@@ -1,621 +1,604 | |||
|
1 | 1 | subroutine guess(acf,tau,npts,zero,amin,te,tr) |
|
2 | 2 | c |
|
3 | 3 | c find zero crossing (zero), depth of minimum (amin), height of maximum |
|
4 | 4 | c |
|
5 | 5 | real acf(npts),tau(npts) |
|
6 | 6 | |
|
7 | 7 | zero=0.0 |
|
8 | 8 | amin=1.0 |
|
9 | 9 | tmin=0.0 |
|
10 | 10 | jmin=0 |
|
11 | 11 | |
|
12 | 12 | do i=npts,2,-1 |
|
13 | 13 | if(acf(i)*acf(i-1).lt.0.0) then |
|
14 | 14 | zero=(tau(i-1)*acf(i)-tau(i)*acf(i-1))/(acf(i)-acf(i-1)) |
|
15 | 15 | end if |
|
16 | 16 | if(acf(i).lt.amin) then |
|
17 | 17 | amin=acf(i) |
|
18 | 18 | jmin=i |
|
19 | 19 | end if |
|
20 | 20 | end do |
|
21 | 21 | |
|
22 | 22 | if(jmin.gt.0) then |
|
23 | 23 | call parab1(tau(jmin-1),acf(jmin-1),a,b,c) |
|
24 | 24 | tmin=-b/(2.0*a) |
|
25 | 25 | amin=c+tmin*(b+tmin*a) |
|
26 | 26 | end if |
|
27 | 27 | |
|
28 | 28 | tr=cdtr1(-amin) |
|
29 | 29 | te=czte1(zero*1000.0,tr) |
|
30 | 30 | return |
|
31 | 31 | end |
|
32 | 32 | |
|
33 | 33 | subroutine parab1(x,y,a,b,c) |
|
34 | 34 | C----- |
|
35 | 35 | dimension x(3),y(3) |
|
36 | 36 | delta=x(1)-x(2) |
|
37 | 37 | a=(y(1)-2.*y(2)+y(3))/(2.*delta*delta) |
|
38 | 38 | b=(y(1)-y(2))/delta - a*(x(1)+x(2)) |
|
39 | 39 | c=y(1)-a*x(1)*x(1)-b*x(1) |
|
40 | 40 | return |
|
41 | 41 | end |
|
42 | 42 | |
|
43 | 43 | real function cdtr1(depth) |
|
44 | 44 | C-----convert depth to te/ti ratio |
|
45 | 45 | dimension tr(4) |
|
46 | 46 | C according to the curve published in farley et al 1967 |
|
47 | 47 | c modified for 2004 conditions on axis |
|
48 | 48 | c data tr/7.31081,3.53286,5.92271,.174/ |
|
49 | 49 | data tr/9.5,4.0,8.5,.3/ |
|
50 | 50 | data nt/4/ |
|
51 | 51 | cdtr1=tr(1) |
|
52 | 52 | do i=2,nt |
|
53 | 53 | cdtr1=cdtr1*depth + tr(i) |
|
54 | 54 | end do |
|
55 | 55 | return |
|
56 | 56 | end |
|
57 | 57 | |
|
58 | 58 | real function czte1(zlag,tr) |
|
59 | 59 | C-----convert zero crossing point to te |
|
60 | 60 | C according to the curve published in farley et al 1967 |
|
61 | 61 | c modified for 2004 conditions on axis |
|
62 | 62 | dimension dt(4) |
|
63 | 63 | c data dt/0.00945025,-0.0774338,.203626,.812397/,nd/4/ |
|
64 | 64 | data dt/0.00945025,-0.0774338,.2,0.9/,nd/4/ |
|
65 | 65 | data t0/1000./ |
|
66 | 66 | tr1=min(abs(tr),5.) |
|
67 | 67 | if(zlag .eq. 0)then |
|
68 | 68 | czte1=1000000. |
|
69 | 69 | else |
|
70 | 70 | dt0=dt(1) |
|
71 | 71 | do i=2,nd |
|
72 | 72 | dt0=dt0*tr1 + dt(i) |
|
73 | 73 | end do |
|
74 | 74 | czte1=t0*(dt0/zlag)**2 |
|
75 | 75 | end if |
|
76 | 76 | return |
|
77 | 77 | end |
|
78 | 78 | |
|
79 | 79 | subroutine fit(wl,taup,rhop,covar,cinv,sigma2p,paramp,ebp, |
|
80 | 80 | & bfldp,alphap,densp,alt,time,nl,ifitp,ist) |
|
81 | 81 | c |
|
82 | 82 | c subroutine to fit measured ACF |
|
83 | 83 | c wavelength wl (m),lags taup (s), normalized acf rhop, |
|
84 | 84 | c experimental variances sigma2p, covariances covar, |
|
85 | 85 | c fit parameters params, error bars ebp, magnetic field bfldp (gauss), |
|
86 | 86 | c alphap B-field angle (radians), density densp (gcs), |
|
87 | 87 | c altitude alt (km), time (LT hours), nl lags |
|
88 | 88 | c ifitp determines which parameters are fit (see below) |
|
89 | 89 | c |
|
90 | 90 | real tol,pi,wl |
|
91 | 91 | parameter(nlmax=100,npmax=10,lwa=2000,tol=1.0e-5) |
|
92 | 92 | external fcn |
|
93 | 93 | |
|
94 | 94 | real covar(nl,nl),cinv(nl,nl) |
|
95 | 95 | real ev(nlmax*nlmax),ap(nlmax*(nlmax+1)/2) |
|
96 | 96 | real fv1(nlmax),fv2(nlmax),det(2),w(nlmax) |
|
97 | 97 | |
|
98 | 98 | real taup(nl),rhop(nl),sigma2p(nl),paramp(npmax) |
|
99 | 99 | real p2(npmax),ebp(npmax),alphap,bfldp,densp |
|
100 | 100 | real tau(nlmax),rho(nlmax),sigma2(nlmax),params(npmax) |
|
101 | 101 | real fvec(nlmax),wa(lwa),wa2(lwa),eb(npmax) |
|
102 | 102 | |
|
103 | 103 | integer iwa(npmax),ifitp(npmax),ifit(npmax) |
|
104 | 104 | |
|
105 | 105 | include 'fitter.h' |
|
106 | 106 | common /mode/imode |
|
107 | 107 | |
|
108 | 108 | common/fitter/tau,rho,sigma2,params,ifit |
|
109 | 109 | common/trans/ev |
|
110 | 110 | C----- |
|
111 | 111 | |
|
112 | 112 | c set ifit(1-5) to unity to fit: |
|
113 | 113 | c 1 normalization |
|
114 | 114 | c 2 Te |
|
115 | 115 | c 3 Ti |
|
116 | 116 | c 4 H+ |
|
117 | 117 | c 5 He+ |
|
118 | 118 | |
|
119 | 119 | imode=2 |
|
120 | 120 | c |
|
121 | 121 | pi=4.0*atan(1.0) |
|
122 | 122 | ak=2.0*pi/wl |
|
123 | 123 | |
|
124 | 124 | wi(1)=16 |
|
125 | 125 | wi(2)=1 |
|
126 | 126 | wi(3)=4 |
|
127 | 127 | nion=3 |
|
128 | 128 | |
|
129 | 129 | c |
|
130 | 130 | c invert covariances and find eigenvalues and eigenvectors |
|
131 | 131 | c |
|
132 | 132 | l = 0 |
|
133 | 133 | do 20 j = 1, nl |
|
134 | 134 | do 10 i = 1, j |
|
135 | 135 | l = l + 1 |
|
136 | 136 | ap(l) = covar(i,j) |
|
137 | 137 | 10 continue |
|
138 | 138 | 20 continue |
|
139 | 139 | |
|
140 | 140 | call sppfa(ap,nl,info) |
|
141 | 141 | call sppdi(ap,nl,det,01) |
|
142 | 142 | |
|
143 | 143 | l = 0 |
|
144 | 144 | do 40 j = 1, nl |
|
145 | 145 | do 30 i = 1, j |
|
146 | 146 | l = l + 1 |
|
147 | 147 | cinv(i,j)=ap(l) |
|
148 | 148 | cinv(j,i)=ap(l) |
|
149 | 149 | 30 continue |
|
150 | 150 | 40 continue |
|
151 | 151 | |
|
152 | 152 | c |
|
153 | 153 | c transformation matrix is inverse (transpose) of eigenvectors |
|
154 | 154 | c |
|
155 | 155 | |
|
156 | 156 | matz=1 |
|
157 | 157 | call rs(nl,nl,cinv,w,matz,ev,fv1,fv2,ierr) |
|
158 | 158 | |
|
159 | 159 | do i=1,nl |
|
160 | 160 | sigma2(i)=1.0/w(i) |
|
161 | 161 | end do |
|
162 | 162 | |
|
163 | 163 | c |
|
164 | 164 | c extract desired parameters |
|
165 | 165 | c |
|
166 | 166 | iparm=0 |
|
167 | 167 | do i=1,5 |
|
168 | 168 | eb(i)=0.0 |
|
169 | 169 | if(ifitp(i).eq.1) then |
|
170 | 170 | iparm=iparm+1 |
|
171 | 171 | p2(iparm)=paramp(i) |
|
172 | 172 | end if |
|
173 | 173 | ifit(i)=ifitp(i) |
|
174 | 174 | params(i)=paramp(i) |
|
175 | 175 | end do |
|
176 | 176 | np=iparm |
|
177 | 177 | |
|
178 | 178 | alpha=alphap |
|
179 | 179 | dens=densp |
|
180 | 180 | do i=1,nl |
|
181 | 181 | tau(i)=taup(i) |
|
182 | 182 | rho(i)=rhop(i) |
|
183 | 183 | sigma2p(i)=sigma2(i) |
|
184 | 184 | end do |
|
185 | 185 | |
|
186 | 186 | bfld=bfldp |
|
187 | 187 | |
|
188 | 188 | c |
|
189 | 189 | c no. equations is no. lags - do nlls fit |
|
190 | 190 | c |
|
191 | 191 | |
|
192 | 192 | call lmdif1(fcn,nl,np,p2,fvec,tol,info,iwa,wa,lwa) |
|
193 | 193 | ist=info |
|
194 | 194 | |
|
195 | 195 | c |
|
196 | 196 | c generate error bars here |
|
197 | 197 | c |
|
198 | 198 | call fdjac2(fcn,nl,np,p2,fvec,wa,nl,iflag,0.0e0,wa2) |
|
199 | 199 | |
|
200 | 200 | do i=1,np |
|
201 | 201 | err=0.0 |
|
202 | 202 | do j=1,nl |
|
203 | 203 | err=err+(wa(j+(i-1)*nl))**2 |
|
204 | 204 | end do |
|
205 | 205 | if(err.gt.0.0) eb(i)=sqrt(err**-1) |
|
206 | 206 | end do |
|
207 | 207 | |
|
208 | 208 | c reorder results |
|
209 | 209 | iparm=0 |
|
210 | 210 | do i=1,5 |
|
211 | 211 | if(ifit(i).eq.1) then |
|
212 | 212 | iparm=iparm+1 |
|
213 | 213 | paramp(i)=p2(iparm) |
|
214 | 214 | ebp(i)=eb(iparm) |
|
215 | 215 | else |
|
216 | 216 | ebp(i)=0.0 |
|
217 | 217 | paramp(i)=params(i) |
|
218 | 218 | end if |
|
219 | 219 | end do |
|
220 | 220 | |
|
221 | 221 | 9 continue |
|
222 | 222 | c write(*,*) dens |
|
223 | 223 | c write(*,*) te |
|
224 | 224 | |
|
225 | 225 | return |
|
226 | 226 | end |
|
227 | 227 | |
|
228 | 228 | |
|
229 | 229 | subroutine fcn(m,n,x,fvec,iflag) |
|
230 | 230 | c |
|
231 | 231 | c provides m functions (fvec) in n variables (x) to minimize |
|
232 | 232 | c in least-squares sense |
|
233 | 233 | c |
|
234 | 234 | |
|
235 | 235 | parameter(nlmax=100,npmax=10) |
|
236 | 236 | integer m,n,iflag |
|
237 | 237 | real fvec(m) |
|
238 | 238 | |
|
239 | 239 | integer ifit(npmax) |
|
240 | 240 | real x(n),fv(nlmax),anorm,params(npmax),ev(nlmax*nlmax) |
|
241 | 241 | real tau(nlmax),rho(nlmax),sigma2(nlmax) |
|
242 | 242 | real chisq,acf |
|
243 | 243 | |
|
244 | 244 | include 'fitter.h' |
|
245 | 245 | |
|
246 | 246 | common/fitter/tau,rho,sigma2,params,ifit |
|
247 | 247 | common /errs/ chisq |
|
248 | 248 | common /trans/ev |
|
249 | 249 | |
|
250 | 250 | c 1 0 0 0 0 fit zero lag (otherwise set to default) |
|
251 | 251 | c 0 1 0 0 0 fit Te (otherwise default) |
|
252 | 252 | c 0 0 1 0 0 fit Ti (otherwise set to Te) |
|
253 | 253 | c 0 0 0 1 0 fit H+ (otherwize default) |
|
254 | 254 | c 0 0 0 0 1 fit He+ (otherwise default) |
|
255 | 255 | |
|
256 | 256 | 8 continue |
|
257 | 257 | |
|
258 | 258 | c |
|
259 | 259 | c ignore collisions |
|
260 | 260 | c |
|
261 | 261 | c write(*,*) "starting fcn" |
|
262 | 262 | ven=0.0 |
|
263 | 263 | do i=1,3 |
|
264 | 264 | vin(i)=0.0 |
|
265 | 265 | end do |
|
266 | 266 | |
|
267 | 267 | iparm=0 |
|
268 | 268 | |
|
269 | 269 | c |
|
270 | 270 | c zero lag normalization constant |
|
271 | 271 | c |
|
272 | 272 | if(ifit(1).eq.1) then |
|
273 | 273 | iparm=iparm+1 |
|
274 | 274 | c=x(iparm) |
|
275 | 275 | else |
|
276 | 276 | c=params(1) |
|
277 | 277 | end if |
|
278 | 278 | c |
|
279 | 279 | c Te |
|
280 | 280 | c |
|
281 | 281 | if(ifit(2).eq.1) then |
|
282 | 282 | iparm=iparm+1 |
|
283 | 283 | te=x(iparm) |
|
284 | 284 | else |
|
285 | 285 | te=params(2) |
|
286 | 286 | end if |
|
287 | 287 | c |
|
288 | 288 | c Ti - default is Te rather than initial value |
|
289 | 289 | c |
|
290 | 290 | if(ifit(3).eq.1) then |
|
291 | 291 | iparm=iparm+1 |
|
292 | 292 | do i=1,3 |
|
293 | 293 | ti(i)=x(iparm) |
|
294 | 294 | end do |
|
295 | 295 | else |
|
296 | 296 | do i=1,3 |
|
297 | 297 | ti(i)=te |
|
298 | 298 | end do |
|
299 | 299 | params(3)=te |
|
300 | 300 | end if |
|
301 | 301 | |
|
302 | 302 | c three-ion plasma |
|
303 | 303 | |
|
304 | 304 | nion=3 |
|
305 | 305 | c |
|
306 | 306 | c composition H+ first |
|
307 | 307 | c |
|
308 | 308 | fi(1)=1.0 |
|
309 | 309 | if(ifit(4).eq.1) then |
|
310 | 310 | iparm=iparm+1 |
|
311 | 311 | fi(2)=(x(iparm)) |
|
312 | 312 | fi(1)=fi(1)-(x(iparm)) |
|
313 | 313 | else |
|
314 | 314 | fi(2)=params(4) |
|
315 | 315 | fi(1)=fi(1)-params(4) |
|
316 | 316 | end if |
|
317 | 317 | c |
|
318 | 318 | c He+ |
|
319 | 319 | c |
|
320 | 320 | if(ifit(5).eq.1) then |
|
321 | 321 | iparm=iparm+1 |
|
322 | 322 | fi(3)=(x(iparm)) |
|
323 | 323 | fi(1)=fi(1)-(x(iparm)) |
|
324 | 324 | else |
|
325 | 325 | fi(3)=params(5) |
|
326 | 326 | fi(1)=fi(1)-params(5) |
|
327 | 327 | end if |
|
328 | 328 | |
|
329 | 329 | c write(*,*) x,bfld,alpha,dens,ak,m |
|
330 | 330 | |
|
331 | 331 | call gaussq(0.0,anorm) |
|
332 | 332 | anorm=anorm/c |
|
333 | 333 | |
|
334 | 334 | if(anorm.eq.0.0.or.m.eq.0)return |
|
335 | 335 | chisq=0.0 |
|
336 | 336 | do i=1,m |
|
337 | 337 | call gaussq(tau(i),acf) |
|
338 | 338 | fv(i)=(acf/anorm-rho(i)) |
|
339 | 339 | end do |
|
340 | 340 | |
|
341 | 341 | c |
|
342 | 342 | c transform to space where s2 is diagonal |
|
343 | 343 | c (are i and j transposed below?) |
|
344 | 344 | c |
|
345 | 345 | do i=1,m |
|
346 | 346 | fvec(i)=0.0 |
|
347 | 347 | do j=1,m |
|
348 | 348 | fvec(i)=fvec(i)+fv(j)*ev(j+(i-1)*m)/sqrt(sigma2(i)) |
|
349 | 349 | end do |
|
350 | 350 | chisq=chisq+fvec(i)**2 |
|
351 | 351 | end do |
|
352 | 352 | |
|
353 | 353 | chisq=chisq/float(m) |
|
354 | 354 | |
|
355 | 355 | c write(*,*) fvec |
|
356 | 356 | c write(*,*) chisq |
|
357 | 357 | c stop |
|
358 | 358 | |
|
359 | 359 | return |
|
360 | 360 | end |
|
361 | 361 | |
|
362 | 362 | c |
|
363 | 363 | c not really fond of above code |
|
364 | 364 | c |
|
365 | 365 | |
|
366 | 366 | |
|
367 | 367 | complex function cj_ion(theta,psi) |
|
368 | 368 | c |
|
369 | 369 | real theta,phi,psi,alpha |
|
370 | 370 | complex z |
|
371 | 371 | complex*16 zz |
|
372 | 372 | z=zz(dcmplx(-theta,psi)) |
|
373 | 373 | cj_ion=z*cmplx(0.0,-1.0) |
|
374 | 374 | return |
|
375 | 375 | end |
|
376 | 376 | |
|
377 | 377 | complex function cj_electron(theta,phi,psi,alpha) |
|
378 | 378 | c |
|
379 | 379 | c Theta, phi, and psi are the normalized frequency, gyrofrequency, |
|
380 | 380 | c and collision frequency. Alpha is angle between wavevector and |
|
381 | 381 | c magnetic field in radians. |
|
382 | 382 | c |
|
383 | 383 | parameter(nterms=10) |
|
384 | 384 | real theta,phi,psi,alpha |
|
385 | 385 | real arg |
|
386 | 386 | complex cj,cy(0:nterms) |
|
387 | 387 | complex z |
|
388 | 388 | complex*16 zz |
|
389 | 389 | integer m,nz,ierr |
|
390 | 390 | integer imode |
|
391 | 391 | common/mode/imode |
|
392 | 392 | c |
|
393 | 393 | if(imode.eq.3) then |
|
394 | 394 | |
|
395 | 395 | arg=0.5*(sin(alpha)/phi)**2 |
|
396 | 396 | |
|
397 | 397 | c calculate modified Bessel functions using amos library |
|
398 | 398 | |
|
399 | 399 | call cbesi(cmplx(arg,0.0),0.0,2,nterms+1,cy,nz,ierr) |
|
400 | 400 | |
|
401 | 401 | cj=cmplx(0.0,0.0) |
|
402 | 402 | |
|
403 | 403 | do m=-nterms,nterms |
|
404 | 404 | z=zz(dcmplx(-(theta-float(m)*phi)/cos(alpha), |
|
405 | 405 | & psi/cos(alpha))) |
|
406 | 406 | cj=cj+z*cy(iabs(m)) |
|
407 | 407 | end do |
|
408 | 408 | |
|
409 | 409 | cj_electron=cj*cmplx(0.0,-1.0/cos(alpha)) |
|
410 | 410 | |
|
411 | 411 | else |
|
412 | 412 | |
|
413 | 413 | z=zz(dcmplx(-theta/cos(alpha),psi/cos(alpha))) |
|
414 | 414 | cj_electron=z*cmplx(0.0,-1.0/cos(alpha)) |
|
415 | 415 | cj_electron=cj_electron*(1.0-(sin(alpha)/phi)**2/2.0) |
|
416 | 416 | |
|
417 | 417 | end if |
|
418 | 418 | |
|
419 | 419 | return |
|
420 | 420 | end |
|
421 | 421 | |
|
422 | 422 | complex function y_ion(theta,psi) |
|
423 | 423 | c |
|
424 | 424 | real theta,phi,psi,alpha |
|
425 | 425 | complex cj, cj_ion |
|
426 | 426 | cj=cj_ion(theta,psi) |
|
427 | 427 | y_ion=cj*cmplx(theta,-psi)+cmplx(0.0,1.0) |
|
428 | 428 | y_ion=y_ion/(1-psi*cj) |
|
429 | 429 | return |
|
430 | 430 | end |
|
431 | 431 | |
|
432 | 432 | complex function y_electron(theta,phi,psi,alpha) |
|
433 | 433 | c |
|
434 | 434 | real theta,phi,psi,alpha |
|
435 | 435 | complex cj, cj_electron |
|
436 | 436 | cj=cj_electron(theta,phi,psi,alpha) |
|
437 | 437 | y_electron=cj*cmplx(theta,-psi)+cmplx(0.0,1.0) |
|
438 | 438 | y_electron=y_electron/(1.0-psi*cj) |
|
439 | 439 | return |
|
440 | 440 | end |
|
441 | 441 | |
|
442 | 442 | real function spect1(omega) |
|
443 | 443 | c |
|
444 | 444 | c Function to generate IS ion-line spectrum |
|
445 | 445 | c Provisions for nimax ions |
|
446 | 446 | c No provisions for drifts |
|
447 | 447 | c |
|
448 | 448 | c imode=1 Farley B-field treatment for electrons |
|
449 | 449 | c 2 use Mike Sulzer's model for ye |
|
450 | 450 | c 3 calculate ye using sums of Bessel functions |
|
451 | 451 | c |
|
452 | 452 | include 'fitter.h' |
|
453 | 453 | |
|
454 | 454 | real omega,thetae,thetai(nimax),psie,psii(nimax),phi,p |
|
455 | 455 | real tr(nimax),vti(nimax),vte,omegae |
|
456 | 456 | real bk,em,e,dlf,dl,pi |
|
457 | 457 | real alpha2,densmks,freq |
|
458 | 458 | complex ye,yed,yet,yi(nimax),sum1,sum2,sumdl |
|
459 | 459 | complex y_ion, y_electron, y_esum |
|
460 | 460 | integer i,j,k,imode |
|
461 | 461 | common/mode/ imode |
|
462 | 462 | data bk,em,e,dlf/1.38e-23,9.1e-31,1.6e-19,4772.9/ |
|
463 | 463 | |
|
464 | 464 | c fi is ion fraction, wi is ion atomic weight |
|
465 | 465 | c dens is electron density (cgs), alpha is angle |
|
466 | 466 | c between k and the magnetic field (radians) |
|
467 | 467 | |
|
468 | 468 | pi=4.0*atan(1.0) |
|
469 | 469 | |
|
470 | 470 | if(omega.eq.0.0) omega=1.0 |
|
471 | 471 | |
|
472 | 472 | omegae=e*bfld*1.0e-4/em |
|
473 | 473 | densmks=dens*1.0e6 |
|
474 | 474 | |
|
475 | 475 | sum1=0.0 |
|
476 | 476 | sum2=0.0 |
|
477 | 477 | |
|
478 | 478 | do i=1,nion |
|
479 | 479 | tr(i)=te/ti(i) |
|
480 | 480 | vti(i)=sqrt(bk*ti(i)/(1.67e-27*wi(i))) |
|
481 | 481 | thetai(i)=(omega/ak)/(sqrt(2.0)*vti(i)) |
|
482 | 482 | psii(i)=(vin(i)/ak)/(sqrt(2.0)*vti(i)) |
|
483 | 483 | yi(i)=y_ion(thetai(i),psii(i)) |
|
484 | 484 | sum1=sum1+fi(i)*tr(i)*yi(i) |
|
485 | 485 | sum2=sum2+fi(i)*yi(i) |
|
486 | 486 | end do |
|
487 | 487 | dl=ak**2*dlf*te/densmks |
|
488 | c write(*,fmt='("Before YE")') | |
|
489 | c write(*,*) imode | |
|
490 | c call exit | |
|
491 | 488 | |
|
492 | 489 | if(imode.eq.1.or.imode.eq.3) then |
|
493 | 490 | |
|
494 | 491 | vte=sqrt(bk*te/em) |
|
495 | 492 | thetae=(omega/ak)/(sqrt(2.0)*vte) |
|
496 | 493 | phi=(omegae/ak)/(sqrt(2.0)*vte) |
|
497 | 494 | psie=(ven/ak)/(sqrt(2.0)*vte) |
|
498 | 495 | ye=y_electron(thetae,phi,psie,alpha) |
|
499 | write(*,fmt='("AFTER YE")') | |
|
500 | c call exit | |
|
501 | 496 | |
|
502 | 497 | else if(imode.eq.2) then |
|
503 | 498 | c |
|
504 | 499 | c use Mike Sulzer's library here: alpha2 is angle off perp in degrees |
|
505 | 500 | c |
|
506 | 501 | |
|
507 | 502 | freq=omega/(2.0*pi) |
|
508 | 503 | alpha2=abs(pi/2.0-alpha)*180.0/pi |
|
509 | 504 | c write(*,*) "ye: ", ye |
|
510 | 505 | call collision(densmks, te, freq, alpha2, ye) |
|
511 | c write(*,fmt='("AFTER COLLISION")') | |
|
512 | c call exit | |
|
506 | c write(*,fmt='(" geobfield: time is before earliest model.")') | |
|
513 | 507 | ye=ye*omega+cmplx(0.0,1.0) |
|
514 | 508 | |
|
515 | 509 | end if |
|
516 | 510 | yed=ye+cmplx(0.0,dl) |
|
517 | 511 | |
|
518 | 512 | p=(cabs(ye))**2*real(sum2)+cabs(sum1+cmplx(0.0,dl))**2*real(ye) |
|
519 | 513 | p=p/(cabs(yed+sum1))**2 |
|
520 | 514 | spect1=p*2.0e0/(omega*pi) |
|
521 | write(*,*) "spect1:",spect1 | |
|
515 | ||
|
522 | 516 | return |
|
523 | 517 | end |
|
524 | 518 | |
|
525 | subroutine acf2(wl, tau, te1, ti1, fi1, ven1, vin1, wi1, | |
|
526 |
& alpha1, dens1, bfld1, acf |
|
|
519 | subroutine acf2(wl, tau, te1, ti1, fi1, ven1, vin1, wi1, nion1, | |
|
520 | & alpha1, dens1, bfld1, acf) | |
|
527 | 521 | c |
|
528 | 522 | c computes autocorrelation function for given plasma parameters |
|
529 | 523 | c by integrating real spectrum |
|
530 | 524 | c tau in sec., alpha in radians, density in cgs, bfield in cgs |
|
531 | 525 | c scattering wavelength (wl) in meters |
|
532 | 526 | c |
|
533 | 527 | include 'fitter.h' |
|
534 | 528 | |
|
535 | 529 | real wl,tau,te1,ti1(nion1),fi1(nion1),ven1,vin1(nion1),alpha1, |
|
536 | 530 | & dens1,bfld1,acf |
|
537 | 531 | real pi |
|
538 | 532 | integer nion1 |
|
539 | 533 | integer wi1(nion1) |
|
540 |
integer i,j,k |
|
|
541 | common /mode/imode | |
|
534 | integer i,j,k | |
|
542 | 535 | c |
|
543 | c write(*,*) "INITIAL acf:",wl,tau,te1,ti1,fi1,ven1,vin1,wi1,alpha1 | |
|
544 | write(*,*) "INITIAL acf:",dens1, bfld1, acf, nion1 | |
|
545 | c write(*,fmt='("INIT")') | |
|
546 | 536 | pi=4.0*atan(1.0) |
|
547 | 537 | c |
|
548 | 538 | c copy arguments to common block |
|
549 | 539 | c |
|
550 | 540 | ak=2.0*pi/wl |
|
551 | 541 | imode=2 |
|
552 | write(*,*) "imode:",imode | |
|
553 | 542 | |
|
554 | 543 | nion=nion1 |
|
555 | 544 | alpha=alpha1 |
|
556 | 545 | te=te1 |
|
557 | 546 | ven=ven1 |
|
558 | c write(*,fmt='("INIT2")') | |
|
559 | 547 | do i=1,nion |
|
560 | c write(*,fmt='("INIT2.5")') | |
|
561 | 548 | ti(i)=ti1(i) |
|
562 | 549 | fi(i)=fi1(i) |
|
563 | 550 | vin(i)=vin1(i) |
|
564 | 551 | wi(i)=wi1(i) |
|
565 | 552 | end do |
|
566 | c write(*,fmt='("INIT3")') | |
|
567 | 553 | dens=dens1 |
|
568 | 554 | bfld=bfld1 |
|
569 | 555 | |
|
570 | 556 | c write(*,*) wl,alpha1,bfld1,dens |
|
571 | 557 | c call exit |
|
572 | c write(*,fmt='("Before Gauss")') | |
|
573 | call gaussq(tau,acf) | |
|
574 | 558 | |
|
575 | write(*,*) "FINAL acf:",acf | |
|
559 | call gaussq(tau,acf) | |
|
576 | 560 | |
|
577 | c write(*,fmt='("After Gauss")') | |
|
578 | 561 | return |
|
579 | 562 | end |
|
580 | 563 | |
|
581 | 564 | subroutine gaussq(tau,acf) |
|
582 | 565 | c |
|
583 | 566 | c Computes cosine or sine transform of given real function |
|
584 | 567 | c Uses quadpack, tau in sec. |
|
585 | 568 | c |
|
586 | 569 | real a,abserr,epsabs,acf,tau,work,chebmo |
|
587 | 570 | integer ier,integr,iwork,last,leniw,lenw,limit,limlst, |
|
588 | 571 | * lst,maxp1,neval |
|
589 | 572 | integer knorm,ksave,momcom,nrmom |
|
590 | 573 | dimension iwork(300),work(1625),chebmo(61,25) |
|
591 | 574 | external spect1 |
|
592 | 575 | include 'fitter.h' |
|
593 | 576 | c |
|
594 | 577 | c write(*,*) "inside gaussq" |
|
595 | 578 | a = 0.0 |
|
596 | 579 | b = 2.5e4*ak ! upper integration limit open to debate (was 1.5, now 2.5) |
|
597 | 580 | integr = 1 |
|
598 | 581 | epsabs = 1.0e-4 |
|
599 | 582 | limlst = 50 |
|
600 | 583 | limit = 100 |
|
601 | 584 | leniw = limit*2+limlst |
|
602 | 585 | maxp1 = 61 |
|
603 | 586 | lenw = leniw*2+maxp1*25 |
|
604 | 587 | |
|
605 | 588 | c write(*,*) leniw,lenw |
|
606 | 589 | |
|
607 | 590 | nrmom=0 |
|
608 | 591 | ksave=0 |
|
609 | 592 | momcom=0 |
|
610 | write(*,*) "Before qc25f:",acf,imode | |
|
593 | ||
|
611 | 594 | c much faster, more robust |
|
612 | 595 | c write(*,*) "acf_in: ",acf |
|
613 | 596 | call qc25f(spect1,a,b,tau,integr,nrmom,maxp1,ksave,acf, |
|
614 | 597 | & abserr,neval,resabs,resasc,momcom,chebmo) |
|
615 | 598 | c write(*,*) "acf_out: ",acf |
|
616 | 599 | c call qawf(spect1,a,tau,integr,epsabs,acf,abserr,neval, |
|
617 | 600 | c & ier,limlst,lst,leniw,maxp1,lenw,iwork,work) |
|
618 | write(*,*) "After qc25f:",acf | |
|
619 | c call exit | |
|
601 | ||
|
602 | ||
|
620 | 603 | return |
|
621 | 604 | end |
General Comments 0
You need to be logged in to leave comments.
Login now