The requested changes are too big and content was truncated. Show full diff
This diff has been collapsed as it changes many lines, (1156 lines changed) Show them Hide them | |||||
@@ -0,0 +1,1156 | |||||
|
1 | ||||
|
2 | import os | |||
|
3 | import datetime | |||
|
4 | import numpy | |||
|
5 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG | |||
|
6 | ||||
|
7 | from .jroplot_spectra import RTIPlot, NoisePlot | |||
|
8 | ||||
|
9 | from schainpy.utils import log | |||
|
10 | from .plotting_codes import * | |||
|
11 | ||||
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt | |||
|
13 | ||||
|
14 | import matplotlib.pyplot as plt | |||
|
15 | import matplotlib.colors as colors | |||
|
16 | ||||
|
17 | import time | |||
|
18 | import math | |||
|
19 | ||||
|
20 | ||||
|
21 | from matplotlib.ticker import MultipleLocator | |||
|
22 | ||||
|
23 | ||||
|
24 | ||||
|
25 | class RTIDPPlot(RTIPlot): | |||
|
26 | ||||
|
27 | ''' | |||
|
28 | Plot for RTI Double Pulse Experiment | |||
|
29 | ''' | |||
|
30 | ||||
|
31 | CODE = 'RTIDP' | |||
|
32 | colormap = 'jro' | |||
|
33 | plot_name = 'RTI' | |||
|
34 | ||||
|
35 | #cb_label = 'Ne Electron Density (1/cm3)' | |||
|
36 | ||||
|
37 | def setup(self): | |||
|
38 | self.xaxis = 'time' | |||
|
39 | self.ncols = 1 | |||
|
40 | self.nrows = 3 | |||
|
41 | self.nplots = self.nrows | |||
|
42 | #self.height=10 | |||
|
43 | if self.showSNR: | |||
|
44 | self.nrows += 1 | |||
|
45 | self.nplots += 1 | |||
|
46 | ||||
|
47 | self.ylabel = 'Height [km]' | |||
|
48 | self.xlabel = 'Time (LT)' | |||
|
49 | ||||
|
50 | self.cb_label = 'Intensity (dB)' | |||
|
51 | ||||
|
52 | ||||
|
53 | #self.cb_label = cb_label | |||
|
54 | ||||
|
55 | self.titles = ['{} Channel {}'.format( | |||
|
56 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( | |||
|
57 | self.plot_name.upper(), '0'),'{} Channel {}'.format( | |||
|
58 | self.plot_name.upper(), '1')] | |||
|
59 | ||||
|
60 | ||||
|
61 | def plot(self): | |||
|
62 | ||||
|
63 | self.data.normalize_heights() | |||
|
64 | self.x = self.data.times | |||
|
65 | self.y = self.data.heights[0:self.data.NDP] | |||
|
66 | ||||
|
67 | if self.showSNR: | |||
|
68 | self.z = numpy.concatenate( | |||
|
69 | (self.data[self.CODE], self.data['snr']) | |||
|
70 | ) | |||
|
71 | else: | |||
|
72 | ||||
|
73 | self.z = self.data[self.CODE] | |||
|
74 | #print(numpy.max(self.z[0,0:])) | |||
|
75 | ||||
|
76 | self.z = numpy.ma.masked_invalid(self.z) | |||
|
77 | ||||
|
78 | if self.decimation is None: | |||
|
79 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |||
|
80 | else: | |||
|
81 | x, y, z = self.fill_gaps(*self.decimate()) | |||
|
82 | ||||
|
83 | for n, ax in enumerate(self.axes): | |||
|
84 | ||||
|
85 | ||||
|
86 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |||
|
87 | self.z[1][0,12:40]) | |||
|
88 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |||
|
89 | self.z[1][0,12:40]) | |||
|
90 | ||||
|
91 | ||||
|
92 | ||||
|
93 | if ax.firsttime: | |||
|
94 | ||||
|
95 | if self.zlimits is not None: | |||
|
96 | self.zmin, self.zmax = self.zlimits[n] | |||
|
97 | ||||
|
98 | ||||
|
99 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
100 | vmin=self.zmin, | |||
|
101 | vmax=self.zmax, | |||
|
102 | cmap=self.cmaps[n] | |||
|
103 | ) | |||
|
104 | #plt.tight_layout() | |||
|
105 | else: | |||
|
106 | if self.zlimits is not None: | |||
|
107 | self.zmin, self.zmax = self.zlimits[n] | |||
|
108 | ax.collections.remove(ax.collections[0]) | |||
|
109 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
110 | vmin=self.zmin, | |||
|
111 | vmax=self.zmax, | |||
|
112 | cmap=self.cmaps[n] | |||
|
113 | ) | |||
|
114 | #plt.tight_layout() | |||
|
115 | ||||
|
116 | ||||
|
117 | class RTILPPlot(RTIPlot): | |||
|
118 | ||||
|
119 | ''' | |||
|
120 | Plot for RTI Long Pulse | |||
|
121 | ''' | |||
|
122 | ||||
|
123 | CODE = 'RTILP' | |||
|
124 | colormap = 'jro' | |||
|
125 | plot_name = 'RTI LP' | |||
|
126 | ||||
|
127 | #cb_label = 'Ne Electron Density (1/cm3)' | |||
|
128 | ||||
|
129 | def setup(self): | |||
|
130 | self.xaxis = 'time' | |||
|
131 | self.ncols = 1 | |||
|
132 | self.nrows = 4 | |||
|
133 | self.nplots = self.nrows | |||
|
134 | if self.showSNR: | |||
|
135 | self.nrows += 1 | |||
|
136 | self.nplots += 1 | |||
|
137 | ||||
|
138 | self.ylabel = 'Height [km]' | |||
|
139 | self.xlabel = 'Time (LT)' | |||
|
140 | ||||
|
141 | self.cb_label = 'Intensity (dB)' | |||
|
142 | ||||
|
143 | ||||
|
144 | ||||
|
145 | #self.cb_label = cb_label | |||
|
146 | ||||
|
147 | self.titles = ['{} Channel {}'.format( | |||
|
148 | self.plot_name.upper(), '0'),'{} Channel {}'.format( | |||
|
149 | self.plot_name.upper(), '1'),'{} Channel {}'.format( | |||
|
150 | self.plot_name.upper(), '2'),'{} Channel {}'.format( | |||
|
151 | self.plot_name.upper(), '3')] | |||
|
152 | ||||
|
153 | ||||
|
154 | def plot(self): | |||
|
155 | ||||
|
156 | self.data.normalize_heights() | |||
|
157 | self.x = self.data.times | |||
|
158 | self.y = self.data.heights[0:self.data.NRANGE] | |||
|
159 | ||||
|
160 | if self.showSNR: | |||
|
161 | self.z = numpy.concatenate( | |||
|
162 | (self.data[self.CODE], self.data['snr']) | |||
|
163 | ) | |||
|
164 | else: | |||
|
165 | ||||
|
166 | self.z = self.data[self.CODE] | |||
|
167 | #print(numpy.max(self.z[0,0:])) | |||
|
168 | ||||
|
169 | self.z = numpy.ma.masked_invalid(self.z) | |||
|
170 | ||||
|
171 | if self.decimation is None: | |||
|
172 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |||
|
173 | else: | |||
|
174 | x, y, z = self.fill_gaps(*self.decimate()) | |||
|
175 | ||||
|
176 | for n, ax in enumerate(self.axes): | |||
|
177 | ||||
|
178 | ||||
|
179 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |||
|
180 | self.z[1][0,12:40]) | |||
|
181 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |||
|
182 | self.z[1][0,12:40]) | |||
|
183 | ||||
|
184 | if ax.firsttime: | |||
|
185 | ||||
|
186 | if self.zlimits is not None: | |||
|
187 | self.zmin, self.zmax = self.zlimits[n] | |||
|
188 | ||||
|
189 | ||||
|
190 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
191 | vmin=self.zmin, | |||
|
192 | vmax=self.zmax, | |||
|
193 | cmap=self.cmaps[n] | |||
|
194 | ) | |||
|
195 | #plt.tight_layout() | |||
|
196 | else: | |||
|
197 | if self.zlimits is not None: | |||
|
198 | self.zmin, self.zmax = self.zlimits[n] | |||
|
199 | ax.collections.remove(ax.collections[0]) | |||
|
200 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
201 | vmin=self.zmin, | |||
|
202 | vmax=self.zmax, | |||
|
203 | cmap=self.cmaps[n] | |||
|
204 | ) | |||
|
205 | #plt.tight_layout() | |||
|
206 | ||||
|
207 | ||||
|
208 | class DenRTIPlot(RTIPlot): | |||
|
209 | ||||
|
210 | ''' | |||
|
211 | Plot for Den | |||
|
212 | ''' | |||
|
213 | ||||
|
214 | CODE = 'denrti' | |||
|
215 | colormap = 'jro' | |||
|
216 | plot_name = 'Electron Density' | |||
|
217 | ||||
|
218 | #cb_label = 'Ne Electron Density (1/cm3)' | |||
|
219 | ||||
|
220 | def setup(self): | |||
|
221 | self.xaxis = 'time' | |||
|
222 | self.ncols = 1 | |||
|
223 | self.nrows = self.data.shape(self.CODE)[0] | |||
|
224 | self.nplots = self.nrows | |||
|
225 | if self.showSNR: | |||
|
226 | self.nrows += 1 | |||
|
227 | self.nplots += 1 | |||
|
228 | ||||
|
229 | self.ylabel = 'Height [km]' | |||
|
230 | self.xlabel = 'Time (LT)' | |||
|
231 | ||||
|
232 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |||
|
233 | ||||
|
234 | if self.CODE == 'denrti' or self.CODE=='denrtiLP': | |||
|
235 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' | |||
|
236 | ||||
|
237 | #self.cb_label = cb_label | |||
|
238 | if not self.titles: | |||
|
239 | self.titles = self.data.parameters \ | |||
|
240 | if self.data.parameters else ['{}'.format(self.plot_name)] | |||
|
241 | if self.showSNR: | |||
|
242 | self.titles.append('SNR') | |||
|
243 | ||||
|
244 | def plot(self): | |||
|
245 | ||||
|
246 | self.data.normalize_heights() | |||
|
247 | self.x = self.data.times | |||
|
248 | self.y = self.data.heights | |||
|
249 | ||||
|
250 | ||||
|
251 | ||||
|
252 | if self.showSNR: | |||
|
253 | self.z = numpy.concatenate( | |||
|
254 | (self.data[self.CODE], self.data['snr']) | |||
|
255 | ) | |||
|
256 | else: | |||
|
257 | self.z = self.data[self.CODE] | |||
|
258 | ||||
|
259 | self.z = numpy.ma.masked_invalid(self.z) | |||
|
260 | ||||
|
261 | if self.decimation is None: | |||
|
262 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |||
|
263 | else: | |||
|
264 | x, y, z = self.fill_gaps(*self.decimate()) | |||
|
265 | ||||
|
266 | for n, ax in enumerate(self.axes): | |||
|
267 | ||||
|
268 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |||
|
269 | self.z[n]) | |||
|
270 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |||
|
271 | self.z[n]) | |||
|
272 | ||||
|
273 | if ax.firsttime: | |||
|
274 | ||||
|
275 | if self.zlimits is not None: | |||
|
276 | self.zmin, self.zmax = self.zlimits[n] | |||
|
277 | if numpy.log10(self.zmin)<0: | |||
|
278 | self.zmin=1 | |||
|
279 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
280 | vmin=self.zmin, | |||
|
281 | vmax=self.zmax, | |||
|
282 | cmap=self.cmaps[n], | |||
|
283 | norm=colors.LogNorm() | |||
|
284 | ) | |||
|
285 | #plt.tight_layout() | |||
|
286 | ||||
|
287 | else: | |||
|
288 | if self.zlimits is not None: | |||
|
289 | self.zmin, self.zmax = self.zlimits[n] | |||
|
290 | ax.collections.remove(ax.collections[0]) | |||
|
291 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
292 | vmin=self.zmin, | |||
|
293 | vmax=self.zmax, | |||
|
294 | cmap=self.cmaps[n], | |||
|
295 | norm=colors.LogNorm() | |||
|
296 | ) | |||
|
297 | #plt.tight_layout() | |||
|
298 | ||||
|
299 | ||||
|
300 | ||||
|
301 | class DenRTILPPlot(DenRTIPlot): | |||
|
302 | ||||
|
303 | ''' | |||
|
304 | Plot for Electron Temperature | |||
|
305 | ''' | |||
|
306 | ||||
|
307 | CODE = 'denrtiLP' | |||
|
308 | colormap = 'jro' | |||
|
309 | plot_name = 'Electron Density' | |||
|
310 | ||||
|
311 | ||||
|
312 | class ETempRTIPlot(RTIPlot): | |||
|
313 | ||||
|
314 | ''' | |||
|
315 | Plot for Electron Temperature | |||
|
316 | ''' | |||
|
317 | ||||
|
318 | CODE = 'ETemp' | |||
|
319 | colormap = 'jet' | |||
|
320 | plot_name = 'Electron Temperature' | |||
|
321 | ||||
|
322 | #cb_label = 'Ne Electron Density (1/cm3)' | |||
|
323 | ||||
|
324 | def setup(self): | |||
|
325 | self.xaxis = 'time' | |||
|
326 | self.ncols = 1 | |||
|
327 | self.nrows = self.data.shape(self.CODE)[0] | |||
|
328 | self.nplots = self.nrows | |||
|
329 | if self.showSNR: | |||
|
330 | self.nrows += 1 | |||
|
331 | self.nplots += 1 | |||
|
332 | ||||
|
333 | self.ylabel = 'Height [km]' | |||
|
334 | self.xlabel = 'Time (LT)' | |||
|
335 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |||
|
336 | if self.CODE == 'ETemp' or self.CODE == 'ETempLP': | |||
|
337 | self.cb_label = 'Electron Temperature (K)' | |||
|
338 | if self.CODE == 'ITemp' or self.CODE == 'ITempLP': | |||
|
339 | self.cb_label = 'Ion Temperature (K)' | |||
|
340 | ||||
|
341 | ||||
|
342 | if not self.titles: | |||
|
343 | self.titles = self.data.parameters \ | |||
|
344 | if self.data.parameters else ['{}'.format(self.plot_name)] | |||
|
345 | if self.showSNR: | |||
|
346 | self.titles.append('SNR') | |||
|
347 | ||||
|
348 | def plot(self): | |||
|
349 | ||||
|
350 | self.data.normalize_heights() | |||
|
351 | self.x = self.data.times | |||
|
352 | self.y = self.data.heights | |||
|
353 | ||||
|
354 | if self.showSNR: | |||
|
355 | self.z = numpy.concatenate( | |||
|
356 | (self.data[self.CODE], self.data['snr']) | |||
|
357 | ) | |||
|
358 | else: | |||
|
359 | self.z = self.data[self.CODE] | |||
|
360 | ||||
|
361 | self.z = numpy.ma.masked_invalid(self.z) | |||
|
362 | ||||
|
363 | if self.decimation is None: | |||
|
364 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |||
|
365 | else: | |||
|
366 | x, y, z = self.fill_gaps(*self.decimate()) | |||
|
367 | ||||
|
368 | for n, ax in enumerate(self.axes): | |||
|
369 | ||||
|
370 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |||
|
371 | self.z[n]) | |||
|
372 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |||
|
373 | self.z[n]) | |||
|
374 | ||||
|
375 | if ax.firsttime: | |||
|
376 | ||||
|
377 | if self.zlimits is not None: | |||
|
378 | self.zmin, self.zmax = self.zlimits[n] | |||
|
379 | ||||
|
380 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
381 | vmin=self.zmin, | |||
|
382 | vmax=self.zmax, | |||
|
383 | cmap=self.cmaps[n] | |||
|
384 | ) | |||
|
385 | #plt.tight_layout() | |||
|
386 | ||||
|
387 | else: | |||
|
388 | if self.zlimits is not None: | |||
|
389 | self.zmin, self.zmax = self.zlimits[n] | |||
|
390 | ax.collections.remove(ax.collections[0]) | |||
|
391 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |||
|
392 | vmin=self.zmin, | |||
|
393 | vmax=self.zmax, | |||
|
394 | cmap=self.cmaps[n] | |||
|
395 | ) | |||
|
396 | #plt.tight_layout() | |||
|
397 | ||||
|
398 | ||||
|
399 | ||||
|
400 | class ITempRTIPlot(ETempRTIPlot): | |||
|
401 | ||||
|
402 | ''' | |||
|
403 | Plot for Ion Temperature | |||
|
404 | ''' | |||
|
405 | ||||
|
406 | CODE = 'ITemp' | |||
|
407 | colormap = 'jet' | |||
|
408 | plot_name = 'Ion Temperature' | |||
|
409 | ||||
|
410 | ||||
|
411 | class ElectronTempLPPlot(ETempRTIPlot): | |||
|
412 | ||||
|
413 | ''' | |||
|
414 | Plot for Electron Temperature LP | |||
|
415 | ''' | |||
|
416 | ||||
|
417 | CODE = 'ETempLP' | |||
|
418 | colormap = 'jet' | |||
|
419 | plot_name = 'Electron Temperature' | |||
|
420 | ||||
|
421 | ||||
|
422 | class IonTempLPPlot(ETempRTIPlot): | |||
|
423 | ||||
|
424 | ''' | |||
|
425 | Plot for Ion Temperature LP | |||
|
426 | ''' | |||
|
427 | ||||
|
428 | CODE = 'ITempLP' | |||
|
429 | colormap = 'jet' | |||
|
430 | plot_name = 'Ion Temperature' | |||
|
431 | ||||
|
432 | ||||
|
433 | class HFracRTIPlot(ETempRTIPlot): | |||
|
434 | ||||
|
435 | ''' | |||
|
436 | Plot for H+ LP | |||
|
437 | ''' | |||
|
438 | ||||
|
439 | CODE = 'HFracLP' | |||
|
440 | colormap = 'jet' | |||
|
441 | plot_name = 'H+ Frac' | |||
|
442 | ||||
|
443 | ||||
|
444 | class HeFracRTIPlot(ETempRTIPlot): | |||
|
445 | ||||
|
446 | ''' | |||
|
447 | Plot for He+ LP | |||
|
448 | ''' | |||
|
449 | ||||
|
450 | CODE = 'HeFracLP' | |||
|
451 | colormap = 'jet' | |||
|
452 | plot_name = 'He+ Frac' | |||
|
453 | ||||
|
454 | ||||
|
455 | class TempsDPPlot(Plot): | |||
|
456 | ''' | |||
|
457 | Plot for Electron - Ion Temperatures | |||
|
458 | ''' | |||
|
459 | ||||
|
460 | CODE = 'tempsDP' | |||
|
461 | plot_name = 'Temperatures' | |||
|
462 | plot_type = 'scatterbuffer' | |||
|
463 | ||||
|
464 | ||||
|
465 | def setup(self): | |||
|
466 | ||||
|
467 | self.ncols = 1 | |||
|
468 | self.nrows = 1 | |||
|
469 | self.nplots = 1 | |||
|
470 | self.ylabel = 'Range [km]' | |||
|
471 | self.xlabel = 'Temperature (K)' | |||
|
472 | self.width = 3.5 | |||
|
473 | self.height = 5.5 | |||
|
474 | self.colorbar = False | |||
|
475 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |||
|
476 | if not self.titles: | |||
|
477 | self.titles = self.data.parameters \ | |||
|
478 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |||
|
479 | ||||
|
480 | def plot(self): | |||
|
481 | ||||
|
482 | self.x = self.data['tempsDP'][:,-1] | |||
|
483 | self.y = self.data.heights[0:self.data.NSHTS] | |||
|
484 | ||||
|
485 | self.xmin = -100 | |||
|
486 | self.xmax = 5000 | |||
|
487 | ax = self.axes[0] | |||
|
488 | ||||
|
489 | if ax.firsttime: | |||
|
490 | ||||
|
491 | ax.errorbar(self.x, self.y, xerr=self.data.ete2, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |||
|
492 | ax.errorbar(self.data.ti2, self.y, fmt='k^', xerr=self.data.eti2,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |||
|
493 | plt.legend(loc='lower right') | |||
|
494 | self.ystep_given = 50 | |||
|
495 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
496 | ax.grid(which='minor') | |||
|
497 | #plt.tight_layout() | |||
|
498 | ||||
|
499 | ||||
|
500 | else: | |||
|
501 | self.clear_figures() | |||
|
502 | ax.errorbar(self.x, self.y, xerr=self.data.ete2, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |||
|
503 | ax.errorbar(self.data.ti2, self.y, fmt='k^', xerr=self.data.eti2,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |||
|
504 | plt.legend(loc='lower right') | |||
|
505 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
506 | #plt.tight_layout() | |||
|
507 | ||||
|
508 | ||||
|
509 | class TempsHPPlot(Plot): | |||
|
510 | ''' | |||
|
511 | Plot for Temperatures Hybrid Experiment | |||
|
512 | ''' | |||
|
513 | ||||
|
514 | CODE = 'temps_LP' | |||
|
515 | plot_name = 'Temperatures' | |||
|
516 | plot_type = 'scatterbuffer' | |||
|
517 | ||||
|
518 | ||||
|
519 | def setup(self): | |||
|
520 | ||||
|
521 | self.ncols = 1 | |||
|
522 | self.nrows = 1 | |||
|
523 | self.nplots = 1 | |||
|
524 | self.ylabel = 'Range [km]' | |||
|
525 | self.xlabel = 'Temperature (K)' | |||
|
526 | self.width = 3.5 | |||
|
527 | self.height = 6.5 | |||
|
528 | self.colorbar = False | |||
|
529 | if not self.titles: | |||
|
530 | self.titles = self.data.parameters \ | |||
|
531 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |||
|
532 | ||||
|
533 | def plot(self): | |||
|
534 | ||||
|
535 | self.x = self.data['temps_LP'][:,-1] | |||
|
536 | self.y = self.data.heights[0:self.data.NACF] | |||
|
537 | self.xmin = -100 | |||
|
538 | self.xmax = 4500 | |||
|
539 | ax = self.axes[0] | |||
|
540 | ||||
|
541 | if ax.firsttime: | |||
|
542 | ||||
|
543 | ax.errorbar(self.x, self.y, xerr=self.data.ete, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |||
|
544 | ax.errorbar(self.data.ti, self.y, fmt='k^', xerr=self.data.eti,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |||
|
545 | plt.legend(loc='lower right') | |||
|
546 | self.ystep_given = 200 | |||
|
547 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
548 | ax.grid(which='minor') | |||
|
549 | #plt.tight_layout() | |||
|
550 | ||||
|
551 | ||||
|
552 | else: | |||
|
553 | self.clear_figures() | |||
|
554 | ax.errorbar(self.x, self.y, xerr=self.data.ete, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |||
|
555 | ax.errorbar(self.data.ti, self.y, fmt='k^', xerr=self.data.eti,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |||
|
556 | plt.legend(loc='lower right') | |||
|
557 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
558 | #plt.tight_layout() | |||
|
559 | ||||
|
560 | ||||
|
561 | class FracsHPPlot(Plot): | |||
|
562 | ''' | |||
|
563 | Plot for Composition LP | |||
|
564 | ''' | |||
|
565 | ||||
|
566 | CODE = 'fracs_LP' | |||
|
567 | plot_name = 'Composition' | |||
|
568 | plot_type = 'scatterbuffer' | |||
|
569 | ||||
|
570 | ||||
|
571 | def setup(self): | |||
|
572 | ||||
|
573 | self.ncols = 1 | |||
|
574 | self.nrows = 1 | |||
|
575 | self.nplots = 1 | |||
|
576 | self.ylabel = 'Range [km]' | |||
|
577 | self.xlabel = 'Frac' | |||
|
578 | self.width = 3.5 | |||
|
579 | self.height = 6.5 | |||
|
580 | self.colorbar = False | |||
|
581 | if not self.titles: | |||
|
582 | self.titles = self.data.parameters \ | |||
|
583 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |||
|
584 | ||||
|
585 | def plot(self): | |||
|
586 | ||||
|
587 | self.x = self.data['fracs_LP'][:,-1] | |||
|
588 | self.y = self.data.heights[0:self.data.NACF] | |||
|
589 | ||||
|
590 | self.xmin = 0 | |||
|
591 | self.xmax = 1 | |||
|
592 | ax = self.axes[0] | |||
|
593 | ||||
|
594 | if ax.firsttime: | |||
|
595 | ||||
|
596 | ax.errorbar(self.x, self.y[self.data.cut:], xerr=self.data.eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') | |||
|
597 | ax.errorbar(self.data.phe, self.y[self.data.cut:], fmt='k^', xerr=self.data.ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') | |||
|
598 | plt.legend(loc='lower right') | |||
|
599 | self.xstep_given = 0.2 | |||
|
600 | self.ystep_given = 200 | |||
|
601 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
602 | ax.grid(which='minor') | |||
|
603 | #plt.tight_layout() | |||
|
604 | ||||
|
605 | ||||
|
606 | else: | |||
|
607 | self.clear_figures() | |||
|
608 | ax.errorbar(self.x, self.y[self.data.cut:], xerr=self.data.eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') | |||
|
609 | ax.errorbar(self.data.phe, self.y[self.data.cut:], fmt='k^', xerr=self.data.ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') | |||
|
610 | plt.legend(loc='lower right') | |||
|
611 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
612 | #plt.tight_layout() | |||
|
613 | ||||
|
614 | ||||
|
615 | ||||
|
616 | class EDensityPlot(Plot): | |||
|
617 | ''' | |||
|
618 | Plot for electron density | |||
|
619 | ''' | |||
|
620 | ||||
|
621 | CODE = 'den' | |||
|
622 | plot_name = 'Electron Density' | |||
|
623 | plot_type = 'scatterbuffer' | |||
|
624 | ||||
|
625 | ||||
|
626 | def setup(self): | |||
|
627 | ||||
|
628 | self.ncols = 1 | |||
|
629 | self.nrows = 1 | |||
|
630 | self.nplots = 1 | |||
|
631 | self.ylabel = 'Range [km]' | |||
|
632 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' | |||
|
633 | self.width = 4 | |||
|
634 | self.height = 6.5 | |||
|
635 | self.colorbar = False | |||
|
636 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |||
|
637 | if not self.titles: | |||
|
638 | self.titles = self.data.parameters \ | |||
|
639 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |||
|
640 | ||||
|
641 | def plot(self): | |||
|
642 | ||||
|
643 | ||||
|
644 | self.x = self.data[self.CODE] | |||
|
645 | self.y = self.data.heights | |||
|
646 | self.xmin = 1000 | |||
|
647 | self.xmax = 10000000 | |||
|
648 | ax = self.axes[0] | |||
|
649 | ||||
|
650 | if ax.firsttime: | |||
|
651 | self.autoxticks=False | |||
|
652 | #if self.CODE=='den': | |||
|
653 | ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |||
|
654 | #ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=self.data.sdn1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |||
|
655 | ||||
|
656 | ax.errorbar(self.x[:,-1], self.y[:self.data.NSHTS], fmt='k^-', xerr=self.data.sdp2,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |||
|
657 | #else: | |||
|
658 | #ax.errorbar(self.data.dphi[:self.data.cut], self.y[:self.data.cut], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |||
|
659 | #ax.errorbar(self.x[:self.data.cut,-1], self.y[:self.data.cut], fmt='k^-', xerr=self.data.sdp2[:self.data.cut],elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |||
|
660 | ||||
|
661 | if self.CODE=='denLP': | |||
|
662 | ax.errorbar(self.data.ne[self.data.cut:], self.y[self.data.cut:], xerr=self.data.ene[self.data.cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) | |||
|
663 | ||||
|
664 | plt.legend(loc='upper right') | |||
|
665 | ax.set_xscale("log", nonposx='clip') | |||
|
666 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |||
|
667 | self.ystep_given=100 | |||
|
668 | if self.CODE=='denLP': | |||
|
669 | self.ystep_given=200 | |||
|
670 | ax.set_yticks(grid_y_ticks,minor=True) | |||
|
671 | ax.grid(which='minor') | |||
|
672 | #plt.tight_layout() | |||
|
673 | ||||
|
674 | ||||
|
675 | ||||
|
676 | else: | |||
|
677 | ||||
|
678 | self.clear_figures() | |||
|
679 | #if self.CODE=='den': | |||
|
680 | ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |||
|
681 | #ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=self.data.sdn1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |||
|
682 | ||||
|
683 | ax.errorbar(self.x[:,-1], self.y[:self.data.NSHTS], fmt='k^-', xerr=self.data.sdp2,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |||
|
684 | ax.errorbar(self.x[:,-2], self.y[:self.data.NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") | |||
|
685 | #else: | |||
|
686 | #ax.errorbar(self.data.dphi[:self.data.cut], self.y[:self.data.cut], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |||
|
687 | #ax.errorbar(self.x[:self.data.cut,-1], self.y[:self.data.cut], fmt='k^-', xerr=self.data.sdp2[:self.data.cut],elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |||
|
688 | #ax.errorbar(self.x[:self.data.cut,-2], self.y[:self.data.cut], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") | |||
|
689 | ||||
|
690 | if self.CODE=='denLP': | |||
|
691 | ax.errorbar(self.data.ne[self.data.cut:], self.y[self.data.cut:], fmt='r^-', xerr=self.data.ene[self.data.cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) | |||
|
692 | ||||
|
693 | ax.set_xscale("log", nonposx='clip') | |||
|
694 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |||
|
695 | ax.set_yticks(grid_y_ticks,minor=True) | |||
|
696 | ax.grid(which='minor') | |||
|
697 | plt.legend(loc='upper right') | |||
|
698 | #plt.tight_layout() | |||
|
699 | ||||
|
700 | class FaradayAnglePlot(Plot): | |||
|
701 | ''' | |||
|
702 | Plot for electron density | |||
|
703 | ''' | |||
|
704 | ||||
|
705 | CODE = 'FaradayAngle' | |||
|
706 | plot_name = 'Faraday Angle' | |||
|
707 | plot_type = 'scatterbuffer' | |||
|
708 | ||||
|
709 | ||||
|
710 | def setup(self): | |||
|
711 | ||||
|
712 | self.ncols = 1 | |||
|
713 | self.nrows = 1 | |||
|
714 | self.nplots = 1 | |||
|
715 | self.ylabel = 'Range [km]' | |||
|
716 | self.xlabel = 'Faraday Angle (º)' | |||
|
717 | self.width = 4 | |||
|
718 | self.height = 6.5 | |||
|
719 | self.colorbar = False | |||
|
720 | if not self.titles: | |||
|
721 | self.titles = self.data.parameters \ | |||
|
722 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |||
|
723 | ||||
|
724 | def plot(self): | |||
|
725 | ||||
|
726 | ||||
|
727 | self.x = self.data[self.CODE] | |||
|
728 | self.y = self.data.heights | |||
|
729 | self.xmin = -180 | |||
|
730 | self.xmax = 180 | |||
|
731 | ax = self.axes[0] | |||
|
732 | ||||
|
733 | if ax.firsttime: | |||
|
734 | self.autoxticks=False | |||
|
735 | #if self.CODE=='den': | |||
|
736 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) | |||
|
737 | ||||
|
738 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |||
|
739 | self.ystep_given=100 | |||
|
740 | if self.CODE=='denLP': | |||
|
741 | self.ystep_given=200 | |||
|
742 | ax.set_yticks(grid_y_ticks,minor=True) | |||
|
743 | ax.grid(which='minor') | |||
|
744 | #plt.tight_layout() | |||
|
745 | else: | |||
|
746 | ||||
|
747 | self.clear_figures() | |||
|
748 | #if self.CODE=='den': | |||
|
749 | #print(numpy.shape(self.x)) | |||
|
750 | ax.plot(self.x[:,-1], self.y, marker='o',color='g',linewidth=1.0, markersize=2) | |||
|
751 | ||||
|
752 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |||
|
753 | ax.set_yticks(grid_y_ticks,minor=True) | |||
|
754 | ax.grid(which='minor') | |||
|
755 | ||||
|
756 | class EDensityHPPlot(EDensityPlot): | |||
|
757 | ||||
|
758 | ''' | |||
|
759 | Plot for Electron Density Hybrid Experiment | |||
|
760 | ''' | |||
|
761 | ||||
|
762 | CODE = 'denLP' | |||
|
763 | plot_name = 'Electron Density' | |||
|
764 | plot_type = 'scatterbuffer' | |||
|
765 | ||||
|
766 | ||||
|
767 | class ACFsPlot(Plot): | |||
|
768 | ''' | |||
|
769 | Plot for ACFs Double Pulse Experiment | |||
|
770 | ''' | |||
|
771 | ||||
|
772 | CODE = 'acfs' | |||
|
773 | plot_name = 'ACF' | |||
|
774 | plot_type = 'scatterbuffer' | |||
|
775 | ||||
|
776 | ||||
|
777 | def setup(self): | |||
|
778 | #self.xaxis = 'time' | |||
|
779 | self.ncols = 1 | |||
|
780 | self.nrows = 1 | |||
|
781 | self.nplots = 1 | |||
|
782 | self.ylabel = 'Range [km]' | |||
|
783 | self.xlabel = 'lags (ms)' | |||
|
784 | self.width = 3.5 | |||
|
785 | self.height = 6 | |||
|
786 | self.colorbar = False | |||
|
787 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |||
|
788 | if not self.titles: | |||
|
789 | self.titles = self.data.parameters \ | |||
|
790 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |||
|
791 | ||||
|
792 | def plot(self): | |||
|
793 | ||||
|
794 | self.x = self.data.lags_to_plot | |||
|
795 | self.y = self.data['acfs'][:,-1] | |||
|
796 | ||||
|
797 | ||||
|
798 | self.xmin = 0.0 | |||
|
799 | self.xmax = 2.0 | |||
|
800 | ||||
|
801 | ax = self.axes[0] | |||
|
802 | ||||
|
803 | if ax.firsttime: | |||
|
804 | ||||
|
805 | for i in range(self.data.NSHTS): | |||
|
806 | x_aux = numpy.isfinite(self.x[i,:]) | |||
|
807 | y_aux = numpy.isfinite(self.y[i,:]) | |||
|
808 | yerr_aux = numpy.isfinite(self.data.acfs_error_to_plot[i,:]) | |||
|
809 | x_igcej_aux = numpy.isfinite(self.data.x_igcej_to_plot[i,:]) | |||
|
810 | y_igcej_aux = numpy.isfinite(self.data.y_igcej_to_plot[i,:]) | |||
|
811 | x_ibad_aux = numpy.isfinite(self.data.x_ibad_to_plot[i,:]) | |||
|
812 | y_ibad_aux = numpy.isfinite(self.data.y_ibad_to_plot[i,:]) | |||
|
813 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: | |||
|
814 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.acfs_error_to_plot[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) | |||
|
815 | ax.plot(self.data.x_igcej_to_plot[i,x_igcej_aux],self.data.y_igcej_to_plot[i,y_igcej_aux],'x',color='red',markersize=2) | |||
|
816 | ax.plot(self.data.x_ibad_to_plot[i,x_ibad_aux],self.data.y_ibad_to_plot[i,y_ibad_aux],'X',color='red',markersize=2) | |||
|
817 | ||||
|
818 | self.xstep_given = (self.xmax-self.xmin)/(self.data.DPL-1) | |||
|
819 | self.ystep_given = 50 | |||
|
820 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
821 | ax.grid(which='minor') | |||
|
822 | ||||
|
823 | ||||
|
824 | ||||
|
825 | else: | |||
|
826 | self.clear_figures() | |||
|
827 | ||||
|
828 | for i in range(self.data.NSHTS): | |||
|
829 | x_aux = numpy.isfinite(self.x[i,:]) | |||
|
830 | y_aux = numpy.isfinite(self.y[i,:]) | |||
|
831 | yerr_aux = numpy.isfinite(self.data.acfs_error_to_plot[i,:]) | |||
|
832 | x_igcej_aux = numpy.isfinite(self.data.x_igcej_to_plot[i,:]) | |||
|
833 | y_igcej_aux = numpy.isfinite(self.data.y_igcej_to_plot[i,:]) | |||
|
834 | x_ibad_aux = numpy.isfinite(self.data.x_ibad_to_plot[i,:]) | |||
|
835 | y_ibad_aux = numpy.isfinite(self.data.y_ibad_to_plot[i,:]) | |||
|
836 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: | |||
|
837 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.acfs_error_to_plot[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') | |||
|
838 | ax.plot(self.data.x_igcej_to_plot[i,x_igcej_aux],self.data.y_igcej_to_plot[i,y_igcej_aux],'x',color='red',markersize=2) | |||
|
839 | ax.plot(self.data.x_ibad_to_plot[i,x_ibad_aux],self.data.y_ibad_to_plot[i,y_ibad_aux],'X',color='red',markersize=2) | |||
|
840 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
841 | ||||
|
842 | ||||
|
843 | ||||
|
844 | ||||
|
845 | class ACFsLPPlot(Plot): | |||
|
846 | ''' | |||
|
847 | Plot for ACFs Double Pulse Experiment | |||
|
848 | ''' | |||
|
849 | ||||
|
850 | CODE = 'acfs_LP' | |||
|
851 | plot_name = 'ACF' | |||
|
852 | plot_type = 'scatterbuffer' | |||
|
853 | ||||
|
854 | ||||
|
855 | def setup(self): | |||
|
856 | #self.xaxis = 'time' | |||
|
857 | self.ncols = 1 | |||
|
858 | self.nrows = 1 | |||
|
859 | self.nplots = 1 | |||
|
860 | self.ylabel = 'Range [km]' | |||
|
861 | self.xlabel = 'lags (ms)' | |||
|
862 | self.width = 3.5 | |||
|
863 | self.height = 7 | |||
|
864 | self.colorbar = False | |||
|
865 | if not self.titles: | |||
|
866 | self.titles = self.data.parameters \ | |||
|
867 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |||
|
868 | ||||
|
869 | ||||
|
870 | ||||
|
871 | def plot(self): | |||
|
872 | ||||
|
873 | self.x = self.data.lags_LP_to_plot | |||
|
874 | self.y = self.data['acfs_LP'][:,-1] | |||
|
875 | ||||
|
876 | self.xmin = 0.0 | |||
|
877 | self.xmax = 1.5 | |||
|
878 | ||||
|
879 | ax = self.axes[0] | |||
|
880 | ||||
|
881 | if ax.firsttime: | |||
|
882 | ||||
|
883 | for i in range(self.data.NACF): | |||
|
884 | x_aux = numpy.isfinite(self.x[i,:]) | |||
|
885 | y_aux = numpy.isfinite(self.y[i,:]) | |||
|
886 | yerr_aux = numpy.isfinite(self.data.errors[i,:]) | |||
|
887 | ||||
|
888 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: | |||
|
889 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.errors[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') | |||
|
890 | ||||
|
891 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) | |||
|
892 | self.xstep_given=0.3 | |||
|
893 | self.ystep_given = 200 | |||
|
894 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
895 | ax.grid(which='minor') | |||
|
896 | ||||
|
897 | else: | |||
|
898 | self.clear_figures() | |||
|
899 | ||||
|
900 | for i in range(self.data.NACF): | |||
|
901 | x_aux = numpy.isfinite(self.x[i,:]) | |||
|
902 | y_aux = numpy.isfinite(self.y[i,:]) | |||
|
903 | yerr_aux = numpy.isfinite(self.data.errors[i,:]) | |||
|
904 | ||||
|
905 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: | |||
|
906 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.errors[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') | |||
|
907 | ||||
|
908 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |||
|
909 | ||||
|
910 | ||||
|
911 | class CrossProductsPlot(Plot): | |||
|
912 | ''' | |||
|
913 | Plot for cross products | |||
|
914 | ''' | |||
|
915 | ||||
|
916 | CODE = 'crossprod' | |||
|
917 | plot_name = 'Cross Products' | |||
|
918 | plot_type = 'scatterbuffer' | |||
|
919 | ||||
|
920 | ||||
|
921 | def setup(self): | |||
|
922 | ||||
|
923 | self.ncols = 3 | |||
|
924 | self.nrows = 1 | |||
|
925 | self.nplots = 3 | |||
|
926 | self.ylabel = 'Range [km]' | |||
|
927 | ||||
|
928 | self.width = 3.5*self.nplots | |||
|
929 | self.height = 5.5 | |||
|
930 | self.colorbar = False | |||
|
931 | self.titles = [] | |||
|
932 | ||||
|
933 | def plot(self): | |||
|
934 | ||||
|
935 | self.x = self.data['crossprod'][:,-1,:,:,:,:] | |||
|
936 | ||||
|
937 | ||||
|
938 | ||||
|
939 | ||||
|
940 | self.y = self.data.heights[0:self.data.NDP] | |||
|
941 | ||||
|
942 | ||||
|
943 | ||||
|
944 | for n, ax in enumerate(self.axes): | |||
|
945 | ||||
|
946 | self.xmin=numpy.min(numpy.concatenate((self.x[n][0,20:30,0,0],self.x[n][1,20:30,0,0],self.x[n][2,20:30,0,0],self.x[n][3,20:30,0,0]))) | |||
|
947 | self.xmax=numpy.max(numpy.concatenate((self.x[n][0,20:30,0,0],self.x[n][1,20:30,0,0],self.x[n][2,20:30,0,0],self.x[n][3,20:30,0,0]))) | |||
|
948 | ||||
|
949 | ||||
|
950 | if ax.firsttime: | |||
|
951 | ||||
|
952 | self.autoxticks=False | |||
|
953 | if n==0: | |||
|
954 | label1='kax' | |||
|
955 | label2='kay' | |||
|
956 | label3='kbx' | |||
|
957 | label4='kby' | |||
|
958 | self.xlimits=[(self.xmin,self.xmax)] | |||
|
959 | elif n==1: | |||
|
960 | label1='kax2' | |||
|
961 | label2='kay2' | |||
|
962 | label3='kbx2' | |||
|
963 | label4='kby2' | |||
|
964 | self.xlimits.append((self.xmin,self.xmax)) | |||
|
965 | elif n==2: | |||
|
966 | label1='kaxay' | |||
|
967 | label2='kbxby' | |||
|
968 | label3='kaxbx' | |||
|
969 | label4='kaxby' | |||
|
970 | self.xlimits.append((self.xmin,self.xmax)) | |||
|
971 | ||||
|
972 | ||||
|
973 | ax.plotline1 = ax.plot(self.x[n][0,:,0,0], self.y, color='r',linewidth=2.0, label=label1) | |||
|
974 | ax.plotline2 = ax.plot(self.x[n][1,:,0,0], self.y, color='k',linewidth=2.0, label=label2) | |||
|
975 | ax.plotline3 = ax.plot(self.x[n][2,:,0,0], self.y, color='b',linewidth=2.0, label=label3) | |||
|
976 | ax.plotline4 = ax.plot(self.x[n][3,:,0,0], self.y, color='m',linewidth=2.0, label=label4) | |||
|
977 | ax.legend(loc='upper right') | |||
|
978 | ax.set_xlim(self.xmin, self.xmax) | |||
|
979 | self.titles.append('{}'.format(self.plot_name.upper())) | |||
|
980 | #plt.tight_layout() | |||
|
981 | ||||
|
982 | ||||
|
983 | else: | |||
|
984 | ||||
|
985 | if n==0: | |||
|
986 | self.xlimits=[(self.xmin,self.xmax)] | |||
|
987 | else: | |||
|
988 | self.xlimits.append((self.xmin,self.xmax)) | |||
|
989 | ||||
|
990 | ax.set_xlim(self.xmin, self.xmax) | |||
|
991 | ||||
|
992 | ||||
|
993 | ax.plotline1[0].set_data(self.x[n][0,:,0,0],self.y) | |||
|
994 | ax.plotline2[0].set_data(self.x[n][1,:,0,0],self.y) | |||
|
995 | ax.plotline3[0].set_data(self.x[n][2,:,0,0],self.y) | |||
|
996 | ax.plotline4[0].set_data(self.x[n][3,:,0,0],self.y) | |||
|
997 | self.titles.append('{}'.format(self.plot_name.upper())) | |||
|
998 | #plt.tight_layout() | |||
|
999 | ||||
|
1000 | ||||
|
1001 | ||||
|
1002 | class CrossProductsLPPlot(Plot): | |||
|
1003 | ''' | |||
|
1004 | Plot for cross products LP | |||
|
1005 | ''' | |||
|
1006 | ||||
|
1007 | CODE = 'crossprodlp' | |||
|
1008 | plot_name = 'Cross Products LP' | |||
|
1009 | plot_type = 'scatterbuffer' | |||
|
1010 | ||||
|
1011 | ||||
|
1012 | def setup(self): | |||
|
1013 | ||||
|
1014 | self.ncols = 2 | |||
|
1015 | self.nrows = 1 | |||
|
1016 | self.nplots = 2 | |||
|
1017 | self.ylabel = 'Range [km]' | |||
|
1018 | self.xlabel = 'dB' | |||
|
1019 | self.width = 3.5*self.nplots | |||
|
1020 | self.height = 5.5 | |||
|
1021 | self.colorbar = False | |||
|
1022 | self.titles = [] | |||
|
1023 | self.plotline_array=numpy.zeros((2,self.data.NLAG),dtype=object) | |||
|
1024 | def plot(self): | |||
|
1025 | ||||
|
1026 | ||||
|
1027 | self.x = self.data[self.CODE][:,-1,:,:] | |||
|
1028 | ||||
|
1029 | ||||
|
1030 | self.y = self.data.heights[0:self.data.NRANGE] | |||
|
1031 | ||||
|
1032 | ||||
|
1033 | label_array=numpy.array(['lag '+ str(x) for x in range(self.data.NLAG)]) | |||
|
1034 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] | |||
|
1035 | ||||
|
1036 | ||||
|
1037 | for n, ax in enumerate(self.axes): | |||
|
1038 | ||||
|
1039 | self.xmin=30 | |||
|
1040 | self.xmax=70 | |||
|
1041 | #print(self.x[0,12:15,n]) | |||
|
1042 | #input() | |||
|
1043 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) | |||
|
1044 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) | |||
|
1045 | ||||
|
1046 | #print("before",self.plotline_array) | |||
|
1047 | ||||
|
1048 | if ax.firsttime: | |||
|
1049 | ||||
|
1050 | self.autoxticks=False | |||
|
1051 | ||||
|
1052 | ||||
|
1053 | for i in range(self.data.NLAG): | |||
|
1054 | #print(i) | |||
|
1055 | #print(numpy.shape(self.x)) | |||
|
1056 | self.plotline_array[n,i], = ax.plot(self.x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) | |||
|
1057 | #ax.plotline1 = ax.plot(self.x[0,:,n], self.y, color='r',linewidth=2.0, label=label_array[0]) | |||
|
1058 | #ax.plotline2 = ax.plot(self.x[n][1,:,0,0], self.y, color='k',linewidth=2.0, label=label2) | |||
|
1059 | #ax.plotline3 = ax.plot(self.x[n][2,:,0,0], self.y, color='b',linewidth=2.0, label=label3) | |||
|
1060 | #ax.plotline4 = ax.plot(self.x[n][3,:,0,0], self.y, color='m',linewidth=2.0, label=label4) | |||
|
1061 | ||||
|
1062 | ||||
|
1063 | #print(self.plotline_array) | |||
|
1064 | ||||
|
1065 | ||||
|
1066 | ||||
|
1067 | ax.legend(loc='upper right') | |||
|
1068 | ax.set_xlim(self.xmin, self.xmax) | |||
|
1069 | if n==0: | |||
|
1070 | self.titles.append('{} CH0'.format(self.plot_name.upper())) | |||
|
1071 | if n==1: | |||
|
1072 | self.titles.append('{} CH1'.format(self.plot_name.upper())) | |||
|
1073 | ||||
|
1074 | #plt.tight_layout() | |||
|
1075 | ||||
|
1076 | else: | |||
|
1077 | #print(self.plotline_array) | |||
|
1078 | for i in range(self.data.NLAG): | |||
|
1079 | ||||
|
1080 | self.plotline_array[n,i].set_data(self.x[i,:,n],self.y) | |||
|
1081 | ||||
|
1082 | ||||
|
1083 | ||||
|
1084 | #ax.plotline1[0].set_data(self.x[n][0,:,0,0],self.y) | |||
|
1085 | #ax.plotline2[0].set_data(self.x[n][1,:,0,0],self.y) | |||
|
1086 | #ax.plotline3[0].set_data(self.x[n][2,:,0,0],self.y) | |||
|
1087 | #ax.plotline4[0].set_data(self.x[n][3,:,0,0],self.y) | |||
|
1088 | ||||
|
1089 | if n==0: | |||
|
1090 | self.titles.append('{} CH0'.format(self.plot_name.upper())) | |||
|
1091 | if n==1: | |||
|
1092 | self.titles.append('{} CH1'.format(self.plot_name.upper())) | |||
|
1093 | ||||
|
1094 | #plt.tight_layout() | |||
|
1095 | ||||
|
1096 | ||||
|
1097 | class NoiseDPPlot(NoisePlot): | |||
|
1098 | ''' | |||
|
1099 | Plot for noise Double Pulse | |||
|
1100 | ''' | |||
|
1101 | ||||
|
1102 | CODE = 'noisedp' | |||
|
1103 | plot_name = 'Noise' | |||
|
1104 | plot_type = 'scatterbuffer' | |||
|
1105 | ||||
|
1106 | ||||
|
1107 | class XmitWaveformPlot(Plot): | |||
|
1108 | ''' | |||
|
1109 | Plot for xmit waveform | |||
|
1110 | ''' | |||
|
1111 | ||||
|
1112 | CODE = 'xmit' | |||
|
1113 | plot_name = 'Xmit Waveform' | |||
|
1114 | plot_type = 'scatterbuffer' | |||
|
1115 | ||||
|
1116 | ||||
|
1117 | def setup(self): | |||
|
1118 | ||||
|
1119 | self.ncols = 1 | |||
|
1120 | self.nrows = 1 | |||
|
1121 | self.nplots = 1 | |||
|
1122 | self.ylabel = '' | |||
|
1123 | self.xlabel = 'Number of Lag' | |||
|
1124 | self.width = 5.5 | |||
|
1125 | self.height = 3.5 | |||
|
1126 | self.colorbar = False | |||
|
1127 | if not self.titles: | |||
|
1128 | self.titles = self.data.parameters \ | |||
|
1129 | if self.data.parameters else ['{}'.format(self.plot_name.upper())] | |||
|
1130 | ||||
|
1131 | def plot(self): | |||
|
1132 | ||||
|
1133 | self.x = numpy.arange(0,self.data.NLAG,1,'float32') | |||
|
1134 | self.y = self.data['xmit'][:,-1,:] | |||
|
1135 | ||||
|
1136 | self.xmin = 0 | |||
|
1137 | self.xmax = self.data.NLAG-1 | |||
|
1138 | self.ymin = -1.0 | |||
|
1139 | self.ymax = 1.0 | |||
|
1140 | ax = self.axes[0] | |||
|
1141 | ||||
|
1142 | if ax.firsttime: | |||
|
1143 | ax.plotline0=ax.plot(self.x,self.y[0,:],color='blue') | |||
|
1144 | ax.plotline1=ax.plot(self.x,self.y[1,:],color='red') | |||
|
1145 | secax=ax.secondary_xaxis(location=0.5) | |||
|
1146 | secax.xaxis.tick_bottom() | |||
|
1147 | secax.tick_params( labelleft=False, labeltop=False, | |||
|
1148 | labelright=False, labelbottom=False) | |||
|
1149 | ||||
|
1150 | self.xstep_given = 3 | |||
|
1151 | self.ystep_given = .25 | |||
|
1152 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 | |||
|
1153 | ||||
|
1154 | else: | |||
|
1155 | ax.plotline0[0].set_data(self.x,self.y[0,:]) | |||
|
1156 | ax.plotline1[0].set_data(self.x,self.y[1,:]) |
This diff has been collapsed as it changes many lines, (683 lines changed) Show them Hide them | |||||
@@ -0,0 +1,683 | |||||
|
1 | ''' | |||
|
2 | Created on Jun 9, 2020 | |||
|
3 | ||||
|
4 | @author: Roberto Flores | |||
|
5 | ''' | |||
|
6 | ||||
|
7 | import os | |||
|
8 | import sys | |||
|
9 | import time | |||
|
10 | ||||
|
11 | import struct | |||
|
12 | ||||
|
13 | ||||
|
14 | import datetime | |||
|
15 | ||||
|
16 | import numpy | |||
|
17 | ||||
|
18 | ||||
|
19 | import schainpy.admin | |||
|
20 | from schainpy.model.io.jroIO_base import LOCALTIME, Reader | |||
|
21 | from schainpy.model.data.jroheaderIO import BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader | |||
|
22 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |||
|
23 | from schainpy.model.data.jrodata import Voltage, Parameters | |||
|
24 | from schainpy.utils import log | |||
|
25 | ||||
|
26 | ||||
|
27 | class DatReader(Reader, ProcessingUnit): | |||
|
28 | ||||
|
29 | def __init__(self): | |||
|
30 | ||||
|
31 | ProcessingUnit.__init__(self) | |||
|
32 | self.basicHeaderObj = BasicHeader(LOCALTIME) | |||
|
33 | self.systemHeaderObj = SystemHeader() | |||
|
34 | self.radarControllerHeaderObj = RadarControllerHeader() | |||
|
35 | self.processingHeaderObj = ProcessingHeader() | |||
|
36 | self.dataOut = Parameters() | |||
|
37 | #print(self.basicHeaderObj.timezone) | |||
|
38 | #self.counter_block=0 | |||
|
39 | self.format='dat' | |||
|
40 | self.flagNoMoreFiles = 0 | |||
|
41 | self.filename = None | |||
|
42 | self.intervals = set() | |||
|
43 | #self.datatime = datetime.datetime(1900,1,1) | |||
|
44 | ||||
|
45 | self.filefmt = "***%Y%m%d*******" | |||
|
46 | ||||
|
47 | self.padding=numpy.zeros(1,'int32') | |||
|
48 | self.hsize=numpy.zeros(1,'int32') | |||
|
49 | self.bufsize=numpy.zeros(1,'int32') | |||
|
50 | self.nr=numpy.zeros(1,'int32') | |||
|
51 | self.ngates=numpy.zeros(1,'int32') ### ### ### 2 | |||
|
52 | self.time1=numpy.zeros(1,'uint64') # pos 3 | |||
|
53 | self.time2=numpy.zeros(1,'uint64') # pos 4 | |||
|
54 | self.lcounter=numpy.zeros(1,'int32') | |||
|
55 | self.groups=numpy.zeros(1,'int32') | |||
|
56 | self.system=numpy.zeros(4,'int8') # pos 7 | |||
|
57 | self.h0=numpy.zeros(1,'float32') | |||
|
58 | self.dh=numpy.zeros(1,'float32') | |||
|
59 | self.ipp=numpy.zeros(1,'float32') | |||
|
60 | self.process=numpy.zeros(1,'int32') | |||
|
61 | self.tx=numpy.zeros(1,'int32') | |||
|
62 | ||||
|
63 | self.ngates1=numpy.zeros(1,'int32') ### ### ### 13 | |||
|
64 | self.time0=numpy.zeros(1,'uint64') # pos 14 | |||
|
65 | self.nlags=numpy.zeros(1,'int32') | |||
|
66 | self.nlags1=numpy.zeros(1,'int32') | |||
|
67 | self.txb=numpy.zeros(1,'float32') ### ### ### 17 | |||
|
68 | self.time3=numpy.zeros(1,'uint64') # pos 18 | |||
|
69 | self.time4=numpy.zeros(1,'uint64') # pos 19 | |||
|
70 | self.h0_=numpy.zeros(1,'float32') | |||
|
71 | self.dh_=numpy.zeros(1,'float32') | |||
|
72 | self.ipp_=numpy.zeros(1,'float32') | |||
|
73 | self.txa_=numpy.zeros(1,'float32') | |||
|
74 | ||||
|
75 | self.pad=numpy.zeros(100,'int32') | |||
|
76 | ||||
|
77 | self.nbytes=numpy.zeros(1,'int32') | |||
|
78 | self.limits=numpy.zeros(1,'int32') | |||
|
79 | self.ngroups=numpy.zeros(1,'int32') ### ### ### 27 | |||
|
80 | #Make the header list | |||
|
81 | #header=[hsize,bufsize,nr,ngates,time1,time2,lcounter,groups,system,h0,dh,ipp,process,tx,padding,ngates1,time0,nlags,nlags1,padding,txb,time3,time4,h0_,dh_,ipp_,txa_,pad,nbytes,limits,padding,ngroups] | |||
|
82 | self.header=[self.hsize,self.bufsize,self.nr,self.ngates,self.time1,self.time2,self.lcounter,self.groups,self.system,self.h0,self.dh,self.ipp,self.process,self.tx,self.ngates1,self.padding,self.time0,self.nlags,self.nlags1,self.padding,self.txb,self.time3,self.time4,self.h0_,self.dh_,self.ipp_,self.txa_,self.pad,self.nbytes,self.limits,self.padding,self.ngroups] | |||
|
83 | ||||
|
84 | ||||
|
85 | ||||
|
86 | def setup(self, **kwargs): | |||
|
87 | ||||
|
88 | self.set_kwargs(**kwargs) | |||
|
89 | ||||
|
90 | ||||
|
91 | if self.path is None: | |||
|
92 | raise ValueError('The path is not valid') | |||
|
93 | ||||
|
94 | self.open_file = open | |||
|
95 | self.open_mode = 'rb' | |||
|
96 | ||||
|
97 | ||||
|
98 | ||||
|
99 | if self.format is None: | |||
|
100 | raise ValueError('The format is not valid') | |||
|
101 | elif self.format.lower() in ('dat'): | |||
|
102 | self.ext = '.dat' | |||
|
103 | elif self.format.lower() in ('out'): | |||
|
104 | self.ext = '.out' | |||
|
105 | ||||
|
106 | ||||
|
107 | log.log("Searching files in {}".format(self.path), self.name) | |||
|
108 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, | |||
|
109 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) | |||
|
110 | #print(self.path) | |||
|
111 | #print(self.filenameList) | |||
|
112 | #input() | |||
|
113 | ||||
|
114 | ||||
|
115 | self.setNextFile() | |||
|
116 | ||||
|
117 | def readFirstHeader(self): | |||
|
118 | '''Read header and data''' | |||
|
119 | ||||
|
120 | #self.flag_same_file=1 | |||
|
121 | self.counter_block=0 | |||
|
122 | self.parseHeader() | |||
|
123 | self.parseData() | |||
|
124 | self.blockIndex = 0 | |||
|
125 | ||||
|
126 | return | |||
|
127 | ||||
|
128 | def parseHeader(self): | |||
|
129 | ''' | |||
|
130 | ''' | |||
|
131 | ||||
|
132 | for i in range(len(self.header)): | |||
|
133 | for j in range(len(self.header[i])): | |||
|
134 | #print("len(header[i]) ",len(header[i])) | |||
|
135 | #input() | |||
|
136 | temp=self.fp.read(int(self.header[i].itemsize)) | |||
|
137 | if isinstance(self.header[i][0], numpy.int32): | |||
|
138 | #print(struct.unpack('i', temp)[0]) | |||
|
139 | self.header[i][0]=struct.unpack('i', temp)[0] | |||
|
140 | if isinstance(self.header[i][0], numpy.uint64): | |||
|
141 | self.header[i][0]=struct.unpack('q', temp)[0] | |||
|
142 | if isinstance(self.header[i][0], numpy.int8): | |||
|
143 | self.header[i][0]=struct.unpack('B', temp)[0] | |||
|
144 | if isinstance(self.header[i][0], numpy.float32): | |||
|
145 | self.header[i][0]=struct.unpack('f', temp)[0] | |||
|
146 | ||||
|
147 | self.fp.seek(0,0) | |||
|
148 | if int(self.header[1][0])==int(81864): | |||
|
149 | self.experiment='DP' | |||
|
150 | ||||
|
151 | elif int(self.header[1][0])==int(185504): | |||
|
152 | self.experiment='HP' | |||
|
153 | ||||
|
154 | ||||
|
155 | self.total_blocks=os.stat(self.filename).st_size//self.header[1][0] | |||
|
156 | ||||
|
157 | ||||
|
158 | def parseData(self): | |||
|
159 | ''' | |||
|
160 | ''' | |||
|
161 | if self.experiment=='DP': | |||
|
162 | self.header[15][0]=66 | |||
|
163 | self.header[18][0]=16 | |||
|
164 | self.header[17][0]=11 | |||
|
165 | self.header[2][0]=2 | |||
|
166 | ||||
|
167 | ||||
|
168 | self.noise=numpy.zeros(self.header[2][0],'float32') #self.header[2][0] | |||
|
169 | #tmpx=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
170 | self.kax=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
171 | self.kay=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
172 | self.kbx=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
173 | self.kby=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
174 | self.kax2=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
175 | self.kay2=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
176 | self.kbx2=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
177 | self.kby2=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
178 | self.kaxbx=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
179 | self.kaxby=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
180 | self.kaybx=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
181 | self.kayby=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
182 | self.kaxay=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
183 | self.kbxby=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32') | |||
|
184 | self.output_LP_real=numpy.zeros((self.header[18][0],200,self.header[2][0]),'float32') | |||
|
185 | self.output_LP_imag=numpy.zeros((self.header[18][0],200,self.header[2][0]),'float32') | |||
|
186 | self.final_cross_products=[self.kax,self.kay,self.kbx,self.kby,self.kax2,self.kay2,self.kbx2,self.kby2,self.kaxbx,self.kaxby,self.kaybx,self.kayby,self.kaxay,self.kbxby] | |||
|
187 | #self.final_cross_products=[tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx] | |||
|
188 | ||||
|
189 | #print("pos: ",self.fp.tell()) | |||
|
190 | ||||
|
191 | ||||
|
192 | def readNextBlock(self): | |||
|
193 | ||||
|
194 | while True: | |||
|
195 | self.flagDiscontinuousBlock = 0 | |||
|
196 | #print(os.stat(self.filename).st_size) | |||
|
197 | #print(os.stat(self.filename).st_size//self.header[1][0]) | |||
|
198 | #os.stat(self.fp) | |||
|
199 | if self.counter_block == self.total_blocks: | |||
|
200 | ||||
|
201 | self.setNextFile() | |||
|
202 | ||||
|
203 | self.readBlock() | |||
|
204 | #self.counter_block+=1 | |||
|
205 | ||||
|
206 | if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \ | |||
|
207 | (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)): | |||
|
208 | ||||
|
209 | #print(self.datatime) | |||
|
210 | #print(datetime.datetime.combine(self.startDate, self.startTime)) | |||
|
211 | #print(datetime.datetime.combine(self.endDate, self.endTime)) | |||
|
212 | #print("warning") | |||
|
213 | log.warning( | |||
|
214 | 'Reading Block No. {}/{} -> {} [Skipping]'.format( | |||
|
215 | self.counter_block, | |||
|
216 | self.total_blocks, | |||
|
217 | self.datatime.ctime()), | |||
|
218 | 'DATReader') | |||
|
219 | continue | |||
|
220 | break | |||
|
221 | ||||
|
222 | log.log( | |||
|
223 | 'Reading Block No. {}/{} -> {}'.format( | |||
|
224 | self.counter_block, | |||
|
225 | self.total_blocks, | |||
|
226 | self.datatime.ctime()), | |||
|
227 | 'DATReader') | |||
|
228 | ||||
|
229 | return 1 | |||
|
230 | ||||
|
231 | def readBlock(self): | |||
|
232 | ''' | |||
|
233 | ''' | |||
|
234 | ||||
|
235 | self.npos=self.counter_block*self.header[1][0] | |||
|
236 | #print(self.counter_block) | |||
|
237 | self.fp.seek(self.npos, 0) | |||
|
238 | self.counter_block+=1 | |||
|
239 | #print("fpos1: ",self.fp.tell()) | |||
|
240 | ||||
|
241 | self.read_header() | |||
|
242 | ||||
|
243 | #put by hand because old files didn't save it in the header | |||
|
244 | if self.experiment=='DP': | |||
|
245 | self.header[15][0]=66 | |||
|
246 | self.header[18][0]=16 | |||
|
247 | self.header[17][0]=11 | |||
|
248 | self.header[2][0]=2 | |||
|
249 | ######################################### | |||
|
250 | ||||
|
251 | if self.experiment=="HP": | |||
|
252 | self.long_pulse_products() | |||
|
253 | ||||
|
254 | self.read_cross_products() | |||
|
255 | ||||
|
256 | ||||
|
257 | self.read_noise() | |||
|
258 | ||||
|
259 | ||||
|
260 | return | |||
|
261 | ||||
|
262 | ||||
|
263 | ||||
|
264 | def read_header(self): | |||
|
265 | ||||
|
266 | ||||
|
267 | for i in range(len(self.header)): | |||
|
268 | for j in range(len(self.header[i])): | |||
|
269 | #print("len(header[i]) ",len(header[i])) | |||
|
270 | #input() | |||
|
271 | temp=self.fp.read(int(self.header[i].itemsize)) | |||
|
272 | #if(b''==temp): | |||
|
273 | # self.setNextFile() | |||
|
274 | # self.flag_same_file=0 | |||
|
275 | if isinstance(self.header[i][0], numpy.int32): | |||
|
276 | #print(struct.unpack('i', temp)[0]) | |||
|
277 | self.header[i][0]=struct.unpack('i', temp)[0] | |||
|
278 | if isinstance(self.header[i][0], numpy.uint64): | |||
|
279 | self.header[i][0]=struct.unpack('q', temp)[0] | |||
|
280 | if isinstance(self.header[i][0], numpy.int8): | |||
|
281 | self.header[i][0]=struct.unpack('B', temp)[0] | |||
|
282 | if isinstance(self.header[i][0], numpy.float32): | |||
|
283 | self.header[i][0]=struct.unpack('f', temp)[0] | |||
|
284 | #else: | |||
|
285 | # continue | |||
|
286 | #self.fp.seek(self.npos_aux, 0) | |||
|
287 | # break | |||
|
288 | ||||
|
289 | #print("fpos2: ",self.fp.tell()) | |||
|
290 | #log.success('Parameters found: {}'.format(self.parameters), | |||
|
291 | # 'DATReader') | |||
|
292 | #print("Success") | |||
|
293 | #self.TimeBlockSeconds_for_dp_power = self.header[4][0]#-((self.dataOut.nint-1)*self.dataOut.NAVG*2) | |||
|
294 | #print(dataOut.TimeBlockSeconds_for_dp_power) | |||
|
295 | ||||
|
296 | #self.datatime=datetime.datetime.fromtimestamp(self.header[4][0]).strftime("%Y-%m-%d %H:%M:%S") | |||
|
297 | #print(self.header[4][0]) | |||
|
298 | self.datatime=datetime.datetime.fromtimestamp(self.header[4][0]) | |||
|
299 | #print(self.header[1][0]) | |||
|
300 | ||||
|
301 | def long_pulse_products(self): | |||
|
302 | temp=self.fp.read(self.header[18][0]*self.header[2][0]*200*8) | |||
|
303 | ii=0 | |||
|
304 | ||||
|
305 | for l in range(self.header[18][0]): #lag | |||
|
306 | for r in range(self.header[2][0]): # channels | |||
|
307 | for k in range(200): #RANGE## generalizar | |||
|
308 | self.output_LP_real[l,k,r]=struct.unpack('f', temp[ii:ii+4])[0] | |||
|
309 | ii=ii+4 | |||
|
310 | self.output_LP_imag[l,k,r]=struct.unpack('f', temp[ii:ii+4])[0] | |||
|
311 | ii=ii+4 | |||
|
312 | ||||
|
313 | #print(self.output_LP_real[1,1,1]) | |||
|
314 | #print(self.output_LP_imag[1,1,1]) | |||
|
315 | def read_cross_products(self): | |||
|
316 | ||||
|
317 | for ind in range(len(self.final_cross_products)): #final cross products | |||
|
318 | temp=self.fp.read(self.header[17][0]*2*self.header[15][0]*4) #*4 bytes | |||
|
319 | #if(b''==temp): | |||
|
320 | # self.setNextFile() | |||
|
321 | # self.flag_same_file=0 | |||
|
322 | ii=0 | |||
|
323 | #print("kabxys.shape ",kabxys.shape) | |||
|
324 | #print(kabxys) | |||
|
325 | #print("fpos3: ",self.fp.tell()) | |||
|
326 | for l in range(self.header[17][0]): #lag | |||
|
327 | #print("fpos3: ",self.fp.tell()) | |||
|
328 | for fl in range(2): # unflip and flip | |||
|
329 | for k in range(self.header[15][0]): #RANGE | |||
|
330 | #print("fpos3: ",self.fp.tell()) | |||
|
331 | self.final_cross_products[ind][k,l,fl]=struct.unpack('f', temp[ii:ii+4])[0] | |||
|
332 | ii=ii+4 | |||
|
333 | #print("fpos2: ",self.fp.tell()) | |||
|
334 | ||||
|
335 | ||||
|
336 | ||||
|
337 | def read_noise(self): | |||
|
338 | ||||
|
339 | temp=self.fp.read(self.header[2][0]*4) #*4 bytes self.header[2][0] | |||
|
340 | for ii in range(self.header[2][0]): #self.header[2][0] | |||
|
341 | self.noise[ii]=struct.unpack('f', temp[ii*4:(ii+1)*4])[0] | |||
|
342 | ||||
|
343 | #print("fpos5: ",self.fp.tell()) | |||
|
344 | ||||
|
345 | ||||
|
346 | ||||
|
347 | def set_output(self): | |||
|
348 | ''' | |||
|
349 | Storing data from buffer to dataOut object | |||
|
350 | ''' | |||
|
351 | #print("fpos2: ",self.fp.tell()) | |||
|
352 | ##self.dataOut.header = self.header | |||
|
353 | #this is put by hand because it isn't saved in the header | |||
|
354 | if self.experiment=='DP': | |||
|
355 | self.dataOut.NRANGE=0 | |||
|
356 | self.dataOut.NSCAN=132 | |||
|
357 | self.dataOut.heightList=self.header[10][0]*(numpy.arange(self.header[15][0])) | |||
|
358 | elif self.experiment=='HP': | |||
|
359 | self.dataOut.output_LP=self.output_LP_real+1.j*self.output_LP_imag | |||
|
360 | self.dataOut.NRANGE=200 | |||
|
361 | self.dataOut.NSCAN=128 | |||
|
362 | self.dataOut.heightList=self.header[10][0]*(numpy.arange(90)) #NEEEDS TO BE GENERALIZED | |||
|
363 | ######################################### | |||
|
364 | #print(self.dataOut.output_LP[1,1,1]) | |||
|
365 | self.dataOut.MAXNRANGENDT=self.header[3][0] | |||
|
366 | self.dataOut.NDP=self.header[15][0] | |||
|
367 | self.dataOut.DPL=self.header[17][0] | |||
|
368 | self.dataOut.DH=self.header[10][0] | |||
|
369 | self.dataOut.NAVG=self.header[7][0] | |||
|
370 | self.dataOut.H0=self.header[9][0] | |||
|
371 | self.dataOut.NR=self.header[2][0] | |||
|
372 | self.dataOut.NLAG=self.header[18][0] | |||
|
373 | #self.dataOut.tmpx=self.tmpx | |||
|
374 | #self.dataOut.timeZone = 5 | |||
|
375 | #self.dataOut.final_cross_products=self.final_cross_products | |||
|
376 | self.dataOut.kax=self.kax | |||
|
377 | #print(self.dataOut.kax[1,1,1]) | |||
|
378 | self.dataOut.kay=self.kay | |||
|
379 | self.dataOut.kbx=self.kbx | |||
|
380 | self.dataOut.kby=self.kby | |||
|
381 | self.dataOut.kax2=self.kax2 | |||
|
382 | self.dataOut.kay2=self.kay2 | |||
|
383 | self.dataOut.kbx2=self.kbx2 | |||
|
384 | self.dataOut.kby2=self.kby2 | |||
|
385 | self.dataOut.kaxbx=self.kaxbx | |||
|
386 | self.dataOut.kaxby=self.kaxby | |||
|
387 | self.dataOut.kaybx=self.kaybx | |||
|
388 | self.dataOut.kayby=self.kayby | |||
|
389 | self.dataOut.kaxay=self.kaxay | |||
|
390 | self.dataOut.kbxby=self.kbxby | |||
|
391 | self.dataOut.noise_final=self.noise | |||
|
392 | #print("NOISE",self.noise) | |||
|
393 | ||||
|
394 | ||||
|
395 | self.dataOut.useLocalTime=True | |||
|
396 | ||||
|
397 | #self.dataOut.experiment=self.experiment | |||
|
398 | #print(self.datatime) | |||
|
399 | #print(self.dataOut.datatime) | |||
|
400 | ||||
|
401 | ||||
|
402 | #self.dataOut.utctime = (self.datatime - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
403 | #self.dataOut.utctimeInit = self.dataOut.utctime | |||
|
404 | ||||
|
405 | ||||
|
406 | ||||
|
407 | self.dataOut.lt=self.datatime.hour | |||
|
408 | ||||
|
409 | ||||
|
410 | #print(RadarControllerHeader().ippSeconds) | |||
|
411 | #print(RadarControllerHeader().ipp) | |||
|
412 | #self.dataOut.utctime=time.gmtime(self.header[4][0])- datetime.datetime(1970, 1, 1) | |||
|
413 | #self.dataOut.utctime=self.dataOut.utctime.total_seconds() | |||
|
414 | #time1 = self.header[4][0] # header.time1 | |||
|
415 | #print("time1: ",time1) | |||
|
416 | #print(self.header[4][0]) | |||
|
417 | #date = time.ctime(time1) | |||
|
418 | #print("DADSADA",time.strptime(date)) | |||
|
419 | #print("date_before: ",date) | |||
|
420 | #bd_time=time.gmtime(time1) | |||
|
421 | #print(time.mktime(bd_time)) | |||
|
422 | #self.dataOut.utctime=time.mktime(bd_time) | |||
|
423 | self.dataOut.utctime = self.header[4][0] | |||
|
424 | #self.dataOut.datatime=a | |||
|
425 | #print(datetime.datetime.utcfromtimestamp(self.dataOut.utctime)) | |||
|
426 | #self.dataOut.TimeBlockDate=self.datatime.ctime() | |||
|
427 | self.dataOut.TimeBlockSeconds=time.mktime(time.strptime(self.dataOut.datatime.ctime())) | |||
|
428 | ||||
|
429 | #self.dataOut.heightList = self.ranges | |||
|
430 | #self.dataOut.utctime = (self.datatime - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
431 | #self.dataOut.utctimeInit = self.dataOut.utctime | |||
|
432 | #self.dataOut.paramInterval = min(self.intervals) | |||
|
433 | #self.dataOut.useLocalTime = False | |||
|
434 | self.dataOut.flagNoData = False | |||
|
435 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock | |||
|
436 | #print(self.dataOut.channelIndexList) | |||
|
437 | self.dataOut.channelList=list(range(0,self.header[2][0])) | |||
|
438 | #print(self.dataOut.channelList) | |||
|
439 | #print(self.datatime) | |||
|
440 | #print(self.dataOut.final_cross_products[0]) | |||
|
441 | ||||
|
442 | ||||
|
443 | #self.dataOut.heightList=self.header[10][0]*(numpy.arange(self.header[15][0])) | |||
|
444 | ||||
|
445 | #print(numpy.shape(self.dataOut.heightList)) | |||
|
446 | ||||
|
447 | ||||
|
448 | def getData(self): | |||
|
449 | ''' | |||
|
450 | Storing data from databuffer to dataOut object | |||
|
451 | ''' | |||
|
452 | ||||
|
453 | if not self.readNextBlock(): | |||
|
454 | self.dataOut.flagNoData = True | |||
|
455 | return 0 | |||
|
456 | ||||
|
457 | self.set_output() | |||
|
458 | ||||
|
459 | return 1 | |||
|
460 | ||||
|
461 | def run(self, **kwargs): | |||
|
462 | ||||
|
463 | if not(self.isConfig): | |||
|
464 | self.setup(**kwargs) | |||
|
465 | self.isConfig = True | |||
|
466 | #print("fpos1: ",self.fp.tell()) | |||
|
467 | self.getData() | |||
|
468 | ||||
|
469 | return | |||
|
470 | ||||
|
471 | @MPDecorator | |||
|
472 | class DatWriter(Operation): | |||
|
473 | ||||
|
474 | ||||
|
475 | def __init__(self): | |||
|
476 | ||||
|
477 | Operation.__init__(self) | |||
|
478 | #self.dataOut = Voltage() | |||
|
479 | self.counter = 0 | |||
|
480 | self.path = None | |||
|
481 | self.fp = None | |||
|
482 | return | |||
|
483 | #self.ext= '.dat' | |||
|
484 | ||||
|
485 | def run(self, dataOut, path, format='dat', experiment=None, **kwargs): | |||
|
486 | print(dataOut.flagNoData) | |||
|
487 | print(dataOut.datatime.ctime()) | |||
|
488 | print(dataOut.TimeBlockDate) | |||
|
489 | input() | |||
|
490 | #if dataOut.flag_save: | |||
|
491 | self.experiment=experiment | |||
|
492 | self.path=path | |||
|
493 | if self.experiment=='DP': | |||
|
494 | dataOut.header[1][0]=81864 | |||
|
495 | elif self.experiment=='HP': | |||
|
496 | dataOut.header[1][0]=185504#173216 | |||
|
497 | #dataOut.header[1][0]=bufsize | |||
|
498 | self.dataOut = dataOut | |||
|
499 | #print(self.dataOut.nint) | |||
|
500 | #self.bufsize=bufsize | |||
|
501 | if format == 'dat': | |||
|
502 | self.ext = '.dat' | |||
|
503 | if format == 'out': | |||
|
504 | self.ext = '.out' | |||
|
505 | self.putData() | |||
|
506 | ||||
|
507 | return | |||
|
508 | ||||
|
509 | ||||
|
510 | ||||
|
511 | def setFile(self): | |||
|
512 | ''' | |||
|
513 | Create new out file object | |||
|
514 | ''' | |||
|
515 | ||||
|
516 | #self.dataOut.TimeBlockSeconds=time.mktime(time.strptime(self.dataOut.TimeBlockDate)) | |||
|
517 | date = datetime.datetime.fromtimestamp(self.dataOut.TimeBlockSeconds) | |||
|
518 | ||||
|
519 | #print("date",date) | |||
|
520 | ||||
|
521 | filename = '{}{}{}'.format('jro', | |||
|
522 | date.strftime('%Y%m%d_%H%M%S'), | |||
|
523 | self.ext) | |||
|
524 | #print(filename) | |||
|
525 | #print(self.path) | |||
|
526 | ||||
|
527 | self.fullname = os.path.join(self.path, filename) | |||
|
528 | ||||
|
529 | if os.path.isfile(self.fullname) : | |||
|
530 | log.warning( | |||
|
531 | 'Destination file {} already exists, previous file deleted.'.format( | |||
|
532 | self.fullname), | |||
|
533 | 'DatWriter') | |||
|
534 | os.remove(self.fullname) | |||
|
535 | ||||
|
536 | try: | |||
|
537 | log.success( | |||
|
538 | 'Creating file: {}'.format(self.fullname), | |||
|
539 | 'DatWriter') | |||
|
540 | if not os.path.exists(self.path): | |||
|
541 | os.makedirs(self.path) | |||
|
542 | #self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True) | |||
|
543 | self.fp = open(self.fullname,'wb') | |||
|
544 | ||||
|
545 | except ValueError as e: | |||
|
546 | log.error( | |||
|
547 | 'Impossible to create *.out file', | |||
|
548 | 'DatWriter') | |||
|
549 | return | |||
|
550 | ||||
|
551 | return 1 | |||
|
552 | ||||
|
553 | def writeBlock(self): | |||
|
554 | ||||
|
555 | #self.dataOut.paramInterval=2 | |||
|
556 | #startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) | |||
|
557 | #print(startTime) | |||
|
558 | #endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval) | |||
|
559 | ||||
|
560 | self.dataOut.header[0].astype('int32').tofile(self.fp) | |||
|
561 | self.dataOut.header[1].astype('int32').tofile(self.fp) | |||
|
562 | self.dataOut.header[2].astype('int32').tofile(self.fp) | |||
|
563 | self.dataOut.header[3].astype('int32').tofile(self.fp) | |||
|
564 | self.dataOut.header[4].astype('uint64').tofile(self.fp) | |||
|
565 | self.dataOut.header[5].astype('uint64').tofile(self.fp) | |||
|
566 | self.dataOut.header[6].astype('int32').tofile(self.fp) | |||
|
567 | self.dataOut.header[7].astype('int32').tofile(self.fp) | |||
|
568 | #print(dataOut.header[7]) | |||
|
569 | self.dataOut.header[8].astype('int8').tofile(self.fp) | |||
|
570 | self.dataOut.header[9].astype('float32').tofile(self.fp) | |||
|
571 | self.dataOut.header[10].astype('float32').tofile(self.fp) | |||
|
572 | self.dataOut.header[11].astype('float32').tofile(self.fp) | |||
|
573 | self.dataOut.header[12].astype('int32').tofile(self.fp) | |||
|
574 | self.dataOut.header[13].astype('int32').tofile(self.fp) | |||
|
575 | self.dataOut.header[14].astype('int32').tofile(self.fp) | |||
|
576 | self.dataOut.header[15].astype('int32').tofile(self.fp) | |||
|
577 | self.dataOut.header[16].astype('uint64').tofile(self.fp) | |||
|
578 | self.dataOut.header[17].astype('int32').tofile(self.fp) | |||
|
579 | self.dataOut.header[18].astype('int32').tofile(self.fp) | |||
|
580 | self.dataOut.header[19].astype('int32').tofile(self.fp) | |||
|
581 | self.dataOut.header[20].astype('float32').tofile(self.fp) | |||
|
582 | self.dataOut.header[21].astype('uint64').tofile(self.fp) | |||
|
583 | self.dataOut.header[22].astype('uint64').tofile(self.fp) | |||
|
584 | self.dataOut.header[23].astype('float32').tofile(self.fp) | |||
|
585 | self.dataOut.header[24].astype('float32').tofile(self.fp) | |||
|
586 | self.dataOut.header[25].astype('float32').tofile(self.fp) | |||
|
587 | self.dataOut.header[26].astype('float32').tofile(self.fp) | |||
|
588 | self.dataOut.header[27].astype('int32').tofile(self.fp) | |||
|
589 | self.dataOut.header[28].astype('int32').tofile(self.fp) | |||
|
590 | self.dataOut.header[29].astype('int32').tofile(self.fp) | |||
|
591 | self.dataOut.header[30].astype('int32').tofile(self.fp) | |||
|
592 | self.dataOut.header[31].astype('int32').tofile(self.fp) | |||
|
593 | #print("tell before 1 ",self.fp.tell()) | |||
|
594 | #input() | |||
|
595 | ||||
|
596 | if self.experiment=="HP": | |||
|
597 | #print("INSIDE") | |||
|
598 | #tmp=numpy.zeros(1,dtype='complex64') | |||
|
599 | #print("tmp ",tmp) | |||
|
600 | #input() | |||
|
601 | #print(dataOut.NLAG) | |||
|
602 | #print(dataOut.NR) | |||
|
603 | #print(dataOut.NRANGE) | |||
|
604 | for l in range(self.dataOut.NLAG): #lag | |||
|
605 | for r in range(self.dataOut.NR): # unflip and flip | |||
|
606 | for k in range(self.dataOut.NRANGE): #RANGE | |||
|
607 | self.dataOut.output_LP.real[l,k,r].astype('float32').tofile(self.fp) | |||
|
608 | self.dataOut.output_LP.imag[l,k,r].astype('float32').tofile(self.fp) | |||
|
609 | ||||
|
610 | ||||
|
611 | #print("tell before 2 ",self.outputfile.tell()) | |||
|
612 | ||||
|
613 | ||||
|
614 | ||||
|
615 | ||||
|
616 | ||||
|
617 | #print(self.dataOut.output_LP[1,1,1]) | |||
|
618 | ||||
|
619 | #print(self.dataOut.kax) | |||
|
620 | final_cross_products=[self.dataOut.kax,self.dataOut.kay,self.dataOut.kbx,self.dataOut.kby, | |||
|
621 | self.dataOut.kax2,self.dataOut.kay2,self.dataOut.kbx2,self.dataOut.kby2, | |||
|
622 | self.dataOut.kaxbx,self.dataOut.kaxby,self.dataOut.kaybx,self.dataOut.kayby, | |||
|
623 | self.dataOut.kaxay,self.dataOut.kbxby] | |||
|
624 | ||||
|
625 | #print(self.dataOut.kax) | |||
|
626 | #print("tell before crossp saving ",self.outputfile.tell()) | |||
|
627 | for kabxys in final_cross_products: | |||
|
628 | ||||
|
629 | for l in range(self.dataOut.DPL): #lag | |||
|
630 | for fl in range(2): # unflip and flip | |||
|
631 | for k in range(self.dataOut.NDT): #RANGE | |||
|
632 | kabxys[k,l,fl].astype('float32').tofile(self.fp) | |||
|
633 | ||||
|
634 | ||||
|
635 | #print("tell before noise saving ",self.outputfile.tell()) | |||
|
636 | ||||
|
637 | ||||
|
638 | for nch in range(self.dataOut.NR): | |||
|
639 | self.dataOut.noise_final[nch].astype('float32').tofile(self.fp) | |||
|
640 | ||||
|
641 | #print("tell before noise saving ",self.fp.tell()) | |||
|
642 | #input() | |||
|
643 | ||||
|
644 | ||||
|
645 | ||||
|
646 | ||||
|
647 | log.log( | |||
|
648 | 'Writing {} blocks'.format( | |||
|
649 | self.counter+1), | |||
|
650 | 'DatWriter') | |||
|
651 | ||||
|
652 | ||||
|
653 | ||||
|
654 | ||||
|
655 | ||||
|
656 | ||||
|
657 | def putData(self): | |||
|
658 | #print("flagNoData",self.dataOut.flagNoData) | |||
|
659 | #print("flagDiscontinuousBlock",self.dataOut.flagDiscontinuousBlock) | |||
|
660 | #print(self.dataOut.flagNoData) | |||
|
661 | ||||
|
662 | if self.dataOut.flagNoData: | |||
|
663 | return 0 | |||
|
664 | ||||
|
665 | if self.dataOut.flagDiscontinuousBlock: | |||
|
666 | ||||
|
667 | self.counter = 0 | |||
|
668 | ||||
|
669 | if self.counter == 0: | |||
|
670 | self.setFile() | |||
|
671 | #if self.experiment=="HP": | |||
|
672 | #if self.dataOut.debris_activated==0: | |||
|
673 | #self.writeBlock() | |||
|
674 | #self.counter += 1 | |||
|
675 | #else: | |||
|
676 | self.writeBlock() | |||
|
677 | self.counter += 1 | |||
|
678 | ||||
|
679 | def close(self): | |||
|
680 | ||||
|
681 | if self.counter > 0: | |||
|
682 | self.fp.close() | |||
|
683 | log.success('Closing file {}'.format(self.fullname), 'DatWriter') |
This diff has been collapsed as it changes many lines, (2561 lines changed) Show them Hide them | |||||
@@ -0,0 +1,2561 | |||||
|
1 | ||||
|
2 | import matplotlib.pyplot as plt | |||
|
3 | ||||
|
4 | ||||
|
5 | ||||
|
6 | import numpy | |||
|
7 | import time | |||
|
8 | import math | |||
|
9 | ||||
|
10 | from datetime import datetime | |||
|
11 | ||||
|
12 | from schainpy.utils import log | |||
|
13 | ||||
|
14 | import struct | |||
|
15 | import os | |||
|
16 | ||||
|
17 | import sys | |||
|
18 | ||||
|
19 | from ctypes import * | |||
|
20 | ||||
|
21 | from schainpy.model.io.jroIO_voltage import VoltageReader,JRODataReader | |||
|
22 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |||
|
23 | from schainpy.model.data.jrodata import Voltage | |||
|
24 | ||||
|
25 | ||||
|
26 | ||||
|
27 | ||||
|
28 | @MPDecorator | |||
|
29 | class VoltageLagsProc(ProcessingUnit): | |||
|
30 | ||||
|
31 | def __init__(self): | |||
|
32 | ||||
|
33 | ProcessingUnit.__init__(self) | |||
|
34 | ||||
|
35 | self.dataOut = Voltage() | |||
|
36 | self.bcounter=0 | |||
|
37 | self.dataOut.kax=None | |||
|
38 | self.dataOut.kay=None | |||
|
39 | self.dataOut.kbx=None | |||
|
40 | self.dataOut.kby=None | |||
|
41 | self.dataOut.kax2=None | |||
|
42 | self.dataOut.kay2=None | |||
|
43 | self.dataOut.kbx2=None | |||
|
44 | self.dataOut.kby2=None | |||
|
45 | self.dataOut.kaxbx=None | |||
|
46 | self.dataOut.kaxby=None | |||
|
47 | self.dataOut.kaybx=None | |||
|
48 | self.dataOut.kayby=None | |||
|
49 | self.dataOut.kaxay=None | |||
|
50 | self.dataOut.kbxby=None | |||
|
51 | self.aux=1 | |||
|
52 | ||||
|
53 | self.LP_products_aux=0 | |||
|
54 | self.lag_products_LP_median_estimates_aux=0 | |||
|
55 | ||||
|
56 | #self.dataOut.input_dat_type=0 #06/04/2020 | |||
|
57 | ||||
|
58 | def get_products_cabxys(self): | |||
|
59 | ||||
|
60 | ||||
|
61 | if self.aux==1: | |||
|
62 | ||||
|
63 | ||||
|
64 | ||||
|
65 | self.dataOut.read_samples=int(self.dataOut.systemHeaderObj.nSamples/self.dataOut.OSAMP) | |||
|
66 | if self.dataOut.experiment=="DP": | |||
|
67 | self.dataOut.nptsfft1=132 #30/03/2020 | |||
|
68 | self.dataOut.nptsfft2=140 #30/03/2020 | |||
|
69 | if self.dataOut.experiment=="HP": | |||
|
70 | self.dataOut.nptsfft1=128 #30/03/2020 | |||
|
71 | self.dataOut.nptsfft2=150 #30/03/2020 | |||
|
72 | ||||
|
73 | ||||
|
74 | #self.dataOut.noise_final_list=[] #30/03/2020 | |||
|
75 | ||||
|
76 | padding=numpy.zeros(1,'int32') | |||
|
77 | ||||
|
78 | hsize=numpy.zeros(1,'int32') | |||
|
79 | bufsize=numpy.zeros(1,'int32') | |||
|
80 | nr=numpy.zeros(1,'int32') | |||
|
81 | ngates=numpy.zeros(1,'int32') ### ### ### 2 | |||
|
82 | time1=numpy.zeros(1,'uint64') # pos 3 | |||
|
83 | time2=numpy.zeros(1,'uint64') # pos 4 | |||
|
84 | lcounter=numpy.zeros(1,'int32') | |||
|
85 | groups=numpy.zeros(1,'int32') | |||
|
86 | system=numpy.zeros(4,'int8') # pos 7 | |||
|
87 | h0=numpy.zeros(1,'float32') | |||
|
88 | dh=numpy.zeros(1,'float32') | |||
|
89 | ipp=numpy.zeros(1,'float32') | |||
|
90 | process=numpy.zeros(1,'int32') | |||
|
91 | tx=numpy.zeros(1,'int32') | |||
|
92 | ||||
|
93 | ngates1=numpy.zeros(1,'int32') ### ### ### 13 | |||
|
94 | time0=numpy.zeros(1,'uint64') # pos 14 | |||
|
95 | nlags=numpy.zeros(1,'int32') | |||
|
96 | nlags1=numpy.zeros(1,'int32') | |||
|
97 | txb=numpy.zeros(1,'float32') ### ### ### 17 | |||
|
98 | time3=numpy.zeros(1,'uint64') # pos 18 | |||
|
99 | time4=numpy.zeros(1,'uint64') # pos 19 | |||
|
100 | h0_=numpy.zeros(1,'float32') | |||
|
101 | dh_=numpy.zeros(1,'float32') | |||
|
102 | ipp_=numpy.zeros(1,'float32') | |||
|
103 | txa_=numpy.zeros(1,'float32') | |||
|
104 | ||||
|
105 | pad=numpy.zeros(100,'int32') | |||
|
106 | ||||
|
107 | nbytes=numpy.zeros(1,'int32') | |||
|
108 | limits=numpy.zeros(1,'int32') | |||
|
109 | ngroups=numpy.zeros(1,'int32') ### ### ### 27 | |||
|
110 | ||||
|
111 | ||||
|
112 | self.dataOut.header=[hsize,bufsize,nr,ngates,time1,time2, | |||
|
113 | lcounter,groups,system,h0,dh,ipp, | |||
|
114 | process,tx,ngates1,padding,time0,nlags, | |||
|
115 | nlags1,padding,txb,time3,time4,h0_,dh_, | |||
|
116 | ipp_,txa_,pad,nbytes,limits,padding,ngroups] | |||
|
117 | ||||
|
118 | if self.dataOut.experiment == "DP": | |||
|
119 | self.dataOut.header[1][0]=81864 | |||
|
120 | if self.dataOut.experiment == "HP": | |||
|
121 | self.dataOut.header[1][0]=173216 | |||
|
122 | ||||
|
123 | self.dataOut.header[3][0]=max(self.dataOut.NRANGE,self.dataOut.NDT) | |||
|
124 | self.dataOut.header[7][0]=self.dataOut.NAVG | |||
|
125 | self.dataOut.header[9][0]=int(self.dataOut.heightList[0]) | |||
|
126 | self.dataOut.header[10][0]=self.dataOut.DH | |||
|
127 | self.dataOut.header[17][0]=self.dataOut.DPL | |||
|
128 | self.dataOut.header[18][0]=self.dataOut.NLAG | |||
|
129 | #self.header[5][0]=0 | |||
|
130 | self.dataOut.header[15][0]=self.dataOut.NDP | |||
|
131 | self.dataOut.header[2][0]=self.dataOut.NR | |||
|
132 | #time.mktime(time.strptime() | |||
|
133 | ||||
|
134 | ||||
|
135 | ||||
|
136 | ||||
|
137 | self.aux=0 | |||
|
138 | ||||
|
139 | ||||
|
140 | ||||
|
141 | ||||
|
142 | ||||
|
143 | ||||
|
144 | ||||
|
145 | ||||
|
146 | ||||
|
147 | if self.dataOut.experiment=="DP": | |||
|
148 | ||||
|
149 | ||||
|
150 | self.dataOut.lags_array=[x / self.dataOut.DH for x in self.dataOut.flags_array] | |||
|
151 | self.cax=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
152 | self.cay=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
153 | self.cbx=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
154 | self.cby=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
155 | self.cax2=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
156 | self.cay2=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
157 | self.cbx2=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
158 | self.cby2=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
159 | self.caxbx=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
160 | self.caxby=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
161 | self.caybx=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
162 | self.cayby=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
163 | self.caxay=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
164 | self.cbxby=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2)) | |||
|
165 | ||||
|
166 | for i in range(2): | |||
|
167 | for j in range(self.dataOut.NDP): | |||
|
168 | for k in range(int(self.dataOut.NSCAN/2)): | |||
|
169 | n=k%self.dataOut.nlags_array | |||
|
170 | ax=self.dataOut.data[0,2*k+i,j].real | |||
|
171 | ay=self.dataOut.data[0,2*k+i,j].imag | |||
|
172 | if j+self.dataOut.lags_array[n]<self.dataOut.NDP: | |||
|
173 | bx=self.dataOut.data[1,2*k+i,j+int(self.dataOut.lags_array[n])].real | |||
|
174 | by=self.dataOut.data[1,2*k+i,j+int(self.dataOut.lags_array[n])].imag | |||
|
175 | else: | |||
|
176 | if k+1<int(self.dataOut.NSCAN/2): | |||
|
177 | bx=self.dataOut.data[1,2*(k+1)+i,(self.dataOut.NRANGE+self.dataOut.NCAL+j+int(self.dataOut.lags_array[n]))%self.dataOut.NDP].real | |||
|
178 | by=self.dataOut.data[1,2*(k+1)+i,(self.dataOut.NRANGE+self.dataOut.NCAL+j+int(self.dataOut.lags_array[n]))%self.dataOut.NDP].imag | |||
|
179 | ||||
|
180 | if k+1==int(self.dataOut.NSCAN/2): | |||
|
181 | bx=self.dataOut.data[1,2*k+i,(self.dataOut.NRANGE+self.dataOut.NCAL+j+int(self.dataOut.lags_array[n]))%self.dataOut.NDP].real | |||
|
182 | by=self.dataOut.data[1,2*k+i,(self.dataOut.NRANGE+self.dataOut.NCAL+j+int(self.dataOut.lags_array[n]))%self.dataOut.NDP].imag | |||
|
183 | ||||
|
184 | if(k<self.dataOut.nlags_array): | |||
|
185 | self.cax[j][n][i]=ax | |||
|
186 | self.cay[j][n][i]=ay | |||
|
187 | self.cbx[j][n][i]=bx | |||
|
188 | self.cby[j][n][i]=by | |||
|
189 | self.cax2[j][n][i]=ax*ax | |||
|
190 | self.cay2[j][n][i]=ay*ay | |||
|
191 | self.cbx2[j][n][i]=bx*bx | |||
|
192 | self.cby2[j][n][i]=by*by | |||
|
193 | self.caxbx[j][n][i]=ax*bx | |||
|
194 | self.caxby[j][n][i]=ax*by | |||
|
195 | self.caybx[j][n][i]=ay*bx | |||
|
196 | self.cayby[j][n][i]=ay*by | |||
|
197 | self.caxay[j][n][i]=ax*ay | |||
|
198 | self.cbxby[j][n][i]=bx*by | |||
|
199 | else: | |||
|
200 | self.cax[j][n][i]+=ax | |||
|
201 | self.cay[j][n][i]+=ay | |||
|
202 | self.cbx[j][n][i]+=bx | |||
|
203 | self.cby[j][n][i]+=by | |||
|
204 | self.cax2[j][n][i]+=ax*ax | |||
|
205 | self.cay2[j][n][i]+=ay*ay | |||
|
206 | self.cbx2[j][n][i]+=bx*bx | |||
|
207 | self.cby2[j][n][i]+=by*by | |||
|
208 | self.caxbx[j][n][i]+=ax*bx | |||
|
209 | self.caxby[j][n][i]+=ax*by | |||
|
210 | self.caybx[j][n][i]+=ay*bx | |||
|
211 | self.cayby[j][n][i]+=ay*by | |||
|
212 | self.caxay[j][n][i]+=ax*ay | |||
|
213 | self.cbxby[j][n][i]+=bx*by | |||
|
214 | ||||
|
215 | ||||
|
216 | ||||
|
217 | #return self.cax,self.cay,self.cbx,self.cby,self.cax2,self.cay2,self.cbx2,self.cby2,self.caxbx,self.caxby,self.caybx,self.cayby,self.caxay,self.cbxby | |||
|
218 | ||||
|
219 | if self.dataOut.experiment=="HP": | |||
|
220 | ||||
|
221 | #lagind=[0,1,2,3,4,5,6,7,0,3,4,5,6,8,9,10] | |||
|
222 | #lagfirst=[1,1,1,1,1,1,1,1,0,0,0,0,0,1,1,1] | |||
|
223 | ||||
|
224 | self.cax=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))# hp:67x11x2 dp: 66x11x2 | |||
|
225 | self.cay=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
226 | self.cbx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
227 | self.cby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
228 | self.cax2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
229 | self.cay2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
230 | self.cbx2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
231 | self.cby2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
232 | self.caxbx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
233 | self.caxby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
234 | self.caybx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
235 | self.cayby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
236 | self.caxay=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
237 | self.cbxby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2)) | |||
|
238 | for i in range(2): # flipped and unflipped | |||
|
239 | for j in range(self.dataOut.NDP): # loop over true ranges # 67 | |||
|
240 | for k in range(int(self.dataOut.NSCAN)): # 128 | |||
|
241 | #print("flip ",i," NDP ",j, " NSCAN ",k) | |||
|
242 | #print("cdata ",cdata[i:NSCAN:2][k][:,0]) | |||
|
243 | n=self.dataOut.lagind[k%self.dataOut.nlags_array] # 128=16x8 | |||
|
244 | #print("n ",n) | |||
|
245 | #ind1=nrx*(j+ngates_2*i+ngates_2*2*k)# scan has flip or unflip | |||
|
246 | #ind2=ind1+(1)+nrx*lags_array[n]#jump each lagged | |||
|
247 | #ax=cdata[i:NSCAN:2][k][:,0][NRANGE+NCAL+j].real #cdata[ind1].r | |||
|
248 | #ay=cdata[i:NSCAN:2][k][:,0][NRANGE+NCAL+j].imag #cdata[ind1].i | |||
|
249 | #input() | |||
|
250 | ##ax=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,0][NRANGE+NCAL+j].real #cdata[ind1].r | |||
|
251 | ##ay=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,0][NRANGE+NCAL+j].imag #cdata[ind1].i | |||
|
252 | ||||
|
253 | ax=self.dataOut.data[0,k,self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT].real | |||
|
254 | ay=self.dataOut.data[0,k,self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT].imag | |||
|
255 | ||||
|
256 | #print("ax ",ax," ay",ay) | |||
|
257 | if self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n<self.dataOut.read_samples: | |||
|
258 | #bx=cdata[i:NSCAN:2][k][:,1][NRANGE+NCAL+j+n].real #cdata[ind2].r | |||
|
259 | #by=cdata[i:NSCAN:2][k][:,1][NRANGE+NCAL+j+n].imag #cdata[ind2].i | |||
|
260 | ##bx=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,1][NRANGE+NCAL+j+2*n].real #cdata[ind2].r | |||
|
261 | ##by=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,1][NRANGE+NCAL+j+2*n].imag #cdata[ind2].i | |||
|
262 | ||||
|
263 | bx=self.dataOut.data[1,k,self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n].real | |||
|
264 | by=self.dataOut.data[1,k,self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n].imag | |||
|
265 | ||||
|
266 | #bx=self.dataOut.data[0:NSCAN][k][:,1][NRANGE+NCAL+j+i*NDT+2*n].real #cdata[ind2].r | |||
|
267 | #by=self.dataOut.data[0:NSCAN][k][:,1][NRANGE+NCAL+j+i*NDT+2*n].imag #cdata[ind2].i | |||
|
268 | #print("bx ",bx, " by ",by) | |||
|
269 | #input() | |||
|
270 | else: | |||
|
271 | #print("n ",n," k ",k," j ",j," i ",i, " n ",n) | |||
|
272 | #input() | |||
|
273 | if k+1<int(self.dataOut.NSCAN): | |||
|
274 | #print("k+1 ",k+1) | |||
|
275 | #print("int(NSCAN/2) ",int(NSCAN/2)) | |||
|
276 | #bx=cdata[i:NSCAN:2][k+1][:,1][(NRANGE+NCAL+j+n)%NDP].real#np.nan | |||
|
277 | #by=cdata[i:NSCAN:2][k+1][:,1][(NRANGE+NCAL+j+n)%NDP].imag#np.nan | |||
|
278 | ##bx=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k+1][:,1][(NRANGE+NCAL+j+2*n)%NDP].real#np.nan | |||
|
279 | ##by=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k+1][:,1][(NRANGE+NCAL+j+2*n)%NDP].imag#np.nan | |||
|
280 | #bx=self.dataOut.data[0:NSCAN][k+1][:,1][(NRANGE+NCAL+j+i*NDT+2*n)%NDP].real#np.nan | |||
|
281 | #by=self.dataOut.data[0:NSCAN][k+1][:,1][(NRANGE+NCAL+j+i*NDT+2*n)%NDP].imag#np.nan | |||
|
282 | bx=self.dataOut.data[1,k+1,(self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n)%self.dataOut.NDP].real | |||
|
283 | by=self.dataOut.data[1,k+1,(self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n)%self.dataOut.NDP].imag | |||
|
284 | ||||
|
285 | #print("n ",n," k ",k," j ",j," i ",i, " lags_array[n] ",lags_array[n]) | |||
|
286 | #print("bx ",bx, " by ",by) | |||
|
287 | #input() | |||
|
288 | if k+1==int(self.dataOut.NSCAN):## ESTO ES UN PARCHE PUES NO SE TIENE EL SIGUIENTE BLOQUE | |||
|
289 | #bx=cdata[i:NSCAN:2][k][:,1][(NRANGE+NCAL+j+n)%NDP].real#np.nan | |||
|
290 | #by=cdata[i:NSCAN:2][k][:,1][(NRANGE+NCAL+j+n)%NDP].imag#np.nan | |||
|
291 | ##bx=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,1][(NRANGE+NCAL+j+2*n)%NDP].real#np.nan | |||
|
292 | ##by=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,1][(NRANGE+NCAL+j+2*n)%NDP].imag#np.nan | |||
|
293 | #print("****n ",n," k ",k," j ",j," i ",i, " lags_array[n] ",lags_array[n]) | |||
|
294 | #bx=self.dataOut.data[0:NSCAN][k][:,1][(NRANGE+NCAL+j+i*NDT+2*n)%NDP].real#np.nan | |||
|
295 | #by=self.dataOut.data[0:NSCAN][k][:,1][(NRANGE+NCAL+j+i*NDT+2*n)%NDP].imag#np.nan | |||
|
296 | bx=self.dataOut.data[1,k,(self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n)%self.dataOut.NDP].real | |||
|
297 | by=self.dataOut.data[1,k,(self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n)%self.dataOut.NDP].imag | |||
|
298 | ||||
|
299 | #print("bx ",bx, " by ",by) | |||
|
300 | #input() | |||
|
301 | ||||
|
302 | #print("i ",i," j ",j," k ",k," n ",n," ax ",ax) | |||
|
303 | #input() | |||
|
304 | #ip1=j+NDP*(i+2*n) | |||
|
305 | #ip2=ip1*navg+iavg | |||
|
306 | ##if(k<11): # PREVIOUS | |||
|
307 | if(k<self.dataOut.nlags_array and self.dataOut.lagfirst[k%self.dataOut.nlags_array]==1):# if(k<16 && lagfirst[k%16]==1) | |||
|
308 | self.cax[j][n][i]=ax#[int(k/nlags_array)*nlags_array+n] | |||
|
309 | self.cay[j][n][i]=ay#[int(k/nlags_array)*nlags_array+n] | |||
|
310 | self.cbx[j][n][i]=bx#[int(k/nlags_array)*nlags_array+n] | |||
|
311 | self.cby[j][n][i]=by#[int(k/nlags_array)*nlags_array+n] | |||
|
312 | self.cax2[j][n][i]=ax*ax#np.multiply(ax,ax)[int(k/nlags_array)*nlags_array+n] | |||
|
313 | self.cay2[j][n][i]=ay*ay#np.multiply(ay,ay)[int(k/nlags_array)*nlags_array+n] | |||
|
314 | self.cbx2[j][n][i]=bx*bx#np.multiply(bx,bx)[int(k/nlags_array)*nlags_array+n] | |||
|
315 | self.cby2[j][n][i]=by*by#np.multiply(by,by)[int(k/nlags_array)*nlags_array+n] | |||
|
316 | self.caxbx[j][n][i]=ax*bx#np.multiply(ax,bx)[int(k/nlags_array)*nlags_array+n] | |||
|
317 | self.caxby[j][n][i]=ax*by#np.multiply(ax,by)[int(k/nlags_array)*nlags_array+n] | |||
|
318 | self.caybx[j][n][i]=ay*bx#np.multiply(ay,bx)[int(k/nlags_array)*nlags_array+n] | |||
|
319 | self.cayby[j][n][i]=ay*by#np.multiply(ay,by)[int(k/nlags_array)*nlags_array+n] | |||
|
320 | self.caxay[j][n][i]=ax*ay#np.multiply(ax,ay)[int(k/nlags_array)*nlags_array+n] | |||
|
321 | self.cbxby[j][n][i]=bx*by#np.multiply(bx,by)[int(k/nlags_array)*nlags_array+n] | |||
|
322 | else: | |||
|
323 | self.cax[j][n][i]+=ax#[int(k/nlags_array)*nlags_array+n] | |||
|
324 | self.cay[j][n][i]+=ay#[int(k/nlags_array)*nlags_array+n] | |||
|
325 | self.cbx[j][n][i]+=bx#[int(k/nlags_array)*nlags_array+n] | |||
|
326 | self.cby[j][n][i]+=by#[int(k/nlags_array)*nlags_array+n] | |||
|
327 | self.cax2[j][n][i]+=ax*ax#np.multiply(ax,ax)[int(k/nlags_array)*nlags_array+n] | |||
|
328 | self.cay2[j][n][i]+=ay*ay#np.multiply(ay,ay)[int(k/nlags_array)*nlags_array+n] | |||
|
329 | self.cbx2[j][n][i]+=bx*bx#np.multiply(bx,bx)[int(k/nlags_array)*nlags_array+n] | |||
|
330 | self.cby2[j][n][i]+=by*by#np.multiply(by,by)[int(k/nlags_array)*nlags_array+n] | |||
|
331 | self.caxbx[j][n][i]+=ax*bx#np.multiply(ax,bx)[int(k/nlags_array)*nlags_array+n] | |||
|
332 | self.caxby[j][n][i]+=ax*by#np.multiply(ax,by)[int(k/nlags_array)*nlags_array+n] | |||
|
333 | self.caybx[j][n][i]+=ay*bx#np.multiply(ay,bx)[int(k/nlags_array)*nlags_array+n] | |||
|
334 | self.cayby[j][n][i]+=ay*by#np.multiply(ay,by)[int(k/nlags_array)*nlags_array+n] | |||
|
335 | self.caxay[j][n][i]+=ax*ay#np.multiply(ax,ay)[int(k/nlags_array)*nlags_array+n] | |||
|
336 | self.cbxby[j][n][i]+=bx*by#np.multiply(bx,by)[int(k/nlags_array)*nlags_array+n] | |||
|
337 | ||||
|
338 | ||||
|
339 | ||||
|
340 | ||||
|
341 | ||||
|
342 | ||||
|
343 | ||||
|
344 | ||||
|
345 | ||||
|
346 | def medi(self,data_navg): | |||
|
347 | sorts=sorted(data_navg) | |||
|
348 | rsorts=numpy.arange(self.dataOut.NAVG) | |||
|
349 | result=0.0 | |||
|
350 | for k in range(self.dataOut.NAVG): | |||
|
351 | if k>=self.dataOut.nkill/2 and k<self.dataOut.NAVG-self.dataOut.nkill/2: | |||
|
352 | result+=sorts[k]*float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill) | |||
|
353 | return result | |||
|
354 | ||||
|
355 | ||||
|
356 | ||||
|
357 | ''' | |||
|
358 | def range(self): | |||
|
359 | Range=numpy.arange(0,990,self.DH) | |||
|
360 | return Range | |||
|
361 | ''' | |||
|
362 | ||||
|
363 | ||||
|
364 | ||||
|
365 | ||||
|
366 | ||||
|
367 | ||||
|
368 | def cabxys_navg(self): | |||
|
369 | ||||
|
370 | #print("blocknow",self.dataOut.CurrentBlock) | |||
|
371 | #bcounter=0 | |||
|
372 | #print("self.bcounter",self.bcounter) | |||
|
373 | self.get_products_cabxys() | |||
|
374 | ||||
|
375 | self.dataOut.header[5][0]=time.mktime(time.strptime(self.dataOut.TimeBlockDate)) | |||
|
376 | ||||
|
377 | #if salf.dataOut.CurrentBlock<NAVG: | |||
|
378 | if self.bcounter==0: | |||
|
379 | ||||
|
380 | self.dataOut.header[4][0]=self.dataOut.header[5][0] | |||
|
381 | if self.dataOut.CurrentBlock==1: | |||
|
382 | self.dataOut.header[16][0]=self.dataOut.header[5][0] | |||
|
383 | ||||
|
384 | self.cax_navg=[] | |||
|
385 | self.cay_navg=[] | |||
|
386 | self.cbx_navg=[] | |||
|
387 | self.cby_navg=[] | |||
|
388 | self.cax2_navg=[] | |||
|
389 | self.cay2_navg=[] | |||
|
390 | self.cbx2_navg=[] | |||
|
391 | self.cby2_navg=[] | |||
|
392 | self.caxbx_navg=[] | |||
|
393 | self.caxby_navg=[] | |||
|
394 | self.caybx_navg=[] | |||
|
395 | self.cayby_navg=[] | |||
|
396 | self.caxay_navg=[] | |||
|
397 | self.cbxby_navg=[] | |||
|
398 | self.dataOut.kax=None | |||
|
399 | self.dataOut.kay=None | |||
|
400 | self.dataOut.kbx=None | |||
|
401 | self.dataOut.kby=None | |||
|
402 | self.dataOut.kax2=None | |||
|
403 | self.dataOut.kay2=None | |||
|
404 | self.dataOut.kbx2=None | |||
|
405 | self.dataOut.kby2=None | |||
|
406 | self.dataOut.kaxbx=None | |||
|
407 | self.dataOut.kaxby=None | |||
|
408 | self.dataOut.kaybx=None | |||
|
409 | self.dataOut.kayby=None | |||
|
410 | self.dataOut.kaxay=None | |||
|
411 | self.dataOut.kbxby=None | |||
|
412 | ||||
|
413 | self.dataOut.noisevector=numpy.zeros((self.dataOut.read_samples,self.dataOut.NR,self.dataOut.NAVG),'float32') #30/03/2020 | |||
|
414 | self.dataOut.noisevector_=numpy.zeros((self.dataOut.read_samples,self.dataOut.NR,self.dataOut.NAVG),'float32') | |||
|
415 | self.dataOut.dc=numpy.zeros(self.dataOut.NR,dtype=numpy.complex_) #30/03/2020 | |||
|
416 | #self.dataOut.noisevector=numpy.zeros((self.dataOut.read_samples,2,self.dataOut.NAVG),'float32') #31/03/2020 | |||
|
417 | #self.dataOut.noisevector_=numpy.zeros((self.dataOut.read_samples,2,self.dataOut.NAVG),'float32') #31/03/2020 | |||
|
418 | ||||
|
419 | #self.dataOut.dc=numpy.zeros(2,dtype=numpy.complex_) #31/03/2020 | |||
|
420 | #self.dataOut.processingHeaderObj.profilesPerBlock | |||
|
421 | if self.dataOut.experiment=="DP": | |||
|
422 | self.noisevectorizer(self.dataOut.nptsfft1,self.dataOut.nptsfft2) #30/03/2020 | |||
|
423 | if self.dataOut.experiment=="HP": | |||
|
424 | self.noisevectorizer(self.dataOut.nptsfft1,self.dataOut.nptsfftx1) #31/03/2020 | |||
|
425 | #print(self.dataOut.noisevector[:,:,:]) | |||
|
426 | #print("·················································") | |||
|
427 | #print("CAX: ",self.cax) | |||
|
428 | self.cax_navg.append(self.cax) | |||
|
429 | self.cay_navg.append(self.cay) | |||
|
430 | self.cbx_navg.append(self.cbx) | |||
|
431 | self.cby_navg.append(self.cby) | |||
|
432 | self.cax2_navg.append(self.cax2) | |||
|
433 | self.cay2_navg.append(self.cay2) | |||
|
434 | self.cbx2_navg.append(self.cbx2) | |||
|
435 | self.cby2_navg.append(self.cby2) | |||
|
436 | self.caxbx_navg.append(self.caxbx) | |||
|
437 | self.caxby_navg.append(self.caxby) | |||
|
438 | self.caybx_navg.append(self.caybx) | |||
|
439 | self.cayby_navg.append(self.cayby) | |||
|
440 | self.caxay_navg.append(self.caxay) | |||
|
441 | self.cbxby_navg.append(self.cbxby) | |||
|
442 | self.bcounter+=1 | |||
|
443 | ||||
|
444 | #self.dataOut.data=None | |||
|
445 | #print("bcounter",bcounter) | |||
|
446 | #/#/#/#if self.bcounter==NAVG: | |||
|
447 | ||||
|
448 | #/#/#/#print("cax_navg: ",self.cax_navg) | |||
|
449 | #/#/#/#self.bcounter=0 | |||
|
450 | #print("blocknow",self.dataOut.current) | |||
|
451 | ||||
|
452 | ||||
|
453 | ||||
|
454 | def kabxys(self,NAVG,nkill):#,NRANGE,NCAL,NDT): | |||
|
455 | ||||
|
456 | self.dataOut.NAVG=NAVG | |||
|
457 | self.dataOut.nkill=nkill | |||
|
458 | #print("bcounter_before: ",self.bcounter) | |||
|
459 | #print("kabxys") | |||
|
460 | ||||
|
461 | #if self.dataOut.input_dat_type==0: | |||
|
462 | #self.dataOut.NDP=NDP | |||
|
463 | #self.dataOut.nlags_array=nlags_array | |||
|
464 | #self.dataOut.NSCAN=NSCAN | |||
|
465 | #self.dataOut.DH=float(DH) | |||
|
466 | #self.dataOut.flags_array=flags_array | |||
|
467 | ||||
|
468 | #self.dataOut.DPL=DPL | |||
|
469 | #self.dataOut.NRANGE=NRANGE | |||
|
470 | #self.dataOut.NCAL=NCAL | |||
|
471 | ||||
|
472 | #self.dataOut.NDT=NDT | |||
|
473 | #self.lag_products_LP() | |||
|
474 | ####self.cabxys_navg(NDP,nlags_array,NSCAN,flags_array) | |||
|
475 | self.cabxys_navg() | |||
|
476 | #self.dataOut.kshape=numpy.zeros((numpy.shape(self.cax_navg[0])[0],numpy.shape(self.cax_navg[0])[1],numpy.shape(self.cax_navg[0])[2])) | |||
|
477 | #print("Shape cavg",numpy.shape(self.cax_navg[0])[0]) | |||
|
478 | self.dataOut.flag_save=0 | |||
|
479 | #self.dataOut.flagNoData = True # new 1 | |||
|
480 | ||||
|
481 | ||||
|
482 | if self.bcounter==self.dataOut.NAVG: | |||
|
483 | ||||
|
484 | #self.dataOut.flagNoData = False # new 2 | |||
|
485 | self.dataOut.flag_save=1 | |||
|
486 | #self.dataOut.kax=None | |||
|
487 | ||||
|
488 | ||||
|
489 | self.dataOut.noise_final=numpy.zeros(self.dataOut.NR,'float32') #30/03/2020 | |||
|
490 | #self.dataOut.noise_final=numpy.zeros(2,'float32') #31/03/2020 | |||
|
491 | ||||
|
492 | #print("self.dataOut.nChannels: ",self.dataOut.systemHeaderObj.nChannels) | |||
|
493 | self.kax=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
494 | self.kay=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
495 | self.kbx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
496 | self.kby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
497 | self.kax2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
498 | self.kay2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
499 | self.kbx2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
500 | self.kby2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
501 | self.kaxbx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
502 | self.kaxby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
503 | self.kaybx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
504 | self.kayby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
505 | self.kaxay=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
506 | self.kbxby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32') | |||
|
507 | #print("Shape K",numpy.shape(self.kax)) | |||
|
508 | for i in range(self.cax_navg[0].shape[0]): | |||
|
509 | for j in range(self.cax_navg[0].shape[1]): | |||
|
510 | for k in range(self.cax_navg[0].shape[2]): | |||
|
511 | data_navg=[item[i,j,k] for item in self.cax_navg] | |||
|
512 | self.kax[i,j,k]=self.medi(data_navg) | |||
|
513 | data_navg=[item[i,j,k] for item in self.cay_navg] | |||
|
514 | self.kay[i,j,k]=self.medi(data_navg) | |||
|
515 | data_navg=[item[i,j,k] for item in self.cbx_navg] | |||
|
516 | self.kbx[i,j,k]=self.medi(data_navg) | |||
|
517 | data_navg=[item[i,j,k] for item in self.cby_navg] | |||
|
518 | self.kby[i,j,k]=self.medi(data_navg) | |||
|
519 | data_navg=[item[i,j,k] for item in self.cax2_navg] | |||
|
520 | self.kax2[i,j,k]=self.medi(data_navg) | |||
|
521 | data_navg=[item[i,j,k] for item in self.cay2_navg] | |||
|
522 | self.kay2[i,j,k]=self.medi(data_navg) | |||
|
523 | data_navg=[item[i,j,k] for item in self.cbx2_navg] | |||
|
524 | self.kbx2[i,j,k]=self.medi(data_navg) | |||
|
525 | data_navg=[item[i,j,k] for item in self.cby2_navg] | |||
|
526 | self.kby2[i,j,k]=self.medi(data_navg) | |||
|
527 | data_navg=[item[i,j,k] for item in self.caxbx_navg] | |||
|
528 | self.kaxbx[i,j,k]=self.medi(data_navg) | |||
|
529 | data_navg=[item[i,j,k] for item in self.caxby_navg] | |||
|
530 | self.kaxby[i,j,k]=self.medi(data_navg) | |||
|
531 | data_navg=[item[i,j,k] for item in self.caybx_navg] | |||
|
532 | self.kaybx[i,j,k]=self.medi(data_navg) | |||
|
533 | data_navg=[item[i,j,k] for item in self.cayby_navg] | |||
|
534 | self.kayby[i,j,k]=self.medi(data_navg) | |||
|
535 | data_navg=[item[i,j,k] for item in self.caxay_navg] | |||
|
536 | self.kaxay[i,j,k]=self.medi(data_navg) | |||
|
537 | data_navg=[item[i,j,k] for item in self.cbxby_navg] | |||
|
538 | self.kbxby[i,j,k]=self.medi(data_navg) | |||
|
539 | #self.bcounter=0 | |||
|
540 | #print("KAX",self.kax) | |||
|
541 | #self.__buffer=self.kax | |||
|
542 | #print("CurrentBlock: ", self.dataOut.CurrentBlock) | |||
|
543 | ||||
|
544 | self.dataOut.kax=self.kax | |||
|
545 | self.dataOut.kay=self.kay | |||
|
546 | self.dataOut.kbx=self.kbx | |||
|
547 | self.dataOut.kby=self.kby | |||
|
548 | self.dataOut.kax2=self.kax2 | |||
|
549 | self.dataOut.kay2=self.kay2 | |||
|
550 | self.dataOut.kbx2=self.kbx2 | |||
|
551 | self.dataOut.kby2=self.kby2 | |||
|
552 | self.dataOut.kaxbx=self.kaxbx | |||
|
553 | self.dataOut.kaxby=self.kaxby | |||
|
554 | self.dataOut.kaybx=self.kaybx | |||
|
555 | self.dataOut.kayby=self.kayby | |||
|
556 | self.dataOut.kaxay=self.kaxay | |||
|
557 | self.dataOut.kbxby=self.kbxby | |||
|
558 | self.bcounter=0 | |||
|
559 | ||||
|
560 | #print("before: ",self.dataOut.noise_final) | |||
|
561 | ||||
|
562 | self.noise_estimation4x() #30/03/2020 | |||
|
563 | ||||
|
564 | #print("after: ", self.dataOut.noise_final) | |||
|
565 | #print(numpy.shape(self.dataOut.data)) | |||
|
566 | #input() | |||
|
567 | #self.dataOut.noise_final_list.append(self.dataOut.noise_final[0]) #30/03/2020 | |||
|
568 | ||||
|
569 | ||||
|
570 | ''' | |||
|
571 | print("hsize[0] ",self.dataOut.header[0]) | |||
|
572 | print("bufsize[1] ",self.dataOut.header[1]) | |||
|
573 | print("nr[2] ",self.dataOut.header[2]) | |||
|
574 | print("ngates[3] ",self.dataOut.header[3]) | |||
|
575 | print("time1[4] ",self.dataOut.header[4]) | |||
|
576 | print("time2[5] ",self.dataOut.header[5]) | |||
|
577 | print("lcounter[6] ",self.dataOut.header[6]) | |||
|
578 | print("groups[7] ",self.dataOut.header[7]) | |||
|
579 | print("system[8] ",self.dataOut.header[8]) | |||
|
580 | print("h0[9] ",self.dataOut.header[9]) | |||
|
581 | print("dh[10] ",self.dataOut.header[10]) | |||
|
582 | print("ipp[11] ",self.dataOut.header[11]) | |||
|
583 | print("process[12] ",self.dataOut.header[12]) | |||
|
584 | print("tx[13] ",self.dataOut.header[13]) | |||
|
585 | print("padding[14] ",self.dataOut.header[14]) | |||
|
586 | print("ngates1[15] ",self.dataOut.header[15]) | |||
|
587 | print("header[16] ",self.dataOut.header[16]) | |||
|
588 | print("header[17] ",self.dataOut.header[17]) | |||
|
589 | print("header[18] ",self.dataOut.header[18]) | |||
|
590 | print("header[19] ",self.dataOut.header[19]) | |||
|
591 | print("header[20] ",self.dataOut.header[20]) | |||
|
592 | print("header[21] ",self.dataOut.header[21]) | |||
|
593 | print("header[22] ",self.dataOut.header[22]) | |||
|
594 | print("header[23] ",self.dataOut.header[23]) | |||
|
595 | print("header[24] ",self.dataOut.header[24]) | |||
|
596 | print("header[25] ",self.dataOut.header[25]) | |||
|
597 | print("header[26] ",self.dataOut.header[26]) | |||
|
598 | print("header[27] ",self.dataOut.header[27]) | |||
|
599 | print("header[28] ",self.dataOut.header[28]) | |||
|
600 | print("header[29] ",self.dataOut.header[29]) | |||
|
601 | print("header[30] ",self.dataOut.header[30]) | |||
|
602 | print("header[31] ",self.dataOut.header[31]) | |||
|
603 | ''' | |||
|
604 | ||||
|
605 | ||||
|
606 | ||||
|
607 | #print("CurrentBlock: ",self.dataOut.CurrentBlock) | |||
|
608 | ##print("KAX: ",self.dataOut.kax) | |||
|
609 | ||||
|
610 | ||||
|
611 | ''' | |||
|
612 | plt.plot(self.kaxby[:,0,0],self.range(),'m',linewidth=2.0) | |||
|
613 | plt.xlim(min(self.kaxby[12::,0,0]), max(self.kaxby[12::,0,0])) | |||
|
614 | plt.show() | |||
|
615 | ''' | |||
|
616 | ||||
|
617 | ||||
|
618 | ||||
|
619 | ||||
|
620 | ||||
|
621 | #/#/#/#print("CurrentBlock: ",self.dataOut.CurrentBlock) | |||
|
622 | ####self.newdataOut=self.kax | |||
|
623 | #print("shapedataout",numpy.shape(self.dataOut.data)) | |||
|
624 | #print("kax",numpy.shape(self.kax)) | |||
|
625 | ## return 1 | |||
|
626 | ||||
|
627 | ||||
|
628 | ####def NewData(self): | |||
|
629 | ####print("NewData",self.dataOut.kaxby) | |||
|
630 | ####print("CurrentBlock: ",self.dataOut.CurrentBlock) | |||
|
631 | ||||
|
632 | ||||
|
633 | ''' | |||
|
634 | def PlotVoltageLag(self): | |||
|
635 | ||||
|
636 | plt.plot(self.dataOut.data[:,0,0],self.range(),'m',linewidth=2.0) | |||
|
637 | plt.xlim(min(self.dataOut.data[12::,0,0]), max(self.dataOut.data[12::,0,0])) | |||
|
638 | plt.show() | |||
|
639 | ||||
|
640 | ||||
|
641 | if self.bcounter==self.NAVG: | |||
|
642 | #print("shapedataout",self.dataOut.data) | |||
|
643 | print("CurrentBlock: ",self.dataOut.CurrentBlock) | |||
|
644 | self.bcounter=0 | |||
|
645 | ''' | |||
|
646 | ||||
|
647 | #print("Newdataout",self.dataOut.data) | |||
|
648 | ## | |||
|
649 | ||||
|
650 | ||||
|
651 | #30/03/2020: | |||
|
652 | def noisevectorizer(self,nptsfft1,nptsfft2): | |||
|
653 | ||||
|
654 | rnormalizer= 1./float(nptsfft2 - nptsfft1) | |||
|
655 | for i in range(self.dataOut.NR): | |||
|
656 | for j in range(self.dataOut.read_samples): | |||
|
657 | for k in range(nptsfft1,nptsfft2): | |||
|
658 | #TODO:integrate just 2nd quartile gates | |||
|
659 | if k==nptsfft1: | |||
|
660 | self.dataOut.noisevector[j][i][self.bcounter]=(abs(self.dataOut.data[i][k][j]-self.dataOut.dc[i])**2)*rnormalizer | |||
|
661 | ##noisevector[j][i][iavg]=(abs(cdata[k][j][i])**2)*rnormalizer | |||
|
662 | else: | |||
|
663 | self.dataOut.noisevector[j][i][self.bcounter]+=(abs(self.dataOut.data[i][k][j]-self.dataOut.dc[i])**2)*rnormalizer | |||
|
664 | ||||
|
665 | #30/03/2020: | |||
|
666 | def noise_estimation4x(self): | |||
|
667 | snoise=numpy.zeros((self.dataOut.NR,self.dataOut.NAVG),'float32') | |||
|
668 | nvector1=numpy.zeros((self.dataOut.NR,self.dataOut.NAVG,self.dataOut.read_samples),'float32') | |||
|
669 | for i in range(self.dataOut.NR): | |||
|
670 | self.dataOut.noise_final[i]=0.0 | |||
|
671 | for k in range(self.dataOut.NAVG): | |||
|
672 | snoise[i][k]=0.0 | |||
|
673 | for j in range(self.dataOut.read_samples): | |||
|
674 | nvector1[i][k][j]= self.dataOut.noisevector[j][i][k]; | |||
|
675 | snoise[i][k]=self.noise_hs4x(self.dataOut.read_samples, nvector1[i][k]) | |||
|
676 | self.dataOut.noise_final[i]=self.noise_hs4x(self.dataOut.NAVG, snoise[i]) | |||
|
677 | ||||
|
678 | ||||
|
679 | #30/03/2020: | |||
|
680 | def noise_hs4x(self, ndatax, datax): | |||
|
681 | #print("datax ",datax) | |||
|
682 | divider=10#divider was originally 10 | |||
|
683 | noise=0.0 | |||
|
684 | data=numpy.zeros(ndatax,'float32') | |||
|
685 | ndata1=int(ndatax/4) | |||
|
686 | ndata2=int(2.5*(ndatax/4.)) | |||
|
687 | ndata=int(ndata2-ndata1) | |||
|
688 | sorts=sorted(datax) | |||
|
689 | for k in range(ndata2): # select just second quartile | |||
|
690 | data[k]=sorts[k+ndata1] | |||
|
691 | nums_min= int(ndata/divider) | |||
|
692 | if(int(ndata/divider)> 2): | |||
|
693 | nums_min= int(ndata/divider) | |||
|
694 | else: | |||
|
695 | nums_min=2 | |||
|
696 | sump=0.0 | |||
|
697 | sumq=0.0 | |||
|
698 | j=0 | |||
|
699 | cont=1 | |||
|
700 | while ( (cont==1) and (j<ndata)): | |||
|
701 | sump+=data[j] | |||
|
702 | sumq+= data[j]*data[j] | |||
|
703 | j=j+1 | |||
|
704 | if (j> nums_min): | |||
|
705 | rtest= float(j/(j-1)) +1.0/ndata | |||
|
706 | if( (sumq*j) > (rtest*sump*sump ) ): | |||
|
707 | j=j-1 | |||
|
708 | sump-= data[j] | |||
|
709 | sumq-=data[j]*data[j] | |||
|
710 | cont= 0 | |||
|
711 | noise= (sump/j) | |||
|
712 | ||||
|
713 | return noise | |||
|
714 | ||||
|
715 | ||||
|
716 | ||||
|
717 | def test(self): | |||
|
718 | ||||
|
719 | #print("LP_init") | |||
|
720 | #self.dataOut.flagNoData=1 | |||
|
721 | buffer=self.dataOut.data | |||
|
722 | #self.dataOut.flagNoData=0 | |||
|
723 | if self.LP_products_aux==0: | |||
|
724 | ||||
|
725 | #self.dataOut.nptsfft2=150 | |||
|
726 | self.cnorm=float((self.dataOut.nptsfft2LP-self.dataOut.NSCAN)/self.dataOut.NSCAN) | |||
|
727 | ||||
|
728 | ||||
|
729 | #print("self.bcounter",self.bcounter) | |||
|
730 | self.lagp0=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
731 | self.lagp1=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
732 | self.lagp2=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
733 | self.lagp3=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
734 | self.lagp4=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
735 | self.LP_products_aux=1 | |||
|
736 | ||||
|
737 | #print(self.dataOut.data[0,0,0]) | |||
|
738 | #self.dataOut.flagNoData =False | |||
|
739 | for i in range(self.dataOut.NR-1): | |||
|
740 | #print("inside i",i) | |||
|
741 | buffer_dc=self.dataOut.dc[i] | |||
|
742 | for j in range(self.dataOut.NRANGE): | |||
|
743 | #print("inside j",j) | |||
|
744 | #print(self.dataOut.read_samples) | |||
|
745 | #input() | |||
|
746 | range_for_n=numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG)) | |||
|
747 | for k in range(self.dataOut.nptsfft2LP): | |||
|
748 | #print(self.dataOut.data[i][k][j]) | |||
|
749 | #input() | |||
|
750 | #print(self.dataOut.dc) | |||
|
751 | #input() | |||
|
752 | #aux_ac=0 | |||
|
753 | buffer_aux=numpy.conj(buffer[i][k][j]-buffer_dc) | |||
|
754 | #self.dataOut.flagNoData=0 | |||
|
755 | for n in range(range_for_n): | |||
|
756 | ||||
|
757 | ||||
|
758 | #for n in range(numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG))): | |||
|
759 | #print(numpy.shape(self.dataOut.data)) | |||
|
760 | #input() | |||
|
761 | #pass | |||
|
762 | #self.dataOut.flagNoData=1 | |||
|
763 | #c=2*buffer_aux | |||
|
764 | #c=(self.dataOut.data[i][k][j]-self.dataOut.dc[i])*(numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i])) | |||
|
765 | #c=(buffer[i][k][j]-buffer_dc)*(numpy.conj(buffer[i][k][j+n])-buffer_dc) | |||
|
766 | ||||
|
767 | c=(buffer_aux)*(buffer[i][k][j+n]-buffer_dc) | |||
|
768 | #c=(buffer[i][k][j])*(buffer[i][k][j+n]) | |||
|
769 | #print("first: ",self.dataOut.data[i][k][j]-self.dataOut.dc[i]) | |||
|
770 | #print("second: ",numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i])) | |||
|
771 | ||||
|
772 | #print("c: ",c) | |||
|
773 | #input() | |||
|
774 | #print("n: ",n) | |||
|
775 | #print("aux_ac",aux_ac) | |||
|
776 | #print("data1:",self.dataOut.data[i][k][j]) | |||
|
777 | #print("data2:",self.dataOut.data[i][k][j+n]) | |||
|
778 | #print("dc: ",self.dataOut.dc[i]) | |||
|
779 | #if aux_ac==2: | |||
|
780 | #input() | |||
|
781 | #aux_ac+=1 | |||
|
782 | #print("GG") | |||
|
783 | #print("inside n",n) | |||
|
784 | #pass | |||
|
785 | ||||
|
786 | if k<self.dataOut.NSCAN: | |||
|
787 | if k==0: | |||
|
788 | ||||
|
789 | while True: | |||
|
790 | if i==0: | |||
|
791 | self.lagp0[n][j][self.bcounter-1]=c | |||
|
792 | break | |||
|
793 | elif i==1: | |||
|
794 | self.lagp1[n][j][self.bcounter-1]=c | |||
|
795 | break | |||
|
796 | elif i==2: | |||
|
797 | self.lagp2[n][j][self.bcounter-1]=c | |||
|
798 | break | |||
|
799 | else: | |||
|
800 | break | |||
|
801 | ||||
|
802 | else: | |||
|
803 | ||||
|
804 | while True: | |||
|
805 | if i==0: | |||
|
806 | self.lagp0[n][j][self.bcounter-1]=c+self.lagp0[n][j][self.bcounter-1] | |||
|
807 | break | |||
|
808 | elif i==1: | |||
|
809 | self.lagp1[n][j][self.bcounter-1]=c+self.lagp1[n][j][self.bcounter-1] | |||
|
810 | break | |||
|
811 | elif i==2: | |||
|
812 | self.lagp2[n][j][self.bcounter-1]=c+self.lagp2[n][j][self.bcounter-1] | |||
|
813 | break | |||
|
814 | else: | |||
|
815 | break | |||
|
816 | ||||
|
817 | else: | |||
|
818 | #c=c/self.cnorm | |||
|
819 | if i==0: | |||
|
820 | c=c/self.cnorm | |||
|
821 | if k==self.dataOut.NSCAN: | |||
|
822 | #if i==0: | |||
|
823 | self.lagp3[n][j][self.bcounter-1]=c | |||
|
824 | #print("n: ",n,"j: ",j,"iavg: ",self.bcounter-1) | |||
|
825 | #print("lagp3_inside: ",self.lagp3[n][j][self.bcounter-1]) | |||
|
826 | else: | |||
|
827 | #if i==0: | |||
|
828 | self.lagp3[n][j][self.bcounter-1]=c+self.lagp3[n][j][self.bcounter-1] | |||
|
829 | ||||
|
830 | ||||
|
831 | ||||
|
832 | ||||
|
833 | #print("lagp2: ",self.lagp2[:,0,0]) | |||
|
834 | self.lagp0[:,:,self.bcounter-1]=numpy.conj(self.lagp0[:,:,self.bcounter-1]) | |||
|
835 | self.lagp1[:,:,self.bcounter-1]=numpy.conj(self.lagp1[:,:,self.bcounter-1]) | |||
|
836 | self.lagp2[:,:,self.bcounter-1]=numpy.conj(self.lagp2[:,:,self.bcounter-1]) | |||
|
837 | self.lagp3[:,:,self.bcounter-1]=numpy.conj(self.lagp3[:,:,self.bcounter-1]) | |||
|
838 | #self.dataOut.flagNoData=0 | |||
|
839 | #print(self.bcounter-1) | |||
|
840 | #print("lagp2_conj: ",self.lagp2[:,0,self.bcounter-1]) | |||
|
841 | #input() | |||
|
842 | #self.dataOut.lagp3=self.lagp3 | |||
|
843 | print("TEST") | |||
|
844 | ||||
|
845 | ||||
|
846 | ||||
|
847 | def lag_products_LP(self): | |||
|
848 | ||||
|
849 | #print("LP_init") | |||
|
850 | #self.dataOut.flagNoData=1 | |||
|
851 | buffer=self.dataOut.data | |||
|
852 | #self.dataOut.flagNoData=0 | |||
|
853 | if self.LP_products_aux==0: | |||
|
854 | ||||
|
855 | #self.dataOut.nptsfft2=150 | |||
|
856 | self.cnorm=float((self.dataOut.nptsfft2LP-self.dataOut.NSCAN)/self.dataOut.NSCAN) | |||
|
857 | ||||
|
858 | ||||
|
859 | #print("self.bcounter",self.bcounter) | |||
|
860 | self.lagp0=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
861 | self.lagp1=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
862 | self.lagp2=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
863 | self.lagp3=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
864 | self.lagp4=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
865 | self.LP_products_aux=1 | |||
|
866 | ||||
|
867 | #print(self.dataOut.data[0,0,0]) | |||
|
868 | #self.dataOut.flagNoData =False | |||
|
869 | for i in range(self.dataOut.NR): | |||
|
870 | #print("inside i",i) | |||
|
871 | buffer_dc=self.dataOut.dc[i] | |||
|
872 | for j in range(self.dataOut.NRANGE): | |||
|
873 | #print("inside j",j) | |||
|
874 | #print(self.dataOut.read_samples) | |||
|
875 | #input() | |||
|
876 | range_for_n=numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG)) | |||
|
877 | for k in range(self.dataOut.nptsfft2LP): | |||
|
878 | #print(self.dataOut.data[i][k][j]) | |||
|
879 | #input() | |||
|
880 | #print(self.dataOut.dc) | |||
|
881 | #input() | |||
|
882 | #aux_ac=0 | |||
|
883 | buffer_aux=numpy.conj(buffer[i][k][j]-buffer_dc) | |||
|
884 | #self.dataOut.flagNoData=0 | |||
|
885 | for n in range(range_for_n): | |||
|
886 | #for n in range(numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG))): | |||
|
887 | #print(numpy.shape(self.dataOut.data)) | |||
|
888 | #input() | |||
|
889 | #pass | |||
|
890 | #self.dataOut.flagNoData=1 | |||
|
891 | #c=2*buffer_aux | |||
|
892 | #c=(self.dataOut.data[i][k][j]-self.dataOut.dc[i])*(numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i])) | |||
|
893 | #c=(buffer[i][k][j]-buffer_dc)*(numpy.conj(buffer[i][k][j+n])-buffer_dc) | |||
|
894 | ||||
|
895 | c=(buffer_aux)*(buffer[i][k][j+n]-buffer_dc) | |||
|
896 | #c=(buffer[i][k][j])*(buffer[i][k][j+n]) | |||
|
897 | #print("first: ",self.dataOut.data[i][k][j]-self.dataOut.dc[i]) | |||
|
898 | #print("second: ",numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i])) | |||
|
899 | ||||
|
900 | #print("c: ",c) | |||
|
901 | #input() | |||
|
902 | #print("n: ",n) | |||
|
903 | #print("aux_ac",aux_ac) | |||
|
904 | #print("data1:",self.dataOut.data[i][k][j]) | |||
|
905 | #print("data2:",self.dataOut.data[i][k][j+n]) | |||
|
906 | #print("dc: ",self.dataOut.dc[i]) | |||
|
907 | #if aux_ac==2: | |||
|
908 | #input() | |||
|
909 | #aux_ac+=1 | |||
|
910 | #print("GG") | |||
|
911 | #print("inside n",n) | |||
|
912 | #pass | |||
|
913 | ||||
|
914 | if k<self.dataOut.NSCAN: | |||
|
915 | if k==0: | |||
|
916 | if i==0: | |||
|
917 | self.lagp0[n][j][self.bcounter-1]=c | |||
|
918 | elif i==1: | |||
|
919 | self.lagp1[n][j][self.bcounter-1]=c | |||
|
920 | elif i==2: | |||
|
921 | self.lagp2[n][j][self.bcounter-1]=c | |||
|
922 | else: | |||
|
923 | if i==0: | |||
|
924 | self.lagp0[n][j][self.bcounter-1]=c+self.lagp0[n][j][self.bcounter-1] | |||
|
925 | elif i==1: | |||
|
926 | self.lagp1[n][j][self.bcounter-1]=c+self.lagp1[n][j][self.bcounter-1] | |||
|
927 | elif i==2: | |||
|
928 | self.lagp2[n][j][self.bcounter-1]=c+self.lagp2[n][j][self.bcounter-1] | |||
|
929 | ||||
|
930 | else: | |||
|
931 | c=c/self.cnorm | |||
|
932 | if k==self.dataOut.NSCAN: | |||
|
933 | if i==0: | |||
|
934 | self.lagp3[n][j][self.bcounter-1]=c | |||
|
935 | #print("n: ",n,"j: ",j,"iavg: ",self.bcounter-1) | |||
|
936 | #print("lagp3_inside: ",self.lagp3[n][j][self.bcounter-1]) | |||
|
937 | else: | |||
|
938 | if i==0: | |||
|
939 | self.lagp3[n][j][self.bcounter-1]=c+self.lagp3[n][j][self.bcounter-1] | |||
|
940 | ||||
|
941 | ||||
|
942 | ||||
|
943 | #print("lagp2: ",self.lagp2[:,0,0]) | |||
|
944 | self.lagp0[:,:,self.bcounter-1]=numpy.conj(self.lagp0[:,:,self.bcounter-1]) | |||
|
945 | self.lagp1[:,:,self.bcounter-1]=numpy.conj(self.lagp1[:,:,self.bcounter-1]) | |||
|
946 | self.lagp2[:,:,self.bcounter-1]=numpy.conj(self.lagp2[:,:,self.bcounter-1]) | |||
|
947 | self.lagp3[:,:,self.bcounter-1]=numpy.conj(self.lagp3[:,:,self.bcounter-1]) | |||
|
948 | #self.dataOut.flagNoData=0 | |||
|
949 | #print(self.bcounter-1) | |||
|
950 | #print("lagp2_conj: ",self.lagp2[:,0,self.bcounter-1]) | |||
|
951 | #input() | |||
|
952 | #self.dataOut.lagp3=self.lagp3 | |||
|
953 | print("LP") | |||
|
954 | ||||
|
955 | ||||
|
956 | def test_2(self): | |||
|
957 | ||||
|
958 | #print("LP_init") | |||
|
959 | #self.dataOut.flagNoData=1 | |||
|
960 | ||||
|
961 | #self.dataOut.flagNoData=0 | |||
|
962 | if self.LP_products_aux==0: | |||
|
963 | ||||
|
964 | #self.dataOut.nptsfft2=150 | |||
|
965 | self.cnorm=float((self.dataOut.nptsfft2LP-self.dataOut.NSCAN)/self.dataOut.NSCAN) | |||
|
966 | ||||
|
967 | ||||
|
968 | #print("self.bcounter",self.bcounter) | |||
|
969 | self.lagp0=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
970 | self.lagp1=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
971 | self.lagp2=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
972 | self.lagp3=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
973 | self.lagp4=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64') | |||
|
974 | self.LP_products_aux=1 | |||
|
975 | ||||
|
976 | #print(self.dataOut.data[0,0,0]) | |||
|
977 | #self.dataOut.flagNoData =False | |||
|
978 | for i in range(self.dataOut.NR): | |||
|
979 | #print("inside i",i) | |||
|
980 | ||||
|
981 | for j in range(self.dataOut.NRANGE): | |||
|
982 | #print("inside j",j) | |||
|
983 | #print(self.dataOut.read_samples) | |||
|
984 | #input() | |||
|
985 | ||||
|
986 | for k in range(self.dataOut.nptsfft2LP): | |||
|
987 | #print(self.dataOut.data[i][k][j]) | |||
|
988 | #input() | |||
|
989 | #print(self.dataOut.dc) | |||
|
990 | #input() | |||
|
991 | #aux_ac=0 | |||
|
992 | ||||
|
993 | #self.dataOut.flagNoData=0 | |||
|
994 | ||||
|
995 | for n in range(numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG))): | |||
|
996 | #print(numpy.shape(self.dataOut.data)) | |||
|
997 | #input() | |||
|
998 | #pass | |||
|
999 | #self.dataOut.flagNoData=1 | |||
|
1000 | #c=2*buffer_aux | |||
|
1001 | c=(self.dataOut.data[i][k][j]-self.dataOut.dc[i])*(numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i])) | |||
|
1002 | #c=(buffer[i][k][j]-buffer_dc)*(numpy.conj(buffer[i][k][j+n])-buffer_dc) | |||
|
1003 | ||||
|
1004 | ||||
|
1005 | #c=(buffer[i][k][j])*(buffer[i][k][j+n]) | |||
|
1006 | #print("first: ",self.dataOut.data[i][k][j]-self.dataOut.dc[i]) | |||
|
1007 | #print("second: ",numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i])) | |||
|
1008 | ||||
|
1009 | #print("c: ",c) | |||
|
1010 | #input() | |||
|
1011 | #print("n: ",n) | |||
|
1012 | #print("aux_ac",aux_ac) | |||
|
1013 | #print("data1:",self.dataOut.data[i][k][j]) | |||
|
1014 | #print("data2:",self.dataOut.data[i][k][j+n]) | |||
|
1015 | #print("dc: ",self.dataOut.dc[i]) | |||
|
1016 | #if aux_ac==2: | |||
|
1017 | #input() | |||
|
1018 | #aux_ac+=1 | |||
|
1019 | #print("GG") | |||
|
1020 | #print("inside n",n) | |||
|
1021 | #pass | |||
|
1022 | ||||
|
1023 | if k<self.dataOut.NSCAN: | |||
|
1024 | if k==0: | |||
|
1025 | if i==0: | |||
|
1026 | self.lagp0[n][j][self.bcounter-1]=c | |||
|
1027 | elif i==1: | |||
|
1028 | self.lagp1[n][j][self.bcounter-1]=c | |||
|
1029 | elif i==2: | |||
|
1030 | self.lagp2[n][j][self.bcounter-1]=c | |||
|
1031 | else: | |||
|
1032 | if i==0: | |||
|
1033 | self.lagp0[n][j][self.bcounter-1]=c+self.lagp0[n][j][self.bcounter-1] | |||
|
1034 | elif i==1: | |||
|
1035 | self.lagp1[n][j][self.bcounter-1]=c+self.lagp1[n][j][self.bcounter-1] | |||
|
1036 | elif i==2: | |||
|
1037 | self.lagp2[n][j][self.bcounter-1]=c+self.lagp2[n][j][self.bcounter-1] | |||
|
1038 | ||||
|
1039 | else: | |||
|
1040 | c=c/self.cnorm | |||
|
1041 | if k==self.dataOut.NSCAN: | |||
|
1042 | if i==0: | |||
|
1043 | self.lagp3[n][j][self.bcounter-1]=c | |||
|
1044 | #print("n: ",n,"j: ",j,"iavg: ",self.bcounter-1) | |||
|
1045 | #print("lagp3_inside: ",self.lagp3[n][j][self.bcounter-1]) | |||
|
1046 | else: | |||
|
1047 | if i==0: | |||
|
1048 | self.lagp3[n][j][self.bcounter-1]=c+self.lagp3[n][j][self.bcounter-1] | |||
|
1049 | ||||
|
1050 | ||||
|
1051 | ||||
|
1052 | #print("lagp2: ",self.lagp2[:,0,0]) | |||
|
1053 | ||||
|
1054 | #self.dataOut.flagNoData=0 | |||
|
1055 | #print(self.bcounter-1) | |||
|
1056 | #print("lagp2_conj: ",self.lagp2[:,0,self.bcounter-1]) | |||
|
1057 | #input() | |||
|
1058 | #self.dataOut.lagp3=self.lagp3 | |||
|
1059 | print("LP") | |||
|
1060 | ||||
|
1061 | ||||
|
1062 | def LP_median_estimates(self): | |||
|
1063 | #print("lagp3: ",self.lagp3[:,0,0]) | |||
|
1064 | #print("self.bcounter: ",self.bcounter) | |||
|
1065 | if self.dataOut.flag_save==1: | |||
|
1066 | ||||
|
1067 | #print("lagp1: ",self.lagp1[0,0,:]) | |||
|
1068 | #input() | |||
|
1069 | ||||
|
1070 | if self.lag_products_LP_median_estimates_aux==0: | |||
|
1071 | self.output=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NR),'complex64') | |||
|
1072 | #sorts=numpy.zeros(128,'float32') | |||
|
1073 | #self.dataOut.output_LP=None | |||
|
1074 | self.lag_products_LP_median_estimates_aux=1 | |||
|
1075 | ||||
|
1076 | ||||
|
1077 | for i in range(self.dataOut.NLAG): | |||
|
1078 | for j in range(self.dataOut.NRANGE): | |||
|
1079 | for l in range(4): #four outputs | |||
|
1080 | ''' | |||
|
1081 | for k in range(self.dataOut.NAVG): | |||
|
1082 | #rsorts[k]=float(k) | |||
|
1083 | if l==0: | |||
|
1084 | #sorts[k]=self.lagp0[i,j,k].real | |||
|
1085 | self.lagp0[i,j,k].real=sorted(self.lagp0[i,j,k].real) | |||
|
1086 | if l==1: | |||
|
1087 | #sorts[k]=self.lagp1[i,j,k].real | |||
|
1088 | self.lagp1[i,j,k].real=sorted(self.lagp1[i,j,k].real) | |||
|
1089 | if l==2: | |||
|
1090 | #sorts[k]=self.lagp2[i,j,k].real | |||
|
1091 | self.lagp2[i,j,k].real=sorted(self.lagp2[i,j,k].real) | |||
|
1092 | if l==3: | |||
|
1093 | #sorts[k]=self.lagp3[i,j,k].real | |||
|
1094 | self.lagp3[i,j,k].real=sorted(self.lagp3[i,j,k].real) | |||
|
1095 | ''' | |||
|
1096 | ||||
|
1097 | #sorts=sorted(sorts) | |||
|
1098 | #self.lagp0[i,j,k].real=sorted(self.lagp0[i,j,k].real) | |||
|
1099 | #self.lagp1[i,j,k].real=sorted(self.lagp1[i,j,k].real) | |||
|
1100 | #self.lagp2[i,j,k].real=sorted(self.lagp2[i,j,k].real) | |||
|
1101 | #self.lagp3[i,j,k].real=sorted(self.lagp3[i,j,k].real) | |||
|
1102 | ||||
|
1103 | for k in range(self.dataOut.NAVG): | |||
|
1104 | ||||
|
1105 | ||||
|
1106 | ||||
|
1107 | if k==0: | |||
|
1108 | self.output[i,j,l]=0.0+0.j | |||
|
1109 | ||||
|
1110 | if l==0: | |||
|
1111 | self.lagp0[i,j,:]=sorted(self.lagp0[i,j,:], key=lambda x: x.real) #sorted(self.lagp0[i,j,:].real) | |||
|
1112 | ||||
|
1113 | if l==1: | |||
|
1114 | self.lagp1[i,j,:]=sorted(self.lagp1[i,j,:], key=lambda x: x.real) #sorted(self.lagp1[i,j,:].real) | |||
|
1115 | if l==2: | |||
|
1116 | self.lagp2[i,j,:]=sorted(self.lagp2[i,j,:], key=lambda x: x.real) #sorted(self.lagp2[i,j,:].real) | |||
|
1117 | if l==3: | |||
|
1118 | self.lagp3[i,j,:]=sorted(self.lagp3[i,j,:], key=lambda x: x.real) #sorted(self.lagp3[i,j,:].real) | |||
|
1119 | ||||
|
1120 | ||||
|
1121 | if k>=self.dataOut.nkill/2 and k<self.dataOut.NAVG-self.dataOut.nkill/2: | |||
|
1122 | if l==0: | |||
|
1123 | ||||
|
1124 | self.output[i,j,l]=self.output[i,j,l]+((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp0[i,j,k]) | |||
|
1125 | if l==1: | |||
|
1126 | #print("lagp1: ",self.lagp1[0,0,:]) | |||
|
1127 | #input() | |||
|
1128 | self.output[i,j,l]=self.output[i,j,l]+((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp1[i,j,k]) | |||
|
1129 | #print("self.lagp1[i,j,k]: ",self.lagp1[i,j,k]) | |||
|
1130 | #input() | |||
|
1131 | if l==2: | |||
|
1132 | self.output[i,j,l]=self.output[i,j,l]+((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp2[i,j,k]) | |||
|
1133 | if l==3: | |||
|
1134 | #print(numpy.shape(output)) | |||
|
1135 | #print(numpy.shape(self.lagp3)) | |||
|
1136 | #print("i: ",i,"j: ",j,"k: ",k) | |||
|
1137 | ||||
|
1138 | #a=((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp3[i,j,k]) | |||
|
1139 | #print("self.lagp3[i,j,k]: ",self.lagp3[i,j,k]) | |||
|
1140 | #input() | |||
|
1141 | self.output[i,j,l]=self.output[i,j,l]+((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp3[i,j,k]) | |||
|
1142 | #print(a) | |||
|
1143 | #print("output[i,j,l]: ",output[i,j,l]) | |||
|
1144 | #input() | |||
|
1145 | ||||
|
1146 | ||||
|
1147 | self.dataOut.output_LP=self.output | |||
|
1148 | #print(numpy.shape(sefl.dataOut.output_LP)) | |||
|
1149 | #input() | |||
|
1150 | #print("output: ",self.dataOut.output_LP[:,0,0]) | |||
|
1151 | #input() | |||
|
1152 | ||||
|
1153 | ||||
|
1154 | def remove_debris_LP(self): | |||
|
1155 | ||||
|
1156 | if self.dataOut.flag_save==1: | |||
|
1157 | debris=numpy.zeros(self.dataOut.NRANGE,'float32') | |||
|
1158 | #self.dataOut.debris_activated=0 | |||
|
1159 | for j in range(0,3): | |||
|
1160 | for i in range(self.dataOut.NRANGE): | |||
|
1161 | if j==0: | |||
|
1162 | debris[i]=10*numpy.log10(numpy.abs(self.dataOut.output_LP[j,i,0])) | |||
|
1163 | else: | |||
|
1164 | debris[i]+=10*numpy.log10(numpy.abs(self.dataOut.output_LP[j,i,0])) | |||
|
1165 | ||||
|
1166 | ''' | |||
|
1167 | debris=10*numpy.log10(numpy.abs(self.dataOut.output_LP[0,:,0])) | |||
|
1168 | ||||
|
1169 | for j in range(1,3): | |||
|
1170 | for i in range(self.dataOut.NRANGE): | |||
|
1171 | debris[i]+=debris[i] | |||
|
1172 | ''' | |||
|
1173 | ||||
|
1174 | thresh=8.0+4+4+4 | |||
|
1175 | for i in range(47,100): | |||
|
1176 | if ((debris[i-2]+debris[i-1]+debris[i]+debris[i+1])> | |||
|
1177 | ((debris[i-12]+debris[i-11]+debris[i-10]+debris[i-9]+ | |||
|
1178 | debris[i+12]+debris[i+11]+debris[i+10]+debris[i+9])/2.0+ | |||
|
1179 | thresh)): | |||
|
1180 | ||||
|
1181 | self.dataOut.debris_activated=1 | |||
|
1182 | #print("LP debris",i) | |||
|
1183 | ||||
|
1184 | ||||
|
1185 | #print("self.debris",debris) | |||
|
1186 | ||||
|
1187 | ||||
|
1188 | def remove_debris_DP(self): | |||
|
1189 | ||||
|
1190 | if self.dataOut.flag_save==1: | |||
|
1191 | debris=numpy.zeros(self.dataOut.NDP,dtype='float32') | |||
|
1192 | Range=numpy.arange(0,3000,15) | |||
|
1193 | for k in range(2): #flip | |||
|
1194 | for i in range(self.dataOut.NDP): # | |||
|
1195 | debris[i]+=numpy.sqrt((self.dataOut.kaxbx[i,0,k]+self.dataOut.kayby[i,0,k])**2+(self.dataOut.kaybx[i,0,k]-self.dataOut.kaxby[i,0,k])**2) | |||
|
1196 | ||||
|
1197 | #print("debris: ",debris) | |||
|
1198 | ||||
|
1199 | if time.gmtime(self.dataOut.utctime).tm_hour > 11: | |||
|
1200 | for i in range(2,self.dataOut.NDP-2): | |||
|
1201 | if (debris[i]>3.0*debris[i-2] and | |||
|
1202 | debris[i]>3.0*debris[i+2] and | |||
|
1203 | Range[i]>200.0 and Range[i]<=540.0): | |||
|
1204 | ||||
|
1205 | self.dataOut.debris_activated=1 | |||
|
1206 | #print("DP debris") | |||
|
1207 | ||||
|
1208 | ||||
|
1209 | ||||
|
1210 | ||||
|
1211 | ||||
|
1212 | ||||
|
1213 | def run(self, experiment="", nlags_array=None, NLAG=None, NR=None, NRANGE=None, NCAL=None, DPL=None, | |||
|
1214 | NDN=None, NDT=None, NDP=None, NLP=None, NSCAN=None, HDR_SIZE=None, DH=15, H0=None, LPMASK=None, | |||
|
1215 | flags_array=None, | |||
|
1216 | NPROFILE1=None, NPROFILE2=None, NPROFILES=None, NPROFILE=None, | |||
|
1217 | lagind=None, lagfirst=None, | |||
|
1218 | nptsfftx1=None): | |||
|
1219 | ||||
|
1220 | #self.dataOut.input_dat_type=input_dat_type | |||
|
1221 | ||||
|
1222 | self.dataOut.experiment=experiment | |||
|
1223 | ||||
|
1224 | #print(self.dataOut.experiment) | |||
|
1225 | self.dataOut.nlags_array=nlags_array | |||
|
1226 | self.dataOut.NLAG=NLAG | |||
|
1227 | self.dataOut.NR=NR | |||
|
1228 | self.dataOut.NRANGE=NRANGE | |||
|
1229 | #print(self.dataOut.NRANGE) | |||
|
1230 | self.dataOut.NCAL=NCAL | |||
|
1231 | self.dataOut.DPL=DPL | |||
|
1232 | self.dataOut.NDN=NDN | |||
|
1233 | self.dataOut.NDT=NDT | |||
|
1234 | self.dataOut.NDP=NDP | |||
|
1235 | self.dataOut.NLP=NLP | |||
|
1236 | self.dataOut.NSCAN=NSCAN | |||
|
1237 | self.dataOut.HDR_SIZE=HDR_SIZE | |||
|
1238 | self.dataOut.DH=float(DH) | |||
|
1239 | self.dataOut.H0=H0 | |||
|
1240 | self.dataOut.LPMASK=LPMASK | |||
|
1241 | self.dataOut.flags_array=flags_array | |||
|
1242 | ||||
|
1243 | self.dataOut.NPROFILE1=NPROFILE1 | |||
|
1244 | self.dataOut.NPROFILE2=NPROFILE2 | |||
|
1245 | self.dataOut.NPROFILES=NPROFILES | |||
|
1246 | self.dataOut.NPROFILE=NPROFILE | |||
|
1247 | self.dataOut.lagind=lagind | |||
|
1248 | self.dataOut.lagfirst=lagfirst | |||
|
1249 | self.dataOut.nptsfftx1=nptsfftx1 | |||
|
1250 | ||||
|
1251 | ||||
|
1252 | self.dataOut.copy(self.dataIn) | |||
|
1253 | #print(self.dataOut.datatime) | |||
|
1254 | #print(self.dataOut.ippSeconds_general) | |||
|
1255 | #print("Data: ",numpy.shape(self.dataOut.data)) | |||
|
1256 | #print("Data_after: ",self.dataOut.data[0,0,1]) | |||
|
1257 | ## (4, 150, 334) | |||
|
1258 | #print(self.dataOut.channelIndexList) | |||
|
1259 | ||||
|
1260 | #print(self.dataOut.timeInterval) | |||
|
1261 | ||||
|
1262 | ###NEWWWWWWW | |||
|
1263 | self.dataOut.lat=-11.95 | |||
|
1264 | self.dataOut.lon=-7687 | |||
|
1265 | self.dataOut.debris_activated=0 | |||
|
1266 | ||||
|
1267 | #print(time.gmtime(self.dataOut.utctime).tm_hour) | |||
|
1268 | #print(numpy.shape(self.dataOut.heightList)) | |||
|
1269 | ||||
|
1270 | ||||
|
1271 | ||||
|
1272 | class NewData(Operation): | |||
|
1273 | def __init__(self, **kwargs): | |||
|
1274 | ||||
|
1275 | Operation.__init__(self, **kwargs) | |||
|
1276 | ||||
|
1277 | ||||
|
1278 | ||||
|
1279 | ||||
|
1280 | ||||
|
1281 | def run(self,dataOut): | |||
|
1282 | ||||
|
1283 | #print("SHAPE",numpy.shape(dataOut.kaxby)) | |||
|
1284 | print("CurrentBlock",dataOut.CurrentBlock) | |||
|
1285 | #print("DATAOUT",dataOut.kaxby) | |||
|
1286 | #print("TRUE OR FALSE",numpy.shape(dataOut.kaxby)==()) | |||
|
1287 | #print("SHAPE",numpy.shape(dataOut.kaxby)) | |||
|
1288 | if numpy.shape(dataOutF.kax)!=(): ############VER SI SE PUEDE TRABAJAR CON dataOut.kaxby==None ##Puede ser cualquier k... | |||
|
1289 | ||||
|
1290 | print("NEWDATA",dataOut.kaxby) | |||
|
1291 | ||||
|
1292 | ||||
|
1293 | ||||
|
1294 | ||||
|
1295 | ||||
|
1296 | return dataOut | |||
|
1297 | ||||
|
1298 | ||||
|
1299 | ||||
|
1300 | ||||
|
1301 | ||||
|
1302 | ||||
|
1303 | ||||
|
1304 | ||||
|
1305 | ||||
|
1306 | ||||
|
1307 | ||||
|
1308 | ''' | |||
|
1309 | ||||
|
1310 | class PlotVoltageLag(Operation): | |||
|
1311 | def __init__(self, **kwargs): | |||
|
1312 | ||||
|
1313 | Operation.__init__(self, **kwargs) | |||
|
1314 | ||||
|
1315 | ||||
|
1316 | ||||
|
1317 | self.kax=numpy.zeros((self.NDP,self.nlags_array,2),'float32') | |||
|
1318 | def range(self,DH): | |||
|
1319 | Range=numpy.arange(0,990,DH) | |||
|
1320 | return Range | |||
|
1321 | ||||
|
1322 | ||||
|
1323 | ||||
|
1324 | def run(self,dataOut): | |||
|
1325 | ||||
|
1326 | ||||
|
1327 | ||||
|
1328 | #plt.subplot(1, 4, 1) | |||
|
1329 | plt.plot(kax[:,0,0],Range,'r',linewidth=2.0) | |||
|
1330 | plt.xlim(min(limit_min_plot1[12::,0,0]), max(limit_max_plot1[12::,0,0])) | |||
|
1331 | plt.show() | |||
|
1332 | ||||
|
1333 | self.kax=numpy.zeros((self.NDP,self.nlags_array,2),'float32') | |||
|
1334 | ||||
|
1335 | return dataOut | |||
|
1336 | ''' | |||
|
1337 | ||||
|
1338 | ||||
|
1339 | ||||
|
1340 | ||||
|
1341 | ||||
|
1342 | ||||
|
1343 | ||||
|
1344 | ||||
|
1345 | ||||
|
1346 | ||||
|
1347 | ||||
|
1348 | ||||
|
1349 | ||||
|
1350 | ||||
|
1351 | ||||
|
1352 | ||||
|
1353 | ||||
|
1354 | ||||
|
1355 | ||||
|
1356 | ||||
|
1357 | ||||
|
1358 | ||||
|
1359 | ||||
|
1360 | ||||
|
1361 | ||||
|
1362 | ||||
|
1363 | ||||
|
1364 | ||||
|
1365 | ||||
|
1366 | class Integration(Operation): | |||
|
1367 | def __init__(self, **kwargs): | |||
|
1368 | ||||
|
1369 | Operation.__init__(self, **kwargs) | |||
|
1370 | ||||
|
1371 | ||||
|
1372 | ||||
|
1373 | self.counter=0 | |||
|
1374 | self.aux=0 | |||
|
1375 | self.aux2=1 | |||
|
1376 | ||||
|
1377 | def run(self,dataOut,nint=None): | |||
|
1378 | ||||
|
1379 | dataOut.nint=nint | |||
|
1380 | dataOut.AUX=0 | |||
|
1381 | dataOut.paramInterval=dataOut.nint*dataOut.header[7][0]*2 #GENERALIZAR EL 2 | |||
|
1382 | #print("CurrentBlock: ",dataOut.CurrentBlock) | |||
|
1383 | #print("date: ",dataOut.datatime) | |||
|
1384 | #print("self.aux: ",self.aux) | |||
|
1385 | #print("CurrentBlockAAAAAA: ",dataOut.CurrentBlock) | |||
|
1386 | #print(dataOut.input_dat_type) | |||
|
1387 | #print(dataOut.heightList) | |||
|
1388 | ||||
|
1389 | #print(dataOut.blocktime.ctime()) | |||
|
1390 | ''' | |||
|
1391 | if dataOut.input_dat_type: #when .dat data is read | |||
|
1392 | #print(dataOut.realtime) | |||
|
1393 | #print("OKODOKO") | |||
|
1394 | #dataOut.flagNoData = False | |||
|
1395 | #print(dataOut.flagNoData) | |||
|
1396 | if self.aux2: | |||
|
1397 | ||||
|
1398 | self.noise=numpy.zeros(dataOut.NR,'float32') | |||
|
1399 | ||||
|
1400 | ||||
|
1401 | padding=numpy.zeros(1,'int32') | |||
|
1402 | ||||
|
1403 | hsize=numpy.zeros(1,'int32') | |||
|
1404 | bufsize=numpy.zeros(1,'int32') | |||
|
1405 | nr=numpy.zeros(1,'int32') | |||
|
1406 | ngates=numpy.zeros(1,'int32') ### ### ### 2 | |||
|
1407 | time1=numpy.zeros(1,'uint64') # pos 3 | |||
|
1408 | time2=numpy.zeros(1,'uint64') # pos 4 | |||
|
1409 | lcounter=numpy.zeros(1,'int32') | |||
|
1410 | groups=numpy.zeros(1,'int32') | |||
|
1411 | system=numpy.zeros(4,'int8') # pos 7 | |||
|
1412 | h0=numpy.zeros(1,'float32') | |||
|
1413 | dh=numpy.zeros(1,'float32') | |||
|
1414 | ipp=numpy.zeros(1,'float32') | |||
|
1415 | process=numpy.zeros(1,'int32') | |||
|
1416 | tx=numpy.zeros(1,'int32') | |||
|
1417 | ||||
|
1418 | ngates1=numpy.zeros(1,'int32') ### ### ### 13 | |||
|
1419 | time0=numpy.zeros(1,'uint64') # pos 14 | |||
|
1420 | nlags=numpy.zeros(1,'int32') | |||
|
1421 | nlags1=numpy.zeros(1,'int32') | |||
|
1422 | txb=numpy.zeros(1,'float32') ### ### ### 17 | |||
|
1423 | time3=numpy.zeros(1,'uint64') # pos 18 | |||
|
1424 | time4=numpy.zeros(1,'uint64') # pos 19 | |||
|
1425 | h0_=numpy.zeros(1,'float32') | |||
|
1426 | dh_=numpy.zeros(1,'float32') | |||
|
1427 | ipp_=numpy.zeros(1,'float32') | |||
|
1428 | txa_=numpy.zeros(1,'float32') | |||
|
1429 | ||||
|
1430 | pad=numpy.zeros(100,'int32') | |||
|
1431 | ||||
|
1432 | nbytes=numpy.zeros(1,'int32') | |||
|
1433 | limits=numpy.zeros(1,'int32') | |||
|
1434 | ngroups=numpy.zeros(1,'int32') ### ### ### 27 | |||
|
1435 | #Make the header list | |||
|
1436 | #header=[hsize,bufsize,nr,ngates,time1,time2,lcounter,groups,system,h0,dh,ipp,process,tx,padding,ngates1,time0,nlags,nlags1,padding,txb,time3,time4,h0_,dh_,ipp_,txa_,pad,nbytes,limits,padding,ngroups] | |||
|
1437 | dataOut.header=[hsize,bufsize,nr,ngates,time1,time2,lcounter,groups,system,h0,dh,ipp,process,tx,ngates1,padding,time0,nlags,nlags1,padding,txb,time3,time4,h0_,dh_,ipp_,txa_,pad,nbytes,limits,padding,ngroups] | |||
|
1438 | ||||
|
1439 | ||||
|
1440 | ||||
|
1441 | dataOut.kax=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1442 | dataOut.kay=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1443 | dataOut.kbx=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1444 | dataOut.kby=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1445 | dataOut.kax2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1446 | dataOut.kay2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1447 | dataOut.kbx2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1448 | dataOut.kby2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1449 | dataOut.kaxbx=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1450 | dataOut.kaxby=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1451 | dataOut.kaybx=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1452 | dataOut.kayby=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1453 | dataOut.kaxay=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1454 | dataOut.kbxby=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1455 | ||||
|
1456 | self.dataOut.final_cross_products=[dataOut.kax,dataOut.kay,dataOut.kbx,dataOut.kby,dataOut.kax2,dataOut.kay2,dataOut.kbx2,dataOut.kby2,dataOut.kaxbx,dataOut.kaxby,dataOut.kaybx,dataOut.kayby,dataOut.kaxay,dataOut.kbxby] | |||
|
1457 | ||||
|
1458 | self.inputfile_DP = open(dataOut.fname,"rb") | |||
|
1459 | ||||
|
1460 | ## read header the header first time | |||
|
1461 | for i in range(len(dataOut.header)): | |||
|
1462 | for j in range(len(dataOut.header[i])): | |||
|
1463 | #print("len(header[i]) ",len(header[i])) | |||
|
1464 | #input() | |||
|
1465 | temp=self.inputfile_DP.read(int(dataOut.header[i].itemsize)) | |||
|
1466 | if isinstance(dataOut.header[i][0], numpy.int32): | |||
|
1467 | #print(struct.unpack('i', temp)[0]) | |||
|
1468 | dataOut.header[i][0]=struct.unpack('i', temp)[0] | |||
|
1469 | if isinstance(dataOut.header[i][0], numpy.uint64): | |||
|
1470 | dataOut.header[i][0]=struct.unpack('q', temp)[0] | |||
|
1471 | if isinstance(dataOut.header[i][0], numpy.int8): | |||
|
1472 | dataOut.header[i][0]=struct.unpack('B', temp)[0] | |||
|
1473 | if isinstance(dataOut.header[i][0], numpy.float32): | |||
|
1474 | dataOut.header[i][0]=struct.unpack('f', temp)[0] | |||
|
1475 | ||||
|
1476 | ||||
|
1477 | ||||
|
1478 | ||||
|
1479 | self.activator_No_Data=1 | |||
|
1480 | ||||
|
1481 | self.inputfile_DP.seek(0,0) | |||
|
1482 | ||||
|
1483 | #print("Repositioning to",self.npos," bytes, bufsize ", self.header[1][0]) | |||
|
1484 | #self.inputfile.seek(self.npos, 0) | |||
|
1485 | #print("inputfile.tell() ",self.inputfile.tell() ," npos : ", self.npos) | |||
|
1486 | ||||
|
1487 | self.npos=0 | |||
|
1488 | ||||
|
1489 | #if dataOut.nint < 0: | |||
|
1490 | # dataOut.nint=-dataOut.nint | |||
|
1491 | # sfile=os.stat(dataOut.fname) | |||
|
1492 | # if (os.path.exists(dataOut.fname)==0): | |||
|
1493 | # print("ERROR on STAT file: %s\n", dataOut.fname) | |||
|
1494 | # self.npos=sfile.st_size - dataOut.nint*dataOut.header[1][0]# sfile.st_size - nint*header.bufsize | |||
|
1495 | ||||
|
1496 | self.start_another_day=False | |||
|
1497 | if dataOut.new_time_date!=" ": | |||
|
1498 | self.start_another_day=True | |||
|
1499 | ||||
|
1500 | ||||
|
1501 | if self.start_another_day: | |||
|
1502 | #print("Starting_at_another_day") | |||
|
1503 | #new_time_date = "16/08/2013 09:51:43" | |||
|
1504 | #new_time_seconds=time.mktime(time.strptime(new_time_date)) | |||
|
1505 | #dataOut.new_time_date = "04/12/2019 09:21:21" | |||
|
1506 | d = datetime.strptime(dataOut.new_time_date, "%d/%m/%Y %H:%M:%S") | |||
|
1507 | new_time_seconds=time.mktime(d.timetuple()) | |||
|
1508 | ||||
|
1509 | d_2 = datetime.strptime(dataOut.new_ending_time, "%d/%m/%Y %H:%M:%S") | |||
|
1510 | self.new_ending_time_seconds=time.mktime(d_2.timetuple()) | |||
|
1511 | #print("new_time_seconds: ",new_time_seconds) | |||
|
1512 | #input() | |||
|
1513 | jumper=0 | |||
|
1514 | ||||
|
1515 | #if jumper>0 and nint>0: | |||
|
1516 | while True: | |||
|
1517 | sfile=os.stat(dataOut.fname) | |||
|
1518 | ||||
|
1519 | if (os.path.exists(dataOut.fname)==0): | |||
|
1520 | print("ERROR on STAT file: %s\n",dataOut.fname) | |||
|
1521 | self.npos=jumper*dataOut.nint*dataOut.header[1][0] #jump_blocks*header,bufsize | |||
|
1522 | self.npos_next=(jumper+1)*dataOut.nint*dataOut.header[1][0] | |||
|
1523 | self.inputfile_DP.seek(self.npos, 0) | |||
|
1524 | jumper+=1 | |||
|
1525 | for i in range(len(dataOut.header)): | |||
|
1526 | for j in range(len(dataOut.header[i])): | |||
|
1527 | #print("len(header[i]) ",len(header[i])) | |||
|
1528 | #input() | |||
|
1529 | temp=self.inputfile_DP.read(int(dataOut.header[i].itemsize)) | |||
|
1530 | if isinstance(dataOut.header[i][0], numpy.int32): | |||
|
1531 | #print(struct.unpack('i', temp)[0]) | |||
|
1532 | dataOut.header[i][0]=struct.unpack('i', temp)[0] | |||
|
1533 | if isinstance(dataOut.header[i][0], numpy.uint64): | |||
|
1534 | dataOut.header[i][0]=struct.unpack('q', temp)[0] | |||
|
1535 | if isinstance(dataOut.header[i][0], numpy.int8): | |||
|
1536 | dataOut.header[i][0]=struct.unpack('B', temp)[0] | |||
|
1537 | if isinstance(dataOut.header[i][0], numpy.float32): | |||
|
1538 | dataOut.header[i][0]=struct.unpack('f', temp)[0] | |||
|
1539 | ||||
|
1540 | if self.npos==0: | |||
|
1541 | if new_time_seconds<dataOut.header[4][0]: | |||
|
1542 | break | |||
|
1543 | #dataOut.flagNoData=1 | |||
|
1544 | #return dataOut.flagNoData | |||
|
1545 | ||||
|
1546 | self.npos_aux=sfile.st_size - dataOut.nint*dataOut.header[1][0] | |||
|
1547 | self.inputfile_DP.seek(self.npos_aux, 0) | |||
|
1548 | ||||
|
1549 | for i in range(len(dataOut.header)): | |||
|
1550 | for j in range(len(dataOut.header[i])): | |||
|
1551 | #print("len(header[i]) ",len(header[i])) | |||
|
1552 | #input() | |||
|
1553 | temp=self.inputfile_DP.read(int(dataOut.header[i].itemsize)) | |||
|
1554 | if isinstance(dataOut.header[i][0], numpy.int32): | |||
|
1555 | #print(struct.unpack('i', temp)[0]) | |||
|
1556 | dataOut.header[i][0]=struct.unpack('i', temp)[0] | |||
|
1557 | if isinstance(dataOut.header[i][0], numpy.uint64): | |||
|
1558 | dataOut.header[i][0]=struct.unpack('q', temp)[0] | |||
|
1559 | if isinstance(dataOut.header[i][0], numpy.int8): | |||
|
1560 | dataOut.header[i][0]=struct.unpack('B', temp)[0] | |||
|
1561 | if isinstance(dataOut.header[i][0], numpy.float32): | |||
|
1562 | dataOut.header[i][0]=struct.unpack('f', temp)[0] | |||
|
1563 | ||||
|
1564 | if new_time_seconds>dataOut.header[4][0]: | |||
|
1565 | print("No Data") | |||
|
1566 | self.inputfile_DP.close() | |||
|
1567 | sys.exit(1) | |||
|
1568 | ||||
|
1569 | self.inputfile_DP.seek(self.npos, 0) | |||
|
1570 | ||||
|
1571 | ||||
|
1572 | ||||
|
1573 | ||||
|
1574 | if new_time_seconds==dataOut.header[4][0]: | |||
|
1575 | #print("EQUALS") | |||
|
1576 | break | |||
|
1577 | ||||
|
1578 | self.inputfile_DP.seek(self.npos_next, 0) | |||
|
1579 | ||||
|
1580 | for i in range(len(dataOut.header)): | |||
|
1581 | for j in range(len(dataOut.header[i])): | |||
|
1582 | #print("len(header[i]) ",len(header[i])) | |||
|
1583 | #input() | |||
|
1584 | temp=self.inputfile_DP.read(int(dataOut.header[i].itemsize)) | |||
|
1585 | if isinstance(dataOut.header[i][0], numpy.int32): | |||
|
1586 | #print(struct.unpack('i', temp)[0]) | |||
|
1587 | dataOut.header[i][0]=struct.unpack('i', temp)[0] | |||
|
1588 | if isinstance(dataOut.header[i][0], numpy.uint64): | |||
|
1589 | dataOut.header[i][0]=struct.unpack('q', temp)[0] | |||
|
1590 | if isinstance(dataOut.header[i][0], numpy.int8): | |||
|
1591 | dataOut.header[i][0]=struct.unpack('B', temp)[0] | |||
|
1592 | if isinstance(dataOut.header[i][0], numpy.float32): | |||
|
1593 | dataOut.header[i][0]=struct.unpack('f', temp)[0] | |||
|
1594 | ||||
|
1595 | ||||
|
1596 | if new_time_seconds<dataOut.header[4][0]: | |||
|
1597 | break | |||
|
1598 | ||||
|
1599 | ||||
|
1600 | ||||
|
1601 | ||||
|
1602 | ||||
|
1603 | ||||
|
1604 | ||||
|
1605 | ||||
|
1606 | #print("Repositioning to",self.npos," bytes, bufsize ", dataOut.header[1][0]) | |||
|
1607 | self.inputfile_DP.seek(self.npos, 0) | |||
|
1608 | #print("inputfile.tell() ",self.inputfile_DP.tell() ," npos : ", self.npos) | |||
|
1609 | ||||
|
1610 | self.aux2=0 | |||
|
1611 | ||||
|
1612 | ||||
|
1613 | for ii in range(len(dataOut.header)): | |||
|
1614 | for j in range(len(dataOut.header[ii])): | |||
|
1615 | temp=self.inputfile_DP.read(int(dataOut.header[ii].itemsize)) | |||
|
1616 | ||||
|
1617 | if(b''==temp):# sizeof(header) | |||
|
1618 | dataOut.flagDiscontinuousBlock=1 | |||
|
1619 | #print("EOF \n\n\n\n") | |||
|
1620 | #log.success("") | |||
|
1621 | #self.inputfile_DP.close() | |||
|
1622 | dataOut.error = True | |||
|
1623 | #dataOut.flagNoData = True | |||
|
1624 | #dataOut.stop=True | |||
|
1625 | #return dataOut | |||
|
1626 | #dataOut. | |||
|
1627 | return dataOut | |||
|
1628 | ||||
|
1629 | #return dataOut.flagNoData | |||
|
1630 | #writedb_head() | |||
|
1631 | #outputfile.close() | |||
|
1632 | #sys.exit(0) | |||
|
1633 | #THE PROGRAM SHOULD END HERE | |||
|
1634 | ||||
|
1635 | if isinstance(dataOut.header[ii][0], numpy.int32): | |||
|
1636 | #print(struct.unpack('i', temp)[0]) | |||
|
1637 | dataOut.header[ii][0]=struct.unpack('i', temp)[0] | |||
|
1638 | if isinstance(dataOut.header[ii][0], numpy.uint64): | |||
|
1639 | dataOut.header[ii][0]=struct.unpack('q', temp)[0] | |||
|
1640 | if isinstance(dataOut.header[ii][0], numpy.int8): | |||
|
1641 | dataOut.header[ii][0]=struct.unpack('B', temp)[0] | |||
|
1642 | if isinstance(dataOut.header[ii][0], numpy.float32): | |||
|
1643 | dataOut.header[ii][0]=struct.unpack('f', temp)[0] | |||
|
1644 | ||||
|
1645 | ||||
|
1646 | if self.start_another_day: | |||
|
1647 | ||||
|
1648 | if dataOut.header[4][0]>self.new_ending_time_seconds: | |||
|
1649 | print("EOF \n") | |||
|
1650 | if self.activator_No_Data: | |||
|
1651 | print("No Data") | |||
|
1652 | self.inputfile_DP.close() | |||
|
1653 | #sys.exit(0) | |||
|
1654 | dataOut.error = True | |||
|
1655 | return dataOut | |||
|
1656 | #print(self.activator_No_Data) | |||
|
1657 | self.activator_No_Data=0 | |||
|
1658 | #dataOut.TimeBlockDate_for_dp_power=dataOut.TimeBlockDate | |||
|
1659 | #dataOut.TimeBlockSeconds_for_dp_power=time.mktime(time.strptime(dataOut.TimeBlockDate_for_dp_power)) | |||
|
1660 | dataOut.TimeBlockSeconds_for_dp_power = dataOut.header[4][0]-((dataOut.nint-1)*dataOut.NAVG*2) | |||
|
1661 | #print(dataOut.TimeBlockSeconds_for_dp_power) | |||
|
1662 | dataOut.TimeBlockDate_for_dp_power=datetime.fromtimestamp(dataOut.TimeBlockSeconds_for_dp_power).strftime("%a %b %-d %H:%M:%S %Y") | |||
|
1663 | #print("Date: ",dataOut.TimeBlockDate_for_dp_power) | |||
|
1664 | #print("Seconds: ",dataOut.TimeBlockSeconds_for_dp_power) | |||
|
1665 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_for_dp_power) | |||
|
1666 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 | |||
|
1667 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 | |||
|
1668 | ||||
|
1669 | ||||
|
1670 | if dataOut.experiment=="HP": # NRANGE*NLAG*NR # np.zeros([total_samples*nprofiles],dtype='complex64') | |||
|
1671 | temp=self.inputfile_DP.read(dataOut.NLAG*dataOut.NR*176*8) | |||
|
1672 | ii=0 | |||
|
1673 | for l in range(dataOut.NLAG): #lag | |||
|
1674 | for r in range(dataOut.NR): # unflip and flip | |||
|
1675 | for k in range(176): #RANGE## generalizar | |||
|
1676 | struct.unpack('q', temp[ii:ii+8])[0] | |||
|
1677 | ii=ii+8 | |||
|
1678 | ||||
|
1679 | ||||
|
1680 | ||||
|
1681 | #print("A: ",dataOut.kax) | |||
|
1682 | for ind in range(len(self.dataOut.final_cross_products)): #final cross products | |||
|
1683 | temp=self.inputfile_DP.read(dataOut.DPL*2*dataOut.NDT*4) #*4 bytes | |||
|
1684 | ii=0 | |||
|
1685 | #print("kabxys.shape ",kabxys.shape) | |||
|
1686 | #print(kabxys) | |||
|
1687 | for l in range(dataOut.DPL): #lag | |||
|
1688 | for fl in range(2): # unflip and flip | |||
|
1689 | for k in range(dataOut.NDT): #RANGE | |||
|
1690 | self.dataOut.final_cross_products[ind][k,l,fl]=struct.unpack('f', temp[ii:ii+4])[0] | |||
|
1691 | ii=ii+4 | |||
|
1692 | #print("DPL*2*NDT*4 es: ", DPL*2*NDT*4) | |||
|
1693 | #print("B: ",dataOut.kax) | |||
|
1694 | ## read noise | |||
|
1695 | temp=self.inputfile_DP.read(dataOut.NR*4) #*4 bytes | |||
|
1696 | for ii in range(dataOut.NR): | |||
|
1697 | self.noise[ii]=struct.unpack('f', temp[ii*4:(ii+1)*4])[0] | |||
|
1698 | #print("NR*4 es: ", NR*4) | |||
|
1699 | ||||
|
1700 | ||||
|
1701 | ################################END input_dat_type################################ | |||
|
1702 | ''' | |||
|
1703 | ||||
|
1704 | #if dataOut.input_dat_type==0: | |||
|
1705 | ||||
|
1706 | if self.aux==1: | |||
|
1707 | #print("CurrentBlockBBBBB: ",dataOut.CurrentBlock) | |||
|
1708 | #print(dataOut.datatime) | |||
|
1709 | dataOut.TimeBlockDate_for_dp_power=dataOut.TimeBlockDate | |||
|
1710 | ||||
|
1711 | #print("Date: ",dataOut.TimeBlockDate_for_dp_power) | |||
|
1712 | dataOut.TimeBlockSeconds_for_dp_power=time.mktime(time.strptime(dataOut.TimeBlockDate_for_dp_power)) | |||
|
1713 | #print("Seconds: ",dataOut.TimeBlockSeconds_for_dp_power) | |||
|
1714 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_for_dp_power) | |||
|
1715 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 | |||
|
1716 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 | |||
|
1717 | #print("date: ", dataOut.TimeBlockDate) | |||
|
1718 | self.aux=0 | |||
|
1719 | ||||
|
1720 | if numpy.shape(dataOut.kax)!=(): | |||
|
1721 | #print("SELFCOUNTER",self.counter) | |||
|
1722 | #dataOut.flagNoData =True | |||
|
1723 | if self.counter==0: | |||
|
1724 | ''' | |||
|
1725 | dataOut.kax_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1726 | dataOut.kay_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1727 | dataOut.kax2_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1728 | dataOut.kay2_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1729 | dataOut.kbx_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1730 | dataOut.kby_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1731 | dataOut.kbx2_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1732 | dataOut.kby2_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1733 | dataOut.kaxbx_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1734 | dataOut.kaxby_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1735 | dataOut.kaybx_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1736 | dataOut.kayby_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1737 | dataOut.kaxay_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1738 | dataOut.kbxby_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') | |||
|
1739 | ''' | |||
|
1740 | ||||
|
1741 | tmpx=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0],2),'float32') | |||
|
1742 | dataOut.kabxys_integrated=[tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx] | |||
|
1743 | #self.final_cross_products=[dataOut.kax,dataOut.kay,dataOut.kbx,dataOut.kby,dataOut.kax2,dataOut.kay2,dataOut.kbx2,dataOut.kby2,dataOut.kaxbx,dataOut.kaxby,dataOut.kaybx,dataOut.kayby,dataOut.kaxay,dataOut.kbxby] | |||
|
1744 | ||||
|
1745 | #print(numpy.shape(tmpx)) | |||
|
1746 | if self.counter < dataOut.nint: | |||
|
1747 | #if dataOut.input_dat_type==0: | |||
|
1748 | dataOut.final_cross_products=[dataOut.kax,dataOut.kay,dataOut.kbx,dataOut.kby,dataOut.kax2,dataOut.kay2,dataOut.kbx2,dataOut.kby2,dataOut.kaxbx,dataOut.kaxby,dataOut.kaybx,dataOut.kayby,dataOut.kaxay,dataOut.kbxby] | |||
|
1749 | ||||
|
1750 | ''' | |||
|
1751 | dataOut.kax_integrated=dataOut.kax_integrated+dataOut.kax | |||
|
1752 | dataOut.kay_integrated=dataOut.kay_integrated+dataOut.kay | |||
|
1753 | dataOut.kax2_integrated=dataOut.kax2_integrated+dataOut.kax2 | |||
|
1754 | dataOut.kay2_integrated=dataOut.kay2_integrated+dataOut.kay2 | |||
|
1755 | dataOut.kbx_integrated=dataOut.kbx_integrated+dataOut.kbx | |||
|
1756 | dataOut.kby_integrated=dataOut.kby_integrated+dataOut.kby | |||
|
1757 | dataOut.kbx2_integrated=dataOut.kbx2_integrated+dataOut.kbx2 | |||
|
1758 | dataOut.kby2_integrated=dataOut.kby2_integrated+dataOut.kby2 | |||
|
1759 | dataOut.kaxbx_integrated=dataOut.kaxbx_integrated+dataOut.kaxbx | |||
|
1760 | dataOut.kaxby_integrated=dataOut.kaxby_integrated+dataOut.kaxby | |||
|
1761 | dataOut.kaybx_integrated=dataOut.kaybx_integrated+dataOut.kaybx | |||
|
1762 | dataOut.kayby_integrated=dataOut.kayby_integrated+dataOut.kayby | |||
|
1763 | dataOut.kaxay_integrated=dataOut.kaxay_integrated+dataOut.kaxbx | |||
|
1764 | dataOut.kbxby_integrated=dataOut.kbxby_integrated+dataOut.kbxby | |||
|
1765 | #print("KAX_BEFORE: ",self.kax_integrated) | |||
|
1766 | ''' | |||
|
1767 | #print("self.final_cross_products[0]: ",self.final_cross_products[0]) | |||
|
1768 | ||||
|
1769 | for ind in range(len(dataOut.kabxys_integrated)): #final cross products | |||
|
1770 | dataOut.kabxys_integrated[ind]=dataOut.kabxys_integrated[ind]+dataOut.final_cross_products[ind] | |||
|
1771 | #print("ataOut.kabxys_integrated[0]: ",dataOut.kabxys_integrated[0]) | |||
|
1772 | ||||
|
1773 | self.counter+=1 | |||
|
1774 | if self.counter==dataOut.nint-1: | |||
|
1775 | self.aux=1 | |||
|
1776 | #dataOut.TimeBlockDate_for_dp_power=dataOut.TimeBlockDate | |||
|
1777 | if self.counter==dataOut.nint: | |||
|
1778 | ||||
|
1779 | #dataOut.flagNoData =False | |||
|
1780 | ||||
|
1781 | self.counter=0 | |||
|
1782 | dataOut.AUX=1 | |||
|
1783 | #self.aux=1 | |||
|
1784 | #print("KAXBY_INTEGRATED: ",dataOut.kaxby_integrated) | |||
|
1785 | ||||
|
1786 | ''' | |||
|
1787 | else : | |||
|
1788 | #dataOut.kax_integrated=self.kax_integrated | |||
|
1789 | self.counter=0 | |||
|
1790 | ||||
|
1791 | ||||
|
1792 | #print("CurrentBlock: ", dataOut.CurrentBlock) | |||
|
1793 | print("KAX_INTEGRATED: ",self.kax_integrated) | |||
|
1794 | #print("nint: ",nint) | |||
|
1795 | ''' | |||
|
1796 | ||||
|
1797 | ##print("CurrentBlock: ", dataOut.CurrentBlock) | |||
|
1798 | ##print("KAX_INTEGRATED: ",dataOut.kax_integrated) | |||
|
1799 | ||||
|
1800 | ||||
|
1801 | return dataOut | |||
|
1802 | ||||
|
1803 | ||||
|
1804 | ||||
|
1805 | ||||
|
1806 | ||||
|
1807 | ||||
|
1808 | ||||
|
1809 | ||||
|
1810 | class SumLagProducts_Old(Operation): | |||
|
1811 | def __init__(self, **kwargs): | |||
|
1812 | ||||
|
1813 | Operation.__init__(self, **kwargs) | |||
|
1814 | #dataOut.rnint2=numpy.zeros(dataOut.nlags_array,'float32') | |||
|
1815 | ||||
|
1816 | ||||
|
1817 | def run(self,dataOut): | |||
|
1818 | ||||
|
1819 | if dataOut.AUX: #Solo cuando ya hizo la intregacion se ejecuta | |||
|
1820 | ||||
|
1821 | ||||
|
1822 | dataOut.rnint2=numpy.zeros(dataOut.header[17][0],'float32') | |||
|
1823 | #print(dataOut.experiment) | |||
|
1824 | if dataOut.experiment=="DP": | |||
|
1825 | for l in range(dataOut.header[17][0]): | |||
|
1826 | dataOut.rnint2[l]=1.0/(dataOut.nint*dataOut.header[7][0]*12.0) | |||
|
1827 | ||||
|
1828 | ||||
|
1829 | if dataOut.experiment=="HP": | |||
|
1830 | for l in range(dataOut.header[17][0]): | |||
|
1831 | if(l==0 or (l>=3 and l <=6)): | |||
|
1832 | dataOut.rnint2[l]=0.5/float(dataOut.nint*dataOut.header[7][0]*16.0) | |||
|
1833 | else: | |||
|
1834 | dataOut.rnint2[l]=0.5/float(dataOut.nint*dataOut.header[7][0]*8.0) | |||
|
1835 | #print(dataOut.rnint2) | |||
|
1836 | for l in range(dataOut.header[17][0]): | |||
|
1837 | ||||
|
1838 | dataOut.kabxys_integrated[4][:,l,0]=(dataOut.kabxys_integrated[4][:,l,0]+dataOut.kabxys_integrated[4][:,l,1])*dataOut.rnint2[l] | |||
|
1839 | dataOut.kabxys_integrated[5][:,l,0]=(dataOut.kabxys_integrated[5][:,l,0]+dataOut.kabxys_integrated[5][:,l,1])*dataOut.rnint2[l] | |||
|
1840 | dataOut.kabxys_integrated[6][:,l,0]=(dataOut.kabxys_integrated[6][:,l,0]+dataOut.kabxys_integrated[6][:,l,1])*dataOut.rnint2[l] | |||
|
1841 | dataOut.kabxys_integrated[7][:,l,0]=(dataOut.kabxys_integrated[7][:,l,0]+dataOut.kabxys_integrated[7][:,l,1])*dataOut.rnint2[l] | |||
|
1842 | ||||
|
1843 | dataOut.kabxys_integrated[8][:,l,0]=(dataOut.kabxys_integrated[8][:,l,0]-dataOut.kabxys_integrated[8][:,l,1])*dataOut.rnint2[l] | |||
|
1844 | dataOut.kabxys_integrated[9][:,l,0]=(dataOut.kabxys_integrated[9][:,l,0]-dataOut.kabxys_integrated[9][:,l,1])*dataOut.rnint2[l] | |||
|
1845 | dataOut.kabxys_integrated[10][:,l,0]=(dataOut.kabxys_integrated[10][:,l,0]-dataOut.kabxys_integrated[10][:,l,1])*dataOut.rnint2[l] | |||
|
1846 | dataOut.kabxys_integrated[11][:,l,0]=(dataOut.kabxys_integrated[11][:,l,0]-dataOut.kabxys_integrated[11][:,l,1])*dataOut.rnint2[l] | |||
|
1847 | ||||
|
1848 | ||||
|
1849 | #print("Final Integration: ",dataOut.kabxys_integrated[4][:,l,0]) | |||
|
1850 | ||||
|
1851 | ||||
|
1852 | ||||
|
1853 | ||||
|
1854 | ||||
|
1855 | ||||
|
1856 | return dataOut | |||
|
1857 | ||||
|
1858 | ||||
|
1859 | ||||
|
1860 | ||||
|
1861 | ||||
|
1862 | ||||
|
1863 | ||||
|
1864 | ||||
|
1865 | ||||
|
1866 | class BadHeights_Old(Operation): | |||
|
1867 | def __init__(self, **kwargs): | |||
|
1868 | ||||
|
1869 | Operation.__init__(self, **kwargs) | |||
|
1870 | ||||
|
1871 | ||||
|
1872 | ||||
|
1873 | def run(self,dataOut): | |||
|
1874 | ||||
|
1875 | ||||
|
1876 | if dataOut.AUX==1: | |||
|
1877 | dataOut.ibad=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]),'int32') | |||
|
1878 | ||||
|
1879 | for j in range(dataOut.header[15][0]): | |||
|
1880 | for l in range(dataOut.header[17][0]): | |||
|
1881 | ip1=j+dataOut.header[15][0]*(0+2*l) | |||
|
1882 | if( (dataOut.kabxys_integrated[5][j,l,0] <= 0.) or (dataOut.kabxys_integrated[4][j,l,0] <= 0.) or (dataOut.kabxys_integrated[7][j,l,0] <= 0.) or (dataOut.kabxys_integrated[6][j,l,0] <= 0.)): | |||
|
1883 | dataOut.ibad[j][l]=1 | |||
|
1884 | else: | |||
|
1885 | dataOut.ibad[j][l]=0 | |||
|
1886 | #print("ibad: ",dataOut.ibad) | |||
|
1887 | ||||
|
1888 | ||||
|
1889 | ||||
|
1890 | return dataOut | |||
|
1891 | ||||
|
1892 | ||||
|
1893 | ||||
|
1894 | ||||
|
1895 | ||||
|
1896 | ||||
|
1897 | ||||
|
1898 | ||||
|
1899 | ||||
|
1900 | ||||
|
1901 | ||||
|
1902 | ||||
|
1903 | ||||
|
1904 | ||||
|
1905 | ||||
|
1906 | ||||
|
1907 | class NoisePower_old(Operation): | |||
|
1908 | def __init__(self, **kwargs): | |||
|
1909 | ||||
|
1910 | Operation.__init__(self, **kwargs) | |||
|
1911 | ||||
|
1912 | def hildebrand(self,dataOut,data): | |||
|
1913 | #print("data ",data ) | |||
|
1914 | divider=10 # divider was originally 10 | |||
|
1915 | noise=0.0 | |||
|
1916 | n1=0 | |||
|
1917 | n2=int(dataOut.header[15][0]/2) | |||
|
1918 | sorts= sorted(data) | |||
|
1919 | ||||
|
1920 | nums_min= dataOut.header[15][0]/divider | |||
|
1921 | if((dataOut.header[15][0]/divider)> 2): | |||
|
1922 | nums_min= int(dataOut.header[15][0]/divider) | |||
|
1923 | else: | |||
|
1924 | nums_min=2 | |||
|
1925 | sump=0.0 | |||
|
1926 | sumq=0.0 | |||
|
1927 | j=0 | |||
|
1928 | cont=1 | |||
|
1929 | while( (cont==1) and (j<n2)): | |||
|
1930 | sump+=sorts[j+n1] | |||
|
1931 | sumq+= sorts[j+n1]*sorts[j+n1] | |||
|
1932 | t3= sump/(j+1) | |||
|
1933 | j=j+1 | |||
|
1934 | if(j> nums_min): | |||
|
1935 | rtest= float(j/(j-1)) +1.0/dataOut.header[7][0] | |||
|
1936 | t1= (sumq*j) | |||
|
1937 | t2=(rtest*sump*sump) | |||
|
1938 | if( (t1/t2) > 0.990): | |||
|
1939 | j=j-1 | |||
|
1940 | sump-= sorts[j+n1] | |||
|
1941 | sumq-=sorts[j+n1]*sorts[j+n1] | |||
|
1942 | cont= 0 | |||
|
1943 | ||||
|
1944 | noise= sump/j | |||
|
1945 | stdv=numpy.sqrt((sumq- noise*noise)/(j-1)) | |||
|
1946 | return noise | |||
|
1947 | ||||
|
1948 | def run(self,dataOut): | |||
|
1949 | ||||
|
1950 | if dataOut.AUX==1: | |||
|
1951 | ||||
|
1952 | #print("ax2 shape ",ax2.shape) | |||
|
1953 | p=numpy.zeros((dataOut.header[2][0],dataOut.header[15][0],dataOut.header[17][0]),'float32') | |||
|
1954 | av=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
1955 | dataOut.pnoise=numpy.zeros(dataOut.header[2][0],'float32') | |||
|
1956 | ||||
|
1957 | p[0,:,:]=dataOut.kabxys_integrated[4][:,:,0]+dataOut.kabxys_integrated[5][:,:,0] #total power for channel 0, just pulse with non-flip | |||
|
1958 | p[1,:,:]=dataOut.kabxys_integrated[6][:,:,0]+dataOut.kabxys_integrated[7][:,:,0] #total power for channel 1 | |||
|
1959 | ||||
|
1960 | #print("p[0,:,:] ",p[0,:,:]) | |||
|
1961 | #print("p[1,:,:] ",p[1,:,:]) | |||
|
1962 | ||||
|
1963 | for i in range(dataOut.header[2][0]): | |||
|
1964 | dataOut.pnoise[i]=0.0 | |||
|
1965 | for k in range(dataOut.header[17][0]): | |||
|
1966 | dataOut.pnoise[i]+= self.hildebrand(dataOut,p[i,:,k]) | |||
|
1967 | #print("dpl ",k, "pnoise[",i,"] ",pnoise[i] ) | |||
|
1968 | dataOut.pnoise[i]=dataOut.pnoise[i]/dataOut.header[17][0] | |||
|
1969 | ||||
|
1970 | ||||
|
1971 | #print("POWERNOISE: ",dataOut.pnoise) | |||
|
1972 | dataOut.pan=1.0*dataOut.pnoise[0] # weights could change | |||
|
1973 | dataOut.pbn=1.0*dataOut.pnoise[1] # weights could change | |||
|
1974 | #print("dataOut.pan ",dataOut.pan, " dataOut.pbn ",dataOut.pbn) | |||
|
1975 | #print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa") | |||
|
1976 | ||||
|
1977 | #print("POWERNOISE: ",dataOut.pnoise) | |||
|
1978 | ||||
|
1979 | ||||
|
1980 | return dataOut | |||
|
1981 | ||||
|
1982 | ||||
|
1983 | ||||
|
1984 | ||||
|
1985 | ||||
|
1986 | ||||
|
1987 | ||||
|
1988 | ||||
|
1989 | class double_pulse_ACFs(Operation): | |||
|
1990 | def __init__(self, **kwargs): | |||
|
1991 | ||||
|
1992 | Operation.__init__(self, **kwargs) | |||
|
1993 | self.aux=1 | |||
|
1994 | ||||
|
1995 | def run(self,dataOut): | |||
|
1996 | dataOut.pairsList=None | |||
|
1997 | if dataOut.AUX==1: | |||
|
1998 | dataOut.igcej=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]),'int32') | |||
|
1999 | ||||
|
2000 | if self.aux==1: | |||
|
2001 | dataOut.rhor=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float) | |||
|
2002 | dataOut.rhoi=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float) | |||
|
2003 | dataOut.sdp=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float) | |||
|
2004 | dataOut.sd=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float) | |||
|
2005 | #dataOut.igcej=numpy.zeros((dataOut.NDP,dataOut.nlags_array),'int32') | |||
|
2006 | dataOut.p=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float) | |||
|
2007 | dataOut.alag=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2008 | for l in range(dataOut.header[17][0]): | |||
|
2009 | dataOut.alag[l]=l*dataOut.header[10][0]*2.0/150.0 | |||
|
2010 | self.aux=0 | |||
|
2011 | sn4=dataOut.pan*dataOut.pbn | |||
|
2012 | rhorn=0 | |||
|
2013 | rhoin=0 | |||
|
2014 | #p=np.zeros((ndt,dpl), dtype=float) | |||
|
2015 | panrm=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float) | |||
|
2016 | ||||
|
2017 | ||||
|
2018 | for i in range(dataOut.header[15][0]): | |||
|
2019 | for j in range(dataOut.header[17][0]): | |||
|
2020 | ################# Total power | |||
|
2021 | pa=numpy.abs(dataOut.kabxys_integrated[4][i,j,0]+dataOut.kabxys_integrated[5][i,j,0]) | |||
|
2022 | pb=numpy.abs(dataOut.kabxys_integrated[6][i,j,0]+dataOut.kabxys_integrated[7][i,j,0]) | |||
|
2023 | #print("PA",pb) | |||
|
2024 | st4=pa*pb | |||
|
2025 | dataOut.p[i,j]=pa+pb-(dataOut.pan+dataOut.pbn) | |||
|
2026 | dataOut.sdp[i,j]=2*dataOut.rnint2[j]*((pa+pb)*(pa+pb)) | |||
|
2027 | ## ACF | |||
|
2028 | rhorp=dataOut.kabxys_integrated[8][i,j,0]+dataOut.kabxys_integrated[11][i,j,0] | |||
|
2029 | rhoip=dataOut.kabxys_integrated[10][i,j,0]-dataOut.kabxys_integrated[9][i,j,0] | |||
|
2030 | if ((pa>dataOut.pan)&(pb>dataOut.pbn)): | |||
|
2031 | #print("dataOut.pnoise[0]: ",dataOut.pnoise[0]) | |||
|
2032 | #print("dataOut.pnoise[1]: ",dataOut.pnoise[1]) | |||
|
2033 | #print("OKKKKKKKKKKKKKKK") | |||
|
2034 | ss4=numpy.abs((pa-dataOut.pan)*(pb-dataOut.pbn)) | |||
|
2035 | #print("ss4: ",ss4) | |||
|
2036 | #print("OKKKKKKKKKKKKKKK") | |||
|
2037 | panrm[i,j]=math.sqrt(ss4) | |||
|
2038 | rnorm=1/panrm[i,j] | |||
|
2039 | #print("rnorm: ",rnorm)get_number_density | |||
|
2040 | #print("OKKKKKKKKKKKKKKK") | |||
|
2041 | ||||
|
2042 | ## ACF | |||
|
2043 | dataOut.rhor[i,j]=rhorp*rnorm | |||
|
2044 | dataOut.rhoi[i,j]=rhoip*rnorm | |||
|
2045 | #print("rhoi: ",dataOut.rhoi) | |||
|
2046 | #print("OKKKKKKKKKKKKKKK") | |||
|
2047 | ############# Compute standard error for ACF | |||
|
2048 | stoss4=st4/ss4 | |||
|
2049 | snoss4=sn4/ss4 | |||
|
2050 | rp2=((rhorp*rhorp)+(rhoip*rhoip))/st4 | |||
|
2051 | rn2=((rhorn*rhorn)+(rhoin*rhoin))/sn4 | |||
|
2052 | rs2=(dataOut.rhor[i,j]*dataOut.rhor[i,j])+(dataOut.rhoi[i,j]*dataOut.rhoi[i,j]) | |||
|
2053 | st=1.0+rs2*(stoss4-(2*math.sqrt(stoss4*snoss4))) | |||
|
2054 | stn=1.0+rs2*(snoss4-(2*math.sqrt(stoss4*snoss4))) | |||
|
2055 | dataOut.sd[i,j]=((stoss4*((1.0+rp2)*st+(2.0*rp2*rs2*snoss4)-4.0*math.sqrt(rs2*rp2)))+(0.25*snoss4*((1.0+rn2)*stn+(2.0*rn2*rs2*stoss4)-4.0*math.sqrt(rs2*rn2))))*dataOut.rnint2[j] | |||
|
2056 | dataOut.sd[i,j]=numpy.abs(dataOut.sd[i,j]) | |||
|
2057 | #print("sd: ",dataOut.sd) | |||
|
2058 | #print("OKKKKKKKKKKKKKKK") | |||
|
2059 | else: #default values for bad points | |||
|
2060 | rnorm=1/math.sqrt(st4) | |||
|
2061 | dataOut.sd[i,j]=1.e30 | |||
|
2062 | dataOut.ibad[i,j]=4 | |||
|
2063 | dataOut.rhor[i,j]=rhorp*rnorm | |||
|
2064 | dataOut.rhoi[i,j]=rhoip*rnorm | |||
|
2065 | if ((pa/dataOut.pan-1.0)>2.25*(pb/dataOut.pbn-1.0)): | |||
|
2066 | dataOut.igcej[i,j]=1 | |||
|
2067 | ||||
|
2068 | #print("sdp",dataOut.sdp) | |||
|
2069 | ||||
|
2070 | return dataOut | |||
|
2071 | ||||
|
2072 | ||||
|
2073 | ||||
|
2074 | ||||
|
2075 | ||||
|
2076 | ||||
|
2077 | ||||
|
2078 | class faraday_angle_and_power_double_pulse(Operation): | |||
|
2079 | def __init__(self, **kwargs): | |||
|
2080 | ||||
|
2081 | Operation.__init__(self, **kwargs) | |||
|
2082 | self.aux=1 | |||
|
2083 | ||||
|
2084 | def run(self,dataOut): | |||
|
2085 | #dataOut.NRANGE=NRANGE | |||
|
2086 | #dataOut.H0=H0 | |||
|
2087 | ######### H0 Y NRANGE SON PARAMETROS? | |||
|
2088 | ||||
|
2089 | if dataOut.AUX==1: | |||
|
2090 | if self.aux==1: | |||
|
2091 | dataOut.h2=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2092 | dataOut.range1=numpy.zeros(dataOut.header[15][0],order='F',dtype='float32') | |||
|
2093 | dataOut.sdn2=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2094 | dataOut.ph2=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2095 | dataOut.sdp2=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2096 | dataOut.ibd=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2097 | dataOut.phi=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2098 | self.aux=0 | |||
|
2099 | #print("p: ",dataOut.p) | |||
|
2100 | ||||
|
2101 | ||||
|
2102 | for i in range(dataOut.header[15][0]): | |||
|
2103 | dataOut.range1[i]=dataOut.header[9][0] + i*dataOut.header[10][0] # (float) header.h0 + (float)i * header.dh | |||
|
2104 | dataOut.h2[i]=dataOut.range1[i]**2 | |||
|
2105 | ||||
|
2106 | #print("sd: ",dataOut.sd) | |||
|
2107 | #print("OIKKKKKKKKKKKKKKK") | |||
|
2108 | #print("ibad: ",dataOut.ibad) | |||
|
2109 | #print("igcej: ",dataOut.igcej) | |||
|
2110 | for j in range(dataOut.header[15][0]): | |||
|
2111 | dataOut.ph2[j]=0. | |||
|
2112 | dataOut.sdp2[j]=0. | |||
|
2113 | ri=dataOut.rhoi[j][0]/dataOut.sd[j][0] | |||
|
2114 | rr=dataOut.rhor[j][0]/dataOut.sd[j][0] | |||
|
2115 | dataOut.sdn2[j]=1./dataOut.sd[j][0] | |||
|
2116 | #print("sdn2: ",dataOut.sdn2) | |||
|
2117 | #print("OIKKKKKKKKKKKKKKK") | |||
|
2118 | pt=0.# // total power | |||
|
2119 | st=0.# // total signal | |||
|
2120 | ibt=0# // bad lags | |||
|
2121 | ns=0# // no. good lags | |||
|
2122 | for l in range(dataOut.header[17][0]): | |||
|
2123 | #add in other lags if outside of e-jet contamination | |||
|
2124 | if( (dataOut.igcej[j][l] == 0) and (dataOut.ibad[j][l] == 0) ): | |||
|
2125 | #print("dataOut.p[j][l]: ",dataOut.p[j][l]) | |||
|
2126 | dataOut.ph2[j]+=dataOut.p[j][l]/dataOut.sdp[j][l] | |||
|
2127 | dataOut.sdp2[j]=dataOut.sdp2[j]+1./dataOut.sdp[j][l] | |||
|
2128 | ns+=1 | |||
|
2129 | ||||
|
2130 | pt+=dataOut.p[j][l]/dataOut.sdp[j][l] | |||
|
2131 | st+=1./dataOut.sdp[j][l] | |||
|
2132 | ibt|=dataOut.ibad[j][l]; | |||
|
2133 | #print("pt: ",pt) | |||
|
2134 | #print("st: ",st) | |||
|
2135 | if(ns!= 0): | |||
|
2136 | dataOut.ibd[j]=0 | |||
|
2137 | dataOut.ph2[j]=dataOut.ph2[j]/dataOut.sdp2[j] | |||
|
2138 | dataOut.sdp2[j]=1./dataOut.sdp2[j] | |||
|
2139 | else: | |||
|
2140 | dataOut.ibd[j]=ibt | |||
|
2141 | dataOut.ph2[j]=pt/st | |||
|
2142 | #print("ph2: ",dataOut.ph2) | |||
|
2143 | dataOut.sdp2[j]=1./st | |||
|
2144 | #print("ph2: ",dataOut.ph2) | |||
|
2145 | dataOut.ph2[j]=dataOut.ph2[j]*dataOut.h2[j] | |||
|
2146 | dataOut.sdp2[j]=numpy.sqrt(dataOut.sdp2[j])*dataOut.h2[j] | |||
|
2147 | rr=rr/dataOut.sdn2[j] | |||
|
2148 | ri=ri/dataOut.sdn2[j] | |||
|
2149 | #rm[j]=np.sqrt(rr*rr + ri*ri) it is not used in c program | |||
|
2150 | dataOut.sdn2[j]=1./(dataOut.sdn2[j]*(rr*rr + ri*ri)) | |||
|
2151 | if( (ri == 0.) and (rr == 0.) ): | |||
|
2152 | dataOut.phi[j]=0. | |||
|
2153 | else: | |||
|
2154 | dataOut.phi[j]=math.atan2( ri , rr ) | |||
|
2155 | ||||
|
2156 | #print("ph2: ",dataOut.ph2) | |||
|
2157 | #print("sdp2: ",dataOut.sdp2) | |||
|
2158 | #print("sdn2",dataOut.sdn2) | |||
|
2159 | ||||
|
2160 | ||||
|
2161 | return dataOut | |||
|
2162 | ||||
|
2163 | ||||
|
2164 | ||||
|
2165 | ||||
|
2166 | ||||
|
2167 | ||||
|
2168 | class get_number_density(Operation): | |||
|
2169 | def __init__(self, **kwargs): | |||
|
2170 | ||||
|
2171 | Operation.__init__(self, **kwargs) | |||
|
2172 | self.aux=1 | |||
|
2173 | ||||
|
2174 | def run(self,dataOut,NSHTS=None,RATE=None): | |||
|
2175 | dataOut.NSHTS=NSHTS | |||
|
2176 | dataOut.RATE=RATE | |||
|
2177 | if dataOut.AUX==1: | |||
|
2178 | #dataOut.TimeBlockSeconds=time.mktime(time.strptime(dataOut.TimeBlockDate)) | |||
|
2179 | #dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds) | |||
|
2180 | #dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 | |||
|
2181 | if self.aux==1: | |||
|
2182 | dataOut.dphi=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2183 | dataOut.sdn1=numpy.zeros(dataOut.header[15][0],'float32') | |||
|
2184 | self.aux=0 | |||
|
2185 | theta=numpy.zeros(dataOut.header[15][0],dtype=numpy.complex_) | |||
|
2186 | thetai=numpy.zeros(dataOut.header[15][0],dtype=numpy.complex_) | |||
|
2187 | # use complex numbers for phase | |||
|
2188 | for i in range(dataOut.NSHTS): | |||
|
2189 | theta[i]=math.cos(dataOut.phi[i])+math.sin(dataOut.phi[i])*1j | |||
|
2190 | thetai[i]=-math.sin(dataOut.phi[i])+math.cos(dataOut.phi[i])*1j | |||
|
2191 | ||||
|
2192 | # differentiate and convert to number density | |||
|
2193 | ndphi=dataOut.NSHTS-4 | |||
|
2194 | #print("dataOut.dphiBEFORE: ",dataOut.dphi) | |||
|
2195 | for i in range(2,dataOut.NSHTS-2): | |||
|
2196 | fact=(-0.5/(dataOut.RATE*dataOut.header[10][0]))*dataOut.bki[i] | |||
|
2197 | #four-point derivative, no phase unwrapping necessary | |||
|
2198 | dataOut.dphi[i]=((((theta[i+1]-theta[i-1])+(2.0*(theta[i+2]-theta[i-2])))/thetai[i])).real/10.0 | |||
|
2199 | #print("dataOut.dphi[i]AFTER: ",dataOut.dphi[i]) | |||
|
2200 | dataOut.dphi[i]=abs(dataOut.dphi[i]*fact) | |||
|
2201 | dataOut.sdn1[i]=(4.*(dataOut.sdn2[i-2]+dataOut.sdn2[i+2])+dataOut.sdn2[i-1]+dataOut.sdn2[i+1]) | |||
|
2202 | dataOut.sdn1[i]=numpy.sqrt(dataOut.sdn1[i])*fact | |||
|
2203 | ''' | |||
|
2204 | #print("date: ",dataOut.TimeBlockDate) | |||
|
2205 | #print("CurrentBlock: ", dataOut.CurrentBlock) | |||
|
2206 | #print("NSHTS: ",dataOut.NSHTS) | |||
|
2207 | print("phi: ",dataOut.phi) | |||
|
2208 | #print("header[10][0]: ",dataOut.DH) | |||
|
2209 | print("bkibki: ",dataOut.bki) | |||
|
2210 | #print("RATE: ",dataOut.RATE) | |||
|
2211 | print("sdn2: ",dataOut.sdn2) | |||
|
2212 | print("dphi: ",dataOut.dphi) | |||
|
2213 | print("sdn1: ",dataOut.sdn1) | |||
|
2214 | print("ph2: ",dataOut.ph2) | |||
|
2215 | print("sdp2: ",dataOut.sdp2) | |||
|
2216 | print("sdn1: ",dataOut.sdn1) | |||
|
2217 | ''' | |||
|
2218 | ||||
|
2219 | ''' | |||
|
2220 | Al finallllllllllllllllllllllllllllllllllllllllllllllllllllllllll | |||
|
2221 | for i in range(dataOut.NSHTS): | |||
|
2222 | dataOut.ph2[i]=(max(1.0, dataOut.ph2[i])) | |||
|
2223 | dataOut.dphi[i]=(max(1.0, dataOut.dphi[i])) | |||
|
2224 | #print("dphi ",dphi) | |||
|
2225 | # threshold - values less than 10⁴ | |||
|
2226 | for i in range(dataOut.NSHTS): | |||
|
2227 | if dataOut.ph2[i]<10000: | |||
|
2228 | dataOut.ph2[i]=10000 | |||
|
2229 | ||||
|
2230 | # threshold values more than 10⁷ | |||
|
2231 | for i in range(dataOut.NSHTS): | |||
|
2232 | if dataOut.ph2[i]>10000000:# | |||
|
2233 | dataOut.ph2[i]=10000000 | |||
|
2234 | ||||
|
2235 | ## filter for errors | |||
|
2236 | for i in range(dataOut.NSHTS): | |||
|
2237 | if dataOut.sdp2[i]>100000:# | |||
|
2238 | dataOut.ph2[i]=10000 | |||
|
2239 | ''' | |||
|
2240 | ||||
|
2241 | ||||
|
2242 | ||||
|
2243 | ||||
|
2244 | return dataOut | |||
|
2245 | ||||
|
2246 | ||||
|
2247 | ||||
|
2248 | ||||
|
2249 | ||||
|
2250 | ||||
|
2251 | ||||
|
2252 | ||||
|
2253 | ||||
|
2254 | ||||
|
2255 | ||||
|
2256 | class normalize_dp_power2(Operation): | |||
|
2257 | def __init__(self, **kwargs): | |||
|
2258 | ||||
|
2259 | Operation.__init__(self, **kwargs) | |||
|
2260 | self.aux=1 | |||
|
2261 | ||||
|
2262 | def normal(self,a,b,n,m): | |||
|
2263 | chmin=1.0e30 | |||
|
2264 | chisq=numpy.zeros(150,'float32') | |||
|
2265 | temp=numpy.zeros(150,'float32') | |||
|
2266 | ||||
|
2267 | for i in range(2*m-1): | |||
|
2268 | an=al=be=chisq[i]=0.0 | |||
|
2269 | for j in range(int(n/m)): | |||
|
2270 | k=int(j+i*n/(2*m)) | |||
|
2271 | if(a[k]>0.0 and b[k]>0.0): | |||
|
2272 | al+=a[k]*b[k] | |||
|
2273 | be+=b[k]*b[k] | |||
|
2274 | ||||
|
2275 | if(be>0.0): | |||
|
2276 | temp[i]=al/be | |||
|
2277 | else: | |||
|
2278 | temp[i]=1.0 | |||
|
2279 | ||||
|
2280 | for j in range(int(n/m)): | |||
|
2281 | k=int(j+i*n/(2*m)) | |||
|
2282 | if(a[k]>0.0 and b[k]>0.0): | |||
|
2283 | chisq[i]+=(numpy.log10(b[k]*temp[i]/a[k]))**2 | |||
|
2284 | an=an+1 | |||
|
2285 | ||||
|
2286 | if(chisq[i]>0.0): | |||
|
2287 | chisq[i]/=an | |||
|
2288 | ||||
|
2289 | ||||
|
2290 | for i in range(int(2*m-1)): | |||
|
2291 | if(chisq[i]<chmin and chisq[i]>1.0e-6): | |||
|
2292 | chmin=chisq[i] | |||
|
2293 | cf=temp[i] | |||
|
2294 | return cf | |||
|
2295 | ||||
|
2296 | ||||
|
2297 | ||||
|
2298 | def run(self,dataOut,cut0=None,cut1=None): | |||
|
2299 | dataOut.cut0=float(cut0) | |||
|
2300 | dataOut.cut1=float(cut1) | |||
|
2301 | if dataOut.AUX==1: | |||
|
2302 | #print("dateBefore: ",dataOut.TimeBlockDate_for_dp_power) | |||
|
2303 | #print("dateNow: ",dataOut.TimeBlockDate) | |||
|
2304 | if self.aux==1: | |||
|
2305 | dataOut.cf=numpy.zeros(1,'float32') | |||
|
2306 | dataOut.cflast=numpy.zeros(1,'float32') | |||
|
2307 | self.aux=0 | |||
|
2308 | ||||
|
2309 | night_first=300.0 | |||
|
2310 | night_first1= 310.0 | |||
|
2311 | night_end= 450.0 | |||
|
2312 | day_first=250.0 | |||
|
2313 | day_end=400.0 | |||
|
2314 | day_first_sunrise=190.0 | |||
|
2315 | day_end_sunrise=280.0 | |||
|
2316 | ||||
|
2317 | if(dataOut.ut>4.0 and dataOut.ut<11.0): #early | |||
|
2318 | i2=(night_end-dataOut.range1[0])/dataOut.header[10][0] | |||
|
2319 | i1=(night_first -dataOut.range1[0])/dataOut.header[10][0] | |||
|
2320 | elif (dataOut.ut>0.0 and dataOut.ut<4.0): #night | |||
|
2321 | i2=(night_end-dataOut.range1[0])/dataOut.header[10][0] | |||
|
2322 | i1=(night_first1 -dataOut.range1[0])/dataOut.header[10][0] | |||
|
2323 | elif (dataOut.ut>=11.0 and dataOut.ut<13.5): #sunrise | |||
|
2324 | i2=( day_end_sunrise-dataOut.range1[0])/dataOut.header[10][0] | |||
|
2325 | i1=(day_first_sunrise - dataOut.range1[0])/dataOut.header[10][0] | |||
|
2326 | else: | |||
|
2327 | i2=(day_end-dataOut.range1[0])/dataOut.header[10][0] | |||
|
2328 | i1=(day_first -dataOut.range1[0])/dataOut.header[10][0] | |||
|
2329 | ||||
|
2330 | i1=int(i1) | |||
|
2331 | i2=int(i2) | |||
|
2332 | #print("ph2: ",dataOut.ph2) | |||
|
2333 | dataOut.cf=self.normal(dataOut.dphi[i1::], dataOut.ph2[i1::], i2-i1, 1) | |||
|
2334 | ||||
|
2335 | #print("n in:",i1,"(",dataOut.range1[i1],"), i2=",i2,"(",dataOut.range1[i2],"), ut=",dataOut.ut,", cf=",dataOut.cf,", cf_last=", | |||
|
2336 | #dataOut.cflast) | |||
|
2337 | # in case of spread F, normalize much higher | |||
|
2338 | if(dataOut.cf<dataOut.cflast[0]/10.0): | |||
|
2339 | i1=(night_first1+100.-dataOut.range1[0])/dataOut.header[10][0] | |||
|
2340 | i2=(night_end+100.0-dataOut.range1[0])/dataOut.header[10][0] | |||
|
2341 | i1=int(i1) | |||
|
2342 | i2=int(i2) | |||
|
2343 | #print("normal over: ",i1,"(",dataOut.range1[i1],") ",i2,"(",dataOut.range1[i2],") => cf: ",dataOut.cf," cflast: ", dataOut.cflast) | |||
|
2344 | dataOut.cf=self.normal(dataOut.dphi[int(i1)::], dataOut.ph2[int(i1)::], int(i2-i1), 1) | |||
|
2345 | dataOut.cf=dataOut.cflast[0] | |||
|
2346 | ||||
|
2347 | #print(">>>i1=",i1,"(",dataOut.range1[i1],"), i2=",i2,"(",dataOut.range1[i2],"), ut=",dataOut.ut,", cf=",dataOut.cf,", cf_last=", | |||
|
2348 | # dataOut.cflast," (",dataOut.cf/dataOut.cflast,"), cut=",dataOut.cut0," ",dataOut.cut1) | |||
|
2349 | dataOut.cflast[0]=dataOut.cf | |||
|
2350 | ||||
|
2351 | ## normalize double pulse power and error bars to Faraday | |||
|
2352 | for i in range(dataOut.NSHTS): | |||
|
2353 | dataOut.ph2[i]*=dataOut.cf | |||
|
2354 | dataOut.sdp2[i]*=dataOut.cf | |||
|
2355 | #print("******* correction factor: ",dataOut.cf) | |||
|
2356 | ||||
|
2357 | #print(dataOut.ph2) | |||
|
2358 | ||||
|
2359 | for i in range(dataOut.NSHTS): | |||
|
2360 | dataOut.ph2[i]=(max(1.0, dataOut.ph2[i])) | |||
|
2361 | dataOut.dphi[i]=(max(1.0, dataOut.dphi[i])) | |||
|
2362 | #print("dphi ",dphi) | |||
|
2363 | # threshold - values less than 10⁴ | |||
|
2364 | ||||
|
2365 | ''' | |||
|
2366 | for i in range(dataOut.NSHTS): | |||
|
2367 | if dataOut.ph2[i]<10000: | |||
|
2368 | dataOut.ph2[i]=10000 | |||
|
2369 | ||||
|
2370 | # threshold values more than 10⁷ | |||
|
2371 | for i in range(dataOut.NSHTS): | |||
|
2372 | if dataOut.ph2[i]>10000000:# | |||
|
2373 | dataOut.ph2[i]=10000000 | |||
|
2374 | ||||
|
2375 | ## filter for errors | |||
|
2376 | for i in range(dataOut.NSHTS): | |||
|
2377 | if dataOut.sdp2[i]>100000:# | |||
|
2378 | dataOut.ph2[i]=10000 | |||
|
2379 | ''' | |||
|
2380 | ||||
|
2381 | ||||
|
2382 | ||||
|
2383 | ||||
|
2384 | ||||
|
2385 | ''' | |||
|
2386 | #print("date: ",dataOut.TimeBlockDate) | |||
|
2387 | #print("CurrentBlock: ", dataOut.CurrentBlock) | |||
|
2388 | #print("NSHTS: ",dataOut.NSHTS) | |||
|
2389 | print("phi: ",dataOut.phi) | |||
|
2390 | #print("header[10][0]: ",dataOut.DH) | |||
|
2391 | print("bkibki: ",dataOut.bki) | |||
|
2392 | #print("RATE: ",dataOut.RATE) | |||
|
2393 | print("sdn2: ",dataOut.sdn2) | |||
|
2394 | print("dphi: ",dataOut.dphi) | |||
|
2395 | print("sdn1: ",dataOut.sdn1) | |||
|
2396 | print("ph2: ",dataOut.ph2) | |||
|
2397 | print("sdp2: ",dataOut.sdp2) | |||
|
2398 | print("sdn1: ",dataOut.sdn1) | |||
|
2399 | ''' | |||
|
2400 | ||||
|
2401 | ||||
|
2402 | ||||
|
2403 | ||||
|
2404 | ||||
|
2405 | ||||
|
2406 | ||||
|
2407 | return dataOut | |||
|
2408 | ||||
|
2409 | ||||
|
2410 | ||||
|
2411 | ||||
|
2412 | ||||
|
2413 | ||||
|
2414 | ||||
|
2415 | ||||
|
2416 | ||||
|
2417 | ||||
|
2418 | ||||
|
2419 | ||||
|
2420 | ||||
|
2421 | ||||
|
2422 | ||||
|
2423 | ''' | |||
|
2424 | from ctypes import * | |||
|
2425 | class IDATE(Structure): | |||
|
2426 | _fields_ = [ | |||
|
2427 | ("year", c_int), | |||
|
2428 | ("moda", c_int), | |||
|
2429 | ("hrmn", c_int), | |||
|
2430 | ("sec", c_int), | |||
|
2431 | ("secs", c_int), | |||
|
2432 | ] | |||
|
2433 | #typedef struct IDATE {int year,moda,hrmn,sec,secs;} idate; | |||
|
2434 | ''' | |||
|
2435 | ||||
|
2436 | ||||
|
2437 | ||||
|
2438 | ||||
|
2439 | ''' | |||
|
2440 | class get_number_density(Operation): | |||
|
2441 | def __init__(self, **kwargs): | |||
|
2442 | ||||
|
2443 | Operation.__init__(self, **kwargs) | |||
|
2444 | ||||
|
2445 | #self.aux=1 | |||
|
2446 | ''' | |||
|
2447 | ||||
|
2448 | ''' | |||
|
2449 | def IDATE(Structure): | |||
|
2450 | ||||
|
2451 | _fields_ = [ | |||
|
2452 | ("year", c_int), | |||
|
2453 | ("moda", c_int), | |||
|
2454 | ("hrmn", c_int), | |||
|
2455 | ("sec", c_int), | |||
|
2456 | ("secs", c_int), | |||
|
2457 | ] | |||
|
2458 | ||||
|
2459 | ''' | |||
|
2460 | ||||
|
2461 | ||||
|
2462 | ||||
|
2463 | ||||
|
2464 | ''' | |||
|
2465 | def run(self,dataOut): | |||
|
2466 | ''' | |||
|
2467 | ''' | |||
|
2468 | if dataOut.CurrentBlock==1 and self.aux==1: | |||
|
2469 | ||||
|
2470 | #print("CurrentBlock: ",dataOut.CurrentBlock) | |||
|
2471 | ||||
|
2472 | dataOut.TimeBlockSeconds=time.mktime(time.strptime(dataOut.TimeBlockDate)) | |||
|
2473 | #print("time1: ",dataOut.TimeBlockSeconds) | |||
|
2474 | ||||
|
2475 | #print("date: ",dataOut.TimeBlockDate) | |||
|
2476 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds) | |||
|
2477 | #print("bd_time: ",dataOut.bd_time) | |||
|
2478 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 | |||
|
2479 | #print("year: ",dataOut.year) | |||
|
2480 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 | |||
|
2481 | #print("ut: ",dataOut.ut) | |||
|
2482 | self.aux=0 | |||
|
2483 | ||||
|
2484 | ||||
|
2485 | ||||
|
2486 | ||||
|
2487 | ''' | |||
|
2488 | #print("CurrentBlock: ",dataOut.CurrentBlock) | |||
|
2489 | #print("date: ",dataOut.firsttime) | |||
|
2490 | #print("bd_time: ",time.strptime(dataOut.datatime.ctime())) | |||
|
2491 | #mkfact_short.mkfact(year,h,bfm,thb,bki,dataOut.NDP) | |||
|
2492 | #print("CurrentBlock: ",dataOut.CurrentBlock) | |||
|
2493 | ''' | |||
|
2494 | if dataOut.AUX==1: | |||
|
2495 | ''' | |||
|
2496 | ''' | |||
|
2497 | #begin=IDATE() | |||
|
2498 | #begin.year=dataOut.bd_time.tm_year | |||
|
2499 | #begin.moda=100*(dataOut.bd_time.tm_mon)+dataOut.bd_time.tm_mday | |||
|
2500 | #begin.hrmn=100*dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min | |||
|
2501 | #begin.sec=dataOut.bd_time.tm_sec | |||
|
2502 | #begin.secs=dataOut.bd_time.tm_sec+60*(dataOut.bd_time.tm_min+60*(dataOut.bd_time.tm_hour+24*(dataOut.bd_time.tm_yday-1))) | |||
|
2503 | h=numpy.arange(0.0,15.0*dataOut.NDP,15.0,dtype='float32') | |||
|
2504 | bfm=numpy.zeros(dataOut.NDP,dtype='float32') | |||
|
2505 | bfm=numpy.array(bfm,order='F') | |||
|
2506 | thb=numpy.zeros(dataOut.NDP,dtype='float32') | |||
|
2507 | thb=numpy.array(thb,order='F') | |||
|
2508 | bki=numpy.zeros(dataOut.NDP,dtype='float32') | |||
|
2509 | bki=numpy.array(thb,order='F') | |||
|
2510 | #yearmanually=2019.9285714285713 | |||
|
2511 | #print("year manually: ",yearmanually) | |||
|
2512 | #print("year: ",dataOut.year) | |||
|
2513 | mkfact_short.mkfact(dataOut.year,h,bfm,thb,bki,dataOut.NDP) | |||
|
2514 | #print("tm ",tm) | |||
|
2515 | ''' | |||
|
2516 | ''' | |||
|
2517 | print("year ",dataOut.year) | |||
|
2518 | print("h ", dataOut.h) | |||
|
2519 | print("bfm ", dataOut.bfm) | |||
|
2520 | print("thb ", dataOut.thb) | |||
|
2521 | print("bki ", dataOut.bki) | |||
|
2522 | ''' | |||
|
2523 | ||||
|
2524 | ||||
|
2525 | ||||
|
2526 | ||||
|
2527 | ''' | |||
|
2528 | print("CurrentBlock: ",dataOut.CurrentBlock) | |||
|
2529 | ||||
|
2530 | ||||
|
2531 | ||||
|
2532 | ||||
|
2533 | ||||
|
2534 | ||||
|
2535 | ||||
|
2536 | ||||
|
2537 | ||||
|
2538 | ||||
|
2539 | return dataOut | |||
|
2540 | ''' | |||
|
2541 | ||||
|
2542 | ||||
|
2543 | ||||
|
2544 | ||||
|
2545 | ||||
|
2546 | ||||
|
2547 | class test(Operation): | |||
|
2548 | def __init__(self, **kwargs): | |||
|
2549 | ||||
|
2550 | Operation.__init__(self, **kwargs) | |||
|
2551 | ||||
|
2552 | ||||
|
2553 | ||||
|
2554 | ||||
|
2555 | def run(self,dataOut,tt=10): | |||
|
2556 | ||||
|
2557 | print("tt: ",tt) | |||
|
2558 | ||||
|
2559 | ||||
|
2560 | ||||
|
2561 | return dataOut |
@@ -76,6 +76,8 def hildebrand_sekhon(data, navg): | |||||
76 | """ |
|
76 | """ | |
77 |
|
77 | |||
78 | sortdata = numpy.sort(data, axis=None) |
|
78 | sortdata = numpy.sort(data, axis=None) | |
|
79 | #print(numpy.shape(data)) | |||
|
80 | #exit() | |||
79 | ''' |
|
81 | ''' | |
80 | lenOfData = len(sortdata) |
|
82 | lenOfData = len(sortdata) | |
81 | nums_min = lenOfData*0.2 |
|
83 | nums_min = lenOfData*0.2 | |
@@ -428,6 +430,103 class Voltage(JROData): | |||||
428 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
430 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
429 |
|
431 | |||
430 |
|
432 | |||
|
433 | class CrossProds(JROData): | |||
|
434 | ||||
|
435 | # data es un numpy array de 2 dmensiones (canales, alturas) | |||
|
436 | data = None | |||
|
437 | ||||
|
438 | def __init__(self): | |||
|
439 | ''' | |||
|
440 | Constructor | |||
|
441 | ''' | |||
|
442 | ||||
|
443 | self.useLocalTime = True | |||
|
444 | ''' | |||
|
445 | self.radarControllerHeaderObj = RadarControllerHeader() | |||
|
446 | self.systemHeaderObj = SystemHeader() | |||
|
447 | self.type = "Voltage" | |||
|
448 | self.data = None | |||
|
449 | # self.dtype = None | |||
|
450 | # self.nChannels = 0 | |||
|
451 | # self.nHeights = 0 | |||
|
452 | self.nProfiles = None | |||
|
453 | self.heightList = None | |||
|
454 | self.channelList = None | |||
|
455 | # self.channelIndexList = None | |||
|
456 | self.flagNoData = True | |||
|
457 | self.flagDiscontinuousBlock = False | |||
|
458 | self.utctime = None | |||
|
459 | self.timeZone = None | |||
|
460 | self.dstFlag = None | |||
|
461 | self.errorCount = None | |||
|
462 | self.nCohInt = None | |||
|
463 | self.blocksize = None | |||
|
464 | self.flagDecodeData = False # asumo q la data no esta decodificada | |||
|
465 | self.flagDeflipData = False # asumo q la data no esta sin flip | |||
|
466 | self.flagShiftFFT = False | |||
|
467 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |||
|
468 | self.profileIndex = 0 | |||
|
469 | ||||
|
470 | ||||
|
471 | def getNoisebyHildebrand(self, channel=None): | |||
|
472 | ||||
|
473 | ||||
|
474 | if channel != None: | |||
|
475 | data = self.data[channel] | |||
|
476 | nChannels = 1 | |||
|
477 | else: | |||
|
478 | data = self.data | |||
|
479 | nChannels = self.nChannels | |||
|
480 | ||||
|
481 | noise = numpy.zeros(nChannels) | |||
|
482 | power = data * numpy.conjugate(data) | |||
|
483 | ||||
|
484 | for thisChannel in range(nChannels): | |||
|
485 | if nChannels == 1: | |||
|
486 | daux = power[:].real | |||
|
487 | else: | |||
|
488 | daux = power[thisChannel, :].real | |||
|
489 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |||
|
490 | ||||
|
491 | return noise | |||
|
492 | ||||
|
493 | def getNoise(self, type=1, channel=None): | |||
|
494 | ||||
|
495 | if type == 1: | |||
|
496 | noise = self.getNoisebyHildebrand(channel) | |||
|
497 | ||||
|
498 | return noise | |||
|
499 | ||||
|
500 | def getPower(self, channel=None): | |||
|
501 | ||||
|
502 | if channel != None: | |||
|
503 | data = self.data[channel] | |||
|
504 | else: | |||
|
505 | data = self.data | |||
|
506 | ||||
|
507 | power = data * numpy.conjugate(data) | |||
|
508 | powerdB = 10 * numpy.log10(power.real) | |||
|
509 | powerdB = numpy.squeeze(powerdB) | |||
|
510 | ||||
|
511 | return powerdB | |||
|
512 | ||||
|
513 | def getTimeInterval(self): | |||
|
514 | ||||
|
515 | timeInterval = self.ippSeconds * self.nCohInt | |||
|
516 | ||||
|
517 | return timeInterval | |||
|
518 | ||||
|
519 | noise = property(getNoise, "I'm the 'nHeights' property.") | |||
|
520 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |||
|
521 | ''' | |||
|
522 | def getTimeInterval(self): | |||
|
523 | ||||
|
524 | timeInterval = self.ippSeconds * self.nCohInt | |||
|
525 | ||||
|
526 | return timeInterval | |||
|
527 | ||||
|
528 | ||||
|
529 | ||||
431 | class Spectra(JROData): |
|
530 | class Spectra(JROData): | |
432 |
|
531 | |||
433 | def __init__(self): |
|
532 | def __init__(self): | |
@@ -886,6 +985,7 class Parameters(Spectra): | |||||
886 | else: |
|
985 | else: | |
887 | return self.paramInterval |
|
986 | return self.paramInterval | |
888 |
|
987 | |||
|
988 | ||||
889 | def setValue(self, value): |
|
989 | def setValue(self, value): | |
890 |
|
990 | |||
891 | print("This property should not be initialized") |
|
991 | print("This property should not be initialized") | |
@@ -928,6 +1028,10 class PlotterData(object): | |||||
928 | self.plottypes = ['cspc', 'spc', 'noise', 'rti'] |
|
1028 | self.plottypes = ['cspc', 'spc', 'noise', 'rti'] | |
929 | elif code == 'rti': |
|
1029 | elif code == 'rti': | |
930 | self.plottypes = ['noise', 'rti'] |
|
1030 | self.plottypes = ['noise', 'rti'] | |
|
1031 | elif code == 'crossprod': | |||
|
1032 | self.plottypes = ['crossprod', 'kay'] | |||
|
1033 | elif code == 'spectrogram': | |||
|
1034 | self.plottypes = ['spc', 'spectrogram'] | |||
931 | else: |
|
1035 | else: | |
932 | self.plottypes = [code] |
|
1036 | self.plottypes = [code] | |
933 |
|
1037 | |||
@@ -976,9 +1080,11 class PlotterData(object): | |||||
976 | plot = 'snr' |
|
1080 | plot = 'snr' | |
977 | elif 'spc_moments' == plot: |
|
1081 | elif 'spc_moments' == plot: | |
978 | plot = 'moments' |
|
1082 | plot = 'moments' | |
|
1083 | elif 'spc_oblique' == plot: | |||
|
1084 | plot = 'oblique' | |||
979 | self.data[plot] = {} |
|
1085 | self.data[plot] = {} | |
980 |
|
1086 | |||
981 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data or 'moments' in self.data: |
|
1087 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data or 'moments' in self.data or 'oblique' in self.data: | |
982 | self.data['noise'] = {} |
|
1088 | self.data['noise'] = {} | |
983 | self.data['rti'] = {} |
|
1089 | self.data['rti'] = {} | |
984 | if 'noise' not in self.plottypes: |
|
1090 | if 'noise' not in self.plottypes: | |
@@ -1020,16 +1126,33 class PlotterData(object): | |||||
1020 | self.__heights.append(dataOut.heightList) |
|
1126 | self.__heights.append(dataOut.heightList) | |
1021 | self.__all_heights.update(dataOut.heightList) |
|
1127 | self.__all_heights.update(dataOut.heightList) | |
1022 |
|
1128 | |||
|
1129 | ||||
|
1130 | ||||
1023 | for plot in self.plottypes: |
|
1131 | for plot in self.plottypes: | |
1024 | if plot in ('spc', 'spc_moments', 'spc_cut'): |
|
1132 | if plot in ('spc', 'spc_moments', 'spc_cut', 'spc_oblique'): | |
|
1133 | ||||
|
1134 | ||||
|
1135 | self.shift1 = dataOut.Oblique_params[0][1] | |||
|
1136 | self.shift2 = dataOut.Oblique_params[0][4] | |||
|
1137 | self.shift1_error = dataOut.Oblique_param_errors[0][1] | |||
|
1138 | self.shift2_error = dataOut.Oblique_param_errors[0][4] | |||
|
1139 | ||||
1025 | z = dataOut.data_spc/dataOut.normFactor |
|
1140 | z = dataOut.data_spc/dataOut.normFactor | |
|
1141 | #print(dataOut.normFactor) | |||
|
1142 | #print(z[0,3,15]) | |||
|
1143 | #print("here") | |||
|
1144 | #print(dataOut.data_spc[0,0,0]) | |||
|
1145 | #exit() | |||
1026 | buffer = 10*numpy.log10(z) |
|
1146 | buffer = 10*numpy.log10(z) | |
1027 | if plot == 'cspc': |
|
1147 | if plot == 'cspc': | |
1028 | buffer = (dataOut.data_spc, dataOut.data_cspc) |
|
1148 | buffer = (dataOut.data_spc, dataOut.data_cspc) | |
|
1149 | self.nFactor=dataOut.normFactor | |||
1029 | if plot == 'noise': |
|
1150 | if plot == 'noise': | |
1030 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
1151 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
1031 | if plot in ('rti', 'spcprofile'): |
|
1152 | if plot in ('rti', 'spcprofile'): | |
1032 | buffer = dataOut.getPower() |
|
1153 | buffer = dataOut.getPower() | |
|
1154 | #print(buffer[0,0]) | |||
|
1155 | #exit() | |||
1033 | if plot == 'snr_db': |
|
1156 | if plot == 'snr_db': | |
1034 | buffer = dataOut.data_SNR |
|
1157 | buffer = dataOut.data_SNR | |
1035 | if plot == 'snr': |
|
1158 | if plot == 'snr': | |
@@ -1048,6 +1171,277 class PlotterData(object): | |||||
1048 | buffer = dataOut.data_output |
|
1171 | buffer = dataOut.data_output | |
1049 | if plot == 'param': |
|
1172 | if plot == 'param': | |
1050 | buffer = dataOut.data_param |
|
1173 | buffer = dataOut.data_param | |
|
1174 | if plot == 'spectrogram': | |||
|
1175 | maxHei = 1350 #11 | |||
|
1176 | #maxHei = 2500 | |||
|
1177 | maxHei = 0 | |||
|
1178 | #maxHei = 990 #12 | |||
|
1179 | ###maxHei = 990 | |||
|
1180 | indb = numpy.where(dataOut.heightList <= maxHei) | |||
|
1181 | hei = indb[0][-1] | |||
|
1182 | #hei = 19 | |||
|
1183 | print(hei) | |||
|
1184 | #hei = 0 | |||
|
1185 | factor = dataOut.nIncohInt | |||
|
1186 | #print(factor) | |||
|
1187 | ||||
|
1188 | #exit(1) | |||
|
1189 | z = dataOut.data_spc[:,:,hei] / factor | |||
|
1190 | ||||
|
1191 | #for j in range(z.shape[1]): | |||
|
1192 | #z[:,j] = z[:,j]/hildebrand_sekhon(z[], self.nCohInt) | |||
|
1193 | ||||
|
1194 | ##z = z/hildebrand_sekhon(z, factor) | |||
|
1195 | noise = numpy.zeros(dataOut.nChannels) | |||
|
1196 | for i in range(dataOut.nChannels): | |||
|
1197 | #daux = numpy.sort(pair0[i,:,:],axis= None) | |||
|
1198 | noise[i]=hildebrand_sekhon( z[i,:] ,dataOut.nIncohInt) | |||
|
1199 | #for j in range(z.shape[1]): | |||
|
1200 | #z[:,j] = z[:,j]/noise | |||
|
1201 | ||||
|
1202 | #print(z.shape[1]) | |||
|
1203 | norm_factor = numpy.copy(z[:,int(z.shape[1]/2)])#/z[:,int(z.shape[1]/2)])*8000 | |||
|
1204 | #print(norm_factor) | |||
|
1205 | #print(z[0,315:325]) | |||
|
1206 | #norm_factor = norm_factor.reshape((z.shape[0],z.shape[1])) | |||
|
1207 | #print(norm_factor) | |||
|
1208 | #exit(1) | |||
|
1209 | #print(z.shape[1]) | |||
|
1210 | ||||
|
1211 | #for j in range(z.shape[1]): | |||
|
1212 | #z[:,j] = z[:,j]/norm_factor | |||
|
1213 | ||||
|
1214 | #print(z[0,315:325]) | |||
|
1215 | #exit(1) | |||
|
1216 | ||||
|
1217 | #z = numpy.mean(dataOut.data_spc[:,:,:],axis=2) / factor | |||
|
1218 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |||
|
1219 | #avg = numpy.average(z, axis=1) | |||
|
1220 | #print((dataOut.data_spc.shape)) | |||
|
1221 | #exit(1) | |||
|
1222 | self.hei = hei | |||
|
1223 | self.heightList = dataOut.heightList | |||
|
1224 | self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |||
|
1225 | self.nProfiles = dataOut.nProfiles | |||
|
1226 | #print(dataOut.heightList) | |||
|
1227 | ||||
|
1228 | ||||
|
1229 | buffer = 10 * numpy.log10(z) | |||
|
1230 | ||||
|
1231 | ||||
|
1232 | ###buffer = z | |||
|
1233 | import matplotlib.pyplot as plt | |||
|
1234 | fig, axes = plt.subplots(figsize=(14, 10)) | |||
|
1235 | x = numpy.linspace(0,20,numpy.shape(buffer)[1]) | |||
|
1236 | x = numpy.fft.fftfreq(numpy.shape(buffer)[1],0.00001) | |||
|
1237 | x = numpy.fft.fftshift(x) | |||
|
1238 | ||||
|
1239 | plt.plot(x,buffer[0,:]) | |||
|
1240 | axes = plt.gca() | |||
|
1241 | axes.set_xlim([-10000,10000]) | |||
|
1242 | ||||
|
1243 | #axes.set_xlim([0,30000]) | |||
|
1244 | #axes.set_ylim([-100,0.0025*1e10]) | |||
|
1245 | plt.show() | |||
|
1246 | import time | |||
|
1247 | #time.sleep(20) | |||
|
1248 | #exit(1) | |||
|
1249 | ||||
|
1250 | ||||
|
1251 | ||||
|
1252 | #if dataOut.profileIndex | |||
|
1253 | ||||
|
1254 | if plot == 'xmit': | |||
|
1255 | y_1=numpy.arctan2(dataOut.output_LP[:,0,2].imag,dataOut.output_LP[:,0,2].real)* 180 / (numpy.pi*10) | |||
|
1256 | y_2=numpy.abs(dataOut.output_LP[:,0,2]) | |||
|
1257 | norm=numpy.max(y_2) | |||
|
1258 | norm=max(norm,0.1) | |||
|
1259 | y_2=y_2/norm | |||
|
1260 | ||||
|
1261 | buffer = numpy.vstack((y_1,y_2)) | |||
|
1262 | self.NLAG = dataOut.NLAG | |||
|
1263 | ||||
|
1264 | if plot == 'crossprod': | |||
|
1265 | buffer = dataOut.crossprods | |||
|
1266 | self.NDP = dataOut.NDP | |||
|
1267 | ||||
|
1268 | if plot == 'crossprodlp': | |||
|
1269 | buffer = 10*numpy.log10(numpy.abs(dataOut.output_LP)) | |||
|
1270 | self.NRANGE = dataOut.NRANGE | |||
|
1271 | self.NLAG = dataOut.NLAG | |||
|
1272 | ||||
|
1273 | ||||
|
1274 | if plot == 'noisedp': | |||
|
1275 | buffer = 10*numpy.log10(dataOut.noise_final) | |||
|
1276 | #print(buffer) | |||
|
1277 | ||||
|
1278 | if plot == 'FaradayAngle': | |||
|
1279 | buffer = numpy.degrees(dataOut.phi) | |||
|
1280 | #print(buffer) | |||
|
1281 | ||||
|
1282 | if plot == 'RTIDP': | |||
|
1283 | buffer = dataOut.data_for_RTI_DP | |||
|
1284 | self.NDP = dataOut.NDP | |||
|
1285 | ||||
|
1286 | if plot == 'RTILP': | |||
|
1287 | buffer = dataOut.data_for_RTI_LP | |||
|
1288 | self.NRANGE = dataOut.NRANGE | |||
|
1289 | ||||
|
1290 | ||||
|
1291 | if plot == 'denrti': | |||
|
1292 | buffer = dataOut.DensityFinal | |||
|
1293 | ||||
|
1294 | ||||
|
1295 | if plot == 'denrtiLP': | |||
|
1296 | ||||
|
1297 | #buffer = numpy.reshape(numpy.concatenate((dataOut.ph2[:dataOut.cut],dataOut.ne[dataOut.cut:dataOut.NACF])),(1,-1)) | |||
|
1298 | buffer = dataOut.DensityFinal | |||
|
1299 | #self.flagDataAsBlock = dataOut.flagDataAsBlock | |||
|
1300 | #self.NDP = dataOut.NDP | |||
|
1301 | if plot == 'den': | |||
|
1302 | buffer = dataOut.ph2[:dataOut.NSHTS] | |||
|
1303 | self.dphi=dataOut.dphi[:dataOut.NSHTS] | |||
|
1304 | self.sdp2=dataOut.sdp2[:dataOut.NSHTS] | |||
|
1305 | self.sdn1=dataOut.sdn1[:dataOut.NSHTS]#/self.dphi | |||
|
1306 | self.NSHTS=dataOut.NSHTS | |||
|
1307 | ''' | |||
|
1308 | flag1=False | |||
|
1309 | flag0=True | |||
|
1310 | for i in range(12,dataOut.NSHTS): | |||
|
1311 | print("H: ",i*15) | |||
|
1312 | print(abs((dataOut.sdn1[i]/(dataOut.dphi[i]**2))*100)) | |||
|
1313 | if flag0: | |||
|
1314 | if abs((dataOut.sdn1[i]/dataOut.dphi[i]))<0.0005*abs(dataOut.dphi[i]): | |||
|
1315 | print("***************************** FIRST: ",(i)*15,"*****************************") | |||
|
1316 | flag1=True | |||
|
1317 | flag0=False | |||
|
1318 | #pass | |||
|
1319 | #print("****************************************GOOD****************************************") | |||
|
1320 | #else: | |||
|
1321 | #print("****************************************",(i-1)*15,"****************************************") | |||
|
1322 | #break | |||
|
1323 | if flag1: | |||
|
1324 | if abs((dataOut.sdn1[i]/dataOut.dphi[i]))>0.0005*abs(dataOut.dphi[i]): | |||
|
1325 | print("***************************** LAST: ",(i-1)*15,"*****************************") | |||
|
1326 | break | |||
|
1327 | #print("H: ",i*15) | |||
|
1328 | #print(dataOut.sdn1[i]) | |||
|
1329 | ''' | |||
|
1330 | if plot == 'denLP': | |||
|
1331 | buffer = dataOut.ph2[:dataOut.NSHTS] | |||
|
1332 | self.dphi=dataOut.dphi[:dataOut.NSHTS] | |||
|
1333 | self.sdp2=dataOut.sdp2[:dataOut.NSHTS] | |||
|
1334 | self.ne=dataOut.ne[:dataOut.NACF] | |||
|
1335 | self.ene=dataOut.ene[:dataOut.NACF]*dataOut.ne[:dataOut.NACF]*0.434 | |||
|
1336 | #self.ene=10**dataOut.ene[:dataOut.NACF] | |||
|
1337 | self.NSHTS=dataOut.NSHTS | |||
|
1338 | self.cut=dataOut.cut | |||
|
1339 | ||||
|
1340 | if plot == 'ETemp': | |||
|
1341 | #buffer = dataOut.ElecTempClean | |||
|
1342 | buffer = dataOut.ElecTempFinal | |||
|
1343 | if plot == 'ITemp': | |||
|
1344 | #buffer = dataOut.IonTempClean | |||
|
1345 | buffer = dataOut.IonTempFinal | |||
|
1346 | if plot == 'ETempLP': | |||
|
1347 | #buffer = dataOut.IonTempClean | |||
|
1348 | #buffer = numpy.reshape(numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])),(1,-1)) | |||
|
1349 | buffer = dataOut.ElecTempFinal | |||
|
1350 | #print(buffer) | |||
|
1351 | if plot == 'ITempLP': | |||
|
1352 | #buffer = dataOut.IonTempClean | |||
|
1353 | #buffer = numpy.reshape(numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])),(1,-1)) | |||
|
1354 | buffer = dataOut.IonTempFinal | |||
|
1355 | ||||
|
1356 | if plot == 'HFracLP': | |||
|
1357 | #buffer = dataOut.IonTempClean | |||
|
1358 | #buffer = numpy.reshape(numpy.concatenate((dataOut.phy2[:dataOut.cut],dataOut.ph[dataOut.cut:])),(1,-1)) | |||
|
1359 | buffer = dataOut.PhyFinal | |||
|
1360 | if plot == 'HeFracLP': | |||
|
1361 | #buffer = dataOut.IonTempClean | |||
|
1362 | #nan_array=numpy.empty((dataOut.cut)) | |||
|
1363 | #nan_array[:]=numpy.nan | |||
|
1364 | #buffer = numpy.reshape(numpy.concatenate((nan_array,dataOut.phe[dataOut.cut:])),(1,-1)) | |||
|
1365 | buffer = dataOut.PheFinal | |||
|
1366 | ||||
|
1367 | ||||
|
1368 | ||||
|
1369 | ||||
|
1370 | ||||
|
1371 | if plot =='acfs': | |||
|
1372 | buffer = dataOut.acfs_to_plot | |||
|
1373 | self.acfs_error_to_plot=dataOut.acfs_error_to_plot | |||
|
1374 | self.lags_to_plot=dataOut.lags_to_plot | |||
|
1375 | self.x_igcej_to_plot=dataOut.x_igcej_to_plot | |||
|
1376 | self.x_ibad_to_plot=dataOut.x_ibad_to_plot | |||
|
1377 | self.y_igcej_to_plot=dataOut.y_igcej_to_plot | |||
|
1378 | self.y_ibad_to_plot=dataOut.y_ibad_to_plot | |||
|
1379 | self.NSHTS = dataOut.NSHTS | |||
|
1380 | self.DPL = dataOut.DPL | |||
|
1381 | if plot =='acfs_LP': | |||
|
1382 | ||||
|
1383 | aux=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |||
|
1384 | self.errors=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |||
|
1385 | self.lags_LP_to_plot=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |||
|
1386 | ''' | |||
|
1387 | for i in range(dataOut.NACF): | |||
|
1388 | for j in range(dataOut.IBITS): | |||
|
1389 | aux[i,j]=dataOut.fit_array_real[i,j]/dataOut.fit_array_real[i,0] | |||
|
1390 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] | |||
|
1391 | ''' | |||
|
1392 | for i in range(dataOut.NACF): | |||
|
1393 | for j in range(dataOut.IBITS): | |||
|
1394 | if numpy.abs(dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0])<1.0: | |||
|
1395 | aux[i,j]=dataOut.output_LP_integrated.real[j,i,0]/dataOut.output_LP_integrated.real[0,i,0] | |||
|
1396 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] | |||
|
1397 | self.lags_LP_to_plot[i,j]=dataOut.lags_LP[j] | |||
|
1398 | self.errors[i,j]=dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0]*dataOut.DH | |||
|
1399 | else: | |||
|
1400 | aux[i,j]=numpy.nan | |||
|
1401 | self.lags_LP_to_plot[i,j]=numpy.nan | |||
|
1402 | self.errors[i,j]=numpy.nan | |||
|
1403 | ||||
|
1404 | ||||
|
1405 | ||||
|
1406 | buffer = aux | |||
|
1407 | ||||
|
1408 | #self.lags_LP_to_plot=dataOut.lags_LP | |||
|
1409 | ||||
|
1410 | self.NACF = dataOut.NACF | |||
|
1411 | self.NLAG = dataOut.NLAG | |||
|
1412 | ||||
|
1413 | if plot == 'tempsDP': | |||
|
1414 | ||||
|
1415 | buffer = dataOut.te2 | |||
|
1416 | self.ete2 = dataOut.ete2 | |||
|
1417 | self.ti2 = dataOut.ti2 | |||
|
1418 | self.eti2 = dataOut.eti2 | |||
|
1419 | ||||
|
1420 | self.NSHTS = dataOut.NSHTS | |||
|
1421 | ||||
|
1422 | if plot == 'temps_LP': | |||
|
1423 | ||||
|
1424 | buffer = numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])) | |||
|
1425 | self.ete = numpy.concatenate((dataOut.ete2[:dataOut.cut],dataOut.ete[dataOut.cut:])) | |||
|
1426 | self.ti = numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])) | |||
|
1427 | self.eti = numpy.concatenate((dataOut.eti2[:dataOut.cut],dataOut.eti[dataOut.cut:])) | |||
|
1428 | ||||
|
1429 | self.NACF = dataOut.NACF | |||
|
1430 | ||||
|
1431 | ||||
|
1432 | if plot == 'fracs_LP': | |||
|
1433 | ||||
|
1434 | aux_nan=numpy.zeros(dataOut.cut,'float32') | |||
|
1435 | aux_nan[:]=numpy.nan | |||
|
1436 | buffer = numpy.concatenate((aux_nan,dataOut.ph[dataOut.cut:])) | |||
|
1437 | self.eph = numpy.concatenate((aux_nan,dataOut.eph[dataOut.cut:])) | |||
|
1438 | self.phe = dataOut.phe[dataOut.cut:] | |||
|
1439 | self.ephe = dataOut.ephe[dataOut.cut:] | |||
|
1440 | ||||
|
1441 | self.NACF = dataOut.NACF | |||
|
1442 | self.cut = dataOut.cut | |||
|
1443 | ||||
|
1444 | ||||
1051 | if plot == 'scope': |
|
1445 | if plot == 'scope': | |
1052 | buffer = dataOut.data |
|
1446 | buffer = dataOut.data | |
1053 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1447 | self.flagDataAsBlock = dataOut.flagDataAsBlock | |
@@ -1076,6 +1470,10 class PlotterData(object): | |||||
1076 | elif plot == 'spc_moments': |
|
1470 | elif plot == 'spc_moments': | |
1077 | self.data['spc'][tm] = buffer |
|
1471 | self.data['spc'][tm] = buffer | |
1078 | self.data['moments'][tm] = dataOut.moments |
|
1472 | self.data['moments'][tm] = dataOut.moments | |
|
1473 | elif plot == 'spc_oblique': | |||
|
1474 | self.data['spc'][tm] = buffer | |||
|
1475 | self.data['shift1'][tm] = dataOut.Oblique_params[0] | |||
|
1476 | self.data['shift2'][tm] = dataOut.Oblique_params[3] | |||
1079 | else: |
|
1477 | else: | |
1080 | if self.buffering: |
|
1478 | if self.buffering: | |
1081 | self.data[plot][tm] = buffer |
|
1479 | self.data[plot][tm] = buffer | |
@@ -1141,6 +1539,7 class PlotterData(object): | |||||
1141 | meta['interval'] = float(self.interval) |
|
1539 | meta['interval'] = float(self.interval) | |
1142 | meta['localtime'] = self.localtime |
|
1540 | meta['localtime'] = self.localtime | |
1143 | meta['yrange'] = self.roundFloats(self.heights[::dy].tolist()) |
|
1541 | meta['yrange'] = self.roundFloats(self.heights[::dy].tolist()) | |
|
1542 | ||||
1144 | if 'spc' in self.data or 'cspc' in self.data: |
|
1543 | if 'spc' in self.data or 'cspc' in self.data: | |
1145 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1544 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1146 | else: |
|
1545 | else: |
@@ -137,7 +137,7 class BasicHeader(Header): | |||||
137 | timeZone = None |
|
137 | timeZone = None | |
138 | dstFlag = None |
|
138 | dstFlag = None | |
139 | errorCount = None |
|
139 | errorCount = None | |
140 |
|
|
140 | F = None | |
141 | structure = BASIC_STRUCTURE |
|
141 | structure = BASIC_STRUCTURE | |
142 | __LOCALTIME = None |
|
142 | __LOCALTIME = None | |
143 |
|
143 | |||
@@ -363,6 +363,7 class RadarControllerHeader(Header): | |||||
363 | self.expType = int(header['nExpType'][0]) |
|
363 | self.expType = int(header['nExpType'][0]) | |
364 | self.nTx = int(header['nNTx'][0]) |
|
364 | self.nTx = int(header['nNTx'][0]) | |
365 | self.ipp = float(header['fIpp'][0]) |
|
365 | self.ipp = float(header['fIpp'][0]) | |
|
366 | #print(self.ipp) | |||
366 | self.txA = float(header['fTxA'][0]) |
|
367 | self.txA = float(header['fTxA'][0]) | |
367 | self.txB = float(header['fTxB'][0]) |
|
368 | self.txB = float(header['fTxB'][0]) | |
368 | self.nWindows = int(header['nNumWindows'][0]) |
|
369 | self.nWindows = int(header['nNumWindows'][0]) | |
@@ -534,6 +535,7 class RadarControllerHeader(Header): | |||||
534 | def get_ippSeconds(self): |
|
535 | def get_ippSeconds(self): | |
535 | ''' |
|
536 | ''' | |
536 | ''' |
|
537 | ''' | |
|
538 | ||||
537 | ippSeconds = 2.0 * 1000 * self.ipp / SPEED_OF_LIGHT |
|
539 | ippSeconds = 2.0 * 1000 * self.ipp / SPEED_OF_LIGHT | |
538 |
|
540 | |||
539 | return ippSeconds |
|
541 | return ippSeconds | |
@@ -640,6 +642,7 class ProcessingHeader(Header): | |||||
640 | self.nWindows = int(header['nNumWindows'][0]) |
|
642 | self.nWindows = int(header['nNumWindows'][0]) | |
641 | self.processFlags = header['nProcessFlags'] |
|
643 | self.processFlags = header['nProcessFlags'] | |
642 | self.nCohInt = int(header['nCoherentIntegrations'][0]) |
|
644 | self.nCohInt = int(header['nCoherentIntegrations'][0]) | |
|
645 | ||||
643 | self.nIncohInt = int(header['nIncoherentIntegrations'][0]) |
|
646 | self.nIncohInt = int(header['nIncoherentIntegrations'][0]) | |
644 | self.totalSpectra = int(header['nTotalSpectra'][0]) |
|
647 | self.totalSpectra = int(header['nTotalSpectra'][0]) | |
645 |
|
648 |
@@ -3,3 +3,4 from .jroplot_spectra import * | |||||
3 | from .jroplot_heispectra import * |
|
3 | from .jroplot_heispectra import * | |
4 | from .jroplot_correlation import * |
|
4 | from .jroplot_correlation import * | |
5 | from .jroplot_parameters import * |
|
5 | from .jroplot_parameters import * | |
|
6 | from .jroplot_voltage_lags import * |
@@ -221,6 +221,10 class Plot(Operation): | |||||
221 | self.zmin = kwargs.get('zmin', None) |
|
221 | self.zmin = kwargs.get('zmin', None) | |
222 | self.zmax = kwargs.get('zmax', None) |
|
222 | self.zmax = kwargs.get('zmax', None) | |
223 | self.zlimits = kwargs.get('zlimits', None) |
|
223 | self.zlimits = kwargs.get('zlimits', None) | |
|
224 | self.xlimits = kwargs.get('xlimits', None) | |||
|
225 | self.xstep_given = kwargs.get('xstep_given', None) | |||
|
226 | self.ystep_given = kwargs.get('ystep_given', None) | |||
|
227 | self.autoxticks = kwargs.get('autoxticks', True) | |||
224 | self.xmin = kwargs.get('xmin', None) |
|
228 | self.xmin = kwargs.get('xmin', None) | |
225 | self.xmax = kwargs.get('xmax', None) |
|
229 | self.xmax = kwargs.get('xmax', None) | |
226 | self.xrange = kwargs.get('xrange', 12) |
|
230 | self.xrange = kwargs.get('xrange', 12) | |
@@ -603,7 +607,8 class Plot(Operation): | |||||
603 | ''' |
|
607 | ''' | |
604 | Main plotting routine |
|
608 | Main plotting routine | |
605 | ''' |
|
609 | ''' | |
606 |
|
610 | print("time_inside_plot: ",dataOut.datatime) | ||
|
611 | print(dataOut.flagNoData) | |||
607 | if self.isConfig is False: |
|
612 | if self.isConfig is False: | |
608 | self.__setup(**kwargs) |
|
613 | self.__setup(**kwargs) | |
609 |
|
614 | |||
@@ -662,4 +667,3 class Plot(Operation): | |||||
662 | self.__plot() |
|
667 | self.__plot() | |
663 | if self.data and not self.data.flagNoData and self.pause: |
|
668 | if self.data and not self.data.flagNoData and self.pause: | |
664 | figpause(10) |
|
669 | figpause(10) | |
665 |
|
@@ -38,6 +38,15 class SpectralMomentsPlot(SpectraPlot): | |||||
38 | colormap = 'jet' |
|
38 | colormap = 'jet' | |
39 | plot_type = 'pcolor' |
|
39 | plot_type = 'pcolor' | |
40 |
|
40 | |||
|
41 | class SpectralFitObliquePlot(SpectraPlot): | |||
|
42 | ''' | |||
|
43 | Plot for Spectral Oblique | |||
|
44 | ''' | |||
|
45 | CODE = 'spc_moments' | |||
|
46 | colormap = 'jet' | |||
|
47 | plot_type = 'pcolor' | |||
|
48 | ||||
|
49 | ||||
41 |
|
50 | |||
42 | class SnrPlot(RTIPlot): |
|
51 | class SnrPlot(RTIPlot): | |
43 | ''' |
|
52 | ''' | |
@@ -336,4 +345,3 class PolarMapPlot(Plot): | |||||
336 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
345 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
337 | self.titles = ['{} {}'.format( |
|
346 | self.titles = ['{} {}'.format( | |
338 | self.data.parameters[x], title) for x in self.channels] |
|
347 | self.data.parameters[x], title) for x in self.channels] | |
339 |
|
This diff has been collapsed as it changes many lines, (540 lines changed) Show them Hide them | |||||
@@ -22,6 +22,7 class SpectraPlot(Plot): | |||||
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 |
|
23 | |||
24 | def setup(self): |
|
24 | def setup(self): | |
|
25 | ||||
25 | self.nplots = len(self.data.channels) |
|
26 | self.nplots = len(self.data.channels) | |
26 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
27 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
@@ -31,10 +32,13 class SpectraPlot(Plot): | |||||
31 | self.width = 4 * self.ncols |
|
32 | self.width = 4 * self.ncols | |
32 | else: |
|
33 | else: | |
33 | self.width = 3.5 * self.ncols |
|
34 | self.width = 3.5 * self.ncols | |
34 |
self.plots_adjust.update({'wspace': 0. |
|
35 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
35 | self.ylabel = 'Range [km]' |
|
36 | self.ylabel = 'Range [km]' | |
36 |
|
37 | |||
37 | def plot(self): |
|
38 | def plot(self): | |
|
39 | ||||
|
40 | #print(self.xaxis) | |||
|
41 | #exit(1) | |||
38 | if self.xaxis == "frequency": |
|
42 | if self.xaxis == "frequency": | |
39 | x = self.data.xrange[0] |
|
43 | x = self.data.xrange[0] | |
40 | self.xlabel = "Frequency (kHz)" |
|
44 | self.xlabel = "Frequency (kHz)" | |
@@ -51,19 +55,25 class SpectraPlot(Plot): | |||||
51 |
|
55 | |||
52 | self.titles = [] |
|
56 | self.titles = [] | |
53 |
|
57 | |||
|
58 | ||||
54 | y = self.data.heights |
|
59 | y = self.data.heights | |
55 | self.y = y |
|
60 | self.y = y | |
56 | z = self.data['spc'] |
|
61 | z = self.data['spc'] | |
57 |
|
62 | |||
|
63 | self.CODE2 = 'spc_oblique' | |||
|
64 | ||||
|
65 | ||||
58 | for n, ax in enumerate(self.axes): |
|
66 | for n, ax in enumerate(self.axes): | |
59 | noise = self.data['noise'][n][-1] |
|
67 | noise = self.data['noise'][n][-1] | |
60 | if self.CODE == 'spc_moments': |
|
68 | if self.CODE == 'spc_moments': | |
61 | mean = self.data['moments'][n, :, 1, :][-1] |
|
69 | mean = self.data['moments'][n, :, 1, :][-1] | |
|
70 | ||||
62 | if ax.firsttime: |
|
71 | if ax.firsttime: | |
63 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
72 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
64 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
73 | self.xmin = self.xmin if self.xmin else -self.xmax | |
65 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
74 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
66 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
75 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
|
76 | #print(numpy.shape(x)) | |||
67 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
77 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
68 | vmin=self.zmin, |
|
78 | vmin=self.zmin, | |
69 | vmax=self.zmax, |
|
79 | vmax=self.zmax, | |
@@ -77,15 +87,122 class SpectraPlot(Plot): | |||||
77 | color="k", linestyle="dashed", lw=1)[0] |
|
87 | color="k", linestyle="dashed", lw=1)[0] | |
78 | if self.CODE == 'spc_moments': |
|
88 | if self.CODE == 'spc_moments': | |
79 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
89 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
|
90 | ||||
80 | else: |
|
91 | else: | |
|
92 | ||||
81 | ax.plt.set_array(z[n].T.ravel()) |
|
93 | ax.plt.set_array(z[n].T.ravel()) | |
82 | if self.showprofile: |
|
94 | if self.showprofile: | |
83 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
95 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
84 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
96 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
85 | if self.CODE == 'spc_moments': |
|
97 | if self.CODE == 'spc_moments': | |
86 | ax.plt_mean.set_data(mean, y) |
|
98 | ax.plt_mean.set_data(mean, y) | |
|
99 | ||||
87 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
100 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
88 |
|
101 | |||
|
102 | class SpectraObliquePlot(Plot): | |||
|
103 | ''' | |||
|
104 | Plot for Spectra data | |||
|
105 | ''' | |||
|
106 | ||||
|
107 | CODE = 'spc' | |||
|
108 | colormap = 'jet' | |||
|
109 | plot_type = 'pcolor' | |||
|
110 | ||||
|
111 | def setup(self): | |||
|
112 | self.xaxis = "oblique" | |||
|
113 | self.nplots = len(self.data.channels) | |||
|
114 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |||
|
115 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |||
|
116 | self.height = 2.6 * self.nrows | |||
|
117 | self.cb_label = 'dB' | |||
|
118 | if self.showprofile: | |||
|
119 | self.width = 4 * self.ncols | |||
|
120 | else: | |||
|
121 | self.width = 3.5 * self.ncols | |||
|
122 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |||
|
123 | self.ylabel = 'Range [km]' | |||
|
124 | ||||
|
125 | def plot(self): | |||
|
126 | ||||
|
127 | #print(self.xaxis) | |||
|
128 | #exit(1) | |||
|
129 | if self.xaxis == "frequency": | |||
|
130 | x = self.data.xrange[0] | |||
|
131 | self.xlabel = "Frequency (kHz)" | |||
|
132 | elif self.xaxis == "time": | |||
|
133 | x = self.data.xrange[1] | |||
|
134 | self.xlabel = "Time (ms)" | |||
|
135 | else: | |||
|
136 | x = self.data.xrange[2] | |||
|
137 | self.xlabel = "Velocity (m/s)" | |||
|
138 | ||||
|
139 | if self.CODE == 'spc_moments': | |||
|
140 | x = self.data.xrange[2] | |||
|
141 | self.xlabel = "Velocity (m/s)" | |||
|
142 | ||||
|
143 | self.titles = [] | |||
|
144 | #self.xlabel = "Velocidad (m/s)" | |||
|
145 | #self.ylabel = 'Rango (km)' | |||
|
146 | ||||
|
147 | ||||
|
148 | y = self.data.heights | |||
|
149 | self.y = y | |||
|
150 | z = self.data['spc'] | |||
|
151 | ||||
|
152 | self.CODE2 = 'spc_oblique' | |||
|
153 | ||||
|
154 | ||||
|
155 | for n, ax in enumerate(self.axes): | |||
|
156 | noise = self.data['noise'][n][-1] | |||
|
157 | if self.CODE == 'spc_moments': | |||
|
158 | mean = self.data['moments'][n, :, 1, :][-1] | |||
|
159 | if self.CODE2 == 'spc_oblique': | |||
|
160 | shift1 = self.data.shift1 | |||
|
161 | shift2 = self.data.shift2 | |||
|
162 | if ax.firsttime: | |||
|
163 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |||
|
164 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
165 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |||
|
166 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |||
|
167 | #print(numpy.shape(x)) | |||
|
168 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |||
|
169 | vmin=self.zmin, | |||
|
170 | vmax=self.zmax, | |||
|
171 | cmap=plt.get_cmap(self.colormap) | |||
|
172 | ) | |||
|
173 | ||||
|
174 | if self.showprofile: | |||
|
175 | ax.plt_profile = self.pf_axes[n].plot( | |||
|
176 | self.data['rti'][n][-1], y)[0] | |||
|
177 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |||
|
178 | color="k", linestyle="dashed", lw=1)[0] | |||
|
179 | if self.CODE == 'spc_moments': | |||
|
180 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |||
|
181 | ||||
|
182 | if self.CODE2 == 'spc_oblique': | |||
|
183 | #ax.plt_shift1 = ax.plot(shift1, y, color='k', marker='x', linestyle='None', markersize=0.5)[0] | |||
|
184 | #ax.plt_shift2 = ax.plot(shift2, y, color='m', marker='x', linestyle='None', markersize=0.5)[0] | |||
|
185 | self.ploterr1 = ax.errorbar(shift1, y, xerr=self.data.shift1_error,fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |||
|
186 | self.ploterr2 = ax.errorbar(shift2, y, xerr=self.data.shift2_error,fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |||
|
187 | ||||
|
188 | else: | |||
|
189 | self.ploterr1.remove() | |||
|
190 | self.ploterr2.remove() | |||
|
191 | ax.plt.set_array(z[n].T.ravel()) | |||
|
192 | if self.showprofile: | |||
|
193 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |||
|
194 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |||
|
195 | if self.CODE == 'spc_moments': | |||
|
196 | ax.plt_mean.set_data(mean, y) | |||
|
197 | if self.CODE2 == 'spc_oblique': | |||
|
198 | #ax.plt_shift1.set_data(shift1, y) | |||
|
199 | #ax.plt_shift2.set_data(shift2, y) | |||
|
200 | #ax.clf() | |||
|
201 | self.ploterr1 = ax.errorbar(shift1, y, xerr=self.data.shift1_error,fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |||
|
202 | self.ploterr2 = ax.errorbar(shift2, y, xerr=self.data.shift2_error,fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |||
|
203 | ||||
|
204 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |||
|
205 | #self.titles.append('{}'.format('Velocidad Doppler')) | |||
89 |
|
206 | |||
90 | class CrossSpectraPlot(Plot): |
|
207 | class CrossSpectraPlot(Plot): | |
91 |
|
208 | |||
@@ -103,7 +220,7 class CrossSpectraPlot(Plot): | |||||
103 | self.nrows = len(self.data.pairs) |
|
220 | self.nrows = len(self.data.pairs) | |
104 | self.nplots = self.nrows * 4 |
|
221 | self.nplots = self.nrows * 4 | |
105 | self.width = 3.1 * self.ncols |
|
222 | self.width = 3.1 * self.ncols | |
106 |
self.height = |
|
223 | self.height = 5 * self.nrows | |
107 | self.ylabel = 'Range [km]' |
|
224 | self.ylabel = 'Range [km]' | |
108 | self.showprofile = False |
|
225 | self.showprofile = False | |
109 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
226 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
@@ -122,21 +239,35 class CrossSpectraPlot(Plot): | |||||
122 |
|
239 | |||
123 | self.titles = [] |
|
240 | self.titles = [] | |
124 |
|
241 | |||
|
242 | ||||
125 | y = self.data.heights |
|
243 | y = self.data.heights | |
126 | self.y = y |
|
244 | self.y = y | |
127 | nspc = self.data['spc'] |
|
245 | nspc = self.data['spc'] | |
|
246 | #print(numpy.shape(self.data['spc'])) | |||
128 | spc = self.data['cspc'][0] |
|
247 | spc = self.data['cspc'][0] | |
|
248 | #print(numpy.shape(spc)) | |||
|
249 | #exit() | |||
129 | cspc = self.data['cspc'][1] |
|
250 | cspc = self.data['cspc'][1] | |
|
251 | #print(numpy.shape(cspc)) | |||
|
252 | #exit() | |||
130 |
|
253 | |||
131 | for n in range(self.nrows): |
|
254 | for n in range(self.nrows): | |
132 | noise = self.data['noise'][:,-1] |
|
255 | noise = self.data['noise'][:,-1] | |
133 | pair = self.data.pairs[n] |
|
256 | pair = self.data.pairs[n] | |
|
257 | #print(pair) | |||
|
258 | #exit() | |||
134 | ax = self.axes[4 * n] |
|
259 | ax = self.axes[4 * n] | |
135 | if ax.firsttime: |
|
260 | if ax.firsttime: | |
136 |
self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
261 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
137 |
self.xmin = self.xmin if self.xmin else -self.xmax |
|
262 | #self.xmin = self.xmin if self.xmin else -self.xmax | |
|
263 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x) | |||
138 |
self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
264 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |
139 |
self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
265 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |
|
266 | #print(numpy.nanmin(x)) | |||
|
267 | #print(self.xmax) | |||
|
268 | #print(self.xmin) | |||
|
269 | #exit() | |||
|
270 | #self.xmin=-.1 | |||
140 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
271 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |
141 | vmin=self.zmin, |
|
272 | vmin=self.zmin, | |
142 | vmax=self.zmax, |
|
273 | vmax=self.zmax, | |
@@ -185,6 +316,332 class CrossSpectraPlot(Plot): | |||||
185 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
316 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
186 |
|
317 | |||
187 |
|
318 | |||
|
319 | class CrossSpectra4Plot(Plot): | |||
|
320 | ||||
|
321 | CODE = 'cspc' | |||
|
322 | colormap = 'jet' | |||
|
323 | plot_type = 'pcolor' | |||
|
324 | zmin_coh = None | |||
|
325 | zmax_coh = None | |||
|
326 | zmin_phase = None | |||
|
327 | zmax_phase = None | |||
|
328 | ||||
|
329 | def setup(self): | |||
|
330 | ||||
|
331 | self.ncols = 4 | |||
|
332 | self.nrows = len(self.data.pairs) | |||
|
333 | self.nplots = self.nrows * 4 | |||
|
334 | self.width = 3.1 * self.ncols | |||
|
335 | self.height = 5 * self.nrows | |||
|
336 | self.ylabel = 'Range [km]' | |||
|
337 | self.showprofile = False | |||
|
338 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |||
|
339 | ||||
|
340 | def plot(self): | |||
|
341 | ||||
|
342 | if self.xaxis == "frequency": | |||
|
343 | x = self.data.xrange[0] | |||
|
344 | self.xlabel = "Frequency (kHz)" | |||
|
345 | elif self.xaxis == "time": | |||
|
346 | x = self.data.xrange[1] | |||
|
347 | self.xlabel = "Time (ms)" | |||
|
348 | else: | |||
|
349 | x = self.data.xrange[2] | |||
|
350 | self.xlabel = "Velocity (m/s)" | |||
|
351 | ||||
|
352 | self.titles = [] | |||
|
353 | ||||
|
354 | ||||
|
355 | y = self.data.heights | |||
|
356 | self.y = y | |||
|
357 | nspc = self.data['spc'] | |||
|
358 | #print(numpy.shape(self.data['spc'])) | |||
|
359 | spc = self.data['cspc'][0] | |||
|
360 | #print(numpy.shape(nspc)) | |||
|
361 | #exit() | |||
|
362 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) | |||
|
363 | #print(numpy.shape(spc)) | |||
|
364 | #exit() | |||
|
365 | cspc = self.data['cspc'][1] | |||
|
366 | ||||
|
367 | #xflip=numpy.flip(x) | |||
|
368 | #print(numpy.shape(cspc)) | |||
|
369 | #exit() | |||
|
370 | ||||
|
371 | for n in range(self.nrows): | |||
|
372 | noise = self.data['noise'][:,-1] | |||
|
373 | pair = self.data.pairs[n] | |||
|
374 | #print(pair) | |||
|
375 | #exit() | |||
|
376 | ax = self.axes[4 * n] | |||
|
377 | if ax.firsttime: | |||
|
378 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |||
|
379 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
380 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |||
|
381 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |||
|
382 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |||
|
383 | vmin=self.zmin, | |||
|
384 | vmax=self.zmax, | |||
|
385 | cmap=plt.get_cmap(self.colormap) | |||
|
386 | ) | |||
|
387 | else: | |||
|
388 | #print(numpy.shape(nspc[pair[0]].T)) | |||
|
389 | #exit() | |||
|
390 | ax.plt.set_array(nspc[pair[0]].T.ravel()) | |||
|
391 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) | |||
|
392 | ||||
|
393 | ax = self.axes[4 * n + 1] | |||
|
394 | ||||
|
395 | if ax.firsttime: | |||
|
396 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, | |||
|
397 | vmin=self.zmin, | |||
|
398 | vmax=self.zmax, | |||
|
399 | cmap=plt.get_cmap(self.colormap) | |||
|
400 | ) | |||
|
401 | else: | |||
|
402 | ||||
|
403 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) | |||
|
404 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) | |||
|
405 | ||||
|
406 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |||
|
407 | coh = numpy.abs(out) | |||
|
408 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |||
|
409 | ||||
|
410 | ax = self.axes[4 * n + 2] | |||
|
411 | if ax.firsttime: | |||
|
412 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, | |||
|
413 | vmin=0, | |||
|
414 | vmax=1, | |||
|
415 | cmap=plt.get_cmap(self.colormap_coh) | |||
|
416 | ) | |||
|
417 | else: | |||
|
418 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) | |||
|
419 | self.titles.append( | |||
|
420 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |||
|
421 | ||||
|
422 | ax = self.axes[4 * n + 3] | |||
|
423 | if ax.firsttime: | |||
|
424 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, | |||
|
425 | vmin=-180, | |||
|
426 | vmax=180, | |||
|
427 | cmap=plt.get_cmap(self.colormap_phase) | |||
|
428 | ) | |||
|
429 | else: | |||
|
430 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) | |||
|
431 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |||
|
432 | ||||
|
433 | ||||
|
434 | class CrossSpectra2Plot(Plot): | |||
|
435 | ||||
|
436 | CODE = 'cspc' | |||
|
437 | colormap = 'jet' | |||
|
438 | plot_type = 'pcolor' | |||
|
439 | zmin_coh = None | |||
|
440 | zmax_coh = None | |||
|
441 | zmin_phase = None | |||
|
442 | zmax_phase = None | |||
|
443 | ||||
|
444 | def setup(self): | |||
|
445 | ||||
|
446 | self.ncols = 1 | |||
|
447 | self.nrows = len(self.data.pairs) | |||
|
448 | self.nplots = self.nrows * 1 | |||
|
449 | self.width = 3.1 * self.ncols | |||
|
450 | self.height = 5 * self.nrows | |||
|
451 | self.ylabel = 'Range [km]' | |||
|
452 | self.showprofile = False | |||
|
453 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |||
|
454 | ||||
|
455 | def plot(self): | |||
|
456 | ||||
|
457 | if self.xaxis == "frequency": | |||
|
458 | x = self.data.xrange[0] | |||
|
459 | self.xlabel = "Frequency (kHz)" | |||
|
460 | elif self.xaxis == "time": | |||
|
461 | x = self.data.xrange[1] | |||
|
462 | self.xlabel = "Time (ms)" | |||
|
463 | else: | |||
|
464 | x = self.data.xrange[2] | |||
|
465 | self.xlabel = "Velocity (m/s)" | |||
|
466 | ||||
|
467 | self.titles = [] | |||
|
468 | ||||
|
469 | ||||
|
470 | y = self.data.heights | |||
|
471 | self.y = y | |||
|
472 | #nspc = self.data['spc'] | |||
|
473 | #print(numpy.shape(self.data['spc'])) | |||
|
474 | #spc = self.data['cspc'][0] | |||
|
475 | #print(numpy.shape(spc)) | |||
|
476 | #exit() | |||
|
477 | cspc = self.data['cspc'][1] | |||
|
478 | #print(numpy.shape(cspc)) | |||
|
479 | #exit() | |||
|
480 | ||||
|
481 | for n in range(self.nrows): | |||
|
482 | noise = self.data['noise'][:,-1] | |||
|
483 | pair = self.data.pairs[n] | |||
|
484 | #print(pair) #exit() | |||
|
485 | ||||
|
486 | ||||
|
487 | ||||
|
488 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |||
|
489 | ||||
|
490 | #print(out[:,53]) | |||
|
491 | #exit() | |||
|
492 | cross = numpy.abs(out) | |||
|
493 | z = cross/self.data.nFactor | |||
|
494 | #print("here") | |||
|
495 | #print(dataOut.data_spc[0,0,0]) | |||
|
496 | #exit() | |||
|
497 | ||||
|
498 | cross = 10*numpy.log10(z) | |||
|
499 | #print(numpy.shape(cross)) | |||
|
500 | #print(cross[0,:]) | |||
|
501 | #print(self.data.nFactor) | |||
|
502 | #exit() | |||
|
503 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |||
|
504 | ||||
|
505 | ax = self.axes[1 * n] | |||
|
506 | if ax.firsttime: | |||
|
507 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |||
|
508 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
509 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |||
|
510 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |||
|
511 | ax.plt = ax.pcolormesh(x, y, cross.T, | |||
|
512 | vmin=self.zmin, | |||
|
513 | vmax=self.zmax, | |||
|
514 | cmap=plt.get_cmap(self.colormap) | |||
|
515 | ) | |||
|
516 | else: | |||
|
517 | ax.plt.set_array(cross.T.ravel()) | |||
|
518 | self.titles.append( | |||
|
519 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |||
|
520 | ||||
|
521 | ||||
|
522 | class CrossSpectra3Plot(Plot): | |||
|
523 | ||||
|
524 | CODE = 'cspc' | |||
|
525 | colormap = 'jet' | |||
|
526 | plot_type = 'pcolor' | |||
|
527 | zmin_coh = None | |||
|
528 | zmax_coh = None | |||
|
529 | zmin_phase = None | |||
|
530 | zmax_phase = None | |||
|
531 | ||||
|
532 | def setup(self): | |||
|
533 | ||||
|
534 | self.ncols = 3 | |||
|
535 | self.nrows = len(self.data.pairs) | |||
|
536 | self.nplots = self.nrows * 3 | |||
|
537 | self.width = 3.1 * self.ncols | |||
|
538 | self.height = 5 * self.nrows | |||
|
539 | self.ylabel = 'Range [km]' | |||
|
540 | self.showprofile = False | |||
|
541 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |||
|
542 | ||||
|
543 | def plot(self): | |||
|
544 | ||||
|
545 | if self.xaxis == "frequency": | |||
|
546 | x = self.data.xrange[0] | |||
|
547 | self.xlabel = "Frequency (kHz)" | |||
|
548 | elif self.xaxis == "time": | |||
|
549 | x = self.data.xrange[1] | |||
|
550 | self.xlabel = "Time (ms)" | |||
|
551 | else: | |||
|
552 | x = self.data.xrange[2] | |||
|
553 | self.xlabel = "Velocity (m/s)" | |||
|
554 | ||||
|
555 | self.titles = [] | |||
|
556 | ||||
|
557 | ||||
|
558 | y = self.data.heights | |||
|
559 | self.y = y | |||
|
560 | #nspc = self.data['spc'] | |||
|
561 | #print(numpy.shape(self.data['spc'])) | |||
|
562 | #spc = self.data['cspc'][0] | |||
|
563 | #print(numpy.shape(spc)) | |||
|
564 | #exit() | |||
|
565 | cspc = self.data['cspc'][1] | |||
|
566 | #print(numpy.shape(cspc)) | |||
|
567 | #exit() | |||
|
568 | ||||
|
569 | for n in range(self.nrows): | |||
|
570 | noise = self.data['noise'][:,-1] | |||
|
571 | pair = self.data.pairs[n] | |||
|
572 | #print(pair) #exit() | |||
|
573 | ||||
|
574 | ||||
|
575 | ||||
|
576 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |||
|
577 | ||||
|
578 | #print(out[:,53]) | |||
|
579 | #exit() | |||
|
580 | cross = numpy.abs(out) | |||
|
581 | z = cross/self.data.nFactor | |||
|
582 | cross = 10*numpy.log10(z) | |||
|
583 | ||||
|
584 | out_r= out.real/self.data.nFactor | |||
|
585 | #out_r = 10*numpy.log10(out_r) | |||
|
586 | ||||
|
587 | out_i= out.imag/self.data.nFactor | |||
|
588 | #out_i = 10*numpy.log10(out_i) | |||
|
589 | #print(numpy.shape(cross)) | |||
|
590 | #print(cross[0,:]) | |||
|
591 | #print(self.data.nFactor) | |||
|
592 | #exit() | |||
|
593 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |||
|
594 | ||||
|
595 | ax = self.axes[3 * n] | |||
|
596 | if ax.firsttime: | |||
|
597 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |||
|
598 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
599 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |||
|
600 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |||
|
601 | ax.plt = ax.pcolormesh(x, y, cross.T, | |||
|
602 | vmin=self.zmin, | |||
|
603 | vmax=self.zmax, | |||
|
604 | cmap=plt.get_cmap(self.colormap) | |||
|
605 | ) | |||
|
606 | else: | |||
|
607 | ax.plt.set_array(cross.T.ravel()) | |||
|
608 | self.titles.append( | |||
|
609 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |||
|
610 | ||||
|
611 | ax = self.axes[3 * n + 1] | |||
|
612 | if ax.firsttime: | |||
|
613 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |||
|
614 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
615 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |||
|
616 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |||
|
617 | ax.plt = ax.pcolormesh(x, y, out_r.T, | |||
|
618 | vmin=-1.e6, | |||
|
619 | vmax=0, | |||
|
620 | cmap=plt.get_cmap(self.colormap) | |||
|
621 | ) | |||
|
622 | else: | |||
|
623 | ax.plt.set_array(out_r.T.ravel()) | |||
|
624 | self.titles.append( | |||
|
625 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) | |||
|
626 | ||||
|
627 | ax = self.axes[3 * n + 2] | |||
|
628 | ||||
|
629 | ||||
|
630 | if ax.firsttime: | |||
|
631 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |||
|
632 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
633 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |||
|
634 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |||
|
635 | ax.plt = ax.pcolormesh(x, y, out_i.T, | |||
|
636 | vmin=-1.e6, | |||
|
637 | vmax=1.e6, | |||
|
638 | cmap=plt.get_cmap(self.colormap) | |||
|
639 | ) | |||
|
640 | else: | |||
|
641 | ax.plt.set_array(out_i.T.ravel()) | |||
|
642 | self.titles.append( | |||
|
643 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) | |||
|
644 | ||||
188 | class RTIPlot(Plot): |
|
645 | class RTIPlot(Plot): | |
189 | ''' |
|
646 | ''' | |
190 | Plot for RTI data |
|
647 | Plot for RTI data | |
@@ -202,7 +659,7 class RTIPlot(Plot): | |||||
202 | self.ylabel = 'Range [km]' |
|
659 | self.ylabel = 'Range [km]' | |
203 | self.xlabel = 'Time' |
|
660 | self.xlabel = 'Time' | |
204 | self.cb_label = 'dB' |
|
661 | self.cb_label = 'dB' | |
205 |
self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0. |
|
662 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
206 | self.titles = ['{} Channel {}'.format( |
|
663 | self.titles = ['{} Channel {}'.format( | |
207 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
664 | self.CODE.upper(), x) for x in range(self.nrows)] | |
208 |
|
665 | |||
@@ -210,6 +667,78 class RTIPlot(Plot): | |||||
210 | self.x = self.data.times |
|
667 | self.x = self.data.times | |
211 | self.y = self.data.heights |
|
668 | self.y = self.data.heights | |
212 | self.z = self.data[self.CODE] |
|
669 | self.z = self.data[self.CODE] | |
|
670 | ||||
|
671 | self.z = numpy.ma.masked_invalid(self.z) | |||
|
672 | ||||
|
673 | if self.decimation is None: | |||
|
674 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |||
|
675 | else: | |||
|
676 | x, y, z = self.fill_gaps(*self.decimate()) | |||
|
677 | ||||
|
678 | for n, ax in enumerate(self.axes): | |||
|
679 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |||
|
680 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |||
|
681 | if ax.firsttime: | |||
|
682 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |||
|
683 | vmin=self.zmin, | |||
|
684 | vmax=self.zmax, | |||
|
685 | cmap=plt.get_cmap(self.colormap) | |||
|
686 | ) | |||
|
687 | if self.showprofile: | |||
|
688 | ax.plot_profile = self.pf_axes[n].plot( | |||
|
689 | self.data['rti'][n][-1], self.y)[0] | |||
|
690 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |||
|
691 | color="k", linestyle="dashed", lw=1)[0] | |||
|
692 | else: | |||
|
693 | ax.collections.remove(ax.collections[0]) | |||
|
694 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |||
|
695 | vmin=self.zmin, | |||
|
696 | vmax=self.zmax, | |||
|
697 | cmap=plt.get_cmap(self.colormap) | |||
|
698 | ) | |||
|
699 | if self.showprofile: | |||
|
700 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |||
|
701 | ax.plot_noise.set_data(numpy.repeat( | |||
|
702 | self.data['noise'][n][-1], len(self.y)), self.y) | |||
|
703 | ||||
|
704 | ||||
|
705 | class SpectrogramPlot(Plot): | |||
|
706 | ''' | |||
|
707 | Plot for Spectrogram data | |||
|
708 | ''' | |||
|
709 | ||||
|
710 | CODE = 'spectrogram' | |||
|
711 | colormap = 'binary' | |||
|
712 | plot_type = 'pcolorbuffer' | |||
|
713 | ||||
|
714 | def setup(self): | |||
|
715 | self.xaxis = 'time' | |||
|
716 | self.ncols = 1 | |||
|
717 | self.nrows = len(self.data.channels) | |||
|
718 | self.nplots = len(self.data.channels) | |||
|
719 | #print(self.dataOut.heightList) | |||
|
720 | #self.ylabel = 'Range [km]' | |||
|
721 | self.xlabel = 'Time' | |||
|
722 | self.cb_label = 'dB' | |||
|
723 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) | |||
|
724 | self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( | |||
|
725 | self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] | |||
|
726 | ||||
|
727 | def plot(self): | |||
|
728 | self.x = self.data.times | |||
|
729 | #self.y = self.data.heights | |||
|
730 | self.z = self.data[self.CODE] | |||
|
731 | self.y = self.data.xrange[0] | |||
|
732 | #import time | |||
|
733 | #print(time.ctime(self.x)) | |||
|
734 | ||||
|
735 | ''' | |||
|
736 | print(numpy.shape(self.x)) | |||
|
737 | print(numpy.shape(self.y)) | |||
|
738 | print(numpy.shape(self.z)) | |||
|
739 | ''' | |||
|
740 | self.ylabel = "Frequency (kHz)" | |||
|
741 | ||||
213 | self.z = numpy.ma.masked_invalid(self.z) |
|
742 | self.z = numpy.ma.masked_invalid(self.z) | |
214 |
|
743 | |||
215 | if self.decimation is None: |
|
744 | if self.decimation is None: | |
@@ -296,6 +825,7 class NoisePlot(Plot): | |||||
296 | self.xlabel = 'Time' |
|
825 | self.xlabel = 'Time' | |
297 | self.titles = ['Noise'] |
|
826 | self.titles = ['Noise'] | |
298 | self.colorbar = False |
|
827 | self.colorbar = False | |
|
828 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.17, 'right':0.95}) | |||
299 |
|
829 | |||
300 | def plot(self): |
|
830 | def plot(self): | |
301 |
|
831 | |||
@@ -315,7 +845,7 class NoisePlot(Plot): | |||||
315 | self.axes[0].lines[ch].set_data(x, y) |
|
845 | self.axes[0].lines[ch].set_data(x, y) | |
316 |
|
846 | |||
317 | self.ymin = numpy.nanmin(Y) - 5 |
|
847 | self.ymin = numpy.nanmin(Y) - 5 | |
318 |
self.ymax = numpy.nanmax(Y) + |
|
848 | self.ymax = numpy.nanmax(Y) + 10 | |
319 |
|
849 | |||
320 |
|
850 | |||
321 | class PowerProfilePlot(Plot): |
|
851 | class PowerProfilePlot(Plot): |
@@ -22,3 +22,8 from .julIO_param import * | |||||
22 |
|
22 | |||
23 | from .pxIO_param import * |
|
23 | from .pxIO_param import * | |
24 | from .jroIO_simulator import * |
|
24 | from .jroIO_simulator import * | |
|
25 | ||||
|
26 | ############DP############ | |||
|
27 | from .jroIO_dat import * | |||
|
28 | ||||
|
29 | ############DP############ |
@@ -78,6 +78,7 def isFileInEpoch(filename, startUTSeconds, endUTSeconds): | |||||
78 | basicHeaderObj = BasicHeader(LOCALTIME) |
|
78 | basicHeaderObj = BasicHeader(LOCALTIME) | |
79 |
|
79 | |||
80 | try: |
|
80 | try: | |
|
81 | ||||
81 | fp = open(filename, 'rb') |
|
82 | fp = open(filename, 'rb') | |
82 | except IOError: |
|
83 | except IOError: | |
83 | print("The file %s can't be opened" % (filename)) |
|
84 | print("The file %s can't be opened" % (filename)) | |
@@ -140,6 +141,7 def isFileInTimeRange(filename, startDate, endDate, startTime, endTime): | |||||
140 |
|
141 | |||
141 | firstBasicHeaderObj = BasicHeader(LOCALTIME) |
|
142 | firstBasicHeaderObj = BasicHeader(LOCALTIME) | |
142 | systemHeaderObj = SystemHeader() |
|
143 | systemHeaderObj = SystemHeader() | |
|
144 | ||||
143 | radarControllerHeaderObj = RadarControllerHeader() |
|
145 | radarControllerHeaderObj = RadarControllerHeader() | |
144 | processingHeaderObj = ProcessingHeader() |
|
146 | processingHeaderObj = ProcessingHeader() | |
145 |
|
147 | |||
@@ -539,9 +541,15 class Reader(object): | |||||
539 | for fo in files: |
|
541 | for fo in files: | |
540 |
try: |
|
542 | try: | |
541 |
dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date() |
|
543 | dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date() | |
|
544 | #print(dt) | |||
|
545 | #print(startDate) | |||
|
546 | #print(endDate) | |||
542 | if dt >= startDate and dt <= endDate: |
|
547 | if dt >= startDate and dt <= endDate: | |
|
548 | ||||
543 | yield os.path.join(path, expLabel, fo) |
|
549 | yield os.path.join(path, expLabel, fo) | |
|
550 | ||||
544 | else: |
|
551 | else: | |
|
552 | ||||
545 | log.log('Skiping file {}'.format(fo), self.name) |
|
553 | log.log('Skiping file {}'.format(fo), self.name) | |
546 | except Exception as e: |
|
554 | except Exception as e: | |
547 | log.log('Skiping file {}'.format(fo), self.name) |
|
555 | log.log('Skiping file {}'.format(fo), self.name) | |
@@ -592,27 +600,41 class Reader(object): | |||||
592 | def setNextFile(self): |
|
600 | def setNextFile(self): | |
593 | """Set the next file to be readed open it and parse de file header""" |
|
601 | """Set the next file to be readed open it and parse de file header""" | |
594 |
|
602 | |||
|
603 | #print("fp: ",self.fp) | |||
595 | while True: |
|
604 | while True: | |
|
605 | ||||
|
606 | #print(self.fp) | |||
596 | if self.fp != None: |
|
607 | if self.fp != None: | |
597 |
self.fp.close() |
|
608 | self.fp.close() | |
598 |
|
609 | |||
|
610 | #print("setNextFile") | |||
|
611 | #print("BEFORE OPENING",self.filename) | |||
599 | if self.online: |
|
612 | if self.online: | |
600 | newFile = self.setNextFileOnline() |
|
613 | newFile = self.setNextFileOnline() | |
|
614 | ||||
601 | else: |
|
615 | else: | |
|
616 | ||||
602 | newFile = self.setNextFileOffline() |
|
617 | newFile = self.setNextFileOffline() | |
603 |
|
618 | |||
|
619 | #print("newFile: ",newFile) | |||
604 | if not(newFile): |
|
620 | if not(newFile): | |
|
621 | ||||
605 | if self.online: |
|
622 | if self.online: | |
606 | raise schainpy.admin.SchainError('Time to wait for new files reach') |
|
623 | raise schainpy.admin.SchainError('Time to wait for new files reach') | |
607 | else: |
|
624 | else: | |
608 | if self.fileIndex == -1: |
|
625 | if self.fileIndex == -1: | |
|
626 | #print("OKK") | |||
609 | raise schainpy.admin.SchainWarning('No files found in the given path') |
|
627 | raise schainpy.admin.SchainWarning('No files found in the given path') | |
610 | else: |
|
628 | else: | |
|
629 | ||||
611 | raise schainpy.admin.SchainWarning('No more files to read') |
|
630 | raise schainpy.admin.SchainWarning('No more files to read') | |
612 |
|
631 | |||
613 | if self.verifyFile(self.filename): |
|
632 | if self.verifyFile(self.filename): | |
|
633 | ||||
614 | break |
|
634 | break | |
615 |
|
635 | |||
|
636 | ##print("BEFORE OPENING",self.filename) | |||
|
637 | ||||
616 | log.log('Opening file: %s' % self.filename, self.name) |
|
638 | log.log('Opening file: %s' % self.filename, self.name) | |
617 |
|
639 | |||
618 | self.readFirstHeader() |
|
640 | self.readFirstHeader() | |
@@ -630,6 +652,7 class Reader(object): | |||||
630 | boolean |
|
652 | boolean | |
631 |
|
653 | |||
632 | """ |
|
654 | """ | |
|
655 | ||||
633 | nextFile = True |
|
656 | nextFile = True | |
634 | nextDay = False |
|
657 | nextDay = False | |
635 |
|
658 | |||
@@ -648,7 +671,7 class Reader(object): | |||||
648 | if fullfilename is not None: |
|
671 | if fullfilename is not None: | |
649 | break |
|
672 | break | |
650 |
|
673 | |||
651 | self.nTries = 1 |
|
674 | #self.nTries = 1 | |
652 |
nextFile = True |
|
675 | nextFile = True | |
653 |
|
676 | |||
654 | if nFiles == (self.nFiles - 1): |
|
677 | if nFiles == (self.nFiles - 1): | |
@@ -662,7 +685,9 class Reader(object): | |||||
662 | self.flagIsNewFile = 1 |
|
685 | self.flagIsNewFile = 1 | |
663 | if self.fp != None: |
|
686 | if self.fp != None: | |
664 | self.fp.close() |
|
687 | self.fp.close() | |
|
688 | #print(fullfilename) | |||
665 | self.fp = self.open_file(fullfilename, self.open_mode) |
|
689 | self.fp = self.open_file(fullfilename, self.open_mode) | |
|
690 | ||||
666 | self.flagNoMoreFiles = 0 |
|
691 | self.flagNoMoreFiles = 0 | |
667 | self.fileIndex += 1 |
|
692 | self.fileIndex += 1 | |
668 | return 1 |
|
693 | return 1 | |
@@ -678,7 +703,8 class Reader(object): | |||||
678 | except StopIteration: |
|
703 | except StopIteration: | |
679 | self.flagNoMoreFiles = 1 |
|
704 | self.flagNoMoreFiles = 1 | |
680 |
return 0 |
|
705 | return 0 | |
681 |
|
706 | #print(self.fileIndex) | ||
|
707 | #print(filename) | |||
682 | self.filename = filename |
|
708 | self.filename = filename | |
683 | self.fileSize = os.path.getsize(filename) |
|
709 | self.fileSize = os.path.getsize(filename) | |
684 | self.fp = self.open_file(filename, self.open_mode) |
|
710 | self.fp = self.open_file(filename, self.open_mode) | |
@@ -715,6 +741,7 class Reader(object): | |||||
715 | def readFirstHeader(self): |
|
741 | def readFirstHeader(self): | |
716 | """Parse the file header""" |
|
742 | """Parse the file header""" | |
717 |
|
743 | |||
|
744 | ||||
718 | pass |
|
745 | pass | |
719 |
|
746 | |||
720 | def waitDataBlock(self, pointer_location, blocksize=None): |
|
747 | def waitDataBlock(self, pointer_location, blocksize=None): | |
@@ -797,6 +824,14 class JRODataReader(Reader): | |||||
797 | elif self.ext.lower() == ".pdata": # spectra |
|
824 | elif self.ext.lower() == ".pdata": # spectra | |
798 | prefixFileList = ['p', 'P'] |
|
825 | prefixFileList = ['p', 'P'] | |
799 |
|
826 | |||
|
827 | ##############DP############## | |||
|
828 | ||||
|
829 | elif self.ext.lower() == ".dat": # dat | |||
|
830 | prefixFileList = ['z', 'Z'] | |||
|
831 | ||||
|
832 | ||||
|
833 | ||||
|
834 | ##############DP############## | |||
800 | # barrido por las combinaciones posibles |
|
835 | # barrido por las combinaciones posibles | |
801 | for prefixDir in prefixDirList: |
|
836 | for prefixDir in prefixDirList: | |
802 | thispath = self.path |
|
837 | thispath = self.path | |
@@ -853,6 +888,7 class JRODataReader(Reader): | |||||
853 | return 0 |
|
888 | return 0 | |
854 |
|
889 | |||
855 | print("[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1)) |
|
890 | print("[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1)) | |
|
891 | #print(self.filename) | |||
856 | time.sleep(self.delay) |
|
892 | time.sleep(self.delay) | |
857 |
|
893 | |||
858 | return 0 |
|
894 | return 0 | |
@@ -921,6 +957,10 class JRODataReader(Reader): | |||||
921 | print("[Reading] Block No. %d/%d -> %s" % (self.nReadBlocks, |
|
957 | print("[Reading] Block No. %d/%d -> %s" % (self.nReadBlocks, | |
922 | self.processingHeaderObj.dataBlocksPerFile, |
|
958 | self.processingHeaderObj.dataBlocksPerFile, | |
923 | self.dataOut.datatime.ctime())) |
|
959 | self.dataOut.datatime.ctime())) | |
|
960 | #################DP################# | |||
|
961 | self.dataOut.TimeBlockDate=self.dataOut.datatime.ctime() | |||
|
962 | self.dataOut.TimeBlockSeconds=time.mktime(time.strptime(self.dataOut.datatime.ctime())) | |||
|
963 | #################DP################# | |||
924 | return 1 |
|
964 | return 1 | |
925 |
|
965 | |||
926 | def readFirstHeader(self): |
|
966 | def readFirstHeader(self): |
@@ -396,12 +396,16 Inputs: | |||||
396 | def run(self, dataOut, path, oneDDict, ind2DList='[]', twoDDict='{}', |
|
396 | def run(self, dataOut, path, oneDDict, ind2DList='[]', twoDDict='{}', | |
397 | metadata='{}', format='cedar', **kwargs): |
|
397 | metadata='{}', format='cedar', **kwargs): | |
398 |
|
398 | |||
|
399 | ||||
|
400 | #if dataOut.AUX==1: #Modified | |||
|
401 | ||||
399 | if not self.isConfig: |
|
402 | if not self.isConfig: | |
400 | self.setup(path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs) |
|
403 | self.setup(path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs) | |
401 | self.isConfig = True |
|
404 | self.isConfig = True | |
402 |
|
405 | |||
403 |
self.dataOut = dataOut |
|
406 | self.dataOut = dataOut | |
404 |
self.putData() |
|
407 | self.putData() | |
|
408 | ||||
405 | return 1 |
|
409 | return 1 | |
406 |
|
410 | |||
407 | def setup(self, path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs): |
|
411 | def setup(self, path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs): | |
@@ -440,6 +444,9 Inputs: | |||||
440 |
|
444 | |||
441 | self.mnemonic = MNEMONICS[self.kinst] #TODO get mnemonic from madrigal |
|
445 | self.mnemonic = MNEMONICS[self.kinst] #TODO get mnemonic from madrigal | |
442 | date = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) |
|
446 | date = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) | |
|
447 | #if self.dataOut.input_dat_type: | |||
|
448 | #date=datetime.datetime.fromtimestamp(self.dataOut.TimeBlockSeconds_for_dp_power) | |||
|
449 | #print("date",date) | |||
443 |
|
450 | |||
444 | filename = '{}{}{}'.format(self.mnemonic, |
|
451 | filename = '{}{}{}'.format(self.mnemonic, | |
445 | date.strftime('%Y%m%d_%H%M%S'), |
|
452 | date.strftime('%Y%m%d_%H%M%S'), | |
@@ -461,6 +468,8 Inputs: | |||||
461 | if not os.path.exists(self.path): |
|
468 | if not os.path.exists(self.path): | |
462 | os.makedirs(self.path) |
|
469 | os.makedirs(self.path) | |
463 | self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True) |
|
470 | self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True) | |
|
471 | ||||
|
472 | ||||
464 | except ValueError as e: |
|
473 | except ValueError as e: | |
465 | log.error( |
|
474 | log.error( | |
466 | 'Impossible to create a cedar object with "madrigal.cedar.MadrigalCedarFile"', |
|
475 | 'Impossible to create a cedar object with "madrigal.cedar.MadrigalCedarFile"', | |
@@ -475,11 +484,26 Inputs: | |||||
475 | attributes. |
|
484 | attributes. | |
476 | Allowed parameters in: parcodes.tab |
|
485 | Allowed parameters in: parcodes.tab | |
477 | ''' |
|
486 | ''' | |
478 |
|
487 | #self.dataOut.paramInterval=2 | ||
479 | startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) |
|
488 | startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) | |
|
489 | ||||
480 | endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval) |
|
490 | endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval) | |
|
491 | ||||
|
492 | #if self.dataOut.input_dat_type: | |||
|
493 | #if self.dataOut.experiment=="DP": | |||
|
494 | #startTime=datetime.datetime.fromtimestamp(self.dataOut.TimeBlockSeconds_for_dp_power) | |||
|
495 | #endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval) | |||
|
496 | ||||
|
497 | ||||
|
498 | #print("2: ",startTime) | |||
|
499 | #print(endTime) | |||
481 | heights = self.dataOut.heightList |
|
500 | heights = self.dataOut.heightList | |
482 |
|
501 | |||
|
502 | #print(self.blocks) | |||
|
503 | #print(startTime) | |||
|
504 | #print(endTime) | |||
|
505 | #print(heights) | |||
|
506 | #input() | |||
483 | if self.ext == '.dat': |
|
507 | if self.ext == '.dat': | |
484 | for key, value in list(self.twoDDict.items()): |
|
508 | for key, value in list(self.twoDDict.items()): | |
485 | if isinstance(value, str): |
|
509 | if isinstance(value, str): | |
@@ -506,12 +530,20 Inputs: | |||||
506 | elif isinstance(value, (tuple, list)): |
|
530 | elif isinstance(value, (tuple, list)): | |
507 | attr, x = value |
|
531 | attr, x = value | |
508 |
data = getattr(self.dataOut, attr) |
|
532 | data = getattr(self.dataOut, attr) | |
|
533 | #print(x) | |||
|
534 | #print(len(heights)) | |||
|
535 | #print(data[int(x)][:len(heights)]) | |||
|
536 | #print(numpy.shape(out)) | |||
|
537 | #print(numpy.shape(data)) | |||
|
538 | ||||
509 | out[key] = data[int(x)][:len(heights)] |
|
539 | out[key] = data[int(x)][:len(heights)] | |
510 |
|
540 | |||
511 | a = numpy.array([out[k] for k in self.keys]) |
|
541 | a = numpy.array([out[k] for k in self.keys]) | |
|
542 | #print(a) | |||
512 | nrows = numpy.array([numpy.isnan(a[:, x]).all() for x in range(len(heights))]) |
|
543 | nrows = numpy.array([numpy.isnan(a[:, x]).all() for x in range(len(heights))]) | |
513 | index = numpy.where(nrows == False)[0] |
|
544 | index = numpy.where(nrows == False)[0] | |
514 |
|
545 | |||
|
546 | #print(startTime.minute) | |||
515 | rec = madrigal.cedar.MadrigalDataRecord( |
|
547 | rec = madrigal.cedar.MadrigalDataRecord( | |
516 | self.kinst, |
|
548 | self.kinst, | |
517 | self.kindat, |
|
549 | self.kindat, | |
@@ -534,7 +566,7 Inputs: | |||||
534 | len(index), |
|
566 | len(index), | |
535 | **self.extra_args |
|
567 | **self.extra_args | |
536 | ) |
|
568 | ) | |
537 |
|
569 | #print("rec",rec) | ||
538 |
# Setting 1d values |
|
570 | # Setting 1d values | |
539 | for key in self.oneDDict: |
|
571 | for key in self.oneDDict: | |
540 | rec.set1D(key, getattr(self.dataOut, self.oneDDict[key])) |
|
572 | rec.set1D(key, getattr(self.dataOut, self.oneDDict[key])) | |
@@ -547,9 +579,11 Inputs: | |||||
547 |
nrec += 1 |
|
579 | nrec += 1 | |
548 |
|
580 | |||
549 | self.fp.append(rec) |
|
581 | self.fp.append(rec) | |
550 |
if self.ext == '.hdf5' and self.counter % |
|
582 | if self.ext == '.hdf5' and self.counter %2 == 0 and self.counter > 0: | |
|
583 | #print("here") | |||
551 | self.fp.dump() |
|
584 | self.fp.dump() | |
552 | if self.counter % 20 == 0 and self.counter > 0: |
|
585 | if self.counter % 20 == 0 and self.counter > 0: | |
|
586 | #self.fp.write() | |||
553 | log.log( |
|
587 | log.log( | |
554 | 'Writing {} records'.format( |
|
588 | 'Writing {} records'.format( | |
555 | self.counter), |
|
589 | self.counter), |
@@ -424,7 +424,8 class HDFWriter(Operation): | |||||
424 |
|
424 | |||
425 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
425 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, | |
426 | dataList=[], setType=None, description={}): |
|
426 | dataList=[], setType=None, description={}): | |
427 |
|
427 | print("hdf",dataOut.flagNoData) | ||
|
428 | print(dataOut.datatime.ctime()) | |||
428 | self.dataOut = dataOut |
|
429 | self.dataOut = dataOut | |
429 | if not(self.isConfig): |
|
430 | if not(self.isConfig): | |
430 |
self.setup(path=path, blocksPerFile=blocksPerFile, |
|
431 | self.setup(path=path, blocksPerFile=blocksPerFile, |
@@ -79,21 +79,22 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
79 | self.basicHeaderObj = BasicHeader(LOCALTIME) |
|
79 | self.basicHeaderObj = BasicHeader(LOCALTIME) | |
80 | self.systemHeaderObj = SystemHeader() |
|
80 | self.systemHeaderObj = SystemHeader() | |
81 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
81 | self.radarControllerHeaderObj = RadarControllerHeader() | |
|
82 | ||||
82 | self.processingHeaderObj = ProcessingHeader() |
|
83 | self.processingHeaderObj = ProcessingHeader() | |
83 | self.lastUTTime = 0 |
|
84 | self.lastUTTime = 0 | |
84 |
self.profileIndex = 2**32 - 1 |
|
85 | self.profileIndex = 2**32 - 1 | |
85 | self.dataOut = Voltage() |
|
86 | self.dataOut = Voltage() | |
86 | self.selBlocksize = None |
|
87 | self.selBlocksize = None | |
87 | self.selBlocktime = None |
|
88 | self.selBlocktime = None | |
88 |
|
89 | ##print("1--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | ||
89 | def createObjByDefault(self): |
|
90 | def createObjByDefault(self): | |
90 |
|
91 | ##print("2--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | ||
91 | dataObj = Voltage() |
|
92 | dataObj = Voltage() | |
92 |
|
93 | |||
93 | return dataObj |
|
94 | return dataObj | |
94 |
|
95 | |||
95 | def __hasNotDataInBuffer(self): |
|
96 | def __hasNotDataInBuffer(self): | |
96 |
|
97 | ##print("3--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | ||
97 | if self.profileIndex >= self.processingHeaderObj.profilesPerBlock * self.nTxs: |
|
98 | if self.profileIndex >= self.processingHeaderObj.profilesPerBlock * self.nTxs: | |
98 | return 1 |
|
99 | return 1 | |
99 |
|
100 | |||
@@ -109,11 +110,13 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
109 | Return: |
|
110 | Return: | |
110 | None |
|
111 | None | |
111 | """ |
|
112 | """ | |
|
113 | ##print("4--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | |||
112 | pts2read = self.processingHeaderObj.profilesPerBlock * \ |
|
114 | pts2read = self.processingHeaderObj.profilesPerBlock * \ | |
113 | self.processingHeaderObj.nHeights * self.systemHeaderObj.nChannels |
|
115 | self.processingHeaderObj.nHeights * self.systemHeaderObj.nChannels | |
114 | self.blocksize = pts2read |
|
116 | self.blocksize = pts2read | |
115 |
|
117 | |||
116 | def readBlock(self): |
|
118 | def readBlock(self): | |
|
119 | ||||
117 | """ |
|
120 | """ | |
118 | readBlock lee el bloque de datos desde la posicion actual del puntero del archivo |
|
121 | readBlock lee el bloque de datos desde la posicion actual del puntero del archivo | |
119 | (self.fp) y actualiza todos los parametros relacionados al bloque de datos |
|
122 | (self.fp) y actualiza todos los parametros relacionados al bloque de datos | |
@@ -136,7 +139,7 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
136 |
Exceptions: |
|
139 | Exceptions: | |
137 | Si un bloque leido no es un bloque valido |
|
140 | Si un bloque leido no es un bloque valido | |
138 | """ |
|
141 | """ | |
139 |
|
142 | ##print("5--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | ||
140 | # if self.server is not None: |
|
143 | # if self.server is not None: | |
141 | # self.zBlock = self.receiver.recv() |
|
144 | # self.zBlock = self.receiver.recv() | |
142 | # self.zHeader = self.zBlock[:24] |
|
145 | # self.zHeader = self.zBlock[:24] | |
@@ -177,6 +180,7 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
177 | return 1 |
|
180 | return 1 | |
178 |
|
181 | |||
179 | def getFirstHeader(self): |
|
182 | def getFirstHeader(self): | |
|
183 | ##print("6--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | |||
180 |
|
184 | |||
181 | self.getBasicHeader() |
|
185 | self.getBasicHeader() | |
182 |
|
186 | |||
@@ -186,8 +190,12 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
186 |
|
190 | |||
187 | self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy() |
|
191 | self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy() | |
188 |
|
192 | |||
|
193 | #self.dataOut.ippSeconds_general=self.radarControllerHeaderObj.ippSeconds | |||
|
194 | #print(self.nTxs) | |||
189 | if self.nTxs > 1: |
|
195 | if self.nTxs > 1: | |
|
196 | #print(self.radarControllerHeaderObj.ippSeconds) | |||
190 | self.dataOut.radarControllerHeaderObj.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs |
|
197 | self.dataOut.radarControllerHeaderObj.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs | |
|
198 | #print(self.radarControllerHeaderObj.ippSeconds) | |||
191 | # Time interval and code are propierties of dataOut. Its value depends of radarControllerHeaderObj. |
|
199 | # Time interval and code are propierties of dataOut. Its value depends of radarControllerHeaderObj. | |
192 |
|
200 | |||
193 | # self.dataOut.timeInterval = self.radarControllerHeaderObj.ippSeconds * self.processingHeaderObj.nCohInt |
|
201 | # self.dataOut.timeInterval = self.radarControllerHeaderObj.ippSeconds * self.processingHeaderObj.nCohInt | |
@@ -220,7 +228,7 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
220 | self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft |
|
228 | self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft | |
221 |
|
229 | |||
222 | def reshapeData(self): |
|
230 | def reshapeData(self): | |
223 |
|
231 | ##print("7--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | ||
224 | if self.nTxs < 0: |
|
232 | if self.nTxs < 0: | |
225 | return |
|
233 | return | |
226 |
|
234 | |||
@@ -247,6 +255,7 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
247 |
|
255 | |||
248 | def readFirstHeaderFromServer(self): |
|
256 | def readFirstHeaderFromServer(self): | |
249 |
|
257 | |||
|
258 | ##print("8--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | |||
250 | self.getFirstHeader() |
|
259 | self.getFirstHeader() | |
251 |
|
260 | |||
252 | self.firstHeaderSize = self.basicHeaderObj.size |
|
261 | self.firstHeaderSize = self.basicHeaderObj.size | |
@@ -278,6 +287,7 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
278 | self.getBlockDimension() |
|
287 | self.getBlockDimension() | |
279 |
|
288 | |||
280 | def getFromServer(self): |
|
289 | def getFromServer(self): | |
|
290 | ##print("9--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | |||
281 | self.flagDiscontinuousBlock = 0 |
|
291 | self.flagDiscontinuousBlock = 0 | |
282 | self.profileIndex = 0 |
|
292 | self.profileIndex = 0 | |
283 | self.flagIsNewBlock = 1 |
|
293 | self.flagIsNewBlock = 1 | |
@@ -382,6 +392,8 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
382 | self.flagDiscontinuousBlock |
|
392 | self.flagDiscontinuousBlock | |
383 | self.flagIsNewBlock |
|
393 | self.flagIsNewBlock | |
384 | """ |
|
394 | """ | |
|
395 | ||||
|
396 | ##print("10--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK") | |||
385 | if self.flagNoMoreFiles: |
|
397 | if self.flagNoMoreFiles: | |
386 | self.dataOut.flagNoData = True |
|
398 | self.dataOut.flagNoData = True | |
387 | return 0 |
|
399 | return 0 | |
@@ -410,6 +422,7 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
410 | self.dataOut.data = self.datablock[:, self.profileIndex, :] |
|
422 | self.dataOut.data = self.datablock[:, self.profileIndex, :] | |
411 | self.dataOut.profileIndex = self.profileIndex |
|
423 | self.dataOut.profileIndex = self.profileIndex | |
412 |
|
424 | |||
|
425 | ||||
413 | self.profileIndex += 1 |
|
426 | self.profileIndex += 1 | |
414 |
|
427 | |||
415 | else: |
|
428 | else: | |
@@ -458,9 +471,13 class VoltageReader(JRODataReader, ProcessingUnit): | |||||
458 | self.dataOut.flagDataAsBlock = True |
|
471 | self.dataOut.flagDataAsBlock = True | |
459 | self.dataOut.nProfiles = self.dataOut.data.shape[1] |
|
472 | self.dataOut.nProfiles = self.dataOut.data.shape[1] | |
460 |
|
473 | |||
|
474 | #######################DP####################### | |||
|
475 | self.dataOut.CurrentBlock=self.nReadBlocks | |||
|
476 | self.dataOut.LastBlock=self.processingHeaderObj.dataBlocksPerFile | |||
|
477 | #######################DP####################### | |||
461 | self.dataOut.flagNoData = False |
|
478 | self.dataOut.flagNoData = False | |
462 |
|
479 | |||
463 | self.getBasicHeader() |
|
480 | #self.getBasicHeader() | |
464 |
|
481 | |||
465 | self.dataOut.realtime = self.online |
|
482 | self.dataOut.realtime = self.online | |
466 |
|
483 | |||
@@ -673,4 +690,3 class VoltageWriter(JRODataWriter, Operation): | |||||
673 | self.processingHeaderObj.processFlags = self.getProcessFlags() |
|
690 | self.processingHeaderObj.processFlags = self.getProcessFlags() | |
674 |
|
691 | |||
675 | self.setBasicHeader() |
|
692 | self.setBasicHeader() | |
676 | No newline at end of file |
|
@@ -14,3 +14,9 from .jroproc_spectra_lags import * | |||||
14 | from .jroproc_spectra_acf import * |
|
14 | from .jroproc_spectra_acf import * | |
15 | from .bltrproc_parameters import * |
|
15 | from .bltrproc_parameters import * | |
16 | from .pxproc_parameters import * |
|
16 | from .pxproc_parameters import * | |
|
17 | ||||
|
18 | ||||
|
19 | ###########DP########### | |||
|
20 | from .jroproc_voltage_lags import * | |||
|
21 | ###########DP########### | |||
|
22 | from .jroproc_spectra_lags_faraday import * |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
This diff has been collapsed as it changes many lines, (552 lines changed) Show them Hide them | |||||
@@ -302,6 +302,12 class SpectralFilters(Operation): | |||||
302 |
|
|
302 | dataOut.spcparam_range[0]=FrecRange | |
303 |
|
|
303 | return dataOut | |
304 |
|
304 | |||
|
305 | ||||
|
306 | from scipy.optimize import fmin | |||
|
307 | import itertools | |||
|
308 | from scipy.optimize import curve_fit | |||
|
309 | ||||
|
310 | ||||
305 |
|
|
311 | class GaussianFit(Operation): | |
306 |
|
312 | |||
307 |
|
|
313 | ''' | |
@@ -321,113 +327,175 class GaussianFit(Operation): | |||||
321 |
|
|
327 | self.i=0 | |
322 |
|
328 | |||
323 |
|
329 | |||
324 |
|
|
330 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
|
331 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |||
325 |
|
|
332 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
|
333 | methods: generalized, squared | |||
326 | input: spc |
|
334 | input: spc | |
327 | output: |
|
335 | output: | |
328 |
|
|
336 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |
329 | """ |
|
337 | """ | |
330 |
|
338 | print ('Entering ',method,' double Gaussian fit') | ||
331 |
|
|
339 | self.spc = dataOut.data_pre[0].copy() | |
332 |
|
|
340 | self.Num_Hei = self.spc.shape[2] | |
333 |
|
|
341 | self.Num_Bin = self.spc.shape[1] | |
334 |
|
|
342 | self.Num_Chn = self.spc.shape[0] | |
335 | Vrange = dataOut.abscissaList |
|
|||
336 |
|
||||
337 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
|||
338 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
|||
339 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
|||
340 | SPC_ch1[:] = numpy.NaN |
|
|||
341 | SPC_ch2[:] = numpy.NaN |
|
|||
342 |
|
||||
343 |
|
343 | |||
344 |
|
|
344 | start_time = time.time() | |
345 |
|
345 | |||
346 | noise_ = dataOut.spc_noise[0].copy() |
|
|||
347 |
|
||||
348 |
|
||||
349 |
|
|
346 | pool = Pool(processes=self.Num_Chn) | |
350 |
|
|
347 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |
351 |
|
|
348 | objs = [self for __ in range(self.Num_Chn)] | |
352 |
|
|
349 | attrs = list(zip(objs, args)) | |
353 |
|
|
350 | DGauFitParam = pool.map(target, attrs) | |
354 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
351 | # Parameters: | |
355 |
|
352 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | ||
356 | ''' Parameters: |
|
353 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |
357 | 1. Amplitude |
|
354 | ||
358 | 2. Shift |
|
355 | # Double Gaussian Curves | |
359 | 3. Width |
|
356 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
360 | 4. Power |
|
357 | gau0[:] = numpy.NaN | |
361 | ''' |
|
358 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
|
359 | gau1[:] = numpy.NaN | |||
|
360 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |||
|
361 | for iCh in range(self.Num_Chn): | |||
|
362 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |||
|
363 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |||
|
364 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |||
|
365 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |||
|
366 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |||
|
367 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |||
|
368 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |||
|
369 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |||
|
370 | if method == 'generalized': | |||
|
371 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |||
|
372 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |||
|
373 | elif method == 'squared': | |||
|
374 | p0 = 2. | |||
|
375 | p1 = 2. | |||
|
376 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |||
|
377 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |||
|
378 | dataOut.GaussFit0 = gau0 | |||
|
379 | dataOut.GaussFit1 = gau1 | |||
|
380 | print(numpy.shape(gau0)) | |||
|
381 | hei = 26 | |||
|
382 | print(dataOut.heightList[hei]) | |||
|
383 | #import matplotlib.pyplot as plt | |||
|
384 | plt.plot(self.spc[0,:,hei]) | |||
|
385 | plt.plot(dataOut.GaussFit0[0,:,hei]) | |||
|
386 | plt.plot(dataOut.GaussFit1[0,:,hei]) | |||
|
387 | plt.plot(dataOut.GaussFit0[0,:,hei]+dataOut.GaussFit1[0,:,hei]) | |||
|
388 | ||||
|
389 | plt.show() | |||
|
390 | time.sleep(60) | |||
|
391 | #print(gau0) | |||
|
392 | ||||
|
393 | print('Leaving ',method ,' double Gaussian fit') | |||
|
394 | return dataOut | |||
362 |
|
395 | |||
363 |
|
|
396 | def FitGau(self, X): | |
|
397 | # print('Entering FitGau') | |||
|
398 | # Assigning the variables | |||
|
399 | Vrange, ch, wnoise, num_intg, SNRlimit = X | |||
|
400 | # Noise Limits | |||
|
401 | noisebl = wnoise * 0.9 | |||
|
402 | noisebh = wnoise * 1.1 | |||
|
403 | # Radar Velocity | |||
|
404 | Va = max(Vrange) | |||
|
405 | deltav = Vrange[1] - Vrange[0] | |||
|
406 | x = numpy.arange(self.Num_Bin) | |||
364 |
|
407 | |||
365 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
408 | # print ('stop 0') | |
366 |
|
||||
367 | SPCparam = [] |
|
|||
368 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
|||
369 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
|||
370 | SPC_ch1[:] = 0#numpy.NaN |
|
|||
371 | SPC_ch2[:] = 0#numpy.NaN |
|
|||
372 |
|
||||
373 |
|
409 | |||
|
410 | # 5 parameters, 2 Gaussians | |||
|
411 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |||
|
412 | DGauFitParam[:] = numpy.NaN | |||
374 |
|
413 | |||
|
414 | # SPCparam = [] | |||
|
415 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
416 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
417 | # SPC_ch1[:] = 0 #numpy.NaN | |||
|
418 | # SPC_ch2[:] = 0 #numpy.NaN | |||
|
419 | # print ('stop 1') | |||
375 |
|
|
420 | for ht in range(self.Num_Hei): | |
376 |
|
421 | # print (ht) | ||
377 |
|
422 | # print ('stop 2') | ||
|
423 | # Spectra at each range | |||
378 |
|
|
424 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
|
425 | snr = ( spc.mean() - wnoise ) / wnoise | |||
|
426 | snrdB = 10.*numpy.log10(snr) | |||
379 |
|
427 | |||
|
428 | #print ('stop 3') | |||
|
429 | if snrdB < SNRlimit : | |||
|
430 | # snr = numpy.NaN | |||
|
431 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
432 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
433 | # SPCparam = (SPC_ch1,SPC_ch2) | |||
|
434 | # print ('SNR less than SNRth') | |||
|
435 | continue | |||
|
436 | # wnoise = hildebrand_sekhon(spc,num_intg) | |||
|
437 | # print ('stop 2.01') | |||
380 |
|
|
438 | ############################################# | |
381 |
|
|
439 | # normalizing spc and noise | |
382 |
|
|
440 | # This part differs from gg1 | |
383 |
|
|
441 | # spc_norm_max = max(spc) #commented by D. Scipión 19.03.2021 | |
384 |
|
|
442 | #spc = spc / spc_norm_max | |
385 |
|
|
443 | # pnoise = pnoise #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |
386 |
|
|
444 | ############################################# | |
387 |
|
445 | |||
|
446 | # print ('stop 2.1') | |||
388 |
|
|
447 | fatspectra=1.0 | |
|
448 | # noise per channel.... we might want to use the noise at each range | |||
389 |
|
449 | |||
390 |
|
|
450 | # wnoise = noise_ #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |
391 |
|
|
451 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
392 |
|
|
452 | #if wnoise>1.1*pnoise: # to be tested later | |
393 |
|
|
453 | # wnoise=pnoise | |
394 |
|
|
454 | # noisebl = wnoise*0.9 | |
395 |
|
|
455 | # noisebh = wnoise*1.1 | |
396 |
|
|
456 | spc = spc - wnoise # signal | |
397 |
|
457 | |||
|
458 | # print ('stop 2.2') | |||
398 |
|
|
459 | minx = numpy.argmin(spc) | |
399 |
|
|
460 | #spcs=spc.copy() | |
400 |
|
|
461 | spcs = numpy.roll(spc,-minx) | |
401 |
|
|
462 | cum = numpy.cumsum(spcs) | |
402 |
|
|
463 | # tot_noise = wnoise * self.Num_Bin #64; | |
403 |
|
||||
404 | snr = sum(spcs)/tot_noise |
|
|||
405 | snrdB=10.*numpy.log10(snr) |
|
|||
406 |
|
464 | |||
407 | if snrdB < SNRlimit : |
|
465 | # print ('stop 2.3') | |
408 |
|
|
466 | # snr = sum(spcs) / tot_noise | |
409 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
467 | # snrdB = 10.*numpy.log10(snr) | |
410 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
468 | #print ('stop 3') | |
411 | SPCparam = (SPC_ch1,SPC_ch2) |
|
469 | # if snrdB < SNRlimit : | |
412 |
|
|
470 | # snr = numpy.NaN | |
|
471 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
472 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
473 | # SPCparam = (SPC_ch1,SPC_ch2) | |||
|
474 | # print ('SNR less than SNRth') | |||
|
475 | # continue | |||
413 |
|
476 | |||
414 |
|
477 | |||
415 |
|
|
478 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
416 |
|
|
479 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
417 |
|
480 | # print ('stop 4') | ||
418 |
|
|
481 | cummax = max(cum) | |
419 |
|
|
482 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |
420 |
|
|
483 | cumlo = cummax * epsi | |
421 |
|
|
484 | cumhi = cummax * (1-epsi) | |
422 |
|
|
485 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
423 |
|
486 | |||
424 |
|
487 | # print ('stop 5') | ||
425 |
|
|
488 | if len(powerindex) < 1:# case for powerindex 0 | |
|
489 | # print ('powerindex < 1') | |||
426 |
|
|
490 | continue | |
427 |
|
|
491 | powerlo = powerindex[0] | |
428 |
|
|
492 | powerhi = powerindex[-1] | |
429 |
|
|
493 | powerwidth = powerhi-powerlo | |
|
494 | if powerwidth <= 1: | |||
|
495 | # print('powerwidth <= 1') | |||
|
496 | continue | |||
430 |
|
497 | |||
|
498 | # print ('stop 6') | |||
431 |
|
|
499 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |
432 |
|
|
500 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |
433 |
|
|
501 | midpeak = (firstpeak + secondpeak)/2. | |
@@ -435,7 +503,6 class GaussianFit(Operation): | |||||
435 |
|
|
503 | secondamp = spcs[int(secondpeak)] | |
436 |
|
|
504 | midamp = spcs[int(midpeak)] | |
437 |
|
505 | |||
438 | x=numpy.arange( self.Num_Bin ) |
|
|||
439 |
|
|
506 | y_data = spc + wnoise | |
440 |
|
507 | |||
441 |
|
|
508 | ''' single Gaussian ''' | |
@@ -444,12 +511,14 class GaussianFit(Operation): | |||||
444 |
|
|
511 | power0 = 2. | |
445 |
|
|
512 | amplitude0 = midamp | |
446 |
|
|
513 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |
447 |
|
|
514 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
448 |
|
|
515 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |
|
516 | # print ('stop 7.1') | |||
|
517 | # print (bnds) | |||
449 |
|
518 | |||
450 |
|
|
519 | chiSq1=lsq1[1] | |
451 |
|
||||
452 |
|
520 | |||
|
521 | # print ('stop 8') | |||
453 |
|
|
522 | if fatspectra<1.0 and powerwidth<4: | |
454 |
|
|
523 | choice=0 | |
455 |
|
|
524 | Amplitude0=lsq1[0][2] | |
@@ -464,30 +533,33 class GaussianFit(Operation): | |||||
464 |
|
|
533 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
465 |
|
|
534 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
466 |
|
535 | |||
467 | ''' two gaussians ''' |
|
536 | # print ('stop 9') | |
|
537 | ''' two Gaussians ''' | |||
468 |
|
|
538 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
469 |
|
|
539 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |
470 |
|
|
540 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |
471 |
|
|
541 | width0 = powerwidth/6. | |
472 |
|
|
542 | width1 = width0 | |
473 |
|
|
543 | power0 = 2. | |
474 |
|
|
544 | power1 = power0 | |
475 |
|
|
545 | amplitude0 = firstamp | |
476 |
|
|
546 | amplitude1 = secondamp | |
477 |
|
|
547 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
478 |
|
|
548 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
479 |
|
|
549 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
480 |
|
|
550 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
481 |
|
551 | |||
|
552 | # print ('stop 10') | |||
482 |
|
|
553 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
483 |
|
554 | |||
|
555 | # print ('stop 11') | |||
|
556 | chiSq2 = lsq2[1] | |||
484 |
|
557 | |||
485 | chiSq2=lsq2[1]; |
|
558 | # print ('stop 12') | |
486 |
|
||||
487 |
|
||||
488 |
|
559 | |||
489 |
|
|
560 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
490 |
|
561 | |||
|
562 | # print ('stop 13') | |||
491 |
|
|
563 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
492 |
|
|
564 | if oneG: | |
493 |
|
|
565 | choice = 0 | |
@@ -495,8 +567,8 class GaussianFit(Operation): | |||||
495 |
|
|
567 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |
496 |
|
|
568 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |
497 |
|
|
569 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |
498 |
|
|
570 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |
499 |
|
|
571 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |
500 |
|
|
572 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |
501 |
|
573 | |||
502 |
|
|
574 | if gp1>gp2: | |
@@ -517,16 +589,19 class GaussianFit(Operation): | |||||
517 |
|
|
589 | else: # with low SNR go to the most energetic peak | |
518 |
|
|
590 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
519 |
|
591 | |||
|
592 | # print ('stop 14') | |||
|
593 | shift0 = lsq2[0][0] | |||
|
594 | vel0 = Vrange[0] + shift0 * deltav | |||
|
595 | shift1 = lsq2[0][4] | |||
|
596 | # vel1=Vrange[0] + shift1 * deltav | |||
520 |
|
597 | |||
521 | shift0=lsq2[0][0]; |
|
598 | # max_vel = 1.0 | |
522 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
599 | # Va = max(Vrange) | |
523 | shift1=lsq2[0][4]; |
|
600 | # deltav = Vrange[1]-Vrange[0] | |
524 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) |
|
601 | # print ('stop 15') | |
525 |
|
||||
526 | max_vel = 1.0 |
|
|||
527 |
|
||||
528 |
|
|
602 | #first peak will be 0, second peak will be 1 | |
529 |
|
|
603 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.Scipión 19.03.2021 | |
|
604 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |||
530 |
|
|
605 | shift0 = lsq2[0][0] | |
531 |
|
|
606 | width0 = lsq2[0][1] | |
532 |
|
|
607 | Amplitude0 = lsq2[0][2] | |
@@ -550,38 +625,47 class GaussianFit(Operation): | |||||
550 |
|
|
625 | noise = lsq2[0][8] | |
551 |
|
626 | |||
552 |
|
|
627 | if Amplitude0<0.05: # in case the peak is noise | |
553 |
|
|
628 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
554 |
|
|
629 | if Amplitude1<0.05: | |
555 |
|
|
630 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
556 |
|
631 | |||
557 |
|
632 | # print ('stop 16 ') | ||
558 |
|
|
633 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |
559 |
|
|
634 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |
560 |
|
|
635 | # SPCparam = (SPC_ch1,SPC_ch2) | |
561 |
|
636 | |||
562 |
|
637 | DGauFitParam[0,ht,0] = noise | ||
563 | return GauSPC |
|
638 | DGauFitParam[0,ht,1] = noise | |
|
639 | DGauFitParam[1,ht,0] = Amplitude0 | |||
|
640 | DGauFitParam[1,ht,1] = Amplitude1 | |||
|
641 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |||
|
642 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |||
|
643 | DGauFitParam[3,ht,0] = width0 * deltav | |||
|
644 | DGauFitParam[3,ht,1] = width1 * deltav | |||
|
645 | DGauFitParam[4,ht,0] = p0 | |||
|
646 | DGauFitParam[4,ht,1] = p1 | |||
|
647 | ||||
|
648 | # print (DGauFitParam.shape) | |||
|
649 | # print ('Leaving FitGau') | |||
|
650 | return DGauFitParam | |||
|
651 | # return SPCparam | |||
|
652 | # return GauSPC | |||
564 |
|
653 | |||
565 |
|
|
654 | def y_model1(self,x,state): | |
566 |
|
|
655 | shift0, width0, amplitude0, power0, noise = state | |
567 |
|
|
656 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |
568 |
|
||||
569 |
|
|
657 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
570 |
|
||||
571 |
|
|
658 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
572 |
|
|
659 | return model0 + model0u + model0d + noise | |
573 |
|
660 | |||
574 |
|
|
661 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
575 |
|
|
662 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |
576 |
|
|
663 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
577 |
|
||||
578 |
|
|
664 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
579 |
|
||||
580 |
|
|
665 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
581 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) |
|
|||
582 |
|
666 | |||
|
667 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |||
583 |
|
|
668 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |
584 |
|
||||
585 |
|
|
669 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | |
586 |
|
|
670 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |
587 |
|
671 | |||
@@ -593,6 +677,236 class GaussianFit(Operation): | |||||
593 |
|
|
677 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
594 |
|
678 | |||
595 |
|
679 | |||
|
680 | class Oblique_Gauss_Fit(Operation): | |||
|
681 | ||||
|
682 | def __init__(self): | |||
|
683 | Operation.__init__(self) | |||
|
684 | ||||
|
685 | ||||
|
686 | ||||
|
687 | def Gauss_fit(self,spc,x,nGauss): | |||
|
688 | ||||
|
689 | ||||
|
690 | def gaussian(x, a, b, c, d): | |||
|
691 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |||
|
692 | return val | |||
|
693 | ||||
|
694 | if nGauss == 'first': | |||
|
695 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) | |||
|
696 | spc_2_aux = numpy.flip(spc_1_aux) | |||
|
697 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) | |||
|
698 | ||||
|
699 | len_dif = len(x)-len(spc_3_aux) | |||
|
700 | ||||
|
701 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] | |||
|
702 | ||||
|
703 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) | |||
|
704 | ||||
|
705 | y = spc_new | |||
|
706 | ||||
|
707 | elif nGauss == 'second': | |||
|
708 | y = spc | |||
|
709 | ||||
|
710 | ||||
|
711 | # estimate starting values from the data | |||
|
712 | a = y.max() | |||
|
713 | b = x[numpy.argmax(y)] | |||
|
714 | if nGauss == 'first': | |||
|
715 | c = 1.#b#b#numpy.std(spc) | |||
|
716 | elif nGauss == 'second': | |||
|
717 | c = b | |||
|
718 | else: | |||
|
719 | print("ERROR") | |||
|
720 | ||||
|
721 | d = numpy.mean(y[-100:]) | |||
|
722 | ||||
|
723 | # define a least squares function to optimize | |||
|
724 | def minfunc(params): | |||
|
725 | return sum((y-gaussian(x,params[0],params[1],params[2],params[3]))**2) | |||
|
726 | ||||
|
727 | # fit | |||
|
728 | popt = fmin(minfunc,[a,b,c,d],disp=False) | |||
|
729 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) | |||
|
730 | ||||
|
731 | ||||
|
732 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] | |||
|
733 | ||||
|
734 | ||||
|
735 | def Gauss_fit_2(self,spc,x,nGauss): | |||
|
736 | ||||
|
737 | ||||
|
738 | def gaussian(x, a, b, c, d): | |||
|
739 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |||
|
740 | return val | |||
|
741 | ||||
|
742 | if nGauss == 'first': | |||
|
743 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) | |||
|
744 | spc_2_aux = numpy.flip(spc_1_aux) | |||
|
745 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) | |||
|
746 | ||||
|
747 | len_dif = len(x)-len(spc_3_aux) | |||
|
748 | ||||
|
749 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] | |||
|
750 | ||||
|
751 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) | |||
|
752 | ||||
|
753 | y = spc_new | |||
|
754 | ||||
|
755 | elif nGauss == 'second': | |||
|
756 | y = spc | |||
|
757 | ||||
|
758 | ||||
|
759 | # estimate starting values from the data | |||
|
760 | a = y.max() | |||
|
761 | b = x[numpy.argmax(y)] | |||
|
762 | if nGauss == 'first': | |||
|
763 | c = 1.#b#b#numpy.std(spc) | |||
|
764 | elif nGauss == 'second': | |||
|
765 | c = b | |||
|
766 | else: | |||
|
767 | print("ERROR") | |||
|
768 | ||||
|
769 | d = numpy.mean(y[-100:]) | |||
|
770 | ||||
|
771 | # define a least squares function to optimize | |||
|
772 | popt,pcov = curve_fit(gaussian,x,y,p0=[a,b,c,d]) | |||
|
773 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) | |||
|
774 | ||||
|
775 | ||||
|
776 | #return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] | |||
|
777 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]),popt[0], popt[1], popt[2], popt[3] | |||
|
778 | ||||
|
779 | def Double_Gauss_fit(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |||
|
780 | ||||
|
781 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |||
|
782 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |||
|
783 | return val | |||
|
784 | ||||
|
785 | ||||
|
786 | y = spc | |||
|
787 | ||||
|
788 | # estimate starting values from the data | |||
|
789 | a1 = A1 | |||
|
790 | b1 = B1 | |||
|
791 | c1 = C1#numpy.std(spc) | |||
|
792 | ||||
|
793 | a2 = A2#y.max() | |||
|
794 | b2 = B2#x[numpy.argmax(y)] | |||
|
795 | c2 = C2#numpy.std(spc) | |||
|
796 | d = D | |||
|
797 | ||||
|
798 | # define a least squares function to optimize | |||
|
799 | def minfunc(params): | |||
|
800 | return sum((y-double_gaussian(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2) | |||
|
801 | ||||
|
802 | # fit | |||
|
803 | popt = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d],disp=False) | |||
|
804 | ||||
|
805 | return double_gaussian(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
806 | ||||
|
807 | def Double_Gauss_fit_2(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |||
|
808 | ||||
|
809 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |||
|
810 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |||
|
811 | return val | |||
|
812 | ||||
|
813 | ||||
|
814 | y = spc | |||
|
815 | ||||
|
816 | # estimate starting values from the data | |||
|
817 | a1 = A1 | |||
|
818 | b1 = B1 | |||
|
819 | c1 = C1#numpy.std(spc) | |||
|
820 | ||||
|
821 | a2 = A2#y.max() | |||
|
822 | b2 = B2#x[numpy.argmax(y)] | |||
|
823 | c2 = C2#numpy.std(spc) | |||
|
824 | d = D | |||
|
825 | ||||
|
826 | # fit | |||
|
827 | ||||
|
828 | popt,pcov = curve_fit(double_gaussian,x,y,p0=[a1,b1,c1,a2,b2,c2,d]) | |||
|
829 | ||||
|
830 | error = numpy.sqrt(numpy.diag(pcov)) | |||
|
831 | ||||
|
832 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6], error[0], error[1], error[2], error[3], error[4], error[5], error[6] | |||
|
833 | ||||
|
834 | ||||
|
835 | ||||
|
836 | ||||
|
837 | def run(self, dataOut): | |||
|
838 | ||||
|
839 | pwcode = 1 | |||
|
840 | ||||
|
841 | if dataOut.flagDecodeData: | |||
|
842 | pwcode = numpy.sum(dataOut.code[0]**2) | |||
|
843 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |||
|
844 | normFactor = dataOut.nProfiles * dataOut.nIncohInt * dataOut.nCohInt * pwcode * dataOut.windowOfFilter | |||
|
845 | factor = normFactor | |||
|
846 | z = dataOut.data_spc / factor | |||
|
847 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |||
|
848 | dataOut.power = numpy.average(z, axis=1) | |||
|
849 | dataOut.powerdB = 10 * numpy.log10(dataOut.power) | |||
|
850 | ||||
|
851 | ||||
|
852 | x = dataOut.getVelRange(0) | |||
|
853 | #print(aux) | |||
|
854 | #print(numpy.shape(aux)) | |||
|
855 | #exit(1) | |||
|
856 | ||||
|
857 | #print(numpy.shape(dataOut.data_spc)) | |||
|
858 | ||||
|
859 | dataOut.Oblique_params = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |||
|
860 | dataOut.Oblique_param_errors = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |||
|
861 | ||||
|
862 | dataOut.VelRange = x | |||
|
863 | ||||
|
864 | ||||
|
865 | l1=range(22,36) | |||
|
866 | l2=range(58,99) | |||
|
867 | ||||
|
868 | for hei in itertools.chain(l1, l2): | |||
|
869 | #print("INIT") | |||
|
870 | #print(hei) | |||
|
871 | ||||
|
872 | try: | |||
|
873 | spc = dataOut.data_spc[0,:,hei] | |||
|
874 | ||||
|
875 | spc_fit, A1, B1, C1, D1 = self.Gauss_fit_2(spc,x,'first') | |||
|
876 | ||||
|
877 | spc_diff = spc - spc_fit | |||
|
878 | spc_diff[spc_diff < 0] = 0 | |||
|
879 | ||||
|
880 | spc_fit_diff, A2, B2, C2, D2 = self.Gauss_fit_2(spc_diff,x,'second') | |||
|
881 | ||||
|
882 | D = (D1+D2) | |||
|
883 | ||||
|
884 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_param_errors[0,0,hei],dataOut.Oblique_param_errors[0,1,hei],dataOut.Oblique_param_errors[0,2,hei],dataOut.Oblique_param_errors[0,3,hei],dataOut.Oblique_param_errors[0,4,hei],dataOut.Oblique_param_errors[0,5,hei],dataOut.Oblique_param_errors[0,6,hei] = self.Double_Gauss_fit_2(spc,x,A1,B1,C1,A2,B2,C2,D) | |||
|
885 | #spc_double_fit,dataOut.Oblique_params = self.Double_Gauss_fit(spc,x,A1,B1,C1,A2,B2,C2,D) | |||
|
886 | #print(dataOut.Oblique_params) | |||
|
887 | except: | |||
|
888 | ###dataOut.Oblique_params[0,:,hei] = dataOut.Oblique_params[0,:,hei]*numpy.NAN | |||
|
889 | pass | |||
|
890 | #print("DONE") | |||
|
891 | ''' | |||
|
892 | print(dataOut.Oblique_params[1]) | |||
|
893 | print(dataOut.Oblique_params[4]) | |||
|
894 | import matplotlib.pyplot as plt | |||
|
895 | plt.plot(x,spc_double_fit) | |||
|
896 | plt.show() | |||
|
897 | import time | |||
|
898 | time.sleep(5) | |||
|
899 | plt.close() | |||
|
900 | ''' | |||
|
901 | ||||
|
902 | ||||
|
903 | ||||
|
904 | ||||
|
905 | ||||
|
906 | return dataOut | |||
|
907 | ||||
|
908 | ||||
|
909 | ||||
596 |
|
910 | |||
597 |
|
|
911 | class PrecipitationProc(Operation): | |
598 |
|
912 | |||
@@ -3998,3 +4312,55 class SMOperations(): | |||||
3998 |
|
|
4312 | # error[indInvalid1] = 13 | |
3999 |
|
|
4313 | # | |
4000 |
|
|
4314 | # return heights, error | |
|
4315 | ||||
|
4316 | ||||
|
4317 | ||||
|
4318 | class IGRFModel(Operation): | |||
|
4319 | """Operation to calculate Geomagnetic parameters. | |||
|
4320 | ||||
|
4321 | Parameters: | |||
|
4322 | ----------- | |||
|
4323 | None | |||
|
4324 | ||||
|
4325 | Example | |||
|
4326 | -------- | |||
|
4327 | ||||
|
4328 | op = proc_unit.addOperation(name='IGRFModel', optype='other') | |||
|
4329 | ||||
|
4330 | """ | |||
|
4331 | ||||
|
4332 | def __init__(self, **kwargs): | |||
|
4333 | ||||
|
4334 | Operation.__init__(self, **kwargs) | |||
|
4335 | ||||
|
4336 | self.aux=1 | |||
|
4337 | ||||
|
4338 | def run(self,dataOut): | |||
|
4339 | ||||
|
4340 | try: | |||
|
4341 | from schainpy.model.proc import mkfact_short_2020 | |||
|
4342 | except: | |||
|
4343 | log.warning('You should install "mkfact_short_2020" module to process IGRF Model') | |||
|
4344 | ||||
|
4345 | if self.aux==1: | |||
|
4346 | ||||
|
4347 | #dataOut.TimeBlockSeconds_First_Time=time.mktime(time.strptime(dataOut.TimeBlockDate)) | |||
|
4348 | #### we do not use dataOut.datatime.ctime() because it's the time of the second (next) block | |||
|
4349 | dataOut.TimeBlockSeconds_First_Time=dataOut.TimeBlockSeconds | |||
|
4350 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_First_Time) | |||
|
4351 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 | |||
|
4352 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 | |||
|
4353 | ||||
|
4354 | self.aux=0 | |||
|
4355 | ||||
|
4356 | dataOut.h=numpy.arange(0.0,15.0*dataOut.MAXNRANGENDT,15.0,dtype='float32') | |||
|
4357 | dataOut.bfm=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |||
|
4358 | dataOut.bfm=numpy.array(dataOut.bfm,order='F') | |||
|
4359 | dataOut.thb=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |||
|
4360 | dataOut.thb=numpy.array(dataOut.thb,order='F') | |||
|
4361 | dataOut.bki=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |||
|
4362 | dataOut.bki=numpy.array(dataOut.bki,order='F') | |||
|
4363 | ||||
|
4364 | mkfact_short_2020.mkfact(dataOut.year,dataOut.h,dataOut.bfm,dataOut.thb,dataOut.bki,dataOut.MAXNRANGENDT) | |||
|
4365 | ||||
|
4366 | return dataOut |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
General Comments 0
You need to be logged in to leave comments.
Login now