@@ -1,402 +1,413 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Oct 24, 2016 |
|
2 | Created on Oct 24, 2016 | |
3 |
|
3 | |||
4 | @author: roj- LouVD |
|
4 | @author: roj- LouVD | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import numpy |
|
7 | import numpy | |
8 | import copy |
|
8 | import copy | |
9 | import datetime |
|
9 | import datetime | |
10 | import time |
|
10 | import time | |
11 | from time import gmtime |
|
11 | from time import gmtime | |
12 |
|
12 | |||
13 | from numpy import transpose |
|
13 | from numpy import transpose | |
14 |
|
14 | |||
15 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
15 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
16 | from schainpy.model.data.jrodata import Parameters |
|
16 | from schainpy.model.data.jrodata import Parameters | |
17 |
|
17 | |||
18 |
|
18 | |||
19 | class BLTRParametersProc(ProcessingUnit): |
|
19 | class BLTRParametersProc(ProcessingUnit): | |
20 | ''' |
|
20 | ''' | |
21 | Processing unit for BLTR parameters data (winds) |
|
21 | Processing unit for BLTR parameters data (winds) | |
22 |
|
22 | |||
23 | Inputs: |
|
23 | Inputs: | |
24 | self.dataOut.nmodes - Number of operation modes |
|
24 | self.dataOut.nmodes - Number of operation modes | |
25 | self.dataOut.nchannels - Number of channels |
|
25 | self.dataOut.nchannels - Number of channels | |
26 | self.dataOut.nranges - Number of ranges |
|
26 | self.dataOut.nranges - Number of ranges | |
27 |
|
27 | |||
28 | self.dataOut.data_snr - SNR array |
|
28 | self.dataOut.data_snr - SNR array | |
29 | self.dataOut.data_output - Zonal, Vertical and Meridional velocity array |
|
29 | self.dataOut.data_output - Zonal, Vertical and Meridional velocity array | |
30 | self.dataOut.height - Height array (km) |
|
30 | self.dataOut.height - Height array (km) | |
31 | self.dataOut.time - Time array (seconds) |
|
31 | self.dataOut.time - Time array (seconds) | |
32 |
|
32 | |||
33 | self.dataOut.fileIndex -Index of the file currently read |
|
33 | self.dataOut.fileIndex -Index of the file currently read | |
34 | self.dataOut.lat - Latitude coordinate of BLTR location |
|
34 | self.dataOut.lat - Latitude coordinate of BLTR location | |
35 |
|
35 | |||
36 | self.dataOut.doy - Experiment doy (number of the day in the current year) |
|
36 | self.dataOut.doy - Experiment doy (number of the day in the current year) | |
37 | self.dataOut.month - Experiment month |
|
37 | self.dataOut.month - Experiment month | |
38 | self.dataOut.day - Experiment day |
|
38 | self.dataOut.day - Experiment day | |
39 | self.dataOut.year - Experiment year |
|
39 | self.dataOut.year - Experiment year | |
40 | ''' |
|
40 | ''' | |
41 |
|
41 | |||
42 | def __init__(self): |
|
42 | def __init__(self): | |
43 | ''' |
|
43 | ''' | |
44 | Inputs: None |
|
44 | Inputs: None | |
45 | ''' |
|
45 | ''' | |
46 | ProcessingUnit.__init__(self) |
|
46 | ProcessingUnit.__init__(self) | |
47 | self.dataOut = Parameters() |
|
47 | self.dataOut = Parameters() | |
48 |
|
48 | |||
49 | def setup(self, mode): |
|
49 | def setup(self, mode): | |
50 | ''' |
|
50 | ''' | |
51 | ''' |
|
51 | ''' | |
52 | self.dataOut.mode = mode |
|
52 | self.dataOut.mode = mode | |
53 |
|
53 | |||
54 | def run(self, mode, snr_threshold=None): |
|
54 | def run(self, mode, snr_threshold=None): | |
55 | ''' |
|
55 | ''' | |
56 | Inputs: |
|
56 | Inputs: | |
57 | mode = High resolution (0) or Low resolution (1) data |
|
57 | mode = High resolution (0) or Low resolution (1) data | |
58 | snr_threshold = snr filter value |
|
58 | snr_threshold = snr filter value | |
59 | ''' |
|
59 | ''' | |
60 |
|
60 | |||
61 | if not self.isConfig: |
|
61 | if not self.isConfig: | |
62 | self.setup(mode) |
|
62 | self.setup(mode) | |
63 | self.isConfig = True |
|
63 | self.isConfig = True | |
64 |
|
64 | |||
65 | if self.dataIn.type == 'Parameters': |
|
65 | if self.dataIn.type == 'Parameters': | |
66 | self.dataOut.copy(self.dataIn) |
|
66 | self.dataOut.copy(self.dataIn) | |
67 |
|
67 | |||
68 | self.dataOut.data_param = self.dataOut.data[mode] |
|
68 | self.dataOut.data_param = self.dataOut.data[mode] | |
69 | self.dataOut.heightList = self.dataOut.height[0] |
|
69 | self.dataOut.heightList = self.dataOut.height[0] | |
70 | self.dataOut.data_snr = self.dataOut.data_snr[mode] |
|
70 | self.dataOut.data_snr = self.dataOut.data_snr[mode] | |
|
71 | ||||
|
72 | data_param = numpy.zeros([4, len(self.dataOut.heightList)]) | |||
71 |
|
73 | |||
|
74 | SNRavg = numpy.average(self.dataOut.data_snr, axis=0) | |||
|
75 | SNRavgdB = 10*numpy.log10(SNRavg) | |||
|
76 | # Censoring Data | |||
72 | if snr_threshold is not None: |
|
77 | if snr_threshold is not None: | |
73 | SNRavg = numpy.average(self.dataOut.data_snr, axis=0) |
|
|||
74 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
|||
75 | for i in range(3): |
|
78 | for i in range(3): | |
76 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
|
79 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan | |
|
80 | # Including AvgSNR in data_param | |||
|
81 | for i in range(data_param.shape[0]): | |||
|
82 | if i == 3: | |||
|
83 | data_param[i] = SNRavgdB | |||
|
84 | else: | |||
|
85 | data_param[i] = self.dataOut.data_param[i] | |||
|
86 | ||||
|
87 | self.dataOut.data_param = data_param | |||
77 |
|
88 | |||
78 | # TODO |
|
89 | # TODO | |
79 |
|
90 | |||
80 | class OutliersFilter(Operation): |
|
91 | class OutliersFilter(Operation): | |
81 |
|
92 | |||
82 | def __init__(self): |
|
93 | def __init__(self): | |
83 | ''' |
|
94 | ''' | |
84 | ''' |
|
95 | ''' | |
85 | Operation.__init__(self) |
|
96 | Operation.__init__(self) | |
86 |
|
97 | |||
87 | def run(self, svalue2, method, factor, filter, npoints=9): |
|
98 | def run(self, svalue2, method, factor, filter, npoints=9): | |
88 | ''' |
|
99 | ''' | |
89 | Inputs: |
|
100 | Inputs: | |
90 | svalue - string to select array velocity |
|
101 | svalue - string to select array velocity | |
91 | svalue2 - string to choose axis filtering |
|
102 | svalue2 - string to choose axis filtering | |
92 | method - 0 for SMOOTH or 1 for MEDIAN |
|
103 | method - 0 for SMOOTH or 1 for MEDIAN | |
93 | factor - number used to set threshold |
|
104 | factor - number used to set threshold | |
94 | filter - 1 for data filtering using the standard deviation criteria else 0 |
|
105 | filter - 1 for data filtering using the standard deviation criteria else 0 | |
95 | npoints - number of points for mask filter |
|
106 | npoints - number of points for mask filter | |
96 | ''' |
|
107 | ''' | |
97 |
|
108 | |||
98 | print(' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor)) |
|
109 | print(' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor)) | |
99 |
|
110 | |||
100 |
|
111 | |||
101 | yaxis = self.dataOut.heightList |
|
112 | yaxis = self.dataOut.heightList | |
102 | xaxis = numpy.array([[self.dataOut.utctime]]) |
|
113 | xaxis = numpy.array([[self.dataOut.utctime]]) | |
103 |
|
114 | |||
104 | # Zonal |
|
115 | # Zonal | |
105 | value_temp = self.dataOut.data_output[0] |
|
116 | value_temp = self.dataOut.data_output[0] | |
106 |
|
117 | |||
107 | # Zonal |
|
118 | # Zonal | |
108 | value_temp = self.dataOut.data_output[1] |
|
119 | value_temp = self.dataOut.data_output[1] | |
109 |
|
120 | |||
110 | # Vertical |
|
121 | # Vertical | |
111 | value_temp = numpy.transpose(self.dataOut.data_output[2]) |
|
122 | value_temp = numpy.transpose(self.dataOut.data_output[2]) | |
112 |
|
123 | |||
113 | htemp = yaxis |
|
124 | htemp = yaxis | |
114 | std = value_temp |
|
125 | std = value_temp | |
115 | for h in range(len(htemp)): |
|
126 | for h in range(len(htemp)): | |
116 | nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0]) |
|
127 | nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0]) | |
117 | minvalid = npoints |
|
128 | minvalid = npoints | |
118 |
|
129 | |||
119 | #only if valid values greater than the minimum required (10%) |
|
130 | #only if valid values greater than the minimum required (10%) | |
120 | if nvalues_valid > minvalid: |
|
131 | if nvalues_valid > minvalid: | |
121 |
|
132 | |||
122 | if method == 0: |
|
133 | if method == 0: | |
123 | #SMOOTH |
|
134 | #SMOOTH | |
124 | w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1) |
|
135 | w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1) | |
125 |
|
136 | |||
126 |
|
137 | |||
127 | if method == 1: |
|
138 | if method == 1: | |
128 | #MEDIAN |
|
139 | #MEDIAN | |
129 | w = value_temp[h] - self.Median(input=value_temp[h], width = npoints) |
|
140 | w = value_temp[h] - self.Median(input=value_temp[h], width = npoints) | |
130 |
|
141 | |||
131 | dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1) |
|
142 | dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1) | |
132 |
|
143 | |||
133 | threshold = dw*factor |
|
144 | threshold = dw*factor | |
134 | value_temp[numpy.where(w > threshold),h] = numpy.nan |
|
145 | value_temp[numpy.where(w > threshold),h] = numpy.nan | |
135 | value_temp[numpy.where(w < -1*threshold),h] = numpy.nan |
|
146 | value_temp[numpy.where(w < -1*threshold),h] = numpy.nan | |
136 |
|
147 | |||
137 |
|
148 | |||
138 | #At the end |
|
149 | #At the end | |
139 | if svalue2 == 'inHeight': |
|
150 | if svalue2 == 'inHeight': | |
140 | value_temp = numpy.transpose(value_temp) |
|
151 | value_temp = numpy.transpose(value_temp) | |
141 | output_array[:,m] = value_temp |
|
152 | output_array[:,m] = value_temp | |
142 |
|
153 | |||
143 | if svalue == 'zonal': |
|
154 | if svalue == 'zonal': | |
144 | self.dataOut.data_output[0] = output_array |
|
155 | self.dataOut.data_output[0] = output_array | |
145 |
|
156 | |||
146 | elif svalue == 'meridional': |
|
157 | elif svalue == 'meridional': | |
147 | self.dataOut.data_output[1] = output_array |
|
158 | self.dataOut.data_output[1] = output_array | |
148 |
|
159 | |||
149 | elif svalue == 'vertical': |
|
160 | elif svalue == 'vertical': | |
150 | self.dataOut.data_output[2] = output_array |
|
161 | self.dataOut.data_output[2] = output_array | |
151 |
|
162 | |||
152 | return self.dataOut.data_output |
|
163 | return self.dataOut.data_output | |
153 |
|
164 | |||
154 |
|
165 | |||
155 | def Median(self,input,width): |
|
166 | def Median(self,input,width): | |
156 | ''' |
|
167 | ''' | |
157 | Inputs: |
|
168 | Inputs: | |
158 | input - Velocity array |
|
169 | input - Velocity array | |
159 | width - Number of points for mask filter |
|
170 | width - Number of points for mask filter | |
160 |
|
171 | |||
161 | ''' |
|
172 | ''' | |
162 |
|
173 | |||
163 | if numpy.mod(width,2) == 1: |
|
174 | if numpy.mod(width,2) == 1: | |
164 | pc = int((width - 1) / 2) |
|
175 | pc = int((width - 1) / 2) | |
165 | cont = 0 |
|
176 | cont = 0 | |
166 | output = [] |
|
177 | output = [] | |
167 |
|
178 | |||
168 | for i in range(len(input)): |
|
179 | for i in range(len(input)): | |
169 | if i >= pc and i < len(input) - pc: |
|
180 | if i >= pc and i < len(input) - pc: | |
170 | new2 = input[i-pc:i+pc+1] |
|
181 | new2 = input[i-pc:i+pc+1] | |
171 | temp = numpy.where(numpy.isfinite(new2)) |
|
182 | temp = numpy.where(numpy.isfinite(new2)) | |
172 | new = new2[temp] |
|
183 | new = new2[temp] | |
173 | value = numpy.median(new) |
|
184 | value = numpy.median(new) | |
174 | output.append(value) |
|
185 | output.append(value) | |
175 |
|
186 | |||
176 | output = numpy.array(output) |
|
187 | output = numpy.array(output) | |
177 | output = numpy.hstack((input[0:pc],output)) |
|
188 | output = numpy.hstack((input[0:pc],output)) | |
178 | output = numpy.hstack((output,input[-pc:len(input)])) |
|
189 | output = numpy.hstack((output,input[-pc:len(input)])) | |
179 |
|
190 | |||
180 | return output |
|
191 | return output | |
181 |
|
192 | |||
182 | def Smooth(self,input,width,edge_truncate = None): |
|
193 | def Smooth(self,input,width,edge_truncate = None): | |
183 | ''' |
|
194 | ''' | |
184 | Inputs: |
|
195 | Inputs: | |
185 | input - Velocity array |
|
196 | input - Velocity array | |
186 | width - Number of points for mask filter |
|
197 | width - Number of points for mask filter | |
187 | edge_truncate - 1 for truncate the convolution product else |
|
198 | edge_truncate - 1 for truncate the convolution product else | |
188 |
|
199 | |||
189 | ''' |
|
200 | ''' | |
190 |
|
201 | |||
191 | if numpy.mod(width,2) == 0: |
|
202 | if numpy.mod(width,2) == 0: | |
192 | real_width = width + 1 |
|
203 | real_width = width + 1 | |
193 | nzeros = width / 2 |
|
204 | nzeros = width / 2 | |
194 | else: |
|
205 | else: | |
195 | real_width = width |
|
206 | real_width = width | |
196 | nzeros = (width - 1) / 2 |
|
207 | nzeros = (width - 1) / 2 | |
197 |
|
208 | |||
198 | half_width = int(real_width)/2 |
|
209 | half_width = int(real_width)/2 | |
199 | length = len(input) |
|
210 | length = len(input) | |
200 |
|
211 | |||
201 | gate = numpy.ones(real_width,dtype='float') |
|
212 | gate = numpy.ones(real_width,dtype='float') | |
202 | norm_of_gate = numpy.sum(gate) |
|
213 | norm_of_gate = numpy.sum(gate) | |
203 |
|
214 | |||
204 | nan_process = 0 |
|
215 | nan_process = 0 | |
205 | nan_id = numpy.where(numpy.isnan(input)) |
|
216 | nan_id = numpy.where(numpy.isnan(input)) | |
206 | if len(nan_id[0]) > 0: |
|
217 | if len(nan_id[0]) > 0: | |
207 | nan_process = 1 |
|
218 | nan_process = 1 | |
208 | pb = numpy.zeros(len(input)) |
|
219 | pb = numpy.zeros(len(input)) | |
209 | pb[nan_id] = 1. |
|
220 | pb[nan_id] = 1. | |
210 | input[nan_id] = 0. |
|
221 | input[nan_id] = 0. | |
211 |
|
222 | |||
212 | if edge_truncate == True: |
|
223 | if edge_truncate == True: | |
213 | output = numpy.convolve(input/norm_of_gate,gate,mode='same') |
|
224 | output = numpy.convolve(input/norm_of_gate,gate,mode='same') | |
214 | elif edge_truncate == False or edge_truncate == None: |
|
225 | elif edge_truncate == False or edge_truncate == None: | |
215 | output = numpy.convolve(input/norm_of_gate,gate,mode='valid') |
|
226 | output = numpy.convolve(input/norm_of_gate,gate,mode='valid') | |
216 | output = numpy.hstack((input[0:half_width],output)) |
|
227 | output = numpy.hstack((input[0:half_width],output)) | |
217 | output = numpy.hstack((output,input[len(input)-half_width:len(input)])) |
|
228 | output = numpy.hstack((output,input[len(input)-half_width:len(input)])) | |
218 |
|
229 | |||
219 | if nan_process: |
|
230 | if nan_process: | |
220 | pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid') |
|
231 | pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid') | |
221 | pb = numpy.hstack((numpy.zeros(half_width),pb)) |
|
232 | pb = numpy.hstack((numpy.zeros(half_width),pb)) | |
222 | pb = numpy.hstack((pb,numpy.zeros(half_width))) |
|
233 | pb = numpy.hstack((pb,numpy.zeros(half_width))) | |
223 | output[numpy.where(pb > 0.9999)] = numpy.nan |
|
234 | output[numpy.where(pb > 0.9999)] = numpy.nan | |
224 | input[nan_id] = numpy.nan |
|
235 | input[nan_id] = numpy.nan | |
225 | return output |
|
236 | return output | |
226 |
|
237 | |||
227 | def Average(self,aver=0,nhaver=1): |
|
238 | def Average(self,aver=0,nhaver=1): | |
228 | ''' |
|
239 | ''' | |
229 | Inputs: |
|
240 | Inputs: | |
230 | aver - Indicates the time period over which is averaged or consensus data |
|
241 | aver - Indicates the time period over which is averaged or consensus data | |
231 | nhaver - Indicates the decimation factor in heights |
|
242 | nhaver - Indicates the decimation factor in heights | |
232 |
|
243 | |||
233 | ''' |
|
244 | ''' | |
234 | nhpoints = 48 |
|
245 | nhpoints = 48 | |
235 |
|
246 | |||
236 | lat_piura = -5.17 |
|
247 | lat_piura = -5.17 | |
237 | lat_huancayo = -12.04 |
|
248 | lat_huancayo = -12.04 | |
238 | lat_porcuya = -5.8 |
|
249 | lat_porcuya = -5.8 | |
239 |
|
250 | |||
240 | if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura: |
|
251 | if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura: | |
241 | hcm = 3. |
|
252 | hcm = 3. | |
242 | if self.dataOut.year == 2003 : |
|
253 | if self.dataOut.year == 2003 : | |
243 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: |
|
254 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: | |
244 | nhpoints = 12 |
|
255 | nhpoints = 12 | |
245 |
|
256 | |||
246 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo: |
|
257 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo: | |
247 | hcm = 3. |
|
258 | hcm = 3. | |
248 | if self.dataOut.year == 2003 : |
|
259 | if self.dataOut.year == 2003 : | |
249 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: |
|
260 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: | |
250 | nhpoints = 12 |
|
261 | nhpoints = 12 | |
251 |
|
262 | |||
252 |
|
263 | |||
253 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya: |
|
264 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya: | |
254 | hcm = 5.#2 |
|
265 | hcm = 5.#2 | |
255 |
|
266 | |||
256 | pdata = 0.2 |
|
267 | pdata = 0.2 | |
257 | taver = [1,2,3,4,6,8,12,24] |
|
268 | taver = [1,2,3,4,6,8,12,24] | |
258 | t0 = 0 |
|
269 | t0 = 0 | |
259 | tf = 24 |
|
270 | tf = 24 | |
260 | ntime =(tf-t0)/taver[aver] |
|
271 | ntime =(tf-t0)/taver[aver] | |
261 | ti = numpy.arange(ntime) |
|
272 | ti = numpy.arange(ntime) | |
262 | tf = numpy.arange(ntime) + taver[aver] |
|
273 | tf = numpy.arange(ntime) + taver[aver] | |
263 |
|
274 | |||
264 |
|
275 | |||
265 | old_height = self.dataOut.heightList |
|
276 | old_height = self.dataOut.heightList | |
266 |
|
277 | |||
267 | if nhaver > 1: |
|
278 | if nhaver > 1: | |
268 | num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes |
|
279 | num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes | |
269 | deltha = 0.05*nhaver |
|
280 | deltha = 0.05*nhaver | |
270 | minhvalid = pdata*nhaver |
|
281 | minhvalid = pdata*nhaver | |
271 | for im in range(self.dataOut.nmodes): |
|
282 | for im in range(self.dataOut.nmodes): | |
272 | new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2. |
|
283 | new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2. | |
273 |
|
284 | |||
274 |
|
285 | |||
275 | data_fHeigths_List = [] |
|
286 | data_fHeigths_List = [] | |
276 | data_fZonal_List = [] |
|
287 | data_fZonal_List = [] | |
277 | data_fMeridional_List = [] |
|
288 | data_fMeridional_List = [] | |
278 | data_fVertical_List = [] |
|
289 | data_fVertical_List = [] | |
279 | startDTList = [] |
|
290 | startDTList = [] | |
280 |
|
291 | |||
281 |
|
292 | |||
282 | for i in range(ntime): |
|
293 | for i in range(ntime): | |
283 | height = old_height |
|
294 | height = old_height | |
284 |
|
295 | |||
285 | start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5) |
|
296 | start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5) | |
286 | stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5) |
|
297 | stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5) | |
287 |
|
298 | |||
288 |
|
299 | |||
289 | limit_sec1 = time.mktime(start.timetuple()) |
|
300 | limit_sec1 = time.mktime(start.timetuple()) | |
290 | limit_sec2 = time.mktime(stop.timetuple()) |
|
301 | limit_sec2 = time.mktime(stop.timetuple()) | |
291 |
|
302 | |||
292 | t1 = numpy.where(self.f_timesec >= limit_sec1) |
|
303 | t1 = numpy.where(self.f_timesec >= limit_sec1) | |
293 | t2 = numpy.where(self.f_timesec < limit_sec2) |
|
304 | t2 = numpy.where(self.f_timesec < limit_sec2) | |
294 | time_select = [] |
|
305 | time_select = [] | |
295 | for val_sec in t1[0]: |
|
306 | for val_sec in t1[0]: | |
296 | if val_sec in t2[0]: |
|
307 | if val_sec in t2[0]: | |
297 | time_select.append(val_sec) |
|
308 | time_select.append(val_sec) | |
298 |
|
309 | |||
299 |
|
310 | |||
300 | time_select = numpy.array(time_select,dtype = 'int') |
|
311 | time_select = numpy.array(time_select,dtype = 'int') | |
301 | minvalid = numpy.ceil(pdata*nhpoints) |
|
312 | minvalid = numpy.ceil(pdata*nhpoints) | |
302 |
|
313 | |||
303 | zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
314 | zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
304 | mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
315 | mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
305 | ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
316 | ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
306 |
|
317 | |||
307 | if nhaver > 1: |
|
318 | if nhaver > 1: | |
308 | new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
319 | new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
309 | new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
320 | new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
310 | new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
321 | new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |
311 |
|
322 | |||
312 | if len(time_select) > minvalid: |
|
323 | if len(time_select) > minvalid: | |
313 | time_average = self.f_timesec[time_select] |
|
324 | time_average = self.f_timesec[time_select] | |
314 |
|
325 | |||
315 | for im in range(self.dataOut.nmodes): |
|
326 | for im in range(self.dataOut.nmodes): | |
316 |
|
327 | |||
317 | for ih in range(self.dataOut.nranges): |
|
328 | for ih in range(self.dataOut.nranges): | |
318 | if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid: |
|
329 | if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid: | |
319 | zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) |
|
330 | zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) | |
320 |
|
331 | |||
321 | if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid: |
|
332 | if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid: | |
322 | mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) |
|
333 | mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) | |
323 |
|
334 | |||
324 | if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid: |
|
335 | if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid: | |
325 | ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) |
|
336 | ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) | |
326 |
|
337 | |||
327 | if nhaver > 1: |
|
338 | if nhaver > 1: | |
328 | for ih in range(num_hei): |
|
339 | for ih in range(num_hei): | |
329 | hvalid = numpy.arange(nhaver) + nhaver*ih |
|
340 | hvalid = numpy.arange(nhaver) + nhaver*ih | |
330 |
|
341 | |||
331 | if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid: |
|
342 | if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid: | |
332 | new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) |
|
343 | new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) | |
333 |
|
344 | |||
334 | if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid: |
|
345 | if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid: | |
335 | new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) |
|
346 | new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) | |
336 |
|
347 | |||
337 | if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid: |
|
348 | if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid: | |
338 | new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) |
|
349 | new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) | |
339 | if nhaver > 1: |
|
350 | if nhaver > 1: | |
340 | zon_aver = new_zon_aver |
|
351 | zon_aver = new_zon_aver | |
341 | mer_aver = new_mer_aver |
|
352 | mer_aver = new_mer_aver | |
342 | ver_aver = new_ver_aver |
|
353 | ver_aver = new_ver_aver | |
343 | height = new_height |
|
354 | height = new_height | |
344 |
|
355 | |||
345 |
|
356 | |||
346 | tstart = time_average[0] |
|
357 | tstart = time_average[0] | |
347 | tend = time_average[-1] |
|
358 | tend = time_average[-1] | |
348 | startTime = time.gmtime(tstart) |
|
359 | startTime = time.gmtime(tstart) | |
349 |
|
360 | |||
350 | year = startTime.tm_year |
|
361 | year = startTime.tm_year | |
351 | month = startTime.tm_mon |
|
362 | month = startTime.tm_mon | |
352 | day = startTime.tm_mday |
|
363 | day = startTime.tm_mday | |
353 | hour = startTime.tm_hour |
|
364 | hour = startTime.tm_hour | |
354 | minute = startTime.tm_min |
|
365 | minute = startTime.tm_min | |
355 | second = startTime.tm_sec |
|
366 | second = startTime.tm_sec | |
356 |
|
367 | |||
357 | startDTList.append(datetime.datetime(year,month,day,hour,minute,second)) |
|
368 | startDTList.append(datetime.datetime(year,month,day,hour,minute,second)) | |
358 |
|
369 | |||
359 |
|
370 | |||
360 | o_height = numpy.array([]) |
|
371 | o_height = numpy.array([]) | |
361 | o_zon_aver = numpy.array([]) |
|
372 | o_zon_aver = numpy.array([]) | |
362 | o_mer_aver = numpy.array([]) |
|
373 | o_mer_aver = numpy.array([]) | |
363 | o_ver_aver = numpy.array([]) |
|
374 | o_ver_aver = numpy.array([]) | |
364 | if self.dataOut.nmodes > 1: |
|
375 | if self.dataOut.nmodes > 1: | |
365 | for im in range(self.dataOut.nmodes): |
|
376 | for im in range(self.dataOut.nmodes): | |
366 |
|
377 | |||
367 | if im == 0: |
|
378 | if im == 0: | |
368 | h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:]))) |
|
379 | h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:]))) | |
369 | else: |
|
380 | else: | |
370 | h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:]))) |
|
381 | h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:]))) | |
371 |
|
382 | |||
372 |
|
383 | |||
373 | ht = h_select[0] |
|
384 | ht = h_select[0] | |
374 |
|
385 | |||
375 | o_height = numpy.hstack((o_height,height[im,ht])) |
|
386 | o_height = numpy.hstack((o_height,height[im,ht])) | |
376 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) |
|
387 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) | |
377 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) |
|
388 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) | |
378 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) |
|
389 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) | |
379 |
|
390 | |||
380 | data_fHeigths_List.append(o_height) |
|
391 | data_fHeigths_List.append(o_height) | |
381 | data_fZonal_List.append(o_zon_aver) |
|
392 | data_fZonal_List.append(o_zon_aver) | |
382 | data_fMeridional_List.append(o_mer_aver) |
|
393 | data_fMeridional_List.append(o_mer_aver) | |
383 | data_fVertical_List.append(o_ver_aver) |
|
394 | data_fVertical_List.append(o_ver_aver) | |
384 |
|
395 | |||
385 |
|
396 | |||
386 | else: |
|
397 | else: | |
387 | h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:]))) |
|
398 | h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:]))) | |
388 | ht = h_select[0] |
|
399 | ht = h_select[0] | |
389 | o_height = numpy.hstack((o_height,height[im,ht])) |
|
400 | o_height = numpy.hstack((o_height,height[im,ht])) | |
390 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) |
|
401 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) | |
391 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) |
|
402 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) | |
392 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) |
|
403 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) | |
393 |
|
404 | |||
394 | data_fHeigths_List.append(o_height) |
|
405 | data_fHeigths_List.append(o_height) | |
395 | data_fZonal_List.append(o_zon_aver) |
|
406 | data_fZonal_List.append(o_zon_aver) | |
396 | data_fMeridional_List.append(o_mer_aver) |
|
407 | data_fMeridional_List.append(o_mer_aver) | |
397 | data_fVertical_List.append(o_ver_aver) |
|
408 | data_fVertical_List.append(o_ver_aver) | |
398 |
|
409 | |||
399 |
|
410 | |||
400 | return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List |
|
411 | return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List | |
401 |
|
412 | |||
402 |
|
413 |
General Comments 0
You need to be logged in to leave comments.
Login now