##// END OF EJS Templates
black color for no data
Juan C. Espinoza -
r956:489739cea094
parent child
Show More
@@ -1,468 +1,468
1 1 import numpy
2 2 import datetime
3 3 import sys
4 4 import matplotlib
5 5
6 6 if 'linux' in sys.platform:
7 7 matplotlib.use("TKAgg")
8 8
9 9 if 'darwin' in sys.platform:
10 10 matplotlib.use('TKAgg')
11 11 #Qt4Agg', 'GTK', 'GTKAgg', 'ps', 'agg', 'cairo', 'MacOSX', 'GTKCairo', 'WXAgg', 'template', 'TkAgg', 'GTK3Cairo', 'GTK3Agg', 'svg', 'WebAgg', 'CocoaAgg', 'emf', 'gdk', 'WX'
12 12 import matplotlib.pyplot
13 13
14 14 from mpl_toolkits.axes_grid1 import make_axes_locatable
15 15 from matplotlib.ticker import FuncFormatter, LinearLocator
16 16
17 17 ###########################################
18 18 #Actualizacion de las funciones del driver
19 19 ###########################################
20 20
21 21 # create jro colormap
22 22
23 23 jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90]
24 24 blu_values = matplotlib.pyplot.get_cmap("seismic_r", 20)(numpy.arange(20))[10:15]
25 25 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list("jro", numpy.vstack((blu_values, jet_values)))
26 26 matplotlib.pyplot.register_cmap(cmap=ncmap)
27 27
28 28 def createFigure(id, wintitle, width, height, facecolor="w", show=True, dpi = 80):
29 29
30 30 matplotlib.pyplot.ioff()
31 31
32 32 fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor, figsize=(1.0*width/dpi, 1.0*height/dpi))
33 33 fig.canvas.manager.set_window_title(wintitle)
34 34 # fig.canvas.manager.resize(width, height)
35 35 matplotlib.pyplot.ion()
36 36
37 37 if show:
38 38 matplotlib.pyplot.show()
39 39
40 40 return fig
41 41
42 42 def closeFigure(show=False, fig=None):
43 43
44 44 # matplotlib.pyplot.ioff()
45 45 # matplotlib.pyplot.pause(0)
46 46
47 47 if show:
48 48 matplotlib.pyplot.show()
49 49
50 50 if fig != None:
51 51 matplotlib.pyplot.close(fig)
52 52 # matplotlib.pyplot.pause(0)
53 53 # matplotlib.pyplot.ion()
54 54
55 55 return
56 56
57 57 matplotlib.pyplot.close("all")
58 58 # matplotlib.pyplot.pause(0)
59 59 # matplotlib.pyplot.ion()
60 60
61 61 return
62 62
63 63 def saveFigure(fig, filename):
64 64
65 65 # matplotlib.pyplot.ioff()
66 66 fig.savefig(filename, dpi=matplotlib.pyplot.gcf().dpi)
67 67 # matplotlib.pyplot.ion()
68 68
69 69 def clearFigure(fig):
70 70
71 71 fig.clf()
72 72
73 73 def setWinTitle(fig, title):
74 74
75 75 fig.canvas.manager.set_window_title(title)
76 76
77 77 def setTitle(fig, title):
78 78
79 79 fig.suptitle(title)
80 80
81 81 def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False):
82 82
83 83 matplotlib.pyplot.ioff()
84 84 matplotlib.pyplot.figure(fig.number)
85 85 axes = matplotlib.pyplot.subplot2grid((nrow, ncol),
86 86 (xpos, ypos),
87 87 colspan=colspan,
88 88 rowspan=rowspan,
89 89 polar=polar)
90 90
91 91 matplotlib.pyplot.ion()
92 92 return axes
93 93
94 94 def setAxesText(ax, text):
95 95
96 96 ax.annotate(text,
97 97 xy = (.1, .99),
98 98 xycoords = 'figure fraction',
99 99 horizontalalignment = 'left',
100 100 verticalalignment = 'top',
101 101 fontsize = 10)
102 102
103 103 def printLabels(ax, xlabel, ylabel, title):
104 104
105 105 ax.set_xlabel(xlabel, size=11)
106 106 ax.set_ylabel(ylabel, size=11)
107 107 ax.set_title(title, size=8)
108 108
109 109 def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='',
110 110 ticksize=9, xtick_visible=True, ytick_visible=True,
111 111 nxticks=4, nyticks=10,
112 112 grid=None,color='blue'):
113 113
114 114 """
115 115
116 116 Input:
117 117 grid : None, 'both', 'x', 'y'
118 118 """
119 119
120 120 matplotlib.pyplot.ioff()
121 121
122 122 ax.set_xlim([xmin,xmax])
123 123 ax.set_ylim([ymin,ymax])
124 124
125 125 printLabels(ax, xlabel, ylabel, title)
126 126
127 127 ######################################################
128 128 if (xmax-xmin)<=1:
129 129 xtickspos = numpy.linspace(xmin,xmax,nxticks)
130 130 xtickspos = numpy.array([float("%.1f"%i) for i in xtickspos])
131 131 ax.set_xticks(xtickspos)
132 132 else:
133 133 xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
134 134 # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin)
135 135 ax.set_xticks(xtickspos)
136 136
137 137 for tick in ax.get_xticklabels():
138 138 tick.set_visible(xtick_visible)
139 139
140 140 for tick in ax.xaxis.get_major_ticks():
141 141 tick.label.set_fontsize(ticksize)
142 142
143 143 ######################################################
144 144 for tick in ax.get_yticklabels():
145 145 tick.set_visible(ytick_visible)
146 146
147 147 for tick in ax.yaxis.get_major_ticks():
148 148 tick.label.set_fontsize(ticksize)
149 149
150 150 ax.plot(x, y, color=color)
151 151 iplot = ax.lines[-1]
152 152
153 153 ######################################################
154 154 if '0.' in matplotlib.__version__[0:2]:
155 155 print "The matplotlib version has to be updated to 1.1 or newer"
156 156 return iplot
157 157
158 158 if '1.0.' in matplotlib.__version__[0:4]:
159 159 print "The matplotlib version has to be updated to 1.1 or newer"
160 160 return iplot
161 161
162 162 if grid != None:
163 163 ax.grid(b=True, which='major', axis=grid)
164 164
165 165 matplotlib.pyplot.tight_layout()
166 166
167 167 matplotlib.pyplot.ion()
168 168
169 169 return iplot
170 170
171 171 def set_linedata(ax, x, y, idline):
172 172
173 173 ax.lines[idline].set_data(x,y)
174 174
175 175 def pline(iplot, x, y, xlabel='', ylabel='', title=''):
176 176
177 177 ax = iplot.axes
178 178
179 179 printLabels(ax, xlabel, ylabel, title)
180 180
181 181 set_linedata(ax, x, y, idline=0)
182 182
183 183 def addpline(ax, x, y, color, linestyle, lw):
184 184
185 185 ax.plot(x,y,color=color,linestyle=linestyle,lw=lw)
186 186
187 187
188 188 def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax,
189 189 xlabel='', ylabel='', title='', ticksize = 9,
190 190 colormap='jet',cblabel='', cbsize="5%",
191 191 XAxisAsTime=False):
192 192
193 193 matplotlib.pyplot.ioff()
194 194
195 195 divider = make_axes_locatable(ax)
196 196 ax_cb = divider.new_horizontal(size=cbsize, pad=0.05)
197 197 fig = ax.get_figure()
198 198 fig.add_axes(ax_cb)
199 199
200 200 ax.set_xlim([xmin,xmax])
201 201 ax.set_ylim([ymin,ymax])
202 202
203 203 printLabels(ax, xlabel, ylabel, title)
204 204
205 205 z = numpy.ma.masked_invalid(z)
206 206 cmap=matplotlib.pyplot.get_cmap(colormap)
207 cmap.set_bad('white', 1.)
207 cmap.set_bad('black', 1.)
208 208 imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=cmap)
209 209 cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb)
210 210 cb.set_label(cblabel)
211 211
212 212 # for tl in ax_cb.get_yticklabels():
213 213 # tl.set_visible(True)
214 214
215 215 for tick in ax.yaxis.get_major_ticks():
216 216 tick.label.set_fontsize(ticksize)
217 217
218 218 for tick in ax.xaxis.get_major_ticks():
219 219 tick.label.set_fontsize(ticksize)
220 220
221 221 for tick in cb.ax.get_yticklabels():
222 222 tick.set_fontsize(ticksize)
223 223
224 224 ax_cb.yaxis.tick_right()
225 225
226 226 if '0.' in matplotlib.__version__[0:2]:
227 227 print "The matplotlib version has to be updated to 1.1 or newer"
228 228 return imesh
229 229
230 230 if '1.0.' in matplotlib.__version__[0:4]:
231 231 print "The matplotlib version has to be updated to 1.1 or newer"
232 232 return imesh
233 233
234 234 matplotlib.pyplot.tight_layout()
235 235
236 236 if XAxisAsTime:
237 237
238 238 func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
239 239 ax.xaxis.set_major_formatter(FuncFormatter(func))
240 240 ax.xaxis.set_major_locator(LinearLocator(7))
241 241
242 242 matplotlib.pyplot.ion()
243 243 return imesh
244 244
245 245 def pcolor(imesh, z, xlabel='', ylabel='', title=''):
246 246
247 247 z = z.T
248 248 ax = imesh.axes
249 249 printLabels(ax, xlabel, ylabel, title)
250 250 imesh.set_array(z.ravel())
251 251
252 252 def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
253 253
254 254 printLabels(ax, xlabel, ylabel, title)
255 255
256 256 ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap))
257 257
258 258 def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
259 259
260 260 printLabels(ax, xlabel, ylabel, title)
261 261
262 262 ax.collections.remove(ax.collections[0])
263 263
264 264 z = numpy.ma.masked_invalid(z)
265 265
266 266 cmap=matplotlib.pyplot.get_cmap(colormap)
267 cmap.set_bad('white', 1.)
267 cmap.set_bad('black', 1.)
268 268
269 269
270 270 ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=cmap)
271 271
272 272 def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
273 273 ticksize=9, xtick_visible=True, ytick_visible=True,
274 274 nxticks=4, nyticks=10,
275 275 grid=None):
276 276
277 277 """
278 278
279 279 Input:
280 280 grid : None, 'both', 'x', 'y'
281 281 """
282 282
283 283 matplotlib.pyplot.ioff()
284 284
285 285 lines = ax.plot(x.T, y)
286 286 leg = ax.legend(lines, legendlabels, loc='upper right')
287 287 leg.get_frame().set_alpha(0.5)
288 288 ax.set_xlim([xmin,xmax])
289 289 ax.set_ylim([ymin,ymax])
290 290 printLabels(ax, xlabel, ylabel, title)
291 291
292 292 xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
293 293 ax.set_xticks(xtickspos)
294 294
295 295 for tick in ax.get_xticklabels():
296 296 tick.set_visible(xtick_visible)
297 297
298 298 for tick in ax.xaxis.get_major_ticks():
299 299 tick.label.set_fontsize(ticksize)
300 300
301 301 for tick in ax.get_yticklabels():
302 302 tick.set_visible(ytick_visible)
303 303
304 304 for tick in ax.yaxis.get_major_ticks():
305 305 tick.label.set_fontsize(ticksize)
306 306
307 307 iplot = ax.lines[-1]
308 308
309 309 if '0.' in matplotlib.__version__[0:2]:
310 310 print "The matplotlib version has to be updated to 1.1 or newer"
311 311 return iplot
312 312
313 313 if '1.0.' in matplotlib.__version__[0:4]:
314 314 print "The matplotlib version has to be updated to 1.1 or newer"
315 315 return iplot
316 316
317 317 if grid != None:
318 318 ax.grid(b=True, which='major', axis=grid)
319 319
320 320 matplotlib.pyplot.tight_layout()
321 321
322 322 matplotlib.pyplot.ion()
323 323
324 324 return iplot
325 325
326 326
327 327 def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''):
328 328
329 329 ax = iplot.axes
330 330
331 331 printLabels(ax, xlabel, ylabel, title)
332 332
333 333 for i in range(len(ax.lines)):
334 334 line = ax.lines[i]
335 335 line.set_data(x[i,:],y)
336 336
337 337 def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
338 338 ticksize=9, xtick_visible=True, ytick_visible=True,
339 339 nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None",
340 340 grid=None, XAxisAsTime=False):
341 341
342 342 """
343 343
344 344 Input:
345 345 grid : None, 'both', 'x', 'y'
346 346 """
347 347
348 348 matplotlib.pyplot.ioff()
349 349
350 350 # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle)
351 351 lines = ax.plot(x, y.T)
352 352 # leg = ax.legend(lines, legendlabels, loc=2, bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \
353 353 # handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.)
354 354
355 355 leg = ax.legend(lines, legendlabels,
356 356 loc='upper right', bbox_to_anchor=(1.16, 1), borderaxespad=0)
357 357
358 358 for label in leg.get_texts(): label.set_fontsize(9)
359 359
360 360 ax.set_xlim([xmin,xmax])
361 361 ax.set_ylim([ymin,ymax])
362 362 printLabels(ax, xlabel, ylabel, title)
363 363
364 364 # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
365 365 # ax.set_xticks(xtickspos)
366 366
367 367 for tick in ax.get_xticklabels():
368 368 tick.set_visible(xtick_visible)
369 369
370 370 for tick in ax.xaxis.get_major_ticks():
371 371 tick.label.set_fontsize(ticksize)
372 372
373 373 for tick in ax.get_yticklabels():
374 374 tick.set_visible(ytick_visible)
375 375
376 376 for tick in ax.yaxis.get_major_ticks():
377 377 tick.label.set_fontsize(ticksize)
378 378
379 379 iplot = ax.lines[-1]
380 380
381 381 if '0.' in matplotlib.__version__[0:2]:
382 382 print "The matplotlib version has to be updated to 1.1 or newer"
383 383 return iplot
384 384
385 385 if '1.0.' in matplotlib.__version__[0:4]:
386 386 print "The matplotlib version has to be updated to 1.1 or newer"
387 387 return iplot
388 388
389 389 if grid != None:
390 390 ax.grid(b=True, which='major', axis=grid)
391 391
392 392 matplotlib.pyplot.tight_layout()
393 393
394 394 if XAxisAsTime:
395 395
396 396 func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
397 397 ax.xaxis.set_major_formatter(FuncFormatter(func))
398 398 ax.xaxis.set_major_locator(LinearLocator(7))
399 399
400 400 matplotlib.pyplot.ion()
401 401
402 402 return iplot
403 403
404 404 def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''):
405 405
406 406 ax = iplot.axes
407 407
408 408 printLabels(ax, xlabel, ylabel, title)
409 409
410 410 for i in range(len(ax.lines)):
411 411 line = ax.lines[i]
412 412 line.set_data(x,y[i,:])
413 413
414 414 def createPolar(ax, x, y,
415 415 xlabel='', ylabel='', title='', ticksize = 9,
416 416 colormap='jet',cblabel='', cbsize="5%",
417 417 XAxisAsTime=False):
418 418
419 419 matplotlib.pyplot.ioff()
420 420
421 421 ax.plot(x,y,'bo', markersize=5)
422 422 # ax.set_rmax(90)
423 423 ax.set_ylim(0,90)
424 424 ax.set_yticks(numpy.arange(0,90,20))
425 425 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11')
426 426 # ax.text(0, 50, ylabel, rotation='vertical', va ='center', ha = 'left' ,size='11')
427 427 # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical')
428 428 ax.yaxis.labelpad = 40
429 429 printLabels(ax, xlabel, ylabel, title)
430 430 iplot = ax.lines[-1]
431 431
432 432 if '0.' in matplotlib.__version__[0:2]:
433 433 print "The matplotlib version has to be updated to 1.1 or newer"
434 434 return iplot
435 435
436 436 if '1.0.' in matplotlib.__version__[0:4]:
437 437 print "The matplotlib version has to be updated to 1.1 or newer"
438 438 return iplot
439 439
440 440 # if grid != None:
441 441 # ax.grid(b=True, which='major', axis=grid)
442 442
443 443 matplotlib.pyplot.tight_layout()
444 444
445 445 matplotlib.pyplot.ion()
446 446
447 447
448 448 return iplot
449 449
450 450 def polar(iplot, x, y, xlabel='', ylabel='', title=''):
451 451
452 452 ax = iplot.axes
453 453
454 454 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11')
455 455 printLabels(ax, xlabel, ylabel, title)
456 456
457 457 set_linedata(ax, x, y, idline=0)
458 458
459 459 def draw(fig):
460 460
461 461 if type(fig) == 'int':
462 462 raise ValueError, "Error drawing: Fig parameter should be a matplotlib figure object figure"
463 463
464 464 fig.canvas.draw()
465 465
466 466 def pause(interval=0.000001):
467 467
468 468 matplotlib.pyplot.pause(interval)
@@ -1,2749 +1,2749
1 1 import numpy
2 2 import math
3 3 from scipy import optimize, interpolate, signal, stats, ndimage
4 4 import re
5 5 import datetime
6 6 import copy
7 7 import sys
8 8 import importlib
9 9 import itertools
10 10
11 11 from jroproc_base import ProcessingUnit, Operation
12 12 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
13 13
14 14
15 15 class ParametersProc(ProcessingUnit):
16 16
17 17 nSeconds = None
18 18
19 19 def __init__(self):
20 20 ProcessingUnit.__init__(self)
21 21
22 22 # self.objectDict = {}
23 23 self.buffer = None
24 24 self.firstdatatime = None
25 25 self.profIndex = 0
26 26 self.dataOut = Parameters()
27 27
28 28 def __updateObjFromInput(self):
29 29
30 30 self.dataOut.inputUnit = self.dataIn.type
31 31
32 32 self.dataOut.timeZone = self.dataIn.timeZone
33 33 self.dataOut.dstFlag = self.dataIn.dstFlag
34 34 self.dataOut.errorCount = self.dataIn.errorCount
35 35 self.dataOut.useLocalTime = self.dataIn.useLocalTime
36 36
37 37 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
38 38 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
39 39 self.dataOut.channelList = self.dataIn.channelList
40 40 self.dataOut.heightList = self.dataIn.heightList
41 41 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
42 42 # self.dataOut.nHeights = self.dataIn.nHeights
43 43 # self.dataOut.nChannels = self.dataIn.nChannels
44 44 self.dataOut.nBaud = self.dataIn.nBaud
45 45 self.dataOut.nCode = self.dataIn.nCode
46 46 self.dataOut.code = self.dataIn.code
47 47 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
48 48 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
49 49 # self.dataOut.utctime = self.firstdatatime
50 50 self.dataOut.utctime = self.dataIn.utctime
51 51 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
52 52 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
53 53 self.dataOut.nCohInt = self.dataIn.nCohInt
54 54 # self.dataOut.nIncohInt = 1
55 55 self.dataOut.ippSeconds = self.dataIn.ippSeconds
56 56 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
57 57 self.dataOut.timeInterval1 = self.dataIn.timeInterval
58 58 self.dataOut.heightList = self.dataIn.getHeiRange()
59 59 self.dataOut.frequency = self.dataIn.frequency
60 60 #self.dataOut.noise = self.dataIn.noise
61 61
62 62 def run(self):
63 63
64 64 #---------------------- Voltage Data ---------------------------
65 65
66 66 if self.dataIn.type == "Voltage":
67 67
68 68 self.__updateObjFromInput()
69 69 self.dataOut.data_pre = self.dataIn.data.copy()
70 70 self.dataOut.flagNoData = False
71 71 self.dataOut.utctimeInit = self.dataIn.utctime
72 72 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
73 73 return
74 74
75 75 #---------------------- Spectra Data ---------------------------
76 76
77 77 if self.dataIn.type == "Spectra":
78 78
79 79 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
80 80 self.dataOut.data_spc = self.dataIn.data_spc
81 81 self.dataOut.data_cspc = self.dataIn.data_cspc
82 82 self.dataOut.nProfiles = self.dataIn.nProfiles
83 83 self.dataOut.nIncohInt = self.dataIn.nIncohInt
84 84 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
85 85 self.dataOut.ippFactor = self.dataIn.ippFactor
86 86 #self.dataOut.normFactor = self.dataIn.getNormFactor()
87 87 self.dataOut.pairsList = self.dataIn.pairsList
88 88 self.dataOut.groupList = self.dataIn.pairsList
89 89 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
90 90 self.dataOut.flagNoData = False
91 91
92 92 #---------------------- Correlation Data ---------------------------
93 93
94 94 if self.dataIn.type == "Correlation":
95 95 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
96 96
97 97 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
98 98 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
99 99 self.dataOut.groupList = (acf_pairs, ccf_pairs)
100 100
101 101 self.dataOut.abscissaList = self.dataIn.lagRange
102 102 self.dataOut.noise = self.dataIn.noise
103 103 self.dataOut.data_SNR = self.dataIn.SNR
104 104 self.dataOut.flagNoData = False
105 105 self.dataOut.nAvg = self.dataIn.nAvg
106 106
107 107 #---------------------- Parameters Data ---------------------------
108 108
109 109 if self.dataIn.type == "Parameters":
110 110 self.dataOut.copy(self.dataIn)
111 111 self.dataOut.utctimeInit = self.dataIn.utctime
112 112 self.dataOut.flagNoData = False
113 113
114 114 return True
115 115
116 116 self.__updateObjFromInput()
117 117 self.dataOut.utctimeInit = self.dataIn.utctime
118 118 self.dataOut.paramInterval = self.dataIn.timeInterval
119 119
120 120 return
121 121
122 122 class SpectralMoments(Operation):
123 123
124 124 '''
125 125 Function SpectralMoments()
126 126
127 127 Calculates moments (power, mean, standard deviation) and SNR of the signal
128 128
129 129 Type of dataIn: Spectra
130 130
131 131 Configuration Parameters:
132 132
133 133 dirCosx : Cosine director in X axis
134 134 dirCosy : Cosine director in Y axis
135 135
136 136 elevation :
137 137 azimuth :
138 138
139 139 Input:
140 140 channelList : simple channel list to select e.g. [2,3,7]
141 141 self.dataOut.data_pre : Spectral data
142 142 self.dataOut.abscissaList : List of frequencies
143 143 self.dataOut.noise : Noise level per channel
144 144
145 145 Affected:
146 146 self.dataOut.data_param : Parameters per channel
147 147 self.dataOut.data_SNR : SNR per channel
148 148
149 149 '''
150 150
151 151 def run(self, dataOut):
152 152
153 153 #dataOut.data_pre = dataOut.data_pre[0]
154 154 data = dataOut.data_pre[0]
155 155 absc = dataOut.abscissaList[:-1]
156 156 noise = dataOut.noise
157 157 nChannel = data.shape[0]
158 158 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
159 159
160 160 for ind in range(nChannel):
161 161 data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind])
162 162
163 163 dataOut.data_param = data_param[:,1:,:]
164 164 dataOut.data_SNR = data_param[:,0]
165 165 dataOut.data_DOP = data_param[:,1]
166 166 dataOut.data_MEAN = data_param[:,2]
167 167 dataOut.data_STD = data_param[:,3]
168 168 return
169 169
170 170 def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
171 171
172 172 if (nicoh is None): nicoh = 1
173 173 if (graph is None): graph = 0
174 174 if (smooth is None): smooth = 0
175 175 elif (self.smooth < 3): smooth = 0
176 176
177 177 if (type1 is None): type1 = 0
178 178 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
179 179 if (snrth is None): snrth = -3
180 180 if (dc is None): dc = 0
181 181 if (aliasing is None): aliasing = 0
182 182 if (oldfd is None): oldfd = 0
183 183 if (wwauto is None): wwauto = 0
184 184
185 185 if (n0 < 1.e-20): n0 = 1.e-20
186 186
187 187 freq = oldfreq
188 188 vec_power = numpy.zeros(oldspec.shape[1])
189 189 vec_fd = numpy.zeros(oldspec.shape[1])
190 190 vec_w = numpy.zeros(oldspec.shape[1])
191 191 vec_snr = numpy.zeros(oldspec.shape[1])
192 192
193 193 for ind in range(oldspec.shape[1]):
194 194
195 195 spec = oldspec[:,ind]
196 196 aux = spec*fwindow
197 197 max_spec = aux.max()
198 198 m = list(aux).index(max_spec)
199 199
200 200 #Smooth
201 201 if (smooth == 0): spec2 = spec
202 202 else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
203 203
204 204 # Calculo de Momentos
205 205 bb = spec2[range(m,spec2.size)]
206 206 bb = (bb<n0).nonzero()
207 207 bb = bb[0]
208 208
209 209 ss = spec2[range(0,m + 1)]
210 210 ss = (ss<n0).nonzero()
211 211 ss = ss[0]
212 212
213 213 if (bb.size == 0):
214 214 bb0 = spec.size - 1 - m
215 215 else:
216 216 bb0 = bb[0] - 1
217 217 if (bb0 < 0):
218 218 bb0 = 0
219 219
220 220 if (ss.size == 0): ss1 = 1
221 221 else: ss1 = max(ss) + 1
222 222
223 223 if (ss1 > m): ss1 = m
224 224
225 225 valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1
226 226 power = ((spec2[valid] - n0)*fwindow[valid]).sum()
227 227 fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
228 228 w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
229 229 snr = (spec2.mean()-n0)/n0
230 230
231 231 if (snr < 1.e-20) :
232 232 snr = 1.e-20
233 233
234 234 vec_power[ind] = power
235 235 vec_fd[ind] = fd
236 236 vec_w[ind] = w
237 237 vec_snr[ind] = snr
238 238
239 239 moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
240 240 return moments
241 241
242 242 #------------------ Get SA Parameters --------------------------
243 243
244 244 def GetSAParameters(self):
245 245 #SA en frecuencia
246 246 pairslist = self.dataOut.groupList
247 247 num_pairs = len(pairslist)
248 248
249 249 vel = self.dataOut.abscissaList
250 250 spectra = self.dataOut.data_pre[0]
251 251 cspectra = self.dataOut.data_pre[1]
252 252 delta_v = vel[1] - vel[0]
253 253
254 254 #Calculating the power spectrum
255 255 spc_pow = numpy.sum(spectra, 3)*delta_v
256 256 #Normalizing Spectra
257 257 norm_spectra = spectra/spc_pow
258 258 #Calculating the norm_spectra at peak
259 259 max_spectra = numpy.max(norm_spectra, 3)
260 260
261 261 #Normalizing Cross Spectra
262 262 norm_cspectra = numpy.zeros(cspectra.shape)
263 263
264 264 for i in range(num_chan):
265 265 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
266 266
267 267 max_cspectra = numpy.max(norm_cspectra,2)
268 268 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
269 269
270 270 for i in range(num_pairs):
271 271 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
272 272 #------------------- Get Lags ----------------------------------
273 273
274 274 class SALags(Operation):
275 275 '''
276 276 Function GetMoments()
277 277
278 278 Input:
279 279 self.dataOut.data_pre
280 280 self.dataOut.abscissaList
281 281 self.dataOut.noise
282 282 self.dataOut.normFactor
283 283 self.dataOut.data_SNR
284 284 self.dataOut.groupList
285 285 self.dataOut.nChannels
286 286
287 287 Affected:
288 288 self.dataOut.data_param
289 289
290 290 '''
291 291 def run(self, dataOut):
292 292 data_acf = dataOut.data_pre[0]
293 293 data_ccf = dataOut.data_pre[1]
294 294 normFactor_acf = dataOut.normFactor[0]
295 295 normFactor_ccf = dataOut.normFactor[1]
296 296 pairs_acf = dataOut.groupList[0]
297 297 pairs_ccf = dataOut.groupList[1]
298 298
299 299 nHeights = dataOut.nHeights
300 300 absc = dataOut.abscissaList
301 301 noise = dataOut.noise
302 302 SNR = dataOut.data_SNR
303 303 nChannels = dataOut.nChannels
304 304 # pairsList = dataOut.groupList
305 305 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
306 306
307 307 for l in range(len(pairs_acf)):
308 308 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
309 309
310 310 for l in range(len(pairs_ccf)):
311 311 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
312 312
313 313 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
314 314 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
315 315 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
316 316 return
317 317
318 318 # def __getPairsAutoCorr(self, pairsList, nChannels):
319 319 #
320 320 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
321 321 #
322 322 # for l in range(len(pairsList)):
323 323 # firstChannel = pairsList[l][0]
324 324 # secondChannel = pairsList[l][1]
325 325 #
326 326 # #Obteniendo pares de Autocorrelacion
327 327 # if firstChannel == secondChannel:
328 328 # pairsAutoCorr[firstChannel] = int(l)
329 329 #
330 330 # pairsAutoCorr = pairsAutoCorr.astype(int)
331 331 #
332 332 # pairsCrossCorr = range(len(pairsList))
333 333 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
334 334 #
335 335 # return pairsAutoCorr, pairsCrossCorr
336 336
337 337 def __calculateTaus(self, data_acf, data_ccf, lagRange):
338 338
339 339 lag0 = data_acf.shape[1]/2
340 340 #Funcion de Autocorrelacion
341 341 mean_acf = stats.nanmean(data_acf, axis = 0)
342 342
343 343 #Obtencion Indice de TauCross
344 344 ind_ccf = data_ccf.argmax(axis = 1)
345 345 #Obtencion Indice de TauAuto
346 346 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
347 347 ccf_lag0 = data_ccf[:,lag0,:]
348 348
349 349 for i in range(ccf_lag0.shape[0]):
350 350 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
351 351
352 352 #Obtencion de TauCross y TauAuto
353 353 tau_ccf = lagRange[ind_ccf]
354 354 tau_acf = lagRange[ind_acf]
355 355
356 356 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
357 357
358 358 tau_ccf[Nan1,Nan2] = numpy.nan
359 359 tau_acf[Nan1,Nan2] = numpy.nan
360 360 tau = numpy.vstack((tau_ccf,tau_acf))
361 361
362 362 return tau
363 363
364 364 def __calculateLag1Phase(self, data, lagTRange):
365 365 data1 = stats.nanmean(data, axis = 0)
366 366 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
367 367
368 368 phase = numpy.angle(data1[lag1,:])
369 369
370 370 return phase
371 371
372 372 class SpectralFitting(Operation):
373 373 '''
374 374 Function GetMoments()
375 375
376 376 Input:
377 377 Output:
378 378 Variables modified:
379 379 '''
380 380
381 381 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
382 382
383 383
384 384 if path != None:
385 385 sys.path.append(path)
386 386 self.dataOut.library = importlib.import_module(file)
387 387
388 388 #To be inserted as a parameter
389 389 groupArray = numpy.array(groupList)
390 390 # groupArray = numpy.array([[0,1],[2,3]])
391 391 self.dataOut.groupList = groupArray
392 392
393 393 nGroups = groupArray.shape[0]
394 394 nChannels = self.dataIn.nChannels
395 395 nHeights=self.dataIn.heightList.size
396 396
397 397 #Parameters Array
398 398 self.dataOut.data_param = None
399 399
400 400 #Set constants
401 401 constants = self.dataOut.library.setConstants(self.dataIn)
402 402 self.dataOut.constants = constants
403 403 M = self.dataIn.normFactor
404 404 N = self.dataIn.nFFTPoints
405 405 ippSeconds = self.dataIn.ippSeconds
406 406 K = self.dataIn.nIncohInt
407 407 pairsArray = numpy.array(self.dataIn.pairsList)
408 408
409 409 #List of possible combinations
410 410 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
411 411 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
412 412
413 413 if getSNR:
414 414 listChannels = groupArray.reshape((groupArray.size))
415 415 listChannels.sort()
416 416 noise = self.dataIn.getNoise()
417 417 self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
418 418
419 419 for i in range(nGroups):
420 420 coord = groupArray[i,:]
421 421
422 422 #Input data array
423 423 data = self.dataIn.data_spc[coord,:,:]/(M*N)
424 424 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
425 425
426 426 #Cross Spectra data array for Covariance Matrixes
427 427 ind = 0
428 428 for pairs in listComb:
429 429 pairsSel = numpy.array([coord[x],coord[y]])
430 430 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
431 431 ind += 1
432 432 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
433 433 dataCross = dataCross**2/K
434 434
435 435 for h in range(nHeights):
436 436 # print self.dataOut.heightList[h]
437 437
438 438 #Input
439 439 d = data[:,h]
440 440
441 441 #Covariance Matrix
442 442 D = numpy.diag(d**2/K)
443 443 ind = 0
444 444 for pairs in listComb:
445 445 #Coordinates in Covariance Matrix
446 446 x = pairs[0]
447 447 y = pairs[1]
448 448 #Channel Index
449 449 S12 = dataCross[ind,:,h]
450 450 D12 = numpy.diag(S12)
451 451 #Completing Covariance Matrix with Cross Spectras
452 452 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
453 453 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
454 454 ind += 1
455 455 Dinv=numpy.linalg.inv(D)
456 456 L=numpy.linalg.cholesky(Dinv)
457 457 LT=L.T
458 458
459 459 dp = numpy.dot(LT,d)
460 460
461 461 #Initial values
462 462 data_spc = self.dataIn.data_spc[coord,:,h]
463 463
464 464 if (h>0)and(error1[3]<5):
465 465 p0 = self.dataOut.data_param[i,:,h-1]
466 466 else:
467 467 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
468 468
469 469 try:
470 470 #Least Squares
471 471 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
472 472 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
473 473 #Chi square error
474 474 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
475 475 #Error with Jacobian
476 476 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
477 477 except:
478 478 minp = p0*numpy.nan
479 479 error0 = numpy.nan
480 480 error1 = p0*numpy.nan
481 481
482 482 #Save
483 483 if self.dataOut.data_param is None:
484 484 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
485 485 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
486 486
487 487 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
488 488 self.dataOut.data_param[i,:,h] = minp
489 489 return
490 490
491 491 def __residFunction(self, p, dp, LT, constants):
492 492
493 493 fm = self.dataOut.library.modelFunction(p, constants)
494 494 fmp=numpy.dot(LT,fm)
495 495
496 496 return dp-fmp
497 497
498 498 def __getSNR(self, z, noise):
499 499
500 500 avg = numpy.average(z, axis=1)
501 501 SNR = (avg.T-noise)/noise
502 502 SNR = SNR.T
503 503 return SNR
504 504
505 505 def __chisq(p,chindex,hindex):
506 506 #similar to Resid but calculates CHI**2
507 507 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
508 508 dp=numpy.dot(LT,d)
509 509 fmp=numpy.dot(LT,fm)
510 510 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
511 511 return chisq
512 512
513 513 class WindProfiler(Operation):
514 514
515 515 __isConfig = False
516 516
517 517 __initime = None
518 518 __lastdatatime = None
519 519 __integrationtime = None
520 520
521 521 __buffer = None
522 522
523 523 __dataReady = False
524 524
525 525 __firstdata = None
526 526
527 527 n = None
528 528
529 529 def __calculateCosDir(self, elev, azim):
530 530 zen = (90 - elev)*numpy.pi/180
531 531 azim = azim*numpy.pi/180
532 532 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
533 533 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
534 534
535 535 signX = numpy.sign(numpy.cos(azim))
536 536 signY = numpy.sign(numpy.sin(azim))
537 537
538 538 cosDirX = numpy.copysign(cosDirX, signX)
539 539 cosDirY = numpy.copysign(cosDirY, signY)
540 540 return cosDirX, cosDirY
541 541
542 542 def __calculateAngles(self, theta_x, theta_y, azimuth):
543 543
544 544 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
545 545 zenith_arr = numpy.arccos(dir_cosw)
546 546 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
547 547
548 548 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
549 549 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
550 550
551 551 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
552 552
553 553 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
554 554
555 555 #
556 556 if horOnly:
557 557 A = numpy.c_[dir_cosu,dir_cosv]
558 558 else:
559 559 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
560 560 A = numpy.asmatrix(A)
561 561 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
562 562
563 563 return A1
564 564
565 565 def __correctValues(self, heiRang, phi, velRadial, SNR):
566 566 listPhi = phi.tolist()
567 567 maxid = listPhi.index(max(listPhi))
568 568 minid = listPhi.index(min(listPhi))
569 569
570 570 rango = range(len(phi))
571 571 # rango = numpy.delete(rango,maxid)
572 572
573 573 heiRang1 = heiRang*math.cos(phi[maxid])
574 574 heiRangAux = heiRang*math.cos(phi[minid])
575 575 indOut = (heiRang1 < heiRangAux[0]).nonzero()
576 576 heiRang1 = numpy.delete(heiRang1,indOut)
577 577
578 578 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
579 579 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
580 580
581 581 for i in rango:
582 582 x = heiRang*math.cos(phi[i])
583 583 y1 = velRadial[i,:]
584 584 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
585 585
586 586 x1 = heiRang1
587 587 y11 = f1(x1)
588 588
589 589 y2 = SNR[i,:]
590 590 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
591 591 y21 = f2(x1)
592 592
593 593 velRadial1[i,:] = y11
594 594 SNR1[i,:] = y21
595 595
596 596 return heiRang1, velRadial1, SNR1
597 597
598 598 def __calculateVelUVW(self, A, velRadial):
599 599
600 600 #Operacion Matricial
601 601 # velUVW = numpy.zeros((velRadial.shape[1],3))
602 602 # for ind in range(velRadial.shape[1]):
603 603 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
604 604 # velUVW = velUVW.transpose()
605 605 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
606 606 velUVW[:,:] = numpy.dot(A,velRadial)
607 607
608 608
609 609 return velUVW
610 610
611 611 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
612 612
613 613 def techniqueDBS(self, kwargs):
614 614 """
615 615 Function that implements Doppler Beam Swinging (DBS) technique.
616 616
617 617 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
618 618 Direction correction (if necessary), Ranges and SNR
619 619
620 620 Output: Winds estimation (Zonal, Meridional and Vertical)
621 621
622 622 Parameters affected: Winds, height range, SNR
623 623 """
624 624 velRadial0 = kwargs['velRadial']
625 625 heiRang = kwargs['heightList']
626 626 SNR0 = kwargs['SNR']
627 627
628 628 if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'):
629 629 theta_x = numpy.array(kwargs['dirCosx'])
630 630 theta_y = numpy.array(kwargs['dirCosy'])
631 631 else:
632 632 elev = numpy.array(kwargs['elevation'])
633 633 azim = numpy.array(kwargs['azimuth'])
634 634 theta_x, theta_y = self.__calculateCosDir(elev, azim)
635 635 azimuth = kwargs['correctAzimuth']
636 636 if kwargs.has_key('horizontalOnly'):
637 637 horizontalOnly = kwargs['horizontalOnly']
638 638 else: horizontalOnly = False
639 639 if kwargs.has_key('correctFactor'):
640 640 correctFactor = kwargs['correctFactor']
641 641 else: correctFactor = 1
642 642 if kwargs.has_key('channelList'):
643 643 channelList = kwargs['channelList']
644 644 if len(channelList) == 2:
645 645 horizontalOnly = True
646 646 arrayChannel = numpy.array(channelList)
647 647 param = param[arrayChannel,:,:]
648 648 theta_x = theta_x[arrayChannel]
649 649 theta_y = theta_y[arrayChannel]
650 650
651 651 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
652 652 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
653 653 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
654 654
655 655 #Calculo de Componentes de la velocidad con DBS
656 656 winds = self.__calculateVelUVW(A,velRadial1)
657 657
658 658 return winds, heiRang1, SNR1
659 659
660 660 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
661 661
662 662 nPairs = len(pairs_ccf)
663 663 posx = numpy.asarray(posx)
664 664 posy = numpy.asarray(posy)
665 665
666 666 #Rotacion Inversa para alinear con el azimuth
667 667 if azimuth!= None:
668 668 azimuth = azimuth*math.pi/180
669 669 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
670 670 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
671 671 else:
672 672 posx1 = posx
673 673 posy1 = posy
674 674
675 675 #Calculo de Distancias
676 676 distx = numpy.zeros(nPairs)
677 677 disty = numpy.zeros(nPairs)
678 678 dist = numpy.zeros(nPairs)
679 679 ang = numpy.zeros(nPairs)
680 680
681 681 for i in range(nPairs):
682 682 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
683 683 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
684 684 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
685 685 ang[i] = numpy.arctan2(disty[i],distx[i])
686 686
687 687 return distx, disty, dist, ang
688 688 #Calculo de Matrices
689 689 # nPairs = len(pairs)
690 690 # ang1 = numpy.zeros((nPairs, 2, 1))
691 691 # dist1 = numpy.zeros((nPairs, 2, 1))
692 692 #
693 693 # for j in range(nPairs):
694 694 # dist1[j,0,0] = dist[pairs[j][0]]
695 695 # dist1[j,1,0] = dist[pairs[j][1]]
696 696 # ang1[j,0,0] = ang[pairs[j][0]]
697 697 # ang1[j,1,0] = ang[pairs[j][1]]
698 698 #
699 699 # return distx,disty, dist1,ang1
700 700
701 701
702 702 def __calculateVelVer(self, phase, lagTRange, _lambda):
703 703
704 704 Ts = lagTRange[1] - lagTRange[0]
705 705 velW = -_lambda*phase/(4*math.pi*Ts)
706 706
707 707 return velW
708 708
709 709 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
710 710 nPairs = tau1.shape[0]
711 711 nHeights = tau1.shape[1]
712 712 vel = numpy.zeros((nPairs,3,nHeights))
713 713 dist1 = numpy.reshape(dist, (dist.size,1))
714 714
715 715 angCos = numpy.cos(ang)
716 716 angSin = numpy.sin(ang)
717 717
718 718 vel0 = dist1*tau1/(2*tau2**2)
719 719 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
720 720 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
721 721
722 722 ind = numpy.where(numpy.isinf(vel))
723 723 vel[ind] = numpy.nan
724 724
725 725 return vel
726 726
727 727 # def __getPairsAutoCorr(self, pairsList, nChannels):
728 728 #
729 729 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
730 730 #
731 731 # for l in range(len(pairsList)):
732 732 # firstChannel = pairsList[l][0]
733 733 # secondChannel = pairsList[l][1]
734 734 #
735 735 # #Obteniendo pares de Autocorrelacion
736 736 # if firstChannel == secondChannel:
737 737 # pairsAutoCorr[firstChannel] = int(l)
738 738 #
739 739 # pairsAutoCorr = pairsAutoCorr.astype(int)
740 740 #
741 741 # pairsCrossCorr = range(len(pairsList))
742 742 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
743 743 #
744 744 # return pairsAutoCorr, pairsCrossCorr
745 745
746 746 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
747 747 def techniqueSA(self, kwargs):
748 748
749 749 """
750 750 Function that implements Spaced Antenna (SA) technique.
751 751
752 752 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
753 753 Direction correction (if necessary), Ranges and SNR
754 754
755 755 Output: Winds estimation (Zonal, Meridional and Vertical)
756 756
757 757 Parameters affected: Winds
758 758 """
759 759 position_x = kwargs['positionX']
760 760 position_y = kwargs['positionY']
761 761 azimuth = kwargs['azimuth']
762 762
763 763 if kwargs.has_key('correctFactor'):
764 764 correctFactor = kwargs['correctFactor']
765 765 else:
766 766 correctFactor = 1
767 767
768 768 groupList = kwargs['groupList']
769 769 pairs_ccf = groupList[1]
770 770 tau = kwargs['tau']
771 771 _lambda = kwargs['_lambda']
772 772
773 773 #Cross Correlation pairs obtained
774 774 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
775 775 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
776 776 # pairsSelArray = numpy.array(pairsSelected)
777 777 # pairs = []
778 778 #
779 779 # #Wind estimation pairs obtained
780 780 # for i in range(pairsSelArray.shape[0]/2):
781 781 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
782 782 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
783 783 # pairs.append((ind1,ind2))
784 784
785 785 indtau = tau.shape[0]/2
786 786 tau1 = tau[:indtau,:]
787 787 tau2 = tau[indtau:-1,:]
788 788 # tau1 = tau1[pairs,:]
789 789 # tau2 = tau2[pairs,:]
790 790 phase1 = tau[-1,:]
791 791
792 792 #---------------------------------------------------------------------
793 793 #Metodo Directo
794 794 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
795 795 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
796 796 winds = stats.nanmean(winds, axis=0)
797 797 #---------------------------------------------------------------------
798 798 #Metodo General
799 799 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
800 800 # #Calculo Coeficientes de Funcion de Correlacion
801 801 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
802 802 # #Calculo de Velocidades
803 803 # winds = self.calculateVelUV(F,G,A,B,H)
804 804
805 805 #---------------------------------------------------------------------
806 806 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
807 807 winds = correctFactor*winds
808 808 return winds
809 809
810 810 def __checkTime(self, currentTime, paramInterval, outputInterval):
811 811
812 812 dataTime = currentTime + paramInterval
813 813 deltaTime = dataTime - self.__initime
814 814
815 815 if deltaTime >= outputInterval or deltaTime < 0:
816 816 self.__dataReady = True
817 817 return
818 818
819 819 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2):
820 820 '''
821 821 Function that implements winds estimation technique with detected meteors.
822 822
823 823 Input: Detected meteors, Minimum meteor quantity to wind estimation
824 824
825 825 Output: Winds estimation (Zonal and Meridional)
826 826
827 827 Parameters affected: Winds
828 828 '''
829 829 # print arrayMeteor.shape
830 830 #Settings
831 831 nInt = (heightMax - heightMin)/binkm
832 832 # print nInt
833 833 nInt = int(nInt)
834 834 # print nInt
835 835 winds = numpy.zeros((2,nInt))*numpy.nan
836 836
837 837 #Filter errors
838 838 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
839 839 finalMeteor = arrayMeteor[error,:]
840 840
841 841 #Meteor Histogram
842 842 finalHeights = finalMeteor[:,2]
843 843 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
844 844 nMeteorsPerI = hist[0]
845 845 heightPerI = hist[1]
846 846
847 847 #Sort of meteors
848 848 indSort = finalHeights.argsort()
849 849 finalMeteor2 = finalMeteor[indSort,:]
850 850
851 851 # Calculating winds
852 852 ind1 = 0
853 853 ind2 = 0
854 854
855 855 for i in range(nInt):
856 856 nMet = nMeteorsPerI[i]
857 857 ind1 = ind2
858 858 ind2 = ind1 + nMet
859 859
860 860 meteorAux = finalMeteor2[ind1:ind2,:]
861 861
862 862 if meteorAux.shape[0] >= meteorThresh:
863 863 vel = meteorAux[:, 6]
864 864 zen = meteorAux[:, 4]*numpy.pi/180
865 865 azim = meteorAux[:, 3]*numpy.pi/180
866 866
867 867 n = numpy.cos(zen)
868 868 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
869 869 # l = m*numpy.tan(azim)
870 870 l = numpy.sin(zen)*numpy.sin(azim)
871 871 m = numpy.sin(zen)*numpy.cos(azim)
872 872
873 873 A = numpy.vstack((l, m)).transpose()
874 874 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
875 875 windsAux = numpy.dot(A1, vel)
876 876
877 877 winds[0,i] = windsAux[0]
878 878 winds[1,i] = windsAux[1]
879 879
880 880 return winds, heightPerI[:-1]
881 881
882 882 def techniqueNSM_SA(self, **kwargs):
883 883 metArray = kwargs['metArray']
884 884 heightList = kwargs['heightList']
885 885 timeList = kwargs['timeList']
886 886
887 887 rx_location = kwargs['rx_location']
888 888 groupList = kwargs['groupList']
889 889 azimuth = kwargs['azimuth']
890 890 dfactor = kwargs['dfactor']
891 891 k = kwargs['k']
892 892
893 893 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
894 894 d = dist*dfactor
895 895 #Phase calculation
896 896 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
897 897
898 898 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
899 899
900 900 velEst = numpy.zeros((heightList.size,2))*numpy.nan
901 901 azimuth1 = azimuth1*numpy.pi/180
902 902
903 903 for i in range(heightList.size):
904 904 h = heightList[i]
905 905 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
906 906 metHeight = metArray1[indH,:]
907 907 if metHeight.shape[0] >= 2:
908 908 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
909 909 iazim = metHeight[:,1].astype(int)
910 910 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
911 911 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
912 912 A = numpy.asmatrix(A)
913 913 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
914 914 velHor = numpy.dot(A1,velAux)
915 915
916 916 velEst[i,:] = numpy.squeeze(velHor)
917 917 return velEst
918 918
919 919 def __getPhaseSlope(self, metArray, heightList, timeList):
920 920 meteorList = []
921 921 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
922 922 #Putting back together the meteor matrix
923 923 utctime = metArray[:,0]
924 924 uniqueTime = numpy.unique(utctime)
925 925
926 926 phaseDerThresh = 0.5
927 927 ippSeconds = timeList[1] - timeList[0]
928 928 sec = numpy.where(timeList>1)[0][0]
929 929 nPairs = metArray.shape[1] - 6
930 930 nHeights = len(heightList)
931 931
932 932 for t in uniqueTime:
933 933 metArray1 = metArray[utctime==t,:]
934 934 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
935 935 tmet = metArray1[:,1].astype(int)
936 936 hmet = metArray1[:,2].astype(int)
937 937
938 938 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
939 939 metPhase[:,:] = numpy.nan
940 940 metPhase[:,hmet,tmet] = metArray1[:,6:].T
941 941
942 942 #Delete short trails
943 943 metBool = ~numpy.isnan(metPhase[0,:,:])
944 944 heightVect = numpy.sum(metBool, axis = 1)
945 945 metBool[heightVect<sec,:] = False
946 946 metPhase[:,heightVect<sec,:] = numpy.nan
947 947
948 948 #Derivative
949 949 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
950 950 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
951 951 metPhase[phDerAux] = numpy.nan
952 952
953 953 #--------------------------METEOR DETECTION -----------------------------------------
954 954 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
955 955
956 956 for p in numpy.arange(nPairs):
957 957 phase = metPhase[p,:,:]
958 958 phDer = metDer[p,:,:]
959 959
960 960 for h in indMet:
961 961 height = heightList[h]
962 962 phase1 = phase[h,:] #82
963 963 phDer1 = phDer[h,:]
964 964
965 965 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
966 966
967 967 indValid = numpy.where(~numpy.isnan(phase1))[0]
968 968 initMet = indValid[0]
969 969 endMet = 0
970 970
971 971 for i in range(len(indValid)-1):
972 972
973 973 #Time difference
974 974 inow = indValid[i]
975 975 inext = indValid[i+1]
976 976 idiff = inext - inow
977 977 #Phase difference
978 978 phDiff = numpy.abs(phase1[inext] - phase1[inow])
979 979
980 980 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
981 981 sizeTrail = inow - initMet + 1
982 982 if sizeTrail>3*sec: #Too short meteors
983 983 x = numpy.arange(initMet,inow+1)*ippSeconds
984 984 y = phase1[initMet:inow+1]
985 985 ynnan = ~numpy.isnan(y)
986 986 x = x[ynnan]
987 987 y = y[ynnan]
988 988 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
989 989 ylin = x*slope + intercept
990 990 rsq = r_value**2
991 991 if rsq > 0.5:
992 992 vel = slope#*height*1000/(k*d)
993 993 estAux = numpy.array([utctime,p,height, vel, rsq])
994 994 meteorList.append(estAux)
995 995 initMet = inext
996 996 metArray2 = numpy.array(meteorList)
997 997
998 998 return metArray2
999 999
1000 1000 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
1001 1001
1002 1002 azimuth1 = numpy.zeros(len(pairslist))
1003 1003 dist = numpy.zeros(len(pairslist))
1004 1004
1005 1005 for i in range(len(rx_location)):
1006 1006 ch0 = pairslist[i][0]
1007 1007 ch1 = pairslist[i][1]
1008 1008
1009 1009 diffX = rx_location[ch0][0] - rx_location[ch1][0]
1010 1010 diffY = rx_location[ch0][1] - rx_location[ch1][1]
1011 1011 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
1012 1012 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
1013 1013
1014 1014 azimuth1 -= azimuth0
1015 1015 return azimuth1, dist
1016 1016
1017 1017 def techniqueNSM_DBS(self, **kwargs):
1018 1018 metArray = kwargs['metArray']
1019 1019 heightList = kwargs['heightList']
1020 1020 timeList = kwargs['timeList']
1021 1021 zenithList = kwargs['zenithList']
1022 1022 nChan = numpy.max(cmet) + 1
1023 1023 nHeights = len(heightList)
1024 1024
1025 1025 utctime = metArray[:,0]
1026 1026 cmet = metArray[:,1]
1027 1027 hmet = metArray1[:,3].astype(int)
1028 1028 h1met = heightList[hmet]*zenithList[cmet]
1029 1029 vmet = metArray1[:,5]
1030 1030
1031 1031 for i in range(nHeights - 1):
1032 1032 hmin = heightList[i]
1033 1033 hmax = heightList[i + 1]
1034 1034
1035 1035 vthisH = vmet[(h1met>=hmin) & (h1met<hmax)]
1036 1036
1037 1037
1038 1038
1039 1039 return data_output
1040 1040
1041 def run(self, dataOut, technique, **kwargs):
1041 def run(self, dataOut, technique, hmin=70, hmax=110, nHours=1, **kwargs):
1042 1042
1043 1043 param = dataOut.data_param
1044 1044 if dataOut.abscissaList != None:
1045 1045 absc = dataOut.abscissaList[:-1]
1046 1046 #noise = dataOut.noise
1047 1047 heightList = dataOut.heightList
1048 1048 SNR = dataOut.data_SNR
1049 1049
1050 1050 if technique == 'DBS':
1051 1051
1052 1052 kwargs['velRadial'] = param[:,1,:] #Radial velocity
1053 1053 kwargs['heightList'] = heightList
1054 1054 kwargs['SNR'] = SNR
1055 1055
1056 1056 dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
1057 1057 dataOut.utctimeInit = dataOut.utctime
1058 1058 dataOut.outputInterval = dataOut.paramInterval
1059 1059
1060 1060 elif technique == 'SA':
1061 1061
1062 1062 #Parameters
1063 1063 # position_x = kwargs['positionX']
1064 1064 # position_y = kwargs['positionY']
1065 1065 # azimuth = kwargs['azimuth']
1066 1066 #
1067 1067 # if kwargs.has_key('crosspairsList'):
1068 1068 # pairs = kwargs['crosspairsList']
1069 1069 # else:
1070 1070 # pairs = None
1071 1071 #
1072 1072 # if kwargs.has_key('correctFactor'):
1073 1073 # correctFactor = kwargs['correctFactor']
1074 1074 # else:
1075 1075 # correctFactor = 1
1076 1076
1077 1077 # tau = dataOut.data_param
1078 1078 # _lambda = dataOut.C/dataOut.frequency
1079 1079 # pairsList = dataOut.groupList
1080 1080 # nChannels = dataOut.nChannels
1081 1081
1082 1082 kwargs['groupList'] = dataOut.groupList
1083 1083 kwargs['tau'] = dataOut.data_param
1084 1084 kwargs['_lambda'] = dataOut.C/dataOut.frequency
1085 1085 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
1086 1086 dataOut.data_output = self.techniqueSA(kwargs)
1087 1087 dataOut.utctimeInit = dataOut.utctime
1088 1088 dataOut.outputInterval = dataOut.timeInterval
1089 1089
1090 1090 elif technique == 'Meteors':
1091 1091 dataOut.flagNoData = True
1092 1092 self.__dataReady = False
1093 1093
1094 1094 if kwargs.has_key('nHours'):
1095 1095 nHours = kwargs['nHours']
1096 1096 else:
1097 1097 nHours = 1
1098 1098
1099 1099 if kwargs.has_key('meteorsPerBin'):
1100 1100 meteorThresh = kwargs['meteorsPerBin']
1101 1101 else:
1102 1102 meteorThresh = 6
1103 1103
1104 1104 if kwargs.has_key('hmin'):
1105 1105 hmin = kwargs['hmin']
1106 1106 else: hmin = 70
1107 1107 if kwargs.has_key('hmax'):
1108 1108 hmax = kwargs['hmax']
1109 1109 else: hmax = 110
1110 1110
1111 1111 if kwargs.has_key('BinKm'):
1112 1112 binkm = kwargs['BinKm']
1113 1113 else:
1114 1114 binkm = 2
1115 1115
1116 1116 dataOut.outputInterval = nHours*3600
1117 1117
1118 1118 if self.__isConfig == False:
1119 1119 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
1120 1120 #Get Initial LTC time
1121 1121 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
1122 1122 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
1123 1123
1124 1124 self.__isConfig = True
1125 1125
1126 1126 if self.__buffer is None:
1127 1127 self.__buffer = dataOut.data_param
1128 1128 self.__firstdata = copy.copy(dataOut)
1129 1129
1130 1130 else:
1131 1131 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
1132 1132
1133 1133 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
1134 1134
1135 1135 if self.__dataReady:
1136 1136 dataOut.utctimeInit = self.__initime
1137 1137
1138 1138 self.__initime += dataOut.outputInterval #to erase time offset
1139 1139
1140 1140 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm)
1141 1141 dataOut.flagNoData = False
1142 1142 self.__buffer = None
1143 1143
1144 1144 elif technique == 'Meteors1':
1145 1145 dataOut.flagNoData = True
1146 1146 self.__dataReady = False
1147 1147
1148 1148 if kwargs.has_key('nMins'):
1149 1149 nMins = kwargs['nMins']
1150 1150 else: nMins = 20
1151 1151 if kwargs.has_key('rx_location'):
1152 1152 rx_location = kwargs['rx_location']
1153 1153 else: rx_location = [(0,1),(1,1),(1,0)]
1154 1154 if kwargs.has_key('azimuth'):
1155 1155 azimuth = kwargs['azimuth']
1156 1156 else: azimuth = 51
1157 1157 if kwargs.has_key('dfactor'):
1158 1158 dfactor = kwargs['dfactor']
1159 1159 if kwargs.has_key('mode'):
1160 1160 mode = kwargs['mode']
1161 1161 else: mode = 'SA'
1162 1162
1163 1163 #Borrar luego esto
1164 1164 if dataOut.groupList is None:
1165 1165 dataOut.groupList = [(0,1),(0,2),(1,2)]
1166 1166 groupList = dataOut.groupList
1167 1167 C = 3e8
1168 1168 freq = 50e6
1169 1169 lamb = C/freq
1170 1170 k = 2*numpy.pi/lamb
1171 1171
1172 1172 timeList = dataOut.abscissaList
1173 1173 heightList = dataOut.heightList
1174 1174
1175 1175 if self.__isConfig == False:
1176 1176 dataOut.outputInterval = nMins*60
1177 1177 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
1178 1178 #Get Initial LTC time
1179 1179 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
1180 1180 minuteAux = initime.minute
1181 1181 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
1182 1182 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
1183 1183
1184 1184 self.__isConfig = True
1185 1185
1186 1186 if self.__buffer is None:
1187 1187 self.__buffer = dataOut.data_param
1188 1188 self.__firstdata = copy.copy(dataOut)
1189 1189
1190 1190 else:
1191 1191 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
1192 1192
1193 1193 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
1194 1194
1195 1195 if self.__dataReady:
1196 1196 dataOut.utctimeInit = self.__initime
1197 1197 self.__initime += dataOut.outputInterval #to erase time offset
1198 1198
1199 1199 metArray = self.__buffer
1200 1200 if mode == 'SA':
1201 1201 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
1202 1202 elif mode == 'DBS':
1203 1203 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList)
1204 1204 dataOut.data_output = dataOut.data_output.T
1205 1205 dataOut.flagNoData = False
1206 1206 self.__buffer = None
1207 1207
1208 1208 return
1209 1209
1210 1210 class EWDriftsEstimation(Operation):
1211 1211
1212 1212
1213 1213 def __correctValues(self, heiRang, phi, velRadial, SNR):
1214 1214 listPhi = phi.tolist()
1215 1215 maxid = listPhi.index(max(listPhi))
1216 1216 minid = listPhi.index(min(listPhi))
1217 1217
1218 1218 rango = range(len(phi))
1219 1219 # rango = numpy.delete(rango,maxid)
1220 1220
1221 1221 heiRang1 = heiRang*math.cos(phi[maxid])
1222 1222 heiRangAux = heiRang*math.cos(phi[minid])
1223 1223 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1224 1224 heiRang1 = numpy.delete(heiRang1,indOut)
1225 1225
1226 1226 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1227 1227 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1228 1228
1229 1229 for i in rango:
1230 1230 x = heiRang*math.cos(phi[i])
1231 1231 y1 = velRadial[i,:]
1232 1232 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1233 1233
1234 1234 x1 = heiRang1
1235 1235 y11 = f1(x1)
1236 1236
1237 1237 y2 = SNR[i,:]
1238 1238 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1239 1239 y21 = f2(x1)
1240 1240
1241 1241 velRadial1[i,:] = y11
1242 1242 SNR1[i,:] = y21
1243 1243
1244 1244 return heiRang1, velRadial1, SNR1
1245 1245
1246 1246 def run(self, dataOut, zenith, zenithCorrection):
1247 1247 heiRang = dataOut.heightList
1248 1248 velRadial = dataOut.data_param[:,3,:]
1249 1249 SNR = dataOut.data_SNR
1250 1250
1251 1251 zenith = numpy.array(zenith)
1252 1252 zenith -= zenithCorrection
1253 1253 zenith *= numpy.pi/180
1254 1254
1255 1255 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
1256 1256
1257 1257 alp = zenith[0]
1258 1258 bet = zenith[1]
1259 1259
1260 1260 w_w = velRadial1[0,:]
1261 1261 w_e = velRadial1[1,:]
1262 1262
1263 1263 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
1264 1264 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
1265 1265
1266 1266 winds = numpy.vstack((u,w))
1267 1267
1268 1268 dataOut.heightList = heiRang1
1269 1269 dataOut.data_output = winds
1270 1270 dataOut.data_SNR = SNR1
1271 1271
1272 1272 dataOut.utctimeInit = dataOut.utctime
1273 1273 dataOut.outputInterval = dataOut.timeInterval
1274 1274 return
1275 1275
1276 1276 #--------------- Non Specular Meteor ----------------
1277 1277
1278 1278 class NonSpecularMeteorDetection(Operation):
1279 1279
1280 1280 def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
1281 1281 data_acf = self.dataOut.data_pre[0]
1282 1282 data_ccf = self.dataOut.data_pre[1]
1283 1283
1284 1284 lamb = self.dataOut.C/self.dataOut.frequency
1285 1285 tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt
1286 1286 paramInterval = self.dataOut.paramInterval
1287 1287
1288 1288 nChannels = data_acf.shape[0]
1289 1289 nLags = data_acf.shape[1]
1290 1290 nProfiles = data_acf.shape[2]
1291 1291 nHeights = self.dataOut.nHeights
1292 1292 nCohInt = self.dataOut.nCohInt
1293 1293 sec = numpy.round(nProfiles/self.dataOut.paramInterval)
1294 1294 heightList = self.dataOut.heightList
1295 1295 ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg
1296 1296 utctime = self.dataOut.utctime
1297 1297
1298 1298 self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
1299 1299
1300 1300 #------------------------ SNR --------------------------------------
1301 1301 power = data_acf[:,0,:,:].real
1302 1302 noise = numpy.zeros(nChannels)
1303 1303 SNR = numpy.zeros(power.shape)
1304 1304 for i in range(nChannels):
1305 1305 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
1306 1306 SNR[i] = (power[i]-noise[i])/noise[i]
1307 1307 SNRm = numpy.nanmean(SNR, axis = 0)
1308 1308 SNRdB = 10*numpy.log10(SNR)
1309 1309
1310 1310 if mode == 'SA':
1311 1311 nPairs = data_ccf.shape[0]
1312 1312 #---------------------- Coherence and Phase --------------------------
1313 1313 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
1314 1314 # phase1 = numpy.copy(phase)
1315 1315 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
1316 1316
1317 1317 for p in range(nPairs):
1318 1318 ch0 = self.dataOut.groupList[p][0]
1319 1319 ch1 = self.dataOut.groupList[p][1]
1320 1320 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
1321 1321 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
1322 1322 # phase1[p,:,:] = numpy.angle(ccf) #median filter
1323 1323 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
1324 1324 # coh1[p,:,:] = numpy.abs(ccf) #median filter
1325 1325 coh = numpy.nanmax(coh1, axis = 0)
1326 1326 # struc = numpy.ones((5,1))
1327 1327 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
1328 1328 #---------------------- Radial Velocity ----------------------------
1329 1329 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
1330 1330 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
1331 1331
1332 1332 if allData:
1333 1333 boolMetFin = ~numpy.isnan(SNRm)
1334 1334 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
1335 1335 else:
1336 1336 #------------------------ Meteor mask ---------------------------------
1337 1337 # #SNR mask
1338 1338 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
1339 1339 #
1340 1340 # #Erase small objects
1341 1341 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
1342 1342 #
1343 1343 # auxEEJ = numpy.sum(boolMet1,axis=0)
1344 1344 # indOver = auxEEJ>nProfiles*0.8 #Use this later
1345 1345 # indEEJ = numpy.where(indOver)[0]
1346 1346 # indNEEJ = numpy.where(~indOver)[0]
1347 1347 #
1348 1348 # boolMetFin = boolMet1
1349 1349 #
1350 1350 # if indEEJ.size > 0:
1351 1351 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
1352 1352 #
1353 1353 # boolMet2 = coh > cohThresh
1354 1354 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
1355 1355 #
1356 1356 # #Final Meteor mask
1357 1357 # boolMetFin = boolMet1|boolMet2
1358 1358
1359 1359 #Coherence mask
1360 1360 boolMet1 = coh > 0.75
1361 1361 struc = numpy.ones((30,1))
1362 1362 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
1363 1363
1364 1364 #Derivative mask
1365 1365 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
1366 1366 boolMet2 = derPhase < 0.2
1367 1367 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
1368 1368 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
1369 1369 boolMet2 = ndimage.median_filter(boolMet2,size=5)
1370 1370 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
1371 1371 # #Final mask
1372 1372 # boolMetFin = boolMet2
1373 1373 boolMetFin = boolMet1&boolMet2
1374 1374 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
1375 1375 #Creating data_param
1376 1376 coordMet = numpy.where(boolMetFin)
1377 1377
1378 1378 tmet = coordMet[0]
1379 1379 hmet = coordMet[1]
1380 1380
1381 1381 data_param = numpy.zeros((tmet.size, 6 + nPairs))
1382 1382 data_param[:,0] = utctime
1383 1383 data_param[:,1] = tmet
1384 1384 data_param[:,2] = hmet
1385 1385 data_param[:,3] = SNRm[tmet,hmet]
1386 1386 data_param[:,4] = velRad[tmet,hmet]
1387 1387 data_param[:,5] = coh[tmet,hmet]
1388 1388 data_param[:,6:] = phase[:,tmet,hmet].T
1389 1389
1390 1390 elif mode == 'DBS':
1391 1391 self.dataOut.groupList = numpy.arange(nChannels)
1392 1392
1393 1393 #Radial Velocities
1394 1394 # phase = numpy.angle(data_acf[:,1,:,:])
1395 1395 phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
1396 1396 velRad = phase*lamb/(4*numpy.pi*tSamp)
1397 1397
1398 1398 #Spectral width
1399 1399 acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
1400 1400 acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
1401 1401
1402 1402 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
1403 1403 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
1404 1404 if allData:
1405 1405 boolMetFin = ~numpy.isnan(SNRdB)
1406 1406 else:
1407 1407 #SNR
1408 1408 boolMet1 = (SNRdB>SNRthresh) #SNR mask
1409 1409 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
1410 1410
1411 1411 #Radial velocity
1412 1412 boolMet2 = numpy.abs(velRad) < 30
1413 1413 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
1414 1414
1415 1415 #Spectral Width
1416 1416 boolMet3 = spcWidth < 30
1417 1417 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
1418 1418 # boolMetFin = self.__erase_small(boolMet1, 10,5)
1419 1419 boolMetFin = boolMet1&boolMet2&boolMet3
1420 1420
1421 1421 #Creating data_param
1422 1422 coordMet = numpy.where(boolMetFin)
1423 1423
1424 1424 cmet = coordMet[0]
1425 1425 tmet = coordMet[1]
1426 1426 hmet = coordMet[2]
1427 1427
1428 1428 data_param = numpy.zeros((tmet.size, 7))
1429 1429 data_param[:,0] = utctime
1430 1430 data_param[:,1] = cmet
1431 1431 data_param[:,2] = tmet
1432 1432 data_param[:,3] = hmet
1433 1433 data_param[:,4] = SNR[cmet,tmet,hmet].T
1434 1434 data_param[:,5] = velRad[cmet,tmet,hmet].T
1435 1435 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
1436 1436
1437 1437 # self.dataOut.data_param = data_int
1438 1438 if len(data_param) == 0:
1439 1439 self.dataOut.flagNoData = True
1440 1440 else:
1441 1441 self.dataOut.data_param = data_param
1442 1442
1443 1443 def __erase_small(self, binArray, threshX, threshY):
1444 1444 labarray, numfeat = ndimage.measurements.label(binArray)
1445 1445 binArray1 = numpy.copy(binArray)
1446 1446
1447 1447 for i in range(1,numfeat + 1):
1448 1448 auxBin = (labarray==i)
1449 1449 auxSize = auxBin.sum()
1450 1450
1451 1451 x,y = numpy.where(auxBin)
1452 1452 widthX = x.max() - x.min()
1453 1453 widthY = y.max() - y.min()
1454 1454
1455 1455 #width X: 3 seg -> 12.5*3
1456 1456 #width Y:
1457 1457
1458 1458 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
1459 1459 binArray1[auxBin] = False
1460 1460
1461 1461 return binArray1
1462 1462
1463 1463 #--------------- Specular Meteor ----------------
1464 1464
1465 1465 class SMDetection(Operation):
1466 1466 '''
1467 1467 Function DetectMeteors()
1468 1468 Project developed with paper:
1469 1469 HOLDSWORTH ET AL. 2004
1470 1470
1471 1471 Input:
1472 1472 self.dataOut.data_pre
1473 1473
1474 1474 centerReceiverIndex: From the channels, which is the center receiver
1475 1475
1476 1476 hei_ref: Height reference for the Beacon signal extraction
1477 1477 tauindex:
1478 1478 predefinedPhaseShifts: Predefined phase offset for the voltge signals
1479 1479
1480 1480 cohDetection: Whether to user Coherent detection or not
1481 1481 cohDet_timeStep: Coherent Detection calculation time step
1482 1482 cohDet_thresh: Coherent Detection phase threshold to correct phases
1483 1483
1484 1484 noise_timeStep: Noise calculation time step
1485 1485 noise_multiple: Noise multiple to define signal threshold
1486 1486
1487 1487 multDet_timeLimit: Multiple Detection Removal time limit in seconds
1488 1488 multDet_rangeLimit: Multiple Detection Removal range limit in km
1489 1489
1490 1490 phaseThresh: Maximum phase difference between receiver to be consider a meteor
1491 1491 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
1492 1492
1493 1493 hmin: Minimum Height of the meteor to use it in the further wind estimations
1494 1494 hmax: Maximum Height of the meteor to use it in the further wind estimations
1495 1495 azimuth: Azimuth angle correction
1496 1496
1497 1497 Affected:
1498 1498 self.dataOut.data_param
1499 1499
1500 1500 Rejection Criteria (Errors):
1501 1501 0: No error; analysis OK
1502 1502 1: SNR < SNR threshold
1503 1503 2: angle of arrival (AOA) ambiguously determined
1504 1504 3: AOA estimate not feasible
1505 1505 4: Large difference in AOAs obtained from different antenna baselines
1506 1506 5: echo at start or end of time series
1507 1507 6: echo less than 5 examples long; too short for analysis
1508 1508 7: echo rise exceeds 0.3s
1509 1509 8: echo decay time less than twice rise time
1510 1510 9: large power level before echo
1511 1511 10: large power level after echo
1512 1512 11: poor fit to amplitude for estimation of decay time
1513 1513 12: poor fit to CCF phase variation for estimation of radial drift velocity
1514 1514 13: height unresolvable echo: not valid height within 70 to 110 km
1515 1515 14: height ambiguous echo: more then one possible height within 70 to 110 km
1516 1516 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
1517 1517 16: oscilatory echo, indicating event most likely not an underdense echo
1518 1518
1519 1519 17: phase difference in meteor Reestimation
1520 1520
1521 1521 Data Storage:
1522 1522 Meteors for Wind Estimation (8):
1523 1523 Utc Time | Range Height
1524 1524 Azimuth Zenith errorCosDir
1525 1525 VelRad errorVelRad
1526 1526 Phase0 Phase1 Phase2 Phase3
1527 1527 TypeError
1528 1528
1529 1529 '''
1530 1530
1531 1531 def run(self, dataOut, hei_ref = None, tauindex = 0,
1532 1532 phaseOffsets = None,
1533 1533 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
1534 1534 noise_timeStep = 4, noise_multiple = 4,
1535 1535 multDet_timeLimit = 1, multDet_rangeLimit = 3,
1536 1536 phaseThresh = 20, SNRThresh = 5,
1537 1537 hmin = 50, hmax=150, azimuth = 0,
1538 1538 channelPositions = None) :
1539 1539
1540 1540
1541 1541 #Getting Pairslist
1542 1542 if channelPositions is None:
1543 1543 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
1544 1544 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
1545 1545 meteorOps = SMOperations()
1546 1546 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
1547 1547 heiRang = dataOut.getHeiRange()
1548 1548 #Get Beacon signal - No Beacon signal anymore
1549 1549 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
1550 1550 #
1551 1551 # if hei_ref != None:
1552 1552 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
1553 1553 #
1554 1554
1555 1555
1556 1556 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
1557 1557 # see if the user put in pre defined phase shifts
1558 1558 voltsPShift = dataOut.data_pre.copy()
1559 1559
1560 1560 # if predefinedPhaseShifts != None:
1561 1561 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
1562 1562 #
1563 1563 # # elif beaconPhaseShifts:
1564 1564 # # #get hardware phase shifts using beacon signal
1565 1565 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
1566 1566 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
1567 1567 #
1568 1568 # else:
1569 1569 # hardwarePhaseShifts = numpy.zeros(5)
1570 1570 #
1571 1571 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
1572 1572 # for i in range(self.dataOut.data_pre.shape[0]):
1573 1573 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
1574 1574
1575 1575 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
1576 1576
1577 1577 #Remove DC
1578 1578 voltsDC = numpy.mean(voltsPShift,1)
1579 1579 voltsDC = numpy.mean(voltsDC,1)
1580 1580 for i in range(voltsDC.shape[0]):
1581 1581 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
1582 1582
1583 1583 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
1584 1584 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
1585 1585
1586 1586 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
1587 1587 #Coherent Detection
1588 1588 if cohDetection:
1589 1589 #use coherent detection to get the net power
1590 1590 cohDet_thresh = cohDet_thresh*numpy.pi/180
1591 1591 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
1592 1592
1593 1593 #Non-coherent detection!
1594 1594 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
1595 1595 #********** END OF COH/NON-COH POWER CALCULATION**********************
1596 1596
1597 1597 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
1598 1598 #Get noise
1599 1599 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
1600 1600 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
1601 1601 #Get signal threshold
1602 1602 signalThresh = noise_multiple*noise
1603 1603 #Meteor echoes detection
1604 1604 listMeteors = self.__findMeteors(powerNet, signalThresh)
1605 1605 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
1606 1606
1607 1607 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
1608 1608 #Parameters
1609 1609 heiRange = dataOut.getHeiRange()
1610 1610 rangeInterval = heiRange[1] - heiRange[0]
1611 1611 rangeLimit = multDet_rangeLimit/rangeInterval
1612 1612 timeLimit = multDet_timeLimit/dataOut.timeInterval
1613 1613 #Multiple detection removals
1614 1614 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
1615 1615 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
1616 1616
1617 1617 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
1618 1618 #Parameters
1619 1619 phaseThresh = phaseThresh*numpy.pi/180
1620 1620 thresh = [phaseThresh, noise_multiple, SNRThresh]
1621 1621 #Meteor reestimation (Errors N 1, 6, 12, 17)
1622 1622 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
1623 1623 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
1624 1624 #Estimation of decay times (Errors N 7, 8, 11)
1625 1625 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
1626 1626 #******************* END OF METEOR REESTIMATION *******************
1627 1627
1628 1628 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
1629 1629 #Calculating Radial Velocity (Error N 15)
1630 1630 radialStdThresh = 10
1631 1631 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
1632 1632
1633 1633 if len(listMeteors4) > 0:
1634 1634 #Setting New Array
1635 1635 date = dataOut.utctime
1636 1636 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
1637 1637
1638 1638 #Correcting phase offset
1639 1639 if phaseOffsets != None:
1640 1640 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
1641 1641 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
1642 1642
1643 1643 #Second Pairslist
1644 1644 pairsList = []
1645 1645 pairx = (0,1)
1646 1646 pairy = (2,3)
1647 1647 pairsList.append(pairx)
1648 1648 pairsList.append(pairy)
1649 1649
1650 1650 jph = numpy.array([0,0,0,0])
1651 1651 h = (hmin,hmax)
1652 1652 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
1653 1653
1654 1654 # #Calculate AOA (Error N 3, 4)
1655 1655 # #JONES ET AL. 1998
1656 1656 # error = arrayParameters[:,-1]
1657 1657 # AOAthresh = numpy.pi/8
1658 1658 # phases = -arrayParameters[:,9:13]
1659 1659 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
1660 1660 #
1661 1661 # #Calculate Heights (Error N 13 and 14)
1662 1662 # error = arrayParameters[:,-1]
1663 1663 # Ranges = arrayParameters[:,2]
1664 1664 # zenith = arrayParameters[:,5]
1665 1665 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
1666 1666 # error = arrayParameters[:,-1]
1667 1667 #********************* END OF PARAMETERS CALCULATION **************************
1668 1668
1669 1669 #***************************+ PASS DATA TO NEXT STEP **********************
1670 1670 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
1671 1671 dataOut.data_param = arrayParameters
1672 1672
1673 1673 if arrayParameters is None:
1674 1674 dataOut.flagNoData = True
1675 1675 else:
1676 1676 dataOut.flagNoData = True
1677 1677
1678 1678 return
1679 1679
1680 1680 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
1681 1681
1682 1682 minIndex = min(newheis[0])
1683 1683 maxIndex = max(newheis[0])
1684 1684
1685 1685 voltage = voltage0[:,:,minIndex:maxIndex+1]
1686 1686 nLength = voltage.shape[1]/n
1687 1687 nMin = 0
1688 1688 nMax = 0
1689 1689 phaseOffset = numpy.zeros((len(pairslist),n))
1690 1690
1691 1691 for i in range(n):
1692 1692 nMax += nLength
1693 1693 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
1694 1694 phaseCCF = numpy.mean(phaseCCF, axis = 2)
1695 1695 phaseOffset[:,i] = phaseCCF.transpose()
1696 1696 nMin = nMax
1697 1697 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
1698 1698
1699 1699 #Remove Outliers
1700 1700 factor = 2
1701 1701 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
1702 1702 dw = numpy.std(wt,axis = 1)
1703 1703 dw = dw.reshape((dw.size,1))
1704 1704 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
1705 1705 phaseOffset[ind] = numpy.nan
1706 1706 phaseOffset = stats.nanmean(phaseOffset, axis=1)
1707 1707
1708 1708 return phaseOffset
1709 1709
1710 1710 def __shiftPhase(self, data, phaseShift):
1711 1711 #this will shift the phase of a complex number
1712 1712 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
1713 1713 return dataShifted
1714 1714
1715 1715 def __estimatePhaseDifference(self, array, pairslist):
1716 1716 nChannel = array.shape[0]
1717 1717 nHeights = array.shape[2]
1718 1718 numPairs = len(pairslist)
1719 1719 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
1720 1720 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
1721 1721
1722 1722 #Correct phases
1723 1723 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
1724 1724 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
1725 1725
1726 1726 if indDer[0].shape[0] > 0:
1727 1727 for i in range(indDer[0].shape[0]):
1728 1728 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
1729 1729 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
1730 1730
1731 1731 # for j in range(numSides):
1732 1732 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
1733 1733 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
1734 1734 #
1735 1735 #Linear
1736 1736 phaseInt = numpy.zeros((numPairs,1))
1737 1737 angAllCCF = phaseCCF[:,[0,1,3,4],0]
1738 1738 for j in range(numPairs):
1739 1739 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
1740 1740 phaseInt[j] = fit[1]
1741 1741 #Phase Differences
1742 1742 phaseDiff = phaseInt - phaseCCF[:,2,:]
1743 1743 phaseArrival = phaseInt.reshape(phaseInt.size)
1744 1744
1745 1745 #Dealias
1746 1746 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
1747 1747 # indAlias = numpy.where(phaseArrival > numpy.pi)
1748 1748 # phaseArrival[indAlias] -= 2*numpy.pi
1749 1749 # indAlias = numpy.where(phaseArrival < -numpy.pi)
1750 1750 # phaseArrival[indAlias] += 2*numpy.pi
1751 1751
1752 1752 return phaseDiff, phaseArrival
1753 1753
1754 1754 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
1755 1755 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
1756 1756 #find the phase shifts of each channel over 1 second intervals
1757 1757 #only look at ranges below the beacon signal
1758 1758 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
1759 1759 numBlocks = int(volts.shape[1]/numProfPerBlock)
1760 1760 numHeights = volts.shape[2]
1761 1761 nChannel = volts.shape[0]
1762 1762 voltsCohDet = volts.copy()
1763 1763
1764 1764 pairsarray = numpy.array(pairslist)
1765 1765 indSides = pairsarray[:,1]
1766 1766 # indSides = numpy.array(range(nChannel))
1767 1767 # indSides = numpy.delete(indSides, indCenter)
1768 1768 #
1769 1769 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
1770 1770 listBlocks = numpy.array_split(volts, numBlocks, 1)
1771 1771
1772 1772 startInd = 0
1773 1773 endInd = 0
1774 1774
1775 1775 for i in range(numBlocks):
1776 1776 startInd = endInd
1777 1777 endInd = endInd + listBlocks[i].shape[1]
1778 1778
1779 1779 arrayBlock = listBlocks[i]
1780 1780 # arrayBlockCenter = listCenter[i]
1781 1781
1782 1782 #Estimate the Phase Difference
1783 1783 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
1784 1784 #Phase Difference RMS
1785 1785 arrayPhaseRMS = numpy.abs(phaseDiff)
1786 1786 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
1787 1787 indPhase = numpy.where(phaseRMSaux==4)
1788 1788 #Shifting
1789 1789 if indPhase[0].shape[0] > 0:
1790 1790 for j in range(indSides.size):
1791 1791 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
1792 1792 voltsCohDet[:,startInd:endInd,:] = arrayBlock
1793 1793
1794 1794 return voltsCohDet
1795 1795
1796 1796 def __calculateCCF(self, volts, pairslist ,laglist):
1797 1797
1798 1798 nHeights = volts.shape[2]
1799 1799 nPoints = volts.shape[1]
1800 1800 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
1801 1801
1802 1802 for i in range(len(pairslist)):
1803 1803 volts1 = volts[pairslist[i][0]]
1804 1804 volts2 = volts[pairslist[i][1]]
1805 1805
1806 1806 for t in range(len(laglist)):
1807 1807 idxT = laglist[t]
1808 1808 if idxT >= 0:
1809 1809 vStacked = numpy.vstack((volts2[idxT:,:],
1810 1810 numpy.zeros((idxT, nHeights),dtype='complex')))
1811 1811 else:
1812 1812 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
1813 1813 volts2[:(nPoints + idxT),:]))
1814 1814 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
1815 1815
1816 1816 vStacked = None
1817 1817 return voltsCCF
1818 1818
1819 1819 def __getNoise(self, power, timeSegment, timeInterval):
1820 1820 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
1821 1821 numBlocks = int(power.shape[0]/numProfPerBlock)
1822 1822 numHeights = power.shape[1]
1823 1823
1824 1824 listPower = numpy.array_split(power, numBlocks, 0)
1825 1825 noise = numpy.zeros((power.shape[0], power.shape[1]))
1826 1826 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
1827 1827
1828 1828 startInd = 0
1829 1829 endInd = 0
1830 1830
1831 1831 for i in range(numBlocks): #split por canal
1832 1832 startInd = endInd
1833 1833 endInd = endInd + listPower[i].shape[0]
1834 1834
1835 1835 arrayBlock = listPower[i]
1836 1836 noiseAux = numpy.mean(arrayBlock, 0)
1837 1837 # noiseAux = numpy.median(noiseAux)
1838 1838 # noiseAux = numpy.mean(arrayBlock)
1839 1839 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
1840 1840
1841 1841 noiseAux1 = numpy.mean(arrayBlock)
1842 1842 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
1843 1843
1844 1844 return noise, noise1
1845 1845
1846 1846 def __findMeteors(self, power, thresh):
1847 1847 nProf = power.shape[0]
1848 1848 nHeights = power.shape[1]
1849 1849 listMeteors = []
1850 1850
1851 1851 for i in range(nHeights):
1852 1852 powerAux = power[:,i]
1853 1853 threshAux = thresh[:,i]
1854 1854
1855 1855 indUPthresh = numpy.where(powerAux > threshAux)[0]
1856 1856 indDNthresh = numpy.where(powerAux <= threshAux)[0]
1857 1857
1858 1858 j = 0
1859 1859
1860 1860 while (j < indUPthresh.size - 2):
1861 1861 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
1862 1862 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
1863 1863 indDNthresh = indDNthresh[indDNAux]
1864 1864
1865 1865 if (indDNthresh.size > 0):
1866 1866 indEnd = indDNthresh[0] - 1
1867 1867 indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!!
1868 1868
1869 1869 meteor = powerAux[indInit:indEnd + 1]
1870 1870 indPeak = meteor.argmax() + indInit
1871 1871 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
1872 1872
1873 1873 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
1874 1874 j = numpy.where(indUPthresh == indEnd)[0] + 1
1875 1875 else: j+=1
1876 1876 else: j+=1
1877 1877
1878 1878 return listMeteors
1879 1879
1880 1880 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
1881 1881
1882 1882 arrayMeteors = numpy.asarray(listMeteors)
1883 1883 listMeteors1 = []
1884 1884
1885 1885 while arrayMeteors.shape[0] > 0:
1886 1886 FLAs = arrayMeteors[:,4]
1887 1887 maxFLA = FLAs.argmax()
1888 1888 listMeteors1.append(arrayMeteors[maxFLA,:])
1889 1889
1890 1890 MeteorInitTime = arrayMeteors[maxFLA,1]
1891 1891 MeteorEndTime = arrayMeteors[maxFLA,3]
1892 1892 MeteorHeight = arrayMeteors[maxFLA,0]
1893 1893
1894 1894 #Check neighborhood
1895 1895 maxHeightIndex = MeteorHeight + rangeLimit
1896 1896 minHeightIndex = MeteorHeight - rangeLimit
1897 1897 minTimeIndex = MeteorInitTime - timeLimit
1898 1898 maxTimeIndex = MeteorEndTime + timeLimit
1899 1899
1900 1900 #Check Heights
1901 1901 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
1902 1902 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
1903 1903 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
1904 1904
1905 1905 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
1906 1906
1907 1907 return listMeteors1
1908 1908
1909 1909 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
1910 1910 numHeights = volts.shape[2]
1911 1911 nChannel = volts.shape[0]
1912 1912
1913 1913 thresholdPhase = thresh[0]
1914 1914 thresholdNoise = thresh[1]
1915 1915 thresholdDB = float(thresh[2])
1916 1916
1917 1917 thresholdDB1 = 10**(thresholdDB/10)
1918 1918 pairsarray = numpy.array(pairslist)
1919 1919 indSides = pairsarray[:,1]
1920 1920
1921 1921 pairslist1 = list(pairslist)
1922 1922 pairslist1.append((0,4))
1923 1923 pairslist1.append((1,3))
1924 1924
1925 1925 listMeteors1 = []
1926 1926 listPowerSeries = []
1927 1927 listVoltageSeries = []
1928 1928 #volts has the war data
1929 1929
1930 1930 if frequency == 30.175e6:
1931 1931 timeLag = 45*10**-3
1932 1932 else:
1933 1933 timeLag = 15*10**-3
1934 1934 lag = int(numpy.ceil(timeLag/timeInterval))
1935 1935
1936 1936 for i in range(len(listMeteors)):
1937 1937
1938 1938 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
1939 1939 meteorAux = numpy.zeros(16)
1940 1940
1941 1941 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
1942 1942 mHeight = int(listMeteors[i][0])
1943 1943 mStart = int(listMeteors[i][1])
1944 1944 mPeak = int(listMeteors[i][2])
1945 1945 mEnd = int(listMeteors[i][3])
1946 1946
1947 1947 #get the volt data between the start and end times of the meteor
1948 1948 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
1949 1949 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
1950 1950
1951 1951 #3.6. Phase Difference estimation
1952 1952 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
1953 1953
1954 1954 #3.7. Phase difference removal & meteor start, peak and end times reestimated
1955 1955 #meteorVolts0.- all Channels, all Profiles
1956 1956 meteorVolts0 = volts[:,:,mHeight]
1957 1957 meteorThresh = noise[:,mHeight]*thresholdNoise
1958 1958 meteorNoise = noise[:,mHeight]
1959 1959 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
1960 1960 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
1961 1961
1962 1962 #Times reestimation
1963 1963 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
1964 1964 if mStart1.size > 0:
1965 1965 mStart1 = mStart1[-1] + 1
1966 1966
1967 1967 else:
1968 1968 mStart1 = mPeak
1969 1969
1970 1970 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
1971 1971 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
1972 1972 if mEndDecayTime1.size == 0:
1973 1973 mEndDecayTime1 = powerNet0.size
1974 1974 else:
1975 1975 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
1976 1976 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
1977 1977
1978 1978 #meteorVolts1.- all Channels, from start to end
1979 1979 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
1980 1980 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
1981 1981 if meteorVolts2.shape[1] == 0:
1982 1982 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
1983 1983 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
1984 1984 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
1985 1985 ##################### END PARAMETERS REESTIMATION #########################
1986 1986
1987 1987 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
1988 1988 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
1989 1989 if meteorVolts2.shape[1] > 0:
1990 1990 #Phase Difference re-estimation
1991 1991 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
1992 1992 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
1993 1993 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
1994 1994 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
1995 1995 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
1996 1996
1997 1997 #Phase Difference RMS
1998 1998 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
1999 1999 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
2000 2000 #Data from Meteor
2001 2001 mPeak1 = powerNet1.argmax() + mStart1
2002 2002 mPeakPower1 = powerNet1.max()
2003 2003 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
2004 2004 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
2005 2005 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
2006 2006 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
2007 2007 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
2008 2008 #Vectorize
2009 2009 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
2010 2010 meteorAux[7:11] = phaseDiffint[0:4]
2011 2011
2012 2012 #Rejection Criterions
2013 2013 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
2014 2014 meteorAux[-1] = 17
2015 2015 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
2016 2016 meteorAux[-1] = 1
2017 2017
2018 2018
2019 2019 else:
2020 2020 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
2021 2021 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
2022 2022 PowerSeries = 0
2023 2023
2024 2024 listMeteors1.append(meteorAux)
2025 2025 listPowerSeries.append(PowerSeries)
2026 2026 listVoltageSeries.append(meteorVolts1)
2027 2027
2028 2028 return listMeteors1, listPowerSeries, listVoltageSeries
2029 2029
2030 2030 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
2031 2031
2032 2032 threshError = 10
2033 2033 #Depending if it is 30 or 50 MHz
2034 2034 if frequency == 30.175e6:
2035 2035 timeLag = 45*10**-3
2036 2036 else:
2037 2037 timeLag = 15*10**-3
2038 2038 lag = int(numpy.ceil(timeLag/timeInterval))
2039 2039
2040 2040 listMeteors1 = []
2041 2041
2042 2042 for i in range(len(listMeteors)):
2043 2043 meteorPower = listPower[i]
2044 2044 meteorAux = listMeteors[i]
2045 2045
2046 2046 if meteorAux[-1] == 0:
2047 2047
2048 2048 try:
2049 2049 indmax = meteorPower.argmax()
2050 2050 indlag = indmax + lag
2051 2051
2052 2052 y = meteorPower[indlag:]
2053 2053 x = numpy.arange(0, y.size)*timeLag
2054 2054
2055 2055 #first guess
2056 2056 a = y[0]
2057 2057 tau = timeLag
2058 2058 #exponential fit
2059 2059 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
2060 2060 y1 = self.__exponential_function(x, *popt)
2061 2061 #error estimation
2062 2062 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
2063 2063
2064 2064 decayTime = popt[1]
2065 2065 riseTime = indmax*timeInterval
2066 2066 meteorAux[11:13] = [decayTime, error]
2067 2067
2068 2068 #Table items 7, 8 and 11
2069 2069 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
2070 2070 meteorAux[-1] = 7
2071 2071 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
2072 2072 meteorAux[-1] = 8
2073 2073 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
2074 2074 meteorAux[-1] = 11
2075 2075
2076 2076
2077 2077 except:
2078 2078 meteorAux[-1] = 11
2079 2079
2080 2080
2081 2081 listMeteors1.append(meteorAux)
2082 2082
2083 2083 return listMeteors1
2084 2084
2085 2085 #Exponential Function
2086 2086
2087 2087 def __exponential_function(self, x, a, tau):
2088 2088 y = a*numpy.exp(-x/tau)
2089 2089 return y
2090 2090
2091 2091 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
2092 2092
2093 2093 pairslist1 = list(pairslist)
2094 2094 pairslist1.append((0,4))
2095 2095 pairslist1.append((1,3))
2096 2096 numPairs = len(pairslist1)
2097 2097 #Time Lag
2098 2098 timeLag = 45*10**-3
2099 2099 c = 3e8
2100 2100 lag = numpy.ceil(timeLag/timeInterval)
2101 2101 freq = 30.175e6
2102 2102
2103 2103 listMeteors1 = []
2104 2104
2105 2105 for i in range(len(listMeteors)):
2106 2106 meteorAux = listMeteors[i]
2107 2107 if meteorAux[-1] == 0:
2108 2108 mStart = listMeteors[i][1]
2109 2109 mPeak = listMeteors[i][2]
2110 2110 mLag = mPeak - mStart + lag
2111 2111
2112 2112 #get the volt data between the start and end times of the meteor
2113 2113 meteorVolts = listVolts[i]
2114 2114 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
2115 2115
2116 2116 #Get CCF
2117 2117 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
2118 2118
2119 2119 #Method 2
2120 2120 slopes = numpy.zeros(numPairs)
2121 2121 time = numpy.array([-2,-1,1,2])*timeInterval
2122 2122 angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0])
2123 2123
2124 2124 #Correct phases
2125 2125 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
2126 2126 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2127 2127
2128 2128 if indDer[0].shape[0] > 0:
2129 2129 for i in range(indDer[0].shape[0]):
2130 2130 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
2131 2131 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
2132 2132
2133 2133 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
2134 2134 for j in range(numPairs):
2135 2135 fit = stats.linregress(time, angAllCCF[j,:])
2136 2136 slopes[j] = fit[0]
2137 2137
2138 2138 #Remove Outlier
2139 2139 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
2140 2140 # slopes = numpy.delete(slopes,indOut)
2141 2141 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
2142 2142 # slopes = numpy.delete(slopes,indOut)
2143 2143
2144 2144 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
2145 2145 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
2146 2146 meteorAux[-2] = radialError
2147 2147 meteorAux[-3] = radialVelocity
2148 2148
2149 2149 #Setting Error
2150 2150 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
2151 2151 if numpy.abs(radialVelocity) > 200:
2152 2152 meteorAux[-1] = 15
2153 2153 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
2154 2154 elif radialError > radialStdThresh:
2155 2155 meteorAux[-1] = 12
2156 2156
2157 2157 listMeteors1.append(meteorAux)
2158 2158 return listMeteors1
2159 2159
2160 2160 def __setNewArrays(self, listMeteors, date, heiRang):
2161 2161
2162 2162 #New arrays
2163 2163 arrayMeteors = numpy.array(listMeteors)
2164 2164 arrayParameters = numpy.zeros((len(listMeteors), 13))
2165 2165
2166 2166 #Date inclusion
2167 2167 # date = re.findall(r'\((.*?)\)', date)
2168 2168 # date = date[0].split(',')
2169 2169 # date = map(int, date)
2170 2170 #
2171 2171 # if len(date)<6:
2172 2172 # date.append(0)
2173 2173 #
2174 2174 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
2175 2175 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
2176 2176 arrayDate = numpy.tile(date, (len(listMeteors)))
2177 2177
2178 2178 #Meteor array
2179 2179 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
2180 2180 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
2181 2181
2182 2182 #Parameters Array
2183 2183 arrayParameters[:,0] = arrayDate #Date
2184 2184 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
2185 2185 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
2186 2186 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
2187 2187 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
2188 2188
2189 2189
2190 2190 return arrayParameters
2191 2191
2192 2192 class CorrectSMPhases(Operation):
2193 2193
2194 2194 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
2195 2195
2196 2196 arrayParameters = dataOut.data_param
2197 2197 pairsList = []
2198 2198 pairx = (0,1)
2199 2199 pairy = (2,3)
2200 2200 pairsList.append(pairx)
2201 2201 pairsList.append(pairy)
2202 2202 jph = numpy.zeros(4)
2203 2203
2204 2204 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2205 2205 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2206 2206 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
2207 2207
2208 2208 meteorOps = SMOperations()
2209 2209 if channelPositions is None:
2210 2210 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2211 2211 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2212 2212
2213 2213 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2214 2214 h = (hmin,hmax)
2215 2215
2216 2216 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2217 2217
2218 2218 dataOut.data_param = arrayParameters
2219 2219 return
2220 2220
2221 2221 class SMPhaseCalibration(Operation):
2222 2222
2223 2223 __buffer = None
2224 2224
2225 2225 __initime = None
2226 2226
2227 2227 __dataReady = False
2228 2228
2229 2229 __isConfig = False
2230 2230
2231 2231 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
2232 2232
2233 2233 dataTime = currentTime + paramInterval
2234 2234 deltaTime = dataTime - initTime
2235 2235
2236 2236 if deltaTime >= outputInterval or deltaTime < 0:
2237 2237 return True
2238 2238
2239 2239 return False
2240 2240
2241 2241 def __getGammas(self, pairs, d, phases):
2242 2242 gammas = numpy.zeros(2)
2243 2243
2244 2244 for i in range(len(pairs)):
2245 2245
2246 2246 pairi = pairs[i]
2247 2247
2248 2248 phip3 = phases[:,pairi[1]]
2249 2249 d3 = d[pairi[1]]
2250 2250 phip2 = phases[:,pairi[0]]
2251 2251 d2 = d[pairi[0]]
2252 2252 #Calculating gamma
2253 2253 # jdcos = alp1/(k*d1)
2254 2254 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
2255 2255 jgamma = -phip2*d3/d2 - phip3
2256 2256 jgamma = numpy.angle(numpy.exp(1j*jgamma))
2257 2257 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
2258 2258 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
2259 2259
2260 2260 #Revised distribution
2261 2261 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
2262 2262
2263 2263 #Histogram
2264 2264 nBins = 64.0
2265 2265 rmin = -0.5*numpy.pi
2266 2266 rmax = 0.5*numpy.pi
2267 2267 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
2268 2268
2269 2269 meteorsY = phaseHisto[0]
2270 2270 phasesX = phaseHisto[1][:-1]
2271 2271 width = phasesX[1] - phasesX[0]
2272 2272 phasesX += width/2
2273 2273
2274 2274 #Gaussian aproximation
2275 2275 bpeak = meteorsY.argmax()
2276 2276 peak = meteorsY.max()
2277 2277 jmin = bpeak - 5
2278 2278 jmax = bpeak + 5 + 1
2279 2279
2280 2280 if jmin<0:
2281 2281 jmin = 0
2282 2282 jmax = 6
2283 2283 elif jmax > meteorsY.size:
2284 2284 jmin = meteorsY.size - 6
2285 2285 jmax = meteorsY.size
2286 2286
2287 2287 x0 = numpy.array([peak,bpeak,50])
2288 2288 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
2289 2289
2290 2290 #Gammas
2291 2291 gammas[i] = coeff[0][1]
2292 2292
2293 2293 return gammas
2294 2294
2295 2295 def __residualFunction(self, coeffs, y, t):
2296 2296
2297 2297 return y - self.__gauss_function(t, coeffs)
2298 2298
2299 2299 def __gauss_function(self, t, coeffs):
2300 2300
2301 2301 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
2302 2302
2303 2303 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
2304 2304 meteorOps = SMOperations()
2305 2305 nchan = 4
2306 2306 pairx = pairsList[0]
2307 2307 pairy = pairsList[1]
2308 2308 center_xangle = 0
2309 2309 center_yangle = 0
2310 2310 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
2311 2311 ntimes = len(range_angle)
2312 2312
2313 2313 nstepsx = 20.0
2314 2314 nstepsy = 20.0
2315 2315
2316 2316 for iz in range(ntimes):
2317 2317 min_xangle = -range_angle[iz]/2 + center_xangle
2318 2318 max_xangle = range_angle[iz]/2 + center_xangle
2319 2319 min_yangle = -range_angle[iz]/2 + center_yangle
2320 2320 max_yangle = range_angle[iz]/2 + center_yangle
2321 2321
2322 2322 inc_x = (max_xangle-min_xangle)/nstepsx
2323 2323 inc_y = (max_yangle-min_yangle)/nstepsy
2324 2324
2325 2325 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
2326 2326 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
2327 2327 penalty = numpy.zeros((nstepsx,nstepsy))
2328 2328 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
2329 2329 jph = numpy.zeros(nchan)
2330 2330
2331 2331 # Iterations looking for the offset
2332 2332 for iy in range(int(nstepsy)):
2333 2333 for ix in range(int(nstepsx)):
2334 2334 jph[pairy[1]] = alpha_y[iy]
2335 2335 jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
2336 2336
2337 2337 jph[pairx[1]] = alpha_x[ix]
2338 2338 jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
2339 2339
2340 2340 jph_array[:,ix,iy] = jph
2341 2341
2342 2342 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
2343 2343 error = meteorsArray1[:,-1]
2344 2344 ind1 = numpy.where(error==0)[0]
2345 2345 penalty[ix,iy] = ind1.size
2346 2346
2347 2347 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
2348 2348 phOffset = jph_array[:,i,j]
2349 2349
2350 2350 center_xangle = phOffset[pairx[1]]
2351 2351 center_yangle = phOffset[pairy[1]]
2352 2352
2353 2353 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
2354 2354 phOffset = phOffset*180/numpy.pi
2355 2355 return phOffset
2356 2356
2357 2357
2358 2358 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
2359 2359
2360 2360 dataOut.flagNoData = True
2361 2361 self.__dataReady = False
2362 2362 dataOut.outputInterval = nHours*3600
2363 2363
2364 2364 if self.__isConfig == False:
2365 2365 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2366 2366 #Get Initial LTC time
2367 2367 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2368 2368 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2369 2369
2370 2370 self.__isConfig = True
2371 2371
2372 2372 if self.__buffer is None:
2373 2373 self.__buffer = dataOut.data_param.copy()
2374 2374
2375 2375 else:
2376 2376 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2377 2377
2378 2378 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2379 2379
2380 2380 if self.__dataReady:
2381 2381 dataOut.utctimeInit = self.__initime
2382 2382 self.__initime += dataOut.outputInterval #to erase time offset
2383 2383
2384 2384 freq = dataOut.frequency
2385 2385 c = dataOut.C #m/s
2386 2386 lamb = c/freq
2387 2387 k = 2*numpy.pi/lamb
2388 2388 azimuth = 0
2389 2389 h = (hmin, hmax)
2390 2390 pairs = ((0,1),(2,3))
2391 2391
2392 2392 if channelPositions is None:
2393 2393 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2394 2394 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2395 2395 meteorOps = SMOperations()
2396 2396 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2397 2397
2398 2398 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
2399 2399
2400 2400 meteorsArray = self.__buffer
2401 2401 error = meteorsArray[:,-1]
2402 2402 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
2403 2403 ind1 = numpy.where(boolError)[0]
2404 2404 meteorsArray = meteorsArray[ind1,:]
2405 2405 meteorsArray[:,-1] = 0
2406 2406 phases = meteorsArray[:,8:12]
2407 2407
2408 2408 #Calculate Gammas
2409 2409 gammas = self.__getGammas(pairs, distances, phases)
2410 2410 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
2411 2411 #Calculate Phases
2412 2412 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
2413 2413 phasesOff = phasesOff.reshape((1,phasesOff.size))
2414 2414 dataOut.data_output = -phasesOff
2415 2415 dataOut.flagNoData = False
2416 2416 dataOut.channelList = pairslist0
2417 2417 self.__buffer = None
2418 2418
2419 2419
2420 2420 return
2421 2421
2422 2422 class SMOperations():
2423 2423
2424 2424 def __init__(self):
2425 2425
2426 2426 return
2427 2427
2428 2428 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
2429 2429
2430 2430 arrayParameters = arrayParameters0.copy()
2431 2431 hmin = h[0]
2432 2432 hmax = h[1]
2433 2433
2434 2434 #Calculate AOA (Error N 3, 4)
2435 2435 #JONES ET AL. 1998
2436 2436 AOAthresh = numpy.pi/8
2437 2437 error = arrayParameters[:,-1]
2438 2438 phases = -arrayParameters[:,8:12] + jph
2439 2439 # phases = numpy.unwrap(phases)
2440 2440 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
2441 2441
2442 2442 #Calculate Heights (Error N 13 and 14)
2443 2443 error = arrayParameters[:,-1]
2444 2444 Ranges = arrayParameters[:,1]
2445 2445 zenith = arrayParameters[:,4]
2446 2446 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
2447 2447
2448 2448 #----------------------- Get Final data ------------------------------------
2449 2449 # error = arrayParameters[:,-1]
2450 2450 # ind1 = numpy.where(error==0)[0]
2451 2451 # arrayParameters = arrayParameters[ind1,:]
2452 2452
2453 2453 return arrayParameters
2454 2454
2455 2455 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
2456 2456
2457 2457 arrayAOA = numpy.zeros((phases.shape[0],3))
2458 2458 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
2459 2459
2460 2460 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
2461 2461 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
2462 2462 arrayAOA[:,2] = cosDirError
2463 2463
2464 2464 azimuthAngle = arrayAOA[:,0]
2465 2465 zenithAngle = arrayAOA[:,1]
2466 2466
2467 2467 #Setting Error
2468 2468 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
2469 2469 error[indError] = 0
2470 2470 #Number 3: AOA not fesible
2471 2471 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
2472 2472 error[indInvalid] = 3
2473 2473 #Number 4: Large difference in AOAs obtained from different antenna baselines
2474 2474 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
2475 2475 error[indInvalid] = 4
2476 2476 return arrayAOA, error
2477 2477
2478 2478 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
2479 2479
2480 2480 #Initializing some variables
2481 2481 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
2482 2482 ang_aux = ang_aux.reshape(1,ang_aux.size)
2483 2483
2484 2484 cosdir = numpy.zeros((arrayPhase.shape[0],2))
2485 2485 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
2486 2486
2487 2487
2488 2488 for i in range(2):
2489 2489 ph0 = arrayPhase[:,pairsList[i][0]]
2490 2490 ph1 = arrayPhase[:,pairsList[i][1]]
2491 2491 d0 = distances[pairsList[i][0]]
2492 2492 d1 = distances[pairsList[i][1]]
2493 2493
2494 2494 ph0_aux = ph0 + ph1
2495 2495 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
2496 2496 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
2497 2497 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
2498 2498 #First Estimation
2499 2499 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
2500 2500
2501 2501 #Most-Accurate Second Estimation
2502 2502 phi1_aux = ph0 - ph1
2503 2503 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
2504 2504 #Direction Cosine 1
2505 2505 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
2506 2506
2507 2507 #Searching the correct Direction Cosine
2508 2508 cosdir0_aux = cosdir0[:,i]
2509 2509 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
2510 2510 #Minimum Distance
2511 2511 cosDiff = (cosdir1 - cosdir0_aux)**2
2512 2512 indcos = cosDiff.argmin(axis = 1)
2513 2513 #Saving Value obtained
2514 2514 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
2515 2515
2516 2516 return cosdir0, cosdir
2517 2517
2518 2518 def __calculateAOA(self, cosdir, azimuth):
2519 2519 cosdirX = cosdir[:,0]
2520 2520 cosdirY = cosdir[:,1]
2521 2521
2522 2522 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
2523 2523 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
2524 2524 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
2525 2525
2526 2526 return angles
2527 2527
2528 2528 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
2529 2529
2530 2530 Ramb = 375 #Ramb = c/(2*PRF)
2531 2531 Re = 6371 #Earth Radius
2532 2532 heights = numpy.zeros(Ranges.shape)
2533 2533
2534 2534 R_aux = numpy.array([0,1,2])*Ramb
2535 2535 R_aux = R_aux.reshape(1,R_aux.size)
2536 2536
2537 2537 Ranges = Ranges.reshape(Ranges.size,1)
2538 2538
2539 2539 Ri = Ranges + R_aux
2540 2540 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
2541 2541
2542 2542 #Check if there is a height between 70 and 110 km
2543 2543 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
2544 2544 ind_h = numpy.where(h_bool == 1)[0]
2545 2545
2546 2546 hCorr = hi[ind_h, :]
2547 2547 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
2548 2548
2549 2549 hCorr = hi[ind_hCorr]
2550 2550 heights[ind_h] = hCorr
2551 2551
2552 2552 #Setting Error
2553 2553 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
2554 2554 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
2555 2555 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
2556 2556 error[indError] = 0
2557 2557 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
2558 2558 error[indInvalid2] = 14
2559 2559 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
2560 2560 error[indInvalid1] = 13
2561 2561
2562 2562 return heights, error
2563 2563
2564 2564 def getPhasePairs(self, channelPositions):
2565 2565 chanPos = numpy.array(channelPositions)
2566 2566 listOper = list(itertools.combinations(range(5),2))
2567 2567
2568 2568 distances = numpy.zeros(4)
2569 2569 axisX = []
2570 2570 axisY = []
2571 2571 distX = numpy.zeros(3)
2572 2572 distY = numpy.zeros(3)
2573 2573 ix = 0
2574 2574 iy = 0
2575 2575
2576 2576 pairX = numpy.zeros((2,2))
2577 2577 pairY = numpy.zeros((2,2))
2578 2578
2579 2579 for i in range(len(listOper)):
2580 2580 pairi = listOper[i]
2581 2581
2582 2582 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
2583 2583
2584 2584 if posDif[0] == 0:
2585 2585 axisY.append(pairi)
2586 2586 distY[iy] = posDif[1]
2587 2587 iy += 1
2588 2588 elif posDif[1] == 0:
2589 2589 axisX.append(pairi)
2590 2590 distX[ix] = posDif[0]
2591 2591 ix += 1
2592 2592
2593 2593 for i in range(2):
2594 2594 if i==0:
2595 2595 dist0 = distX
2596 2596 axis0 = axisX
2597 2597 else:
2598 2598 dist0 = distY
2599 2599 axis0 = axisY
2600 2600
2601 2601 side = numpy.argsort(dist0)[:-1]
2602 2602 axis0 = numpy.array(axis0)[side,:]
2603 2603 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
2604 2604 axis1 = numpy.unique(numpy.reshape(axis0,4))
2605 2605 side = axis1[axis1 != chanC]
2606 2606 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
2607 2607 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
2608 2608 if diff1<0:
2609 2609 chan2 = side[0]
2610 2610 d2 = numpy.abs(diff1)
2611 2611 chan1 = side[1]
2612 2612 d1 = numpy.abs(diff2)
2613 2613 else:
2614 2614 chan2 = side[1]
2615 2615 d2 = numpy.abs(diff2)
2616 2616 chan1 = side[0]
2617 2617 d1 = numpy.abs(diff1)
2618 2618
2619 2619 if i==0:
2620 2620 chanCX = chanC
2621 2621 chan1X = chan1
2622 2622 chan2X = chan2
2623 2623 distances[0:2] = numpy.array([d1,d2])
2624 2624 else:
2625 2625 chanCY = chanC
2626 2626 chan1Y = chan1
2627 2627 chan2Y = chan2
2628 2628 distances[2:4] = numpy.array([d1,d2])
2629 2629 # axisXsides = numpy.reshape(axisX[ix,:],4)
2630 2630 #
2631 2631 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
2632 2632 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
2633 2633 #
2634 2634 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
2635 2635 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
2636 2636 # channel25X = int(pairX[0,ind25X])
2637 2637 # channel20X = int(pairX[1,ind20X])
2638 2638 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
2639 2639 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
2640 2640 # channel25Y = int(pairY[0,ind25Y])
2641 2641 # channel20Y = int(pairY[1,ind20Y])
2642 2642
2643 2643 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
2644 2644 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
2645 2645
2646 2646 return pairslist, distances
2647 2647 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
2648 2648 #
2649 2649 # arrayAOA = numpy.zeros((phases.shape[0],3))
2650 2650 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
2651 2651 #
2652 2652 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
2653 2653 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
2654 2654 # arrayAOA[:,2] = cosDirError
2655 2655 #
2656 2656 # azimuthAngle = arrayAOA[:,0]
2657 2657 # zenithAngle = arrayAOA[:,1]
2658 2658 #
2659 2659 # #Setting Error
2660 2660 # #Number 3: AOA not fesible
2661 2661 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
2662 2662 # error[indInvalid] = 3
2663 2663 # #Number 4: Large difference in AOAs obtained from different antenna baselines
2664 2664 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
2665 2665 # error[indInvalid] = 4
2666 2666 # return arrayAOA, error
2667 2667 #
2668 2668 # def __getDirectionCosines(self, arrayPhase, pairsList):
2669 2669 #
2670 2670 # #Initializing some variables
2671 2671 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
2672 2672 # ang_aux = ang_aux.reshape(1,ang_aux.size)
2673 2673 #
2674 2674 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
2675 2675 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
2676 2676 #
2677 2677 #
2678 2678 # for i in range(2):
2679 2679 # #First Estimation
2680 2680 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
2681 2681 # #Dealias
2682 2682 # indcsi = numpy.where(phi0_aux > numpy.pi)
2683 2683 # phi0_aux[indcsi] -= 2*numpy.pi
2684 2684 # indcsi = numpy.where(phi0_aux < -numpy.pi)
2685 2685 # phi0_aux[indcsi] += 2*numpy.pi
2686 2686 # #Direction Cosine 0
2687 2687 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
2688 2688 #
2689 2689 # #Most-Accurate Second Estimation
2690 2690 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
2691 2691 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
2692 2692 # #Direction Cosine 1
2693 2693 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
2694 2694 #
2695 2695 # #Searching the correct Direction Cosine
2696 2696 # cosdir0_aux = cosdir0[:,i]
2697 2697 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
2698 2698 # #Minimum Distance
2699 2699 # cosDiff = (cosdir1 - cosdir0_aux)**2
2700 2700 # indcos = cosDiff.argmin(axis = 1)
2701 2701 # #Saving Value obtained
2702 2702 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
2703 2703 #
2704 2704 # return cosdir0, cosdir
2705 2705 #
2706 2706 # def __calculateAOA(self, cosdir, azimuth):
2707 2707 # cosdirX = cosdir[:,0]
2708 2708 # cosdirY = cosdir[:,1]
2709 2709 #
2710 2710 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
2711 2711 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
2712 2712 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
2713 2713 #
2714 2714 # return angles
2715 2715 #
2716 2716 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
2717 2717 #
2718 2718 # Ramb = 375 #Ramb = c/(2*PRF)
2719 2719 # Re = 6371 #Earth Radius
2720 2720 # heights = numpy.zeros(Ranges.shape)
2721 2721 #
2722 2722 # R_aux = numpy.array([0,1,2])*Ramb
2723 2723 # R_aux = R_aux.reshape(1,R_aux.size)
2724 2724 #
2725 2725 # Ranges = Ranges.reshape(Ranges.size,1)
2726 2726 #
2727 2727 # Ri = Ranges + R_aux
2728 2728 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
2729 2729 #
2730 2730 # #Check if there is a height between 70 and 110 km
2731 2731 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
2732 2732 # ind_h = numpy.where(h_bool == 1)[0]
2733 2733 #
2734 2734 # hCorr = hi[ind_h, :]
2735 2735 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
2736 2736 #
2737 2737 # hCorr = hi[ind_hCorr]
2738 2738 # heights[ind_h] = hCorr
2739 2739 #
2740 2740 # #Setting Error
2741 2741 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
2742 2742 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
2743 2743 #
2744 2744 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
2745 2745 # error[indInvalid2] = 14
2746 2746 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
2747 2747 # error[indInvalid1] = 13
2748 2748 #
2749 2749 # return heights, error
General Comments 0
You need to be logged in to leave comments. Login now