The requested changes are too big and content was truncated. Show full diff
@@ -1,1788 +1,1790 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter | |
5 |
|
5 | |||
6 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
8 | from schainpy.utils import log |
|
8 | from schainpy.utils import log | |
9 | # libreria wradlib |
|
9 | # libreria wradlib | |
10 | import wradlib as wrl |
|
10 | import wradlib as wrl | |
11 |
|
11 | |||
12 | EARTH_RADIUS = 6.3710e3 |
|
12 | EARTH_RADIUS = 6.3710e3 | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | def ll2xy(lat1, lon1, lat2, lon2): |
|
15 | def ll2xy(lat1, lon1, lat2, lon2): | |
16 |
|
16 | |||
17 | p = 0.017453292519943295 |
|
17 | p = 0.017453292519943295 | |
18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
23 | theta = -theta + numpy.pi/2 |
|
23 | theta = -theta + numpy.pi/2 | |
24 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
24 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
25 |
|
25 | |||
26 |
|
26 | |||
27 | def km2deg(km): |
|
27 | def km2deg(km): | |
28 | ''' |
|
28 | ''' | |
29 | Convert distance in km to degrees |
|
29 | Convert distance in km to degrees | |
30 | ''' |
|
30 | ''' | |
31 |
|
31 | |||
32 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
32 | return numpy.rad2deg(km/EARTH_RADIUS) | |
33 |
|
33 | |||
34 |
|
34 | |||
35 |
|
35 | |||
36 | class SpectralMomentsPlot(SpectraPlot): |
|
36 | class SpectralMomentsPlot(SpectraPlot): | |
37 | ''' |
|
37 | ''' | |
38 | Plot for Spectral Moments |
|
38 | Plot for Spectral Moments | |
39 | ''' |
|
39 | ''' | |
40 | CODE = 'spc_moments' |
|
40 | CODE = 'spc_moments' | |
41 | # colormap = 'jet' |
|
41 | # colormap = 'jet' | |
42 | # plot_type = 'pcolor' |
|
42 | # plot_type = 'pcolor' | |
43 |
|
43 | |||
44 | class DobleGaussianPlot(SpectraPlot): |
|
44 | class DobleGaussianPlot(SpectraPlot): | |
45 | ''' |
|
45 | ''' | |
46 | Plot for Double Gaussian Plot |
|
46 | Plot for Double Gaussian Plot | |
47 | ''' |
|
47 | ''' | |
48 | CODE = 'gaussian_fit' |
|
48 | CODE = 'gaussian_fit' | |
49 | # colormap = 'jet' |
|
49 | # colormap = 'jet' | |
50 | # plot_type = 'pcolor' |
|
50 | # plot_type = 'pcolor' | |
51 |
|
51 | |||
52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
53 | ''' |
|
53 | ''' | |
54 | Plot SpectraCut with Double Gaussian Fit |
|
54 | Plot SpectraCut with Double Gaussian Fit | |
55 | ''' |
|
55 | ''' | |
56 | CODE = 'cut_gaussian_fit' |
|
56 | CODE = 'cut_gaussian_fit' | |
57 |
|
57 | |||
58 | class SnrPlot(RTIPlot): |
|
58 | class SnrPlot(RTIPlot): | |
59 | ''' |
|
59 | ''' | |
60 | Plot for SNR Data |
|
60 | Plot for SNR Data | |
61 | ''' |
|
61 | ''' | |
62 |
|
62 | |||
63 | CODE = 'snr' |
|
63 | CODE = 'snr' | |
64 | colormap = 'jet' |
|
64 | colormap = 'jet' | |
65 |
|
65 | |||
66 | def update(self, dataOut): |
|
66 | def update(self, dataOut): | |
67 |
|
67 | |||
68 | data = { |
|
68 | data = { | |
69 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
69 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
70 | } |
|
70 | } | |
71 |
|
71 | |||
72 | return data, {} |
|
72 | return data, {} | |
73 |
|
73 | |||
74 | class DopplerPlot(RTIPlot): |
|
74 | class DopplerPlot(RTIPlot): | |
75 | ''' |
|
75 | ''' | |
76 | Plot for DOPPLER Data (1st moment) |
|
76 | Plot for DOPPLER Data (1st moment) | |
77 | ''' |
|
77 | ''' | |
78 |
|
78 | |||
79 | CODE = 'dop' |
|
79 | CODE = 'dop' | |
80 | colormap = 'jet' |
|
80 | colormap = 'jet' | |
81 |
|
81 | |||
82 | def update(self, dataOut): |
|
82 | def update(self, dataOut): | |
83 |
|
83 | |||
84 | data = { |
|
84 | data = { | |
85 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
85 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
86 | } |
|
86 | } | |
87 |
|
87 | |||
88 | return data, {} |
|
88 | return data, {} | |
89 |
|
89 | |||
90 | class PowerPlot(RTIPlot): |
|
90 | class PowerPlot(RTIPlot): | |
91 | ''' |
|
91 | ''' | |
92 | Plot for Power Data (0 moment) |
|
92 | Plot for Power Data (0 moment) | |
93 | ''' |
|
93 | ''' | |
94 |
|
94 | |||
95 | CODE = 'pow' |
|
95 | CODE = 'pow' | |
96 | colormap = 'jet' |
|
96 | colormap = 'jet' | |
97 |
|
97 | |||
98 | def update(self, dataOut): |
|
98 | def update(self, dataOut): | |
99 | data = { |
|
99 | data = { | |
100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
101 | } |
|
101 | } | |
102 | return data, {} |
|
102 | return data, {} | |
103 |
|
103 | |||
104 | class SpectralWidthPlot(RTIPlot): |
|
104 | class SpectralWidthPlot(RTIPlot): | |
105 | ''' |
|
105 | ''' | |
106 | Plot for Spectral Width Data (2nd moment) |
|
106 | Plot for Spectral Width Data (2nd moment) | |
107 | ''' |
|
107 | ''' | |
108 |
|
108 | |||
109 | CODE = 'width' |
|
109 | CODE = 'width' | |
110 | colormap = 'jet' |
|
110 | colormap = 'jet' | |
111 |
|
111 | |||
112 | def update(self, dataOut): |
|
112 | def update(self, dataOut): | |
113 |
|
113 | |||
114 | data = { |
|
114 | data = { | |
115 | 'width': dataOut.data_width |
|
115 | 'width': dataOut.data_width | |
116 | } |
|
116 | } | |
117 |
|
117 | |||
118 | return data, {} |
|
118 | return data, {} | |
119 |
|
119 | |||
120 | class SkyMapPlot(Plot): |
|
120 | class SkyMapPlot(Plot): | |
121 | ''' |
|
121 | ''' | |
122 | Plot for meteors detection data |
|
122 | Plot for meteors detection data | |
123 | ''' |
|
123 | ''' | |
124 |
|
124 | |||
125 | CODE = 'param' |
|
125 | CODE = 'param' | |
126 |
|
126 | |||
127 | def setup(self): |
|
127 | def setup(self): | |
128 |
|
128 | |||
129 | self.ncols = 1 |
|
129 | self.ncols = 1 | |
130 | self.nrows = 1 |
|
130 | self.nrows = 1 | |
131 | self.width = 7.2 |
|
131 | self.width = 7.2 | |
132 | self.height = 7.2 |
|
132 | self.height = 7.2 | |
133 | self.nplots = 1 |
|
133 | self.nplots = 1 | |
134 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
134 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
135 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
135 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
136 | self.polar = True |
|
136 | self.polar = True | |
137 | self.ymin = -180 |
|
137 | self.ymin = -180 | |
138 | self.ymax = 180 |
|
138 | self.ymax = 180 | |
139 | self.colorbar = False |
|
139 | self.colorbar = False | |
140 |
|
140 | |||
141 | def plot(self): |
|
141 | def plot(self): | |
142 |
|
142 | |||
143 | arrayParameters = numpy.concatenate(self.data['param']) |
|
143 | arrayParameters = numpy.concatenate(self.data['param']) | |
144 | error = arrayParameters[:, -1] |
|
144 | error = arrayParameters[:, -1] | |
145 | indValid = numpy.where(error == 0)[0] |
|
145 | indValid = numpy.where(error == 0)[0] | |
146 | finalMeteor = arrayParameters[indValid, :] |
|
146 | finalMeteor = arrayParameters[indValid, :] | |
147 | finalAzimuth = finalMeteor[:, 3] |
|
147 | finalAzimuth = finalMeteor[:, 3] | |
148 | finalZenith = finalMeteor[:, 4] |
|
148 | finalZenith = finalMeteor[:, 4] | |
149 |
|
149 | |||
150 | x = finalAzimuth * numpy.pi / 180 |
|
150 | x = finalAzimuth * numpy.pi / 180 | |
151 | y = finalZenith |
|
151 | y = finalZenith | |
152 |
|
152 | |||
153 | ax = self.axes[0] |
|
153 | ax = self.axes[0] | |
154 |
|
154 | |||
155 | if ax.firsttime: |
|
155 | if ax.firsttime: | |
156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
157 | else: |
|
157 | else: | |
158 | ax.plot.set_data(x, y) |
|
158 | ax.plot.set_data(x, y) | |
159 |
|
159 | |||
160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
163 | dt2, |
|
163 | dt2, | |
164 | len(x)) |
|
164 | len(x)) | |
165 | self.titles[0] = title |
|
165 | self.titles[0] = title | |
166 |
|
166 | |||
167 |
|
167 | |||
168 | class GenericRTIPlot(Plot): |
|
168 | class GenericRTIPlot(Plot): | |
169 | ''' |
|
169 | ''' | |
170 | Plot for data_xxxx object |
|
170 | Plot for data_xxxx object | |
171 | ''' |
|
171 | ''' | |
172 |
|
172 | |||
173 | CODE = 'param' |
|
173 | CODE = 'param' | |
174 | colormap = 'viridis' |
|
174 | colormap = 'viridis' | |
175 | plot_type = 'pcolorbuffer' |
|
175 | plot_type = 'pcolorbuffer' | |
176 |
|
176 | |||
177 | def setup(self): |
|
177 | def setup(self): | |
178 | self.xaxis = 'time' |
|
178 | self.xaxis = 'time' | |
179 | self.ncols = 1 |
|
179 | self.ncols = 1 | |
180 | self.nrows = self.data.shape('param')[0] |
|
180 | self.nrows = self.data.shape('param')[0] | |
181 | self.nplots = self.nrows |
|
181 | self.nplots = self.nrows | |
182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
183 |
|
183 | |||
184 | if not self.xlabel: |
|
184 | if not self.xlabel: | |
185 | self.xlabel = 'Time' |
|
185 | self.xlabel = 'Time' | |
186 |
|
186 | |||
187 | self.ylabel = 'Range [km]' |
|
187 | self.ylabel = 'Range [km]' | |
188 | if not self.titles: |
|
188 | if not self.titles: | |
189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
190 |
|
190 | |||
191 | def update(self, dataOut): |
|
191 | def update(self, dataOut): | |
192 |
|
192 | |||
193 | data = { |
|
193 | data = { | |
194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
195 | } |
|
195 | } | |
196 |
|
196 | |||
197 | meta = {} |
|
197 | meta = {} | |
198 |
|
198 | |||
199 | return data, meta |
|
199 | return data, meta | |
200 |
|
200 | |||
201 | def plot(self): |
|
201 | def plot(self): | |
202 | # self.data.normalize_heights() |
|
202 | # self.data.normalize_heights() | |
203 | self.x = self.data.times |
|
203 | self.x = self.data.times | |
204 | self.y = self.data.yrange |
|
204 | self.y = self.data.yrange | |
205 | self.z = self.data['param'] |
|
205 | self.z = self.data['param'] | |
206 | self.z = 10*numpy.log10(self.z) |
|
206 | self.z = 10*numpy.log10(self.z) | |
207 | self.z = numpy.ma.masked_invalid(self.z) |
|
207 | self.z = numpy.ma.masked_invalid(self.z) | |
208 |
|
208 | |||
209 | if self.decimation is None: |
|
209 | if self.decimation is None: | |
210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
211 | else: |
|
211 | else: | |
212 | x, y, z = self.fill_gaps(*self.decimate()) |
|
212 | x, y, z = self.fill_gaps(*self.decimate()) | |
213 |
|
213 | |||
214 | for n, ax in enumerate(self.axes): |
|
214 | for n, ax in enumerate(self.axes): | |
215 |
|
215 | |||
216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
217 | self.z[n]) |
|
217 | self.z[n]) | |
218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
219 | self.z[n]) |
|
219 | self.z[n]) | |
220 |
|
220 | |||
221 | if ax.firsttime: |
|
221 | if ax.firsttime: | |
222 | if self.zlimits is not None: |
|
222 | if self.zlimits is not None: | |
223 | self.zmin, self.zmax = self.zlimits[n] |
|
223 | self.zmin, self.zmax = self.zlimits[n] | |
224 |
|
224 | |||
225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
226 | vmin=self.zmin, |
|
226 | vmin=self.zmin, | |
227 | vmax=self.zmax, |
|
227 | vmax=self.zmax, | |
228 | cmap=self.cmaps[n] |
|
228 | cmap=self.cmaps[n] | |
229 | ) |
|
229 | ) | |
230 | else: |
|
230 | else: | |
231 | if self.zlimits is not None: |
|
231 | if self.zlimits is not None: | |
232 | self.zmin, self.zmax = self.zlimits[n] |
|
232 | self.zmin, self.zmax = self.zlimits[n] | |
233 | ax.collections.remove(ax.collections[0]) |
|
233 | ax.collections.remove(ax.collections[0]) | |
234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
235 | vmin=self.zmin, |
|
235 | vmin=self.zmin, | |
236 | vmax=self.zmax, |
|
236 | vmax=self.zmax, | |
237 | cmap=self.cmaps[n] |
|
237 | cmap=self.cmaps[n] | |
238 | ) |
|
238 | ) | |
239 |
|
239 | |||
240 |
|
240 | |||
241 | class PolarMapPlot(Plot): |
|
241 | class PolarMapPlot(Plot): | |
242 | ''' |
|
242 | ''' | |
243 | Plot for weather radar |
|
243 | Plot for weather radar | |
244 | ''' |
|
244 | ''' | |
245 |
|
245 | |||
246 | CODE = 'param' |
|
246 | CODE = 'param' | |
247 | colormap = 'seismic' |
|
247 | colormap = 'seismic' | |
248 |
|
248 | |||
249 | def setup(self): |
|
249 | def setup(self): | |
250 | self.ncols = 1 |
|
250 | self.ncols = 1 | |
251 | self.nrows = 1 |
|
251 | self.nrows = 1 | |
252 | self.width = 9 |
|
252 | self.width = 9 | |
253 | self.height = 8 |
|
253 | self.height = 8 | |
254 | self.mode = self.data.meta['mode'] |
|
254 | self.mode = self.data.meta['mode'] | |
255 | if self.channels is not None: |
|
255 | if self.channels is not None: | |
256 | self.nplots = len(self.channels) |
|
256 | self.nplots = len(self.channels) | |
257 | self.nrows = len(self.channels) |
|
257 | self.nrows = len(self.channels) | |
258 | else: |
|
258 | else: | |
259 | self.nplots = self.data.shape(self.CODE)[0] |
|
259 | self.nplots = self.data.shape(self.CODE)[0] | |
260 | self.nrows = self.nplots |
|
260 | self.nrows = self.nplots | |
261 | self.channels = list(range(self.nplots)) |
|
261 | self.channels = list(range(self.nplots)) | |
262 | if self.mode == 'E': |
|
262 | if self.mode == 'E': | |
263 | self.xlabel = 'Longitude' |
|
263 | self.xlabel = 'Longitude' | |
264 | self.ylabel = 'Latitude' |
|
264 | self.ylabel = 'Latitude' | |
265 | else: |
|
265 | else: | |
266 | self.xlabel = 'Range (km)' |
|
266 | self.xlabel = 'Range (km)' | |
267 | self.ylabel = 'Height (km)' |
|
267 | self.ylabel = 'Height (km)' | |
268 | self.bgcolor = 'white' |
|
268 | self.bgcolor = 'white' | |
269 | self.cb_labels = self.data.meta['units'] |
|
269 | self.cb_labels = self.data.meta['units'] | |
270 | self.lat = self.data.meta['latitude'] |
|
270 | self.lat = self.data.meta['latitude'] | |
271 | self.lon = self.data.meta['longitude'] |
|
271 | self.lon = self.data.meta['longitude'] | |
272 | self.xmin, self.xmax = float( |
|
272 | self.xmin, self.xmax = float( | |
273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
274 | self.ymin, self.ymax = float( |
|
274 | self.ymin, self.ymax = float( | |
275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
276 | # self.polar = True |
|
276 | # self.polar = True | |
277 |
|
277 | |||
278 | def plot(self): |
|
278 | def plot(self): | |
279 |
|
279 | |||
280 | for n, ax in enumerate(self.axes): |
|
280 | for n, ax in enumerate(self.axes): | |
281 | data = self.data['param'][self.channels[n]] |
|
281 | data = self.data['param'][self.channels[n]] | |
282 |
|
282 | |||
283 | zeniths = numpy.linspace( |
|
283 | zeniths = numpy.linspace( | |
284 | 0, self.data.meta['max_range'], data.shape[1]) |
|
284 | 0, self.data.meta['max_range'], data.shape[1]) | |
285 | if self.mode == 'E': |
|
285 | if self.mode == 'E': | |
286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
287 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
287 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
290 | x = km2deg(x) + self.lon |
|
290 | x = km2deg(x) + self.lon | |
291 | y = km2deg(y) + self.lat |
|
291 | y = km2deg(y) + self.lat | |
292 | else: |
|
292 | else: | |
293 | azimuths = numpy.radians(self.data.yrange) |
|
293 | azimuths = numpy.radians(self.data.yrange) | |
294 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
294 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
296 | self.y = zeniths |
|
296 | self.y = zeniths | |
297 |
|
297 | |||
298 | if ax.firsttime: |
|
298 | if ax.firsttime: | |
299 | if self.zlimits is not None: |
|
299 | if self.zlimits is not None: | |
300 | self.zmin, self.zmax = self.zlimits[n] |
|
300 | self.zmin, self.zmax = self.zlimits[n] | |
301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
303 | vmin=self.zmin, |
|
303 | vmin=self.zmin, | |
304 | vmax=self.zmax, |
|
304 | vmax=self.zmax, | |
305 | cmap=self.cmaps[n]) |
|
305 | cmap=self.cmaps[n]) | |
306 | else: |
|
306 | else: | |
307 | if self.zlimits is not None: |
|
307 | if self.zlimits is not None: | |
308 | self.zmin, self.zmax = self.zlimits[n] |
|
308 | self.zmin, self.zmax = self.zlimits[n] | |
309 | ax.collections.remove(ax.collections[0]) |
|
309 | ax.collections.remove(ax.collections[0]) | |
310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
312 | vmin=self.zmin, |
|
312 | vmin=self.zmin, | |
313 | vmax=self.zmax, |
|
313 | vmax=self.zmax, | |
314 | cmap=self.cmaps[n]) |
|
314 | cmap=self.cmaps[n]) | |
315 |
|
315 | |||
316 | if self.mode == 'A': |
|
316 | if self.mode == 'A': | |
317 | continue |
|
317 | continue | |
318 |
|
318 | |||
319 | # plot district names |
|
319 | # plot district names | |
320 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
320 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
321 | for line in f: |
|
321 | for line in f: | |
322 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
322 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
323 | lat = float(lat) |
|
323 | lat = float(lat) | |
324 | lon = float(lon) |
|
324 | lon = float(lon) | |
325 | # ax.plot(lon, lat, '.b', ms=2) |
|
325 | # ax.plot(lon, lat, '.b', ms=2) | |
326 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
326 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
327 | va='bottom', size='8', color='black') |
|
327 | va='bottom', size='8', color='black') | |
328 |
|
328 | |||
329 | # plot limites |
|
329 | # plot limites | |
330 | limites = [] |
|
330 | limites = [] | |
331 | tmp = [] |
|
331 | tmp = [] | |
332 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
332 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
333 | if '#' in line: |
|
333 | if '#' in line: | |
334 | if tmp: |
|
334 | if tmp: | |
335 | limites.append(tmp) |
|
335 | limites.append(tmp) | |
336 | tmp = [] |
|
336 | tmp = [] | |
337 | continue |
|
337 | continue | |
338 | values = line.strip().split(',') |
|
338 | values = line.strip().split(',') | |
339 | tmp.append((float(values[0]), float(values[1]))) |
|
339 | tmp.append((float(values[0]), float(values[1]))) | |
340 | for points in limites: |
|
340 | for points in limites: | |
341 | ax.add_patch( |
|
341 | ax.add_patch( | |
342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
343 |
|
343 | |||
344 | # plot Cuencas |
|
344 | # plot Cuencas | |
345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
347 | values = [line.strip().split(',') for line in f] |
|
347 | values = [line.strip().split(',') for line in f] | |
348 | points = [(float(s[0]), float(s[1])) for s in values] |
|
348 | points = [(float(s[0]), float(s[1])) for s in values] | |
349 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
349 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
350 |
|
350 | |||
351 | # plot grid |
|
351 | # plot grid | |
352 | for r in (15, 30, 45, 60): |
|
352 | for r in (15, 30, 45, 60): | |
353 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
353 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
354 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
354 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
355 | ax.text( |
|
355 | ax.text( | |
356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
358 | '{}km'.format(r), |
|
358 | '{}km'.format(r), | |
359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
360 |
|
360 | |||
361 | if self.mode == 'E': |
|
361 | if self.mode == 'E': | |
362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
364 | else: |
|
364 | else: | |
365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
367 |
|
367 | |||
368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
369 | self.titles = ['{} {}'.format( |
|
369 | self.titles = ['{} {}'.format( | |
370 | self.data.parameters[x], title) for x in self.channels] |
|
370 | self.data.parameters[x], title) for x in self.channels] | |
371 |
|
371 | |||
372 | class WeatherPlot(Plot): |
|
372 | class WeatherPlot(Plot): | |
373 | CODE = 'weather' |
|
373 | CODE = 'weather' | |
374 | plot_name = 'weather' |
|
374 | plot_name = 'weather' | |
375 | plot_type = 'ppistyle' |
|
375 | plot_type = 'ppistyle' | |
376 | buffering = False |
|
376 | buffering = False | |
377 |
|
377 | |||
378 | def setup(self): |
|
378 | def setup(self): | |
379 | self.ncols = 1 |
|
379 | self.ncols = 1 | |
380 | self.nrows = 1 |
|
380 | self.nrows = 1 | |
381 | self.width =8 |
|
381 | self.width =8 | |
382 | self.height =8 |
|
382 | self.height =8 | |
383 | self.nplots= 1 |
|
383 | self.nplots= 1 | |
384 | self.ylabel= 'Range [Km]' |
|
384 | self.ylabel= 'Range [Km]' | |
385 | self.titles= ['Weather'] |
|
385 | self.titles= ['Weather'] | |
386 | self.colorbar=False |
|
386 | self.colorbar=False | |
387 | self.ini =0 |
|
387 | self.ini =0 | |
388 | self.len_azi =0 |
|
388 | self.len_azi =0 | |
389 | self.buffer_ini = None |
|
389 | self.buffer_ini = None | |
390 | self.buffer_azi = None |
|
390 | self.buffer_azi = None | |
391 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
391 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
392 | self.flag =0 |
|
392 | self.flag =0 | |
393 | self.indicador= 0 |
|
393 | self.indicador= 0 | |
394 | self.last_data_azi = None |
|
394 | self.last_data_azi = None | |
395 | self.val_mean = None |
|
395 | self.val_mean = None | |
396 |
|
396 | |||
397 | def update(self, dataOut): |
|
397 | def update(self, dataOut): | |
398 |
|
398 | |||
399 | data = {} |
|
399 | data = {} | |
400 | meta = {} |
|
400 | meta = {} | |
401 | if hasattr(dataOut, 'dataPP_POWER'): |
|
401 | if hasattr(dataOut, 'dataPP_POWER'): | |
402 | factor = 1 |
|
402 | factor = 1 | |
403 | if hasattr(dataOut, 'nFFTPoints'): |
|
403 | if hasattr(dataOut, 'nFFTPoints'): | |
404 | factor = dataOut.normFactor |
|
404 | factor = dataOut.normFactor | |
405 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) |
|
405 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) | |
406 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
406 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
407 | data['azi'] = dataOut.data_azi |
|
407 | data['azi'] = dataOut.data_azi | |
408 | data['ele'] = dataOut.data_ele |
|
408 | data['ele'] = dataOut.data_ele | |
409 | return data, meta |
|
409 | return data, meta | |
410 |
|
410 | |||
411 | def get2List(self,angulos): |
|
411 | def get2List(self,angulos): | |
412 | list1=[] |
|
412 | list1=[] | |
413 | list2=[] |
|
413 | list2=[] | |
414 | for i in reversed(range(len(angulos))): |
|
414 | for i in reversed(range(len(angulos))): | |
415 | diff_ = angulos[i]-angulos[i-1] |
|
415 | diff_ = angulos[i]-angulos[i-1] | |
416 | if diff_ >1.5: |
|
416 | if diff_ >1.5: | |
417 | list1.append(i-1) |
|
417 | list1.append(i-1) | |
418 | list2.append(diff_) |
|
418 | list2.append(diff_) | |
419 | return list(reversed(list1)),list(reversed(list2)) |
|
419 | return list(reversed(list1)),list(reversed(list2)) | |
420 |
|
420 | |||
421 | def fixData360(self,list_,ang_): |
|
421 | def fixData360(self,list_,ang_): | |
422 | if list_[0]==-1: |
|
422 | if list_[0]==-1: | |
423 | vec = numpy.where(ang_<ang_[0]) |
|
423 | vec = numpy.where(ang_<ang_[0]) | |
424 | ang_[vec] = ang_[vec]+360 |
|
424 | ang_[vec] = ang_[vec]+360 | |
425 | return ang_ |
|
425 | return ang_ | |
426 | return ang_ |
|
426 | return ang_ | |
427 |
|
427 | |||
428 | def fixData360HL(self,angulos): |
|
428 | def fixData360HL(self,angulos): | |
429 | vec = numpy.where(angulos>=360) |
|
429 | vec = numpy.where(angulos>=360) | |
430 | angulos[vec]=angulos[vec]-360 |
|
430 | angulos[vec]=angulos[vec]-360 | |
431 | return angulos |
|
431 | return angulos | |
432 |
|
432 | |||
433 | def search_pos(self,pos,list_): |
|
433 | def search_pos(self,pos,list_): | |
434 | for i in range(len(list_)): |
|
434 | for i in range(len(list_)): | |
435 | if pos == list_[i]: |
|
435 | if pos == list_[i]: | |
436 | return True,i |
|
436 | return True,i | |
437 | i=None |
|
437 | i=None | |
438 | return False,i |
|
438 | return False,i | |
439 |
|
439 | |||
440 | def fixDataComp(self,ang_,list1_,list2_): |
|
440 | def fixDataComp(self,ang_,list1_,list2_): | |
441 | size = len(ang_) |
|
441 | size = len(ang_) | |
442 | size2 = 0 |
|
442 | size2 = 0 | |
443 | for i in range(len(list2_)): |
|
443 | for i in range(len(list2_)): | |
444 | size2=size2+round(list2_[i])-1 |
|
444 | size2=size2+round(list2_[i])-1 | |
445 | new_size= size+size2 |
|
445 | new_size= size+size2 | |
446 | ang_new = numpy.zeros(new_size) |
|
446 | ang_new = numpy.zeros(new_size) | |
447 | ang_new2 = numpy.zeros(new_size) |
|
447 | ang_new2 = numpy.zeros(new_size) | |
448 |
|
448 | |||
449 | tmp = 0 |
|
449 | tmp = 0 | |
450 | c = 0 |
|
450 | c = 0 | |
451 | for i in range(len(ang_)): |
|
451 | for i in range(len(ang_)): | |
452 | ang_new[tmp +c] = ang_[i] |
|
452 | ang_new[tmp +c] = ang_[i] | |
453 | ang_new2[tmp+c] = ang_[i] |
|
453 | ang_new2[tmp+c] = ang_[i] | |
454 | condition , value = self.search_pos(i,list1_) |
|
454 | condition , value = self.search_pos(i,list1_) | |
455 | if condition: |
|
455 | if condition: | |
456 | pos = tmp + c + 1 |
|
456 | pos = tmp + c + 1 | |
457 | for k in range(round(list2_[value])-1): |
|
457 | for k in range(round(list2_[value])-1): | |
458 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
458 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
459 | ang_new2[pos+k] = numpy.nan |
|
459 | ang_new2[pos+k] = numpy.nan | |
460 | tmp = pos +k |
|
460 | tmp = pos +k | |
461 | c = 0 |
|
461 | c = 0 | |
462 | c=c+1 |
|
462 | c=c+1 | |
463 | return ang_new,ang_new2 |
|
463 | return ang_new,ang_new2 | |
464 |
|
464 | |||
465 | def globalCheckPED(self,angulos): |
|
465 | def globalCheckPED(self,angulos): | |
466 | l1,l2 = self.get2List(angulos) |
|
466 | l1,l2 = self.get2List(angulos) | |
467 | if len(l1)>0: |
|
467 | if len(l1)>0: | |
468 | angulos2 = self.fixData360(list_=l1,ang_=angulos) |
|
468 | angulos2 = self.fixData360(list_=l1,ang_=angulos) | |
469 | l1,l2 = self.get2List(angulos2) |
|
469 | l1,l2 = self.get2List(angulos2) | |
470 |
|
470 | |||
471 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) |
|
471 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) | |
472 | ang1_ = self.fixData360HL(ang1_) |
|
472 | ang1_ = self.fixData360HL(ang1_) | |
473 | ang2_ = self.fixData360HL(ang2_) |
|
473 | ang2_ = self.fixData360HL(ang2_) | |
474 | else: |
|
474 | else: | |
475 | ang1_= angulos |
|
475 | ang1_= angulos | |
476 | ang2_= angulos |
|
476 | ang2_= angulos | |
477 | return ang1_,ang2_ |
|
477 | return ang1_,ang2_ | |
478 |
|
478 | |||
479 | def analizeDATA(self,data_azi): |
|
479 | def analizeDATA(self,data_azi): | |
480 | list1 = [] |
|
480 | list1 = [] | |
481 | list2 = [] |
|
481 | list2 = [] | |
482 | dat = data_azi |
|
482 | dat = data_azi | |
483 | for i in reversed(range(1,len(dat))): |
|
483 | for i in reversed(range(1,len(dat))): | |
484 | if dat[i]>dat[i-1]: |
|
484 | if dat[i]>dat[i-1]: | |
485 | diff = int(dat[i])-int(dat[i-1]) |
|
485 | diff = int(dat[i])-int(dat[i-1]) | |
486 | else: |
|
486 | else: | |
487 | diff = 360+int(dat[i])-int(dat[i-1]) |
|
487 | diff = 360+int(dat[i])-int(dat[i-1]) | |
488 | if diff > 1: |
|
488 | if diff > 1: | |
489 | list1.append(i-1) |
|
489 | list1.append(i-1) | |
490 | list2.append(diff-1) |
|
490 | list2.append(diff-1) | |
491 | return list1,list2 |
|
491 | return list1,list2 | |
492 |
|
492 | |||
493 | def fixDATANEW(self,data_azi,data_weather): |
|
493 | def fixDATANEW(self,data_azi,data_weather): | |
494 | list1,list2 = self.analizeDATA(data_azi) |
|
494 | list1,list2 = self.analizeDATA(data_azi) | |
495 | if len(list1)== 0: |
|
495 | if len(list1)== 0: | |
496 | return data_azi,data_weather |
|
496 | return data_azi,data_weather | |
497 | else: |
|
497 | else: | |
498 | resize = 0 |
|
498 | resize = 0 | |
499 | for i in range(len(list2)): |
|
499 | for i in range(len(list2)): | |
500 | resize= resize + list2[i] |
|
500 | resize= resize + list2[i] | |
501 | new_data_azi = numpy.resize(data_azi,resize) |
|
501 | new_data_azi = numpy.resize(data_azi,resize) | |
502 | new_data_weather= numpy.resize(date_weather,resize) |
|
502 | new_data_weather= numpy.resize(date_weather,resize) | |
503 |
|
503 | |||
504 | for i in range(len(list2)): |
|
504 | for i in range(len(list2)): | |
505 | j=0 |
|
505 | j=0 | |
506 | position=list1[i]+1 |
|
506 | position=list1[i]+1 | |
507 | for j in range(list2[i]): |
|
507 | for j in range(list2[i]): | |
508 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 |
|
508 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 | |
509 | return new_data_azi |
|
509 | return new_data_azi | |
510 |
|
510 | |||
511 | def fixDATA(self,data_azi): |
|
511 | def fixDATA(self,data_azi): | |
512 | data=data_azi |
|
512 | data=data_azi | |
513 | for i in range(len(data)): |
|
513 | for i in range(len(data)): | |
514 | if numpy.isnan(data[i]): |
|
514 | if numpy.isnan(data[i]): | |
515 | data[i]=data[i-1]+1 |
|
515 | data[i]=data[i-1]+1 | |
516 | return data |
|
516 | return data | |
517 |
|
517 | |||
518 | def replaceNAN(self,data_weather,data_azi,val): |
|
518 | def replaceNAN(self,data_weather,data_azi,val): | |
519 | data= data_azi |
|
519 | data= data_azi | |
520 | data_T= data_weather |
|
520 | data_T= data_weather | |
521 | if data.shape[0]> data_T.shape[0]: |
|
521 | if data.shape[0]> data_T.shape[0]: | |
522 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
522 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
523 | c = 0 |
|
523 | c = 0 | |
524 | for i in range(len(data)): |
|
524 | for i in range(len(data)): | |
525 | if numpy.isnan(data[i]): |
|
525 | if numpy.isnan(data[i]): | |
526 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
526 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
527 | else: |
|
527 | else: | |
528 | data_N[i,:]=data_T[c,:] |
|
528 | data_N[i,:]=data_T[c,:] | |
529 | c=c+1 |
|
529 | c=c+1 | |
530 | return data_N |
|
530 | return data_N | |
531 | else: |
|
531 | else: | |
532 | for i in range(len(data)): |
|
532 | for i in range(len(data)): | |
533 | if numpy.isnan(data[i]): |
|
533 | if numpy.isnan(data[i]): | |
534 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
534 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
535 | return data_T |
|
535 | return data_T | |
536 |
|
536 | |||
537 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
537 | def const_ploteo(self,data_weather,data_azi,step,res): | |
538 | if self.ini==0: |
|
538 | if self.ini==0: | |
539 | #------- |
|
539 | #------- | |
540 | n = (360/res)-len(data_azi) |
|
540 | n = (360/res)-len(data_azi) | |
541 | #--------------------- new ------------------------- |
|
541 | #--------------------- new ------------------------- | |
542 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) |
|
542 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) | |
543 | #------------------------ |
|
543 | #------------------------ | |
544 | start = data_azi_new[-1] + res |
|
544 | start = data_azi_new[-1] + res | |
545 | end = data_azi_new[0] - res |
|
545 | end = data_azi_new[0] - res | |
546 | #------ new |
|
546 | #------ new | |
547 | self.last_data_azi = end |
|
547 | self.last_data_azi = end | |
548 | if start>end: |
|
548 | if start>end: | |
549 | end = end + 360 |
|
549 | end = end + 360 | |
550 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
550 | azi_vacia = numpy.linspace(start,end,int(n)) | |
551 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
551 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) | |
552 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) |
|
552 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) | |
553 | # RADAR |
|
553 | # RADAR | |
554 | val_mean = numpy.mean(data_weather[:,-1]) |
|
554 | val_mean = numpy.mean(data_weather[:,-1]) | |
555 | self.val_mean = val_mean |
|
555 | self.val_mean = val_mean | |
556 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
556 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean | |
557 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
557 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | |
558 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
558 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) | |
559 | else: |
|
559 | else: | |
560 | # azimuth |
|
560 | # azimuth | |
561 | flag=0 |
|
561 | flag=0 | |
562 | start_azi = self.res_azi[0] |
|
562 | start_azi = self.res_azi[0] | |
563 | #-----------new------------ |
|
563 | #-----------new------------ | |
564 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) |
|
564 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) | |
565 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
565 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | |
566 | #-------------------------- |
|
566 | #-------------------------- | |
567 | start = data_azi[0] |
|
567 | start = data_azi[0] | |
568 | end = data_azi[-1] |
|
568 | end = data_azi[-1] | |
569 | self.last_data_azi= end |
|
569 | self.last_data_azi= end | |
570 | if start< start_azi: |
|
570 | if start< start_azi: | |
571 | start = start +360 |
|
571 | start = start +360 | |
572 | if end <start_azi: |
|
572 | if end <start_azi: | |
573 | end = end +360 |
|
573 | end = end +360 | |
574 |
|
574 | |||
575 | pos_ini = int((start-start_azi)/res) |
|
575 | pos_ini = int((start-start_azi)/res) | |
576 | len_azi = len(data_azi) |
|
576 | len_azi = len(data_azi) | |
577 | if (360-pos_ini)<len_azi: |
|
577 | if (360-pos_ini)<len_azi: | |
578 | if pos_ini+1==360: |
|
578 | if pos_ini+1==360: | |
579 | pos_ini=0 |
|
579 | pos_ini=0 | |
580 | else: |
|
580 | else: | |
581 | flag=1 |
|
581 | flag=1 | |
582 | dif= 360-pos_ini |
|
582 | dif= 360-pos_ini | |
583 | comp= len_azi-dif |
|
583 | comp= len_azi-dif | |
584 | #----------------- |
|
584 | #----------------- | |
585 | if flag==0: |
|
585 | if flag==0: | |
586 | # AZIMUTH |
|
586 | # AZIMUTH | |
587 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
587 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi | |
588 | # RADAR |
|
588 | # RADAR | |
589 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
589 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather | |
590 | else: |
|
590 | else: | |
591 | # AZIMUTH |
|
591 | # AZIMUTH | |
592 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
592 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] | |
593 | self.res_azi[0:comp] = data_azi[dif:] |
|
593 | self.res_azi[0:comp] = data_azi[dif:] | |
594 | # RADAR |
|
594 | # RADAR | |
595 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
595 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] | |
596 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
596 | self.res_weather[0:comp,:] = data_weather[dif:,:] | |
597 | flag=0 |
|
597 | flag=0 | |
598 | data_azi = self.res_azi |
|
598 | data_azi = self.res_azi | |
599 | data_weather = self.res_weather |
|
599 | data_weather = self.res_weather | |
600 |
|
600 | |||
601 | return data_weather,data_azi |
|
601 | return data_weather,data_azi | |
602 |
|
602 | |||
603 | def plot(self): |
|
603 | def plot(self): | |
604 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
604 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
605 | data = self.data[-1] |
|
605 | data = self.data[-1] | |
606 | r = self.data.yrange |
|
606 | r = self.data.yrange | |
607 | delta_height = r[1]-r[0] |
|
607 | delta_height = r[1]-r[0] | |
608 | r_mask = numpy.where(r>=0)[0] |
|
608 | r_mask = numpy.where(r>=0)[0] | |
609 | r = numpy.arange(len(r_mask))*delta_height |
|
609 | r = numpy.arange(len(r_mask))*delta_height | |
610 | self.y = 2*r |
|
610 | self.y = 2*r | |
611 | # RADAR |
|
611 | # RADAR | |
612 | #data_weather = data['weather'] |
|
612 | #data_weather = data['weather'] | |
613 | # PEDESTAL |
|
613 | # PEDESTAL | |
614 | #data_azi = data['azi'] |
|
614 | #data_azi = data['azi'] | |
615 | res = 1 |
|
615 | res = 1 | |
616 | # STEP |
|
616 | # STEP | |
617 | step = (360/(res*data['weather'].shape[0])) |
|
617 | step = (360/(res*data['weather'].shape[0])) | |
618 |
|
618 | |||
619 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) |
|
619 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) | |
620 | self.res_ele = numpy.mean(data['ele']) |
|
620 | self.res_ele = numpy.mean(data['ele']) | |
621 | ################# PLOTEO ################### |
|
621 | ################# PLOTEO ################### | |
622 | for i,ax in enumerate(self.axes): |
|
622 | for i,ax in enumerate(self.axes): | |
623 | self.zmin = self.zmin if self.zmin else 20 |
|
623 | self.zmin = self.zmin if self.zmin else 20 | |
624 | self.zmax = self.zmax if self.zmax else 80 |
|
624 | self.zmax = self.zmax if self.zmax else 80 | |
625 | if ax.firsttime: |
|
625 | if ax.firsttime: | |
626 | plt.clf() |
|
626 | plt.clf() | |
627 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax) |
|
627 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax) | |
628 | else: |
|
628 | else: | |
629 | plt.clf() |
|
629 | plt.clf() | |
630 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax) |
|
630 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax) | |
631 | caax = cgax.parasites[0] |
|
631 | caax = cgax.parasites[0] | |
632 | paax = cgax.parasites[1] |
|
632 | paax = cgax.parasites[1] | |
633 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
633 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
634 | caax.set_xlabel('x_range [km]') |
|
634 | caax.set_xlabel('x_range [km]') | |
635 | caax.set_ylabel('y_range [km]') |
|
635 | caax.set_ylabel('y_range [km]') | |
636 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " EL: "+str(round(self.res_ele, 1)), transform=caax.transAxes, va='bottom',ha='right') |
|
636 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " EL: "+str(round(self.res_ele, 1)), transform=caax.transAxes, va='bottom',ha='right') | |
637 |
|
637 | |||
638 | self.ini= self.ini+1 |
|
638 | self.ini= self.ini+1 | |
639 |
|
639 | |||
640 |
|
640 | |||
641 | class WeatherRHIPlot(Plot): |
|
641 | class WeatherRHIPlot(Plot): | |
642 | CODE = 'weather' |
|
642 | CODE = 'weather' | |
643 | plot_name = 'weather' |
|
643 | plot_name = 'weather' | |
644 | plot_type = 'rhistyle' |
|
644 | plot_type = 'rhistyle' | |
645 | buffering = False |
|
645 | buffering = False | |
646 | data_ele_tmp = None |
|
646 | data_ele_tmp = None | |
647 |
|
647 | |||
648 | def setup(self): |
|
648 | def setup(self): | |
649 | print("********************") |
|
649 | print("********************") | |
650 | print("********************") |
|
650 | print("********************") | |
651 | print("********************") |
|
651 | print("********************") | |
652 | print("SETUP WEATHER PLOT") |
|
652 | print("SETUP WEATHER PLOT") | |
653 | self.ncols = 1 |
|
653 | self.ncols = 1 | |
654 | self.nrows = 1 |
|
654 | self.nrows = 1 | |
655 | self.nplots= 1 |
|
655 | self.nplots= 1 | |
656 | self.ylabel= 'Range [Km]' |
|
656 | self.ylabel= 'Range [Km]' | |
657 | self.titles= ['Weather'] |
|
657 | self.titles= ['Weather'] | |
658 | if self.channels is not None: |
|
658 | if self.channels is not None: | |
659 | self.nplots = len(self.channels) |
|
659 | self.nplots = len(self.channels) | |
660 | self.nrows = len(self.channels) |
|
660 | self.nrows = len(self.channels) | |
661 | else: |
|
661 | else: | |
662 | self.nplots = self.data.shape(self.CODE)[0] |
|
662 | self.nplots = self.data.shape(self.CODE)[0] | |
663 | self.nrows = self.nplots |
|
663 | self.nrows = self.nplots | |
664 | self.channels = list(range(self.nplots)) |
|
664 | self.channels = list(range(self.nplots)) | |
665 | print("channels",self.channels) |
|
665 | print("channels",self.channels) | |
666 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
666 | print("que saldra", self.data.shape(self.CODE)[0]) | |
667 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
667 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
668 | print("self.titles",self.titles) |
|
668 | print("self.titles",self.titles) | |
669 | self.colorbar=False |
|
669 | self.colorbar=False | |
670 | self.width =12 |
|
670 | self.width =12 | |
671 | self.height =8 |
|
671 | self.height =8 | |
672 | self.ini =0 |
|
672 | self.ini =0 | |
673 | self.len_azi =0 |
|
673 | self.len_azi =0 | |
674 | self.buffer_ini = None |
|
674 | self.buffer_ini = None | |
675 | self.buffer_ele = None |
|
675 | self.buffer_ele = None | |
676 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
676 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
677 | self.flag =0 |
|
677 | self.flag =0 | |
678 | self.indicador= 0 |
|
678 | self.indicador= 0 | |
679 | self.last_data_ele = None |
|
679 | self.last_data_ele = None | |
680 | self.val_mean = None |
|
680 | self.val_mean = None | |
681 |
|
681 | |||
682 | def update(self, dataOut): |
|
682 | def update(self, dataOut): | |
683 |
|
683 | |||
684 | data = {} |
|
684 | data = {} | |
685 | meta = {} |
|
685 | meta = {} | |
686 | if hasattr(dataOut, 'dataPP_POWER'): |
|
686 | if hasattr(dataOut, 'dataPP_POWER'): | |
687 | factor = 1 |
|
687 | factor = 1 | |
688 | if hasattr(dataOut, 'nFFTPoints'): |
|
688 | if hasattr(dataOut, 'nFFTPoints'): | |
689 | factor = dataOut.normFactor |
|
689 | factor = dataOut.normFactor | |
690 | print("dataOut",dataOut.data_360.shape) |
|
690 | print("dataOut",dataOut.data_360.shape) | |
691 | # |
|
691 | # | |
692 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
692 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
693 | # |
|
693 | # | |
694 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
694 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
695 | data['azi'] = dataOut.data_azi |
|
695 | data['azi'] = dataOut.data_azi | |
696 | data['ele'] = dataOut.data_ele |
|
696 | data['ele'] = dataOut.data_ele | |
697 | #print("UPDATE") |
|
697 | #print("UPDATE") | |
698 | #print("data[weather]",data['weather'].shape) |
|
698 | #print("data[weather]",data['weather'].shape) | |
699 | #print("data[azi]",data['azi']) |
|
699 | #print("data[azi]",data['azi']) | |
700 | return data, meta |
|
700 | return data, meta | |
701 |
|
701 | |||
702 | def get2List(self,angulos): |
|
702 | def get2List(self,angulos): | |
703 | list1=[] |
|
703 | list1=[] | |
704 | list2=[] |
|
704 | list2=[] | |
705 | for i in reversed(range(len(angulos))): |
|
705 | for i in reversed(range(len(angulos))): | |
706 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
706 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
707 | diff_ = angulos[i]-angulos[i-1] |
|
707 | diff_ = angulos[i]-angulos[i-1] | |
708 | if abs(diff_) >1.5: |
|
708 | if abs(diff_) >1.5: | |
709 | list1.append(i-1) |
|
709 | list1.append(i-1) | |
710 | list2.append(diff_) |
|
710 | list2.append(diff_) | |
711 | return list(reversed(list1)),list(reversed(list2)) |
|
711 | return list(reversed(list1)),list(reversed(list2)) | |
712 |
|
712 | |||
713 | def fixData90(self,list_,ang_): |
|
713 | def fixData90(self,list_,ang_): | |
714 | if list_[0]==-1: |
|
714 | if list_[0]==-1: | |
715 | vec = numpy.where(ang_<ang_[0]) |
|
715 | vec = numpy.where(ang_<ang_[0]) | |
716 | ang_[vec] = ang_[vec]+90 |
|
716 | ang_[vec] = ang_[vec]+90 | |
717 | return ang_ |
|
717 | return ang_ | |
718 | return ang_ |
|
718 | return ang_ | |
719 |
|
719 | |||
720 | def fixData90HL(self,angulos): |
|
720 | def fixData90HL(self,angulos): | |
721 | vec = numpy.where(angulos>=90) |
|
721 | vec = numpy.where(angulos>=90) | |
722 | angulos[vec]=angulos[vec]-90 |
|
722 | angulos[vec]=angulos[vec]-90 | |
723 | return angulos |
|
723 | return angulos | |
724 |
|
724 | |||
725 |
|
725 | |||
726 | def search_pos(self,pos,list_): |
|
726 | def search_pos(self,pos,list_): | |
727 | for i in range(len(list_)): |
|
727 | for i in range(len(list_)): | |
728 | if pos == list_[i]: |
|
728 | if pos == list_[i]: | |
729 | return True,i |
|
729 | return True,i | |
730 | i=None |
|
730 | i=None | |
731 | return False,i |
|
731 | return False,i | |
732 |
|
732 | |||
733 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
733 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
734 | size = len(ang_) |
|
734 | size = len(ang_) | |
735 | size2 = 0 |
|
735 | size2 = 0 | |
736 | for i in range(len(list2_)): |
|
736 | for i in range(len(list2_)): | |
737 | size2=size2+round(abs(list2_[i]))-1 |
|
737 | size2=size2+round(abs(list2_[i]))-1 | |
738 | new_size= size+size2 |
|
738 | new_size= size+size2 | |
739 | ang_new = numpy.zeros(new_size) |
|
739 | ang_new = numpy.zeros(new_size) | |
740 | ang_new2 = numpy.zeros(new_size) |
|
740 | ang_new2 = numpy.zeros(new_size) | |
741 |
|
741 | |||
742 | tmp = 0 |
|
742 | tmp = 0 | |
743 | c = 0 |
|
743 | c = 0 | |
744 | for i in range(len(ang_)): |
|
744 | for i in range(len(ang_)): | |
745 | ang_new[tmp +c] = ang_[i] |
|
745 | ang_new[tmp +c] = ang_[i] | |
746 | ang_new2[tmp+c] = ang_[i] |
|
746 | ang_new2[tmp+c] = ang_[i] | |
747 | condition , value = self.search_pos(i,list1_) |
|
747 | condition , value = self.search_pos(i,list1_) | |
748 | if condition: |
|
748 | if condition: | |
749 | pos = tmp + c + 1 |
|
749 | pos = tmp + c + 1 | |
750 | for k in range(round(abs(list2_[value]))-1): |
|
750 | for k in range(round(abs(list2_[value]))-1): | |
751 | if tipo_case==0 or tipo_case==3:#subida |
|
751 | if tipo_case==0 or tipo_case==3:#subida | |
752 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
752 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
753 | ang_new2[pos+k] = numpy.nan |
|
753 | ang_new2[pos+k] = numpy.nan | |
754 | elif tipo_case==1 or tipo_case==2:#bajada |
|
754 | elif tipo_case==1 or tipo_case==2:#bajada | |
755 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
755 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
756 | ang_new2[pos+k] = numpy.nan |
|
756 | ang_new2[pos+k] = numpy.nan | |
757 |
|
757 | |||
758 | tmp = pos +k |
|
758 | tmp = pos +k | |
759 | c = 0 |
|
759 | c = 0 | |
760 | c=c+1 |
|
760 | c=c+1 | |
761 | return ang_new,ang_new2 |
|
761 | return ang_new,ang_new2 | |
762 |
|
762 | |||
763 | def globalCheckPED(self,angulos,tipo_case): |
|
763 | def globalCheckPED(self,angulos,tipo_case): | |
764 | l1,l2 = self.get2List(angulos) |
|
764 | l1,l2 = self.get2List(angulos) | |
765 | ##print("l1",l1) |
|
765 | ##print("l1",l1) | |
766 | ##print("l2",l2) |
|
766 | ##print("l2",l2) | |
767 | if len(l1)>0: |
|
767 | if len(l1)>0: | |
768 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
768 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
769 | #l1,l2 = self.get2List(angulos2) |
|
769 | #l1,l2 = self.get2List(angulos2) | |
770 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
770 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
771 | #ang1_ = self.fixData90HL(ang1_) |
|
771 | #ang1_ = self.fixData90HL(ang1_) | |
772 | #ang2_ = self.fixData90HL(ang2_) |
|
772 | #ang2_ = self.fixData90HL(ang2_) | |
773 | else: |
|
773 | else: | |
774 | ang1_= angulos |
|
774 | ang1_= angulos | |
775 | ang2_= angulos |
|
775 | ang2_= angulos | |
776 | return ang1_,ang2_ |
|
776 | return ang1_,ang2_ | |
777 |
|
777 | |||
778 |
|
778 | |||
779 | def replaceNAN(self,data_weather,data_ele,val): |
|
779 | def replaceNAN(self,data_weather,data_ele,val): | |
780 | data= data_ele |
|
780 | data= data_ele | |
781 | data_T= data_weather |
|
781 | data_T= data_weather | |
782 | if data.shape[0]> data_T.shape[0]: |
|
782 | if data.shape[0]> data_T.shape[0]: | |
783 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
783 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
784 | c = 0 |
|
784 | c = 0 | |
785 | for i in range(len(data)): |
|
785 | for i in range(len(data)): | |
786 | if numpy.isnan(data[i]): |
|
786 | if numpy.isnan(data[i]): | |
787 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
787 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
788 | else: |
|
788 | else: | |
789 | data_N[i,:]=data_T[c,:] |
|
789 | data_N[i,:]=data_T[c,:] | |
790 | c=c+1 |
|
790 | c=c+1 | |
791 | return data_N |
|
791 | return data_N | |
792 | else: |
|
792 | else: | |
793 | for i in range(len(data)): |
|
793 | for i in range(len(data)): | |
794 | if numpy.isnan(data[i]): |
|
794 | if numpy.isnan(data[i]): | |
795 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
795 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
796 | return data_T |
|
796 | return data_T | |
797 |
|
797 | |||
798 | def check_case(self,data_ele,ang_max,ang_min): |
|
798 | def check_case(self,data_ele,ang_max,ang_min): | |
799 | start = data_ele[0] |
|
799 | start = data_ele[0] | |
800 | end = data_ele[-1] |
|
800 | end = data_ele[-1] | |
801 | number = (end-start) |
|
801 | number = (end-start) | |
802 | len_ang=len(data_ele) |
|
802 | len_ang=len(data_ele) | |
803 | print("start",start) |
|
803 | print("start",start) | |
804 | print("end",end) |
|
804 | print("end",end) | |
805 | print("number",number) |
|
805 | print("number",number) | |
806 |
|
806 | |||
807 | print("len_ang",len_ang) |
|
807 | print("len_ang",len_ang) | |
808 |
|
808 | |||
809 | #exit(1) |
|
809 | #exit(1) | |
810 |
|
810 | |||
811 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
811 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
812 | return 0 |
|
812 | return 0 | |
813 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
813 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
814 | # return 1 |
|
814 | # return 1 | |
815 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
815 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
816 | return 1 |
|
816 | return 1 | |
817 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
817 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
818 | return 2 |
|
818 | return 2 | |
819 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
819 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
820 | return 3 |
|
820 | return 3 | |
821 |
|
821 | |||
822 |
|
822 | |||
823 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): |
|
823 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): | |
824 | ang_max= ang_max |
|
824 | ang_max= ang_max | |
825 | ang_min= ang_min |
|
825 | ang_min= ang_min | |
826 | data_weather=data_weather |
|
826 | data_weather=data_weather | |
827 | val_ch=val_ch |
|
827 | val_ch=val_ch | |
828 | ##print("*********************DATA WEATHER**************************************") |
|
828 | ##print("*********************DATA WEATHER**************************************") | |
829 | ##print(data_weather) |
|
829 | ##print(data_weather) | |
830 | if self.ini==0: |
|
830 | if self.ini==0: | |
831 | ''' |
|
831 | ''' | |
832 | print("**********************************************") |
|
832 | print("**********************************************") | |
833 | print("**********************************************") |
|
833 | print("**********************************************") | |
834 | print("***************ini**************") |
|
834 | print("***************ini**************") | |
835 | print("**********************************************") |
|
835 | print("**********************************************") | |
836 | print("**********************************************") |
|
836 | print("**********************************************") | |
837 | ''' |
|
837 | ''' | |
838 | #print("data_ele",data_ele) |
|
838 | #print("data_ele",data_ele) | |
839 | #---------------------------------------------------------- |
|
839 | #---------------------------------------------------------- | |
840 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
840 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
841 | print("check_case",tipo_case) |
|
841 | print("check_case",tipo_case) | |
842 | #exit(1) |
|
842 | #exit(1) | |
843 | #--------------------- new ------------------------- |
|
843 | #--------------------- new ------------------------- | |
844 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
844 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
845 |
|
845 | |||
846 | #-------------------------CAMBIOS RHI--------------------------------- |
|
846 | #-------------------------CAMBIOS RHI--------------------------------- | |
847 | start= ang_min |
|
847 | start= ang_min | |
848 | end = ang_max |
|
848 | end = ang_max | |
849 | n= (ang_max-ang_min)/res |
|
849 | n= (ang_max-ang_min)/res | |
850 | #------ new |
|
850 | #------ new | |
851 | self.start_data_ele = data_ele_new[0] |
|
851 | self.start_data_ele = data_ele_new[0] | |
852 | self.end_data_ele = data_ele_new[-1] |
|
852 | self.end_data_ele = data_ele_new[-1] | |
853 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
853 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
854 | n1= round(self.start_data_ele)- start |
|
854 | n1= round(self.start_data_ele)- start | |
855 | n2= end - round(self.end_data_ele) |
|
855 | n2= end - round(self.end_data_ele) | |
856 | print(self.start_data_ele) |
|
856 | print(self.start_data_ele) | |
857 | print(self.end_data_ele) |
|
857 | print(self.end_data_ele) | |
858 | if n1>0: |
|
858 | if n1>0: | |
859 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
859 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
860 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
860 | ele1_nan= numpy.ones(n1)*numpy.nan | |
861 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
861 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
862 | print("ele1_nan",ele1_nan.shape) |
|
862 | print("ele1_nan",ele1_nan.shape) | |
863 | print("data_ele_old",data_ele_old.shape) |
|
863 | print("data_ele_old",data_ele_old.shape) | |
864 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
864 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
865 | if n2>0: |
|
865 | if n2>0: | |
866 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
866 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
867 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
867 | ele2_nan= numpy.ones(n2)*numpy.nan | |
868 | data_ele = numpy.hstack((data_ele,ele2)) |
|
868 | data_ele = numpy.hstack((data_ele,ele2)) | |
869 | print("ele2_nan",ele2_nan.shape) |
|
869 | print("ele2_nan",ele2_nan.shape) | |
870 | print("data_ele_old",data_ele_old.shape) |
|
870 | print("data_ele_old",data_ele_old.shape) | |
871 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
871 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
872 |
|
872 | |||
873 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
873 | if tipo_case==1 or tipo_case==2: # BAJADA | |
874 | data_ele_new = data_ele_new[::-1] # reversa |
|
874 | data_ele_new = data_ele_new[::-1] # reversa | |
875 | data_ele_old = data_ele_old[::-1]# reversa |
|
875 | data_ele_old = data_ele_old[::-1]# reversa | |
876 | data_weather = data_weather[::-1,:]# reversa |
|
876 | data_weather = data_weather[::-1,:]# reversa | |
877 | vec= numpy.where(data_ele_new<ang_max) |
|
877 | vec= numpy.where(data_ele_new<ang_max) | |
878 | data_ele_new = data_ele_new[vec] |
|
878 | data_ele_new = data_ele_new[vec] | |
879 | data_ele_old = data_ele_old[vec] |
|
879 | data_ele_old = data_ele_old[vec] | |
880 | data_weather = data_weather[vec[0]] |
|
880 | data_weather = data_weather[vec[0]] | |
881 | vec2= numpy.where(0<data_ele_new) |
|
881 | vec2= numpy.where(0<data_ele_new) | |
882 | data_ele_new = data_ele_new[vec2] |
|
882 | data_ele_new = data_ele_new[vec2] | |
883 | data_ele_old = data_ele_old[vec2] |
|
883 | data_ele_old = data_ele_old[vec2] | |
884 | data_weather = data_weather[vec2[0]] |
|
884 | data_weather = data_weather[vec2[0]] | |
885 | self.start_data_ele = data_ele_new[0] |
|
885 | self.start_data_ele = data_ele_new[0] | |
886 | self.end_data_ele = data_ele_new[-1] |
|
886 | self.end_data_ele = data_ele_new[-1] | |
887 |
|
887 | |||
888 | n1= round(self.start_data_ele)- start |
|
888 | n1= round(self.start_data_ele)- start | |
889 | n2= end - round(self.end_data_ele)-1 |
|
889 | n2= end - round(self.end_data_ele)-1 | |
890 | print(self.start_data_ele) |
|
890 | print(self.start_data_ele) | |
891 | print(self.end_data_ele) |
|
891 | print(self.end_data_ele) | |
892 | if n1>0: |
|
892 | if n1>0: | |
893 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
893 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
894 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
894 | ele1_nan= numpy.ones(n1)*numpy.nan | |
895 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
895 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
896 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
896 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
897 | if n2>0: |
|
897 | if n2>0: | |
898 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
898 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
899 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
899 | ele2_nan= numpy.ones(n2)*numpy.nan | |
900 | data_ele = numpy.hstack((data_ele,ele2)) |
|
900 | data_ele = numpy.hstack((data_ele,ele2)) | |
901 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
901 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
902 | # RADAR |
|
902 | # RADAR | |
903 | # NOTA data_ele y data_weather es la variable que retorna |
|
903 | # NOTA data_ele y data_weather es la variable que retorna | |
904 | val_mean = numpy.mean(data_weather[:,-1]) |
|
904 | val_mean = numpy.mean(data_weather[:,-1]) | |
905 | self.val_mean = val_mean |
|
905 | self.val_mean = val_mean | |
906 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
906 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
907 | self.data_ele_tmp[val_ch]= data_ele_old |
|
907 | self.data_ele_tmp[val_ch]= data_ele_old | |
908 | else: |
|
908 | else: | |
909 | #print("**********************************************") |
|
909 | #print("**********************************************") | |
910 | #print("****************VARIABLE**********************") |
|
910 | #print("****************VARIABLE**********************") | |
911 | #-------------------------CAMBIOS RHI--------------------------------- |
|
911 | #-------------------------CAMBIOS RHI--------------------------------- | |
912 | #--------------------------------------------------------------------- |
|
912 | #--------------------------------------------------------------------- | |
913 | ##print("INPUT data_ele",data_ele) |
|
913 | ##print("INPUT data_ele",data_ele) | |
914 | flag=0 |
|
914 | flag=0 | |
915 | start_ele = self.res_ele[0] |
|
915 | start_ele = self.res_ele[0] | |
916 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
916 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
917 | #print("TIPO DE DATA",tipo_case) |
|
917 | #print("TIPO DE DATA",tipo_case) | |
918 | #-----------new------------ |
|
918 | #-----------new------------ | |
919 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
919 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
920 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
920 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
921 |
|
921 | |||
922 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
922 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
923 |
|
923 | |||
924 | if tipo_case==0 : # SUBIDA |
|
924 | if tipo_case==0 : # SUBIDA | |
925 | vec = numpy.where(data_ele<ang_max) |
|
925 | vec = numpy.where(data_ele<ang_max) | |
926 | data_ele = data_ele[vec] |
|
926 | data_ele = data_ele[vec] | |
927 | data_ele_old = data_ele_old[vec] |
|
927 | data_ele_old = data_ele_old[vec] | |
928 | data_weather = data_weather[vec[0]] |
|
928 | data_weather = data_weather[vec[0]] | |
929 |
|
929 | |||
930 | vec2 = numpy.where(0<data_ele) |
|
930 | vec2 = numpy.where(0<data_ele) | |
931 | data_ele= data_ele[vec2] |
|
931 | data_ele= data_ele[vec2] | |
932 | data_ele_old= data_ele_old[vec2] |
|
932 | data_ele_old= data_ele_old[vec2] | |
933 | ##print(data_ele_new) |
|
933 | ##print(data_ele_new) | |
934 | data_weather= data_weather[vec2[0]] |
|
934 | data_weather= data_weather[vec2[0]] | |
935 |
|
935 | |||
936 | new_i_ele = int(round(data_ele[0])) |
|
936 | new_i_ele = int(round(data_ele[0])) | |
937 | new_f_ele = int(round(data_ele[-1])) |
|
937 | new_f_ele = int(round(data_ele[-1])) | |
938 | #print(new_i_ele) |
|
938 | #print(new_i_ele) | |
939 | #print(new_f_ele) |
|
939 | #print(new_f_ele) | |
940 | #print(data_ele,len(data_ele)) |
|
940 | #print(data_ele,len(data_ele)) | |
941 | #print(data_ele_old,len(data_ele_old)) |
|
941 | #print(data_ele_old,len(data_ele_old)) | |
942 | if new_i_ele< 2: |
|
942 | if new_i_ele< 2: | |
943 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
943 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
944 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
944 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
945 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
945 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
946 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
946 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
947 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
947 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
948 | data_ele = self.res_ele |
|
948 | data_ele = self.res_ele | |
949 | data_weather = self.res_weather[val_ch] |
|
949 | data_weather = self.res_weather[val_ch] | |
950 |
|
950 | |||
951 | elif tipo_case==1 : #BAJADA |
|
951 | elif tipo_case==1 : #BAJADA | |
952 | data_ele = data_ele[::-1] # reversa |
|
952 | data_ele = data_ele[::-1] # reversa | |
953 | data_ele_old = data_ele_old[::-1]# reversa |
|
953 | data_ele_old = data_ele_old[::-1]# reversa | |
954 | data_weather = data_weather[::-1,:]# reversa |
|
954 | data_weather = data_weather[::-1,:]# reversa | |
955 | vec= numpy.where(data_ele<ang_max) |
|
955 | vec= numpy.where(data_ele<ang_max) | |
956 | data_ele = data_ele[vec] |
|
956 | data_ele = data_ele[vec] | |
957 | data_ele_old = data_ele_old[vec] |
|
957 | data_ele_old = data_ele_old[vec] | |
958 | data_weather = data_weather[vec[0]] |
|
958 | data_weather = data_weather[vec[0]] | |
959 | vec2= numpy.where(0<data_ele) |
|
959 | vec2= numpy.where(0<data_ele) | |
960 | data_ele = data_ele[vec2] |
|
960 | data_ele = data_ele[vec2] | |
961 | data_ele_old = data_ele_old[vec2] |
|
961 | data_ele_old = data_ele_old[vec2] | |
962 | data_weather = data_weather[vec2[0]] |
|
962 | data_weather = data_weather[vec2[0]] | |
963 |
|
963 | |||
964 |
|
964 | |||
965 | new_i_ele = int(round(data_ele[0])) |
|
965 | new_i_ele = int(round(data_ele[0])) | |
966 | new_f_ele = int(round(data_ele[-1])) |
|
966 | new_f_ele = int(round(data_ele[-1])) | |
967 | #print(data_ele) |
|
967 | #print(data_ele) | |
968 | #print(ang_max) |
|
968 | #print(ang_max) | |
969 | #print(data_ele_old) |
|
969 | #print(data_ele_old) | |
970 | if new_i_ele <= 1: |
|
970 | if new_i_ele <= 1: | |
971 | new_i_ele = 1 |
|
971 | new_i_ele = 1 | |
972 | if round(data_ele[-1])>=ang_max-1: |
|
972 | if round(data_ele[-1])>=ang_max-1: | |
973 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
973 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
974 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
974 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
975 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
975 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
976 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
976 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
977 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
977 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
978 | data_ele = self.res_ele |
|
978 | data_ele = self.res_ele | |
979 | data_weather = self.res_weather[val_ch] |
|
979 | data_weather = self.res_weather[val_ch] | |
980 |
|
980 | |||
981 | elif tipo_case==2: #bajada |
|
981 | elif tipo_case==2: #bajada | |
982 | vec = numpy.where(data_ele<ang_max) |
|
982 | vec = numpy.where(data_ele<ang_max) | |
983 | data_ele = data_ele[vec] |
|
983 | data_ele = data_ele[vec] | |
984 | data_weather= data_weather[vec[0]] |
|
984 | data_weather= data_weather[vec[0]] | |
985 |
|
985 | |||
986 | len_vec = len(vec) |
|
986 | len_vec = len(vec) | |
987 | data_ele_new = data_ele[::-1] # reversa |
|
987 | data_ele_new = data_ele[::-1] # reversa | |
988 | data_weather = data_weather[::-1,:] |
|
988 | data_weather = data_weather[::-1,:] | |
989 | new_i_ele = int(data_ele_new[0]) |
|
989 | new_i_ele = int(data_ele_new[0]) | |
990 | new_f_ele = int(data_ele_new[-1]) |
|
990 | new_f_ele = int(data_ele_new[-1]) | |
991 |
|
991 | |||
992 | n1= new_i_ele- ang_min |
|
992 | n1= new_i_ele- ang_min | |
993 | n2= ang_max - new_f_ele-1 |
|
993 | n2= ang_max - new_f_ele-1 | |
994 | if n1>0: |
|
994 | if n1>0: | |
995 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
995 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
996 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
996 | ele1_nan= numpy.ones(n1)*numpy.nan | |
997 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
997 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
998 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
998 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
999 | if n2>0: |
|
999 | if n2>0: | |
1000 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1000 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1001 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1001 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1002 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1002 | data_ele = numpy.hstack((data_ele,ele2)) | |
1003 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1003 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1004 |
|
1004 | |||
1005 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1005 | self.data_ele_tmp[val_ch] = data_ele_old | |
1006 | self.res_ele = data_ele |
|
1006 | self.res_ele = data_ele | |
1007 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1007 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1008 | data_ele = self.res_ele |
|
1008 | data_ele = self.res_ele | |
1009 | data_weather = self.res_weather[val_ch] |
|
1009 | data_weather = self.res_weather[val_ch] | |
1010 |
|
1010 | |||
1011 | elif tipo_case==3:#subida |
|
1011 | elif tipo_case==3:#subida | |
1012 | vec = numpy.where(0<data_ele) |
|
1012 | vec = numpy.where(0<data_ele) | |
1013 | data_ele= data_ele[vec] |
|
1013 | data_ele= data_ele[vec] | |
1014 | data_ele_new = data_ele |
|
1014 | data_ele_new = data_ele | |
1015 | data_ele_old= data_ele_old[vec] |
|
1015 | data_ele_old= data_ele_old[vec] | |
1016 | data_weather= data_weather[vec[0]] |
|
1016 | data_weather= data_weather[vec[0]] | |
1017 | pos_ini = numpy.argmin(data_ele) |
|
1017 | pos_ini = numpy.argmin(data_ele) | |
1018 | if pos_ini>0: |
|
1018 | if pos_ini>0: | |
1019 | len_vec= len(data_ele) |
|
1019 | len_vec= len(data_ele) | |
1020 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1020 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
1021 | #print(vec3) |
|
1021 | #print(vec3) | |
1022 | data_ele= data_ele[vec3] |
|
1022 | data_ele= data_ele[vec3] | |
1023 | data_ele_new = data_ele |
|
1023 | data_ele_new = data_ele | |
1024 | data_ele_old= data_ele_old[vec3] |
|
1024 | data_ele_old= data_ele_old[vec3] | |
1025 | data_weather= data_weather[vec3] |
|
1025 | data_weather= data_weather[vec3] | |
1026 |
|
1026 | |||
1027 | new_i_ele = int(data_ele_new[0]) |
|
1027 | new_i_ele = int(data_ele_new[0]) | |
1028 | new_f_ele = int(data_ele_new[-1]) |
|
1028 | new_f_ele = int(data_ele_new[-1]) | |
1029 | n1= new_i_ele- ang_min |
|
1029 | n1= new_i_ele- ang_min | |
1030 | n2= ang_max - new_f_ele-1 |
|
1030 | n2= ang_max - new_f_ele-1 | |
1031 | if n1>0: |
|
1031 | if n1>0: | |
1032 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1032 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1033 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1033 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1034 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1034 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1035 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1035 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1036 | if n2>0: |
|
1036 | if n2>0: | |
1037 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1037 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1038 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1038 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1039 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1039 | data_ele = numpy.hstack((data_ele,ele2)) | |
1040 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1040 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1041 |
|
1041 | |||
1042 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1042 | self.data_ele_tmp[val_ch] = data_ele_old | |
1043 | self.res_ele = data_ele |
|
1043 | self.res_ele = data_ele | |
1044 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1044 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1045 | data_ele = self.res_ele |
|
1045 | data_ele = self.res_ele | |
1046 | data_weather = self.res_weather[val_ch] |
|
1046 | data_weather = self.res_weather[val_ch] | |
1047 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1047 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1048 | return data_weather,data_ele |
|
1048 | return data_weather,data_ele | |
1049 |
|
1049 | |||
1050 |
|
1050 | |||
1051 | def plot(self): |
|
1051 | def plot(self): | |
1052 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1052 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1053 | data = self.data[-1] |
|
1053 | data = self.data[-1] | |
1054 | r = self.data.yrange |
|
1054 | r = self.data.yrange | |
1055 | delta_height = r[1]-r[0] |
|
1055 | delta_height = r[1]-r[0] | |
1056 | r_mask = numpy.where(r>=0)[0] |
|
1056 | r_mask = numpy.where(r>=0)[0] | |
1057 | ##print("delta_height",delta_height) |
|
1057 | ##print("delta_height",delta_height) | |
1058 | #print("r_mask",r_mask,len(r_mask)) |
|
1058 | #print("r_mask",r_mask,len(r_mask)) | |
1059 | r = numpy.arange(len(r_mask))*delta_height |
|
1059 | r = numpy.arange(len(r_mask))*delta_height | |
1060 | self.y = 2*r |
|
1060 | self.y = 2*r | |
1061 | res = 1 |
|
1061 | res = 1 | |
1062 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1062 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1063 | ang_max = self.ang_max |
|
1063 | ang_max = self.ang_max | |
1064 | ang_min = self.ang_min |
|
1064 | ang_min = self.ang_min | |
1065 | var_ang =ang_max - ang_min |
|
1065 | var_ang =ang_max - ang_min | |
1066 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1066 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1067 | ###print("step",step) |
|
1067 | ###print("step",step) | |
1068 | #-------------------------------------------------------- |
|
1068 | #-------------------------------------------------------- | |
1069 | ##print('weather',data['weather'].shape) |
|
1069 | ##print('weather',data['weather'].shape) | |
1070 | ##print('ele',data['ele'].shape) |
|
1070 | ##print('ele',data['ele'].shape) | |
1071 |
|
1071 | |||
1072 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1072 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1073 | ###self.res_azi = numpy.mean(data['azi']) |
|
1073 | ###self.res_azi = numpy.mean(data['azi']) | |
1074 | ###print("self.res_ele",self.res_ele) |
|
1074 | ###print("self.res_ele",self.res_ele) | |
1075 | plt.clf() |
|
1075 | plt.clf() | |
1076 | subplots = [121, 122] |
|
1076 | subplots = [121, 122] | |
1077 | cg={'angular_spacing': 20.} |
|
1077 | cg={'angular_spacing': 20.} | |
1078 | if self.ini==0: |
|
1078 | if self.ini==0: | |
1079 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1079 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |
1080 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1080 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
1081 | print("SHAPE",self.data_ele_tmp.shape) |
|
1081 | print("SHAPE",self.data_ele_tmp.shape) | |
1082 |
|
1082 | |||
1083 | for i,ax in enumerate(self.axes): |
|
1083 | for i,ax in enumerate(self.axes): | |
1084 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1084 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1085 | self.res_azi = numpy.mean(data['azi']) |
|
1085 | self.res_azi = numpy.mean(data['azi']) | |
1086 | if i==0: |
|
1086 | if i==0: | |
1087 | print("*****************************************************************************to plot**************************",self.res_weather[i].shape) |
|
1087 | print("*****************************************************************************to plot**************************",self.res_weather[i].shape) | |
1088 | self.zmin = self.zmin if self.zmin else 20 |
|
1088 | self.zmin = self.zmin if self.zmin else 20 | |
1089 | self.zmax = self.zmax if self.zmax else 80 |
|
1089 | self.zmax = self.zmax if self.zmax else 80 | |
1090 | if ax.firsttime: |
|
1090 | if ax.firsttime: | |
1091 | #plt.clf() |
|
1091 | #plt.clf() | |
1092 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax) |
|
1092 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax) | |
1093 | #fig=self.figures[0] |
|
1093 | #fig=self.figures[0] | |
1094 | else: |
|
1094 | else: | |
1095 | #plt.clf() |
|
1095 | #plt.clf() | |
1096 | if i==0: |
|
1096 | if i==0: | |
1097 | print(self.res_weather[i]) |
|
1097 | print(self.res_weather[i]) | |
1098 | print(self.res_ele) |
|
1098 | print(self.res_ele) | |
1099 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax) |
|
1099 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax) | |
1100 | caax = cgax.parasites[0] |
|
1100 | caax = cgax.parasites[0] | |
1101 | paax = cgax.parasites[1] |
|
1101 | paax = cgax.parasites[1] | |
1102 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1102 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1103 | caax.set_xlabel('x_range [km]') |
|
1103 | caax.set_xlabel('x_range [km]') | |
1104 | caax.set_ylabel('y_range [km]') |
|
1104 | caax.set_ylabel('y_range [km]') | |
1105 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1105 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1106 | print("***************************self.ini****************************",self.ini) |
|
1106 | print("***************************self.ini****************************",self.ini) | |
1107 | self.ini= self.ini+1 |
|
1107 | self.ini= self.ini+1 | |
1108 |
|
1108 | |||
1109 | class Weather_vRF_Plot(Plot): |
|
1109 | class Weather_vRF_Plot(Plot): | |
1110 | CODE = 'PPI' |
|
1110 | CODE = 'PPI' | |
1111 | plot_name = 'PPI' |
|
1111 | plot_name = 'PPI' | |
1112 | #plot_type = 'ppistyle' |
|
1112 | #plot_type = 'ppistyle' | |
1113 | buffering = False |
|
1113 | buffering = False | |
1114 |
|
1114 | |||
1115 | def setup(self): |
|
1115 | def setup(self): | |
1116 |
|
1116 | |||
1117 | self.ncols = 1 |
|
1117 | self.ncols = 1 | |
1118 | self.nrows = 1 |
|
1118 | self.nrows = 1 | |
1119 | self.width =8 |
|
1119 | self.width =8 | |
1120 | self.height =8 |
|
1120 | self.height =8 | |
1121 | self.nplots= 1 |
|
1121 | self.nplots= 1 | |
1122 | self.ylabel= 'Range [Km]' |
|
1122 | self.ylabel= 'Range [Km]' | |
1123 | self.xlabel= 'Range [Km]' |
|
1123 | self.xlabel= 'Range [Km]' | |
1124 | self.titles= ['PPI'] |
|
1124 | self.titles= ['PPI'] | |
1125 | self.polar = True |
|
1125 | self.polar = True | |
1126 | if self.channels is not None: |
|
1126 | if self.channels is not None: | |
1127 | self.nplots = len(self.channels) |
|
1127 | self.nplots = len(self.channels) | |
1128 | self.nrows = len(self.channels) |
|
1128 | self.nrows = len(self.channels) | |
1129 | else: |
|
1129 | else: | |
1130 | self.nplots = self.data.shape(self.CODE)[0] |
|
1130 | self.nplots = self.data.shape(self.CODE)[0] | |
1131 | self.nrows = self.nplots |
|
1131 | self.nrows = self.nplots | |
1132 | self.channels = list(range(self.nplots)) |
|
1132 | self.channels = list(range(self.nplots)) | |
1133 |
|
1133 | |||
1134 | if self.CODE == 'POWER': |
|
1134 | if self.CODE == 'POWER': | |
1135 | self.cb_label = r'Power (dB)' |
|
1135 | self.cb_label = r'Power (dB)' | |
1136 | elif self.CODE == 'DOPPLER': |
|
1136 | elif self.CODE == 'DOPPLER': | |
1137 | self.cb_label = r'Velocity (m/s)' |
|
1137 | self.cb_label = r'Velocity (m/s)' | |
1138 | self.colorbar=True |
|
1138 | self.colorbar=True | |
1139 | self.width = 9 |
|
1139 | self.width = 9 | |
1140 | self.height =8 |
|
1140 | self.height =8 | |
1141 | self.ini =0 |
|
1141 | self.ini =0 | |
1142 | self.len_azi =0 |
|
1142 | self.len_azi =0 | |
1143 | self.buffer_ini = None |
|
1143 | self.buffer_ini = None | |
1144 | self.buffer_ele = None |
|
1144 | self.buffer_ele = None | |
1145 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.15, 'right': 0.9, 'bottom': 0.08}) |
|
1145 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.15, 'right': 0.9, 'bottom': 0.08}) | |
1146 | self.flag =0 |
|
1146 | self.flag =0 | |
1147 | self.indicador= 0 |
|
1147 | self.indicador= 0 | |
1148 | self.last_data_ele = None |
|
1148 | self.last_data_ele = None | |
1149 | self.val_mean = None |
|
1149 | self.val_mean = None | |
1150 |
|
1150 | |||
1151 | def update(self, dataOut): |
|
1151 | def update(self, dataOut): | |
1152 |
|
1152 | |||
1153 | data = {} |
|
1153 | data = {} | |
1154 | meta = {} |
|
1154 | meta = {} | |
1155 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1155 | if hasattr(dataOut, 'dataPP_POWER'): | |
1156 | factor = 1 |
|
1156 | factor = 1 | |
1157 | if hasattr(dataOut, 'nFFTPoints'): |
|
1157 | if hasattr(dataOut, 'nFFTPoints'): | |
1158 | factor = dataOut.normFactor |
|
1158 | factor = dataOut.normFactor | |
1159 |
|
1159 | |||
1160 | if 'pow' in self.attr_data[0].lower(): |
|
1160 | if 'pow' in self.attr_data[0].lower(): | |
1161 | data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) |
|
1161 | data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) | |
1162 | else: |
|
1162 | else: | |
1163 | data['data'] = getattr(dataOut, self.attr_data[0])/(factor) |
|
1163 | data['data'] = getattr(dataOut, self.attr_data[0])/(factor) | |
1164 |
|
1164 | |||
1165 | data['azi'] = dataOut.data_azi |
|
1165 | data['azi'] = dataOut.data_azi | |
1166 | data['ele'] = dataOut.data_ele |
|
1166 | data['ele'] = dataOut.data_ele | |
1167 |
|
1167 | |||
1168 | return data, meta |
|
1168 | return data, meta | |
1169 |
|
1169 | |||
1170 | def plot(self): |
|
1170 | def plot(self): | |
1171 | data = self.data[-1] |
|
1171 | data = self.data[-1] | |
1172 | r = self.data.yrange |
|
1172 | r = self.data.yrange | |
1173 | delta_height = r[1]-r[0] |
|
1173 | delta_height = r[1]-r[0] | |
1174 | r_mask = numpy.where(r>=0)[0] |
|
1174 | r_mask = numpy.where(r>=0)[0] | |
1175 | self.r_mask = r_mask |
|
1175 | self.r_mask = r_mask | |
1176 | r = numpy.arange(len(r_mask))*delta_height |
|
1176 | r = numpy.arange(len(r_mask))*delta_height | |
1177 | self.y = 2*r |
|
1177 | self.y = 2*r | |
1178 |
|
1178 | |||
1179 | z = data['data'][self.channels[0]][:,r_mask] |
|
1179 | z = data['data'][self.channels[0]][:,r_mask] | |
1180 |
|
1180 | |||
1181 | self.titles = [] |
|
1181 | self.titles = [] | |
1182 |
|
1182 | |||
1183 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
1183 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) | |
1184 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
1184 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) | |
1185 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
1185 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
1186 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
1186 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
1187 | self.ang_min = self.ang_min if self.ang_min else 0 |
|
1187 | self.ang_min = self.ang_min if self.ang_min else 0 | |
1188 | self.ang_max = self.ang_max if self.ang_max else 360 |
|
1188 | self.ang_max = self.ang_max if self.ang_max else 360 | |
1189 |
|
1189 | |||
1190 | r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) ) |
|
1190 | r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) ) | |
1191 |
|
1191 | |||
1192 | for i,ax in enumerate(self.axes): |
|
1192 | for i,ax in enumerate(self.axes): | |
1193 |
|
1193 | |||
1194 | if ax.firsttime: |
|
1194 | if ax.firsttime: | |
1195 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
1195 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |
1196 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
1196 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
1197 | ax.set_theta_direction(-1) | |||
1197 |
|
1198 | |||
1198 | else: |
|
1199 | else: | |
1199 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
1200 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |
1200 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
1201 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
1202 | ax.set_theta_direction(-1) | |||
1201 |
|
1203 | |||
1202 | ax.grid(True) |
|
1204 | ax.grid(True) | |
1203 |
|
1205 | |||
1204 | if len(self.channels) !=1: |
|
1206 | if len(self.channels) !=1: | |
1205 | self.titles = ['PPI {} at EL: {} Channel {}'.format(self.self.labels[x], str(round(numpy.mean(data['ele']),1)), x) for x in range(self.nrows)] |
|
1207 | self.titles = ['PPI {} at EL: {} Channel {}'.format(self.self.labels[x], str(round(numpy.mean(data['ele']),1)), x) for x in range(self.nrows)] | |
1206 | else: |
|
1208 | else: | |
1207 | self.titles = ['PPI {} at EL: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['ele']),1)), self.channels[0])] |
|
1209 | self.titles = ['PPI {} at EL: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['ele']),1)), self.channels[0])] | |
1208 |
|
1210 | |||
1209 | class WeatherRHI_vRF2_Plot(Plot): |
|
1211 | class WeatherRHI_vRF2_Plot(Plot): | |
1210 | CODE = 'weather' |
|
1212 | CODE = 'weather' | |
1211 | plot_name = 'weather' |
|
1213 | plot_name = 'weather' | |
1212 | plot_type = 'rhistyle' |
|
1214 | plot_type = 'rhistyle' | |
1213 | buffering = False |
|
1215 | buffering = False | |
1214 | data_ele_tmp = None |
|
1216 | data_ele_tmp = None | |
1215 |
|
1217 | |||
1216 | def setup(self): |
|
1218 | def setup(self): | |
1217 | print("********************") |
|
1219 | print("********************") | |
1218 | print("********************") |
|
1220 | print("********************") | |
1219 | print("********************") |
|
1221 | print("********************") | |
1220 | print("SETUP WEATHER PLOT") |
|
1222 | print("SETUP WEATHER PLOT") | |
1221 | self.ncols = 1 |
|
1223 | self.ncols = 1 | |
1222 | self.nrows = 1 |
|
1224 | self.nrows = 1 | |
1223 | self.nplots= 1 |
|
1225 | self.nplots= 1 | |
1224 | self.ylabel= 'Range [Km]' |
|
1226 | self.ylabel= 'Range [Km]' | |
1225 | self.titles= ['Weather'] |
|
1227 | self.titles= ['Weather'] | |
1226 | if self.channels is not None: |
|
1228 | if self.channels is not None: | |
1227 | self.nplots = len(self.channels) |
|
1229 | self.nplots = len(self.channels) | |
1228 | self.nrows = len(self.channels) |
|
1230 | self.nrows = len(self.channels) | |
1229 | else: |
|
1231 | else: | |
1230 | self.nplots = self.data.shape(self.CODE)[0] |
|
1232 | self.nplots = self.data.shape(self.CODE)[0] | |
1231 | self.nrows = self.nplots |
|
1233 | self.nrows = self.nplots | |
1232 | self.channels = list(range(self.nplots)) |
|
1234 | self.channels = list(range(self.nplots)) | |
1233 | print("channels",self.channels) |
|
1235 | print("channels",self.channels) | |
1234 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1236 | print("que saldra", self.data.shape(self.CODE)[0]) | |
1235 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1237 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
1236 | print("self.titles",self.titles) |
|
1238 | print("self.titles",self.titles) | |
1237 | self.colorbar=False |
|
1239 | self.colorbar=False | |
1238 | self.width =8 |
|
1240 | self.width =8 | |
1239 | self.height =8 |
|
1241 | self.height =8 | |
1240 | self.ini =0 |
|
1242 | self.ini =0 | |
1241 | self.len_azi =0 |
|
1243 | self.len_azi =0 | |
1242 | self.buffer_ini = None |
|
1244 | self.buffer_ini = None | |
1243 | self.buffer_ele = None |
|
1245 | self.buffer_ele = None | |
1244 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1246 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
1245 | self.flag =0 |
|
1247 | self.flag =0 | |
1246 | self.indicador= 0 |
|
1248 | self.indicador= 0 | |
1247 | self.last_data_ele = None |
|
1249 | self.last_data_ele = None | |
1248 | self.val_mean = None |
|
1250 | self.val_mean = None | |
1249 |
|
1251 | |||
1250 | def update(self, dataOut): |
|
1252 | def update(self, dataOut): | |
1251 |
|
1253 | |||
1252 | data = {} |
|
1254 | data = {} | |
1253 | meta = {} |
|
1255 | meta = {} | |
1254 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1256 | if hasattr(dataOut, 'dataPP_POWER'): | |
1255 | factor = 1 |
|
1257 | factor = 1 | |
1256 | if hasattr(dataOut, 'nFFTPoints'): |
|
1258 | if hasattr(dataOut, 'nFFTPoints'): | |
1257 | factor = dataOut.normFactor |
|
1259 | factor = dataOut.normFactor | |
1258 | print("dataOut",dataOut.data_360.shape) |
|
1260 | print("dataOut",dataOut.data_360.shape) | |
1259 | # |
|
1261 | # | |
1260 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1262 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
1261 | # |
|
1263 | # | |
1262 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1264 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
1263 | data['azi'] = dataOut.data_azi |
|
1265 | data['azi'] = dataOut.data_azi | |
1264 | data['ele'] = dataOut.data_ele |
|
1266 | data['ele'] = dataOut.data_ele | |
1265 | data['case_flag'] = dataOut.case_flag |
|
1267 | data['case_flag'] = dataOut.case_flag | |
1266 | #print("UPDATE") |
|
1268 | #print("UPDATE") | |
1267 | #print("data[weather]",data['weather'].shape) |
|
1269 | #print("data[weather]",data['weather'].shape) | |
1268 | #print("data[azi]",data['azi']) |
|
1270 | #print("data[azi]",data['azi']) | |
1269 | return data, meta |
|
1271 | return data, meta | |
1270 |
|
1272 | |||
1271 | def get2List(self,angulos): |
|
1273 | def get2List(self,angulos): | |
1272 | list1=[] |
|
1274 | list1=[] | |
1273 | list2=[] |
|
1275 | list2=[] | |
1274 | for i in reversed(range(len(angulos))): |
|
1276 | for i in reversed(range(len(angulos))): | |
1275 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1277 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
1276 | diff_ = angulos[i]-angulos[i-1] |
|
1278 | diff_ = angulos[i]-angulos[i-1] | |
1277 | if abs(diff_) >1.5: |
|
1279 | if abs(diff_) >1.5: | |
1278 | list1.append(i-1) |
|
1280 | list1.append(i-1) | |
1279 | list2.append(diff_) |
|
1281 | list2.append(diff_) | |
1280 | return list(reversed(list1)),list(reversed(list2)) |
|
1282 | return list(reversed(list1)),list(reversed(list2)) | |
1281 |
|
1283 | |||
1282 | def fixData90(self,list_,ang_): |
|
1284 | def fixData90(self,list_,ang_): | |
1283 | if list_[0]==-1: |
|
1285 | if list_[0]==-1: | |
1284 | vec = numpy.where(ang_<ang_[0]) |
|
1286 | vec = numpy.where(ang_<ang_[0]) | |
1285 | ang_[vec] = ang_[vec]+90 |
|
1287 | ang_[vec] = ang_[vec]+90 | |
1286 | return ang_ |
|
1288 | return ang_ | |
1287 | return ang_ |
|
1289 | return ang_ | |
1288 |
|
1290 | |||
1289 | def fixData90HL(self,angulos): |
|
1291 | def fixData90HL(self,angulos): | |
1290 | vec = numpy.where(angulos>=90) |
|
1292 | vec = numpy.where(angulos>=90) | |
1291 | angulos[vec]=angulos[vec]-90 |
|
1293 | angulos[vec]=angulos[vec]-90 | |
1292 | return angulos |
|
1294 | return angulos | |
1293 |
|
1295 | |||
1294 |
|
1296 | |||
1295 | def search_pos(self,pos,list_): |
|
1297 | def search_pos(self,pos,list_): | |
1296 | for i in range(len(list_)): |
|
1298 | for i in range(len(list_)): | |
1297 | if pos == list_[i]: |
|
1299 | if pos == list_[i]: | |
1298 | return True,i |
|
1300 | return True,i | |
1299 | i=None |
|
1301 | i=None | |
1300 | return False,i |
|
1302 | return False,i | |
1301 |
|
1303 | |||
1302 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1304 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
1303 | size = len(ang_) |
|
1305 | size = len(ang_) | |
1304 | size2 = 0 |
|
1306 | size2 = 0 | |
1305 | for i in range(len(list2_)): |
|
1307 | for i in range(len(list2_)): | |
1306 | size2=size2+round(abs(list2_[i]))-1 |
|
1308 | size2=size2+round(abs(list2_[i]))-1 | |
1307 | new_size= size+size2 |
|
1309 | new_size= size+size2 | |
1308 | ang_new = numpy.zeros(new_size) |
|
1310 | ang_new = numpy.zeros(new_size) | |
1309 | ang_new2 = numpy.zeros(new_size) |
|
1311 | ang_new2 = numpy.zeros(new_size) | |
1310 |
|
1312 | |||
1311 | tmp = 0 |
|
1313 | tmp = 0 | |
1312 | c = 0 |
|
1314 | c = 0 | |
1313 | for i in range(len(ang_)): |
|
1315 | for i in range(len(ang_)): | |
1314 | ang_new[tmp +c] = ang_[i] |
|
1316 | ang_new[tmp +c] = ang_[i] | |
1315 | ang_new2[tmp+c] = ang_[i] |
|
1317 | ang_new2[tmp+c] = ang_[i] | |
1316 | condition , value = self.search_pos(i,list1_) |
|
1318 | condition , value = self.search_pos(i,list1_) | |
1317 | if condition: |
|
1319 | if condition: | |
1318 | pos = tmp + c + 1 |
|
1320 | pos = tmp + c + 1 | |
1319 | for k in range(round(abs(list2_[value]))-1): |
|
1321 | for k in range(round(abs(list2_[value]))-1): | |
1320 | if tipo_case==0 or tipo_case==3:#subida |
|
1322 | if tipo_case==0 or tipo_case==3:#subida | |
1321 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1323 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
1322 | ang_new2[pos+k] = numpy.nan |
|
1324 | ang_new2[pos+k] = numpy.nan | |
1323 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1325 | elif tipo_case==1 or tipo_case==2:#bajada | |
1324 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1326 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
1325 | ang_new2[pos+k] = numpy.nan |
|
1327 | ang_new2[pos+k] = numpy.nan | |
1326 |
|
1328 | |||
1327 | tmp = pos +k |
|
1329 | tmp = pos +k | |
1328 | c = 0 |
|
1330 | c = 0 | |
1329 | c=c+1 |
|
1331 | c=c+1 | |
1330 | return ang_new,ang_new2 |
|
1332 | return ang_new,ang_new2 | |
1331 |
|
1333 | |||
1332 | def globalCheckPED(self,angulos,tipo_case): |
|
1334 | def globalCheckPED(self,angulos,tipo_case): | |
1333 | l1,l2 = self.get2List(angulos) |
|
1335 | l1,l2 = self.get2List(angulos) | |
1334 | ##print("l1",l1) |
|
1336 | ##print("l1",l1) | |
1335 | ##print("l2",l2) |
|
1337 | ##print("l2",l2) | |
1336 | if len(l1)>0: |
|
1338 | if len(l1)>0: | |
1337 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1339 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
1338 | #l1,l2 = self.get2List(angulos2) |
|
1340 | #l1,l2 = self.get2List(angulos2) | |
1339 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1341 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
1340 | #ang1_ = self.fixData90HL(ang1_) |
|
1342 | #ang1_ = self.fixData90HL(ang1_) | |
1341 | #ang2_ = self.fixData90HL(ang2_) |
|
1343 | #ang2_ = self.fixData90HL(ang2_) | |
1342 | else: |
|
1344 | else: | |
1343 | ang1_= angulos |
|
1345 | ang1_= angulos | |
1344 | ang2_= angulos |
|
1346 | ang2_= angulos | |
1345 | return ang1_,ang2_ |
|
1347 | return ang1_,ang2_ | |
1346 |
|
1348 | |||
1347 |
|
1349 | |||
1348 | def replaceNAN(self,data_weather,data_ele,val): |
|
1350 | def replaceNAN(self,data_weather,data_ele,val): | |
1349 | data= data_ele |
|
1351 | data= data_ele | |
1350 | data_T= data_weather |
|
1352 | data_T= data_weather | |
1351 | if data.shape[0]> data_T.shape[0]: |
|
1353 | if data.shape[0]> data_T.shape[0]: | |
1352 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1354 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
1353 | c = 0 |
|
1355 | c = 0 | |
1354 | for i in range(len(data)): |
|
1356 | for i in range(len(data)): | |
1355 | if numpy.isnan(data[i]): |
|
1357 | if numpy.isnan(data[i]): | |
1356 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1358 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1357 | else: |
|
1359 | else: | |
1358 | data_N[i,:]=data_T[c,:] |
|
1360 | data_N[i,:]=data_T[c,:] | |
1359 | c=c+1 |
|
1361 | c=c+1 | |
1360 | return data_N |
|
1362 | return data_N | |
1361 | else: |
|
1363 | else: | |
1362 | for i in range(len(data)): |
|
1364 | for i in range(len(data)): | |
1363 | if numpy.isnan(data[i]): |
|
1365 | if numpy.isnan(data[i]): | |
1364 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1366 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1365 | return data_T |
|
1367 | return data_T | |
1366 |
|
1368 | |||
1367 | def check_case(self,data_ele,ang_max,ang_min): |
|
1369 | def check_case(self,data_ele,ang_max,ang_min): | |
1368 | start = data_ele[0] |
|
1370 | start = data_ele[0] | |
1369 | end = data_ele[-1] |
|
1371 | end = data_ele[-1] | |
1370 | number = (end-start) |
|
1372 | number = (end-start) | |
1371 | len_ang=len(data_ele) |
|
1373 | len_ang=len(data_ele) | |
1372 | print("start",start) |
|
1374 | print("start",start) | |
1373 | print("end",end) |
|
1375 | print("end",end) | |
1374 | print("number",number) |
|
1376 | print("number",number) | |
1375 |
|
1377 | |||
1376 | print("len_ang",len_ang) |
|
1378 | print("len_ang",len_ang) | |
1377 |
|
1379 | |||
1378 | #exit(1) |
|
1380 | #exit(1) | |
1379 |
|
1381 | |||
1380 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
1382 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
1381 | return 0 |
|
1383 | return 0 | |
1382 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1384 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
1383 | # return 1 |
|
1385 | # return 1 | |
1384 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1386 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
1385 | return 1 |
|
1387 | return 1 | |
1386 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
1388 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
1387 | return 2 |
|
1389 | return 2 | |
1388 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
1390 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
1389 | return 3 |
|
1391 | return 3 | |
1390 |
|
1392 | |||
1391 |
|
1393 | |||
1392 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1394 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): | |
1393 | ang_max= ang_max |
|
1395 | ang_max= ang_max | |
1394 | ang_min= ang_min |
|
1396 | ang_min= ang_min | |
1395 | data_weather=data_weather |
|
1397 | data_weather=data_weather | |
1396 | val_ch=val_ch |
|
1398 | val_ch=val_ch | |
1397 | ##print("*********************DATA WEATHER**************************************") |
|
1399 | ##print("*********************DATA WEATHER**************************************") | |
1398 | ##print(data_weather) |
|
1400 | ##print(data_weather) | |
1399 | if self.ini==0: |
|
1401 | if self.ini==0: | |
1400 | ''' |
|
1402 | ''' | |
1401 | print("**********************************************") |
|
1403 | print("**********************************************") | |
1402 | print("**********************************************") |
|
1404 | print("**********************************************") | |
1403 | print("***************ini**************") |
|
1405 | print("***************ini**************") | |
1404 | print("**********************************************") |
|
1406 | print("**********************************************") | |
1405 | print("**********************************************") |
|
1407 | print("**********************************************") | |
1406 | ''' |
|
1408 | ''' | |
1407 | #print("data_ele",data_ele) |
|
1409 | #print("data_ele",data_ele) | |
1408 | #---------------------------------------------------------- |
|
1410 | #---------------------------------------------------------- | |
1409 | tipo_case = case_flag[-1] |
|
1411 | tipo_case = case_flag[-1] | |
1410 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1412 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
1411 | print("check_case",tipo_case) |
|
1413 | print("check_case",tipo_case) | |
1412 | #exit(1) |
|
1414 | #exit(1) | |
1413 | #--------------------- new ------------------------- |
|
1415 | #--------------------- new ------------------------- | |
1414 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1416 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
1415 |
|
1417 | |||
1416 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1418 | #-------------------------CAMBIOS RHI--------------------------------- | |
1417 | start= ang_min |
|
1419 | start= ang_min | |
1418 | end = ang_max |
|
1420 | end = ang_max | |
1419 | n= (ang_max-ang_min)/res |
|
1421 | n= (ang_max-ang_min)/res | |
1420 | #------ new |
|
1422 | #------ new | |
1421 | self.start_data_ele = data_ele_new[0] |
|
1423 | self.start_data_ele = data_ele_new[0] | |
1422 | self.end_data_ele = data_ele_new[-1] |
|
1424 | self.end_data_ele = data_ele_new[-1] | |
1423 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
1425 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
1424 | n1= round(self.start_data_ele)- start |
|
1426 | n1= round(self.start_data_ele)- start | |
1425 | n2= end - round(self.end_data_ele) |
|
1427 | n2= end - round(self.end_data_ele) | |
1426 | print(self.start_data_ele) |
|
1428 | print(self.start_data_ele) | |
1427 | print(self.end_data_ele) |
|
1429 | print(self.end_data_ele) | |
1428 | if n1>0: |
|
1430 | if n1>0: | |
1429 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1431 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
1430 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1432 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1431 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1433 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1432 | print("ele1_nan",ele1_nan.shape) |
|
1434 | print("ele1_nan",ele1_nan.shape) | |
1433 | print("data_ele_old",data_ele_old.shape) |
|
1435 | print("data_ele_old",data_ele_old.shape) | |
1434 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1436 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
1435 | if n2>0: |
|
1437 | if n2>0: | |
1436 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1438 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
1437 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1439 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1438 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1440 | data_ele = numpy.hstack((data_ele,ele2)) | |
1439 | print("ele2_nan",ele2_nan.shape) |
|
1441 | print("ele2_nan",ele2_nan.shape) | |
1440 | print("data_ele_old",data_ele_old.shape) |
|
1442 | print("data_ele_old",data_ele_old.shape) | |
1441 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1443 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1442 |
|
1444 | |||
1443 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
1445 | if tipo_case==1 or tipo_case==2: # BAJADA | |
1444 | data_ele_new = data_ele_new[::-1] # reversa |
|
1446 | data_ele_new = data_ele_new[::-1] # reversa | |
1445 | data_ele_old = data_ele_old[::-1]# reversa |
|
1447 | data_ele_old = data_ele_old[::-1]# reversa | |
1446 | data_weather = data_weather[::-1,:]# reversa |
|
1448 | data_weather = data_weather[::-1,:]# reversa | |
1447 | vec= numpy.where(data_ele_new<ang_max) |
|
1449 | vec= numpy.where(data_ele_new<ang_max) | |
1448 | data_ele_new = data_ele_new[vec] |
|
1450 | data_ele_new = data_ele_new[vec] | |
1449 | data_ele_old = data_ele_old[vec] |
|
1451 | data_ele_old = data_ele_old[vec] | |
1450 | data_weather = data_weather[vec[0]] |
|
1452 | data_weather = data_weather[vec[0]] | |
1451 | vec2= numpy.where(0<data_ele_new) |
|
1453 | vec2= numpy.where(0<data_ele_new) | |
1452 | data_ele_new = data_ele_new[vec2] |
|
1454 | data_ele_new = data_ele_new[vec2] | |
1453 | data_ele_old = data_ele_old[vec2] |
|
1455 | data_ele_old = data_ele_old[vec2] | |
1454 | data_weather = data_weather[vec2[0]] |
|
1456 | data_weather = data_weather[vec2[0]] | |
1455 | self.start_data_ele = data_ele_new[0] |
|
1457 | self.start_data_ele = data_ele_new[0] | |
1456 | self.end_data_ele = data_ele_new[-1] |
|
1458 | self.end_data_ele = data_ele_new[-1] | |
1457 |
|
1459 | |||
1458 | n1= round(self.start_data_ele)- start |
|
1460 | n1= round(self.start_data_ele)- start | |
1459 | n2= end - round(self.end_data_ele)-1 |
|
1461 | n2= end - round(self.end_data_ele)-1 | |
1460 | print(self.start_data_ele) |
|
1462 | print(self.start_data_ele) | |
1461 | print(self.end_data_ele) |
|
1463 | print(self.end_data_ele) | |
1462 | if n1>0: |
|
1464 | if n1>0: | |
1463 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1465 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
1464 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1466 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1465 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1467 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1466 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1468 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
1467 | if n2>0: |
|
1469 | if n2>0: | |
1468 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1470 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
1469 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1471 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1470 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1472 | data_ele = numpy.hstack((data_ele,ele2)) | |
1471 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1473 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1472 | # RADAR |
|
1474 | # RADAR | |
1473 | # NOTA data_ele y data_weather es la variable que retorna |
|
1475 | # NOTA data_ele y data_weather es la variable que retorna | |
1474 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1476 | val_mean = numpy.mean(data_weather[:,-1]) | |
1475 | self.val_mean = val_mean |
|
1477 | self.val_mean = val_mean | |
1476 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1478 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1477 | print("eleold",data_ele_old) |
|
1479 | print("eleold",data_ele_old) | |
1478 | print(self.data_ele_tmp[val_ch]) |
|
1480 | print(self.data_ele_tmp[val_ch]) | |
1479 | print(data_ele_old.shape[0]) |
|
1481 | print(data_ele_old.shape[0]) | |
1480 | print(self.data_ele_tmp[val_ch].shape[0]) |
|
1482 | print(self.data_ele_tmp[val_ch].shape[0]) | |
1481 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): |
|
1483 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): | |
1482 | import sys |
|
1484 | import sys | |
1483 | print("EXIT",self.ini) |
|
1485 | print("EXIT",self.ini) | |
1484 |
|
1486 | |||
1485 | sys.exit(1) |
|
1487 | sys.exit(1) | |
1486 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1488 | self.data_ele_tmp[val_ch]= data_ele_old | |
1487 | else: |
|
1489 | else: | |
1488 | #print("**********************************************") |
|
1490 | #print("**********************************************") | |
1489 | #print("****************VARIABLE**********************") |
|
1491 | #print("****************VARIABLE**********************") | |
1490 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1492 | #-------------------------CAMBIOS RHI--------------------------------- | |
1491 | #--------------------------------------------------------------------- |
|
1493 | #--------------------------------------------------------------------- | |
1492 | ##print("INPUT data_ele",data_ele) |
|
1494 | ##print("INPUT data_ele",data_ele) | |
1493 | flag=0 |
|
1495 | flag=0 | |
1494 | start_ele = self.res_ele[0] |
|
1496 | start_ele = self.res_ele[0] | |
1495 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1497 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
1496 | tipo_case = case_flag[-1] |
|
1498 | tipo_case = case_flag[-1] | |
1497 | #print("TIPO DE DATA",tipo_case) |
|
1499 | #print("TIPO DE DATA",tipo_case) | |
1498 | #-----------new------------ |
|
1500 | #-----------new------------ | |
1499 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
1501 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
1500 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1502 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1501 |
|
1503 | |||
1502 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
1504 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
1503 |
|
1505 | |||
1504 | if tipo_case==0 : # SUBIDA |
|
1506 | if tipo_case==0 : # SUBIDA | |
1505 | vec = numpy.where(data_ele<ang_max) |
|
1507 | vec = numpy.where(data_ele<ang_max) | |
1506 | data_ele = data_ele[vec] |
|
1508 | data_ele = data_ele[vec] | |
1507 | data_ele_old = data_ele_old[vec] |
|
1509 | data_ele_old = data_ele_old[vec] | |
1508 | data_weather = data_weather[vec[0]] |
|
1510 | data_weather = data_weather[vec[0]] | |
1509 |
|
1511 | |||
1510 | vec2 = numpy.where(0<data_ele) |
|
1512 | vec2 = numpy.where(0<data_ele) | |
1511 | data_ele= data_ele[vec2] |
|
1513 | data_ele= data_ele[vec2] | |
1512 | data_ele_old= data_ele_old[vec2] |
|
1514 | data_ele_old= data_ele_old[vec2] | |
1513 | ##print(data_ele_new) |
|
1515 | ##print(data_ele_new) | |
1514 | data_weather= data_weather[vec2[0]] |
|
1516 | data_weather= data_weather[vec2[0]] | |
1515 |
|
1517 | |||
1516 | new_i_ele = int(round(data_ele[0])) |
|
1518 | new_i_ele = int(round(data_ele[0])) | |
1517 | new_f_ele = int(round(data_ele[-1])) |
|
1519 | new_f_ele = int(round(data_ele[-1])) | |
1518 | #print(new_i_ele) |
|
1520 | #print(new_i_ele) | |
1519 | #print(new_f_ele) |
|
1521 | #print(new_f_ele) | |
1520 | #print(data_ele,len(data_ele)) |
|
1522 | #print(data_ele,len(data_ele)) | |
1521 | #print(data_ele_old,len(data_ele_old)) |
|
1523 | #print(data_ele_old,len(data_ele_old)) | |
1522 | if new_i_ele< 2: |
|
1524 | if new_i_ele< 2: | |
1523 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1525 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
1524 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1526 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
1525 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
1527 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
1526 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
1528 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
1527 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
1529 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
1528 | data_ele = self.res_ele |
|
1530 | data_ele = self.res_ele | |
1529 | data_weather = self.res_weather[val_ch] |
|
1531 | data_weather = self.res_weather[val_ch] | |
1530 |
|
1532 | |||
1531 | elif tipo_case==1 : #BAJADA |
|
1533 | elif tipo_case==1 : #BAJADA | |
1532 | data_ele = data_ele[::-1] # reversa |
|
1534 | data_ele = data_ele[::-1] # reversa | |
1533 | data_ele_old = data_ele_old[::-1]# reversa |
|
1535 | data_ele_old = data_ele_old[::-1]# reversa | |
1534 | data_weather = data_weather[::-1,:]# reversa |
|
1536 | data_weather = data_weather[::-1,:]# reversa | |
1535 | vec= numpy.where(data_ele<ang_max) |
|
1537 | vec= numpy.where(data_ele<ang_max) | |
1536 | data_ele = data_ele[vec] |
|
1538 | data_ele = data_ele[vec] | |
1537 | data_ele_old = data_ele_old[vec] |
|
1539 | data_ele_old = data_ele_old[vec] | |
1538 | data_weather = data_weather[vec[0]] |
|
1540 | data_weather = data_weather[vec[0]] | |
1539 | vec2= numpy.where(0<data_ele) |
|
1541 | vec2= numpy.where(0<data_ele) | |
1540 | data_ele = data_ele[vec2] |
|
1542 | data_ele = data_ele[vec2] | |
1541 | data_ele_old = data_ele_old[vec2] |
|
1543 | data_ele_old = data_ele_old[vec2] | |
1542 | data_weather = data_weather[vec2[0]] |
|
1544 | data_weather = data_weather[vec2[0]] | |
1543 |
|
1545 | |||
1544 |
|
1546 | |||
1545 | new_i_ele = int(round(data_ele[0])) |
|
1547 | new_i_ele = int(round(data_ele[0])) | |
1546 | new_f_ele = int(round(data_ele[-1])) |
|
1548 | new_f_ele = int(round(data_ele[-1])) | |
1547 | #print(data_ele) |
|
1549 | #print(data_ele) | |
1548 | #print(ang_max) |
|
1550 | #print(ang_max) | |
1549 | #print(data_ele_old) |
|
1551 | #print(data_ele_old) | |
1550 | if new_i_ele <= 1: |
|
1552 | if new_i_ele <= 1: | |
1551 | new_i_ele = 1 |
|
1553 | new_i_ele = 1 | |
1552 | if round(data_ele[-1])>=ang_max-1: |
|
1554 | if round(data_ele[-1])>=ang_max-1: | |
1553 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1555 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
1554 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1556 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
1555 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
1557 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
1556 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
1558 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
1557 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
1559 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
1558 | data_ele = self.res_ele |
|
1560 | data_ele = self.res_ele | |
1559 | data_weather = self.res_weather[val_ch] |
|
1561 | data_weather = self.res_weather[val_ch] | |
1560 |
|
1562 | |||
1561 | elif tipo_case==2: #bajada |
|
1563 | elif tipo_case==2: #bajada | |
1562 | vec = numpy.where(data_ele<ang_max) |
|
1564 | vec = numpy.where(data_ele<ang_max) | |
1563 | data_ele = data_ele[vec] |
|
1565 | data_ele = data_ele[vec] | |
1564 | data_weather= data_weather[vec[0]] |
|
1566 | data_weather= data_weather[vec[0]] | |
1565 |
|
1567 | |||
1566 | len_vec = len(vec) |
|
1568 | len_vec = len(vec) | |
1567 | data_ele_new = data_ele[::-1] # reversa |
|
1569 | data_ele_new = data_ele[::-1] # reversa | |
1568 | data_weather = data_weather[::-1,:] |
|
1570 | data_weather = data_weather[::-1,:] | |
1569 | new_i_ele = int(data_ele_new[0]) |
|
1571 | new_i_ele = int(data_ele_new[0]) | |
1570 | new_f_ele = int(data_ele_new[-1]) |
|
1572 | new_f_ele = int(data_ele_new[-1]) | |
1571 |
|
1573 | |||
1572 | n1= new_i_ele- ang_min |
|
1574 | n1= new_i_ele- ang_min | |
1573 | n2= ang_max - new_f_ele-1 |
|
1575 | n2= ang_max - new_f_ele-1 | |
1574 | if n1>0: |
|
1576 | if n1>0: | |
1575 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1577 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1576 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1578 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1577 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1579 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1578 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1580 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1579 | if n2>0: |
|
1581 | if n2>0: | |
1580 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1582 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1581 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1583 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1582 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1584 | data_ele = numpy.hstack((data_ele,ele2)) | |
1583 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1585 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1584 |
|
1586 | |||
1585 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1587 | self.data_ele_tmp[val_ch] = data_ele_old | |
1586 | self.res_ele = data_ele |
|
1588 | self.res_ele = data_ele | |
1587 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1589 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1588 | data_ele = self.res_ele |
|
1590 | data_ele = self.res_ele | |
1589 | data_weather = self.res_weather[val_ch] |
|
1591 | data_weather = self.res_weather[val_ch] | |
1590 |
|
1592 | |||
1591 | elif tipo_case==3:#subida |
|
1593 | elif tipo_case==3:#subida | |
1592 | vec = numpy.where(0<data_ele) |
|
1594 | vec = numpy.where(0<data_ele) | |
1593 | data_ele= data_ele[vec] |
|
1595 | data_ele= data_ele[vec] | |
1594 | data_ele_new = data_ele |
|
1596 | data_ele_new = data_ele | |
1595 | data_ele_old= data_ele_old[vec] |
|
1597 | data_ele_old= data_ele_old[vec] | |
1596 | data_weather= data_weather[vec[0]] |
|
1598 | data_weather= data_weather[vec[0]] | |
1597 | pos_ini = numpy.argmin(data_ele) |
|
1599 | pos_ini = numpy.argmin(data_ele) | |
1598 | if pos_ini>0: |
|
1600 | if pos_ini>0: | |
1599 | len_vec= len(data_ele) |
|
1601 | len_vec= len(data_ele) | |
1600 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1602 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
1601 | #print(vec3) |
|
1603 | #print(vec3) | |
1602 | data_ele= data_ele[vec3] |
|
1604 | data_ele= data_ele[vec3] | |
1603 | data_ele_new = data_ele |
|
1605 | data_ele_new = data_ele | |
1604 | data_ele_old= data_ele_old[vec3] |
|
1606 | data_ele_old= data_ele_old[vec3] | |
1605 | data_weather= data_weather[vec3] |
|
1607 | data_weather= data_weather[vec3] | |
1606 |
|
1608 | |||
1607 | new_i_ele = int(data_ele_new[0]) |
|
1609 | new_i_ele = int(data_ele_new[0]) | |
1608 | new_f_ele = int(data_ele_new[-1]) |
|
1610 | new_f_ele = int(data_ele_new[-1]) | |
1609 | n1= new_i_ele- ang_min |
|
1611 | n1= new_i_ele- ang_min | |
1610 | n2= ang_max - new_f_ele-1 |
|
1612 | n2= ang_max - new_f_ele-1 | |
1611 | if n1>0: |
|
1613 | if n1>0: | |
1612 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1614 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1613 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1615 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1614 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1616 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1615 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1617 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1616 | if n2>0: |
|
1618 | if n2>0: | |
1617 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1619 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1618 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1620 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1619 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1621 | data_ele = numpy.hstack((data_ele,ele2)) | |
1620 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1622 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1621 |
|
1623 | |||
1622 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1624 | self.data_ele_tmp[val_ch] = data_ele_old | |
1623 | self.res_ele = data_ele |
|
1625 | self.res_ele = data_ele | |
1624 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1626 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1625 | data_ele = self.res_ele |
|
1627 | data_ele = self.res_ele | |
1626 | data_weather = self.res_weather[val_ch] |
|
1628 | data_weather = self.res_weather[val_ch] | |
1627 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1629 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1628 | return data_weather,data_ele |
|
1630 | return data_weather,data_ele | |
1629 |
|
1631 | |||
1630 |
|
1632 | |||
1631 | def plot(self): |
|
1633 | def plot(self): | |
1632 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1634 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1633 | data = self.data[-1] |
|
1635 | data = self.data[-1] | |
1634 | r = self.data.yrange |
|
1636 | r = self.data.yrange | |
1635 | delta_height = r[1]-r[0] |
|
1637 | delta_height = r[1]-r[0] | |
1636 | r_mask = numpy.where(r>=0)[0] |
|
1638 | r_mask = numpy.where(r>=0)[0] | |
1637 | ##print("delta_height",delta_height) |
|
1639 | ##print("delta_height",delta_height) | |
1638 | #print("r_mask",r_mask,len(r_mask)) |
|
1640 | #print("r_mask",r_mask,len(r_mask)) | |
1639 | r = numpy.arange(len(r_mask))*delta_height |
|
1641 | r = numpy.arange(len(r_mask))*delta_height | |
1640 | self.y = 2*r |
|
1642 | self.y = 2*r | |
1641 | res = 1 |
|
1643 | res = 1 | |
1642 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1644 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1643 | ang_max = self.ang_max |
|
1645 | ang_max = self.ang_max | |
1644 | ang_min = self.ang_min |
|
1646 | ang_min = self.ang_min | |
1645 | var_ang =ang_max - ang_min |
|
1647 | var_ang =ang_max - ang_min | |
1646 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1648 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1647 | ###print("step",step) |
|
1649 | ###print("step",step) | |
1648 | #-------------------------------------------------------- |
|
1650 | #-------------------------------------------------------- | |
1649 | ##print('weather',data['weather'].shape) |
|
1651 | ##print('weather',data['weather'].shape) | |
1650 | ##print('ele',data['ele'].shape) |
|
1652 | ##print('ele',data['ele'].shape) | |
1651 |
|
1653 | |||
1652 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1654 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1653 | ###self.res_azi = numpy.mean(data['azi']) |
|
1655 | ###self.res_azi = numpy.mean(data['azi']) | |
1654 | ###print("self.res_ele",self.res_ele) |
|
1656 | ###print("self.res_ele",self.res_ele) | |
1655 | plt.clf() |
|
1657 | plt.clf() | |
1656 | subplots = [121, 122] |
|
1658 | subplots = [121, 122] | |
1657 | try: |
|
1659 | try: | |
1658 | if self.data[-2]['ele'].max()<data['ele'].max(): |
|
1660 | if self.data[-2]['ele'].max()<data['ele'].max(): | |
1659 | self.ini=0 |
|
1661 | self.ini=0 | |
1660 | except: |
|
1662 | except: | |
1661 | pass |
|
1663 | pass | |
1662 | if self.ini==0: |
|
1664 | if self.ini==0: | |
1663 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1665 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |
1664 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1666 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
1665 | print("SHAPE",self.data_ele_tmp.shape) |
|
1667 | print("SHAPE",self.data_ele_tmp.shape) | |
1666 |
|
1668 | |||
1667 | for i,ax in enumerate(self.axes): |
|
1669 | for i,ax in enumerate(self.axes): | |
1668 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1670 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) | |
1669 | self.res_azi = numpy.mean(data['azi']) |
|
1671 | self.res_azi = numpy.mean(data['azi']) | |
1670 |
|
1672 | |||
1671 | if ax.firsttime: |
|
1673 | if ax.firsttime: | |
1672 | #plt.clf() |
|
1674 | #plt.clf() | |
1673 | print("Frist Plot") |
|
1675 | print("Frist Plot") | |
1674 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1676 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1675 | #fig=self.figures[0] |
|
1677 | #fig=self.figures[0] | |
1676 | else: |
|
1678 | else: | |
1677 | #plt.clf() |
|
1679 | #plt.clf() | |
1678 | print("ELSE PLOT") |
|
1680 | print("ELSE PLOT") | |
1679 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1681 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1680 | caax = cgax.parasites[0] |
|
1682 | caax = cgax.parasites[0] | |
1681 | paax = cgax.parasites[1] |
|
1683 | paax = cgax.parasites[1] | |
1682 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1684 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1683 | caax.set_xlabel('x_range [km]') |
|
1685 | caax.set_xlabel('x_range [km]') | |
1684 | caax.set_ylabel('y_range [km]') |
|
1686 | caax.set_ylabel('y_range [km]') | |
1685 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1687 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1686 | print("***************************self.ini****************************",self.ini) |
|
1688 | print("***************************self.ini****************************",self.ini) | |
1687 | self.ini= self.ini+1 |
|
1689 | self.ini= self.ini+1 | |
1688 |
|
1690 | |||
1689 |
|
1691 | |||
1690 |
|
1692 | |||
1691 |
|
1693 | |||
1692 |
|
1694 | |||
1693 | class WeatherRHI_vRF4_Plot(Plot): |
|
1695 | class WeatherRHI_vRF4_Plot(Plot): | |
1694 | CODE = 'RHI' |
|
1696 | CODE = 'RHI' | |
1695 | plot_name = 'RHI' |
|
1697 | plot_name = 'RHI' | |
1696 | #plot_type = 'rhistyle' |
|
1698 | #plot_type = 'rhistyle' | |
1697 | buffering = False |
|
1699 | buffering = False | |
1698 |
|
1700 | |||
1699 | def setup(self): |
|
1701 | def setup(self): | |
1700 |
|
1702 | |||
1701 | self.ncols = 1 |
|
1703 | self.ncols = 1 | |
1702 | self.nrows = 1 |
|
1704 | self.nrows = 1 | |
1703 | self.nplots= 1 |
|
1705 | self.nplots= 1 | |
1704 | self.ylabel= 'Range [Km]' |
|
1706 | self.ylabel= 'Range [Km]' | |
1705 | self.xlabel= 'Range [Km]' |
|
1707 | self.xlabel= 'Range [Km]' | |
1706 | self.titles= ['RHI'] |
|
1708 | self.titles= ['RHI'] | |
1707 | self.polar = True |
|
1709 | self.polar = True | |
1708 | self.grid = True |
|
1710 | self.grid = True | |
1709 | if self.channels is not None: |
|
1711 | if self.channels is not None: | |
1710 | self.nplots = len(self.channels) |
|
1712 | self.nplots = len(self.channels) | |
1711 | self.nrows = len(self.channels) |
|
1713 | self.nrows = len(self.channels) | |
1712 | else: |
|
1714 | else: | |
1713 | self.nplots = self.data.shape(self.CODE)[0] |
|
1715 | self.nplots = self.data.shape(self.CODE)[0] | |
1714 | self.nrows = self.nplots |
|
1716 | self.nrows = self.nplots | |
1715 | self.channels = list(range(self.nplots)) |
|
1717 | self.channels = list(range(self.nplots)) | |
1716 |
|
1718 | |||
1717 | if self.CODE == 'Power': |
|
1719 | if self.CODE == 'Power': | |
1718 | self.cb_label = r'Power (dB)' |
|
1720 | self.cb_label = r'Power (dB)' | |
1719 | elif self.CODE == 'Doppler': |
|
1721 | elif self.CODE == 'Doppler': | |
1720 | self.cb_label = r'Velocity (m/s)' |
|
1722 | self.cb_label = r'Velocity (m/s)' | |
1721 | self.colorbar=True |
|
1723 | self.colorbar=True | |
1722 | self.width =8 |
|
1724 | self.width =8 | |
1723 | self.height =8 |
|
1725 | self.height =8 | |
1724 | self.ini =0 |
|
1726 | self.ini =0 | |
1725 | self.len_azi =0 |
|
1727 | self.len_azi =0 | |
1726 | self.buffer_ini = None |
|
1728 | self.buffer_ini = None | |
1727 | self.buffer_ele = None |
|
1729 | self.buffer_ele = None | |
1728 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1730 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
1729 | self.flag =0 |
|
1731 | self.flag =0 | |
1730 | self.indicador= 0 |
|
1732 | self.indicador= 0 | |
1731 | self.last_data_ele = None |
|
1733 | self.last_data_ele = None | |
1732 | self.val_mean = None |
|
1734 | self.val_mean = None | |
1733 |
|
1735 | |||
1734 | def update(self, dataOut): |
|
1736 | def update(self, dataOut): | |
1735 |
|
1737 | |||
1736 | data = {} |
|
1738 | data = {} | |
1737 | meta = {} |
|
1739 | meta = {} | |
1738 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1740 | if hasattr(dataOut, 'dataPP_POWER'): | |
1739 | factor = 1 |
|
1741 | factor = 1 | |
1740 | if hasattr(dataOut, 'nFFTPoints'): |
|
1742 | if hasattr(dataOut, 'nFFTPoints'): | |
1741 | factor = dataOut.normFactor |
|
1743 | factor = dataOut.normFactor | |
1742 |
|
1744 | |||
1743 | if 'pow' in self.attr_data[0].lower(): |
|
1745 | if 'pow' in self.attr_data[0].lower(): | |
1744 | data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) |
|
1746 | data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) | |
1745 | else: |
|
1747 | else: | |
1746 | data['data'] = getattr(dataOut, self.attr_data[0])/(factor) |
|
1748 | data['data'] = getattr(dataOut, self.attr_data[0])/(factor) | |
1747 |
|
1749 | |||
1748 | data['azi'] = dataOut.data_azi |
|
1750 | data['azi'] = dataOut.data_azi | |
1749 | data['ele'] = dataOut.data_ele |
|
1751 | data['ele'] = dataOut.data_ele | |
1750 |
|
1752 | |||
1751 | return data, meta |
|
1753 | return data, meta | |
1752 |
|
1754 | |||
1753 | def plot(self): |
|
1755 | def plot(self): | |
1754 | data = self.data[-1] |
|
1756 | data = self.data[-1] | |
1755 | r = self.data.yrange |
|
1757 | r = self.data.yrange | |
1756 | delta_height = r[1]-r[0] |
|
1758 | delta_height = r[1]-r[0] | |
1757 | r_mask = numpy.where(r>=0)[0] |
|
1759 | r_mask = numpy.where(r>=0)[0] | |
1758 | self.r_mask =r_mask |
|
1760 | self.r_mask =r_mask | |
1759 | r = numpy.arange(len(r_mask))*delta_height |
|
1761 | r = numpy.arange(len(r_mask))*delta_height | |
1760 | self.y = 2*r |
|
1762 | self.y = 2*r | |
1761 |
|
1763 | |||
1762 | z = data['data'][self.channels[0]][:,r_mask] |
|
1764 | z = data['data'][self.channels[0]][:,r_mask] | |
1763 |
|
1765 | |||
1764 | self.titles = [] |
|
1766 | self.titles = [] | |
1765 |
|
1767 | |||
1766 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
1768 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) | |
1767 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
1769 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) | |
1768 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
1770 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
1769 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
1771 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
1770 | self.ang_min = self.ang_min if self.ang_min else 0 |
|
1772 | self.ang_min = self.ang_min if self.ang_min else 0 | |
1771 | self.ang_max = self.ang_max if self.ang_max else 90 |
|
1773 | self.ang_max = self.ang_max if self.ang_max else 90 | |
1772 |
|
1774 | |||
1773 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) ) |
|
1775 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) ) | |
1774 |
|
1776 | |||
1775 | for i,ax in enumerate(self.axes): |
|
1777 | for i,ax in enumerate(self.axes): | |
1776 |
|
1778 | |||
1777 | if ax.firsttime: |
|
1779 | if ax.firsttime: | |
1778 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
1780 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |
1779 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
1781 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
1780 |
|
1782 | |||
1781 | else: |
|
1783 | else: | |
1782 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
1784 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |
1783 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
1785 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
1784 | ax.grid(True) |
|
1786 | ax.grid(True) | |
1785 | if len(self.channels) !=1: |
|
1787 | if len(self.channels) !=1: | |
1786 | self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[x], str(round(numpy.mean(data['azi']),1)), x) for x in range(self.nrows)] |
|
1788 | self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[x], str(round(numpy.mean(data['azi']),1)), x) for x in range(self.nrows)] | |
1787 | else: |
|
1789 | else: | |
1788 | self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['azi']),1)), self.channels[0])] |
|
1790 | self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['azi']),1)), self.channels[0])] |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now