@@ -324,8 +324,8 class WpowerPlot_(Figure): | |||
|
324 | 324 | zmin : None, |
|
325 | 325 | zmax : None |
|
326 | 326 | """ |
|
327 | print("***************PLOTEO******************") | |
|
328 | print("DATAOUT SHAPE : ",dataOut.data.shape) | |
|
327 | #print("***************PLOTEO******************") | |
|
328 | #print("DATAOUT SHAPE : ",dataOut.data.shape) | |
|
329 | 329 | if dataOut.flagNoData: |
|
330 | 330 | return dataOut |
|
331 | 331 | |
@@ -344,7 +344,7 class WpowerPlot_(Figure): | |||
|
344 | 344 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
345 | 345 | |
|
346 | 346 | |
|
347 | print("channelIndexList",channelIndexList) | |
|
347 | #print("channelIndexList",channelIndexList) | |
|
348 | 348 | if normFactor is None: |
|
349 | 349 | factor = dataOut.normFactor |
|
350 | 350 | else: |
@@ -364,7 +364,7 class WpowerPlot_(Figure): | |||
|
364 | 364 | ylabel = "Range (km)" |
|
365 | 365 | |
|
366 | 366 | y = dataOut.getHeiRange() |
|
367 | print("factor",factor) | |
|
367 | #print("factor",factor) | |
|
368 | 368 | |
|
369 | 369 | z = dataOut.data/factor # dividido /factor |
|
370 | 370 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
@@ -88,6 +88,7 class SpectraProc(ProcessingUnit): | |||
|
88 | 88 | # calculo de self-spectra |
|
89 | 89 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | 90 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | #print("spcch0",spc[0]) | |
|
91 | 92 | spc = spc.real |
|
92 | 93 | |
|
93 | 94 | blocksize = 0 |
@@ -1154,6 +1155,7 class PulsePair(Operation): | |||
|
1154 | 1155 | self.__buffer = data*numpy.conjugate(data) |
|
1155 | 1156 | self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) |
|
1156 | 1157 | self.__profIndex = self.n |
|
1158 | #print("spcch0",self.__buffer) | |
|
1157 | 1159 | return |
|
1158 | 1160 | |
|
1159 | 1161 | def pushData(self): |
@@ -1162,9 +1164,13 class PulsePair(Operation): | |||
|
1162 | 1164 | data_IV = numpy.zeros((self.__nch,self.__nHeis)) |
|
1163 | 1165 | |
|
1164 | 1166 | for i in range(self.__nch): |
|
1165 |
data_I[i,:] = numpy.sum( |
|
|
1166 |
data_IV[i,:] = numpy.sum( |
|
|
1167 | ||
|
1167 | data_I[i,:] = numpy.sum(self.__buffer[i],axis=0)/self.n | |
|
1168 | data_IV[i,:] = numpy.sum(self.__bufferV[i],axis=0)/(self.n-1) | |
|
1169 | ##print("******") | |
|
1170 | #print("data_I",data_I[0]) | |
|
1171 | #print(self.__buffer.shape) | |
|
1172 | #a=numpy.average(self.__buffer,axis=1) | |
|
1173 | #print("average", a) | |
|
1168 | 1174 | n = self.__profIndex |
|
1169 | 1175 | ####data_intensity = numpy.sum(numpy.sum(self.__buffer,axis=0),axis=0)/self.n |
|
1170 | 1176 | #print("data_intensity push data",data_intensity.shape) |
General Comments 0
You need to be logged in to leave comments.
Login now