@@ -1,1809 +1,1809 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | from .figure import Figure, isRealtime, isTimeInHourRange |
|
11 | 11 | from .plotting_codes import * |
|
12 | 12 | from schainpy.model.proc.jroproc_base import MPDecorator |
|
13 | 13 | |
|
14 | 14 | from schainpy.utils import log |
|
15 | 15 | |
|
16 | 16 | @MPDecorator |
|
17 | 17 | class SpectraPlot_(Figure): |
|
18 | 18 | |
|
19 | 19 | isConfig = None |
|
20 | 20 | __nsubplots = None |
|
21 | 21 | |
|
22 | 22 | WIDTHPROF = None |
|
23 | 23 | HEIGHTPROF = None |
|
24 | 24 | PREFIX = 'spc' |
|
25 | 25 | |
|
26 | 26 | def __init__(self): |
|
27 | 27 | Figure.__init__(self) |
|
28 | 28 | self.isConfig = False |
|
29 | 29 | self.__nsubplots = 1 |
|
30 | 30 | self.WIDTH = 250 |
|
31 | 31 | self.HEIGHT = 250 |
|
32 | 32 | self.WIDTHPROF = 120 |
|
33 | 33 | self.HEIGHTPROF = 0 |
|
34 | 34 | self.counter_imagwr = 0 |
|
35 | 35 | |
|
36 | 36 | self.PLOT_CODE = SPEC_CODE |
|
37 | 37 | |
|
38 | 38 | self.FTP_WEI = None |
|
39 | 39 | self.EXP_CODE = None |
|
40 | 40 | self.SUB_EXP_CODE = None |
|
41 | 41 | self.PLOT_POS = None |
|
42 | 42 | |
|
43 | 43 | self.__xfilter_ena = False |
|
44 | 44 | self.__yfilter_ena = False |
|
45 | 45 | |
|
46 | 46 | self.indice=1 |
|
47 | 47 | |
|
48 | 48 | def getSubplots(self): |
|
49 | 49 | |
|
50 | 50 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
51 | 51 | nrow = int(self.nplots*1./ncol + 0.9) |
|
52 | 52 | |
|
53 | 53 | return nrow, ncol |
|
54 | 54 | |
|
55 | 55 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
56 | 56 | |
|
57 | 57 | self.__showprofile = showprofile |
|
58 | 58 | self.nplots = nplots |
|
59 | 59 | |
|
60 | 60 | ncolspan = 1 |
|
61 | 61 | colspan = 1 |
|
62 | 62 | if showprofile: |
|
63 | 63 | ncolspan = 3 |
|
64 | 64 | colspan = 2 |
|
65 | 65 | self.__nsubplots = 2 |
|
66 | 66 | |
|
67 | 67 | self.createFigure(id = id, |
|
68 | 68 | wintitle = wintitle, |
|
69 | 69 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
70 | 70 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
71 | 71 | show=show) |
|
72 | 72 | |
|
73 | 73 | nrow, ncol = self.getSubplots() |
|
74 | 74 | |
|
75 | 75 | counter = 0 |
|
76 | 76 | for y in range(nrow): |
|
77 | 77 | for x in range(ncol): |
|
78 | 78 | |
|
79 | 79 | if counter >= self.nplots: |
|
80 | 80 | break |
|
81 | 81 | |
|
82 | 82 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
83 | 83 | |
|
84 | 84 | if showprofile: |
|
85 | 85 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
86 | 86 | |
|
87 | 87 | counter += 1 |
|
88 | 88 | |
|
89 | 89 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
90 | 90 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
91 | 91 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
92 | 92 | server=None, folder=None, username=None, password=None, |
|
93 | 93 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
94 | 94 | xaxis="frequency", colormap='jet', normFactor=None): |
|
95 | 95 | |
|
96 | 96 | """ |
|
97 | 97 | |
|
98 | 98 | Input: |
|
99 | 99 | dataOut : |
|
100 | 100 | id : |
|
101 | 101 | wintitle : |
|
102 | 102 | channelList : |
|
103 | 103 | showProfile : |
|
104 | 104 | xmin : None, |
|
105 | 105 | xmax : None, |
|
106 | 106 | ymin : None, |
|
107 | 107 | ymax : None, |
|
108 | 108 | zmin : None, |
|
109 | 109 | zmax : None |
|
110 | 110 | """ |
|
111 | 111 | if dataOut.flagNoData: |
|
112 | 112 | return dataOut |
|
113 | 113 | |
|
114 | 114 | if realtime: |
|
115 | 115 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
116 | 116 | print('Skipping this plot function') |
|
117 | 117 | return |
|
118 | 118 | |
|
119 | 119 | if channelList == None: |
|
120 | 120 | channelIndexList = dataOut.channelIndexList |
|
121 | 121 | else: |
|
122 | 122 | channelIndexList = [] |
|
123 | 123 | for channel in channelList: |
|
124 | 124 | if channel not in dataOut.channelList: |
|
125 | 125 | raise ValueError("Channel %d is not in dataOut.channelList" %channel) |
|
126 | 126 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
127 | 127 | |
|
128 | 128 | if normFactor is None: |
|
129 | 129 | factor = dataOut.normFactor |
|
130 | 130 | else: |
|
131 | 131 | factor = normFactor |
|
132 | 132 | if xaxis == "frequency": |
|
133 | 133 | x = dataOut.getFreqRange(1)/1000. |
|
134 | 134 | xlabel = "Frequency (kHz)" |
|
135 | 135 | |
|
136 | 136 | elif xaxis == "time": |
|
137 | 137 | x = dataOut.getAcfRange(1) |
|
138 | 138 | xlabel = "Time (ms)" |
|
139 | 139 | |
|
140 | 140 | else: |
|
141 | 141 | x = dataOut.getVelRange(1) |
|
142 | 142 | xlabel = "Velocity (m/s)" |
|
143 | 143 | |
|
144 | 144 | ylabel = "Range (km)" |
|
145 | 145 | |
|
146 | 146 | y = dataOut.getHeiRange() |
|
147 | 147 | z = dataOut.data_spc/factor |
|
148 | 148 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
149 | 149 | zdB = 10*numpy.log10(z) |
|
150 | 150 | |
|
151 | 151 | avg = numpy.average(z, axis=1) |
|
152 | 152 | avgdB = 10*numpy.log10(avg) |
|
153 | 153 | |
|
154 | 154 | noise = dataOut.getNoise()/factor |
|
155 | 155 | noisedB = 10*numpy.log10(noise) |
|
156 | 156 | |
|
157 | 157 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
158 | 158 | title = wintitle + " Spectra" |
|
159 | 159 | |
|
160 | 160 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
161 | 161 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
162 | 162 | |
|
163 | 163 | if not self.isConfig: |
|
164 | 164 | |
|
165 | 165 | nplots = len(channelIndexList) |
|
166 | 166 | |
|
167 | 167 | self.setup(id=id, |
|
168 | 168 | nplots=nplots, |
|
169 | 169 | wintitle=wintitle, |
|
170 | 170 | showprofile=showprofile, |
|
171 | 171 | show=show) |
|
172 | 172 | |
|
173 | 173 | if xmin == None: xmin = numpy.nanmin(x) |
|
174 | 174 | if xmax == None: xmax = numpy.nanmax(x) |
|
175 | 175 | if ymin == None: ymin = numpy.nanmin(y) |
|
176 | 176 | if ymax == None: ymax = numpy.nanmax(y) |
|
177 | 177 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
178 | 178 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
179 | 179 | |
|
180 | 180 | self.FTP_WEI = ftp_wei |
|
181 | 181 | self.EXP_CODE = exp_code |
|
182 | 182 | self.SUB_EXP_CODE = sub_exp_code |
|
183 | 183 | self.PLOT_POS = plot_pos |
|
184 | 184 | |
|
185 | 185 | self.isConfig = True |
|
186 | 186 | |
|
187 | 187 | self.setWinTitle(title) |
|
188 | 188 | |
|
189 | 189 | for i in range(self.nplots): |
|
190 | 190 | index = channelIndexList[i] |
|
191 | 191 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
192 | 192 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
193 | 193 | if len(dataOut.beam.codeList) != 0: |
|
194 | 194 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
195 | 195 | |
|
196 | 196 | axes = self.axesList[i*self.__nsubplots] |
|
197 | 197 | axes.pcolor(x, y, zdB[index,:,:], |
|
198 | 198 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
199 | 199 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
200 | 200 | ticksize=9, cblabel='') |
|
201 | 201 | |
|
202 | 202 | if self.__showprofile: |
|
203 | 203 | axes = self.axesList[i*self.__nsubplots +1] |
|
204 | 204 | axes.pline(avgdB[index,:], y, |
|
205 | 205 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
206 | 206 | xlabel='dB', ylabel='', title='', |
|
207 | 207 | ytick_visible=False, |
|
208 | 208 | grid='x') |
|
209 | 209 | |
|
210 | 210 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
211 | 211 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
212 | 212 | |
|
213 | 213 | self.draw() |
|
214 | 214 | |
|
215 | 215 | if figfile == None: |
|
216 | 216 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
217 | 217 | name = str_datetime |
|
218 | 218 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
219 | 219 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
220 | 220 | figfile = self.getFilename(name) |
|
221 | 221 | |
|
222 | 222 | self.save(figpath=figpath, |
|
223 | 223 | figfile=figfile, |
|
224 | 224 | save=save, |
|
225 | 225 | ftp=ftp, |
|
226 | 226 | wr_period=wr_period, |
|
227 | 227 | thisDatetime=thisDatetime) |
|
228 | 228 | |
|
229 | 229 | |
|
230 | 230 | return dataOut |
|
231 | 231 | |
|
232 | 232 | @MPDecorator |
|
233 | 233 | class WpowerPlot_(Figure): |
|
234 | 234 | |
|
235 | 235 | isConfig = None |
|
236 | 236 | __nsubplots = None |
|
237 | 237 | |
|
238 | 238 | WIDTHPROF = None |
|
239 | 239 | HEIGHTPROF = None |
|
240 | 240 | PREFIX = 'wpo' |
|
241 | 241 | |
|
242 | 242 | def __init__(self): |
|
243 | 243 | Figure.__init__(self) |
|
244 | 244 | self.isConfig = False |
|
245 | 245 | self.__nsubplots = 1 |
|
246 | 246 | self.WIDTH = 250 |
|
247 | 247 | self.HEIGHT = 250 |
|
248 | 248 | self.WIDTHPROF = 120 |
|
249 | 249 | self.HEIGHTPROF = 0 |
|
250 | 250 | self.counter_imagwr = 0 |
|
251 | 251 | |
|
252 | 252 | self.PLOT_CODE = WPO_CODE |
|
253 | 253 | |
|
254 | 254 | self.FTP_WEI = None |
|
255 | 255 | self.EXP_CODE = None |
|
256 | 256 | self.SUB_EXP_CODE = None |
|
257 | 257 | self.PLOT_POS = None |
|
258 | 258 | |
|
259 | 259 | self.__xfilter_ena = False |
|
260 | 260 | self.__yfilter_ena = False |
|
261 | 261 | |
|
262 | 262 | self.indice=1 |
|
263 | 263 | |
|
264 | 264 | def getSubplots(self): |
|
265 | 265 | |
|
266 | 266 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
267 | 267 | nrow = int(self.nplots*1./ncol + 0.9) |
|
268 | 268 | |
|
269 | 269 | return nrow, ncol |
|
270 | 270 | |
|
271 | 271 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
272 | 272 | |
|
273 | 273 | self.__showprofile = showprofile |
|
274 | 274 | self.nplots = nplots |
|
275 | 275 | |
|
276 | 276 | ncolspan = 1 |
|
277 | 277 | colspan = 1 |
|
278 | 278 | if showprofile: |
|
279 | 279 | ncolspan = 3 |
|
280 | 280 | colspan = 2 |
|
281 | 281 | self.__nsubplots = 2 |
|
282 | 282 | |
|
283 | 283 | self.createFigure(id = id, |
|
284 | 284 | wintitle = wintitle, |
|
285 | 285 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
286 | 286 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
287 | 287 | show=show) |
|
288 | 288 | |
|
289 | 289 | nrow, ncol = self.getSubplots() |
|
290 | 290 | |
|
291 | 291 | counter = 0 |
|
292 | 292 | for y in range(nrow): |
|
293 | 293 | for x in range(ncol): |
|
294 | 294 | |
|
295 | 295 | if counter >= self.nplots: |
|
296 | 296 | break |
|
297 | 297 | |
|
298 | 298 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
299 | 299 | |
|
300 | 300 | if showprofile: |
|
301 | 301 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
302 | 302 | |
|
303 | 303 | counter += 1 |
|
304 | 304 | |
|
305 | 305 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
306 | 306 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
307 | 307 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
308 | 308 | server=None, folder=None, username=None, password=None, |
|
309 | 309 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
310 | 310 | xaxis="frequency", colormap='jet', normFactor=None): |
|
311 | 311 | |
|
312 | 312 | """ |
|
313 | 313 | |
|
314 | 314 | Input: |
|
315 | 315 | dataOut : |
|
316 | 316 | id : |
|
317 | 317 | wintitle : |
|
318 | 318 | channelList : |
|
319 | 319 | showProfile : |
|
320 | 320 | xmin : None, |
|
321 | 321 | xmax : None, |
|
322 | 322 | ymin : None, |
|
323 | 323 | ymax : None, |
|
324 | 324 | zmin : None, |
|
325 | 325 | zmax : None |
|
326 | 326 | """ |
|
327 | print("***************PLOTEO******************") | |
|
328 | print("DATAOUT SHAPE : ",dataOut.data.shape) | |
|
327 | #print("***************PLOTEO******************") | |
|
328 | #print("DATAOUT SHAPE : ",dataOut.data.shape) | |
|
329 | 329 | if dataOut.flagNoData: |
|
330 | 330 | return dataOut |
|
331 | 331 | |
|
332 | 332 | if realtime: |
|
333 | 333 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
334 | 334 | print('Skipping this plot function') |
|
335 | 335 | return |
|
336 | 336 | |
|
337 | 337 | if channelList == None: |
|
338 | 338 | channelIndexList = dataOut.channelIndexList |
|
339 | 339 | else: |
|
340 | 340 | channelIndexList = [] |
|
341 | 341 | for channel in channelList: |
|
342 | 342 | if channel not in dataOut.channelList: |
|
343 | 343 | raise ValueError("Channel %d is not in dataOut.channelList" %channel) |
|
344 | 344 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
345 | 345 | |
|
346 | 346 | |
|
347 | print("channelIndexList",channelIndexList) | |
|
347 | #print("channelIndexList",channelIndexList) | |
|
348 | 348 | if normFactor is None: |
|
349 | 349 | factor = dataOut.normFactor |
|
350 | 350 | else: |
|
351 | 351 | factor = normFactor |
|
352 | 352 | if xaxis == "frequency": |
|
353 | 353 | x = dataOut.getFreqRange(1)/1000. |
|
354 | 354 | xlabel = "Frequency (kHz)" |
|
355 | 355 | |
|
356 | 356 | elif xaxis == "time": |
|
357 | 357 | x = dataOut.getAcfRange(1) |
|
358 | 358 | xlabel = "Time (ms)" |
|
359 | 359 | |
|
360 | 360 | else: |
|
361 | 361 | x = dataOut.getVelRange(1) |
|
362 | 362 | xlabel = "Velocity (m/s)" |
|
363 | 363 | |
|
364 | 364 | ylabel = "Range (km)" |
|
365 | 365 | |
|
366 | 366 | y = dataOut.getHeiRange() |
|
367 | print("factor",factor) | |
|
367 | #print("factor",factor) | |
|
368 | 368 | |
|
369 | 369 | z = dataOut.data/factor # dividido /factor |
|
370 | 370 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
371 | 371 | zdB = 10*numpy.log10(z) |
|
372 | 372 | |
|
373 | 373 | avg = numpy.average(z, axis=1) |
|
374 | 374 | avgdB = 10*numpy.log10(avg) |
|
375 | 375 | |
|
376 | 376 | noise = dataOut.getNoise()/factor |
|
377 | 377 | noisedB = 10*numpy.log10(noise) |
|
378 | 378 | |
|
379 | 379 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
380 | 380 | title = wintitle + "Weather Power" |
|
381 | 381 | |
|
382 | 382 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
383 | 383 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
384 | 384 | |
|
385 | 385 | if not self.isConfig: |
|
386 | 386 | |
|
387 | 387 | nplots = len(channelIndexList) |
|
388 | 388 | |
|
389 | 389 | self.setup(id=id, |
|
390 | 390 | nplots=nplots, |
|
391 | 391 | wintitle=wintitle, |
|
392 | 392 | showprofile=showprofile, |
|
393 | 393 | show=show) |
|
394 | 394 | |
|
395 | 395 | if xmin == None: xmin = numpy.nanmin(x) |
|
396 | 396 | if xmax == None: xmax = numpy.nanmax(x) |
|
397 | 397 | if ymin == None: ymin = numpy.nanmin(y) |
|
398 | 398 | if ymax == None: ymax = numpy.nanmax(y) |
|
399 | 399 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
400 | 400 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
401 | 401 | |
|
402 | 402 | self.FTP_WEI = ftp_wei |
|
403 | 403 | self.EXP_CODE = exp_code |
|
404 | 404 | self.SUB_EXP_CODE = sub_exp_code |
|
405 | 405 | self.PLOT_POS = plot_pos |
|
406 | 406 | |
|
407 | 407 | self.isConfig = True |
|
408 | 408 | |
|
409 | 409 | self.setWinTitle(title) |
|
410 | 410 | |
|
411 | 411 | for i in range(self.nplots): |
|
412 | 412 | index = channelIndexList[i] |
|
413 | 413 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
414 | 414 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
415 | 415 | if len(dataOut.beam.codeList) != 0: |
|
416 | 416 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
417 | 417 | |
|
418 | 418 | axes = self.axesList[i*self.__nsubplots] |
|
419 | 419 | axes.pcolor(x, y, zdB[index,:,:], |
|
420 | 420 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
421 | 421 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
422 | 422 | ticksize=9, cblabel='') |
|
423 | 423 | |
|
424 | 424 | if self.__showprofile: |
|
425 | 425 | axes = self.axesList[i*self.__nsubplots +1] |
|
426 | 426 | axes.pline(avgdB[index,:], y, |
|
427 | 427 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
428 | 428 | xlabel='dB', ylabel='', title='', |
|
429 | 429 | ytick_visible=False, |
|
430 | 430 | grid='x') |
|
431 | 431 | |
|
432 | 432 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
433 | 433 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
434 | 434 | |
|
435 | 435 | self.draw() |
|
436 | 436 | |
|
437 | 437 | if figfile == None: |
|
438 | 438 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
439 | 439 | name = str_datetime |
|
440 | 440 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
441 | 441 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
442 | 442 | figfile = self.getFilename(name) |
|
443 | 443 | |
|
444 | 444 | self.save(figpath=figpath, |
|
445 | 445 | figfile=figfile, |
|
446 | 446 | save=save, |
|
447 | 447 | ftp=ftp, |
|
448 | 448 | wr_period=wr_period, |
|
449 | 449 | thisDatetime=thisDatetime) |
|
450 | 450 | return dataOut |
|
451 | 451 | |
|
452 | 452 | @MPDecorator |
|
453 | 453 | class CrossSpectraPlot_(Figure): |
|
454 | 454 | |
|
455 | 455 | isConfig = None |
|
456 | 456 | __nsubplots = None |
|
457 | 457 | |
|
458 | 458 | WIDTH = None |
|
459 | 459 | HEIGHT = None |
|
460 | 460 | WIDTHPROF = None |
|
461 | 461 | HEIGHTPROF = None |
|
462 | 462 | PREFIX = 'cspc' |
|
463 | 463 | |
|
464 | 464 | def __init__(self): |
|
465 | 465 | Figure.__init__(self) |
|
466 | 466 | self.isConfig = False |
|
467 | 467 | self.__nsubplots = 4 |
|
468 | 468 | self.counter_imagwr = 0 |
|
469 | 469 | self.WIDTH = 250 |
|
470 | 470 | self.HEIGHT = 250 |
|
471 | 471 | self.WIDTHPROF = 0 |
|
472 | 472 | self.HEIGHTPROF = 0 |
|
473 | 473 | |
|
474 | 474 | self.PLOT_CODE = CROSS_CODE |
|
475 | 475 | self.FTP_WEI = None |
|
476 | 476 | self.EXP_CODE = None |
|
477 | 477 | self.SUB_EXP_CODE = None |
|
478 | 478 | self.PLOT_POS = None |
|
479 | 479 | |
|
480 | 480 | self.indice=0 |
|
481 | 481 | |
|
482 | 482 | def getSubplots(self): |
|
483 | 483 | |
|
484 | 484 | ncol = 4 |
|
485 | 485 | nrow = self.nplots |
|
486 | 486 | |
|
487 | 487 | return nrow, ncol |
|
488 | 488 | |
|
489 | 489 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
490 | 490 | |
|
491 | 491 | self.__showprofile = showprofile |
|
492 | 492 | self.nplots = nplots |
|
493 | 493 | |
|
494 | 494 | ncolspan = 1 |
|
495 | 495 | colspan = 1 |
|
496 | 496 | |
|
497 | 497 | self.createFigure(id = id, |
|
498 | 498 | wintitle = wintitle, |
|
499 | 499 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
500 | 500 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
501 | 501 | show=True) |
|
502 | 502 | |
|
503 | 503 | nrow, ncol = self.getSubplots() |
|
504 | 504 | |
|
505 | 505 | counter = 0 |
|
506 | 506 | for y in range(nrow): |
|
507 | 507 | for x in range(ncol): |
|
508 | 508 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
509 | 509 | |
|
510 | 510 | counter += 1 |
|
511 | 511 | |
|
512 | 512 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
513 | 513 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
514 | 514 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
515 | 515 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
516 | 516 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
517 | 517 | server=None, folder=None, username=None, password=None, |
|
518 | 518 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, |
|
519 | 519 | xaxis='frequency'): |
|
520 | 520 | |
|
521 | 521 | """ |
|
522 | 522 | |
|
523 | 523 | Input: |
|
524 | 524 | dataOut : |
|
525 | 525 | id : |
|
526 | 526 | wintitle : |
|
527 | 527 | channelList : |
|
528 | 528 | showProfile : |
|
529 | 529 | xmin : None, |
|
530 | 530 | xmax : None, |
|
531 | 531 | ymin : None, |
|
532 | 532 | ymax : None, |
|
533 | 533 | zmin : None, |
|
534 | 534 | zmax : None |
|
535 | 535 | """ |
|
536 | 536 | |
|
537 | 537 | if dataOut.flagNoData: |
|
538 | 538 | return dataOut |
|
539 | 539 | |
|
540 | 540 | if pairsList == None: |
|
541 | 541 | pairsIndexList = dataOut.pairsIndexList |
|
542 | 542 | else: |
|
543 | 543 | pairsIndexList = [] |
|
544 | 544 | for pair in pairsList: |
|
545 | 545 | if pair not in dataOut.pairsList: |
|
546 | 546 | raise ValueError("Pair %s is not in dataOut.pairsList" %str(pair)) |
|
547 | 547 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
548 | 548 | |
|
549 | 549 | if not pairsIndexList: |
|
550 | 550 | return |
|
551 | 551 | |
|
552 | 552 | if len(pairsIndexList) > 4: |
|
553 | 553 | pairsIndexList = pairsIndexList[0:4] |
|
554 | 554 | |
|
555 | 555 | if normFactor is None: |
|
556 | 556 | factor = dataOut.normFactor |
|
557 | 557 | else: |
|
558 | 558 | factor = normFactor |
|
559 | 559 | x = dataOut.getVelRange(1) |
|
560 | 560 | y = dataOut.getHeiRange() |
|
561 | 561 | z = dataOut.data_spc[:,:,:]/factor |
|
562 | 562 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
563 | 563 | |
|
564 | 564 | noise = dataOut.noise/factor |
|
565 | 565 | |
|
566 | 566 | zdB = 10*numpy.log10(z) |
|
567 | 567 | noisedB = 10*numpy.log10(noise) |
|
568 | 568 | |
|
569 | 569 | if coh_min == None: |
|
570 | 570 | coh_min = 0.0 |
|
571 | 571 | if coh_max == None: |
|
572 | 572 | coh_max = 1.0 |
|
573 | 573 | |
|
574 | 574 | if phase_min == None: |
|
575 | 575 | phase_min = -180 |
|
576 | 576 | if phase_max == None: |
|
577 | 577 | phase_max = 180 |
|
578 | 578 | |
|
579 | 579 | #thisDatetime = dataOut.datatime |
|
580 | 580 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
581 | 581 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
582 | 582 | # xlabel = "Velocity (m/s)" |
|
583 | 583 | ylabel = "Range (Km)" |
|
584 | 584 | |
|
585 | 585 | if xaxis == "frequency": |
|
586 | 586 | x = dataOut.getFreqRange(1)/1000. |
|
587 | 587 | xlabel = "Frequency (kHz)" |
|
588 | 588 | |
|
589 | 589 | elif xaxis == "time": |
|
590 | 590 | x = dataOut.getAcfRange(1) |
|
591 | 591 | xlabel = "Time (ms)" |
|
592 | 592 | |
|
593 | 593 | else: |
|
594 | 594 | x = dataOut.getVelRange(1) |
|
595 | 595 | xlabel = "Velocity (m/s)" |
|
596 | 596 | |
|
597 | 597 | if not self.isConfig: |
|
598 | 598 | |
|
599 | 599 | nplots = len(pairsIndexList) |
|
600 | 600 | |
|
601 | 601 | self.setup(id=id, |
|
602 | 602 | nplots=nplots, |
|
603 | 603 | wintitle=wintitle, |
|
604 | 604 | showprofile=False, |
|
605 | 605 | show=show) |
|
606 | 606 | |
|
607 | 607 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
608 | 608 | avgdB = 10*numpy.log10(avg) |
|
609 | 609 | |
|
610 | 610 | if xmin == None: xmin = numpy.nanmin(x) |
|
611 | 611 | if xmax == None: xmax = numpy.nanmax(x) |
|
612 | 612 | if ymin == None: ymin = numpy.nanmin(y) |
|
613 | 613 | if ymax == None: ymax = numpy.nanmax(y) |
|
614 | 614 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
615 | 615 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
616 | 616 | |
|
617 | 617 | self.FTP_WEI = ftp_wei |
|
618 | 618 | self.EXP_CODE = exp_code |
|
619 | 619 | self.SUB_EXP_CODE = sub_exp_code |
|
620 | 620 | self.PLOT_POS = plot_pos |
|
621 | 621 | |
|
622 | 622 | self.isConfig = True |
|
623 | 623 | |
|
624 | 624 | self.setWinTitle(title) |
|
625 | 625 | |
|
626 | 626 | |
|
627 | 627 | for i in range(self.nplots): |
|
628 | 628 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
629 | 629 | |
|
630 | 630 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
631 | 631 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
632 | 632 | |
|
633 | 633 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
634 | 634 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
635 | 635 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
636 | 636 | axes0 = self.axesList[i*self.__nsubplots] |
|
637 | 637 | axes0.pcolor(x, y, zdB, |
|
638 | 638 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
639 | 639 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
640 | 640 | ticksize=9, colormap=power_cmap, cblabel='') |
|
641 | 641 | |
|
642 | 642 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
643 | 643 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
644 | 644 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
645 | 645 | axes0.pcolor(x, y, zdB, |
|
646 | 646 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
647 | 647 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
648 | 648 | ticksize=9, colormap=power_cmap, cblabel='') |
|
649 | 649 | |
|
650 | 650 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) |
|
651 | 651 | coherence = numpy.abs(coherenceComplex) |
|
652 | 652 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
653 | 653 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
654 | 654 | |
|
655 | 655 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
656 | 656 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
657 | 657 | axes0.pcolor(x, y, coherence, |
|
658 | 658 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
659 | 659 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
660 | 660 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
661 | 661 | |
|
662 | 662 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
663 | 663 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
664 | 664 | axes0.pcolor(x, y, phase, |
|
665 | 665 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
666 | 666 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
667 | 667 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
668 | 668 | |
|
669 | 669 | self.draw() |
|
670 | 670 | |
|
671 | 671 | self.save(figpath=figpath, |
|
672 | 672 | figfile=figfile, |
|
673 | 673 | save=save, |
|
674 | 674 | ftp=ftp, |
|
675 | 675 | wr_period=wr_period, |
|
676 | 676 | thisDatetime=thisDatetime) |
|
677 | 677 | |
|
678 | 678 | return dataOut |
|
679 | 679 | |
|
680 | 680 | @MPDecorator |
|
681 | 681 | class RTIPlot_(Figure): |
|
682 | 682 | |
|
683 | 683 | __isConfig = None |
|
684 | 684 | __nsubplots = None |
|
685 | 685 | |
|
686 | 686 | WIDTHPROF = None |
|
687 | 687 | HEIGHTPROF = None |
|
688 | 688 | PREFIX = 'rti' |
|
689 | 689 | |
|
690 | 690 | def __init__(self): |
|
691 | 691 | |
|
692 | 692 | Figure.__init__(self) |
|
693 | 693 | self.timerange = None |
|
694 | 694 | self.isConfig = False |
|
695 | 695 | self.__nsubplots = 1 |
|
696 | 696 | |
|
697 | 697 | self.WIDTH = 800 |
|
698 | 698 | self.HEIGHT = 250 |
|
699 | 699 | self.WIDTHPROF = 120 |
|
700 | 700 | self.HEIGHTPROF = 0 |
|
701 | 701 | self.counter_imagwr = 0 |
|
702 | 702 | |
|
703 | 703 | self.PLOT_CODE = RTI_CODE |
|
704 | 704 | |
|
705 | 705 | self.FTP_WEI = None |
|
706 | 706 | self.EXP_CODE = None |
|
707 | 707 | self.SUB_EXP_CODE = None |
|
708 | 708 | self.PLOT_POS = None |
|
709 | 709 | self.tmin = None |
|
710 | 710 | self.tmax = None |
|
711 | 711 | |
|
712 | 712 | self.xmin = None |
|
713 | 713 | self.xmax = None |
|
714 | 714 | |
|
715 | 715 | self.figfile = None |
|
716 | 716 | |
|
717 | 717 | def getSubplots(self): |
|
718 | 718 | |
|
719 | 719 | ncol = 1 |
|
720 | 720 | nrow = self.nplots |
|
721 | 721 | |
|
722 | 722 | return nrow, ncol |
|
723 | 723 | |
|
724 | 724 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
725 | 725 | |
|
726 | 726 | self.__showprofile = showprofile |
|
727 | 727 | self.nplots = nplots |
|
728 | 728 | |
|
729 | 729 | ncolspan = 1 |
|
730 | 730 | colspan = 1 |
|
731 | 731 | if showprofile: |
|
732 | 732 | ncolspan = 7 |
|
733 | 733 | colspan = 6 |
|
734 | 734 | self.__nsubplots = 2 |
|
735 | 735 | |
|
736 | 736 | self.createFigure(id = id, |
|
737 | 737 | wintitle = wintitle, |
|
738 | 738 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
739 | 739 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
740 | 740 | show=show) |
|
741 | 741 | |
|
742 | 742 | nrow, ncol = self.getSubplots() |
|
743 | 743 | |
|
744 | 744 | counter = 0 |
|
745 | 745 | for y in range(nrow): |
|
746 | 746 | for x in range(ncol): |
|
747 | 747 | |
|
748 | 748 | if counter >= self.nplots: |
|
749 | 749 | break |
|
750 | 750 | |
|
751 | 751 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
752 | 752 | |
|
753 | 753 | if showprofile: |
|
754 | 754 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
755 | 755 | |
|
756 | 756 | counter += 1 |
|
757 | 757 | |
|
758 | 758 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
759 | 759 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
760 | 760 | timerange=None, colormap='jet', |
|
761 | 761 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
762 | 762 | server=None, folder=None, username=None, password=None, |
|
763 | 763 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): |
|
764 | 764 | |
|
765 | 765 | """ |
|
766 | 766 | |
|
767 | 767 | Input: |
|
768 | 768 | dataOut : |
|
769 | 769 | id : |
|
770 | 770 | wintitle : |
|
771 | 771 | channelList : |
|
772 | 772 | showProfile : |
|
773 | 773 | xmin : None, |
|
774 | 774 | xmax : None, |
|
775 | 775 | ymin : None, |
|
776 | 776 | ymax : None, |
|
777 | 777 | zmin : None, |
|
778 | 778 | zmax : None |
|
779 | 779 | """ |
|
780 | 780 | if dataOut.flagNoData: |
|
781 | 781 | return dataOut |
|
782 | 782 | |
|
783 | 783 | #colormap = kwargs.get('colormap', 'jet') |
|
784 | 784 | if HEIGHT is not None: |
|
785 | 785 | self.HEIGHT = HEIGHT |
|
786 | 786 | |
|
787 | 787 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
788 | 788 | return |
|
789 | 789 | |
|
790 | 790 | if channelList == None: |
|
791 | 791 | channelIndexList = dataOut.channelIndexList |
|
792 | 792 | else: |
|
793 | 793 | channelIndexList = [] |
|
794 | 794 | for channel in channelList: |
|
795 | 795 | if channel not in dataOut.channelList: |
|
796 | 796 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
797 | 797 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
798 | 798 | |
|
799 | 799 | if normFactor is None: |
|
800 | 800 | factor = dataOut.normFactor |
|
801 | 801 | else: |
|
802 | 802 | factor = normFactor |
|
803 | 803 | |
|
804 | 804 | #factor = dataOut.normFactor |
|
805 | 805 | x = dataOut.getTimeRange() |
|
806 | 806 | y = dataOut.getHeiRange() |
|
807 | 807 | |
|
808 | 808 | z = dataOut.data_spc/factor |
|
809 | 809 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
810 | 810 | avg = numpy.average(z, axis=1) |
|
811 | 811 | avgdB = 10.*numpy.log10(avg) |
|
812 | 812 | # avgdB = dataOut.getPower() |
|
813 | 813 | |
|
814 | 814 | |
|
815 | 815 | thisDatetime = dataOut.datatime |
|
816 | 816 | #thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
817 | 817 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
818 | 818 | xlabel = "" |
|
819 | 819 | ylabel = "Range (Km)" |
|
820 | 820 | |
|
821 | 821 | update_figfile = False |
|
822 | 822 | |
|
823 | 823 | if self.xmax is not None and dataOut.ltctime >= self.xmax: #yong |
|
824 | 824 | self.counter_imagwr = wr_period |
|
825 | 825 | self.isConfig = False |
|
826 | 826 | update_figfile = True |
|
827 | 827 | |
|
828 | 828 | if not self.isConfig: |
|
829 | 829 | |
|
830 | 830 | nplots = len(channelIndexList) |
|
831 | 831 | |
|
832 | 832 | self.setup(id=id, |
|
833 | 833 | nplots=nplots, |
|
834 | 834 | wintitle=wintitle, |
|
835 | 835 | showprofile=showprofile, |
|
836 | 836 | show=show) |
|
837 | 837 | |
|
838 | 838 | if timerange != None: |
|
839 | 839 | self.timerange = timerange |
|
840 | 840 | |
|
841 | 841 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
842 | 842 | |
|
843 | 843 | noise = dataOut.noise/factor |
|
844 | 844 | noisedB = 10*numpy.log10(noise) |
|
845 | 845 | |
|
846 | 846 | if ymin == None: ymin = numpy.nanmin(y) |
|
847 | 847 | if ymax == None: ymax = numpy.nanmax(y) |
|
848 | 848 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
849 | 849 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
850 | 850 | |
|
851 | 851 | self.FTP_WEI = ftp_wei |
|
852 | 852 | self.EXP_CODE = exp_code |
|
853 | 853 | self.SUB_EXP_CODE = sub_exp_code |
|
854 | 854 | self.PLOT_POS = plot_pos |
|
855 | 855 | |
|
856 | 856 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
857 | 857 | self.isConfig = True |
|
858 | 858 | self.figfile = figfile |
|
859 | 859 | update_figfile = True |
|
860 | 860 | |
|
861 | 861 | self.setWinTitle(title) |
|
862 | 862 | |
|
863 | 863 | for i in range(self.nplots): |
|
864 | 864 | index = channelIndexList[i] |
|
865 | 865 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
866 | 866 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
867 | 867 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
868 | 868 | axes = self.axesList[i*self.__nsubplots] |
|
869 | 869 | zdB = avgdB[index].reshape((1,-1)) |
|
870 | 870 | axes.pcolorbuffer(x, y, zdB, |
|
871 | 871 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
872 | 872 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
873 | 873 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
874 | 874 | |
|
875 | 875 | if self.__showprofile: |
|
876 | 876 | axes = self.axesList[i*self.__nsubplots +1] |
|
877 | 877 | axes.pline(avgdB[index], y, |
|
878 | 878 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
879 | 879 | xlabel='dB', ylabel='', title='', |
|
880 | 880 | ytick_visible=False, |
|
881 | 881 | grid='x') |
|
882 | 882 | |
|
883 | 883 | self.draw() |
|
884 | 884 | |
|
885 | 885 | self.save(figpath=figpath, |
|
886 | 886 | figfile=figfile, |
|
887 | 887 | save=save, |
|
888 | 888 | ftp=ftp, |
|
889 | 889 | wr_period=wr_period, |
|
890 | 890 | thisDatetime=thisDatetime, |
|
891 | 891 | update_figfile=update_figfile) |
|
892 | 892 | return dataOut |
|
893 | 893 | |
|
894 | 894 | @MPDecorator |
|
895 | 895 | class CoherenceMap_(Figure): |
|
896 | 896 | isConfig = None |
|
897 | 897 | __nsubplots = None |
|
898 | 898 | |
|
899 | 899 | WIDTHPROF = None |
|
900 | 900 | HEIGHTPROF = None |
|
901 | 901 | PREFIX = 'cmap' |
|
902 | 902 | |
|
903 | 903 | def __init__(self): |
|
904 | 904 | Figure.__init__(self) |
|
905 | 905 | self.timerange = 2*60*60 |
|
906 | 906 | self.isConfig = False |
|
907 | 907 | self.__nsubplots = 1 |
|
908 | 908 | |
|
909 | 909 | self.WIDTH = 800 |
|
910 | 910 | self.HEIGHT = 180 |
|
911 | 911 | self.WIDTHPROF = 120 |
|
912 | 912 | self.HEIGHTPROF = 0 |
|
913 | 913 | self.counter_imagwr = 0 |
|
914 | 914 | |
|
915 | 915 | self.PLOT_CODE = COH_CODE |
|
916 | 916 | |
|
917 | 917 | self.FTP_WEI = None |
|
918 | 918 | self.EXP_CODE = None |
|
919 | 919 | self.SUB_EXP_CODE = None |
|
920 | 920 | self.PLOT_POS = None |
|
921 | 921 | self.counter_imagwr = 0 |
|
922 | 922 | |
|
923 | 923 | self.xmin = None |
|
924 | 924 | self.xmax = None |
|
925 | 925 | |
|
926 | 926 | def getSubplots(self): |
|
927 | 927 | ncol = 1 |
|
928 | 928 | nrow = self.nplots*2 |
|
929 | 929 | |
|
930 | 930 | return nrow, ncol |
|
931 | 931 | |
|
932 | 932 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
933 | 933 | self.__showprofile = showprofile |
|
934 | 934 | self.nplots = nplots |
|
935 | 935 | |
|
936 | 936 | ncolspan = 1 |
|
937 | 937 | colspan = 1 |
|
938 | 938 | if showprofile: |
|
939 | 939 | ncolspan = 7 |
|
940 | 940 | colspan = 6 |
|
941 | 941 | self.__nsubplots = 2 |
|
942 | 942 | |
|
943 | 943 | self.createFigure(id = id, |
|
944 | 944 | wintitle = wintitle, |
|
945 | 945 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
946 | 946 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
947 | 947 | show=True) |
|
948 | 948 | |
|
949 | 949 | nrow, ncol = self.getSubplots() |
|
950 | 950 | |
|
951 | 951 | for y in range(nrow): |
|
952 | 952 | for x in range(ncol): |
|
953 | 953 | |
|
954 | 954 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
955 | 955 | |
|
956 | 956 | if showprofile: |
|
957 | 957 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
958 | 958 | |
|
959 | 959 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
960 | 960 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
961 | 961 | timerange=None, phase_min=None, phase_max=None, |
|
962 | 962 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
963 | 963 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
964 | 964 | server=None, folder=None, username=None, password=None, |
|
965 | 965 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
966 | 966 | |
|
967 | 967 | |
|
968 | 968 | if dataOut.flagNoData: |
|
969 | 969 | return dataOut |
|
970 | 970 | |
|
971 | 971 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
972 | 972 | return |
|
973 | 973 | |
|
974 | 974 | if pairsList == None: |
|
975 | 975 | pairsIndexList = dataOut.pairsIndexList |
|
976 | 976 | else: |
|
977 | 977 | pairsIndexList = [] |
|
978 | 978 | for pair in pairsList: |
|
979 | 979 | if pair not in dataOut.pairsList: |
|
980 | 980 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
981 | 981 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
982 | 982 | |
|
983 | 983 | if pairsIndexList == []: |
|
984 | 984 | return |
|
985 | 985 | |
|
986 | 986 | if len(pairsIndexList) > 4: |
|
987 | 987 | pairsIndexList = pairsIndexList[0:4] |
|
988 | 988 | |
|
989 | 989 | if phase_min == None: |
|
990 | 990 | phase_min = -180 |
|
991 | 991 | if phase_max == None: |
|
992 | 992 | phase_max = 180 |
|
993 | 993 | |
|
994 | 994 | x = dataOut.getTimeRange() |
|
995 | 995 | y = dataOut.getHeiRange() |
|
996 | 996 | |
|
997 | 997 | thisDatetime = dataOut.datatime |
|
998 | 998 | |
|
999 | 999 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1000 | 1000 | xlabel = "" |
|
1001 | 1001 | ylabel = "Range (Km)" |
|
1002 | 1002 | update_figfile = False |
|
1003 | 1003 | |
|
1004 | 1004 | if not self.isConfig: |
|
1005 | 1005 | nplots = len(pairsIndexList) |
|
1006 | 1006 | self.setup(id=id, |
|
1007 | 1007 | nplots=nplots, |
|
1008 | 1008 | wintitle=wintitle, |
|
1009 | 1009 | showprofile=showprofile, |
|
1010 | 1010 | show=show) |
|
1011 | 1011 | |
|
1012 | 1012 | if timerange != None: |
|
1013 | 1013 | self.timerange = timerange |
|
1014 | 1014 | |
|
1015 | 1015 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1016 | 1016 | |
|
1017 | 1017 | if ymin == None: ymin = numpy.nanmin(y) |
|
1018 | 1018 | if ymax == None: ymax = numpy.nanmax(y) |
|
1019 | 1019 | if zmin == None: zmin = 0. |
|
1020 | 1020 | if zmax == None: zmax = 1. |
|
1021 | 1021 | |
|
1022 | 1022 | self.FTP_WEI = ftp_wei |
|
1023 | 1023 | self.EXP_CODE = exp_code |
|
1024 | 1024 | self.SUB_EXP_CODE = sub_exp_code |
|
1025 | 1025 | self.PLOT_POS = plot_pos |
|
1026 | 1026 | |
|
1027 | 1027 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1028 | 1028 | |
|
1029 | 1029 | self.isConfig = True |
|
1030 | 1030 | update_figfile = True |
|
1031 | 1031 | |
|
1032 | 1032 | self.setWinTitle(title) |
|
1033 | 1033 | |
|
1034 | 1034 | for i in range(self.nplots): |
|
1035 | 1035 | |
|
1036 | 1036 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1037 | 1037 | |
|
1038 | 1038 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
1039 | 1039 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
1040 | 1040 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
1041 | 1041 | |
|
1042 | 1042 | |
|
1043 | 1043 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1044 | 1044 | coherence = numpy.abs(avgcoherenceComplex) |
|
1045 | 1045 | |
|
1046 | 1046 | z = coherence.reshape((1,-1)) |
|
1047 | 1047 | |
|
1048 | 1048 | counter = 0 |
|
1049 | 1049 | |
|
1050 | 1050 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1051 | 1051 | axes = self.axesList[i*self.__nsubplots*2] |
|
1052 | 1052 | axes.pcolorbuffer(x, y, z, |
|
1053 | 1053 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
1054 | 1054 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1055 | 1055 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
1056 | 1056 | |
|
1057 | 1057 | if self.__showprofile: |
|
1058 | 1058 | counter += 1 |
|
1059 | 1059 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
1060 | 1060 | axes.pline(coherence, y, |
|
1061 | 1061 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
1062 | 1062 | xlabel='', ylabel='', title='', ticksize=7, |
|
1063 | 1063 | ytick_visible=False, nxticks=5, |
|
1064 | 1064 | grid='x') |
|
1065 | 1065 | |
|
1066 | 1066 | counter += 1 |
|
1067 | 1067 | |
|
1068 | 1068 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1069 | 1069 | |
|
1070 | 1070 | z = phase.reshape((1,-1)) |
|
1071 | 1071 | |
|
1072 | 1072 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1073 | 1073 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
1074 | 1074 | axes.pcolorbuffer(x, y, z, |
|
1075 | 1075 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
1076 | 1076 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1077 | 1077 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
1078 | 1078 | |
|
1079 | 1079 | if self.__showprofile: |
|
1080 | 1080 | counter += 1 |
|
1081 | 1081 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
1082 | 1082 | axes.pline(phase, y, |
|
1083 | 1083 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
1084 | 1084 | xlabel='', ylabel='', title='', ticksize=7, |
|
1085 | 1085 | ytick_visible=False, nxticks=4, |
|
1086 | 1086 | grid='x') |
|
1087 | 1087 | |
|
1088 | 1088 | self.draw() |
|
1089 | 1089 | |
|
1090 | 1090 | if dataOut.ltctime >= self.xmax: |
|
1091 | 1091 | self.counter_imagwr = wr_period |
|
1092 | 1092 | self.isConfig = False |
|
1093 | 1093 | update_figfile = True |
|
1094 | 1094 | |
|
1095 | 1095 | self.save(figpath=figpath, |
|
1096 | 1096 | figfile=figfile, |
|
1097 | 1097 | save=save, |
|
1098 | 1098 | ftp=ftp, |
|
1099 | 1099 | wr_period=wr_period, |
|
1100 | 1100 | thisDatetime=thisDatetime, |
|
1101 | 1101 | update_figfile=update_figfile) |
|
1102 | 1102 | |
|
1103 | 1103 | return dataOut |
|
1104 | 1104 | |
|
1105 | 1105 | @MPDecorator |
|
1106 | 1106 | class PowerProfilePlot_(Figure): |
|
1107 | 1107 | |
|
1108 | 1108 | isConfig = None |
|
1109 | 1109 | __nsubplots = None |
|
1110 | 1110 | |
|
1111 | 1111 | WIDTHPROF = None |
|
1112 | 1112 | HEIGHTPROF = None |
|
1113 | 1113 | PREFIX = 'spcprofile' |
|
1114 | 1114 | |
|
1115 | 1115 | def __init__(self): |
|
1116 | 1116 | Figure.__init__(self) |
|
1117 | 1117 | self.isConfig = False |
|
1118 | 1118 | self.__nsubplots = 1 |
|
1119 | 1119 | |
|
1120 | 1120 | self.PLOT_CODE = POWER_CODE |
|
1121 | 1121 | |
|
1122 | 1122 | self.WIDTH = 300 |
|
1123 | 1123 | self.HEIGHT = 500 |
|
1124 | 1124 | self.counter_imagwr = 0 |
|
1125 | 1125 | |
|
1126 | 1126 | def getSubplots(self): |
|
1127 | 1127 | ncol = 1 |
|
1128 | 1128 | nrow = 1 |
|
1129 | 1129 | |
|
1130 | 1130 | return nrow, ncol |
|
1131 | 1131 | |
|
1132 | 1132 | def setup(self, id, nplots, wintitle, show): |
|
1133 | 1133 | |
|
1134 | 1134 | self.nplots = nplots |
|
1135 | 1135 | |
|
1136 | 1136 | ncolspan = 1 |
|
1137 | 1137 | colspan = 1 |
|
1138 | 1138 | |
|
1139 | 1139 | self.createFigure(id = id, |
|
1140 | 1140 | wintitle = wintitle, |
|
1141 | 1141 | widthplot = self.WIDTH, |
|
1142 | 1142 | heightplot = self.HEIGHT, |
|
1143 | 1143 | show=show) |
|
1144 | 1144 | |
|
1145 | 1145 | nrow, ncol = self.getSubplots() |
|
1146 | 1146 | |
|
1147 | 1147 | counter = 0 |
|
1148 | 1148 | for y in range(nrow): |
|
1149 | 1149 | for x in range(ncol): |
|
1150 | 1150 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1151 | 1151 | |
|
1152 | 1152 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1153 | 1153 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1154 | 1154 | save=False, figpath='./', figfile=None, show=True, |
|
1155 | 1155 | ftp=False, wr_period=1, server=None, |
|
1156 | 1156 | folder=None, username=None, password=None): |
|
1157 | 1157 | |
|
1158 | 1158 | if dataOut.flagNoData: |
|
1159 | 1159 | return dataOut |
|
1160 | 1160 | |
|
1161 | 1161 | |
|
1162 | 1162 | if channelList == None: |
|
1163 | 1163 | channelIndexList = dataOut.channelIndexList |
|
1164 | 1164 | channelList = dataOut.channelList |
|
1165 | 1165 | else: |
|
1166 | 1166 | channelIndexList = [] |
|
1167 | 1167 | for channel in channelList: |
|
1168 | 1168 | if channel not in dataOut.channelList: |
|
1169 | 1169 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
1170 | 1170 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1171 | 1171 | |
|
1172 | 1172 | factor = dataOut.normFactor |
|
1173 | 1173 | |
|
1174 | 1174 | y = dataOut.getHeiRange() |
|
1175 | 1175 | |
|
1176 | 1176 | #for voltage |
|
1177 | 1177 | if dataOut.type == 'Voltage': |
|
1178 | 1178 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
1179 | 1179 | x = x.real |
|
1180 | 1180 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
1181 | 1181 | |
|
1182 | 1182 | #for spectra |
|
1183 | 1183 | if dataOut.type == 'Spectra': |
|
1184 | 1184 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
1185 | 1185 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
1186 | 1186 | x = numpy.average(x, axis=1) |
|
1187 | 1187 | |
|
1188 | 1188 | |
|
1189 | 1189 | xdB = 10*numpy.log10(x) |
|
1190 | 1190 | |
|
1191 | 1191 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1192 | 1192 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1193 | 1193 | xlabel = "dB" |
|
1194 | 1194 | ylabel = "Range (Km)" |
|
1195 | 1195 | |
|
1196 | 1196 | if not self.isConfig: |
|
1197 | 1197 | |
|
1198 | 1198 | nplots = 1 |
|
1199 | 1199 | |
|
1200 | 1200 | self.setup(id=id, |
|
1201 | 1201 | nplots=nplots, |
|
1202 | 1202 | wintitle=wintitle, |
|
1203 | 1203 | show=show) |
|
1204 | 1204 | |
|
1205 | 1205 | if ymin == None: ymin = numpy.nanmin(y) |
|
1206 | 1206 | if ymax == None: ymax = numpy.nanmax(y) |
|
1207 | 1207 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
1208 | 1208 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
1209 | 1209 | |
|
1210 | 1210 | self.isConfig = True |
|
1211 | 1211 | |
|
1212 | 1212 | self.setWinTitle(title) |
|
1213 | 1213 | |
|
1214 | 1214 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1215 | 1215 | axes = self.axesList[0] |
|
1216 | 1216 | |
|
1217 | 1217 | legendlabels = ["channel %d"%x for x in channelList] |
|
1218 | 1218 | axes.pmultiline(xdB, y, |
|
1219 | 1219 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1220 | 1220 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1221 | 1221 | ytick_visible=True, nxticks=5, |
|
1222 | 1222 | grid='x') |
|
1223 | 1223 | |
|
1224 | 1224 | self.draw() |
|
1225 | 1225 | |
|
1226 | 1226 | self.save(figpath=figpath, |
|
1227 | 1227 | figfile=figfile, |
|
1228 | 1228 | save=save, |
|
1229 | 1229 | ftp=ftp, |
|
1230 | 1230 | wr_period=wr_period, |
|
1231 | 1231 | thisDatetime=thisDatetime) |
|
1232 | 1232 | |
|
1233 | 1233 | return dataOut |
|
1234 | 1234 | |
|
1235 | 1235 | @MPDecorator |
|
1236 | 1236 | class SpectraCutPlot_(Figure): |
|
1237 | 1237 | |
|
1238 | 1238 | isConfig = None |
|
1239 | 1239 | __nsubplots = None |
|
1240 | 1240 | |
|
1241 | 1241 | WIDTHPROF = None |
|
1242 | 1242 | HEIGHTPROF = None |
|
1243 | 1243 | PREFIX = 'spc_cut' |
|
1244 | 1244 | |
|
1245 | 1245 | def __init__(self): |
|
1246 | 1246 | Figure.__init__(self) |
|
1247 | 1247 | self.isConfig = False |
|
1248 | 1248 | self.__nsubplots = 1 |
|
1249 | 1249 | |
|
1250 | 1250 | self.PLOT_CODE = POWER_CODE |
|
1251 | 1251 | |
|
1252 | 1252 | self.WIDTH = 700 |
|
1253 | 1253 | self.HEIGHT = 500 |
|
1254 | 1254 | self.counter_imagwr = 0 |
|
1255 | 1255 | |
|
1256 | 1256 | def getSubplots(self): |
|
1257 | 1257 | ncol = 1 |
|
1258 | 1258 | nrow = 1 |
|
1259 | 1259 | |
|
1260 | 1260 | return nrow, ncol |
|
1261 | 1261 | |
|
1262 | 1262 | def setup(self, id, nplots, wintitle, show): |
|
1263 | 1263 | |
|
1264 | 1264 | self.nplots = nplots |
|
1265 | 1265 | |
|
1266 | 1266 | ncolspan = 1 |
|
1267 | 1267 | colspan = 1 |
|
1268 | 1268 | |
|
1269 | 1269 | self.createFigure(id = id, |
|
1270 | 1270 | wintitle = wintitle, |
|
1271 | 1271 | widthplot = self.WIDTH, |
|
1272 | 1272 | heightplot = self.HEIGHT, |
|
1273 | 1273 | show=show) |
|
1274 | 1274 | |
|
1275 | 1275 | nrow, ncol = self.getSubplots() |
|
1276 | 1276 | |
|
1277 | 1277 | counter = 0 |
|
1278 | 1278 | for y in range(nrow): |
|
1279 | 1279 | for x in range(ncol): |
|
1280 | 1280 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1281 | 1281 | |
|
1282 | 1282 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1283 | 1283 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1284 | 1284 | save=False, figpath='./', figfile=None, show=True, |
|
1285 | 1285 | ftp=False, wr_period=1, server=None, |
|
1286 | 1286 | folder=None, username=None, password=None, |
|
1287 | 1287 | xaxis="frequency"): |
|
1288 | 1288 | |
|
1289 | 1289 | if dataOut.flagNoData: |
|
1290 | 1290 | return dataOut |
|
1291 | 1291 | |
|
1292 | 1292 | if channelList == None: |
|
1293 | 1293 | channelIndexList = dataOut.channelIndexList |
|
1294 | 1294 | channelList = dataOut.channelList |
|
1295 | 1295 | else: |
|
1296 | 1296 | channelIndexList = [] |
|
1297 | 1297 | for channel in channelList: |
|
1298 | 1298 | if channel not in dataOut.channelList: |
|
1299 | 1299 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
1300 | 1300 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1301 | 1301 | |
|
1302 | 1302 | factor = dataOut.normFactor |
|
1303 | 1303 | |
|
1304 | 1304 | y = dataOut.getHeiRange() |
|
1305 | 1305 | |
|
1306 | 1306 | z = dataOut.data_spc/factor |
|
1307 | 1307 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1308 | 1308 | |
|
1309 | 1309 | hei_index = numpy.arange(25)*3 + 20 |
|
1310 | 1310 | |
|
1311 | 1311 | if xaxis == "frequency": |
|
1312 | 1312 | x = dataOut.getFreqRange()/1000. |
|
1313 | 1313 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1314 | 1314 | xlabel = "Frequency (kHz)" |
|
1315 | 1315 | ylabel = "Power (dB)" |
|
1316 | 1316 | |
|
1317 | 1317 | elif xaxis == "time": |
|
1318 | 1318 | x = dataOut.getAcfRange() |
|
1319 | 1319 | zdB = z[0,:,hei_index] |
|
1320 | 1320 | xlabel = "Time (ms)" |
|
1321 | 1321 | ylabel = "ACF" |
|
1322 | 1322 | |
|
1323 | 1323 | else: |
|
1324 | 1324 | x = dataOut.getVelRange() |
|
1325 | 1325 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1326 | 1326 | xlabel = "Velocity (m/s)" |
|
1327 | 1327 | ylabel = "Power (dB)" |
|
1328 | 1328 | |
|
1329 | 1329 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1330 | 1330 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1331 | 1331 | |
|
1332 | 1332 | if not self.isConfig: |
|
1333 | 1333 | |
|
1334 | 1334 | nplots = 1 |
|
1335 | 1335 | |
|
1336 | 1336 | self.setup(id=id, |
|
1337 | 1337 | nplots=nplots, |
|
1338 | 1338 | wintitle=wintitle, |
|
1339 | 1339 | show=show) |
|
1340 | 1340 | |
|
1341 | 1341 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1342 | 1342 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1343 | 1343 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1344 | 1344 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1345 | 1345 | |
|
1346 | 1346 | self.isConfig = True |
|
1347 | 1347 | |
|
1348 | 1348 | self.setWinTitle(title) |
|
1349 | 1349 | |
|
1350 | 1350 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1351 | 1351 | axes = self.axesList[0] |
|
1352 | 1352 | |
|
1353 | 1353 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1354 | 1354 | |
|
1355 | 1355 | axes.pmultilineyaxis( x, zdB, |
|
1356 | 1356 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1357 | 1357 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1358 | 1358 | ytick_visible=True, nxticks=5, |
|
1359 | 1359 | grid='x') |
|
1360 | 1360 | |
|
1361 | 1361 | self.draw() |
|
1362 | 1362 | |
|
1363 | 1363 | self.save(figpath=figpath, |
|
1364 | 1364 | figfile=figfile, |
|
1365 | 1365 | save=save, |
|
1366 | 1366 | ftp=ftp, |
|
1367 | 1367 | wr_period=wr_period, |
|
1368 | 1368 | thisDatetime=thisDatetime) |
|
1369 | 1369 | |
|
1370 | 1370 | return dataOut |
|
1371 | 1371 | |
|
1372 | 1372 | @MPDecorator |
|
1373 | 1373 | class Noise_(Figure): |
|
1374 | 1374 | |
|
1375 | 1375 | isConfig = None |
|
1376 | 1376 | __nsubplots = None |
|
1377 | 1377 | |
|
1378 | 1378 | PREFIX = 'noise' |
|
1379 | 1379 | |
|
1380 | 1380 | |
|
1381 | 1381 | def __init__(self): |
|
1382 | 1382 | Figure.__init__(self) |
|
1383 | 1383 | self.timerange = 24*60*60 |
|
1384 | 1384 | self.isConfig = False |
|
1385 | 1385 | self.__nsubplots = 1 |
|
1386 | 1386 | self.counter_imagwr = 0 |
|
1387 | 1387 | self.WIDTH = 800 |
|
1388 | 1388 | self.HEIGHT = 400 |
|
1389 | 1389 | self.WIDTHPROF = 120 |
|
1390 | 1390 | self.HEIGHTPROF = 0 |
|
1391 | 1391 | self.xdata = None |
|
1392 | 1392 | self.ydata = None |
|
1393 | 1393 | |
|
1394 | 1394 | self.PLOT_CODE = NOISE_CODE |
|
1395 | 1395 | |
|
1396 | 1396 | self.FTP_WEI = None |
|
1397 | 1397 | self.EXP_CODE = None |
|
1398 | 1398 | self.SUB_EXP_CODE = None |
|
1399 | 1399 | self.PLOT_POS = None |
|
1400 | 1400 | self.figfile = None |
|
1401 | 1401 | |
|
1402 | 1402 | self.xmin = None |
|
1403 | 1403 | self.xmax = None |
|
1404 | 1404 | |
|
1405 | 1405 | def getSubplots(self): |
|
1406 | 1406 | |
|
1407 | 1407 | ncol = 1 |
|
1408 | 1408 | nrow = 1 |
|
1409 | 1409 | |
|
1410 | 1410 | return nrow, ncol |
|
1411 | 1411 | |
|
1412 | 1412 | def openfile(self, filename): |
|
1413 | 1413 | dirname = os.path.dirname(filename) |
|
1414 | 1414 | |
|
1415 | 1415 | if not os.path.exists(dirname): |
|
1416 | 1416 | os.mkdir(dirname) |
|
1417 | 1417 | |
|
1418 | 1418 | f = open(filename,'w+') |
|
1419 | 1419 | f.write('\n\n') |
|
1420 | 1420 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1421 | 1421 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1422 | 1422 | f.close() |
|
1423 | 1423 | |
|
1424 | 1424 | def save_data(self, filename_phase, data, data_datetime): |
|
1425 | 1425 | |
|
1426 | 1426 | f=open(filename_phase,'a') |
|
1427 | 1427 | |
|
1428 | 1428 | timetuple_data = data_datetime.timetuple() |
|
1429 | 1429 | day = str(timetuple_data.tm_mday) |
|
1430 | 1430 | month = str(timetuple_data.tm_mon) |
|
1431 | 1431 | year = str(timetuple_data.tm_year) |
|
1432 | 1432 | hour = str(timetuple_data.tm_hour) |
|
1433 | 1433 | minute = str(timetuple_data.tm_min) |
|
1434 | 1434 | second = str(timetuple_data.tm_sec) |
|
1435 | 1435 | |
|
1436 | 1436 | data_msg = '' |
|
1437 | 1437 | for i in range(len(data)): |
|
1438 | 1438 | data_msg += str(data[i]) + ' ' |
|
1439 | 1439 | |
|
1440 | 1440 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1441 | 1441 | f.close() |
|
1442 | 1442 | |
|
1443 | 1443 | |
|
1444 | 1444 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1445 | 1445 | |
|
1446 | 1446 | self.__showprofile = showprofile |
|
1447 | 1447 | self.nplots = nplots |
|
1448 | 1448 | |
|
1449 | 1449 | ncolspan = 7 |
|
1450 | 1450 | colspan = 6 |
|
1451 | 1451 | self.__nsubplots = 2 |
|
1452 | 1452 | |
|
1453 | 1453 | self.createFigure(id = id, |
|
1454 | 1454 | wintitle = wintitle, |
|
1455 | 1455 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1456 | 1456 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1457 | 1457 | show=show) |
|
1458 | 1458 | |
|
1459 | 1459 | nrow, ncol = self.getSubplots() |
|
1460 | 1460 | |
|
1461 | 1461 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1462 | 1462 | |
|
1463 | 1463 | |
|
1464 | 1464 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1465 | 1465 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1466 | 1466 | timerange=None, |
|
1467 | 1467 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1468 | 1468 | server=None, folder=None, username=None, password=None, |
|
1469 | 1469 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1470 | 1470 | |
|
1471 | 1471 | if dataOut.flagNoData: |
|
1472 | 1472 | return dataOut |
|
1473 | 1473 | |
|
1474 | 1474 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1475 | 1475 | return |
|
1476 | 1476 | |
|
1477 | 1477 | if channelList == None: |
|
1478 | 1478 | channelIndexList = dataOut.channelIndexList |
|
1479 | 1479 | channelList = dataOut.channelList |
|
1480 | 1480 | else: |
|
1481 | 1481 | channelIndexList = [] |
|
1482 | 1482 | for channel in channelList: |
|
1483 | 1483 | if channel not in dataOut.channelList: |
|
1484 | 1484 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
1485 | 1485 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1486 | 1486 | |
|
1487 | 1487 | x = dataOut.getTimeRange() |
|
1488 | 1488 | #y = dataOut.getHeiRange() |
|
1489 | 1489 | factor = dataOut.normFactor |
|
1490 | 1490 | noise = dataOut.noise[channelIndexList]/factor |
|
1491 | 1491 | noisedB = 10*numpy.log10(noise) |
|
1492 | 1492 | |
|
1493 | 1493 | thisDatetime = dataOut.datatime |
|
1494 | 1494 | |
|
1495 | 1495 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1496 | 1496 | xlabel = "" |
|
1497 | 1497 | ylabel = "Intensity (dB)" |
|
1498 | 1498 | update_figfile = False |
|
1499 | 1499 | |
|
1500 | 1500 | if not self.isConfig: |
|
1501 | 1501 | |
|
1502 | 1502 | nplots = 1 |
|
1503 | 1503 | |
|
1504 | 1504 | self.setup(id=id, |
|
1505 | 1505 | nplots=nplots, |
|
1506 | 1506 | wintitle=wintitle, |
|
1507 | 1507 | showprofile=showprofile, |
|
1508 | 1508 | show=show) |
|
1509 | 1509 | |
|
1510 | 1510 | if timerange != None: |
|
1511 | 1511 | self.timerange = timerange |
|
1512 | 1512 | |
|
1513 | 1513 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1514 | 1514 | |
|
1515 | 1515 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1516 | 1516 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1517 | 1517 | |
|
1518 | 1518 | self.FTP_WEI = ftp_wei |
|
1519 | 1519 | self.EXP_CODE = exp_code |
|
1520 | 1520 | self.SUB_EXP_CODE = sub_exp_code |
|
1521 | 1521 | self.PLOT_POS = plot_pos |
|
1522 | 1522 | |
|
1523 | 1523 | |
|
1524 | 1524 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1525 | 1525 | self.isConfig = True |
|
1526 | 1526 | self.figfile = figfile |
|
1527 | 1527 | self.xdata = numpy.array([]) |
|
1528 | 1528 | self.ydata = numpy.array([]) |
|
1529 | 1529 | |
|
1530 | 1530 | update_figfile = True |
|
1531 | 1531 | |
|
1532 | 1532 | #open file beacon phase |
|
1533 | 1533 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1534 | 1534 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1535 | 1535 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1536 | 1536 | |
|
1537 | 1537 | self.setWinTitle(title) |
|
1538 | 1538 | |
|
1539 | 1539 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1540 | 1540 | |
|
1541 | 1541 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1542 | 1542 | axes = self.axesList[0] |
|
1543 | 1543 | |
|
1544 | 1544 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1545 | 1545 | |
|
1546 | 1546 | if len(self.ydata)==0: |
|
1547 | 1547 | self.ydata = noisedB.reshape(-1,1) |
|
1548 | 1548 | else: |
|
1549 | 1549 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1550 | 1550 | |
|
1551 | 1551 | |
|
1552 | 1552 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1553 | 1553 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1554 | 1554 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1555 | 1555 | XAxisAsTime=True, grid='both' |
|
1556 | 1556 | ) |
|
1557 | 1557 | |
|
1558 | 1558 | self.draw() |
|
1559 | 1559 | |
|
1560 | 1560 | if dataOut.ltctime >= self.xmax: |
|
1561 | 1561 | self.counter_imagwr = wr_period |
|
1562 | 1562 | self.isConfig = False |
|
1563 | 1563 | update_figfile = True |
|
1564 | 1564 | |
|
1565 | 1565 | self.save(figpath=figpath, |
|
1566 | 1566 | figfile=figfile, |
|
1567 | 1567 | save=save, |
|
1568 | 1568 | ftp=ftp, |
|
1569 | 1569 | wr_period=wr_period, |
|
1570 | 1570 | thisDatetime=thisDatetime, |
|
1571 | 1571 | update_figfile=update_figfile) |
|
1572 | 1572 | |
|
1573 | 1573 | #store data beacon phase |
|
1574 | 1574 | if save: |
|
1575 | 1575 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1576 | 1576 | |
|
1577 | 1577 | return dataOut |
|
1578 | 1578 | |
|
1579 | 1579 | @MPDecorator |
|
1580 | 1580 | class BeaconPhase_(Figure): |
|
1581 | 1581 | |
|
1582 | 1582 | __isConfig = None |
|
1583 | 1583 | __nsubplots = None |
|
1584 | 1584 | |
|
1585 | 1585 | PREFIX = 'beacon_phase' |
|
1586 | 1586 | |
|
1587 | 1587 | def __init__(self): |
|
1588 | 1588 | Figure.__init__(self) |
|
1589 | 1589 | self.timerange = 24*60*60 |
|
1590 | 1590 | self.isConfig = False |
|
1591 | 1591 | self.__nsubplots = 1 |
|
1592 | 1592 | self.counter_imagwr = 0 |
|
1593 | 1593 | self.WIDTH = 800 |
|
1594 | 1594 | self.HEIGHT = 400 |
|
1595 | 1595 | self.WIDTHPROF = 120 |
|
1596 | 1596 | self.HEIGHTPROF = 0 |
|
1597 | 1597 | self.xdata = None |
|
1598 | 1598 | self.ydata = None |
|
1599 | 1599 | |
|
1600 | 1600 | self.PLOT_CODE = BEACON_CODE |
|
1601 | 1601 | |
|
1602 | 1602 | self.FTP_WEI = None |
|
1603 | 1603 | self.EXP_CODE = None |
|
1604 | 1604 | self.SUB_EXP_CODE = None |
|
1605 | 1605 | self.PLOT_POS = None |
|
1606 | 1606 | |
|
1607 | 1607 | self.filename_phase = None |
|
1608 | 1608 | |
|
1609 | 1609 | self.figfile = None |
|
1610 | 1610 | |
|
1611 | 1611 | self.xmin = None |
|
1612 | 1612 | self.xmax = None |
|
1613 | 1613 | |
|
1614 | 1614 | def getSubplots(self): |
|
1615 | 1615 | |
|
1616 | 1616 | ncol = 1 |
|
1617 | 1617 | nrow = 1 |
|
1618 | 1618 | |
|
1619 | 1619 | return nrow, ncol |
|
1620 | 1620 | |
|
1621 | 1621 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1622 | 1622 | |
|
1623 | 1623 | self.__showprofile = showprofile |
|
1624 | 1624 | self.nplots = nplots |
|
1625 | 1625 | |
|
1626 | 1626 | ncolspan = 7 |
|
1627 | 1627 | colspan = 6 |
|
1628 | 1628 | self.__nsubplots = 2 |
|
1629 | 1629 | |
|
1630 | 1630 | self.createFigure(id = id, |
|
1631 | 1631 | wintitle = wintitle, |
|
1632 | 1632 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1633 | 1633 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1634 | 1634 | show=show) |
|
1635 | 1635 | |
|
1636 | 1636 | nrow, ncol = self.getSubplots() |
|
1637 | 1637 | |
|
1638 | 1638 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1639 | 1639 | |
|
1640 | 1640 | def save_phase(self, filename_phase): |
|
1641 | 1641 | f = open(filename_phase,'w+') |
|
1642 | 1642 | f.write('\n\n') |
|
1643 | 1643 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1644 | 1644 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1645 | 1645 | f.close() |
|
1646 | 1646 | |
|
1647 | 1647 | def save_data(self, filename_phase, data, data_datetime): |
|
1648 | 1648 | f=open(filename_phase,'a') |
|
1649 | 1649 | timetuple_data = data_datetime.timetuple() |
|
1650 | 1650 | day = str(timetuple_data.tm_mday) |
|
1651 | 1651 | month = str(timetuple_data.tm_mon) |
|
1652 | 1652 | year = str(timetuple_data.tm_year) |
|
1653 | 1653 | hour = str(timetuple_data.tm_hour) |
|
1654 | 1654 | minute = str(timetuple_data.tm_min) |
|
1655 | 1655 | second = str(timetuple_data.tm_sec) |
|
1656 | 1656 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1657 | 1657 | f.close() |
|
1658 | 1658 | |
|
1659 | 1659 | |
|
1660 | 1660 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1661 | 1661 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1662 | 1662 | timerange=None, |
|
1663 | 1663 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1664 | 1664 | server=None, folder=None, username=None, password=None, |
|
1665 | 1665 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1666 | 1666 | |
|
1667 | 1667 | if dataOut.flagNoData: |
|
1668 | 1668 | return dataOut |
|
1669 | 1669 | |
|
1670 | 1670 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1671 | 1671 | return |
|
1672 | 1672 | |
|
1673 | 1673 | if pairsList == None: |
|
1674 | 1674 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1675 | 1675 | else: |
|
1676 | 1676 | pairsIndexList = [] |
|
1677 | 1677 | for pair in pairsList: |
|
1678 | 1678 | if pair not in dataOut.pairsList: |
|
1679 | 1679 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1680 | 1680 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1681 | 1681 | |
|
1682 | 1682 | if pairsIndexList == []: |
|
1683 | 1683 | return |
|
1684 | 1684 | |
|
1685 | 1685 | # if len(pairsIndexList) > 4: |
|
1686 | 1686 | # pairsIndexList = pairsIndexList[0:4] |
|
1687 | 1687 | |
|
1688 | 1688 | hmin_index = None |
|
1689 | 1689 | hmax_index = None |
|
1690 | 1690 | |
|
1691 | 1691 | if hmin != None and hmax != None: |
|
1692 | 1692 | indexes = numpy.arange(dataOut.nHeights) |
|
1693 | 1693 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1694 | 1694 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1695 | 1695 | |
|
1696 | 1696 | if hmin_list.any(): |
|
1697 | 1697 | hmin_index = hmin_list[0] |
|
1698 | 1698 | |
|
1699 | 1699 | if hmax_list.any(): |
|
1700 | 1700 | hmax_index = hmax_list[-1]+1 |
|
1701 | 1701 | |
|
1702 | 1702 | x = dataOut.getTimeRange() |
|
1703 | 1703 | #y = dataOut.getHeiRange() |
|
1704 | 1704 | |
|
1705 | 1705 | |
|
1706 | 1706 | thisDatetime = dataOut.datatime |
|
1707 | 1707 | |
|
1708 | 1708 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1709 | 1709 | xlabel = "Local Time" |
|
1710 | 1710 | ylabel = "Phase (degrees)" |
|
1711 | 1711 | |
|
1712 | 1712 | update_figfile = False |
|
1713 | 1713 | |
|
1714 | 1714 | nplots = len(pairsIndexList) |
|
1715 | 1715 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1716 | 1716 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1717 | 1717 | for i in range(nplots): |
|
1718 | 1718 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1719 | 1719 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1720 | 1720 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1721 | 1721 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1722 | 1722 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1723 | 1723 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1724 | 1724 | |
|
1725 | 1725 | if dataOut.beacon_heiIndexList: |
|
1726 | 1726 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1727 | 1727 | else: |
|
1728 | 1728 | phase_beacon[i] = numpy.average(phase) |
|
1729 | 1729 | |
|
1730 | 1730 | if not self.isConfig: |
|
1731 | 1731 | |
|
1732 | 1732 | nplots = len(pairsIndexList) |
|
1733 | 1733 | |
|
1734 | 1734 | self.setup(id=id, |
|
1735 | 1735 | nplots=nplots, |
|
1736 | 1736 | wintitle=wintitle, |
|
1737 | 1737 | showprofile=showprofile, |
|
1738 | 1738 | show=show) |
|
1739 | 1739 | |
|
1740 | 1740 | if timerange != None: |
|
1741 | 1741 | self.timerange = timerange |
|
1742 | 1742 | |
|
1743 | 1743 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1744 | 1744 | |
|
1745 | 1745 | if ymin == None: ymin = 0 |
|
1746 | 1746 | if ymax == None: ymax = 360 |
|
1747 | 1747 | |
|
1748 | 1748 | self.FTP_WEI = ftp_wei |
|
1749 | 1749 | self.EXP_CODE = exp_code |
|
1750 | 1750 | self.SUB_EXP_CODE = sub_exp_code |
|
1751 | 1751 | self.PLOT_POS = plot_pos |
|
1752 | 1752 | |
|
1753 | 1753 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1754 | 1754 | self.isConfig = True |
|
1755 | 1755 | self.figfile = figfile |
|
1756 | 1756 | self.xdata = numpy.array([]) |
|
1757 | 1757 | self.ydata = numpy.array([]) |
|
1758 | 1758 | |
|
1759 | 1759 | update_figfile = True |
|
1760 | 1760 | |
|
1761 | 1761 | #open file beacon phase |
|
1762 | 1762 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1763 | 1763 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1764 | 1764 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1765 | 1765 | #self.save_phase(self.filename_phase) |
|
1766 | 1766 | |
|
1767 | 1767 | |
|
1768 | 1768 | #store data beacon phase |
|
1769 | 1769 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1770 | 1770 | |
|
1771 | 1771 | self.setWinTitle(title) |
|
1772 | 1772 | |
|
1773 | 1773 | |
|
1774 | 1774 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1775 | 1775 | |
|
1776 | 1776 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1777 | 1777 | |
|
1778 | 1778 | axes = self.axesList[0] |
|
1779 | 1779 | |
|
1780 | 1780 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1781 | 1781 | |
|
1782 | 1782 | if len(self.ydata)==0: |
|
1783 | 1783 | self.ydata = phase_beacon.reshape(-1,1) |
|
1784 | 1784 | else: |
|
1785 | 1785 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1786 | 1786 | |
|
1787 | 1787 | |
|
1788 | 1788 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1789 | 1789 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1790 | 1790 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1791 | 1791 | XAxisAsTime=True, grid='both' |
|
1792 | 1792 | ) |
|
1793 | 1793 | |
|
1794 | 1794 | self.draw() |
|
1795 | 1795 | |
|
1796 | 1796 | if dataOut.ltctime >= self.xmax: |
|
1797 | 1797 | self.counter_imagwr = wr_period |
|
1798 | 1798 | self.isConfig = False |
|
1799 | 1799 | update_figfile = True |
|
1800 | 1800 | |
|
1801 | 1801 | self.save(figpath=figpath, |
|
1802 | 1802 | figfile=figfile, |
|
1803 | 1803 | save=save, |
|
1804 | 1804 | ftp=ftp, |
|
1805 | 1805 | wr_period=wr_period, |
|
1806 | 1806 | thisDatetime=thisDatetime, |
|
1807 | 1807 | update_figfile=update_figfile) |
|
1808 | 1808 | |
|
1809 | 1809 | return dataOut |
@@ -1,1260 +1,1266 | |||
|
1 | 1 | import itertools |
|
2 | 2 | |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Spectra |
|
7 | 7 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
8 | 8 | from schainpy.utils import log |
|
9 | 9 | |
|
10 | 10 | @MPDecorator |
|
11 | 11 | class SpectraProc(ProcessingUnit): |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | def __init__(self): |
|
15 | 15 | |
|
16 | 16 | ProcessingUnit.__init__(self) |
|
17 | 17 | |
|
18 | 18 | self.buffer = None |
|
19 | 19 | self.firstdatatime = None |
|
20 | 20 | self.profIndex = 0 |
|
21 | 21 | self.dataOut = Spectra() |
|
22 | 22 | self.id_min = None |
|
23 | 23 | self.id_max = None |
|
24 | 24 | self.setupReq = False #Agregar a todas las unidades de proc |
|
25 | 25 | |
|
26 | 26 | def __updateSpecFromVoltage(self): |
|
27 | 27 | |
|
28 | 28 | self.dataOut.timeZone = self.dataIn.timeZone |
|
29 | 29 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
30 | 30 | self.dataOut.errorCount = self.dataIn.errorCount |
|
31 | 31 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
32 | 32 | try: |
|
33 | 33 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
34 | 34 | except: |
|
35 | 35 | pass |
|
36 | 36 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
37 | 37 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
38 | 38 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | 39 | self.dataOut.heightList = self.dataIn.heightList |
|
40 | 40 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
41 | 41 | |
|
42 | 42 | self.dataOut.nBaud = self.dataIn.nBaud |
|
43 | 43 | self.dataOut.nCode = self.dataIn.nCode |
|
44 | 44 | self.dataOut.code = self.dataIn.code |
|
45 | 45 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
46 | 46 | |
|
47 | 47 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
48 | 48 | self.dataOut.utctime = self.firstdatatime |
|
49 | 49 | # asumo q la data esta decodificada |
|
50 | 50 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
51 | 51 | # asumo q la data esta sin flip |
|
52 | 52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
53 | 53 | self.dataOut.flagShiftFFT = False |
|
54 | 54 | |
|
55 | 55 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
56 | 56 | self.dataOut.nIncohInt = 1 |
|
57 | 57 | |
|
58 | 58 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
59 | 59 | |
|
60 | 60 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | 61 | self.dataOut.realtime = self.dataIn.realtime |
|
62 | 62 | |
|
63 | 63 | self.dataOut.azimuth = self.dataIn.azimuth |
|
64 | 64 | self.dataOut.zenith = self.dataIn.zenith |
|
65 | 65 | |
|
66 | 66 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
67 | 67 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
68 | 68 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
69 | 69 | |
|
70 | 70 | def __getFft(self): |
|
71 | 71 | """ |
|
72 | 72 | Convierte valores de Voltaje a Spectra |
|
73 | 73 | |
|
74 | 74 | Affected: |
|
75 | 75 | self.dataOut.data_spc |
|
76 | 76 | self.dataOut.data_cspc |
|
77 | 77 | self.dataOut.data_dc |
|
78 | 78 | self.dataOut.heightList |
|
79 | 79 | self.profIndex |
|
80 | 80 | self.buffer |
|
81 | 81 | self.dataOut.flagNoData |
|
82 | 82 | """ |
|
83 | 83 | fft_volt = numpy.fft.fft( |
|
84 | 84 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | 85 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | 86 | dc = fft_volt[:, 0, :] |
|
87 | 87 | |
|
88 | 88 | # calculo de self-spectra |
|
89 | 89 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | 90 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | #print("spcch0",spc[0]) | |
|
91 | 92 | spc = spc.real |
|
92 | 93 | |
|
93 | 94 | blocksize = 0 |
|
94 | 95 | blocksize += dc.size |
|
95 | 96 | blocksize += spc.size |
|
96 | 97 | |
|
97 | 98 | #print("spc :",spc.shape) |
|
98 | 99 | data_wr = None |
|
99 | 100 | if self.dataOut.flagWR: |
|
100 | 101 | data_wr = fft_volt |
|
101 | 102 | blocksize = fft_volt.size |
|
102 | 103 | |
|
103 | 104 | cspc = None |
|
104 | 105 | pairIndex = 0 |
|
105 | 106 | if self.dataOut.pairsList != None: |
|
106 | 107 | # calculo de cross-spectra |
|
107 | 108 | cspc = numpy.zeros( |
|
108 | 109 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
109 | 110 | for pair in self.dataOut.pairsList: |
|
110 | 111 | if pair[0] not in self.dataOut.channelList: |
|
111 | 112 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
112 | 113 | str(pair), str(self.dataOut.channelList))) |
|
113 | 114 | if pair[1] not in self.dataOut.channelList: |
|
114 | 115 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
115 | 116 | str(pair), str(self.dataOut.channelList))) |
|
116 | 117 | |
|
117 | 118 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
118 | 119 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
119 | 120 | pairIndex += 1 |
|
120 | 121 | blocksize += cspc.size |
|
121 | 122 | |
|
122 | 123 | self.dataOut.data_spc = spc |
|
123 | 124 | self.dataOut.data_cspc = cspc |
|
124 | 125 | self.dataOut.data_wr = data_wr |
|
125 | 126 | self.dataOut.data_dc = dc |
|
126 | 127 | self.dataOut.blockSize = blocksize |
|
127 | 128 | self.dataOut.flagShiftFFT = False |
|
128 | 129 | |
|
129 | 130 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False,flagWR= 0): |
|
130 | 131 | |
|
131 | 132 | self.dataOut.flagWR = flagWR |
|
132 | 133 | |
|
133 | 134 | if self.dataIn.type == "Spectra": |
|
134 | 135 | self.dataOut.copy(self.dataIn) |
|
135 | 136 | |
|
136 | 137 | if shift_fft: |
|
137 | 138 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
138 | 139 | shift = int(self.dataOut.nFFTPoints/2) |
|
139 | 140 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
140 | 141 | |
|
141 | 142 | if self.dataOut.data_cspc is not None: |
|
142 | 143 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
143 | 144 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
144 | 145 | |
|
145 | 146 | return True |
|
146 | 147 | |
|
147 | 148 | if self.dataIn.type == "Voltage": |
|
148 | 149 | #print("VOLTAGE INPUT SPECTRA") |
|
149 | 150 | self.dataOut.flagNoData = True |
|
150 | 151 | |
|
151 | 152 | if nFFTPoints == None: |
|
152 | 153 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
153 | 154 | |
|
154 | 155 | if nProfiles == None: |
|
155 | 156 | nProfiles = nFFTPoints |
|
156 | 157 | |
|
157 | 158 | if ippFactor == None: |
|
158 | 159 | ippFactor = 1 |
|
159 | 160 | |
|
160 | 161 | self.dataOut.ippFactor = ippFactor |
|
161 | 162 | |
|
162 | 163 | self.dataOut.nFFTPoints = nFFTPoints |
|
163 | 164 | self.dataOut.pairsList = pairsList |
|
164 | 165 | |
|
165 | 166 | if self.buffer is None: |
|
166 | 167 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
167 | 168 | nProfiles, |
|
168 | 169 | self.dataIn.nHeights), |
|
169 | 170 | dtype='complex') |
|
170 | 171 | #print("buffer :",self.buffer.shape) |
|
171 | 172 | |
|
172 | 173 | if self.dataIn.flagDataAsBlock: |
|
173 | 174 | nVoltProfiles = self.dataIn.data.shape[1] |
|
174 | 175 | |
|
175 | 176 | if nVoltProfiles == nProfiles: |
|
176 | 177 | self.buffer = self.dataIn.data.copy() |
|
177 | 178 | self.profIndex = nVoltProfiles |
|
178 | 179 | |
|
179 | 180 | elif nVoltProfiles < nProfiles: |
|
180 | 181 | |
|
181 | 182 | if self.profIndex == 0: |
|
182 | 183 | self.id_min = 0 |
|
183 | 184 | self.id_max = nVoltProfiles |
|
184 | 185 | |
|
185 | 186 | self.buffer[:, self.id_min:self.id_max, |
|
186 | 187 | :] = self.dataIn.data |
|
187 | 188 | self.profIndex += nVoltProfiles |
|
188 | 189 | self.id_min += nVoltProfiles |
|
189 | 190 | self.id_max += nVoltProfiles |
|
190 | 191 | else: |
|
191 | 192 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
192 | 193 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
193 | 194 | self.dataOut.flagNoData = True |
|
194 | 195 | return 0 |
|
195 | 196 | else: |
|
196 | 197 | #print("Spectra ",self.profIndex) |
|
197 | 198 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
198 | 199 | self.profIndex += 1 |
|
199 | 200 | |
|
200 | 201 | if self.firstdatatime == None: |
|
201 | 202 | self.firstdatatime = self.dataIn.utctime |
|
202 | 203 | |
|
203 | 204 | if self.profIndex == nProfiles: |
|
204 | 205 | self.__updateSpecFromVoltage() |
|
205 | 206 | self.__getFft() |
|
206 | 207 | #print(" DATAOUT SHAPE SPEC",self.dataOut.data_spc.shape) |
|
207 | 208 | |
|
208 | 209 | self.dataOut.flagNoData = False |
|
209 | 210 | self.firstdatatime = None |
|
210 | 211 | self.profIndex = 0 |
|
211 | 212 | |
|
212 | 213 | return True |
|
213 | 214 | |
|
214 | 215 | raise ValueError("The type of input object '%s' is not valid" % ( |
|
215 | 216 | self.dataIn.type)) |
|
216 | 217 | |
|
217 | 218 | def __selectPairs(self, pairsList): |
|
218 | 219 | |
|
219 | 220 | if not pairsList: |
|
220 | 221 | return |
|
221 | 222 | |
|
222 | 223 | pairs = [] |
|
223 | 224 | pairsIndex = [] |
|
224 | 225 | |
|
225 | 226 | for pair in pairsList: |
|
226 | 227 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
227 | 228 | continue |
|
228 | 229 | pairs.append(pair) |
|
229 | 230 | pairsIndex.append(pairs.index(pair)) |
|
230 | 231 | |
|
231 | 232 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
232 | 233 | self.dataOut.pairsList = pairs |
|
233 | 234 | |
|
234 | 235 | return |
|
235 | 236 | |
|
236 | 237 | def __selectPairsByChannel(self, channelList=None): |
|
237 | 238 | |
|
238 | 239 | if channelList == None: |
|
239 | 240 | return |
|
240 | 241 | |
|
241 | 242 | pairsIndexListSelected = [] |
|
242 | 243 | for pairIndex in self.dataOut.pairsIndexList: |
|
243 | 244 | # First pair |
|
244 | 245 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
245 | 246 | continue |
|
246 | 247 | # Second pair |
|
247 | 248 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
248 | 249 | continue |
|
249 | 250 | |
|
250 | 251 | pairsIndexListSelected.append(pairIndex) |
|
251 | 252 | |
|
252 | 253 | if not pairsIndexListSelected: |
|
253 | 254 | self.dataOut.data_cspc = None |
|
254 | 255 | self.dataOut.pairsList = [] |
|
255 | 256 | return |
|
256 | 257 | |
|
257 | 258 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
258 | 259 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
259 | 260 | for i in pairsIndexListSelected] |
|
260 | 261 | |
|
261 | 262 | return |
|
262 | 263 | |
|
263 | 264 | def selectChannels(self, channelList): |
|
264 | 265 | |
|
265 | 266 | channelIndexList = [] |
|
266 | 267 | |
|
267 | 268 | for channel in channelList: |
|
268 | 269 | if channel not in self.dataOut.channelList: |
|
269 | 270 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" % ( |
|
270 | 271 | channel, str(self.dataOut.channelList))) |
|
271 | 272 | |
|
272 | 273 | index = self.dataOut.channelList.index(channel) |
|
273 | 274 | channelIndexList.append(index) |
|
274 | 275 | |
|
275 | 276 | self.selectChannelsByIndex(channelIndexList) |
|
276 | 277 | |
|
277 | 278 | def selectChannelsByIndex(self, channelIndexList): |
|
278 | 279 | """ |
|
279 | 280 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
280 | 281 | |
|
281 | 282 | Input: |
|
282 | 283 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
283 | 284 | |
|
284 | 285 | Affected: |
|
285 | 286 | self.dataOut.data_spc |
|
286 | 287 | self.dataOut.channelIndexList |
|
287 | 288 | self.dataOut.nChannels |
|
288 | 289 | |
|
289 | 290 | Return: |
|
290 | 291 | None |
|
291 | 292 | """ |
|
292 | 293 | |
|
293 | 294 | for channelIndex in channelIndexList: |
|
294 | 295 | if channelIndex not in self.dataOut.channelIndexList: |
|
295 | 296 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " % ( |
|
296 | 297 | channelIndex, self.dataOut.channelIndexList)) |
|
297 | 298 | |
|
298 | 299 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
299 | 300 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
300 | 301 | |
|
301 | 302 | self.dataOut.data_spc = data_spc |
|
302 | 303 | self.dataOut.data_dc = data_dc |
|
303 | 304 | |
|
304 | 305 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
305 | 306 | self.dataOut.channelList = range(len(channelIndexList)) |
|
306 | 307 | self.__selectPairsByChannel(channelIndexList) |
|
307 | 308 | |
|
308 | 309 | return 1 |
|
309 | 310 | |
|
310 | 311 | |
|
311 | 312 | def selectFFTs(self, minFFT, maxFFT ): |
|
312 | 313 | """ |
|
313 | 314 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
314 | 315 | minFFT<= FFT <= maxFFT |
|
315 | 316 | """ |
|
316 | 317 | |
|
317 | 318 | if (minFFT > maxFFT): |
|
318 | 319 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
319 | 320 | |
|
320 | 321 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
321 | 322 | minFFT = self.dataOut.getFreqRange()[0] |
|
322 | 323 | |
|
323 | 324 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
324 | 325 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
325 | 326 | |
|
326 | 327 | minIndex = 0 |
|
327 | 328 | maxIndex = 0 |
|
328 | 329 | FFTs = self.dataOut.getFreqRange() |
|
329 | 330 | |
|
330 | 331 | inda = numpy.where(FFTs >= minFFT) |
|
331 | 332 | indb = numpy.where(FFTs <= maxFFT) |
|
332 | 333 | |
|
333 | 334 | try: |
|
334 | 335 | minIndex = inda[0][0] |
|
335 | 336 | except: |
|
336 | 337 | minIndex = 0 |
|
337 | 338 | |
|
338 | 339 | try: |
|
339 | 340 | maxIndex = indb[0][-1] |
|
340 | 341 | except: |
|
341 | 342 | maxIndex = len(FFTs) |
|
342 | 343 | |
|
343 | 344 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
344 | 345 | |
|
345 | 346 | return 1 |
|
346 | 347 | |
|
347 | 348 | |
|
348 | 349 | def setH0(self, h0, deltaHeight = None): |
|
349 | 350 | |
|
350 | 351 | if not deltaHeight: |
|
351 | 352 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
352 | 353 | |
|
353 | 354 | nHeights = self.dataOut.nHeights |
|
354 | 355 | |
|
355 | 356 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
356 | 357 | |
|
357 | 358 | self.dataOut.heightList = newHeiRange |
|
358 | 359 | |
|
359 | 360 | |
|
360 | 361 | def selectHeights(self, minHei, maxHei): |
|
361 | 362 | """ |
|
362 | 363 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
363 | 364 | minHei <= height <= maxHei |
|
364 | 365 | |
|
365 | 366 | Input: |
|
366 | 367 | minHei : valor minimo de altura a considerar |
|
367 | 368 | maxHei : valor maximo de altura a considerar |
|
368 | 369 | |
|
369 | 370 | Affected: |
|
370 | 371 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
371 | 372 | |
|
372 | 373 | Return: |
|
373 | 374 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
374 | 375 | """ |
|
375 | 376 | |
|
376 | 377 | |
|
377 | 378 | if (minHei > maxHei): |
|
378 | 379 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) |
|
379 | 380 | |
|
380 | 381 | if (minHei < self.dataOut.heightList[0]): |
|
381 | 382 | minHei = self.dataOut.heightList[0] |
|
382 | 383 | |
|
383 | 384 | if (maxHei > self.dataOut.heightList[-1]): |
|
384 | 385 | maxHei = self.dataOut.heightList[-1] |
|
385 | 386 | |
|
386 | 387 | minIndex = 0 |
|
387 | 388 | maxIndex = 0 |
|
388 | 389 | heights = self.dataOut.heightList |
|
389 | 390 | |
|
390 | 391 | inda = numpy.where(heights >= minHei) |
|
391 | 392 | indb = numpy.where(heights <= maxHei) |
|
392 | 393 | |
|
393 | 394 | try: |
|
394 | 395 | minIndex = inda[0][0] |
|
395 | 396 | except: |
|
396 | 397 | minIndex = 0 |
|
397 | 398 | |
|
398 | 399 | try: |
|
399 | 400 | maxIndex = indb[0][-1] |
|
400 | 401 | except: |
|
401 | 402 | maxIndex = len(heights) |
|
402 | 403 | |
|
403 | 404 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
404 | 405 | |
|
405 | 406 | |
|
406 | 407 | return 1 |
|
407 | 408 | |
|
408 | 409 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
409 | 410 | newheis = numpy.where( |
|
410 | 411 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
411 | 412 | |
|
412 | 413 | if hei_ref != None: |
|
413 | 414 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
414 | 415 | |
|
415 | 416 | minIndex = min(newheis[0]) |
|
416 | 417 | maxIndex = max(newheis[0]) |
|
417 | 418 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
418 | 419 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
419 | 420 | |
|
420 | 421 | # determina indices |
|
421 | 422 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
422 | 423 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
423 | 424 | avg_dB = 10 * \ |
|
424 | 425 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
425 | 426 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
426 | 427 | beacon_heiIndexList = [] |
|
427 | 428 | for val in avg_dB.tolist(): |
|
428 | 429 | if val >= beacon_dB[0]: |
|
429 | 430 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
430 | 431 | |
|
431 | 432 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
432 | 433 | data_cspc = None |
|
433 | 434 | if self.dataOut.data_cspc is not None: |
|
434 | 435 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
435 | 436 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
436 | 437 | |
|
437 | 438 | data_dc = None |
|
438 | 439 | if self.dataOut.data_dc is not None: |
|
439 | 440 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
440 | 441 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
441 | 442 | |
|
442 | 443 | self.dataOut.data_spc = data_spc |
|
443 | 444 | self.dataOut.data_cspc = data_cspc |
|
444 | 445 | self.dataOut.data_dc = data_dc |
|
445 | 446 | self.dataOut.heightList = heightList |
|
446 | 447 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
447 | 448 | |
|
448 | 449 | return 1 |
|
449 | 450 | |
|
450 | 451 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
451 | 452 | """ |
|
452 | 453 | |
|
453 | 454 | """ |
|
454 | 455 | |
|
455 | 456 | if (minIndex < 0) or (minIndex > maxIndex): |
|
456 | 457 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
457 | 458 | |
|
458 | 459 | if (maxIndex >= self.dataOut.nProfiles): |
|
459 | 460 | maxIndex = self.dataOut.nProfiles-1 |
|
460 | 461 | |
|
461 | 462 | #Spectra |
|
462 | 463 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
463 | 464 | |
|
464 | 465 | data_cspc = None |
|
465 | 466 | if self.dataOut.data_cspc is not None: |
|
466 | 467 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
467 | 468 | |
|
468 | 469 | data_dc = None |
|
469 | 470 | if self.dataOut.data_dc is not None: |
|
470 | 471 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
471 | 472 | |
|
472 | 473 | self.dataOut.data_spc = data_spc |
|
473 | 474 | self.dataOut.data_cspc = data_cspc |
|
474 | 475 | self.dataOut.data_dc = data_dc |
|
475 | 476 | |
|
476 | 477 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
477 | 478 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
478 | 479 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
479 | 480 | |
|
480 | 481 | return 1 |
|
481 | 482 | |
|
482 | 483 | |
|
483 | 484 | |
|
484 | 485 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
485 | 486 | """ |
|
486 | 487 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
487 | 488 | minIndex <= index <= maxIndex |
|
488 | 489 | |
|
489 | 490 | Input: |
|
490 | 491 | minIndex : valor de indice minimo de altura a considerar |
|
491 | 492 | maxIndex : valor de indice maximo de altura a considerar |
|
492 | 493 | |
|
493 | 494 | Affected: |
|
494 | 495 | self.dataOut.data_spc |
|
495 | 496 | self.dataOut.data_cspc |
|
496 | 497 | self.dataOut.data_dc |
|
497 | 498 | self.dataOut.heightList |
|
498 | 499 | |
|
499 | 500 | Return: |
|
500 | 501 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
501 | 502 | """ |
|
502 | 503 | |
|
503 | 504 | if (minIndex < 0) or (minIndex > maxIndex): |
|
504 | 505 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
505 | 506 | minIndex, maxIndex)) |
|
506 | 507 | |
|
507 | 508 | if (maxIndex >= self.dataOut.nHeights): |
|
508 | 509 | maxIndex = self.dataOut.nHeights - 1 |
|
509 | 510 | |
|
510 | 511 | # Spectra |
|
511 | 512 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
512 | 513 | |
|
513 | 514 | data_cspc = None |
|
514 | 515 | if self.dataOut.data_cspc is not None: |
|
515 | 516 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
516 | 517 | |
|
517 | 518 | data_dc = None |
|
518 | 519 | if self.dataOut.data_dc is not None: |
|
519 | 520 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
520 | 521 | |
|
521 | 522 | self.dataOut.data_spc = data_spc |
|
522 | 523 | self.dataOut.data_cspc = data_cspc |
|
523 | 524 | self.dataOut.data_dc = data_dc |
|
524 | 525 | |
|
525 | 526 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
526 | 527 | |
|
527 | 528 | return 1 |
|
528 | 529 | |
|
529 | 530 | def removeDC(self, mode=2): |
|
530 | 531 | jspectra = self.dataOut.data_spc |
|
531 | 532 | jcspectra = self.dataOut.data_cspc |
|
532 | 533 | |
|
533 | 534 | num_chan = jspectra.shape[0] |
|
534 | 535 | num_hei = jspectra.shape[2] |
|
535 | 536 | |
|
536 | 537 | if jcspectra is not None: |
|
537 | 538 | jcspectraExist = True |
|
538 | 539 | num_pairs = jcspectra.shape[0] |
|
539 | 540 | else: |
|
540 | 541 | jcspectraExist = False |
|
541 | 542 | |
|
542 | 543 | freq_dc = int(jspectra.shape[1] / 2) |
|
543 | 544 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
544 | 545 | ind_vel = ind_vel.astype(int) |
|
545 | 546 | |
|
546 | 547 | if ind_vel[0] < 0: |
|
547 | 548 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
548 | 549 | |
|
549 | 550 | if mode == 1: |
|
550 | 551 | jspectra[:, freq_dc, :] = ( |
|
551 | 552 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
552 | 553 | |
|
553 | 554 | if jcspectraExist: |
|
554 | 555 | jcspectra[:, freq_dc, :] = ( |
|
555 | 556 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
556 | 557 | |
|
557 | 558 | if mode == 2: |
|
558 | 559 | |
|
559 | 560 | vel = numpy.array([-2, -1, 1, 2]) |
|
560 | 561 | xx = numpy.zeros([4, 4]) |
|
561 | 562 | |
|
562 | 563 | for fil in range(4): |
|
563 | 564 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
564 | 565 | |
|
565 | 566 | xx_inv = numpy.linalg.inv(xx) |
|
566 | 567 | xx_aux = xx_inv[0, :] |
|
567 | 568 | |
|
568 | 569 | for ich in range(num_chan): |
|
569 | 570 | yy = jspectra[ich, ind_vel, :] |
|
570 | 571 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
571 | 572 | |
|
572 | 573 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
573 | 574 | cjunkid = sum(junkid) |
|
574 | 575 | |
|
575 | 576 | if cjunkid.any(): |
|
576 | 577 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
577 | 578 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
578 | 579 | |
|
579 | 580 | if jcspectraExist: |
|
580 | 581 | for ip in range(num_pairs): |
|
581 | 582 | yy = jcspectra[ip, ind_vel, :] |
|
582 | 583 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
583 | 584 | |
|
584 | 585 | self.dataOut.data_spc = jspectra |
|
585 | 586 | self.dataOut.data_cspc = jcspectra |
|
586 | 587 | |
|
587 | 588 | return 1 |
|
588 | 589 | |
|
589 | 590 | def removeInterference2(self): |
|
590 | 591 | |
|
591 | 592 | cspc = self.dataOut.data_cspc |
|
592 | 593 | spc = self.dataOut.data_spc |
|
593 | 594 | Heights = numpy.arange(cspc.shape[2]) |
|
594 | 595 | realCspc = numpy.abs(cspc) |
|
595 | 596 | |
|
596 | 597 | for i in range(cspc.shape[0]): |
|
597 | 598 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
598 | 599 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
599 | 600 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
600 | 601 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
601 | 602 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
602 | 603 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
603 | 604 | |
|
604 | 605 | |
|
605 | 606 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
606 | 607 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
607 | 608 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
608 | 609 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
609 | 610 | |
|
610 | 611 | |
|
611 | 612 | |
|
612 | 613 | self.dataOut.data_cspc = cspc |
|
613 | 614 | |
|
614 | 615 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
615 | 616 | |
|
616 | 617 | jspectra = self.dataOut.data_spc |
|
617 | 618 | jcspectra = self.dataOut.data_cspc |
|
618 | 619 | jnoise = self.dataOut.getNoise() |
|
619 | 620 | num_incoh = self.dataOut.nIncohInt |
|
620 | 621 | |
|
621 | 622 | num_channel = jspectra.shape[0] |
|
622 | 623 | num_prof = jspectra.shape[1] |
|
623 | 624 | num_hei = jspectra.shape[2] |
|
624 | 625 | |
|
625 | 626 | # hei_interf |
|
626 | 627 | if hei_interf is None: |
|
627 | 628 | count_hei = int(num_hei / 2) |
|
628 | 629 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
629 | 630 | hei_interf = numpy.asarray(hei_interf)[0] |
|
630 | 631 | # nhei_interf |
|
631 | 632 | if (nhei_interf == None): |
|
632 | 633 | nhei_interf = 5 |
|
633 | 634 | if (nhei_interf < 1): |
|
634 | 635 | nhei_interf = 1 |
|
635 | 636 | if (nhei_interf > count_hei): |
|
636 | 637 | nhei_interf = count_hei |
|
637 | 638 | if (offhei_interf == None): |
|
638 | 639 | offhei_interf = 0 |
|
639 | 640 | |
|
640 | 641 | ind_hei = list(range(num_hei)) |
|
641 | 642 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
642 | 643 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
643 | 644 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
644 | 645 | num_mask_prof = mask_prof.size |
|
645 | 646 | comp_mask_prof = [0, num_prof / 2] |
|
646 | 647 | |
|
647 | 648 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
648 | 649 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
649 | 650 | jnoise = numpy.nan |
|
650 | 651 | noise_exist = jnoise[0] < numpy.Inf |
|
651 | 652 | |
|
652 | 653 | # Subrutina de Remocion de la Interferencia |
|
653 | 654 | for ich in range(num_channel): |
|
654 | 655 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
655 | 656 | power = jspectra[ich, mask_prof, :] |
|
656 | 657 | power = power[:, hei_interf] |
|
657 | 658 | power = power.sum(axis=0) |
|
658 | 659 | psort = power.ravel().argsort() |
|
659 | 660 | |
|
660 | 661 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
661 | 662 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
662 | 663 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
663 | 664 | |
|
664 | 665 | if noise_exist: |
|
665 | 666 | # tmp_noise = jnoise[ich] / num_prof |
|
666 | 667 | tmp_noise = jnoise[ich] |
|
667 | 668 | junkspc_interf = junkspc_interf - tmp_noise |
|
668 | 669 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
669 | 670 | |
|
670 | 671 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
671 | 672 | jspc_interf = jspc_interf.transpose() |
|
672 | 673 | # Calculando el espectro de interferencia promedio |
|
673 | 674 | noiseid = numpy.where( |
|
674 | 675 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
675 | 676 | noiseid = noiseid[0] |
|
676 | 677 | cnoiseid = noiseid.size |
|
677 | 678 | interfid = numpy.where( |
|
678 | 679 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
679 | 680 | interfid = interfid[0] |
|
680 | 681 | cinterfid = interfid.size |
|
681 | 682 | |
|
682 | 683 | if (cnoiseid > 0): |
|
683 | 684 | jspc_interf[noiseid] = 0 |
|
684 | 685 | |
|
685 | 686 | # Expandiendo los perfiles a limpiar |
|
686 | 687 | if (cinterfid > 0): |
|
687 | 688 | new_interfid = ( |
|
688 | 689 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
689 | 690 | new_interfid = numpy.asarray(new_interfid) |
|
690 | 691 | new_interfid = {x for x in new_interfid} |
|
691 | 692 | new_interfid = numpy.array(list(new_interfid)) |
|
692 | 693 | new_cinterfid = new_interfid.size |
|
693 | 694 | else: |
|
694 | 695 | new_cinterfid = 0 |
|
695 | 696 | |
|
696 | 697 | for ip in range(new_cinterfid): |
|
697 | 698 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
698 | 699 | jspc_interf[new_interfid[ip] |
|
699 | 700 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
700 | 701 | |
|
701 | 702 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
702 | 703 | ind_hei] - jspc_interf # Corregir indices |
|
703 | 704 | |
|
704 | 705 | # Removiendo la interferencia del punto de mayor interferencia |
|
705 | 706 | ListAux = jspc_interf[mask_prof].tolist() |
|
706 | 707 | maxid = ListAux.index(max(ListAux)) |
|
707 | 708 | |
|
708 | 709 | if cinterfid > 0: |
|
709 | 710 | for ip in range(cinterfid * (interf == 2) - 1): |
|
710 | 711 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
711 | 712 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
712 | 713 | cind = len(ind) |
|
713 | 714 | |
|
714 | 715 | if (cind > 0): |
|
715 | 716 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
716 | 717 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
717 | 718 | numpy.sqrt(num_incoh)) |
|
718 | 719 | |
|
719 | 720 | ind = numpy.array([-2, -1, 1, 2]) |
|
720 | 721 | xx = numpy.zeros([4, 4]) |
|
721 | 722 | |
|
722 | 723 | for id1 in range(4): |
|
723 | 724 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
724 | 725 | |
|
725 | 726 | xx_inv = numpy.linalg.inv(xx) |
|
726 | 727 | xx = xx_inv[:, 0] |
|
727 | 728 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
728 | 729 | yy = jspectra[ich, mask_prof[ind], :] |
|
729 | 730 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
730 | 731 | yy.transpose(), xx) |
|
731 | 732 | |
|
732 | 733 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
733 | 734 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
734 | 735 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
735 | 736 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
736 | 737 | |
|
737 | 738 | # Remocion de Interferencia en el Cross Spectra |
|
738 | 739 | if jcspectra is None: |
|
739 | 740 | return jspectra, jcspectra |
|
740 | 741 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
741 | 742 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
742 | 743 | |
|
743 | 744 | for ip in range(num_pairs): |
|
744 | 745 | |
|
745 | 746 | #------------------------------------------- |
|
746 | 747 | |
|
747 | 748 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
748 | 749 | cspower = cspower[:, hei_interf] |
|
749 | 750 | cspower = cspower.sum(axis=0) |
|
750 | 751 | |
|
751 | 752 | cspsort = cspower.ravel().argsort() |
|
752 | 753 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
753 | 754 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
754 | 755 | junkcspc_interf = junkcspc_interf.transpose() |
|
755 | 756 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
756 | 757 | |
|
757 | 758 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
758 | 759 | |
|
759 | 760 | median_real = int(numpy.median(numpy.real( |
|
760 | 761 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
761 | 762 | median_imag = int(numpy.median(numpy.imag( |
|
762 | 763 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
763 | 764 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
764 | 765 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
765 | 766 | median_real, median_imag) |
|
766 | 767 | |
|
767 | 768 | for iprof in range(num_prof): |
|
768 | 769 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
769 | 770 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
770 | 771 | |
|
771 | 772 | # Removiendo la Interferencia |
|
772 | 773 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
773 | 774 | :, ind_hei] - jcspc_interf |
|
774 | 775 | |
|
775 | 776 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
776 | 777 | maxid = ListAux.index(max(ListAux)) |
|
777 | 778 | |
|
778 | 779 | ind = numpy.array([-2, -1, 1, 2]) |
|
779 | 780 | xx = numpy.zeros([4, 4]) |
|
780 | 781 | |
|
781 | 782 | for id1 in range(4): |
|
782 | 783 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
783 | 784 | |
|
784 | 785 | xx_inv = numpy.linalg.inv(xx) |
|
785 | 786 | xx = xx_inv[:, 0] |
|
786 | 787 | |
|
787 | 788 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
788 | 789 | yy = jcspectra[ip, mask_prof[ind], :] |
|
789 | 790 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
790 | 791 | |
|
791 | 792 | # Guardar Resultados |
|
792 | 793 | self.dataOut.data_spc = jspectra |
|
793 | 794 | self.dataOut.data_cspc = jcspectra |
|
794 | 795 | |
|
795 | 796 | return 1 |
|
796 | 797 | |
|
797 | 798 | def setRadarFrequency(self, frequency=None): |
|
798 | 799 | |
|
799 | 800 | if frequency != None: |
|
800 | 801 | self.dataOut.frequency = frequency |
|
801 | 802 | |
|
802 | 803 | return 1 |
|
803 | 804 | |
|
804 | 805 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
805 | 806 | # validacion de rango |
|
806 | 807 | if minHei == None: |
|
807 | 808 | minHei = self.dataOut.heightList[0] |
|
808 | 809 | |
|
809 | 810 | if maxHei == None: |
|
810 | 811 | maxHei = self.dataOut.heightList[-1] |
|
811 | 812 | |
|
812 | 813 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
813 | 814 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
814 | 815 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
815 | 816 | minHei = self.dataOut.heightList[0] |
|
816 | 817 | |
|
817 | 818 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
818 | 819 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
819 | 820 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
820 | 821 | maxHei = self.dataOut.heightList[-1] |
|
821 | 822 | |
|
822 | 823 | # validacion de velocidades |
|
823 | 824 | velrange = self.dataOut.getVelRange(1) |
|
824 | 825 | |
|
825 | 826 | if minVel == None: |
|
826 | 827 | minVel = velrange[0] |
|
827 | 828 | |
|
828 | 829 | if maxVel == None: |
|
829 | 830 | maxVel = velrange[-1] |
|
830 | 831 | |
|
831 | 832 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
832 | 833 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
833 | 834 | print('minVel is setting to %.2f' % (velrange[0])) |
|
834 | 835 | minVel = velrange[0] |
|
835 | 836 | |
|
836 | 837 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
837 | 838 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
838 | 839 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
839 | 840 | maxVel = velrange[-1] |
|
840 | 841 | |
|
841 | 842 | # seleccion de indices para rango |
|
842 | 843 | minIndex = 0 |
|
843 | 844 | maxIndex = 0 |
|
844 | 845 | heights = self.dataOut.heightList |
|
845 | 846 | |
|
846 | 847 | inda = numpy.where(heights >= minHei) |
|
847 | 848 | indb = numpy.where(heights <= maxHei) |
|
848 | 849 | |
|
849 | 850 | try: |
|
850 | 851 | minIndex = inda[0][0] |
|
851 | 852 | except: |
|
852 | 853 | minIndex = 0 |
|
853 | 854 | |
|
854 | 855 | try: |
|
855 | 856 | maxIndex = indb[0][-1] |
|
856 | 857 | except: |
|
857 | 858 | maxIndex = len(heights) |
|
858 | 859 | |
|
859 | 860 | if (minIndex < 0) or (minIndex > maxIndex): |
|
860 | 861 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
861 | 862 | minIndex, maxIndex)) |
|
862 | 863 | |
|
863 | 864 | if (maxIndex >= self.dataOut.nHeights): |
|
864 | 865 | maxIndex = self.dataOut.nHeights - 1 |
|
865 | 866 | |
|
866 | 867 | # seleccion de indices para velocidades |
|
867 | 868 | indminvel = numpy.where(velrange >= minVel) |
|
868 | 869 | indmaxvel = numpy.where(velrange <= maxVel) |
|
869 | 870 | try: |
|
870 | 871 | minIndexVel = indminvel[0][0] |
|
871 | 872 | except: |
|
872 | 873 | minIndexVel = 0 |
|
873 | 874 | |
|
874 | 875 | try: |
|
875 | 876 | maxIndexVel = indmaxvel[0][-1] |
|
876 | 877 | except: |
|
877 | 878 | maxIndexVel = len(velrange) |
|
878 | 879 | |
|
879 | 880 | # seleccion del espectro |
|
880 | 881 | data_spc = self.dataOut.data_spc[:, |
|
881 | 882 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
882 | 883 | # estimacion de ruido |
|
883 | 884 | noise = numpy.zeros(self.dataOut.nChannels) |
|
884 | 885 | |
|
885 | 886 | for channel in range(self.dataOut.nChannels): |
|
886 | 887 | daux = data_spc[channel, :, :] |
|
887 | 888 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
888 | 889 | |
|
889 | 890 | self.dataOut.noise_estimation = noise.copy() |
|
890 | 891 | |
|
891 | 892 | return 1 |
|
892 | 893 | |
|
893 | 894 | |
|
894 | 895 | class IncohInt(Operation): |
|
895 | 896 | |
|
896 | 897 | __profIndex = 0 |
|
897 | 898 | __withOverapping = False |
|
898 | 899 | |
|
899 | 900 | __byTime = False |
|
900 | 901 | __initime = None |
|
901 | 902 | __lastdatatime = None |
|
902 | 903 | __integrationtime = None |
|
903 | 904 | |
|
904 | 905 | __buffer_spc = None |
|
905 | 906 | __buffer_cspc = None |
|
906 | 907 | __buffer_dc = None |
|
907 | 908 | |
|
908 | 909 | __dataReady = False |
|
909 | 910 | |
|
910 | 911 | __timeInterval = None |
|
911 | 912 | |
|
912 | 913 | n = None |
|
913 | 914 | |
|
914 | 915 | def __init__(self): |
|
915 | 916 | |
|
916 | 917 | Operation.__init__(self) |
|
917 | 918 | |
|
918 | 919 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
919 | 920 | """ |
|
920 | 921 | Set the parameters of the integration class. |
|
921 | 922 | |
|
922 | 923 | Inputs: |
|
923 | 924 | |
|
924 | 925 | n : Number of coherent integrations |
|
925 | 926 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
926 | 927 | overlapping : |
|
927 | 928 | |
|
928 | 929 | """ |
|
929 | 930 | |
|
930 | 931 | self.__initime = None |
|
931 | 932 | self.__lastdatatime = 0 |
|
932 | 933 | |
|
933 | 934 | self.__buffer_spc = 0 |
|
934 | 935 | self.__buffer_cspc = 0 |
|
935 | 936 | self.__buffer_dc = 0 |
|
936 | 937 | |
|
937 | 938 | self.__profIndex = 0 |
|
938 | 939 | self.__dataReady = False |
|
939 | 940 | self.__byTime = False |
|
940 | 941 | |
|
941 | 942 | if n is None and timeInterval is None: |
|
942 | 943 | raise ValueError("n or timeInterval should be specified ...") |
|
943 | 944 | |
|
944 | 945 | if n is not None: |
|
945 | 946 | self.n = int(n) |
|
946 | 947 | else: |
|
947 | 948 | |
|
948 | 949 | self.__integrationtime = int(timeInterval) |
|
949 | 950 | self.n = None |
|
950 | 951 | self.__byTime = True |
|
951 | 952 | |
|
952 | 953 | def putData(self, data_spc, data_cspc, data_dc): |
|
953 | 954 | """ |
|
954 | 955 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
955 | 956 | |
|
956 | 957 | """ |
|
957 | 958 | print("profIndex: ",self.__profIndex) |
|
958 | 959 | print("data_spc.shape: ",data_spc.shape) |
|
959 | 960 | print("data_spc.shape: ",data_spc[0,0,:]) |
|
960 | 961 | |
|
961 | 962 | self.__buffer_spc += data_spc |
|
962 | 963 | |
|
963 | 964 | if data_cspc is None: |
|
964 | 965 | self.__buffer_cspc = None |
|
965 | 966 | else: |
|
966 | 967 | self.__buffer_cspc += data_cspc |
|
967 | 968 | |
|
968 | 969 | if data_dc is None: |
|
969 | 970 | self.__buffer_dc = None |
|
970 | 971 | else: |
|
971 | 972 | self.__buffer_dc += data_dc |
|
972 | 973 | |
|
973 | 974 | self.__profIndex += 1 |
|
974 | 975 | |
|
975 | 976 | return |
|
976 | 977 | |
|
977 | 978 | def pushData(self): |
|
978 | 979 | """ |
|
979 | 980 | Return the sum of the last profiles and the profiles used in the sum. |
|
980 | 981 | |
|
981 | 982 | Affected: |
|
982 | 983 | |
|
983 | 984 | self.__profileIndex |
|
984 | 985 | |
|
985 | 986 | """ |
|
986 | 987 | |
|
987 | 988 | data_spc = self.__buffer_spc |
|
988 | 989 | data_cspc = self.__buffer_cspc |
|
989 | 990 | data_dc = self.__buffer_dc |
|
990 | 991 | n = self.__profIndex |
|
991 | 992 | |
|
992 | 993 | self.__buffer_spc = 0 |
|
993 | 994 | self.__buffer_cspc = 0 |
|
994 | 995 | self.__buffer_dc = 0 |
|
995 | 996 | self.__profIndex = 0 |
|
996 | 997 | |
|
997 | 998 | return data_spc, data_cspc, data_dc, n |
|
998 | 999 | |
|
999 | 1000 | def byProfiles(self, *args): |
|
1000 | 1001 | |
|
1001 | 1002 | self.__dataReady = False |
|
1002 | 1003 | avgdata_spc = None |
|
1003 | 1004 | avgdata_cspc = None |
|
1004 | 1005 | avgdata_dc = None |
|
1005 | 1006 | |
|
1006 | 1007 | self.putData(*args) |
|
1007 | 1008 | |
|
1008 | 1009 | if self.__profIndex == self.n: |
|
1009 | 1010 | |
|
1010 | 1011 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1011 | 1012 | self.n = n |
|
1012 | 1013 | self.__dataReady = True |
|
1013 | 1014 | |
|
1014 | 1015 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1015 | 1016 | |
|
1016 | 1017 | def byTime(self, datatime, *args): |
|
1017 | 1018 | |
|
1018 | 1019 | self.__dataReady = False |
|
1019 | 1020 | avgdata_spc = None |
|
1020 | 1021 | avgdata_cspc = None |
|
1021 | 1022 | avgdata_dc = None |
|
1022 | 1023 | |
|
1023 | 1024 | self.putData(*args) |
|
1024 | 1025 | |
|
1025 | 1026 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1026 | 1027 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1027 | 1028 | self.n = n |
|
1028 | 1029 | self.__dataReady = True |
|
1029 | 1030 | |
|
1030 | 1031 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1031 | 1032 | |
|
1032 | 1033 | def integrate(self, datatime, *args): |
|
1033 | 1034 | |
|
1034 | 1035 | if self.__profIndex == 0: |
|
1035 | 1036 | self.__initime = datatime |
|
1036 | 1037 | |
|
1037 | 1038 | if self.__byTime: |
|
1038 | 1039 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1039 | 1040 | datatime, *args) |
|
1040 | 1041 | else: |
|
1041 | 1042 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1042 | 1043 | |
|
1043 | 1044 | if not self.__dataReady: |
|
1044 | 1045 | return None, None, None, None |
|
1045 | 1046 | |
|
1046 | 1047 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1047 | 1048 | |
|
1048 | 1049 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1049 | 1050 | if n == 1: |
|
1050 | 1051 | return |
|
1051 | 1052 | |
|
1052 | 1053 | dataOut.flagNoData = True |
|
1053 | 1054 | |
|
1054 | 1055 | if not self.isConfig: |
|
1055 | 1056 | self.setup(n, timeInterval, overlapping) |
|
1056 | 1057 | self.isConfig = True |
|
1057 | 1058 | |
|
1058 | 1059 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1059 | 1060 | dataOut.data_spc, |
|
1060 | 1061 | dataOut.data_cspc, |
|
1061 | 1062 | dataOut.data_dc) |
|
1062 | 1063 | |
|
1063 | 1064 | if self.__dataReady: |
|
1064 | 1065 | |
|
1065 | 1066 | dataOut.data_spc = avgdata_spc |
|
1066 | 1067 | dataOut.data_cspc = avgdata_cspc |
|
1067 | 1068 | dataOut.data_dc = avgdata_dc |
|
1068 | 1069 | dataOut.nIncohInt *= self.n |
|
1069 | 1070 | dataOut.utctime = avgdatatime |
|
1070 | 1071 | dataOut.flagNoData = False |
|
1071 | 1072 | |
|
1072 | 1073 | return dataOut |
|
1073 | 1074 | |
|
1074 | 1075 | |
|
1075 | 1076 | class PulsePair(Operation): |
|
1076 | 1077 | isConfig = False |
|
1077 | 1078 | __profIndex = 0 |
|
1078 | 1079 | __profIndex2 = 0 |
|
1079 | 1080 | __initime = None |
|
1080 | 1081 | __lastdatatime = None |
|
1081 | 1082 | __buffer = None |
|
1082 | 1083 | __buffer2 = [] |
|
1083 | 1084 | __buffer3 = None |
|
1084 | 1085 | __dataReady = False |
|
1085 | 1086 | n = None |
|
1086 | 1087 | |
|
1087 | 1088 | __nch =0 |
|
1088 | 1089 | __nProf =0 |
|
1089 | 1090 | __nHeis =0 |
|
1090 | 1091 | |
|
1091 | 1092 | def __init__(self,**kwargs): |
|
1092 | 1093 | Operation.__init__(self,**kwargs) |
|
1093 | 1094 | |
|
1094 | 1095 | def setup(self,dataOut,n =None, m = None): |
|
1095 | 1096 | |
|
1096 | 1097 | self.__initime = None |
|
1097 | 1098 | self.__lastdatatime = 0 |
|
1098 | 1099 | self.__buffer = 0 |
|
1099 | 1100 | self.__bufferV = 0 |
|
1100 | 1101 | #self.__buffer2 = [] |
|
1101 | 1102 | self.__buffer3 = 0 |
|
1102 | 1103 | self.__dataReady = False |
|
1103 | 1104 | self.__profIndex = 0 |
|
1104 | 1105 | self.__profIndex2 = 0 |
|
1105 | 1106 | self.count = 0 |
|
1106 | 1107 | |
|
1107 | 1108 | |
|
1108 | 1109 | self.__nch = dataOut.nChannels |
|
1109 | 1110 | self.__nHeis = dataOut.nHeights |
|
1110 | 1111 | self.__nProf = dataOut.nProfiles |
|
1111 | 1112 | self.__nFFT = dataOut.nFFTPoints |
|
1112 | 1113 | #print("Valores de Ch,Samples,Perfiles,nFFT",self.__nch,self.__nHeis,self.__nProf, self.__nFFT) |
|
1113 | 1114 | #print("EL VALOR DE n es:",n) |
|
1114 | 1115 | if n == None: |
|
1115 | 1116 | raise ValueError("n Should be specified.") |
|
1116 | 1117 | |
|
1117 | 1118 | if n != None: |
|
1118 | 1119 | if n<2: |
|
1119 | 1120 | raise ValueError("n Should be greather than 2 ") |
|
1120 | 1121 | self.n = n |
|
1121 | 1122 | if m == None: |
|
1122 | 1123 | m = n |
|
1123 | 1124 | if m != None: |
|
1124 | 1125 | if m<2: |
|
1125 | 1126 | raise ValueError("n Should be greather than 2 ") |
|
1126 | 1127 | |
|
1127 | 1128 | self.m = m |
|
1128 | 1129 | self.__buffer2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) |
|
1129 | 1130 | self.__bufferV2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) |
|
1130 | 1131 | |
|
1131 | 1132 | |
|
1132 | 1133 | |
|
1133 | 1134 | def putData(self,data): |
|
1134 | 1135 | #print("###################################################") |
|
1135 | 1136 | ''' |
|
1136 | 1137 | data_tmp = numpy.zeros(self.__nch,self.n,self.__nHeis, dtype= complex) |
|
1137 | 1138 | if self.count < self.__nProf: |
|
1138 | 1139 | |
|
1139 | 1140 | for i in range(self.n): |
|
1140 | 1141 | data_tmp[:,i,:] = data[:,i+self.count,:] |
|
1141 | 1142 | |
|
1142 | 1143 | self.__buffer = data_tmp*numpy.conjugate(data_tmp) |
|
1143 | 1144 | |
|
1144 | 1145 | |
|
1145 | 1146 | #####self.__buffer = data*numpy.conjugate(data) |
|
1146 | 1147 | #####self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) |
|
1147 | 1148 | |
|
1148 | 1149 | #self.__buffer2.append(numpy.conjugate(data)) |
|
1149 | 1150 | |
|
1150 | 1151 | #####self.__profIndex = data.shape[1] |
|
1151 | 1152 | self.count = self.count + self.n -1 |
|
1152 | 1153 | self.__profIndex = self.n |
|
1153 | 1154 | ''' |
|
1154 | 1155 | self.__buffer = data*numpy.conjugate(data) |
|
1155 | 1156 | self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) |
|
1156 | 1157 | self.__profIndex = self.n |
|
1158 | #print("spcch0",self.__buffer) | |
|
1157 | 1159 | return |
|
1158 | 1160 | |
|
1159 | 1161 | def pushData(self): |
|
1160 | 1162 | |
|
1161 | 1163 | data_I = numpy.zeros((self.__nch,self.__nHeis)) |
|
1162 | 1164 | data_IV = numpy.zeros((self.__nch,self.__nHeis)) |
|
1163 | 1165 | |
|
1164 | 1166 | for i in range(self.__nch): |
|
1165 |
data_I[i,:] = numpy.sum( |
|
|
1166 |
data_IV[i,:] = numpy.sum( |
|
|
1167 | ||
|
1167 | data_I[i,:] = numpy.sum(self.__buffer[i],axis=0)/self.n | |
|
1168 | data_IV[i,:] = numpy.sum(self.__bufferV[i],axis=0)/(self.n-1) | |
|
1169 | ##print("******") | |
|
1170 | #print("data_I",data_I[0]) | |
|
1171 | #print(self.__buffer.shape) | |
|
1172 | #a=numpy.average(self.__buffer,axis=1) | |
|
1173 | #print("average", a) | |
|
1168 | 1174 | n = self.__profIndex |
|
1169 | 1175 | ####data_intensity = numpy.sum(numpy.sum(self.__buffer,axis=0),axis=0)/self.n |
|
1170 | 1176 | #print("data_intensity push data",data_intensity.shape) |
|
1171 | 1177 | #data_velocity = self.__buffer3/(self.n-1) |
|
1172 | 1178 | ####n = self.__profIndex |
|
1173 | 1179 | |
|
1174 | 1180 | self.__buffer = 0 |
|
1175 | 1181 | self.__buffer3 = 0 |
|
1176 | 1182 | self.__profIndex = 0 |
|
1177 | 1183 | |
|
1178 | 1184 | #return data_intensity,data_velocity,n |
|
1179 | 1185 | return data_I,data_IV,n |
|
1180 | 1186 | |
|
1181 | 1187 | def pulsePairbyProfiles(self,data): |
|
1182 | 1188 | self.__dataReady = False |
|
1183 | 1189 | data_intensity = None |
|
1184 | 1190 | data_velocity = None |
|
1185 | 1191 | |
|
1186 | 1192 | self.putData(data) |
|
1187 | 1193 | |
|
1188 | 1194 | if self.__profIndex == self.n: |
|
1189 | 1195 | #data_intensity,data_velocity,n = self.pushData() |
|
1190 | 1196 | data_intensity,data_velocity,n = self.pushData() |
|
1191 | 1197 | #print(data_intensity.shape) |
|
1192 | 1198 | #print("self.__profIndex2", self.__profIndex2) |
|
1193 | 1199 | if self.__profIndex2 == 0: |
|
1194 | 1200 | #print("PRIMERA VEZ") |
|
1195 | 1201 | #print("self.__buffer2",self.__buffer2) |
|
1196 | 1202 | for i in range(self.__nch): |
|
1197 | 1203 | self.__buffer2[i][self.__profIndex2] = data_intensity[i] |
|
1198 | 1204 | self.__bufferV2[i][self.__profIndex2] = data_velocity[i] |
|
1199 | 1205 | self.__profIndex2 += 1 |
|
1200 | 1206 | return None,None |
|
1201 | 1207 | |
|
1202 | 1208 | if self.__profIndex2 > 0: |
|
1203 | 1209 | for i in range(self.__nch): |
|
1204 | 1210 | self.__buffer2[i][self.__profIndex2] = data_intensity[i] |
|
1205 | 1211 | self.__bufferV2[i][self.__profIndex2] = data_velocity[i] |
|
1206 | 1212 | #print("Dentro del bucle",self.__buffer2) |
|
1207 | 1213 | self.__profIndex2 += 1 |
|
1208 | 1214 | if self.__profIndex2 == self.m : |
|
1209 | 1215 | data_i = self.__buffer2 |
|
1210 | 1216 | data_v = self.__bufferV2 |
|
1211 | 1217 | #print(data_i.shape) |
|
1212 | 1218 | self.__dataReady = True |
|
1213 | 1219 | self.__profIndex2 = 0 |
|
1214 | 1220 | self.__buffer2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) |
|
1215 | 1221 | self.__bufferV2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) |
|
1216 | 1222 | return data_i,data_v |
|
1217 | 1223 | return None,None |
|
1218 | 1224 | |
|
1219 | 1225 | def pulsePairOp(self,data,datatime=None): |
|
1220 | 1226 | if self.__initime == None: |
|
1221 | 1227 | self.__initime = datatime |
|
1222 | 1228 | |
|
1223 | 1229 | data_intensity,data_velocity = self.pulsePairbyProfiles(data) |
|
1224 | 1230 | self.__lastdatatime = datatime |
|
1225 | 1231 | |
|
1226 | 1232 | if data_intensity is None: |
|
1227 | 1233 | return None,None,None |
|
1228 | 1234 | |
|
1229 | 1235 | avgdatatime = self.__initime |
|
1230 | 1236 | self.__initime = datatime |
|
1231 | 1237 | |
|
1232 | 1238 | return data_intensity,data_velocity,avgdatatime |
|
1233 | 1239 | |
|
1234 | 1240 | def run(self,dataOut,n =None,m=None): |
|
1235 | 1241 | |
|
1236 | 1242 | if not self.isConfig: |
|
1237 | 1243 | self.setup(dataOut = dataOut, n = n, m = m) |
|
1238 | 1244 | self.isConfig = True |
|
1239 | 1245 | |
|
1240 | 1246 | data_intensity,data_velocity,avgdatatime = self.pulsePairOp(dataOut.data_wr,dataOut.utctime) |
|
1241 | 1247 | dataOut.flagNoData = True |
|
1242 | 1248 | |
|
1243 | 1249 | if self.__dataReady: |
|
1244 | 1250 | #print(" DATA " , data_intensity.shape) |
|
1245 | 1251 | #dataOut.data = numpy.array([data_intensity])#aqui amigo revisa |
|
1246 | 1252 | #tmp = numpy.zeros([1,data_intensity.shape[0],data_intensity.shape[1]]) |
|
1247 | 1253 | #tmp[0] = data_intensity |
|
1248 | 1254 | dataOut.data = data_intensity |
|
1249 | 1255 | dataOut.data_velocity = data_velocity |
|
1250 | 1256 | #dataOut.data = tmp |
|
1251 | 1257 | #print(" DATA " , dataOut.data.shape) |
|
1252 | 1258 | dataOut.nIncohInt *= self.n |
|
1253 | 1259 | dataOut.nProfiles = self.m |
|
1254 | 1260 | dataOut.nFFTPoints = self.m |
|
1255 | 1261 | #dataOut.data_intensity = data_intensity |
|
1256 | 1262 | dataOut.PRFbyAngle = self.n |
|
1257 | 1263 | dataOut.utctime = avgdatatime |
|
1258 | 1264 | dataOut.flagNoData = False |
|
1259 | 1265 | #####print("TIEMPO: ",dataOut.utctime) |
|
1260 | 1266 | return dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now