@@ -68,12 +68,23 class BLTRParametersProc(ProcessingUnit): | |||||
68 | self.dataOut.data_param = self.dataOut.data[mode] |
|
68 | self.dataOut.data_param = self.dataOut.data[mode] | |
69 | self.dataOut.heightList = self.dataOut.height[0] |
|
69 | self.dataOut.heightList = self.dataOut.height[0] | |
70 | self.dataOut.data_snr = self.dataOut.data_snr[mode] |
|
70 | self.dataOut.data_snr = self.dataOut.data_snr[mode] | |
|
71 | ||||
|
72 | data_param = numpy.zeros([4, len(self.dataOut.heightList)]) | |||
71 |
|
73 | |||
|
74 | SNRavg = numpy.average(self.dataOut.data_snr, axis=0) | |||
|
75 | SNRavgdB = 10*numpy.log10(SNRavg) | |||
|
76 | # Censoring Data | |||
72 | if snr_threshold is not None: |
|
77 | if snr_threshold is not None: | |
73 | SNRavg = numpy.average(self.dataOut.data_snr, axis=0) |
|
|||
74 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
|||
75 | for i in range(3): |
|
78 | for i in range(3): | |
76 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
|
79 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan | |
|
80 | # Including AvgSNR in data_param | |||
|
81 | for i in range(data_param.shape[0]): | |||
|
82 | if i == 3: | |||
|
83 | data_param[i] = SNRavgdB | |||
|
84 | else: | |||
|
85 | data_param[i] = self.dataOut.data_param[i] | |||
|
86 | ||||
|
87 | self.dataOut.data_param = data_param | |||
77 |
|
88 | |||
78 | # TODO |
|
89 | # TODO | |
79 |
|
90 |
General Comments 0
You need to be logged in to leave comments.
Login now