|
1534 | # from scipy.stats import mode | |
1535 | # |
|
1535 | # | |
1536 | # class Synchronize(Operation): |
|
1536 | # class Synchronize(Operation): | |
1537 | # |
|
1537 | # | |
1538 | # isConfig = False |
|
1538 | # isConfig = False | |
1539 | # __profIndex = 0 |
|
1539 | # __profIndex = 0 | |
1540 | # |
|
1540 | # | |
1541 | # def __init__(self, **kwargs): |
|
1541 | # def __init__(self, **kwargs): | |
1542 | # |
|
1542 | # | |
1543 | # Operation.__init__(self, **kwargs) |
|
1543 | # Operation.__init__(self, **kwargs) | |
1544 | # # self.isConfig = False |
|
1544 | # # self.isConfig = False | |
1545 | # self.__powBuffer = None |
|
1545 | # self.__powBuffer = None | |
1546 | # self.__startIndex = 0 |
|
1546 | # self.__startIndex = 0 | |
1547 | # self.__pulseFound = False |
|
1547 | # self.__pulseFound = False | |
1548 | # |
|
1548 | # | |
1549 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1549 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
1550 | # |
|
1550 | # | |
1551 | # #Read data |
|
1551 | # #Read data | |
1552 | # |
|
1552 | # | |
1553 | # powerdB = dataOut.getPower(channel = channel) |
|
1553 | # powerdB = dataOut.getPower(channel = channel) | |
1554 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1554 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
1555 | # |
|
1555 | # | |
1556 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1556 | # self.__powBuffer.extend(powerdB.flatten()) | |
1557 | # |
|
1557 | # | |
1558 | # dataArray = numpy.array(self.__powBuffer) |
|
1558 | # dataArray = numpy.array(self.__powBuffer) | |
1559 | # |
|
1559 | # | |
1560 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1560 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
1561 | # |
|
1561 | # | |
1562 | # maxValue = numpy.nanmax(filteredPower) |
|
1562 | # maxValue = numpy.nanmax(filteredPower) | |
1563 | # |
|
1563 | # | |
1564 | # if maxValue < noisedB + 10: |
|
1564 | # if maxValue < noisedB + 10: | |
1565 | # #No se encuentra ningun pulso de transmision |
|
1565 | # #No se encuentra ningun pulso de transmision | |
1566 | # return None |
|
1566 | # return None | |
1567 | # |
|
1567 | # | |
1568 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1568 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
1569 | # |
|
1569 | # | |
1570 | # if len(maxValuesIndex) < 2: |
|
1570 | # if len(maxValuesIndex) < 2: | |
1571 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1571 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
1572 | # return None |
|
1572 | # return None | |
1573 | # |
|
1573 | # | |
1574 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1574 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
1575 | # |
|
1575 | # | |
1576 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1576 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
1577 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1577 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
1578 | # |
|
1578 | # | |
1579 | # if len(pulseIndex) < 2: |
|
1579 | # if len(pulseIndex) < 2: | |
1580 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1580 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1581 | # return None |
|
1581 | # return None | |
1582 | # |
|
1582 | # | |
1583 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1583 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
1584 | # |
|
1584 | # | |
1585 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1585 | # #remover senales que se distancien menos de 10 unidades o muestras | |
1586 | # #(No deberian existir IPP menor a 10 unidades) |
|
1586 | # #(No deberian existir IPP menor a 10 unidades) | |
1587 | # |
|
1587 | # | |
1588 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1588 | # realIndex = numpy.where(spacing > 10 )[0] | |
1589 | # |
|
1589 | # | |
1590 | # if len(realIndex) < 2: |
|
1590 | # if len(realIndex) < 2: | |
1591 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1591 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1592 | # return None |
|
1592 | # return None | |
1593 | # |
|
1593 | # | |
1594 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1594 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
1595 | # realPulseIndex = pulseIndex[realIndex] |
|
1595 | # realPulseIndex = pulseIndex[realIndex] | |
1596 | # |
|
1596 | # | |
1597 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1597 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
1598 | # |
|
1598 | # | |
1599 | # print "IPP = %d samples" %period |
|
1599 | # print "IPP = %d samples" %period | |
1600 | # |
|
1600 | # | |
1601 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1601 | # self.__newNSamples = dataOut.nHeights #int(period) | |
1602 | # self.__startIndex = int(realPulseIndex[0]) |
|
1602 | # self.__startIndex = int(realPulseIndex[0]) | |
1603 | # |
|
1603 | # | |
1604 | # return 1 |
|
1604 | # return 1 | |
1605 | # |
|
1605 | # | |
1606 | # |
|
1606 | # | |
1607 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1607 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
1608 | # |
|
1608 | # | |
1609 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1609 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
1610 | # maxlen = buffer_size*nSamples) |
|
1610 | # maxlen = buffer_size*nSamples) | |
1611 | # |
|
1611 | # | |
1612 | # bufferList = [] |
|
1612 | # bufferList = [] | |
1613 | # |
|
1613 | # | |
1614 | # for i in range(nChannels): |
|
1614 | # for i in range(nChannels): | |
1615 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1615 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
1616 | # maxlen = buffer_size*nSamples) |
|
1616 | # maxlen = buffer_size*nSamples) | |
1617 | # |
|
1617 | # | |
1618 | # bufferList.append(bufferByChannel) |
|
1618 | # bufferList.append(bufferByChannel) | |
1619 | # |
|
1619 | # | |
1620 | # self.__nSamples = nSamples |
|
1620 | # self.__nSamples = nSamples | |
1621 | # self.__nChannels = nChannels |
|
1621 | # self.__nChannels = nChannels | |
1622 | # self.__bufferList = bufferList |
|
1622 | # self.__bufferList = bufferList | |
1623 | # |
|
1623 | # | |
1624 | # def run(self, dataOut, channel = 0): |
|
1624 | # def run(self, dataOut, channel = 0): | |
1625 | # |
|
1625 | # | |
1626 | # if not self.isConfig: |
|
1626 | # if not self.isConfig: | |
1627 | # nSamples = dataOut.nHeights |
|
1627 | # nSamples = dataOut.nHeights | |
1628 | # nChannels = dataOut.nChannels |
|
1628 | # nChannels = dataOut.nChannels | |
1629 | # self.setup(nSamples, nChannels) |
|
1629 | # self.setup(nSamples, nChannels) | |
1630 | # self.isConfig = True |
|
1630 | # self.isConfig = True | |
1631 | # |
|
1631 | # | |
1632 | # #Append new data to internal buffer |
|
1632 | # #Append new data to internal buffer | |
1633 | # for thisChannel in range(self.__nChannels): |
|
1633 | # for thisChannel in range(self.__nChannels): | |
1634 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1634 | # bufferByChannel = self.__bufferList[thisChannel] | |
1635 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1635 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
1636 | # |
|
1636 | # | |
1637 | # if self.__pulseFound: |
|
1637 | # if self.__pulseFound: | |
1638 | # self.__startIndex -= self.__nSamples |
|
1638 | # self.__startIndex -= self.__nSamples | |
1639 | # |
|
1639 | # | |
1640 | # #Finding Tx Pulse |
|
1640 | # #Finding Tx Pulse | |
1641 | # if not self.__pulseFound: |
|
1641 | # if not self.__pulseFound: | |
1642 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1642 | # indexFound = self.__findTxPulse(dataOut, channel) | |
1643 | # |
|
1643 | # | |
1644 | # if indexFound == None: |
|
1644 | # if indexFound == None: | |
1645 | # dataOut.flagNoData = True |
|
1645 | # dataOut.flagNoData = True | |
1646 | # return |
|
1646 | # return | |
1647 | # |
|
1647 | # | |
1648 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1648 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
1649 | # self.__pulseFound = True |
|
1649 | # self.__pulseFound = True | |
1650 | # self.__startIndex = indexFound |
|
1650 | # self.__startIndex = indexFound | |
1651 | # |
|
1651 | # | |
1652 | # #If pulse was found ... |
|
1652 | # #If pulse was found ... | |
1653 | # for thisChannel in range(self.__nChannels): |
|
1653 | # for thisChannel in range(self.__nChannels): | |
1654 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1654 | # bufferByChannel = self.__bufferList[thisChannel] | |
1655 | # #print self.__startIndex |
|
1655 | # #print self.__startIndex | |
1656 | # x = numpy.array(bufferByChannel) |
|
1656 | # x = numpy.array(bufferByChannel) | |
1657 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1657 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
1658 | # |
|
1658 | # | |
1659 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1659 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1660 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1660 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
1661 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1661 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
1662 | # |
|
1662 | # | |
1663 | # dataOut.data = self.__arrayBuffer |
|
1663 | # dataOut.data = self.__arrayBuffer | |
1664 | # |
|
1664 | # | |
1665 | # self.__startIndex += self.__newNSamples |
|
1665 | # self.__startIndex += self.__newNSamples | |
1666 | # |
|
1666 | # | |
1667 | # return |
|
1667 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now