##// END OF EJS Templates
19 DE AGOSTO 2021 RM
avaldez -
r1367:42e9a23049f5
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -0,0 +1,31
1 import os,sys
2 import datetime
3 import time
4 from schainpy.controller import Project
5 path='/DATA_RM/TEST_HDF5'
6 path_adq=path
7 path_ped='/DATA_RM/TEST_PEDESTAL/P2021200'
8 figpath = '/home/soporte/Pictures'
9 desc = "Simulator Test"
10
11 controllerObj = Project()
12 controllerObj.setup(id='10',name='Test Simulator',description=desc)
13 readUnitConfObj = controllerObj.addReadUnit(datatype='HDFReader',
14 path=path,
15 startDate="2021/01/01", #"2020/01/01",#today,
16 endDate= "2021/12/01", #"2020/12/30",#today,
17 startTime='00:00:00',
18 endTime='23:59:59',
19 t_Interval_p=0.01,
20 n_Muestras_p=100,
21 delay=5,
22 #set=0,
23 online=0,
24 walk=1)#1
25
26 procUnitConfObjA = controllerObj.addProcUnit(datatype='ParametersProc',inputId=readUnitConfObj.getId())
27
28
29 controllerObj.start()
30 #online 1 utc_adq 1617490240.48
31 #online 0 utc_adq 1617489815.4804
@@ -0,0 +1,92
1 import numpy
2 import sys
3 import zmq
4 import time
5 import h5py
6 import os
7
8 timetuple=time.localtime()
9 meta='P'
10 dir="%s%4.4d%3.3d"%(meta,timetuple.tm_year,timetuple.tm_yday)
11
12 path="/home/soporte/Downloads/PEDESTAL/"+dir
13
14 ext=".hdf5"
15
16 port ="5556"
17 if len(sys.argv)>1:
18 port = sys.argv[1]
19 int(port)
20
21 if len(sys.argv)>2:
22 port1 = sys.argv[2]
23 int(port1)
24
25 #Socket to talk to server
26 context = zmq.Context()
27 socket = context.socket(zmq.SUB)
28
29 print("Collecting updates from weather server...")
30 socket.connect("tcp://localhost:%s"%port)
31
32 if len(sys.argv)>2:
33 socket.connect("tcp://localhost:%s"%port1)
34
35 #Subscribe to zipcode, default is NYC,10001
36 topicfilter = "10001"
37 socket.setsockopt_string(zmq.SUBSCRIBE,topicfilter)
38 #Process 5 updates
39 total_value=0
40 count= -1
41 azi= []
42 elev=[]
43 time0=[]
44 #for update_nbr in range(250):
45 while(True):
46 string= socket.recv()
47 topic,ang_elev,ang_elev_dec,ang_azi,ang_azi_dec,seconds,seconds_dec= string.split()
48 ang_azi =float(ang_azi)+1e-3*float(ang_azi_dec)
49 ang_elev =float(ang_elev)+1e-3*float(ang_elev_dec)
50 seconds =float(seconds) +1e-6*float(seconds_dec)
51 azi.append(ang_azi)
52 elev.append(ang_elev)
53 time0.append(seconds)
54 count +=1
55 if count == 100:
56 timetuple=time.localtime()
57 epoc = time.mktime(timetuple)
58 #print(epoc)
59 fullpath = path + ("/" if path[-1]!="/" else "")
60
61 if not os.path.exists(fullpath):
62 os.mkdir(fullpath)
63
64 azi_array = numpy.array(azi)
65 elev_array = numpy.array(elev)
66 time0_array= numpy.array(time0)
67 pedestal_array=numpy.array([azi,elev,time0])
68 count=0
69 azi= []
70 elev=[]
71 time0=[]
72 #print(pedestal_array[0])
73 #print(pedestal_array[1])
74
75 meta='PE'
76 filex="%s%4.4d%3.3d%10.4d%s"%(meta,timetuple.tm_year,timetuple.tm_yday,epoc,ext)
77 filename = os.path.join(fullpath,filex)
78 fp = h5py.File(filename,'w')
79 #print("Escribiendo HDF5...",epoc)
80 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· DataΒ·....Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
81 grp = fp.create_group("Data")
82 dset = grp.create_dataset("azimuth" , data=pedestal_array[0])
83 dset = grp.create_dataset("elevacion", data=pedestal_array[1])
84 dset = grp.create_dataset("utc" , data=pedestal_array[2])
85 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· MetadataΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
86 grp = fp.create_group("Metadata")
87 dset = grp.create_dataset("utctimeInit", data=pedestal_array[2][0])
88 timeInterval = pedestal_array[2][1]-pedestal_array[2][0]
89 dset = grp.create_dataset("timeInterval", data=timeInterval)
90 fp.close()
91
92 #print ("Average messagedata value for topic '%s' was %dF" % ( topicfilter,total_value / update_nbr))
@@ -0,0 +1,48
1 ###########################################################################
2 ############################### SERVIDOR###################################
3 ######################### SIMULADOR DE PEDESTAL############################
4 ###########################################################################
5 import time
6 import math
7 import numpy
8 import struct
9 from time import sleep
10 import zmq
11 import pickle
12 port="5556"
13 context = zmq.Context()
14 socket = context.socket(zmq.PUB)
15 socket.bind("tcp://*:%s"%port)
16 ###### PARAMETROS DE ENTRADA################################
17 print("PEDESTAL RESOLUCION 0.01")
18 print("MAXIMA VELOCIDAD DEL PEDESTAL")
19 ang_elev = 4.12
20 ang_azi = 30
21 velocidad= input ("Ingresa velocidad:")
22 velocidad= float(velocidad)
23 print (velocidad)
24 ############################################################
25 sleep(3)
26 print("Start program")
27 t1 = time.time()
28 count=0
29 while(True):
30 tmp_vuelta = int(360/velocidad)
31 t1=t1+tmp_vuelta*count
32 count= count+1
33 muestras_seg = 100
34 t2 = time.time()
35 for i in range(tmp_vuelta):
36 for j in range(muestras_seg):
37 tmp_variable = (i+j/100.0)
38 ang_azi = (tmp_variable)*float(velocidad)
39 seconds = t1+ tmp_variable
40 topic=10001
41 print ("AzimΒ°: ","%.4f"%ang_azi,"Time:" ,"%.5f"%seconds)
42 seconds_dec=(seconds-int(seconds))*1e6
43 ang_azi_dec= (ang_azi-int(ang_azi))*1e3
44 ang_elev_dec=(ang_elev-int(ang_elev))*1e3
45 sleep(0.0088)
46 socket.send_string("%d %d %d %d %d %d %d"%(topic,ang_elev,ang_elev_dec,ang_azi,ang_azi_dec,seconds,seconds_dec))
47 t3 = time.time()
48 print ("Total time for 1 vuelta in Seconds",t3-t2)
@@ -0,0 +1,275
1 #!python
2 '''
3 '''
4
5 import os, sys
6 import datetime
7 import time
8
9 #path = os.path.dirname(os.getcwd())
10 #path = os.path.dirname(path)
11 #sys.path.insert(0, path)
12
13 from schainpy.controller import Project
14
15 desc = "USRP_test"
16 filename = "USRP_processing.xml"
17 controllerObj = Project()
18 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
19
20 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
21
22 #######################################################################
23 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
24 #######################################################################
25 #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman'
26 #path = '/DATA_RM/TEST_INTEGRACION'
27 #path = '/DATA_RM/PRUEBA_USRP_RP'
28 path = '/DATA_RM/PRUEBA_USRP_RP'
29
30 figpath = '/home/soporte/Pictures/TEST_RP_0001'
31 figpath = '/home/soporte/Pictures/TEST_RP_6000'
32 figpath = '/home/soporte/Pictures/USRP'
33 #remotefolder = "/home/wmaster/graficos"
34 #######################################################################
35 ################# RANGO DE PLOTEO######################################
36 #######################################################################
37 dBmin = '-5'
38 dBmax = '20'
39 xmin = '0'
40 xmax ='24'
41 ymin = '0'
42 ymax = '600'
43 #######################################################################
44 ########################FECHA##########################################
45 #######################################################################
46 str = datetime.date.today()
47 today = str.strftime("%Y/%m/%d")
48 str2 = str - datetime.timedelta(days=1)
49 yesterday = str2.strftime("%Y/%m/%d")
50 #######################################################################
51 ######################## UNIDAD DE LECTURA#############################
52 #######################################################################
53 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
54 path=path,
55 startDate="2021/07/02",#today,
56 endDate="2021/07/02",#today,
57 startTime='14:50:00',# inicio libre
58 #startTime='00:00:00',
59 endTime='14:55:59',
60 delay=0,
61 #set=0,
62 online=0,
63 walk=1,
64 ippKm = 6000)
65
66 opObj11 = readUnitConfObj.addOperation(name='printInfo')
67 #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock')
68 #######################################################################
69 ################ OPERACIONES DOMINIO DEL TIEMPO########################
70 #######################################################################
71
72 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
73
74 opObj11 = procUnitConfObjA.addOperation(name='selectHeights')
75 opObj11.addParameter(name='minIndex', value='1', format='int')
76 # opObj11.addParameter(name='maxIndex', value='10000', format='int')
77 opObj11.addParameter(name='maxIndex', value='39980', format='int')
78
79 #
80 # codigo64='1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,'+\
81 # '1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1'
82
83 #opObj11 = procUnitConfObjA.addOperation(name='setRadarFrequency')
84 #opObj11.addParameter(name='frequency', value='49920000')
85
86 '''
87 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
88 opObj11.addParameter(name='n', value='625', format='int')#10
89 opObj11.addParameter(name='removeDC', value=1, format='int')
90 '''
91
92 # Ploteo TEST
93 '''
94 opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
95 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
96 opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
97 #opObj11.addParameter(name='xmax', value=8)
98 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
99 '''
100 # OJO SCOPE
101 #opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external')
102 #opObj10.addParameter(name='id', value='10', format='int')
103 ##opObj10.addParameter(name='xmin', value='0', format='int')
104 ##opObj10.addParameter(name='xmax', value='50', format='int')
105 #opObj10.addParameter(name='type', value='iq')
106 ##opObj10.addParameter(name='ymin', value='-5000', format='int')
107 ##opObj10.addParameter(name='ymax', value='8500', format='int')
108 #opObj11.addParameter(name='save', value=figpath, format='str')
109 #opObj11.addParameter(name='save_period', value=10, format='int')
110
111 #opObj10 = procUnitConfObjA.addOperation(name='setH0')
112 #opObj10.addParameter(name='h0', value='-5000', format='float')
113
114 #opObj11 = procUnitConfObjA.addOperation(name='filterByHeights')
115 #opObj11.addParameter(name='window', value='1', format='int')
116
117 #codigo='1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1'
118 #opObj11 = procUnitConfObjSousy.addOperation(name='Decoder', optype='other')
119 #opObj11.addParameter(name='code', value=codigo, format='floatlist')
120 #opObj11.addParameter(name='nCode', value='1', format='int')
121 #opObj11.addParameter(name='nBaud', value='28', format='int')
122
123 #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other')
124 #opObj11.addParameter(name='n', value='100', format='int')
125
126 #######################################################################
127 ########## OPERACIONES ParametersProc########################
128 #######################################################################
129 ###procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
130 '''
131
132 opObj11 = procUnitConfObjA.addOperation(name='PedestalInformation')
133 opObj11.addParameter(name='path_ped', value=path_ped)
134 opObj11.addParameter(name='path_adq', value=path_adq)
135 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
136 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
137 opObj11.addParameter(name='blocksPerfile', value='100', format='int')
138 opObj11.addParameter(name='f_a_p', value='25', format='int')
139 opObj11.addParameter(name='online', value='0', format='int')
140
141 opObj11 = procUnitConfObjA.addOperation(name='Block360')
142 opObj11.addParameter(name='n', value='40', format='int')
143
144 opObj11= procUnitConfObjA.addOperation(name='WeatherPlot',optype='other')
145 opObj11.addParameter(name='save', value=figpath)
146 opObj11.addParameter(name='save_period', value=1)
147
148 8
149 '''
150
151 #######################################################################
152 ########## OPERACIONES DOMINIO DE LA FRECUENCIA########################
153 #######################################################################
154
155 #procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
156 #procUnitConfObjB.addParameter(name='nFFTPoints', value='32', format='int')
157 #procUnitConfObjB.addParameter(name='nProfiles', value='32', format='int')
158
159 procUnitConfObjC = controllerObj.addProcUnit(datatype='SpectraHeisProc', inputId=procUnitConfObjA.getId())
160 #procUnitConfObjB.addParameter(name='nFFTPoints', value='64', format='int')
161 #procUnitConfObjB.addParameter(name='nProfiles', value='64', format='int')
162 opObj11 = procUnitConfObjC.addOperation(name='IncohInt4SpectraHeis', optype='other')
163 #opObj11.addParameter(name='timeInterval', value='4', format='int')
164 opObj11.addParameter(name='n', value='100', format='int')
165
166 #procUnitConfObjB.addParameter(name='pairsList', value='(0,0),(1,1),(0,1)', format='pairsList')
167
168 #opObj13 = procUnitConfObjB.addOperation(name='removeDC')
169 #opObj13.addParameter(name='mode', value='2', format='int')
170
171 #opObj11 = procUnitConfObjB.addOperation(name='IncohInt', optype='other')
172 #opObj11.addParameter(name='n', value='8', format='float')
173 #######################################################################
174 ########## PLOTEO DOMINIO DE LA FRECUENCIA#############################
175 #######################################################################
176 #----
177
178 opObj11 = procUnitConfObjC.addOperation(name='SpectraHeisPlot')
179 opObj11.addParameter(name='id', value='10', format='int')
180 opObj11.addParameter(name='wintitle', value='Spectra_Alturas', format='str')
181 #opObj11.addParameter(name='xmin', value=-100000, format='float')
182 #opObj11.addParameter(name='xmax', value=100000, format='float')
183 opObj11.addParameter(name='oneFigure', value=False,format='bool')
184 #opObj11.addParameter(name='zmin', value=-10, format='int')
185 #opObj11.addParameter(name='zmax', value=40, format='int')
186 opObj11.addParameter(name='ymin', value=10, format='int')
187 opObj11.addParameter(name='ymax', value=55, format='int')
188 opObj11.addParameter(name='grid', value=True, format='bool')
189 #opObj11.addParameter(name='showprofile', value='1', format='int')
190 opObj11.addParameter(name='save', value=figpath, format='str')
191 #opObj11.addParameter(name='save_period', value=10, format='int')
192
193 '''
194 opObj11 = procUnitConfObjC.addOperation(name='RTIHeisPlot')
195 opObj11.addParameter(name='id', value='10', format='int')
196 opObj11.addParameter(name='wintitle', value='RTI_Alturas', format='str')
197 opObj11.addParameter(name='xmin', value=11.0, format='float')
198 opObj11.addParameter(name='xmax', value=18.0, format='float')
199 opObj11.addParameter(name='zmin', value=10, format='int')
200 opObj11.addParameter(name='zmax', value=30, format='int')
201 opObj11.addParameter(name='ymin', value=5, format='int')
202 opObj11.addParameter(name='ymax', value=28, format='int')
203 opObj11.addParameter(name='showprofile', value='1', format='int')
204 opObj11.addParameter(name='save', value=figpath, format='str')
205 opObj11.addParameter(name='save_period', value=10, format='int')
206 '''
207 '''
208 #SpectraPlot
209
210 opObj11 = procUnitConfObjB.addOperation(name='SpectraPlot', optype='external')
211 opObj11.addParameter(name='id', value='1', format='int')
212 opObj11.addParameter(name='wintitle', value='Spectra', format='str')
213 #opObj11.addParameter(name='xmin', value=-0.01, format='float')
214 #opObj11.addParameter(name='xmax', value=0.01, format='float')
215 opObj11.addParameter(name='zmin', value=dBmin, format='int')
216 opObj11.addParameter(name='zmax', value=dBmax, format='int')
217 #opObj11.addParameter(name='ymin', value=ymin, format='int')
218 #opObj11.addParameter(name='ymax', value=ymax, format='int')
219 opObj11.addParameter(name='showprofile', value='1', format='int')
220 opObj11.addParameter(name='save', value=figpath, format='str')
221 opObj11.addParameter(name='save_period', value=10, format='int')
222
223 #RTIPLOT
224
225 opObj11 = procUnitConfObjB.addOperation(name='RTIPlot', optype='external')
226 opObj11.addParameter(name='id', value='2', format='int')
227 opObj11.addParameter(name='wintitle', value='RTIPlot', format='str')
228 opObj11.addParameter(name='zmin', value=dBmin, format='int')
229 opObj11.addParameter(name='zmax', value=dBmax, format='int')
230 #opObj11.addParameter(name='ymin', value=ymin, format='int')
231 #opObj11.addParameter(name='ymax', value=ymax, format='int')
232 #opObj11.addParameter(name='xmin', value=15, format='int')
233 #opObj11.addParameter(name='xmax', value=16, format='int')
234
235 opObj11.addParameter(name='showprofile', value='1', format='int')
236 opObj11.addParameter(name='save', value=figpath, format='str')
237 opObj11.addParameter(name='save_period', value=10, format='int')
238
239 '''
240 # opObj11 = procUnitConfObjB.addOperation(name='CrossSpectraPlot', optype='other')
241 # opObj11.addParameter(name='id', value='3', format='int')
242 # opObj11.addParameter(name='wintitle', value='CrossSpectraPlot', format='str')
243 # opObj11.addParameter(name='ymin', value=ymin, format='int')
244 # opObj11.addParameter(name='ymax', value=ymax, format='int')
245 # opObj11.addParameter(name='phase_cmap', value='jet', format='str')
246 # opObj11.addParameter(name='zmin', value=dBmin, format='int')
247 # opObj11.addParameter(name='zmax', value=dBmax, format='int')
248 # opObj11.addParameter(name='figpath', value=figures_path, format='str')
249 # opObj11.addParameter(name='save', value=0, format='bool')
250 # opObj11.addParameter(name='pairsList', value='(0,1)', format='pairsList')
251 # #
252 # opObj11 = procUnitConfObjB.addOperation(name='CoherenceMap', optype='other')
253 # opObj11.addParameter(name='id', value='4', format='int')
254 # opObj11.addParameter(name='wintitle', value='Coherence', format='str')
255 # opObj11.addParameter(name='phase_cmap', value='jet', format='str')
256 # opObj11.addParameter(name='xmin', value=xmin, format='float')
257 # opObj11.addParameter(name='xmax', value=xmax, format='float')
258 # opObj11.addParameter(name='figpath', value=figures_path, format='str')
259 # opObj11.addParameter(name='save', value=0, format='bool')
260 # opObj11.addParameter(name='pairsList', value='(0,1)', format='pairsList')
261 #
262
263 '''
264 #######################################################################
265 ############### UNIDAD DE ESCRITURA ###################################
266 #######################################################################
267 #opObj11 = procUnitConfObjB.addOperation(name='SpectraWriter', optype='other')
268 #opObj11.addParameter(name='path', value=wr_path)
269 #opObj11.addParameter(name='blocksPerFile', value='50', format='int')
270 print ("Escribiendo el archivo XML")
271 print ("Leyendo el archivo XML")
272 '''
273
274
275 controllerObj.start()
@@ -0,0 +1,126
1 #!python
2 '''
3 '''
4
5 import os, sys
6 import datetime
7 import time
8
9 #path = os.path.dirname(os.getcwd())
10 #path = os.path.dirname(path)
11 #sys.path.insert(0, path)
12
13 from schainpy.controller import Project
14
15 desc = "USRP_test"
16 filename = "USRP_processing.xml"
17 controllerObj = Project()
18 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
19
20 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
21
22 #######################################################################
23 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
24 #######################################################################
25 #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman'
26 #path = '/DATA_RM/TEST_INTEGRACION'
27 path = '/DATA_RM/TEST_ONLINE'
28 path_pp = '/DATA_RM/TEST_HDF5'
29
30 figpath = '/home/soporte/Pictures/TEST_INTEGRACION_IMG'
31 #remotefolder = "/home/wmaster/graficos"
32 #######################################################################
33 ################# RANGO DE PLOTEO######################################
34 #######################################################################
35 dBmin = '-5'
36 dBmax = '20'
37 xmin = '0'
38 xmax ='24'
39 ymin = '0'
40 ymax = '600'
41 #######################################################################
42 ########################FECHA##########################################
43 #######################################################################
44 str = datetime.date.today()
45 today = str.strftime("%Y/%m/%d")
46 str2 = str - datetime.timedelta(days=1)
47 yesterday = str2.strftime("%Y/%m/%d")
48 #######################################################################
49 ######################## UNIDAD DE LECTURA#############################
50 #######################################################################
51 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
52 path=path,
53 startDate="2021/01/01",#today,
54 endDate="2021/12/30",#today,
55 startTime='00:00:00',
56 endTime='23:59:59',
57 delay=0,
58 #set=0,
59 online=1,
60 walk=1,
61 ippKm = 60)
62
63 opObj11 = readUnitConfObj.addOperation(name='printInfo')
64 #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock')
65 #######################################################################
66 ################ OPERACIONES DOMINIO DEL TIEMPO########################
67 #######################################################################
68
69 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
70
71 #
72 # codigo64='1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,'+\
73 # '1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1'
74
75 #opObj11 = procUnitConfObjA.addOperation(name='setRadarFrequency')
76 #opObj11.addParameter(name='frequency', value='70312500')
77 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
78 opObj11.addParameter(name='n', value='625', format='int')#10
79 opObj11.addParameter(name='removeDC', value=1, format='int')
80 # Ploteo TEST
81 '''
82 opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
83 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
84 opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
85 #opObj11.addParameter(name='xmax', value=8)
86 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
87 '''
88 # OJO SCOPE
89 #opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external')
90 #opObj10.addParameter(name='id', value='10', format='int')
91 ##opObj10.addParameter(name='xmin', value='0', format='int')
92 ##opObj10.addParameter(name='xmax', value='50', format='int')
93 #opObj10.addParameter(name='type', value='iq')
94 ##opObj10.addParameter(name='ymin', value='-5000', format='int')
95 ##opObj10.addParameter(name='ymax', value='8500', format='int')
96 #opObj11.addParameter(name='save', value=figpath, format='str')
97 #opObj11.addParameter(name='save_period', value=10, format='int')
98
99 #opObj10 = procUnitConfObjA.addOperation(name='setH0')
100 #opObj10.addParameter(name='h0', value='-5000', format='float')
101
102 #opObj11 = procUnitConfObjA.addOperation(name='filterByHeights')
103 #opObj11.addParameter(name='window', value='1', format='int')
104
105 #codigo='1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1'
106 #opObj11 = procUnitConfObjSousy.addOperation(name='Decoder', optype='other')
107 #opObj11.addParameter(name='code', value=codigo, formatyesterday='floatlist')
108 #opObj11.addParameter(name='nCode', value='1', format='int')
109 #opObj11.addParameter(name='nBaud', value='28', format='int')
110
111 #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other')
112 #opObj11.addParameter(name='n', value='100', format='int')
113
114 #######################################################################
115 ########## OPERACIONES ParametersProc########################
116 #######################################################################
117
118 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
119 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
120 opObj10.addParameter(name='path',value=path_pp)
121 #opObj10.addParameter(name='mode',value=0)
122 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
123 opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list')
124 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list'
125
126 controllerObj.start()
@@ -0,0 +1,126
1 #!python
2 '''
3 '''
4
5 import os, sys
6 import datetime
7 import time
8
9 #path = os.path.dirname(os.getcwd())
10 #path = os.path.dirname(path)
11 #sys.path.insert(0, path)
12
13 from schainpy.controller import Project
14
15 desc = "USRP_test"
16 filename = "USRP_processing.xml"
17 controllerObj = Project()
18 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
19
20 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
21
22 #######################################################################
23 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
24 #######################################################################
25 #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman'
26 #path = '/DATA_RM/TEST_INTEGRACION'
27 path = '/DATA_RM/TEST_ONLINE'
28 path_pp = '/DATA_RM/TEST_HDF5'
29
30 figpath = '/home/soporte/Pictures/TEST_INTEGRACION_IMG'
31 #remotefolder = "/home/wmaster/graficos"
32 #######################################################################
33 ################# RANGO DE PLOTEO######################################
34 #######################################################################
35 dBmin = '-5'
36 dBmax = '20'
37 xmin = '0'
38 xmax ='24'
39 ymin = '0'
40 ymax = '600'
41 #######################################################################
42 ########################FECHA##########################################
43 #######################################################################
44 str = datetime.date.today()
45 today = str.strftime("%Y/%m/%d")
46 str2 = str - datetime.timedelta(days=1)
47 yesterday = str2.strftime("%Y/%m/%d")
48 #######################################################################
49 ######################## UNIDAD DE LECTURA#############################
50 #######################################################################
51 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
52 path=path,
53 startDate="2021/01/01",#today,
54 endDate="2021/12/30",#today,
55 startTime='00:00:00',
56 endTime='23:59:59',
57 delay=0,
58 #set=0,
59 online=1,
60 walk=1,
61 ippKm = 60)
62
63 opObj11 = readUnitConfObj.addOperation(name='printInfo')
64 #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock')
65 #######################################################################
66 ################ OPERACIONES DOMINIO DEL TIEMPO########################
67 #######################################################################
68
69 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
70
71 #
72 # codigo64='1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,'+\
73 # '1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1'
74
75 #opObj11 = procUnitConfObjA.addOperation(name='setRadarFrequency')
76 #opObj11.addParameter(name='frequency', value='70312500')
77 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
78 opObj11.addParameter(name='n', value='625', format='int')#10
79 opObj11.addParameter(name='removeDC', value=1, format='int')
80 # Ploteo TEST
81 '''
82 opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
83 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
84 opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
85 #opObj11.addParameter(name='xmax', value=8)
86 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
87 '''
88 # OJO SCOPE
89 #opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external')
90 #opObj10.addParameter(name='buffer_sizeid', value='10', format='int')
91 ##opObj10.addParameter(name='xmin', value='0', format='int')
92 ##opObj10.addParameter(name='xmax', value='50', format='int')
93 #opObj10.addParameter(name='type', value='iq')
94 ##opObj10.addParameter(name='ymin', value='-5000', format='int')
95 ##opObj10.addParameter(name='ymax', value='8500', format='int')
96 #opObj11.addParameter(name='save', value=figpath, format='str')
97 #opObj11.addParameter(name='save_period', value=10, format='int')
98
99 #opObj10 = procUnitConfObjA.addOperation(name='setH0')
100 #opObj10.addParameter(name='h0', value='-5000', format='float')
101
102 #opObj11 = procUnitConfObjA.addOperation(name='filterByHeights')
103 #opObj11.addParameter(name='window', value='1', format='int')
104
105 #codigo='1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1'
106 #opObj11 = procUnitConfObjSousy.addOperation(name='Decoder', optype='other')
107 #opObj11.addParameter(name='code', value=codigo, formatyesterday='floatlist')
108 #opObj11.addParameter(name='nCode', value='1', format='int')
109 #opObj11.addParameter(name='nBaud', value='28', format='int')
110
111 #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other')
112 #opObj11.addParameter(name='n', value='100', format='int')
113
114 #######################################################################
115 ########## OPERACIONES ParametersProc########################
116 #######################################################################
117
118 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
119 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
120 opObj10.addParameter(name='path',value=path_pp)
121 #opObj10.addParameter(name='mode',value=0)
122 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
123 opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list')
124 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list'
125
126 controllerObj.start()
@@ -0,0 +1,52
1 import os,sys
2 import datetime
3 import time
4 from schainpy.controller import Project
5 #path='/DATA_RM/TEST_HDF5/d2021200'
6 #path='/DATA_RM/TEST_HDF5/d2021200'
7 path='/DATA_RM/TEST_HDF5/d2021203'
8
9 path_adq=path
10 #path_ped='/DATA_RM/TEST_PEDESTAL/P2021200'
11 path_ped='/DATA_RM/TEST_PEDESTAL/P2021203'
12
13 figpath = '/home/soporte/Pictures'
14 desc = "Simulator Test"
15
16 controllerObj = Project()
17 controllerObj.setup(id='10',name='Test Simulator',description=desc)
18 readUnitConfObj = controllerObj.addReadUnit(datatype='HDFReader',
19 path=path,
20 startDate="2021/01/01", #"2020/01/01",#today,
21 endDate= "2021/12/01", #"2020/12/30",#today,
22 startTime='00:00:00',
23 endTime='23:59:59',
24 t_Interval_p=0.01,
25 n_Muestras_p=100,
26 delay=5,
27 #set=0,
28 online=0,
29 walk=0)#1
30
31 procUnitConfObjA = controllerObj.addProcUnit(datatype='ParametersProc',inputId=readUnitConfObj.getId())
32
33 opObj11 = procUnitConfObjA.addOperation(name='PedestalInformation')
34 opObj11.addParameter(name='path_ped', value=path_ped)
35 opObj11.addParameter(name='path_adq', value=path_adq)
36 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
37 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
38 opObj11.addParameter(name='blocksPerfile', value='100', format='int')
39 opObj11.addParameter(name='f_a_p', value='25', format='int')
40 opObj11.addParameter(name='online', value='0', format='int')
41
42
43 opObj11 = procUnitConfObjA.addOperation(name='Block360')
44 opObj11.addParameter(name='n', value='40', format='int')
45
46 opObj11= procUnitConfObjA.addOperation(name='WeatherPlot',optype='other')
47 opObj11.addParameter(name='save', value=figpath)
48 opObj11.addParameter(name='save_period', value=1)
49
50 controllerObj.start()
51 #online 1 utc_adq 1617490240.48
52 #online 0 utc_adq 1617489815.4804
@@ -0,0 +1,59
1 import os,sys
2 import datetime
3 import time
4 from schainpy.controller import Project
5 #path='/DATA_RM/TEST_HDF5/d2021200'
6 #path='/DATA_RM/TEST_HDF5/d2021200'
7 #path='/DATA_RM/TEST_HDF5/d2021214'
8 #path='/DATA_RM/TEST_HDF5/d2021229'
9
10 path='/DATA_RM/TEST_HDF5/d2021231'
11
12
13 path_adq=path
14 #path_ped='/DATA_RM/TEST_PEDESTAL/P2021200'
15 #path_ped='/DATA_RM/TEST_PEDESTAL/P2021214'
16 #path_ped='/DATA_RM/TEST_PEDESTAL/P2021230'
17 path_ped='/DATA_RM/TEST_PEDESTAL/P20210819'
18 figpath = '/home/soporte/Pictures'
19 desc = "Simulator Test"
20
21 controllerObj = Project()
22 controllerObj.setup(id='10',name='Test Simulator',description=desc)
23 readUnitConfObj = controllerObj.addReadUnit(datatype='HDFReader',
24 path=path,
25 startDate="2021/01/01", #"2020/01/01",#today,
26 endDate= "2021/12/01", #"2020/12/30",#today,
27 startTime='00:00:00',
28 endTime='23:59:59',
29 t_Interval_p=0.01,
30 n_Muestras_p=100,
31 delay=30,
32 #set=0,
33 online=1,
34 walk=0,
35 nTries=6)#1
36
37 procUnitConfObjA = controllerObj.addProcUnit(datatype='ParametersProc',inputId=readUnitConfObj.getId())
38
39 opObj11 = procUnitConfObjA.addOperation(name='PedestalInformation')
40 opObj11.addParameter(name='path_ped', value=path_ped)
41 opObj11.addParameter(name='path_adq', value=path_adq)
42 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
43 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
44 opObj11.addParameter(name='blocksPerfile', value='100', format='int')
45 opObj11.addParameter(name='f_a_p', value='25', format='int')
46 opObj11.addParameter(name='online', value='1', format='int')# habilitar el enable aqui tambien
47
48
49 opObj11 = procUnitConfObjA.addOperation(name='Block360')
50 opObj11.addParameter(name='n', value='40', format='int')
51 # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180
52
53 opObj11= procUnitConfObjA.addOperation(name='WeatherPlot',optype='other')
54 opObj11.addParameter(name='save', value=figpath)
55 opObj11.addParameter(name='save_period', value=1)
56
57 controllerObj.start()
58 #online 1 utc_adq 1617490240.48
59 #online 0 utc_adq 1617489815.4804
@@ -0,0 +1,35
1 #*******************************************************************************
2 #*************ARCHIVO DE CONFIGURACION - RADAR METEOROLOGICO********************
3 #*******************************************************************************
4 # 1-Resolucion_angular(Grados ΒΊ)-F
5 1.0
6 # 2-Velocidad_Pedestal Azimuth(ΒΊ/s)-F
7 4.0
8 # 3-Posicion_Pedestal Azimuth(ΒΊ/s)-F
9 0.0
10 # 4-Posicion_Pedestal Elevacion(ΒΊ/s)-F
11 30.0
12 # 5-IPP(useg)-F
13 400
14 # n-PulsePair-nFFTPoints-R
15 625
16 # 6-Cantidad_Muestras_archivo_pedestal-F
17 100
18 # 7-Tiempo_por_muestra_pedestal-F
19 0.01
20 # Tiempo_archivo_por_pedestal-R
21 1.0
22 # 8-Bloques_por_arhivo_adquisicion-F
23 100.0
24 # tiempo_por_archivo_adquisicion-R
25 25.0
26 # mode Time Domain(T , 1) or Frequency Domain(F , 0)
27 1
28 # path_p
29 /home/developer/Downloads/Pedestal/P2021093
30 # path_a
31 /home/developer/Downloads/HDF5_TESTPP2V3/d2021093
32 # online
33 0
34 # Directorio final
35 /home/developer/Downloads/HDF5_WR/
@@ -0,0 +1,70
1 print("LECTURA DE ARCHIVOS DE CONFIGURACION")
2 class ReadfileWR():
3 def __init__(self,filename):
4 f = open(filename, "r")
5 i=0
6 self.dict={'paht_ped':None,'path_adq':None,'path_res':None,'resolution':None,'vel_ped_azi':None,'pos_ped_azi':None,'pos_ped_ele':None,'ipp':None,'n':None,'len_ped':None,\
7 't_s_ped':None,'t_f_ped':None,'b_f_adq':None,'t_f_adq':None,'mode':None,'online':None}
8 while(True):
9 ##print(i)
10 linea = f.readline()
11 if i==4:
12 resolution=float(linea)
13 self.dict['resolution']=resolution
14 if i==6:
15 vel_pedestal_a=float(linea)
16 self.dict['vel_ped_azi']=vel_pedestal_a
17 if i==8:
18 pos_pedestal_a=float(linea)
19 self.dict['pos_ped_azi']=pos_pedestal_a
20 if i==10:
21 pos_pedestal_e=float(linea)
22 self.dict['pos_ped_ele']=pos_pedestal_e
23 if i==12:
24 ipp = float(linea)
25 self.dict['ipp']= round(ipp,5)
26 if i==14:
27 n = float(linea)
28 self.dict['n']= n
29 if i==16:
30 len_pedestal= float(linea)
31 self.dict['len_ped']= len_pedestal
32 if i==18:
33 time_x_sample_ped=float(linea)
34 self.dict['t_s_ped']= time_x_sample_ped
35 if i==20:
36 time_x_file_ped = float(linea)
37 self.dict['t_f_ped']= time_x_file_ped
38 if i==22:
39 bloques_x_file_adq= float(linea)
40 self.dict['b_f_adq']=bloques_x_file_adq
41 if i==24:
42 time_x_file_adq = float(linea)
43 self.dict['t_f_adq'] = time_x_file_adq
44 if i==26:
45 mode= int(linea)
46 self.dict['mode'] = mode
47 if i==28:
48 path_p= str(linea)
49 self.dict['path_ped'] = path_p
50 if i==30:
51 path_a= str(linea)
52 self.dict['path_adq'] = path_a
53 if i==32:
54 online= int(linea)
55 self.dict['online'] = online
56 if i==34:
57 path_r= str(linea)
58 self.dict['path_res'] = path_r
59 #print(linea)
60 if not linea:
61 break
62 i+=1
63 f.close()
64 def getDict(self):
65 return self.dict
66
67
68 #filename= "/home/developer/Downloads/config_WR.txt"
69 #dict= ReadfileWR(filename).getDict()
70 #print(dict)
@@ -0,0 +1,118
1 #!python
2 '''
3 '''
4
5 import os, sys
6 import datetime
7 import time
8
9
10 from schainpy.controller import Project
11
12 desc = "USRP_test"
13 filename = "USRP_processing.xml"
14 controllerObj = Project()
15 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
16
17 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
18
19 #######################################################################
20 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
21 #######################################################################
22 # path IVAN
23 path = '/home/soporte/jarsjuliahigh/high'
24
25 figpath = '/home/soporte/Pictures/IVAN'
26 #remotefolder = "/home/wmaster/graficos"
27 #######################################################################
28 ################# RANGO DE PLOTEO######################################
29 #######################################################################
30 dBmin = '10'
31 dBmax = '55'
32 xmin = '0'
33 xmax ='24'
34 ymin = '0'
35 ymax = '600'
36 #######################################################################
37 ########################FECHA##########################################
38 #######################################################################
39 str = datetime.date.today()
40 today = str.strftime("%Y/%m/%d")
41 str2 = str - datetime.timedelta(days=1)
42 yesterday = str2.strftime("%Y/%m/%d")
43 #######################################################################
44 ######################## UNIDAD DE LECTURA#############################
45 #######################################################################
46 readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader',
47 path=path,
48 startDate="2021/07/02",#today,
49 endDate="2021/07/02",#today,
50 startTime='14:50:01',# inicio libre
51 endTime='14:55:59',
52 delay=0,
53 #set=0,
54 online=0,
55 walk=0)
56
57 opObj11 = readUnitConfObj.addOperation(name='printInfo')
58 #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock')
59 #######################################################################
60 ################ OPERACIONES DOMINIO DEL TIEMPO########################
61 #######################################################################
62
63 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
64
65 #opObj10 = procUnitConfObjA.addOperation(name='selectChannels')
66 #opObj10.addParameter(name='channelList', value=[0])
67
68 '''
69 opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external')
70 opObj10.addParameter(name='id', value='10', format='int')
71 #opObj10.addParameter(name='xmin', value='0', format='int')
72 ##opObj10.addParameter(name='xmax', value='50', format='int')
73 opObj10.addParameter(name='type', value='iq')
74 ##opObj10.addParameter(name='ymin', value='-5000', format='int')
75 ##opObj10.addParameter(name='ymax', value='8500', format='int')
76 #opObj11.addParameter(name='save', value=figpath, format='str')
77 #opObj11.addParameter(name='save_period', value=10, format='int')
78 '''
79 ###opObj11 = procUnitConfObjA.addOperation(name='selectHeights')
80 ###opObj11.addParameter(name='minIndex', value='1', format='int')
81 #### opObj11.addParameter(name='maxIndex', value='10000', format='int')
82 ####opObj11.addParameter(name='maxIndex', value='39980', format='int')
83
84 #######################################################################
85 ########## OPERACIONES DOMINIO DE LA FRECUENCIA########################
86 #######################################################################
87
88 #procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
89 #procUnitConfObjB.addParameter(name='nFFTPoints', value='32', format='int')
90 #procUnitConfObjB.addParameter(name='nProfiles', value='32', format='int')
91
92 procUnitConfObjC = controllerObj.addProcUnit(datatype='SpectraHeisProc', inputId=procUnitConfObjA.getId())
93
94 opObj11 = procUnitConfObjC.addOperation(name='IncohInt4SpectraHeis', optype='other')
95 #opObj11.addParameter(name='timeInterval', value='4', format='int')
96 opObj11.addParameter(name='n', value='100', format='int')
97
98 #opObj11.addParameter(name='overlapping', value=True, format='bool')
99
100 opObj11 = procUnitConfObjC.addOperation(name='SpectraHeisPlot')
101 opObj11.addParameter(name='id', value='10', format='int')
102 opObj11.addParameter(name='wintitle', value='Spectra_Alturas', format='str')
103
104 #opObj11.addParameter(name='xmin', value=-100000, format='float')
105 #opObj11.addParameter(name='xmax', value=100000, format='float')
106 opObj11.addParameter(name='oneFigure', value=False,format='bool')
107 #opObj11.addParameter(name='zmin', value=-10, format='int')
108 #opObj11.addParameter(name='zmax', value=40, format='int')
109 opObj11.addParameter(name='ymin', value=dBmin, format='int')
110 opObj11.addParameter(name='ymax', value=dBmax, format='int')
111 opObj11.addParameter(name='grid', value=True, format='bool')
112 #opObj11.addParameter(name='showprofile', value='1', format='int')
113 opObj11.addParameter(name='save', value=figpath, format='str')
114 #opObj11.addParameter(name='save_period', value=10, format='int')
115
116
117
118 controllerObj.start()
@@ -0,0 +1,103
1 #!python
2 '''
3 '''
4
5 import os, sys
6 import datetime
7 import time
8
9
10 from schainpy.controller import Project
11
12 desc = "USRP_test"
13 filename = "USRP_processing.xml"
14 controllerObj = Project()
15 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
16
17 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
18
19 #######################################################################
20 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
21 #######################################################################
22 # path JHON
23 path = '/home/soporte/jars2'
24
25 figpath = '/home/soporte/Pictures/JHON'
26 #remotefolder = "/home/wmaster/graficos"
27 #######################################################################
28 ################# RANGO DE PLOTEO######################################
29 #######################################################################
30 dBmin = '0'
31 dBmax = '50'
32 xmin = '0'
33 xmax ='24'
34 ymin = '0'
35 ymax = '600'
36 #######################################################################
37 ########################FECHA##########################################
38 #######################################################################
39 str = datetime.date.today()
40 today = str.strftime("%Y/%m/%d")
41 str2 = str - datetime.timedelta(days=1)
42 yesterday = str2.strftime("%Y/%m/%d")
43 #######################################################################
44 ######################## UNIDAD DE LECTURA#############################
45 #######################################################################
46 readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader',
47 path=path,
48 startDate="2021/07/02",#today,
49 endDate="2021/07/02",#today,
50 startTime='19:45:00',# inicio libre
51 endTime='19:50:59',
52 delay=0,
53 #set=0,
54 online=0,
55 walk=0)
56
57 opObj11 = readUnitConfObj.addOperation(name='printInfo')
58 #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock')
59 #######################################################################
60 ################ OPERACIONES DOMINIO DEL TIEMPO########################
61 #######################################################################
62
63 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
64
65 opObj11 = procUnitConfObjA.addOperation(name='selectHeights')
66 opObj11.addParameter(name='minIndex', value='1', format='int')
67 # opObj11.addParameter(name='maxIndex', value='10000', format='int')
68 opObj11.addParameter(name='maxIndex', value='39980', format='int')
69
70
71 #######################################################################
72 ########## OPERACIONES DOMINIO DE LA FRECUENCIA########################
73 #######################################################################
74
75 #procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
76 #procUnitConfObjB.addParameter(name='nFFTPoints', value='32', format='int')
77 #procUnitConfObjB.addParameter(name='nProfiles', value='32', format='int')
78
79 procUnitConfObjC = controllerObj.addProcUnit(datatype='SpectraHeisProc', inputId=procUnitConfObjA.getId())
80
81 #opObj11 = procUnitConfObjC.addOperation(name='IncohInt4SpectraHeis', optype='other')
82 #opObj11.addParameter(name='timeInterval', value='4', format='int')
83 opObj11 = procUnitConfObjC.addOperation(name='IncohInt4SpectraHeis', optype='other')
84 #opObj11.addParameter(name='timeInterval', value='4', format='int')
85 opObj11.addParameter(name='n', value='100', format='int')
86
87
88 opObj11 = procUnitConfObjC.addOperation(name='SpectraHeisPlot')
89 opObj11.addParameter(name='id', value='10', format='int')
90 opObj11.addParameter(name='wintitle', value='Spectra_Alturas', format='str')
91 #opObj11.addParameter(name='xmin', value=-100000, format='float')
92 #opObj11.addParameter(name='xmax', value=100000, format='float')
93 opObj11.addParameter(name='oneFigure', value=False,format='bool')
94 #opObj11.addParameter(name='zmin', value=-10, format='int')
95 #opObj11.addParameter(name='zmax', value=40, format='int')
96 opObj11.addParameter(name='ymin', value=dBmin, format='int')
97 opObj11.addParameter(name='ymax', value=dBmax, format='int')
98 opObj11.addParameter(name='grid', value=True, format='bool')
99 #opObj11.addParameter(name='showprofile', value='1', format='int')
100 opObj11.addParameter(name='save', value=figpath, format='str')
101 #opObj11.addParameter(name='save_period', value=10, format='int')
102
103 controllerObj.start()
@@ -0,0 +1,47
1 import os,sys
2 import datetime
3 import time
4 from schainpy.controller import Project
5 '''
6 NOTA:
7 Este script de prueba.
8 - Unidad del lectura 'HDFReader'.
9 - Unidad de procesamiento VoltageProc
10 - Unidad de procesamiento SpectraProc
11 - Operacion removeDC.
12 - Unidad de procesamiento ParametersProc
13 - Operacion SpectralMoments
14 - Operacion SpectralMomentsPlot
15 - Unidad de escrituda 'HDFWriter'.
16 '''
17 path='/home/developer/Downloads/HDF5_WR'
18 figpath = path
19 desc = "Simulator Test"
20
21 controllerObj = Project()
22
23 controllerObj.setup(id='10',name='Test Simulator',description=desc)
24
25 readUnitConfObj = controllerObj.addReadUnit(datatype='HDFReader',
26 path=path,
27 startDate="2021/01/01", #"2020/01/01",#today,
28 endDate= "2021/12/01", #"2020/12/30",#today,
29 startTime='00:00:00',
30 endTime='23:59:59',
31 delay=0,
32 #set=0,
33 online=0,
34 walk=0)#1
35
36 procUnitConfObjA = controllerObj.addProcUnit(datatype='ParametersProc',inputId=readUnitConfObj.getId())
37
38 opObj11 = procUnitConfObjA.addOperation(name='Block360')
39 opObj11.addParameter(name='n', value='40', format='int')
40
41 opObj11= procUnitConfObjA.addOperation(name='WeatherPlot',optype='other')
42 opObj11.addParameter(name='save', value=figpath)
43 opObj11.addParameter(name='save_period', value=1)
44 #opObj11 = procUnitConfObjA.addOperation(name='PowerPlot', optype='other')#PulsepairPowerPlot
45 #opObj11 = procUnitConfObjA.addOperation(name='PPSignalPlot', optype='other')
46
47 controllerObj.start()
@@ -0,0 +1,51
1 import os,sys,json
2 import datetime
3 import time
4 from schainpy.controller import Project
5 '''
6 NOTA:
7 Este script de prueba.
8 - Unidad del lectura 'HDFReader'.
9 - Unidad de procesamiento ParametersProc
10 - Operacion SpectralMomentsPlot
11
12 '''
13 path = '/home/soporte/Downloads/RAWDATA_PP'
14 path='/DATA_RM/TEST_HDF5/d2021203'
15 figpath = '/home/soporte/Downloads/IMAGE'
16 desc = "Simulator Test"
17 desc_data = {
18 'Data': {
19 'dataPP_POW': 'Data/dataPP_POW/channel00',
20 'utctime':'Data/utctime'
21 },
22 'Metadata': {
23 'heightList' :'Metadata/heightList',
24 'flagDataAsBlock':'Metadata/flagDataAsBlock',
25 'profileIndex':'Metadata/profileIndex'
26 }
27 }
28
29 controllerObj = Project()
30
31 controllerObj.setup(id='10',name='Test Simulator',description=desc)
32
33 readUnitConfObj = controllerObj.addReadUnit(datatype='HDFReader',
34 path=path,
35 startDate="2021/01/01", #"2020/01/01",#today,
36 endDate= "2021/12/01", #"2020/12/30",#today,
37 startTime='00:00:00',
38 endTime='23:59:59',
39 delay=0,
40 #set=0,
41 online=0,
42 walk=0,
43 description= json.dumps(desc_data))#1
44
45 procUnitConfObjA = controllerObj.addProcUnit(datatype='ParametersProc',inputId=readUnitConfObj.getId())
46
47 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')#PulsepairPowerPlot
48 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
49
50
51 controllerObj.start()
@@ -0,0 +1,56
1 import os,sys,json
2 import datetime
3 import time
4 from schainpy.controller import Project
5 '''
6 NOTA:
7 Este script de prueba.
8 - Unidad del lectura 'HDFReader'.
9 - Unidad de procesamiento ParametersProc
10 - Operacion SpectralMomentsPlot
11
12 '''
13 path = '/home/soporte/Downloads/RAWDATA'
14 figpath = '/home/soporte/Downloads/IMAGE'
15 desc = "Simulator Test"
16 desc_data = {
17 'Data': {
18 'data_pow': 'Data/data_pow/channel00',
19 'data_dop': 'Data/data_dop/channel00',
20 'utctime':'Data/utctime'
21 },
22 'Metadata': {
23 'heightList':'Metadata/heightList',
24 'nIncohInt' :'Metadata/nIncohInt',
25 'nCohInt' :'Metadata/nCohInt',
26 'nProfiles' :'Metadata/nProfiles',
27 'channelList' :'Metadata/channelList'
28 }
29 }
30
31 controllerObj = Project()
32
33 controllerObj.setup(id='10',name='Test Simulator',description=desc)
34
35 readUnitConfObj = controllerObj.addReadUnit(datatype='HDFReader',
36 path=path,
37 startDate="2021/01/01", #"2020/01/01",#today,
38 endDate= "2021/12/01", #"2020/12/30",#today,
39 startTime='00:00:00',
40 endTime='23:59:59',
41 delay=0,
42 #set=0,
43 online=0,
44 walk=1,
45 description= json.dumps(desc_data))#1
46
47 procUnitConfObjA = controllerObj.addProcUnit(datatype='ParametersProc',inputId=readUnitConfObj.getId())
48 '''
49 opObj11 = procUnitConfObjA.addOperation(name='DopplerPlot',optype='external')
50 #opObj11.addParameter(name='xmin', value=0)
51 #opObj11.addParameter(name='xmax', value=23)
52 opObj11.addParameter(name='save', value=figpath)
53 opObj11.addParameter(name='showprofile', value=0)
54 opObj11.addParameter(name='save_period', value=10)
55 '''
56 controllerObj.start()
@@ -0,0 +1,55
1 import os,sys
2 import datetime
3 import time
4 from schainpy.controller import Project
5
6 #*************************************************************************
7 #**************************LECTURA config_WR.txt**************************
8 #*************************************************************************
9 from readFileconfig import ReadfileWR
10 filename= "/home/soporte/schainv3/schain/schainpy/scripts/config_WR.txt"
11 dict= ReadfileWR(filename).getDict()
12
13 FixRCP_IPP = dict['ipp']*0.15 #equivalencia
14 dataBlocksPerFile= dict['b_f_adq']
15 profilesPerBlock= int(dict['n'])
16 pulsepair = int(dict['n'])
17 #*************************************************************************
18 path = '/home/soporte/Downloads/RAWDATA_PP_C'
19 figpath = path
20 desc = "Simulator Test"
21 controllerObj = Project()
22 controllerObj.setup(id='10',name='Test Simulator',description=desc)
23 readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader',
24 frequency=9.345e9,
25 FixRCP_IPP= FixRCP_IPP,
26 Tau_0 = 30,
27 AcqH0_0=0,
28 samples=330,
29 AcqDH_0=0.15,
30 FixRCP_TXA=0.15,
31 FixRCP_TXB=0.15,
32 Fdoppler=600.0,
33 Hdoppler=36,
34 Adoppler=300,#300
35 delay=0,
36 online=0,
37 walk=0,
38 profilesPerBlock=profilesPerBlock,
39 dataBlocksPerFile=dataBlocksPerFile)#,#nTotalReadFiles=2)
40 #opObj11 = readUnitConfObj.addOperation(name='printInfo')
41 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
42
43 opObj11 = procUnitConfObjA.addOperation(name='PulsePair')
44 opObj11.addParameter(name='n', value=pulsepair, format='int')#10
45
46 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
47
48 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
49 opObj10.addParameter(name='path',value=figpath)
50 #opObj10.addParameter(name='mode',value=2)
51 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
52 opObj10.addParameter(name='metadataList',value='utctimeInit,paramInterval,heightList,profileIndex,flagDataAsBlock',format='list')
53 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list'
54
55 controllerObj.start()
@@ -0,0 +1,50
1 import os,sys
2 import datetime
3 import time
4 from schainpy.controller import Project
5 path = '/home/soporte/Downloads/RAWDATA_PP_Z'
6 figpath = path
7 desc = "Simulator Test"
8
9 controllerObj = Project()
10
11 controllerObj.setup(id='10',name='Test Simulator',description=desc)
12
13 readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader',
14 frequency=9.345e9,
15 FixRCP_IPP= 60,
16 Tau_0 = 30,
17 AcqH0_0=0,
18 samples=330,
19 AcqDH_0=0.15,
20 FixRCP_TXA=0.15,
21 FixRCP_TXB=0.15,
22 Fdoppler=600.0,
23 Hdoppler=36,
24 Adoppler=300,#300
25 delay=0,
26 online=0,
27 walk=0,
28 profilesPerBlock=625,
29 dataBlocksPerFile=360)#,#nTotalReadFiles=2)
30
31 ### opObj11 = readUnitConfObj.addOperation(name='printInfo')
32
33 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
34
35 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
36 opObj11.addParameter(name='n', value='625', format='int')#10
37 opObj11.addParameter(name='removeDC', value=1, format='int')
38
39 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
40
41 opObj10 = procUnitConfObjB.addOperation(name="WeatherRadar")
42
43 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
44 opObj10.addParameter(name='path',value=figpath)
45 #opObj10.addParameter(name='mode',value=0)
46 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
47 opObj10.addParameter(name='metadataList',value='utctimeInit,timeInterval',format='list')
48 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,dataPP_SNR,dataPP_WIDTH,factor_Zeh,utctime')#,format='list'
49
50 controllerObj.start()
1 NO CONTENT: modified file
@@ -1,693 +1,704
1 1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 2 # All rights reserved.
3 3 #
4 4 # Distributed under the terms of the BSD 3-clause license.
5 5 """Base class to create plot operations
6 6
7 7 """
8 8
9 9 import os
10 10 import sys
11 11 import zmq
12 12 import time
13 13 import numpy
14 14 import datetime
15 15 from collections import deque
16 16 from functools import wraps
17 17 from threading import Thread
18 18 import matplotlib
19 19
20 20 if 'BACKEND' in os.environ:
21 21 matplotlib.use(os.environ['BACKEND'])
22 22 elif 'linux' in sys.platform:
23 23 matplotlib.use("TkAgg")
24 24 elif 'darwin' in sys.platform:
25 25 matplotlib.use('MacOSX')
26 26 else:
27 27 from schainpy.utils import log
28 28 log.warning('Using default Backend="Agg"', 'INFO')
29 29 matplotlib.use('Agg')
30 30
31 31 import matplotlib.pyplot as plt
32 32 from matplotlib.patches import Polygon
33 33 from mpl_toolkits.axes_grid1 import make_axes_locatable
34 34 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
35 35
36 36 from schainpy.model.data.jrodata import PlotterData
37 37 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
38 38 from schainpy.utils import log
39 39
40 40 jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
41 41 blu_values = matplotlib.pyplot.get_cmap(
42 42 'seismic_r', 20)(numpy.arange(20))[10:15]
43 43 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
44 44 'jro', numpy.vstack((blu_values, jet_values)))
45 45 matplotlib.pyplot.register_cmap(cmap=ncmap)
46 46
47 47 CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis',
48 48 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
49 49
50 50 EARTH_RADIUS = 6.3710e3
51 51
52 52 def ll2xy(lat1, lon1, lat2, lon2):
53 53
54 54 p = 0.017453292519943295
55 55 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
56 56 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
57 57 r = 12742 * numpy.arcsin(numpy.sqrt(a))
58 58 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
59 59 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
60 60 theta = -theta + numpy.pi/2
61 61 return r*numpy.cos(theta), r*numpy.sin(theta)
62 62
63 63
64 64 def km2deg(km):
65 65 '''
66 66 Convert distance in km to degrees
67 67 '''
68 68
69 69 return numpy.rad2deg(km/EARTH_RADIUS)
70 70
71 71
72 72 def figpause(interval):
73 73 backend = plt.rcParams['backend']
74 74 if backend in matplotlib.rcsetup.interactive_bk:
75 75 figManager = matplotlib._pylab_helpers.Gcf.get_active()
76 76 if figManager is not None:
77 77 canvas = figManager.canvas
78 78 if canvas.figure.stale:
79 79 canvas.draw()
80 80 try:
81 81 canvas.start_event_loop(interval)
82 82 except:
83 83 pass
84 84 return
85 85
86 86 def popup(message):
87 87 '''
88 88 '''
89 89
90 90 fig = plt.figure(figsize=(12, 8), facecolor='r')
91 91 text = '\n'.join([s.strip() for s in message.split(':')])
92 92 fig.text(0.01, 0.5, text, ha='left', va='center',
93 93 size='20', weight='heavy', color='w')
94 94 fig.show()
95 95 figpause(1000)
96 96
97 97
98 98 class Throttle(object):
99 99 '''
100 100 Decorator that prevents a function from being called more than once every
101 101 time period.
102 102 To create a function that cannot be called more than once a minute, but
103 103 will sleep until it can be called:
104 104 @Throttle(minutes=1)
105 105 def foo():
106 106 pass
107 107
108 108 for i in range(10):
109 109 foo()
110 110 print "This function has run %s times." % i
111 111 '''
112 112
113 113 def __init__(self, seconds=0, minutes=0, hours=0):
114 114 self.throttle_period = datetime.timedelta(
115 115 seconds=seconds, minutes=minutes, hours=hours
116 116 )
117 117
118 118 self.time_of_last_call = datetime.datetime.min
119 119
120 120 def __call__(self, fn):
121 121 @wraps(fn)
122 122 def wrapper(*args, **kwargs):
123 123 coerce = kwargs.pop('coerce', None)
124 124 if coerce:
125 125 self.time_of_last_call = datetime.datetime.now()
126 126 return fn(*args, **kwargs)
127 127 else:
128 128 now = datetime.datetime.now()
129 129 time_since_last_call = now - self.time_of_last_call
130 130 time_left = self.throttle_period - time_since_last_call
131 131
132 132 if time_left > datetime.timedelta(seconds=0):
133 133 return
134 134
135 135 self.time_of_last_call = datetime.datetime.now()
136 136 return fn(*args, **kwargs)
137 137
138 138 return wrapper
139 139
140 140 def apply_throttle(value):
141 141
142 142 @Throttle(seconds=value)
143 143 def fnThrottled(fn):
144 144 fn()
145 145
146 146 return fnThrottled
147 147
148 148
149 149 @MPDecorator
150 150 class Plot(Operation):
151 151 """Base class for Schain plotting operations
152 152
153 153 This class should never be use directtly you must subclass a new operation,
154 154 children classes must be defined as follow:
155 155
156 156 ExamplePlot(Plot):
157 157
158 158 CODE = 'code'
159 159 colormap = 'jet'
160 160 plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer')
161 161
162 162 def setup(self):
163 163 pass
164 164
165 165 def plot(self):
166 166 pass
167 167
168 168 """
169 169
170 170 CODE = 'Figure'
171 171 colormap = 'jet'
172 172 bgcolor = 'white'
173 173 buffering = True
174 174 __missing = 1E30
175 175
176 176 __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title',
177 177 'showprofile']
178 178
179 179 def __init__(self):
180 180
181 181 Operation.__init__(self)
182 182 self.isConfig = False
183 183 self.isPlotConfig = False
184 184 self.save_time = 0
185 185 self.sender_time = 0
186 186 self.data = None
187 187 self.firsttime = True
188 188 self.sender_queue = deque(maxlen=10)
189 189 self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2}
190 190
191 191 def __fmtTime(self, x, pos):
192 192 '''
193 193 '''
194 194
195 195 return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
196 196
197 197 def __setup(self, **kwargs):
198 198 '''
199 199 Initialize variables
200 200 '''
201 201
202 202 self.figures = []
203 203 self.axes = []
204 204 self.cb_axes = []
205 205 self.localtime = kwargs.pop('localtime', True)
206 206 self.show = kwargs.get('show', True)
207 207 self.save = kwargs.get('save', False)
208 208 self.save_period = kwargs.get('save_period', 0)
209 209 self.colormap = kwargs.get('colormap', self.colormap)
210 210 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
211 211 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
212 212 self.colormaps = kwargs.get('colormaps', None)
213 213 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
214 214 self.showprofile = kwargs.get('showprofile', False)
215 215 self.title = kwargs.get('wintitle', self.CODE.upper())
216 216 self.cb_label = kwargs.get('cb_label', None)
217 217 self.cb_labels = kwargs.get('cb_labels', None)
218 218 self.labels = kwargs.get('labels', None)
219 219 self.xaxis = kwargs.get('xaxis', 'frequency')
220 220 self.zmin = kwargs.get('zmin', None)
221 221 self.zmax = kwargs.get('zmax', None)
222 222 self.zlimits = kwargs.get('zlimits', None)
223 223 self.xmin = kwargs.get('xmin', None)
224 224 self.xmax = kwargs.get('xmax', None)
225 225 self.xrange = kwargs.get('xrange', 12)
226 226 self.xscale = kwargs.get('xscale', None)
227 227 self.ymin = kwargs.get('ymin', None)
228 228 self.ymax = kwargs.get('ymax', None)
229 229 self.yscale = kwargs.get('yscale', None)
230 230 self.xlabel = kwargs.get('xlabel', None)
231 231 self.attr_time = kwargs.get('attr_time', 'utctime')
232 232 self.attr_data = kwargs.get('attr_data', 'data_param')
233 233 self.decimation = kwargs.get('decimation', None)
234 234 self.oneFigure = kwargs.get('oneFigure', True)
235 235 self.width = kwargs.get('width', None)
236 236 self.height = kwargs.get('height', None)
237 237 self.colorbar = kwargs.get('colorbar', True)
238 238 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
239 239 self.channels = kwargs.get('channels', None)
240 240 self.titles = kwargs.get('titles', [])
241 241 self.polar = False
242 242 self.type = kwargs.get('type', 'iq')
243 243 self.grid = kwargs.get('grid', False)
244 244 self.pause = kwargs.get('pause', False)
245 245 self.save_code = kwargs.get('save_code', self.CODE)
246 246 self.throttle = kwargs.get('throttle', 0)
247 247 self.exp_code = kwargs.get('exp_code', None)
248 248 self.server = kwargs.get('server', False)
249 249 self.sender_period = kwargs.get('sender_period', 60)
250 250 self.tag = kwargs.get('tag', '')
251 251 self.height_index = kwargs.get('height_index', None)
252 252 self.__throttle_plot = apply_throttle(self.throttle)
253 253 code = self.attr_data if self.attr_data else self.CODE
254 254 self.data = PlotterData(self.CODE, self.exp_code, self.localtime)
255 255
256 256 if self.server:
257 257 if not self.server.startswith('tcp://'):
258 258 self.server = 'tcp://{}'.format(self.server)
259 259 log.success(
260 260 'Sending to server: {}'.format(self.server),
261 261 self.name
262 262 )
263 263
264 264 if isinstance(self.attr_data, str):
265 265 self.attr_data = [self.attr_data]
266 266
267 267 def __setup_plot(self):
268 268 '''
269 269 Common setup for all figures, here figures and axes are created
270 270 '''
271 271
272 272 self.setup()
273 273
274 274 self.time_label = 'LT' if self.localtime else 'UTC'
275 275
276 276 if self.width is None:
277 277 self.width = 8
278 278
279 279 self.figures = []
280 280 self.axes = []
281 281 self.cb_axes = []
282 282 self.pf_axes = []
283 283 self.cmaps = []
284 284
285 285 size = '15%' if self.ncols == 1 else '30%'
286 286 pad = '4%' if self.ncols == 1 else '8%'
287 287
288 288 if self.oneFigure:
289 289 if self.height is None:
290 290 self.height = 1.4 * self.nrows + 1
291 291 fig = plt.figure(figsize=(self.width, self.height),
292 292 edgecolor='k',
293 293 facecolor='w')
294 294 self.figures.append(fig)
295 295 for n in range(self.nplots):
296 296 ax = fig.add_subplot(self.nrows, self.ncols,
297 297 n + 1, polar=self.polar)
298 298 ax.tick_params(labelsize=8)
299 299 ax.firsttime = True
300 300 ax.index = 0
301 301 ax.press = None
302 302 self.axes.append(ax)
303 303 if self.showprofile:
304 304 cax = self.__add_axes(ax, size=size, pad=pad)
305 305 cax.tick_params(labelsize=8)
306 306 self.pf_axes.append(cax)
307 307 else:
308 308 if self.height is None:
309 309 self.height = 3
310 310 for n in range(self.nplots):
311 311 fig = plt.figure(figsize=(self.width, self.height),
312 312 edgecolor='k',
313 313 facecolor='w')
314 314 ax = fig.add_subplot(1, 1, 1, polar=self.polar)
315 315 ax.tick_params(labelsize=8)
316 316 ax.firsttime = True
317 317 ax.index = 0
318 318 ax.press = None
319 319 self.figures.append(fig)
320 320 self.axes.append(ax)
321 321 if self.showprofile:
322 322 cax = self.__add_axes(ax, size=size, pad=pad)
323 323 cax.tick_params(labelsize=8)
324 324 self.pf_axes.append(cax)
325 325
326 326 for n in range(self.nrows):
327 327 if self.colormaps is not None:
328 328 cmap = plt.get_cmap(self.colormaps[n])
329 329 else:
330 330 cmap = plt.get_cmap(self.colormap)
331 331 cmap.set_bad(self.bgcolor, 1.)
332 332 self.cmaps.append(cmap)
333 333
334 334 def __add_axes(self, ax, size='30%', pad='8%'):
335 335 '''
336 336 Add new axes to the given figure
337 337 '''
338 338 divider = make_axes_locatable(ax)
339 339 nax = divider.new_horizontal(size=size, pad=pad)
340 340 ax.figure.add_axes(nax)
341 341 return nax
342 342
343 343 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
344 344 '''
345 345 Create a masked array for missing data
346 346 '''
347 347 if x_buffer.shape[0] < 2:
348 348 return x_buffer, y_buffer, z_buffer
349 349
350 350 deltas = x_buffer[1:] - x_buffer[0:-1]
351 351 x_median = numpy.median(deltas)
352 352
353 353 index = numpy.where(deltas > 5 * x_median)
354 354
355 355 if len(index[0]) != 0:
356 356 z_buffer[::, index[0], ::] = self.__missing
357 357 z_buffer = numpy.ma.masked_inside(z_buffer,
358 358 0.99 * self.__missing,
359 359 1.01 * self.__missing)
360 360
361 361 return x_buffer, y_buffer, z_buffer
362 362
363 363 def decimate(self):
364 364
365 365 # dx = int(len(self.x)/self.__MAXNUMX) + 1
366 366 dy = int(len(self.y) / self.decimation) + 1
367 367
368 368 # x = self.x[::dx]
369 369 x = self.x
370 370 y = self.y[::dy]
371 371 z = self.z[::, ::, ::dy]
372 372
373 373 return x, y, z
374 374
375 375 def format(self):
376 376 '''
377 377 Set min and max values, labels, ticks and titles
378 378 '''
379 379
380 380 for n, ax in enumerate(self.axes):
381 381 if ax.firsttime:
382 382 if self.xaxis != 'time':
383 383 xmin = self.xmin
384 384 xmax = self.xmax
385 385 else:
386 386 xmin = self.tmin
387 387 xmax = self.tmin + self.xrange*60*60
388 388 ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
389 389 ax.xaxis.set_major_locator(LinearLocator(9))
390 390 ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)])
391 391 ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)])
392 392 ax.set_facecolor(self.bgcolor)
393 393 if self.xscale:
394 394 ax.xaxis.set_major_formatter(FuncFormatter(
395 395 lambda x, pos: '{0:g}'.format(x*self.xscale)))
396 396 if self.yscale:
397 397 ax.yaxis.set_major_formatter(FuncFormatter(
398 398 lambda x, pos: '{0:g}'.format(x*self.yscale)))
399 399 if self.xlabel is not None:
400 400 ax.set_xlabel(self.xlabel)
401 401 if self.ylabel is not None:
402 402 ax.set_ylabel(self.ylabel)
403 403 if self.showprofile:
404 404 self.pf_axes[n].set_ylim(ymin, ymax)
405 405 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
406 406 self.pf_axes[n].set_xlabel('dB')
407 407 self.pf_axes[n].grid(b=True, axis='x')
408 408 [tick.set_visible(False)
409 409 for tick in self.pf_axes[n].get_yticklabels()]
410 410 if self.colorbar:
411 411 ax.cbar = plt.colorbar(
412 412 ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10)
413 413 ax.cbar.ax.tick_params(labelsize=8)
414 414 ax.cbar.ax.press = None
415 415 if self.cb_label:
416 416 ax.cbar.set_label(self.cb_label, size=8)
417 417 elif self.cb_labels:
418 418 ax.cbar.set_label(self.cb_labels[n], size=8)
419 419 else:
420 420 ax.cbar = None
421 421 ax.set_xlim(xmin, xmax)
422 422 ax.set_ylim(ymin, ymax)
423 423 ax.firsttime = False
424 424 if self.grid:
425 425 ax.grid(True)
426 426 if not self.polar:
427 427 ax.set_title('{} {} {}'.format(
428 428 self.titles[n],
429 429 self.getDateTime(self.data.max_time).strftime(
430 430 '%Y-%m-%d %H:%M:%S'),
431 431 self.time_label),
432 432 size=8)
433 433 else:
434 434 ax.set_title('{}'.format(self.titles[n]), size=8)
435 435 ax.set_ylim(0, 90)
436 436 ax.set_yticks(numpy.arange(0, 90, 20))
437 437 ax.yaxis.labelpad = 40
438 438
439 439 if self.firsttime:
440 440 for n, fig in enumerate(self.figures):
441 441 fig.subplots_adjust(**self.plots_adjust)
442 442 self.firsttime = False
443 443
444 444 def clear_figures(self):
445 445 '''
446 446 Reset axes for redraw plots
447 447 '''
448 448
449 449 for ax in self.axes+self.pf_axes+self.cb_axes:
450 450 ax.clear()
451 451 ax.firsttime = True
452 452 if hasattr(ax, 'cbar') and ax.cbar:
453 453 ax.cbar.remove()
454 454
455 455 def __plot(self):
456 456 '''
457 457 Main function to plot, format and save figures
458 458 '''
459 459
460 460 self.plot()
461 461 self.format()
462 462
463 463 for n, fig in enumerate(self.figures):
464 464 if self.nrows == 0 or self.nplots == 0:
465 465 log.warning('No data', self.name)
466 466 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
467 467 fig.canvas.manager.set_window_title(self.CODE)
468 468 continue
469 469
470 470 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
471 471 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
472 472 fig.canvas.draw()
473 473 if self.show:
474 474 fig.show()
475 475 figpause(0.01)
476 476
477 477 if self.save:
478 478 self.save_figure(n)
479 479
480 480 if self.server:
481 481 self.send_to_server()
482 482
483 483 def __update(self, dataOut, timestamp):
484 484 '''
485 485 '''
486 486
487 487 metadata = {
488 488 'yrange': dataOut.heightList,
489 489 'interval': dataOut.timeInterval,
490 490 'channels': dataOut.channelList
491 491 }
492 492
493 493 data, meta = self.update(dataOut)
494 494 metadata.update(meta)
495 495 self.data.update(data, timestamp, metadata)
496 496
497 497 def save_figure(self, n):
498 498 '''
499 499 '''
500
500 if self.oneFigure:
501 501 if (self.data.max_time - self.save_time) <= self.save_period:
502 502 return
503 503
504 504 self.save_time = self.data.max_time
505 505
506 506 fig = self.figures[n]
507
508 507 if self.throttle == 0:
508 if self.oneFigure:
509 509 figname = os.path.join(
510 510 self.save,
511 511 self.save_code,
512 512 '{}_{}.png'.format(
513 513 self.save_code,
514 514 self.getDateTime(self.data.max_time).strftime(
515 515 '%Y%m%d_%H%M%S'
516 516 ),
517 517 )
518 518 )
519 else:
520 figname = os.path.join(
521 self.save,
522 self.save_code,
523 '{}_ch{}_{}.png'.format(
524 self.save_code,n,
525 self.getDateTime(self.data.max_time).strftime(
526 '%Y%m%d_%H%M%S'
527 ),
528 )
529 )
519 530 log.log('Saving figure: {}'.format(figname), self.name)
520 531 if not os.path.isdir(os.path.dirname(figname)):
521 532 os.makedirs(os.path.dirname(figname))
522 533 fig.savefig(figname)
523 534
524 535 figname = os.path.join(
525 536 self.save,
526 537 '{}_{}.png'.format(
527 538 self.save_code,
528 539 self.getDateTime(self.data.min_time).strftime(
529 540 '%Y%m%d'
530 541 ),
531 542 )
532 543 )
544
533 545 log.log('Saving figure: {}'.format(figname), self.name)
534 546 if not os.path.isdir(os.path.dirname(figname)):
535 547 os.makedirs(os.path.dirname(figname))
536 548 fig.savefig(figname)
537 549
538 550 def send_to_server(self):
539 551 '''
540 552 '''
541 553
542 554 if self.exp_code == None:
543 555 log.warning('Missing `exp_code` skipping sending to server...')
544 556
545 557 last_time = self.data.max_time
546 558 interval = last_time - self.sender_time
547 559 if interval < self.sender_period:
548 560 return
549 561
550 562 self.sender_time = last_time
551 563
552 564 attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax']
553 565 for attr in attrs:
554 566 value = getattr(self, attr)
555 567 if value:
556 568 if isinstance(value, (numpy.float32, numpy.float64)):
557 569 value = round(float(value), 2)
558 570 self.data.meta[attr] = value
559 571 if self.colormap == 'jet':
560 572 self.data.meta['colormap'] = 'Jet'
561 573 elif 'RdBu' in self.colormap:
562 574 self.data.meta['colormap'] = 'RdBu'
563 575 else:
564 576 self.data.meta['colormap'] = 'Viridis'
565 577 self.data.meta['interval'] = int(interval)
566 578
567 579 self.sender_queue.append(last_time)
568 580
569 581 while True:
570 582 try:
571 583 tm = self.sender_queue.popleft()
572 584 except IndexError:
573 585 break
574 586 msg = self.data.jsonify(tm, self.save_code, self.plot_type)
575 587 self.socket.send_string(msg)
576 588 socks = dict(self.poll.poll(2000))
577 589 if socks.get(self.socket) == zmq.POLLIN:
578 590 reply = self.socket.recv_string()
579 591 if reply == 'ok':
580 592 log.log("Response from server ok", self.name)
581 593 time.sleep(0.1)
582 594 continue
583 595 else:
584 596 log.warning(
585 597 "Malformed reply from server: {}".format(reply), self.name)
586 598 else:
587 599 log.warning(
588 600 "No response from server, retrying...", self.name)
589 601 self.sender_queue.appendleft(tm)
590 602 self.socket.setsockopt(zmq.LINGER, 0)
591 603 self.socket.close()
592 604 self.poll.unregister(self.socket)
593 605 self.socket = self.context.socket(zmq.REQ)
594 606 self.socket.connect(self.server)
595 607 self.poll.register(self.socket, zmq.POLLIN)
596 608 break
597 609
598 610 def setup(self):
599 611 '''
600 612 This method should be implemented in the child class, the following
601 613 attributes should be set:
602 614
603 615 self.nrows: number of rows
604 616 self.ncols: number of cols
605 617 self.nplots: number of plots (channels or pairs)
606 618 self.ylabel: label for Y axes
607 619 self.titles: list of axes title
608 620
609 621 '''
610 622 raise NotImplementedError
611 623
612 624 def plot(self):
613 625 '''
614 626 Must be defined in the child class, the actual plotting method
615 627 '''
616 628 raise NotImplementedError
617 629
618 630 def update(self, dataOut):
619 631 '''
620 632 Must be defined in the child class, update self.data with new data
621 633 '''
622 634
623 635 data = {
624 636 self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE))
625 637 }
626 638 meta = {}
627 639
628 640 return data, meta
629 641
630 642 def run(self, dataOut, **kwargs):
631 643 '''
632 644 Main plotting routine
633 645 '''
634 646
635 647 if self.isConfig is False:
636 648 self.__setup(**kwargs)
637 649
638 650 if self.localtime:
639 651 self.getDateTime = datetime.datetime.fromtimestamp
640 652 else:
641 653 self.getDateTime = datetime.datetime.utcfromtimestamp
642 654
643 655 self.data.setup()
644 656 self.isConfig = True
645 657 if self.server:
646 658 self.context = zmq.Context()
647 659 self.socket = self.context.socket(zmq.REQ)
648 660 self.socket.connect(self.server)
649 661 self.poll = zmq.Poller()
650 662 self.poll.register(self.socket, zmq.POLLIN)
651 663
652 664 tm = getattr(dataOut, self.attr_time)
653 665
654 666 if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60:
655 667 self.save_time = tm
656 668 self.__plot()
657 669 self.tmin += self.xrange*60*60
658 670 self.data.setup()
659 671 self.clear_figures()
660 672
661 673 self.__update(dataOut, tm)
662 674
663 675 if self.isPlotConfig is False:
664 676 self.__setup_plot()
665 677 self.isPlotConfig = True
666 678 if self.xaxis == 'time':
667 679 dt = self.getDateTime(tm)
668 680 if self.xmin is None:
669 681 self.tmin = tm
670 682 self.xmin = dt.hour
671 683 minutes = (self.xmin-int(self.xmin)) * 60
672 684 seconds = (minutes - int(minutes)) * 60
673 685 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
674 686 datetime.datetime(1970, 1, 1)).total_seconds()
675 687 if self.localtime:
676 688 self.tmin += time.timezone
677 689
678 690 if self.xmin is not None and self.xmax is not None:
679 691 self.xrange = self.xmax - self.xmin
680 692
681 693 if self.throttle == 0:
682 694 self.__plot()
683 695 else:
684 696 self.__throttle_plot(self.__plot)#, coerce=coerce)
685 697
686 698 def close(self):
687 699
688 700 if self.data and not self.data.flagNoData:
689 701 self.save_time = 0
690 702 self.__plot()
691 703 if self.data and not self.data.flagNoData and self.pause:
692 704 figpause(10)
693
@@ -1,101 +1,103
1 1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 2 # All rights reserved.
3 3 #
4 4 # Distributed under the terms of the BSD 3-clause license.
5 5 """Classes to plo Specra Heis data
6 6
7 7 """
8 8
9 9 import numpy
10 10
11 11 from schainpy.model.graphics.jroplot_base import Plot, plt
12 12
13 13
14 14 class SpectraHeisPlot(Plot):
15 15
16 16 CODE = 'spc_heis'
17 17
18 18 def setup(self):
19 19
20 20 self.nplots = len(self.data.channels)
21 21 self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
22 22 self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
23 23 self.height = 2.6 * self.nrows
24 24 self.width = 3.5 * self.ncols
25 25 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.95, 'bottom': 0.08})
26 26 self.ylabel = 'Intensity [dB]'
27 27 self.xlabel = 'Frequency [KHz]'
28 28 self.colorbar = False
29 29
30 30 def update(self, dataOut):
31 31
32 32 data = {}
33 33 meta = {}
34 34 spc = 10*numpy.log10(dataOut.data_spc / dataOut.normFactor)
35 35 data['spc_heis'] = spc
36 36
37 37 return data, meta
38 38
39 39 def plot(self):
40 40
41 41 c = 3E8
42 42 deltaHeight = self.data.yrange[1] - self.data.yrange[0]
43 43 x = numpy.arange(-1*len(self.data.yrange)/2., len(self.data.yrange)/2.)*(c/(2*deltaHeight*len(self.data.yrange)*1000))
44 #x = (1/1000.0)*numpy.arange(-1*len(self.data.yrange)/2., len(self.data.yrange)/2.)*(c/(2*deltaHeight*len(self.data.yrange)*1000))
45
44 46 self.y = self.data[-1]['spc_heis']
45 47 self.titles = []
46 48
47 49 for n, ax in enumerate(self.axes):
48 50 ychannel = self.y[n,:]
49 51 if ax.firsttime:
50 52 self.xmin = min(x) if self.xmin is None else self.xmin
51 53 self.xmax = max(x) if self.xmax is None else self.xmax
52 54 ax.plt = ax.plot(x, ychannel, lw=1, color='b')[0]
53 55 else:
54 56 ax.plt.set_data(x, ychannel)
55 57
56 58 self.titles.append("Channel {}: {:4.2f}dB".format(n, numpy.max(ychannel)))
57 59
58 60
59 61 class RTIHeisPlot(Plot):
60 62
61 63 CODE = 'rti_heis'
62 64
63 65 def setup(self):
64 66
65 67 self.xaxis = 'time'
66 68 self.ncols = 1
67 69 self.nrows = 1
68 70 self.nplots = 1
69 71 self.ylabel = 'Intensity [dB]'
70 72 self.xlabel = 'Time'
71 73 self.titles = ['RTI']
72 74 self.colorbar = False
73 75 self.height = 4
74 76 self.plots_adjust.update({'right': 0.85 })
75 77
76 78 def update(self, dataOut):
77 79
78 80 data = {}
79 81 meta = {}
80 82 spc = dataOut.data_spc / dataOut.normFactor
81 83 spc = 10*numpy.log10(numpy.average(spc, axis=1))
82 84 data['rti_heis'] = spc
83 85
84 86 return data, meta
85 87
86 88 def plot(self):
87 89
88 90 x = self.data.times
89 91 Y = self.data['rti_heis']
90 92
91 93 if self.axes[0].firsttime:
92 94 self.ymin = numpy.nanmin(Y) - 5 if self.ymin == None else self.ymin
93 95 self.ymax = numpy.nanmax(Y) + 5 if self.ymax == None else self.ymax
94 96 for ch in self.data.channels:
95 97 y = Y[ch]
96 98 self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
97 99 plt.legend(bbox_to_anchor=(1.18, 1.0))
98 100 else:
99 101 for ch in self.data.channels:
100 102 y = Y[ch]
101 103 self.axes[0].lines[ch].set_data(x, y)
@@ -1,370 +1,585
1 1 import os
2 2 import datetime
3 3 import numpy
4 4
5 5 from schainpy.model.graphics.jroplot_base import Plot, plt
6 6 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 7 from schainpy.utils import log
8 # libreria wradlib
9 import wradlib as wrl
8 10
9 11 EARTH_RADIUS = 6.3710e3
10 12
11 13
12 14 def ll2xy(lat1, lon1, lat2, lon2):
13 15
14 16 p = 0.017453292519943295
15 17 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
16 18 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
17 19 r = 12742 * numpy.arcsin(numpy.sqrt(a))
18 20 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
19 21 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
20 22 theta = -theta + numpy.pi/2
21 23 return r*numpy.cos(theta), r*numpy.sin(theta)
22 24
23 25
24 26 def km2deg(km):
25 27 '''
26 28 Convert distance in km to degrees
27 29 '''
28 30
29 31 return numpy.rad2deg(km/EARTH_RADIUS)
30 32
31 33
32 34
33 35 class SpectralMomentsPlot(SpectraPlot):
34 36 '''
35 37 Plot for Spectral Moments
36 38 '''
37 39 CODE = 'spc_moments'
38 40 # colormap = 'jet'
39 41 # plot_type = 'pcolor'
40 42
41 43 class DobleGaussianPlot(SpectraPlot):
42 44 '''
43 45 Plot for Double Gaussian Plot
44 46 '''
45 47 CODE = 'gaussian_fit'
46 48 # colormap = 'jet'
47 49 # plot_type = 'pcolor'
48 50
49 51 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
50 52 '''
51 53 Plot SpectraCut with Double Gaussian Fit
52 54 '''
53 55 CODE = 'cut_gaussian_fit'
54 56
55 57 class SnrPlot(RTIPlot):
56 58 '''
57 59 Plot for SNR Data
58 60 '''
59 61
60 62 CODE = 'snr'
61 63 colormap = 'jet'
62 64
63 65 def update(self, dataOut):
64 66
65 67 data = {
66 68 'snr': 10*numpy.log10(dataOut.data_snr)
67 69 }
68 70
69 71 return data, {}
70 72
71 73 class DopplerPlot(RTIPlot):
72 74 '''
73 75 Plot for DOPPLER Data (1st moment)
74 76 '''
75 77
76 78 CODE = 'dop'
77 79 colormap = 'jet'
78 80
79 81 def update(self, dataOut):
80 82
81 83 data = {
82 84 'dop': 10*numpy.log10(dataOut.data_dop)
83 85 }
84 86
85 87 return data, {}
86 88
87 89 class PowerPlot(RTIPlot):
88 90 '''
89 91 Plot for Power Data (0 moment)
90 92 '''
91 93
92 94 CODE = 'pow'
93 95 colormap = 'jet'
94 96
95 97 def update(self, dataOut):
96 98
97 99 data = {
98 100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
99 101 }
100 102
101 103 return data, {}
102 104
103 105 class SpectralWidthPlot(RTIPlot):
104 106 '''
105 107 Plot for Spectral Width Data (2nd moment)
106 108 '''
107 109
108 110 CODE = 'width'
109 111 colormap = 'jet'
110 112
111 113 def update(self, dataOut):
112 114
113 115 data = {
114 116 'width': dataOut.data_width
115 117 }
116 118
117 119 return data, {}
118 120
119 121 class SkyMapPlot(Plot):
120 122 '''
121 123 Plot for meteors detection data
122 124 '''
123 125
124 126 CODE = 'param'
125 127
126 128 def setup(self):
127 129
128 130 self.ncols = 1
129 131 self.nrows = 1
130 132 self.width = 7.2
131 133 self.height = 7.2
132 134 self.nplots = 1
133 135 self.xlabel = 'Zonal Zenith Angle (deg)'
134 136 self.ylabel = 'Meridional Zenith Angle (deg)'
135 137 self.polar = True
136 138 self.ymin = -180
137 139 self.ymax = 180
138 140 self.colorbar = False
139 141
140 142 def plot(self):
141 143
142 144 arrayParameters = numpy.concatenate(self.data['param'])
143 145 error = arrayParameters[:, -1]
144 146 indValid = numpy.where(error == 0)[0]
145 147 finalMeteor = arrayParameters[indValid, :]
146 148 finalAzimuth = finalMeteor[:, 3]
147 149 finalZenith = finalMeteor[:, 4]
148 150
149 151 x = finalAzimuth * numpy.pi / 180
150 152 y = finalZenith
151 153
152 154 ax = self.axes[0]
153 155
154 156 if ax.firsttime:
155 157 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 158 else:
157 159 ax.plot.set_data(x, y)
158 160
159 161 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 162 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 163 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 164 dt2,
163 165 len(x))
164 166 self.titles[0] = title
165 167
166 168
167 169 class GenericRTIPlot(Plot):
168 170 '''
169 171 Plot for data_xxxx object
170 172 '''
171 173
172 174 CODE = 'param'
173 175 colormap = 'viridis'
174 176 plot_type = 'pcolorbuffer'
175 177
176 178 def setup(self):
177 179 self.xaxis = 'time'
178 180 self.ncols = 1
179 181 self.nrows = self.data.shape('param')[0]
180 182 self.nplots = self.nrows
181 183 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 184
183 185 if not self.xlabel:
184 186 self.xlabel = 'Time'
185 187
186 188 self.ylabel = 'Range [km]'
187 189 if not self.titles:
188 190 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 191
190 192 def update(self, dataOut):
191 193
192 194 data = {
193 195 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 196 }
195 197
196 198 meta = {}
197 199
198 200 return data, meta
199 201
200 202 def plot(self):
201 203 # self.data.normalize_heights()
202 204 self.x = self.data.times
203 205 self.y = self.data.yrange
204 206 self.z = self.data['param']
205 207
206 208 self.z = numpy.ma.masked_invalid(self.z)
207 209
208 210 if self.decimation is None:
209 211 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 212 else:
211 213 x, y, z = self.fill_gaps(*self.decimate())
212 214
213 215 for n, ax in enumerate(self.axes):
214 216
215 217 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 218 self.z[n])
217 219 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 220 self.z[n])
219 221
220 222 if ax.firsttime:
221 223 if self.zlimits is not None:
222 224 self.zmin, self.zmax = self.zlimits[n]
223 225
224 226 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 227 vmin=self.zmin,
226 228 vmax=self.zmax,
227 229 cmap=self.cmaps[n]
228 230 )
229 231 else:
230 232 if self.zlimits is not None:
231 233 self.zmin, self.zmax = self.zlimits[n]
232 234 ax.collections.remove(ax.collections[0])
233 235 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 236 vmin=self.zmin,
235 237 vmax=self.zmax,
236 238 cmap=self.cmaps[n]
237 239 )
238 240
239 241
240 242 class PolarMapPlot(Plot):
241 243 '''
242 244 Plot for weather radar
243 245 '''
244 246
245 247 CODE = 'param'
246 248 colormap = 'seismic'
247 249
248 250 def setup(self):
249 251 self.ncols = 1
250 252 self.nrows = 1
251 253 self.width = 9
252 254 self.height = 8
253 255 self.mode = self.data.meta['mode']
254 256 if self.channels is not None:
255 257 self.nplots = len(self.channels)
256 258 self.nrows = len(self.channels)
257 259 else:
258 260 self.nplots = self.data.shape(self.CODE)[0]
259 261 self.nrows = self.nplots
260 262 self.channels = list(range(self.nplots))
261 263 if self.mode == 'E':
262 264 self.xlabel = 'Longitude'
263 265 self.ylabel = 'Latitude'
264 266 else:
265 267 self.xlabel = 'Range (km)'
266 268 self.ylabel = 'Height (km)'
267 269 self.bgcolor = 'white'
268 270 self.cb_labels = self.data.meta['units']
269 271 self.lat = self.data.meta['latitude']
270 272 self.lon = self.data.meta['longitude']
271 273 self.xmin, self.xmax = float(
272 274 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 275 self.ymin, self.ymax = float(
274 276 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 277 # self.polar = True
276 278
277 279 def plot(self):
278 280
279 281 for n, ax in enumerate(self.axes):
280 282 data = self.data['param'][self.channels[n]]
281 283
282 284 zeniths = numpy.linspace(
283 285 0, self.data.meta['max_range'], data.shape[1])
284 286 if self.mode == 'E':
285 287 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 288 r, theta = numpy.meshgrid(zeniths, azimuths)
287 289 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 290 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 291 x = km2deg(x) + self.lon
290 292 y = km2deg(y) + self.lat
291 293 else:
292 294 azimuths = numpy.radians(self.data.yrange)
293 295 r, theta = numpy.meshgrid(zeniths, azimuths)
294 296 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 297 self.y = zeniths
296 298
297 299 if ax.firsttime:
298 300 if self.zlimits is not None:
299 301 self.zmin, self.zmax = self.zlimits[n]
300 302 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 303 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 304 vmin=self.zmin,
303 305 vmax=self.zmax,
304 306 cmap=self.cmaps[n])
305 307 else:
306 308 if self.zlimits is not None:
307 309 self.zmin, self.zmax = self.zlimits[n]
308 310 ax.collections.remove(ax.collections[0])
309 311 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 312 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 313 vmin=self.zmin,
312 314 vmax=self.zmax,
313 315 cmap=self.cmaps[n])
314 316
315 317 if self.mode == 'A':
316 318 continue
317 319
318 320 # plot district names
319 321 f = open('/data/workspace/schain_scripts/distrito.csv')
320 322 for line in f:
321 323 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 324 lat = float(lat)
323 325 lon = float(lon)
324 326 # ax.plot(lon, lat, '.b', ms=2)
325 327 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 328 va='bottom', size='8', color='black')
327 329
328 330 # plot limites
329 331 limites = []
330 332 tmp = []
331 333 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 334 if '#' in line:
333 335 if tmp:
334 336 limites.append(tmp)
335 337 tmp = []
336 338 continue
337 339 values = line.strip().split(',')
338 340 tmp.append((float(values[0]), float(values[1])))
339 341 for points in limites:
340 342 ax.add_patch(
341 343 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 344
343 345 # plot Cuencas
344 346 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 347 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 348 values = [line.strip().split(',') for line in f]
347 349 points = [(float(s[0]), float(s[1])) for s in values]
348 350 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 351
350 352 # plot grid
351 353 for r in (15, 30, 45, 60):
352 354 ax.add_artist(plt.Circle((self.lon, self.lat),
353 355 km2deg(r), color='0.6', fill=False, lw=0.2))
354 356 ax.text(
355 357 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 358 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 359 '{}km'.format(r),
358 360 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 361
360 362 if self.mode == 'E':
361 363 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 364 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 365 else:
364 366 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 367 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 368
367 369 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 370 self.titles = ['{} {}'.format(
369 371 self.data.parameters[x], title) for x in self.channels]
370 372
373 class WeatherPlot(Plot):
374 CODE = 'weather'
375 plot_name = 'weather'
376 plot_type = 'ppistyle'
377 buffering = False
378
379 def setup(self):
380 self.ncols = 1
381 self.nrows = 1
382 self.nplots= 1
383 self.ylabel= 'Range [Km]'
384 self.titles= ['Weather']
385 self.colorbar=False
386 self.width =8
387 self.height =8
388 self.ini =0
389 self.len_azi =0
390 self.buffer_ini = None
391 self.buffer_azi = None
392 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
393 self.flag =0
394 self.indicador= 0
395
396 def update(self, dataOut):
397
398 data = {}
399 meta = {}
400 data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(650**2))
401 data['azi'] = dataOut.data_azi
402
403 return data, meta
404
405 def plot(self):
406 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
407
408 data = self.data[-1]
409 tmp_h = (data['weather'].shape[1])/10.0
410 stoprange = float(tmp_h*1.5)#stoprange = float(33*1.5) por ahora 400
411 rangestep = float(0.15)
412 r = numpy.arange(0, stoprange, rangestep)
413 self.y = 2*r
414
415 tmp_v = data['weather']
416 print("tmp_v",tmp_v.shape)
417 tmp_z = data['azi']
418 #print("tmp_z",tmp_z.shape)
419 res = 1
420 step = (360/(res*tmp_v.shape[0]))
421 print("step",step)
422 mode = 1
423 if mode==0:
424 #print("self.ini",self.ini)
425 val = numpy.mean(tmp_v[:,0])
426 self.len_azi = len(tmp_z)
427 ones = numpy.ones([(360-tmp_v.shape[0]),tmp_v.shape[1]])*val
428 self.buffer_ini = numpy.vstack((tmp_v,ones))
429
430 n = ((360/res)-len(tmp_z))
431 start = tmp_z[-1]+res
432 end = tmp_z[0]-res
433 if start>end:
434 end = end+360
435 azi_zeros = numpy.linspace(start,end,int(n))
436 azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
437 self.buffer_ini_azi = numpy.hstack((tmp_z,azi_zeros))
438 self.ini = self.ini+1
439
440 if mode==1:
441 #print("self.ini",self.ini)
442 if self.ini==0:
443 res = 1
444 step = (360/(res*tmp_v.shape[0]))
445 val = numpy.mean(tmp_v[:,0])
446 self.len_azi = len(tmp_z)
447 self.buf_tmp = tmp_v
448 ones = numpy.ones([(360-tmp_v.shape[0]),tmp_v.shape[1]])*val
449 self.buffer_ini = numpy.vstack((tmp_v,ones))
450
451 n = ((360/res)-len(tmp_z))
452 start = tmp_z[-1]+res
453 end = tmp_z[0]-res
454 if start>end:
455 end =end+360
456 azi_zeros = numpy.linspace(start,end,int(n))
457 azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
458 self.buf_azi = tmp_z
459 self.buffer_ini_azi = numpy.hstack((tmp_z,azi_zeros))
460 self.ini = self.ini+1
461 elif 0<self.ini<step:
462 '''
463 if self.ini>31:
464 start= tmp_z[0]
465 end =tmp_z[-1]
466 print("start","end",start,end)
467 if self.ini==32:
468 tmp_v=tmp_v+20
469 if self.ini==33:
470 tmp_v=tmp_v+10
471 if self.ini==34:
472 tmp_v=tmp_v+20
473 if self.ini==35:
474 tmp_v=tmp_v+20
475 '''
476 self.buf_tmp= numpy.vstack((self.buf_tmp,tmp_v))
477 print("ERROR_INMINENTE",self.buf_tmp.shape)
478 if self.buf_tmp.shape[0]==360:
479 self.buffer_ini=self.buf_tmp
480 else:
481 val=30.0
482 ones = numpy.ones([(360-self.buf_tmp.shape[0]),self.buf_tmp.shape[1]])*val
483 self.buffer_ini = numpy.vstack((self.buf_tmp,ones))
484
485 self.buf_azi = numpy.hstack((self.buf_azi,tmp_z))
486 n = ((360/res)-len(self.buf_azi))
487 if n==0:
488 self.buffer_ini_azi = self.buf_azi
489 else:
490 start = self.buf_azi[-1]+res
491 end = self.buf_azi[0]-res
492 if start>end:
493 end =end+360
494 azi_zeros = numpy.linspace(start,end,int(n))
495 azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
496 if tmp_z[0]<self.buf_azi[0] <tmp_z[-1]:
497 self.indicador=1
498 if self.indicador==1:
499 azi_zeros = numpy.ones(360-len(self.buf_azi))*(tmp_z[-1]+res)
500 # self.indicador = True
501 #if self.indicador==True:
502 # azi_zeros = numpy.ones(360-len(self.buf_azi))*(tmp_z[-1]+res)
503
504 #self.buf_azi = tmp_z
505 self.buffer_ini_azi = numpy.hstack((self.buf_azi,azi_zeros))
506
507 if self.ini==step-1:
508 start= tmp_z[0]
509 end = tmp_z[-1]
510 #print("start","end",start,end)
511 ###print(self.buffer_ini_azi[:80])
512 self.ini = self.ini+1
513
514 else:
515 step = (360/(res*tmp_v.shape[0]))
516 tmp_v=tmp_v+5+(self.ini-step)*1
517
518 start= tmp_z[0]
519 end = tmp_z[-1]
520 #print("start","end",start,end)
521 ###print(self.buffer_ini_azi[:120])
522
523 if step>=2:
524 if self.flag<step-1:
525 limit_i=self.buf_azi[len(tmp_z)*(self.flag+1)]
526 limit_s=self.buf_azi[len(tmp_z)*(self.flag+2)-1]
527 print("flag",self.flag,limit_i,limit_s)
528 if limit_i< tmp_z[-1]< limit_s:
529 index_i=int(numpy.where(tmp_z<=self.buf_azi[len(tmp_z)*(self.flag+1)])[0][-1])
530 tmp_r =int(numpy.where(self.buf_azi[(self.flag+1)*len(tmp_z):(self.flag+2)*len(tmp_z)]>=tmp_z[-1])[0][0])
531 print("tmp_r",tmp_r)
532 index_f=(self.flag+1)*len(tmp_z)+tmp_r
533
534 if len(tmp_z[index_i:])>len(self.buf_azi[len(tmp_z)*(self.flag+1):index_f]):
535 final = len(self.buf_azi[len(tmp_z)*(self.flag+1):index_f])
536 else:
537 final= len(tmp_z[index_i:])
538 self.buf_azi[len(tmp_z)*(self.flag+1):index_f]=tmp_z[index_i:index_i+final]
539 self.buf_tmp[len(tmp_z)*(self.flag+1):index_f,:]=tmp_v[index_i:index_i+final,:]
540 if limit_i<tmp_z[0]<limit_s:
541 index_f =int(numpy.where(self.buf_azi>=tmp_z[-1])[0][0])
542 n_p =index_f-len(tmp_z)*(self.flag+1)
543 if n_p>0:
544 self.buf_azi[len(tmp_z)*(self.flag+1):index_f]=tmp_z[-1]*numpy.ones(n_p)
545 self.buf_tmp[len(tmp_z)*(self.flag+1):index_f,:]=tmp_v[-1,:]*numpy.ones([n_p,tmp_v.shape[1]])
546
547 '''
548 if self.buf_azi[len(tmp_z)]<tmp_z[-1]<self.buf_azi[2*len(tmp_z)-1]:
549 index_i= int(numpy.where(tmp_z <= self.buf_azi[len(tmp_z)])[0][-1])
550 index_f= int(numpy.where(self.buf_azi>=tmp_z[-1])[0][0])
551 #print("index",index_i,index_f)
552 if len(tmp_z[index_i:])>len(self.buf_azi[len(tmp_z):index_f]):
553 final = len(self.buf_azi[len(tmp_z):index_f])
554 else:
555 final = len(tmp_z[index_i:])
556 self.buf_azi[len(tmp_z):index_f]=tmp_z[index_i:index_i+final]
557 self.buf_tmp[len(tmp_z):index_f,:]=tmp_v[index_i:index_i+final,:]
558 '''
559 self.buf_tmp[len(tmp_z)*(self.flag):len(tmp_z)*(self.flag+1),:]=tmp_v
560 self.buf_azi[len(tmp_z)*(self.flag):len(tmp_z)*(self.flag+1)] = tmp_z
561 self.buffer_ini=self.buf_tmp
562 self.buffer_ini_azi = self.buf_azi
563 ##print("--------salida------------")
564 start= tmp_z[0]
565 end = tmp_z[-1]
566 ##print("start","end",start,end)
567 ##print(self.buffer_ini_azi[:120])
568 self.ini= self.ini+1
569 self.flag = self.flag +1
570 if self.flag==step:
571 self.flag=0
572
573 for i,ax in enumerate(self.axes):
574 if ax.firsttime:
575 plt.clf()
576 cgax, pm = wrl.vis.plot_ppi(self.buffer_ini,r=r,az=self.buffer_ini_azi,fig=self.figures[0], proj='cg', vmin=30, vmax=70)
577 else:
578 plt.clf()
579 cgax, pm = wrl.vis.plot_ppi(self.buffer_ini,r=r,az=self.buffer_ini_azi,fig=self.figures[0], proj='cg', vmin=30, vmax=70)
580 caax = cgax.parasites[0]
581 paax = cgax.parasites[1]
582 cbar = plt.gcf().colorbar(pm, pad=0.075)
583 caax.set_xlabel('x_range [km]')
584 caax.set_ylabel('y_range [km]')
585 plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime), transform=caax.transAxes, va='bottom',ha='right')
@@ -1,743 +1,745
1 1 # Copyright (c) 2012-2021 Jicamarca Radio Observatory
2 2 # All rights reserved.
3 3 #
4 4 # Distributed under the terms of the BSD 3-clause license.
5 5 """Classes to plot Spectra data
6 6
7 7 """
8 8
9 9 import os
10 10 import numpy
11 11
12 12 from schainpy.model.graphics.jroplot_base import Plot, plt, log
13 13
14 14
15 15 class SpectraPlot(Plot):
16 16 '''
17 17 Plot for Spectra data
18 18 '''
19 19
20 20 CODE = 'spc'
21 21 colormap = 'jet'
22 22 plot_type = 'pcolor'
23 23 buffering = False
24 24
25 25 def setup(self):
26 26 self.nplots = len(self.data.channels)
27 27 self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
28 28 self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
29 29 self.height = 2.6 * self.nrows
30 30 self.cb_label = 'dB'
31 31 if self.showprofile:
32 32 self.width = 4 * self.ncols
33 33 else:
34 34 self.width = 3.5 * self.ncols
35 35 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
36 36 self.ylabel = 'Range [km]'
37 37
38 38 def update(self, dataOut):
39 39
40 40 data = {}
41 41 meta = {}
42 42 spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor)
43 43 data['spc'] = spc
44 44 data['rti'] = dataOut.getPower()
45 45 data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
46 46 meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
47 47
48 48 if self.CODE == 'spc_moments':
49 49 data['moments'] = dataOut.moments
50 50 # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor)
51 51 if self.CODE == 'gaussian_fit':
52 52 # data['moments'] = dataOut.moments
53 53 data['gaussfit'] = dataOut.DGauFitParams
54 54 # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor)
55 55
56 56 return data, meta
57 57
58 58 def plot(self):
59 59 if self.xaxis == "frequency":
60 60 x = self.data.xrange[0]
61 61 self.xlabel = "Frequency (kHz)"
62 62 elif self.xaxis == "time":
63 63 x = self.data.xrange[1]
64 64 self.xlabel = "Time (ms)"
65 65 else:
66 66 x = self.data.xrange[2]
67 67 self.xlabel = "Velocity (m/s)"
68 68
69 69 if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'):
70 70 x = self.data.xrange[2]
71 71 self.xlabel = "Velocity (m/s)"
72 72
73 73 self.titles = []
74 74
75 75 y = self.data.yrange
76 76 self.y = y
77 77
78 78 data = self.data[-1]
79 79 z = data['spc']
80 80
81 81 for n, ax in enumerate(self.axes):
82 82 noise = data['noise'][n]
83 83 if self.CODE == 'spc_moments':
84 84 mean = data['moments'][n, 1]
85 85 if self.CODE == 'gaussian_fit':
86 86 # mean = data['moments'][n, 1]
87 87 gau0 = data['gaussfit'][n][2,:,0]
88 88 gau1 = data['gaussfit'][n][2,:,1]
89 89 if ax.firsttime:
90 90 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
91 91 self.xmin = self.xmin if self.xmin else -self.xmax
92 92 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
93 93 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
94 94 ax.plt = ax.pcolormesh(x, y, z[n].T,
95 95 vmin=self.zmin,
96 96 vmax=self.zmax,
97 97 cmap=plt.get_cmap(self.colormap)
98 98 )
99 99
100 100 if self.showprofile:
101 101 ax.plt_profile = self.pf_axes[n].plot(
102 102 data['rti'][n], y)[0]
103 103 ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
104 104 color="k", linestyle="dashed", lw=1)[0]
105 105 if self.CODE == 'spc_moments':
106 106 ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0]
107 107 if self.CODE == 'gaussian_fit':
108 108 # ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0]
109 109 ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0]
110 110 ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0]
111 111 else:
112 112 ax.plt.set_array(z[n].T.ravel())
113 113 if self.showprofile:
114 114 ax.plt_profile.set_data(data['rti'][n], y)
115 115 ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
116 116 if self.CODE == 'spc_moments':
117 117 ax.plt_mean.set_data(mean, y)
118 118 if self.CODE == 'gaussian_fit':
119 119 # ax.plt_mean.set_data(mean, y)
120 120 ax.plt_gau0.set_data(gau0, y)
121 121 ax.plt_gau1.set_data(gau1, y)
122 122 self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
123 123
124 124
125 125 class CrossSpectraPlot(Plot):
126 126
127 127 CODE = 'cspc'
128 128 colormap = 'jet'
129 129 plot_type = 'pcolor'
130 130 zmin_coh = None
131 131 zmax_coh = None
132 132 zmin_phase = None
133 133 zmax_phase = None
134 134
135 135 def setup(self):
136 136
137 137 self.ncols = 4
138 138 self.nplots = len(self.data.pairs) * 2
139 139 self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
140 140 self.width = 3.1 * self.ncols
141 141 self.height = 2.6 * self.nrows
142 142 self.ylabel = 'Range [km]'
143 143 self.showprofile = False
144 144 self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
145 145
146 146 def update(self, dataOut):
147 147
148 148 data = {}
149 149 meta = {}
150 150
151 151 spc = dataOut.data_spc
152 152 cspc = dataOut.data_cspc
153 153 meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
154 154 meta['pairs'] = dataOut.pairsList
155 155
156 156 tmp = []
157 157
158 158 for n, pair in enumerate(meta['pairs']):
159 159 out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
160 160 coh = numpy.abs(out)
161 161 phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
162 162 tmp.append(coh)
163 163 tmp.append(phase)
164 164
165 165 data['cspc'] = numpy.array(tmp)
166 166
167 167 return data, meta
168 168
169 169 def plot(self):
170 170
171 171 if self.xaxis == "frequency":
172 172 x = self.data.xrange[0]
173 173 self.xlabel = "Frequency (kHz)"
174 174 elif self.xaxis == "time":
175 175 x = self.data.xrange[1]
176 176 self.xlabel = "Time (ms)"
177 177 else:
178 178 x = self.data.xrange[2]
179 179 self.xlabel = "Velocity (m/s)"
180 180
181 181 self.titles = []
182 182
183 183 y = self.data.yrange
184 184 self.y = y
185 185
186 186 data = self.data[-1]
187 187 cspc = data['cspc']
188 188
189 189 for n in range(len(self.data.pairs)):
190 190 pair = self.data.pairs[n]
191 191 coh = cspc[n*2]
192 192 phase = cspc[n*2+1]
193 193 ax = self.axes[2 * n]
194 194 if ax.firsttime:
195 195 ax.plt = ax.pcolormesh(x, y, coh.T,
196 196 vmin=0,
197 197 vmax=1,
198 198 cmap=plt.get_cmap(self.colormap_coh)
199 199 )
200 200 else:
201 201 ax.plt.set_array(coh.T.ravel())
202 202 self.titles.append(
203 203 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
204 204
205 205 ax = self.axes[2 * n + 1]
206 206 if ax.firsttime:
207 207 ax.plt = ax.pcolormesh(x, y, phase.T,
208 208 vmin=-180,
209 209 vmax=180,
210 210 cmap=plt.get_cmap(self.colormap_phase)
211 211 )
212 212 else:
213 213 ax.plt.set_array(phase.T.ravel())
214 214 self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
215 215
216 216
217 217 class RTIPlot(Plot):
218 218 '''
219 219 Plot for RTI data
220 220 '''
221 221
222 222 CODE = 'rti'
223 223 colormap = 'jet'
224 224 plot_type = 'pcolorbuffer'
225 225
226 226 def setup(self):
227 227 self.xaxis = 'time'
228 228 self.ncols = 1
229 print("ch",self.data.channels)
229 230 self.nrows = len(self.data.channels)
230 231 self.nplots = len(self.data.channels)
231 232 self.ylabel = 'Range [km]'
232 233 self.xlabel = 'Time'
233 234 self.cb_label = 'dB'
234 235 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95})
235 236 self.titles = ['{} Channel {}'.format(
236 237 self.CODE.upper(), x) for x in range(self.nrows)]
237 238
238 239 def update(self, dataOut):
239 240
240 241 data = {}
241 242 meta = {}
242 243 data['rti'] = dataOut.getPower()
243 244 data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
244 245
245 246 return data, meta
246 247
247 248 def plot(self):
248 249 self.x = self.data.times
249 250 self.y = self.data.yrange
250 251 self.z = self.data[self.CODE]
251 252 self.z = numpy.ma.masked_invalid(self.z)
252 253
253 254 if self.decimation is None:
254 255 x, y, z = self.fill_gaps(self.x, self.y, self.z)
255 256 else:
256 257 x, y, z = self.fill_gaps(*self.decimate())
257 258
258 259 for n, ax in enumerate(self.axes):
259 260 self.zmin = self.zmin if self.zmin else numpy.min(self.z)
260 261 self.zmax = self.zmax if self.zmax else numpy.max(self.z)
261 262 data = self.data[-1]
262 263 if ax.firsttime:
263 264 ax.plt = ax.pcolormesh(x, y, z[n].T,
264 265 vmin=self.zmin,
265 266 vmax=self.zmax,
266 267 cmap=plt.get_cmap(self.colormap)
267 268 )
268 269 if self.showprofile:
270 print("test-------------------------------------1")
269 271 ax.plot_profile = self.pf_axes[n].plot(
270 272 data['rti'][n], self.y)[0]
271 273 ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y,
272 274 color="k", linestyle="dashed", lw=1)[0]
273 275 else:
274 276 ax.collections.remove(ax.collections[0])
275 277 ax.plt = ax.pcolormesh(x, y, z[n].T,
276 278 vmin=self.zmin,
277 279 vmax=self.zmax,
278 280 cmap=plt.get_cmap(self.colormap)
279 281 )
280 282 if self.showprofile:
281 283 ax.plot_profile.set_data(data['rti'][n], self.y)
282 284 ax.plot_noise.set_data(numpy.repeat(
283 285 data['noise'][n], len(self.y)), self.y)
284 286
285 287
286 288 class CoherencePlot(RTIPlot):
287 289 '''
288 290 Plot for Coherence data
289 291 '''
290 292
291 293 CODE = 'coh'
292 294
293 295 def setup(self):
294 296 self.xaxis = 'time'
295 297 self.ncols = 1
296 298 self.nrows = len(self.data.pairs)
297 299 self.nplots = len(self.data.pairs)
298 300 self.ylabel = 'Range [km]'
299 301 self.xlabel = 'Time'
300 302 self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95})
301 303 if self.CODE == 'coh':
302 304 self.cb_label = ''
303 305 self.titles = [
304 306 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
305 307 else:
306 308 self.cb_label = 'Degrees'
307 309 self.titles = [
308 310 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
309 311
310 312 def update(self, dataOut):
311 313
312 314 data = {}
313 315 meta = {}
314 316 data['coh'] = dataOut.getCoherence()
315 317 meta['pairs'] = dataOut.pairsList
316 318
317 319 return data, meta
318 320
319 321 class PhasePlot(CoherencePlot):
320 322 '''
321 323 Plot for Phase map data
322 324 '''
323 325
324 326 CODE = 'phase'
325 327 colormap = 'seismic'
326 328
327 329 def update(self, dataOut):
328 330
329 331 data = {}
330 332 meta = {}
331 333 data['phase'] = dataOut.getCoherence(phase=True)
332 334 meta['pairs'] = dataOut.pairsList
333 335
334 336 return data, meta
335 337
336 338 class NoisePlot(Plot):
337 339 '''
338 340 Plot for noise
339 341 '''
340 342
341 343 CODE = 'noise'
342 344 plot_type = 'scatterbuffer'
343 345
344 346 def setup(self):
345 347 self.xaxis = 'time'
346 348 self.ncols = 1
347 349 self.nrows = 1
348 350 self.nplots = 1
349 351 self.ylabel = 'Intensity [dB]'
350 352 self.xlabel = 'Time'
351 353 self.titles = ['Noise']
352 354 self.colorbar = False
353 355 self.plots_adjust.update({'right': 0.85 })
354 356
355 357 def update(self, dataOut):
356 358
357 359 data = {}
358 360 meta = {}
359 361 data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1)
360 362 meta['yrange'] = numpy.array([])
361 363
362 364 return data, meta
363 365
364 366 def plot(self):
365 367
366 368 x = self.data.times
367 369 xmin = self.data.min_time
368 370 xmax = xmin + self.xrange * 60 * 60
369 371 Y = self.data['noise']
370 372
371 373 if self.axes[0].firsttime:
372 374 self.ymin = numpy.nanmin(Y) - 5
373 375 self.ymax = numpy.nanmax(Y) + 5
374 376 for ch in self.data.channels:
375 377 y = Y[ch]
376 378 self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
377 379 plt.legend(bbox_to_anchor=(1.18, 1.0))
378 380 else:
379 381 for ch in self.data.channels:
380 382 y = Y[ch]
381 383 self.axes[0].lines[ch].set_data(x, y)
382 384
383 385
384 386 class PowerProfilePlot(Plot):
385 387
386 388 CODE = 'pow_profile'
387 389 plot_type = 'scatter'
388 390
389 391 def setup(self):
390 392
391 393 self.ncols = 1
392 394 self.nrows = 1
393 395 self.nplots = 1
394 396 self.height = 4
395 397 self.width = 3
396 398 self.ylabel = 'Range [km]'
397 399 self.xlabel = 'Intensity [dB]'
398 400 self.titles = ['Power Profile']
399 401 self.colorbar = False
400 402
401 403 def update(self, dataOut):
402 404
403 405 data = {}
404 406 meta = {}
405 407 data[self.CODE] = dataOut.getPower()
406 408
407 409 return data, meta
408 410
409 411 def plot(self):
410 412
411 413 y = self.data.yrange
412 414 self.y = y
413 415
414 416 x = self.data[-1][self.CODE]
415 417
416 418 if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9
417 419 if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1
418 420
419 421 if self.axes[0].firsttime:
420 422 for ch in self.data.channels:
421 423 self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch))
422 424 plt.legend()
423 425 else:
424 426 for ch in self.data.channels:
425 427 self.axes[0].lines[ch].set_data(x[ch], y)
426 428
427 429
428 430 class SpectraCutPlot(Plot):
429 431
430 432 CODE = 'spc_cut'
431 433 plot_type = 'scatter'
432 434 buffering = False
433 435
434 436 def setup(self):
435 437
436 438 self.nplots = len(self.data.channels)
437 439 self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
438 440 self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
439 441 self.width = 3.4 * self.ncols + 1.5
440 442 self.height = 3 * self.nrows
441 443 self.ylabel = 'Power [dB]'
442 444 self.colorbar = False
443 445 self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08})
444 446
445 447 def update(self, dataOut):
446 448
447 449 data = {}
448 450 meta = {}
449 451 spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor)
450 452 data['spc'] = spc
451 453 meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
452 454 if self.CODE == 'cut_gaussian_fit':
453 455 data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor)
454 456 data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor)
455 457 return data, meta
456 458
457 459 def plot(self):
458 460 if self.xaxis == "frequency":
459 461 x = self.data.xrange[0][1:]
460 462 self.xlabel = "Frequency (kHz)"
461 463 elif self.xaxis == "time":
462 464 x = self.data.xrange[1]
463 465 self.xlabel = "Time (ms)"
464 466 else:
465 467 x = self.data.xrange[2][:-1]
466 468 self.xlabel = "Velocity (m/s)"
467 469
468 470 if self.CODE == 'cut_gaussian_fit':
469 471 x = self.data.xrange[2][:-1]
470 472 self.xlabel = "Velocity (m/s)"
471 473
472 474 self.titles = []
473 475
474 476 y = self.data.yrange
475 477 data = self.data[-1]
476 478 z = data['spc']
477 479
478 480 if self.height_index:
479 481 index = numpy.array(self.height_index)
480 482 else:
481 483 index = numpy.arange(0, len(y), int((len(y))/9))
482 484
483 485 for n, ax in enumerate(self.axes):
484 486 if self.CODE == 'cut_gaussian_fit':
485 487 gau0 = data['gauss_fit0']
486 488 gau1 = data['gauss_fit1']
487 489 if ax.firsttime:
488 490 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
489 491 self.xmin = self.xmin if self.xmin else -self.xmax
490 492 self.ymin = self.ymin if self.ymin else numpy.nanmin(z)
491 493 self.ymax = self.ymax if self.ymax else numpy.nanmax(z)
492 494 ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25)
493 495 if self.CODE == 'cut_gaussian_fit':
494 496 ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.')
495 497 for i, line in enumerate(ax.plt_gau0):
496 498 line.set_color(ax.plt[i].get_color())
497 499 ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--')
498 500 for i, line in enumerate(ax.plt_gau1):
499 501 line.set_color(ax.plt[i].get_color())
500 502 labels = ['Range = {:2.1f}km'.format(y[i]) for i in index]
501 503 self.figures[0].legend(ax.plt, labels, loc='center right')
502 504 else:
503 505 for i, line in enumerate(ax.plt):
504 506 line.set_data(x, z[n, :, index[i]].T)
505 507 for i, line in enumerate(ax.plt_gau0):
506 508 line.set_data(x, gau0[n, :, index[i]].T)
507 509 line.set_color(ax.plt[i].get_color())
508 510 for i, line in enumerate(ax.plt_gau1):
509 511 line.set_data(x, gau1[n, :, index[i]].T)
510 512 line.set_color(ax.plt[i].get_color())
511 513 self.titles.append('CH {}'.format(n))
512 514
513 515
514 516 class BeaconPhase(Plot):
515 517
516 518 __isConfig = None
517 519 __nsubplots = None
518 520
519 521 PREFIX = 'beacon_phase'
520 522
521 523 def __init__(self):
522 524 Plot.__init__(self)
523 525 self.timerange = 24*60*60
524 526 self.isConfig = False
525 527 self.__nsubplots = 1
526 528 self.counter_imagwr = 0
527 529 self.WIDTH = 800
528 530 self.HEIGHT = 400
529 531 self.WIDTHPROF = 120
530 532 self.HEIGHTPROF = 0
531 533 self.xdata = None
532 534 self.ydata = None
533 535
534 536 self.PLOT_CODE = BEACON_CODE
535 537
536 538 self.FTP_WEI = None
537 539 self.EXP_CODE = None
538 540 self.SUB_EXP_CODE = None
539 541 self.PLOT_POS = None
540 542
541 543 self.filename_phase = None
542 544
543 545 self.figfile = None
544 546
545 547 self.xmin = None
546 548 self.xmax = None
547 549
548 550 def getSubplots(self):
549 551
550 552 ncol = 1
551 553 nrow = 1
552 554
553 555 return nrow, ncol
554 556
555 557 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
556 558
557 559 self.__showprofile = showprofile
558 560 self.nplots = nplots
559 561
560 562 ncolspan = 7
561 563 colspan = 6
562 564 self.__nsubplots = 2
563 565
564 566 self.createFigure(id = id,
565 567 wintitle = wintitle,
566 568 widthplot = self.WIDTH+self.WIDTHPROF,
567 569 heightplot = self.HEIGHT+self.HEIGHTPROF,
568 570 show=show)
569 571
570 572 nrow, ncol = self.getSubplots()
571 573
572 574 self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
573 575
574 576 def save_phase(self, filename_phase):
575 577 f = open(filename_phase,'w+')
576 578 f.write('\n\n')
577 579 f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n')
578 580 f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' )
579 581 f.close()
580 582
581 583 def save_data(self, filename_phase, data, data_datetime):
582 584 f=open(filename_phase,'a')
583 585 timetuple_data = data_datetime.timetuple()
584 586 day = str(timetuple_data.tm_mday)
585 587 month = str(timetuple_data.tm_mon)
586 588 year = str(timetuple_data.tm_year)
587 589 hour = str(timetuple_data.tm_hour)
588 590 minute = str(timetuple_data.tm_min)
589 591 second = str(timetuple_data.tm_sec)
590 592 f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n')
591 593 f.close()
592 594
593 595 def plot(self):
594 596 log.warning('TODO: Not yet implemented...')
595 597
596 598 def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
597 599 xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None,
598 600 timerange=None,
599 601 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
600 602 server=None, folder=None, username=None, password=None,
601 603 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
602 604
603 605 if dataOut.flagNoData:
604 606 return dataOut
605 607
606 608 if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
607 609 return
608 610
609 611 if pairsList == None:
610 612 pairsIndexList = dataOut.pairsIndexList[:10]
611 613 else:
612 614 pairsIndexList = []
613 615 for pair in pairsList:
614 616 if pair not in dataOut.pairsList:
615 617 raise ValueError("Pair %s is not in dataOut.pairsList" %(pair))
616 618 pairsIndexList.append(dataOut.pairsList.index(pair))
617 619
618 620 if pairsIndexList == []:
619 621 return
620 622
621 623 # if len(pairsIndexList) > 4:
622 624 # pairsIndexList = pairsIndexList[0:4]
623 625
624 626 hmin_index = None
625 627 hmax_index = None
626 628
627 629 if hmin != None and hmax != None:
628 630 indexes = numpy.arange(dataOut.nHeights)
629 631 hmin_list = indexes[dataOut.heightList >= hmin]
630 632 hmax_list = indexes[dataOut.heightList <= hmax]
631 633
632 634 if hmin_list.any():
633 635 hmin_index = hmin_list[0]
634 636
635 637 if hmax_list.any():
636 638 hmax_index = hmax_list[-1]+1
637 639
638 640 x = dataOut.getTimeRange()
639 641
640 642 thisDatetime = dataOut.datatime
641 643
642 644 title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
643 645 xlabel = "Local Time"
644 646 ylabel = "Phase (degrees)"
645 647
646 648 update_figfile = False
647 649
648 650 nplots = len(pairsIndexList)
649 651 #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList)))
650 652 phase_beacon = numpy.zeros(len(pairsIndexList))
651 653 for i in range(nplots):
652 654 pair = dataOut.pairsList[pairsIndexList[i]]
653 655 ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0)
654 656 powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0)
655 657 powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0)
656 658 avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
657 659 phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi
658 660
659 661 if dataOut.beacon_heiIndexList:
660 662 phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList])
661 663 else:
662 664 phase_beacon[i] = numpy.average(phase)
663 665
664 666 if not self.isConfig:
665 667
666 668 nplots = len(pairsIndexList)
667 669
668 670 self.setup(id=id,
669 671 nplots=nplots,
670 672 wintitle=wintitle,
671 673 showprofile=showprofile,
672 674 show=show)
673 675
674 676 if timerange != None:
675 677 self.timerange = timerange
676 678
677 679 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
678 680
679 681 if ymin == None: ymin = 0
680 682 if ymax == None: ymax = 360
681 683
682 684 self.FTP_WEI = ftp_wei
683 685 self.EXP_CODE = exp_code
684 686 self.SUB_EXP_CODE = sub_exp_code
685 687 self.PLOT_POS = plot_pos
686 688
687 689 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
688 690 self.isConfig = True
689 691 self.figfile = figfile
690 692 self.xdata = numpy.array([])
691 693 self.ydata = numpy.array([])
692 694
693 695 update_figfile = True
694 696
695 697 #open file beacon phase
696 698 path = '%s%03d' %(self.PREFIX, self.id)
697 699 beacon_file = os.path.join(path,'%s.txt'%self.name)
698 700 self.filename_phase = os.path.join(figpath,beacon_file)
699 701 #self.save_phase(self.filename_phase)
700 702
701 703
702 704 #store data beacon phase
703 705 #self.save_data(self.filename_phase, phase_beacon, thisDatetime)
704 706
705 707 self.setWinTitle(title)
706 708
707 709
708 710 title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
709 711
710 712 legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList]
711 713
712 714 axes = self.axesList[0]
713 715
714 716 self.xdata = numpy.hstack((self.xdata, x[0:1]))
715 717
716 718 if len(self.ydata)==0:
717 719 self.ydata = phase_beacon.reshape(-1,1)
718 720 else:
719 721 self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1)))
720 722
721 723
722 724 axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
723 725 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax,
724 726 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
725 727 XAxisAsTime=True, grid='both'
726 728 )
727 729
728 730 self.draw()
729 731
730 732 if dataOut.ltctime >= self.xmax:
731 733 self.counter_imagwr = wr_period
732 734 self.isConfig = False
733 735 update_figfile = True
734 736
735 737 self.save(figpath=figpath,
736 738 figfile=figfile,
737 739 save=save,
738 740 ftp=ftp,
739 741 wr_period=wr_period,
740 742 thisDatetime=thisDatetime,
741 743 update_figfile=update_figfile)
742 744
743 745 return dataOut
@@ -1,1575 +1,1609
1 1 """
2 2 Created on Jul 2, 2014
3 3
4 4 @author: roj-idl71
5 5 """
6 6 import os
7 7 import sys
8 8 import glob
9 9 import time
10 10 import numpy
11 11 import fnmatch
12 12 import inspect
13 13 import time
14 14 import datetime
15 15 import zmq
16 16
17 17 from schainpy.model.proc.jroproc_base import Operation, MPDecorator
18 18 from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader
19 19 from schainpy.model.data.jroheaderIO import get_dtype_index, get_numpy_dtype, get_procflag_dtype, get_dtype_width
20 20 from schainpy.utils import log
21 21 import schainpy.admin
22 22
23 23 LOCALTIME = True
24 24 DT_DIRECTIVES = {
25 25 '%Y': 4,
26 26 '%y': 2,
27 27 '%m': 2,
28 28 '%d': 2,
29 29 '%j': 3,
30 30 '%H': 2,
31 31 '%M': 2,
32 32 '%S': 2,
33 33 '%f': 6
34 34 }
35 35
36 36
37 37 def isNumber(cad):
38 38 """
39 39 Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
40 40
41 41 Excepciones:
42 42 Si un determinado string no puede ser convertido a numero
43 43 Input:
44 44 str, string al cual se le analiza para determinar si convertible a un numero o no
45 45
46 46 Return:
47 47 True : si el string es uno numerico
48 48 False : no es un string numerico
49 49 """
50 50 try:
51 51 float(cad)
52 52 return True
53 53 except:
54 54 return False
55 55
56 56
57 57 def isFileInEpoch(filename, startUTSeconds, endUTSeconds):
58 58 """
59 59 Esta funcion determina si un archivo de datos se encuentra o no dentro del rango de fecha especificado.
60 60
61 61 Inputs:
62 62 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
63 63
64 64 startUTSeconds : fecha inicial del rango seleccionado. La fecha esta dada en
65 65 segundos contados desde 01/01/1970.
66 66 endUTSeconds : fecha final del rango seleccionado. La fecha esta dada en
67 67 segundos contados desde 01/01/1970.
68 68
69 69 Return:
70 70 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
71 71 fecha especificado, de lo contrario retorna False.
72 72
73 73 Excepciones:
74 74 Si el archivo no existe o no puede ser abierto
75 75 Si la cabecera no puede ser leida.
76 76
77 77 """
78 78 basicHeaderObj = BasicHeader(LOCALTIME)
79 79
80 80 try:
81 81 fp = open(filename, 'rb')
82 82 except IOError:
83 83 print("The file %s can't be opened" % (filename))
84 84 return 0
85 85
86 86 sts = basicHeaderObj.read(fp)
87 87 fp.close()
88 88
89 89 if not(sts):
90 90 print("Skipping the file %s because it has not a valid header" % (filename))
91 91 return 0
92 92
93 93 if not ((startUTSeconds <= basicHeaderObj.utc) and (endUTSeconds > basicHeaderObj.utc)):
94 94 return 0
95 95
96 96 return 1
97 97
98 98
99 99 def isTimeInRange(thisTime, startTime, endTime):
100 100 if endTime >= startTime:
101 101 if (thisTime < startTime) or (thisTime > endTime):
102 102 return 0
103 103 return 1
104 104 else:
105 105 if (thisTime < startTime) and (thisTime > endTime):
106 106 return 0
107 107 return 1
108 108
109 109
110 110 def isFileInTimeRange(filename, startDate, endDate, startTime, endTime):
111 111 """
112 112 Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado.
113 113
114 114 Inputs:
115 115 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
116 116
117 117 startDate : fecha inicial del rango seleccionado en formato datetime.date
118 118
119 119 endDate : fecha final del rango seleccionado en formato datetime.date
120 120
121 121 startTime : tiempo inicial del rango seleccionado en formato datetime.time
122 122
123 123 endTime : tiempo final del rango seleccionado en formato datetime.time
124 124
125 125 Return:
126 126 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
127 127 fecha especificado, de lo contrario retorna False.
128 128
129 129 Excepciones:
130 130 Si el archivo no existe o no puede ser abierto
131 131 Si la cabecera no puede ser leida.
132 132
133 133 """
134 134
135 135 try:
136 136 fp = open(filename, 'rb')
137 137 except IOError:
138 138 print("The file %s can't be opened" % (filename))
139 139 return None
140 140
141 141 firstBasicHeaderObj = BasicHeader(LOCALTIME)
142 142 systemHeaderObj = SystemHeader()
143 143 radarControllerHeaderObj = RadarControllerHeader()
144 144 processingHeaderObj = ProcessingHeader()
145 145
146 146 lastBasicHeaderObj = BasicHeader(LOCALTIME)
147 147
148 148 sts = firstBasicHeaderObj.read(fp)
149 149
150 150 if not(sts):
151 151 print("[Reading] Skipping the file %s because it has not a valid header" % (filename))
152 152 return None
153 153
154 154 if not systemHeaderObj.read(fp):
155 155 return None
156 156
157 157 if not radarControllerHeaderObj.read(fp):
158 158 return None
159 159
160 160 if not processingHeaderObj.read(fp):
161 161 return None
162 162
163 163 filesize = os.path.getsize(filename)
164 164
165 165 offset = processingHeaderObj.blockSize + 24 # header size
166 166
167 167 if filesize <= offset:
168 168 print("[Reading] %s: This file has not enough data" % filename)
169 169 return None
170 170
171 171 fp.seek(-offset, 2)
172 172
173 173 sts = lastBasicHeaderObj.read(fp)
174 174
175 175 fp.close()
176 176
177 177 thisDatetime = lastBasicHeaderObj.datatime
178 178 thisTime_last_block = thisDatetime.time()
179 179
180 180 thisDatetime = firstBasicHeaderObj.datatime
181 181 thisDate = thisDatetime.date()
182 182 thisTime_first_block = thisDatetime.time()
183 183
184 184 # General case
185 185 # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o
186 186 #-----------o----------------------------o-----------
187 187 # startTime endTime
188 188
189 189 if endTime >= startTime:
190 190 if (thisTime_last_block < startTime) or (thisTime_first_block > endTime):
191 191 return None
192 192
193 193 return thisDatetime
194 194
195 195 # If endTime < startTime then endTime belongs to the next day
196 196
197 197 #<<<<<<<<<<<o o>>>>>>>>>>>
198 198 #-----------o----------------------------o-----------
199 199 # endTime startTime
200 200
201 201 if (thisDate == startDate) and (thisTime_last_block < startTime):
202 202 return None
203 203
204 204 if (thisDate == endDate) and (thisTime_first_block > endTime):
205 205 return None
206 206
207 207 if (thisTime_last_block < startTime) and (thisTime_first_block > endTime):
208 208 return None
209 209
210 210 return thisDatetime
211 211
212 212
213 213 def isFolderInDateRange(folder, startDate=None, endDate=None):
214 214 """
215 215 Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado.
216 216
217 217 Inputs:
218 218 folder : nombre completo del directorio.
219 219 Su formato deberia ser "/path_root/?YYYYDDD"
220 220
221 221 siendo:
222 222 YYYY : Anio (ejemplo 2015)
223 223 DDD : Dia del anio (ejemplo 305)
224 224
225 225 startDate : fecha inicial del rango seleccionado en formato datetime.date
226 226
227 227 endDate : fecha final del rango seleccionado en formato datetime.date
228 228
229 229 Return:
230 230 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
231 231 fecha especificado, de lo contrario retorna False.
232 232 Excepciones:
233 233 Si el directorio no tiene el formato adecuado
234 234 """
235 235
236 236 basename = os.path.basename(folder)
237 237
238 238 if not isRadarFolder(basename):
239 239 print("The folder %s has not the rigth format" % folder)
240 240 return 0
241 241
242 242 if startDate and endDate:
243 243 thisDate = getDateFromRadarFolder(basename)
244 244
245 245 if thisDate < startDate:
246 246 return 0
247 247
248 248 if thisDate > endDate:
249 249 return 0
250 250
251 251 return 1
252 252
253 253
254 254 def isFileInDateRange(filename, startDate=None, endDate=None):
255 255 """
256 256 Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado.
257 257
258 258 Inputs:
259 259 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
260 260
261 261 Su formato deberia ser "?YYYYDDDsss"
262 262
263 263 siendo:
264 264 YYYY : Anio (ejemplo 2015)
265 265 DDD : Dia del anio (ejemplo 305)
266 266 sss : set
267 267
268 268 startDate : fecha inicial del rango seleccionado en formato datetime.date
269 269
270 270 endDate : fecha final del rango seleccionado en formato datetime.date
271 271
272 272 Return:
273 273 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
274 274 fecha especificado, de lo contrario retorna False.
275 275 Excepciones:
276 276 Si el archivo no tiene el formato adecuado
277 277 """
278 278
279 279 basename = os.path.basename(filename)
280 280
281 281 if not isRadarFile(basename):
282 282 print("The filename %s has not the rigth format" % filename)
283 283 return 0
284 284
285 285 if startDate and endDate:
286 286 thisDate = getDateFromRadarFile(basename)
287 287
288 288 if thisDate < startDate:
289 289 return 0
290 290
291 291 if thisDate > endDate:
292 292 return 0
293 293
294 294 return 1
295 295
296 296
297 297 def getFileFromSet(path, ext, set):
298 298 validFilelist = []
299 299 fileList = os.listdir(path)
300 300
301 301 # 0 1234 567 89A BCDE
302 302 # H YYYY DDD SSS .ext
303 303
304 304 for thisFile in fileList:
305 305 try:
306 306 year = int(thisFile[1:5])
307 307 doy = int(thisFile[5:8])
308 308 except:
309 309 continue
310 310
311 311 if (os.path.splitext(thisFile)[-1].lower() != ext.lower()):
312 312 continue
313 313
314 314 validFilelist.append(thisFile)
315 315
316 316 myfile = fnmatch.filter(
317 317 validFilelist, '*%4.4d%3.3d%3.3d*' % (year, doy, set))
318 318
319 319 if len(myfile) != 0:
320 320 return myfile[0]
321 321 else:
322 322 filename = '*%4.4d%3.3d%3.3d%s' % (year, doy, set, ext.lower())
323 323 print('the filename %s does not exist' % filename)
324 324 print('...going to the last file: ')
325 325
326 326 if validFilelist:
327 327 validFilelist = sorted(validFilelist, key=str.lower)
328 328 return validFilelist[-1]
329 329
330 330 return None
331 331
332 332
333 333 def getlastFileFromPath(path, ext):
334 334 """
335 335 Depura el fileList dejando solo los que cumplan el formato de "PYYYYDDDSSS.ext"
336 336 al final de la depuracion devuelve el ultimo file de la lista que quedo.
337 337
338 338 Input:
339 339 fileList : lista conteniendo todos los files (sin path) que componen una determinada carpeta
340 340 ext : extension de los files contenidos en una carpeta
341 341
342 342 Return:
343 343 El ultimo file de una determinada carpeta, no se considera el path.
344 344 """
345 345 validFilelist = []
346 346 fileList = os.listdir(path)
347 347
348 348 # 0 1234 567 89A BCDE
349 349 # H YYYY DDD SSS .ext
350 350
351 351 for thisFile in fileList:
352 352
353 353 year = thisFile[1:5]
354 354 if not isNumber(year):
355 355 continue
356 356
357 357 doy = thisFile[5:8]
358 358 if not isNumber(doy):
359 359 continue
360 360
361 361 year = int(year)
362 362 doy = int(doy)
363 363
364 364 if (os.path.splitext(thisFile)[-1].lower() != ext.lower()):
365 365 continue
366 366
367 367 validFilelist.append(thisFile)
368 368
369 369 if validFilelist:
370 370 validFilelist = sorted(validFilelist, key=str.lower)
371 371 return validFilelist[-1]
372 372
373 373 return None
374 374
375 375
376 376 def isRadarFolder(folder):
377 377 try:
378 378 year = int(folder[1:5])
379 379 doy = int(folder[5:8])
380 380 except:
381 381 return 0
382 382
383 383 return 1
384 384
385 385
386 386 def isRadarFile(file):
387 387 try:
388 388 year = int(file[1:5])
389 389 doy = int(file[5:8])
390 390 set = int(file[8:11])
391 391 except:
392 392 return 0
393 393
394 394 return 1
395 395
396 396
397 397 def getDateFromRadarFile(file):
398 398 try:
399 399 year = int(file[1:5])
400 400 doy = int(file[5:8])
401 401 set = int(file[8:11])
402 402 except:
403 403 return None
404 404
405 405 thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy - 1)
406 406 return thisDate
407 407
408 408
409 409 def getDateFromRadarFolder(folder):
410 410 try:
411 411 year = int(folder[1:5])
412 412 doy = int(folder[5:8])
413 413 except:
414 414 return None
415 415
416 416 thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy - 1)
417 417 return thisDate
418 418
419 419 def parse_format(s, fmt):
420 420
421 421 for i in range(fmt.count('%')):
422 422 x = fmt.index('%')
423 423 d = DT_DIRECTIVES[fmt[x:x+2]]
424 424 fmt = fmt.replace(fmt[x:x+2], s[x:x+d])
425 425 return fmt
426 426
427 427 class Reader(object):
428 428
429 429 c = 3E8
430 430 isConfig = False
431 431 dtype = None
432 432 pathList = []
433 433 filenameList = []
434 434 datetimeList = []
435 435 filename = None
436 436 ext = None
437 437 flagIsNewFile = 1
438 438 flagDiscontinuousBlock = 0
439 439 flagIsNewBlock = 0
440 440 flagNoMoreFiles = 0
441 441 fp = None
442 442 firstHeaderSize = 0
443 443 basicHeaderSize = 24
444 444 versionFile = 1103
445 445 fileSize = None
446 446 fileSizeByHeader = None
447 447 fileIndex = -1
448 448 profileIndex = None
449 449 blockIndex = 0
450 450 nTotalBlocks = 0
451 451 maxTimeStep = 30
452 452 lastUTTime = None
453 453 datablock = None
454 454 dataOut = None
455 455 getByBlock = False
456 456 path = None
457 457 startDate = None
458 458 endDate = None
459 459 startTime = datetime.time(0, 0, 0)
460 460 endTime = datetime.time(23, 59, 59)
461 461 set = None
462 462 expLabel = ""
463 463 online = False
464 464 delay = 60
465 465 nTries = 3 # quantity tries
466 466 nFiles = 3 # number of files for searching
467 467 walk = True
468 468 getblock = False
469 469 nTxs = 1
470 470 realtime = False
471 471 blocksize = 0
472 472 blocktime = None
473 473 warnings = True
474 474 verbose = True
475 475 server = None
476 476 format = None
477 477 oneDDict = None
478 478 twoDDict = None
479 479 independentParam = None
480 480 filefmt = None
481 481 folderfmt = None
482 482 open_file = open
483 483 open_mode = 'rb'
484 484
485 485 def run(self):
486 486
487 487 raise NotImplementedError
488 488
489 489 def getAllowedArgs(self):
490 490 if hasattr(self, '__attrs__'):
491 491 return self.__attrs__
492 492 else:
493 493 return inspect.getargspec(self.run).args
494 494
495 495 def set_kwargs(self, **kwargs):
496 496
497 497 for key, value in kwargs.items():
498 498 setattr(self, key, value)
499 499
500 500 def find_folders(self, path, startDate, endDate, folderfmt, last=False):
501 501
502 502 folders = [x for f in path.split(',')
503 503 for x in os.listdir(f) if os.path.isdir(os.path.join(f, x))]
504 504 folders.sort()
505 505
506 506 if last:
507 507 folders = [folders[-1]]
508 508
509 509 for folder in folders:
510 510 try:
511 511 dt = datetime.datetime.strptime(parse_format(folder, folderfmt), folderfmt).date()
512 512 if dt >= startDate and dt <= endDate:
513 513 yield os.path.join(path, folder)
514 514 else:
515 515 log.log('Skiping folder {}'.format(folder), self.name)
516 516 except Exception as e:
517 517 log.log('Skiping folder {}'.format(folder), self.name)
518 518 continue
519 519 return
520 520
521 521 def find_files(self, folders, ext, filefmt, startDate=None, endDate=None,
522 522 expLabel='', last=False):
523 523
524 524 for path in folders:
525 525 files = glob.glob1(path, '*{}'.format(ext))
526 526 files.sort()
527 527 if last:
528 528 if files:
529 529 fo = files[-1]
530 530 try:
531 531 dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date()
532 532 yield os.path.join(path, expLabel, fo)
533 533 except Exception as e:
534 534 pass
535 535 return
536 536 else:
537 537 return
538 538
539 539 for fo in files:
540 540 try:
541 541 dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date()
542 542 if dt >= startDate and dt <= endDate:
543 543 yield os.path.join(path, expLabel, fo)
544 544 else:
545 545 log.log('Skiping file {}'.format(fo), self.name)
546 546 except Exception as e:
547 547 log.log('Skiping file {}'.format(fo), self.name)
548 548 continue
549 549
550 550 def searchFilesOffLine(self, path, startDate, endDate,
551 551 expLabel, ext, walk,
552 552 filefmt, folderfmt):
553 553 """Search files in offline mode for the given arguments
554 554
555 555 Return:
556 556 Generator of files
557 557 """
558 558
559 559 if walk:
560 560 folders = self.find_folders(
561 561 path, startDate, endDate, folderfmt)
562 562 else:
563 563 folders = path.split(',')
564 564
565 565 return self.find_files(
566 566 folders, ext, filefmt, startDate, endDate, expLabel)
567 567
568 568 def searchFilesOnLine(self, path, startDate, endDate,
569 569 expLabel, ext, walk,
570 570 filefmt, folderfmt):
571 571 """Search for the last file of the last folder
572 572
573 573 Arguments:
574 574 path : carpeta donde estan contenidos los files que contiene data
575 575 expLabel : Nombre del subexperimento (subfolder)
576 576 ext : extension de los files
577 577 walk : Si es habilitado no realiza busquedas dentro de los ubdirectorios (doypath)
578 578
579 579 Return:
580 580 generator with the full path of last filename
581 581 """
582 582
583 583 if walk:
584 584 folders = self.find_folders(
585 585 path, startDate, endDate, folderfmt, last=True)
586 586 else:
587 587 folders = path.split(',')
588 588
589 589 return self.find_files(
590 590 folders, ext, filefmt, startDate, endDate, expLabel, last=True)
591 591
592 592 def setNextFile(self):
593 593 """Set the next file to be readed open it and parse de file header"""
594 594
595 595 while True:
596 596 if self.fp != None:
597 597 self.fp.close()
598 598
599 599 if self.online:
600 600 newFile = self.setNextFileOnline()
601 601 else:
602 602 newFile = self.setNextFileOffline()
603 603
604 604 if not(newFile):
605 605 if self.online:
606 606 raise schainpy.admin.SchainError('Time to wait for new files reach')
607 607 else:
608 608 if self.fileIndex == -1:
609 609 raise schainpy.admin.SchainWarning('No files found in the given path')
610 610 else:
611 611 raise schainpy.admin.SchainWarning('No more files to read')
612 612
613 613 if self.verifyFile(self.filename):
614 614 break
615 615
616 616 log.log('Opening file: %s' % self.filename, self.name)
617 617
618 618 self.readFirstHeader()
619 619 self.nReadBlocks = 0
620 620
621 621 def setNextFileOnline(self):
622 622 """Check for the next file to be readed in online mode.
623 623
624 624 Set:
625 625 self.filename
626 626 self.fp
627 627 self.filesize
628 628
629 629 Return:
630 630 boolean
631 631
632 632 """
633 633 nextFile = True
634 634 nextDay = False
635 635
636 636 for nFiles in range(self.nFiles+1):
637 637 for nTries in range(self.nTries):
638 638 fullfilename, filename = self.checkForRealPath(nextFile, nextDay)
639 639 if fullfilename is not None:
640 640 break
641 641 log.warning(
642 642 "Waiting %0.2f sec for the next file: \"%s\" , try %02d ..." % (self.delay, filename, nTries + 1),
643 643 self.name)
644 644 time.sleep(self.delay)
645 645 nextFile = False
646 646 continue
647 647
648 648 if fullfilename is not None:
649 649 break
650 650
651 651 self.nTries = 1
652 652 nextFile = True
653 653
654 654 if nFiles == (self.nFiles - 1):
655 655 log.log('Trying with next day...', self.name)
656 656 nextDay = True
657 657 self.nTries = 3
658 658
659 659 if fullfilename:
660 660 self.fileSize = os.path.getsize(fullfilename)
661 661 self.filename = fullfilename
662 662 self.flagIsNewFile = 1
663 663 if self.fp != None:
664 664 self.fp.close()
665 665 self.fp = self.open_file(fullfilename, self.open_mode)
666 666 self.flagNoMoreFiles = 0
667 667 self.fileIndex += 1
668 668 return 1
669 669 else:
670 670 return 0
671 671
672 672 def setNextFileOffline(self):
673 673 """Open the next file to be readed in offline mode"""
674 674
675 675 try:
676 676 filename = next(self.filenameList)
677 677 self.fileIndex +=1
678 678 except StopIteration:
679 679 self.flagNoMoreFiles = 1
680 680 return 0
681 681
682 682 self.filename = filename
683 683 self.fileSize = os.path.getsize(filename)
684 684 self.fp = self.open_file(filename, self.open_mode)
685 685 self.flagIsNewFile = 1
686 686
687 687 return 1
688 688
689 689 @staticmethod
690 690 def isDateTimeInRange(dt, startDate, endDate, startTime, endTime):
691 691 """Check if the given datetime is in range"""
692 692
693 693 if startDate <= dt.date() <= endDate:
694 694 if startTime <= dt.time() <= endTime:
695 695 return True
696 696 return False
697 697
698 698 def verifyFile(self, filename):
699 699 """Check for a valid file
700 700
701 701 Arguments:
702 702 filename -- full path filename
703 703
704 704 Return:
705 705 boolean
706 706 """
707 707
708 708 return True
709 709
710 710 def checkForRealPath(self, nextFile, nextDay):
711 711 """Check if the next file to be readed exists"""
712 if nextFile:
713 self.set += 1
714 if nextDay:
715 self.set = 0
716 self.doy += 1
717 foldercounter = 0
718 prefixDirList = [None, 'd', 'D']
719 if self.ext.lower() == ".r": # voltage
720 prefixFileList = ['d', 'D']
721 elif self.ext.lower() == ".pdata": # spectra
722 prefixFileList = ['p', 'P']
723 elif self.ext.lower() == ".hdf5": # HDF5
724 prefixFileList = ['D', 'P'] # HDF5
712 725
713 raise NotImplementedError
726 # barrido por las combinaciones posibles
727 for prefixDir in prefixDirList:
728 thispath = self.path
729 if prefixDir != None:
730 # formo el nombre del directorio xYYYYDDD (x=d o x=D)
731 if foldercounter == 0:
732 thispath = os.path.join(self.path, "%s%04d%03d" %
733 (prefixDir, self.year, self.doy))
734 else:
735 thispath = os.path.join(self.path, "%s%04d%03d_%02d" % (
736 prefixDir, self.year, self.doy, foldercounter))
737 for prefixFile in prefixFileList: # barrido por las dos combinaciones posibles de "D"
738 # formo el nombre del file xYYYYDDDSSS.ext
739 filename = "%s%04d%03d%03d%s" % (prefixFile, self.year, self.doy, self.set, self.ext)
740 fullfilename = os.path.join(
741 thispath, filename)
742
743 if os.path.exists(fullfilename):
744 return fullfilename, filename
745
746 return None, filename
747 #raise NotImplementedError
714 748
715 749 def readFirstHeader(self):
716 750 """Parse the file header"""
717 751
718 752 pass
719 753
720 754 def waitDataBlock(self, pointer_location, blocksize=None):
721 755 """
722 756 """
723 757
724 758 currentPointer = pointer_location
725 759 if blocksize is None:
726 760 neededSize = self.processingHeaderObj.blockSize # + self.basicHeaderSize
727 761 else:
728 762 neededSize = blocksize
729 763
730 764 for nTries in range(self.nTries):
731 765 self.fp.close()
732 766 self.fp = open(self.filename, 'rb')
733 767 self.fp.seek(currentPointer)
734 768
735 769 self.fileSize = os.path.getsize(self.filename)
736 770 currentSize = self.fileSize - currentPointer
737 771
738 772 if (currentSize >= neededSize):
739 773 return 1
740 774
741 775 log.warning(
742 776 "Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1),
743 777 self.name
744 778 )
745 779 time.sleep(self.delay)
746 780
747 781 return 0
748 782
749 783 class JRODataReader(Reader):
750 784
751 785 utc = 0
752 786 nReadBlocks = 0
753 787 foldercounter = 0
754 788 firstHeaderSize = 0
755 789 basicHeaderSize = 24
756 790 __isFirstTimeOnline = 1
757 791 filefmt = "*%Y%j***"
758 792 folderfmt = "*%Y%j"
759 793 __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'online', 'delay', 'walk']
760 794
761 795 def getDtypeWidth(self):
762 796
763 797 dtype_index = get_dtype_index(self.dtype)
764 798 dtype_width = get_dtype_width(dtype_index)
765 799
766 800 return dtype_width
767 801
768 802 def checkForRealPath(self, nextFile, nextDay):
769 803 """Check if the next file to be readed exists.
770 804
771 805 Example :
772 806 nombre correcto del file es .../.../D2009307/P2009307367.ext
773 807
774 808 Entonces la funcion prueba con las siguientes combinaciones
775 809 .../.../y2009307367.ext
776 810 .../.../Y2009307367.ext
777 811 .../.../x2009307/y2009307367.ext
778 812 .../.../x2009307/Y2009307367.ext
779 813 .../.../X2009307/y2009307367.ext
780 814 .../.../X2009307/Y2009307367.ext
781 815 siendo para este caso, la ultima combinacion de letras, identica al file buscado
782 816
783 817 Return:
784 818 str -- fullpath of the file
785 819 """
786 820
787 821
788 822 if nextFile:
789 823 self.set += 1
790 824 if nextDay:
791 825 self.set = 0
792 826 self.doy += 1
793 827 foldercounter = 0
794 828 prefixDirList = [None, 'd', 'D']
795 829 if self.ext.lower() == ".r": # voltage
796 830 prefixFileList = ['d', 'D']
797 831 elif self.ext.lower() == ".pdata": # spectra
798 832 prefixFileList = ['p', 'P']
799 833
800 834 # barrido por las combinaciones posibles
801 835 for prefixDir in prefixDirList:
802 836 thispath = self.path
803 837 if prefixDir != None:
804 838 # formo el nombre del directorio xYYYYDDD (x=d o x=D)
805 839 if foldercounter == 0:
806 840 thispath = os.path.join(self.path, "%s%04d%03d" %
807 841 (prefixDir, self.year, self.doy))
808 842 else:
809 843 thispath = os.path.join(self.path, "%s%04d%03d_%02d" % (
810 844 prefixDir, self.year, self.doy, foldercounter))
811 845 for prefixFile in prefixFileList: # barrido por las dos combinaciones posibles de "D"
812 846 # formo el nombre del file xYYYYDDDSSS.ext
813 847 filename = "%s%04d%03d%03d%s" % (prefixFile, self.year, self.doy, self.set, self.ext)
814 848 fullfilename = os.path.join(
815 849 thispath, filename)
816 850
817 851 if os.path.exists(fullfilename):
818 852 return fullfilename, filename
819 853
820 854 return None, filename
821 855
822 856 def __waitNewBlock(self):
823 857 """
824 858 Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma.
825 859
826 860 Si el modo de lectura es OffLine siempre retorn 0
827 861 """
828 862 if not self.online:
829 863 return 0
830 864
831 865 if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile):
832 866 return 0
833 867
834 868 currentPointer = self.fp.tell()
835 869
836 870 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
837 871
838 872 for nTries in range(self.nTries):
839 873
840 874 self.fp.close()
841 875 self.fp = open(self.filename, 'rb')
842 876 self.fp.seek(currentPointer)
843 877
844 878 self.fileSize = os.path.getsize(self.filename)
845 879 currentSize = self.fileSize - currentPointer
846 880
847 881 if (currentSize >= neededSize):
848 882 self.basicHeaderObj.read(self.fp)
849 883 return 1
850 884
851 885 if self.fileSize == self.fileSizeByHeader:
852 886 # self.flagEoF = True
853 887 return 0
854 888
855 889 print("[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1))
856 890 time.sleep(self.delay)
857 891
858 892 return 0
859 893
860 894 def __setNewBlock(self):
861 895
862 896 if self.fp == None:
863 897 return 0
864 898
865 899 if self.flagIsNewFile:
866 900 self.lastUTTime = self.basicHeaderObj.utc
867 901 return 1
868 902
869 903 if self.realtime:
870 904 self.flagDiscontinuousBlock = 1
871 905 if not(self.setNextFile()):
872 906 return 0
873 907 else:
874 908 return 1
875 909
876 910 currentSize = self.fileSize - self.fp.tell()
877 911 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
878 912
879 913 if (currentSize >= neededSize):
880 914 self.basicHeaderObj.read(self.fp)
881 915 self.lastUTTime = self.basicHeaderObj.utc
882 916 return 1
883 917
884 918 if self.__waitNewBlock():
885 919 self.lastUTTime = self.basicHeaderObj.utc
886 920 return 1
887 921
888 922 if not(self.setNextFile()):
889 923 return 0
890 924
891 925 deltaTime = self.basicHeaderObj.utc - self.lastUTTime
892 926 self.lastUTTime = self.basicHeaderObj.utc
893 927
894 928 self.flagDiscontinuousBlock = 0
895 929
896 930 if deltaTime > self.maxTimeStep:
897 931 self.flagDiscontinuousBlock = 1
898 932
899 933 return 1
900 934
901 935 def readNextBlock(self):
902 936
903 937 while True:
904 938 if not(self.__setNewBlock()):
905 939 continue
906 940
907 941 if not(self.readBlock()):
908 942 return 0
909 943
910 944 self.getBasicHeader()
911 945
912 946 if not self.isDateTimeInRange(self.dataOut.datatime, self.startDate, self.endDate, self.startTime, self.endTime):
913 947 print("[Reading] Block No. %d/%d -> %s [Skipping]" % (self.nReadBlocks,
914 948 self.processingHeaderObj.dataBlocksPerFile,
915 949 self.dataOut.datatime.ctime()))
916 950 continue
917 951
918 952 break
919 953
920 954 if self.verbose:
921 955 print("[Reading] Block No. %d/%d -> %s" % (self.nReadBlocks,
922 956 self.processingHeaderObj.dataBlocksPerFile,
923 957 self.dataOut.datatime.ctime()))
924 958 return 1
925 959
926 960 def readFirstHeader(self):
927 961
928 962 self.basicHeaderObj.read(self.fp)
929 963 self.systemHeaderObj.read(self.fp)
930 964 self.radarControllerHeaderObj.read(self.fp)
931 965 self.processingHeaderObj.read(self.fp)
932 966 self.firstHeaderSize = self.basicHeaderObj.size
933 967
934 968 datatype = int(numpy.log2((self.processingHeaderObj.processFlags &
935 969 PROCFLAG.DATATYPE_MASK)) - numpy.log2(PROCFLAG.DATATYPE_CHAR))
936 970 if datatype == 0:
937 971 datatype_str = numpy.dtype([('real', '<i1'), ('imag', '<i1')])
938 972 elif datatype == 1:
939 973 datatype_str = numpy.dtype([('real', '<i2'), ('imag', '<i2')])
940 974 elif datatype == 2:
941 975 datatype_str = numpy.dtype([('real', '<i4'), ('imag', '<i4')])
942 976 elif datatype == 3:
943 977 datatype_str = numpy.dtype([('real', '<i8'), ('imag', '<i8')])
944 978 elif datatype == 4:
945 979 datatype_str = numpy.dtype([('real', '<f4'), ('imag', '<f4')])
946 980 elif datatype == 5:
947 981 datatype_str = numpy.dtype([('real', '<f8'), ('imag', '<f8')])
948 982 else:
949 983 raise ValueError('Data type was not defined')
950 984
951 985 self.dtype = datatype_str
952 986 #self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c
953 987 self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + \
954 988 self.firstHeaderSize + self.basicHeaderSize * \
955 989 (self.processingHeaderObj.dataBlocksPerFile - 1)
956 990 # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels)
957 991 # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels)
958 992 self.getBlockDimension()
959 993
960 994 def verifyFile(self, filename):
961 995
962 996 flag = True
963 997
964 998 try:
965 999 fp = open(filename, 'rb')
966 1000 except IOError:
967 1001 log.error("File {} can't be opened".format(filename), self.name)
968 1002 return False
969 1003
970 1004 if self.online and self.waitDataBlock(0):
971 1005 pass
972 1006
973 1007 basicHeaderObj = BasicHeader(LOCALTIME)
974 1008 systemHeaderObj = SystemHeader()
975 1009 radarControllerHeaderObj = RadarControllerHeader()
976 1010 processingHeaderObj = ProcessingHeader()
977 1011
978 1012 if not(basicHeaderObj.read(fp)):
979 1013 flag = False
980 1014 if not(systemHeaderObj.read(fp)):
981 1015 flag = False
982 1016 if not(radarControllerHeaderObj.read(fp)):
983 1017 flag = False
984 1018 if not(processingHeaderObj.read(fp)):
985 1019 flag = False
986 1020 if not self.online:
987 1021 dt1 = basicHeaderObj.datatime
988 1022 pos = self.fileSize-processingHeaderObj.blockSize-24
989 1023 if pos<0:
990 1024 flag = False
991 1025 log.error('Invalid size for file: {}'.format(self.filename), self.name)
992 1026 else:
993 1027 fp.seek(pos)
994 1028 if not(basicHeaderObj.read(fp)):
995 1029 flag = False
996 1030 dt2 = basicHeaderObj.datatime
997 1031 if not self.isDateTimeInRange(dt1, self.startDate, self.endDate, self.startTime, self.endTime) and not \
998 1032 self.isDateTimeInRange(dt2, self.startDate, self.endDate, self.startTime, self.endTime):
999 1033 flag = False
1000 1034
1001 1035 fp.close()
1002 1036 return flag
1003 1037
1004 1038 def findDatafiles(self, path, startDate=None, endDate=None, expLabel='', ext='.r', walk=True, include_path=False):
1005 1039
1006 1040 path_empty = True
1007 1041
1008 1042 dateList = []
1009 1043 pathList = []
1010 1044
1011 1045 multi_path = path.split(',')
1012 1046
1013 1047 if not walk:
1014 1048
1015 1049 for single_path in multi_path:
1016 1050
1017 1051 if not os.path.isdir(single_path):
1018 1052 continue
1019 1053
1020 1054 fileList = glob.glob1(single_path, "*" + ext)
1021 1055
1022 1056 if not fileList:
1023 1057 continue
1024 1058
1025 1059 path_empty = False
1026 1060
1027 1061 fileList.sort()
1028 1062
1029 1063 for thisFile in fileList:
1030 1064
1031 1065 if not os.path.isfile(os.path.join(single_path, thisFile)):
1032 1066 continue
1033 1067
1034 1068 if not isRadarFile(thisFile):
1035 1069 continue
1036 1070
1037 1071 if not isFileInDateRange(thisFile, startDate, endDate):
1038 1072 continue
1039 1073
1040 1074 thisDate = getDateFromRadarFile(thisFile)
1041 1075
1042 1076 if thisDate in dateList or single_path in pathList:
1043 1077 continue
1044 1078
1045 1079 dateList.append(thisDate)
1046 1080 pathList.append(single_path)
1047 1081
1048 1082 else:
1049 1083 for single_path in multi_path:
1050 1084
1051 1085 if not os.path.isdir(single_path):
1052 1086 continue
1053 1087
1054 1088 dirList = []
1055 1089
1056 1090 for thisPath in os.listdir(single_path):
1057 1091
1058 1092 if not os.path.isdir(os.path.join(single_path, thisPath)):
1059 1093 continue
1060 1094
1061 1095 if not isRadarFolder(thisPath):
1062 1096 continue
1063 1097
1064 1098 if not isFolderInDateRange(thisPath, startDate, endDate):
1065 1099 continue
1066 1100
1067 1101 dirList.append(thisPath)
1068 1102
1069 1103 if not dirList:
1070 1104 continue
1071 1105
1072 1106 dirList.sort()
1073 1107
1074 1108 for thisDir in dirList:
1075 1109
1076 1110 datapath = os.path.join(single_path, thisDir, expLabel)
1077 1111 fileList = glob.glob1(datapath, "*" + ext)
1078 1112
1079 1113 if not fileList:
1080 1114 continue
1081 1115
1082 1116 path_empty = False
1083 1117
1084 1118 thisDate = getDateFromRadarFolder(thisDir)
1085 1119
1086 1120 pathList.append(datapath)
1087 1121 dateList.append(thisDate)
1088 1122
1089 1123 dateList.sort()
1090 1124
1091 1125 if walk:
1092 1126 pattern_path = os.path.join(multi_path[0], "[dYYYYDDD]", expLabel)
1093 1127 else:
1094 1128 pattern_path = multi_path[0]
1095 1129
1096 1130 if path_empty:
1097 1131 raise schainpy.admin.SchainError("[Reading] No *%s files in %s for %s to %s" % (ext, pattern_path, startDate, endDate))
1098 1132 else:
1099 1133 if not dateList:
1100 1134 raise schainpy.admin.SchainError("[Reading] Date range selected invalid [%s - %s]: No *%s files in %s)" % (startDate, endDate, ext, path))
1101 1135
1102 1136 if include_path:
1103 1137 return dateList, pathList
1104 1138
1105 1139 return dateList
1106 1140
1107 1141 def setup(self, **kwargs):
1108 1142
1109 1143 self.set_kwargs(**kwargs)
1110 1144 if not self.ext.startswith('.'):
1111 1145 self.ext = '.{}'.format(self.ext)
1112 1146
1113 1147 if self.server is not None:
1114 1148 if 'tcp://' in self.server:
1115 1149 address = server
1116 1150 else:
1117 1151 address = 'ipc:///tmp/%s' % self.server
1118 1152 self.server = address
1119 1153 self.context = zmq.Context()
1120 1154 self.receiver = self.context.socket(zmq.PULL)
1121 1155 self.receiver.connect(self.server)
1122 1156 time.sleep(0.5)
1123 1157 print('[Starting] ReceiverData from {}'.format(self.server))
1124 1158 else:
1125 1159 self.server = None
1126 1160 if self.path == None:
1127 1161 raise ValueError("[Reading] The path is not valid")
1128 1162
1129 1163 if self.online:
1130 1164 log.log("[Reading] Searching files in online mode...", self.name)
1131 1165
1132 1166 for nTries in range(self.nTries):
1133 1167 fullpath = self.searchFilesOnLine(self.path, self.startDate,
1134 1168 self.endDate, self.expLabel, self.ext, self.walk,
1135 1169 self.filefmt, self.folderfmt)
1136 1170
1137 1171 try:
1138 1172 fullpath = next(fullpath)
1139 1173 except:
1140 1174 fullpath = None
1141 1175
1142 1176 if fullpath:
1143 1177 break
1144 1178
1145 1179 log.warning(
1146 1180 'Waiting {} sec for a valid file in {}: try {} ...'.format(
1147 1181 self.delay, self.path, nTries + 1),
1148 1182 self.name)
1149 1183 time.sleep(self.delay)
1150 1184
1151 1185 if not(fullpath):
1152 1186 raise schainpy.admin.SchainError(
1153 1187 'There isn\'t any valid file in {}'.format(self.path))
1154 1188
1155 1189 pathname, filename = os.path.split(fullpath)
1156 1190 self.year = int(filename[1:5])
1157 1191 self.doy = int(filename[5:8])
1158 1192 self.set = int(filename[8:11]) - 1
1159 1193 else:
1160 1194 log.log("Searching files in {}".format(self.path), self.name)
1161 1195 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
1162 1196 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
1163 1197
1164 1198 self.setNextFile()
1165 1199
1166 1200 return
1167 1201
1168 1202 def getBasicHeader(self):
1169 1203
1170 1204 self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond / \
1171 1205 1000. + self.profileIndex * self.radarControllerHeaderObj.ippSeconds
1172 1206
1173 1207 self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock
1174 1208
1175 1209 self.dataOut.timeZone = self.basicHeaderObj.timeZone
1176 1210
1177 1211 self.dataOut.dstFlag = self.basicHeaderObj.dstFlag
1178 1212
1179 1213 self.dataOut.errorCount = self.basicHeaderObj.errorCount
1180 1214
1181 1215 self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime
1182 1216
1183 1217 self.dataOut.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs
1184 1218
1185 1219 def getFirstHeader(self):
1186 1220
1187 1221 raise NotImplementedError
1188 1222
1189 1223 def getData(self):
1190 1224
1191 1225 raise NotImplementedError
1192 1226
1193 1227 def hasNotDataInBuffer(self):
1194 1228
1195 1229 raise NotImplementedError
1196 1230
1197 1231 def readBlock(self):
1198 1232
1199 1233 raise NotImplementedError
1200 1234
1201 1235 def isEndProcess(self):
1202 1236
1203 1237 return self.flagNoMoreFiles
1204 1238
1205 1239 def printReadBlocks(self):
1206 1240
1207 1241 print("[Reading] Number of read blocks per file %04d" % self.nReadBlocks)
1208 1242
1209 1243 def printTotalBlocks(self):
1210 1244
1211 1245 print("[Reading] Number of read blocks %04d" % self.nTotalBlocks)
1212 1246
1213 1247 def run(self, **kwargs):
1214 1248 """
1215 1249
1216 1250 Arguments:
1217 1251 path :
1218 1252 startDate :
1219 1253 endDate :
1220 1254 startTime :
1221 1255 endTime :
1222 1256 set :
1223 1257 expLabel :
1224 1258 ext :
1225 1259 online :
1226 1260 delay :
1227 1261 walk :
1228 1262 getblock :
1229 1263 nTxs :
1230 1264 realtime :
1231 1265 blocksize :
1232 1266 blocktime :
1233 1267 skip :
1234 1268 cursor :
1235 1269 warnings :
1236 1270 server :
1237 1271 verbose :
1238 1272 format :
1239 1273 oneDDict :
1240 1274 twoDDict :
1241 1275 independentParam :
1242 1276 """
1243 1277
1244 1278 if not(self.isConfig):
1245 1279 self.setup(**kwargs)
1246 1280 self.isConfig = True
1247 1281 if self.server is None:
1248 1282 self.getData()
1249 1283 else:
1250 1284 self.getFromServer()
1251 1285
1252 1286
1253 1287 class JRODataWriter(Reader):
1254 1288
1255 1289 """
1256 1290 Esta clase permite escribir datos a archivos procesados (.r o ,pdata). La escritura
1257 1291 de los datos siempre se realiza por bloques.
1258 1292 """
1259 1293
1260 1294 setFile = None
1261 1295 profilesPerBlock = None
1262 1296 blocksPerFile = None
1263 1297 nWriteBlocks = 0
1264 1298 fileDate = None
1265 1299
1266 1300 def __init__(self, dataOut=None):
1267 1301 raise NotImplementedError
1268 1302
1269 1303 def hasAllDataInBuffer(self):
1270 1304 raise NotImplementedError
1271 1305
1272 1306 def setBlockDimension(self):
1273 1307 raise NotImplementedError
1274 1308
1275 1309 def writeBlock(self):
1276 1310 raise NotImplementedError
1277 1311
1278 1312 def putData(self):
1279 1313 raise NotImplementedError
1280 1314
1281 1315 def getDtypeWidth(self):
1282 1316
1283 1317 dtype_index = get_dtype_index(self.dtype)
1284 1318 dtype_width = get_dtype_width(dtype_index)
1285 1319
1286 1320 return dtype_width
1287 1321
1288 1322 def getProcessFlags(self):
1289 1323
1290 1324 processFlags = 0
1291 1325
1292 1326 dtype_index = get_dtype_index(self.dtype)
1293 1327 procflag_dtype = get_procflag_dtype(dtype_index)
1294 1328
1295 1329 processFlags += procflag_dtype
1296 1330
1297 1331 if self.dataOut.flagDecodeData:
1298 1332 processFlags += PROCFLAG.DECODE_DATA
1299 1333
1300 1334 if self.dataOut.flagDeflipData:
1301 1335 processFlags += PROCFLAG.DEFLIP_DATA
1302 1336
1303 1337 if self.dataOut.code is not None:
1304 1338 processFlags += PROCFLAG.DEFINE_PROCESS_CODE
1305 1339
1306 1340 if self.dataOut.nCohInt > 1:
1307 1341 processFlags += PROCFLAG.COHERENT_INTEGRATION
1308 1342
1309 1343 if self.dataOut.type == "Spectra":
1310 1344 if self.dataOut.nIncohInt > 1:
1311 1345 processFlags += PROCFLAG.INCOHERENT_INTEGRATION
1312 1346
1313 1347 if self.dataOut.data_dc is not None:
1314 1348 processFlags += PROCFLAG.SAVE_CHANNELS_DC
1315 1349
1316 1350 if self.dataOut.flagShiftFFT:
1317 1351 processFlags += PROCFLAG.SHIFT_FFT_DATA
1318 1352
1319 1353 return processFlags
1320 1354
1321 1355 def setBasicHeader(self):
1322 1356
1323 1357 self.basicHeaderObj.size = self.basicHeaderSize # bytes
1324 1358 self.basicHeaderObj.version = self.versionFile
1325 1359 self.basicHeaderObj.dataBlock = self.nTotalBlocks
1326 1360 utc = numpy.floor(self.dataOut.utctime)
1327 1361 milisecond = (self.dataOut.utctime - utc) * 1000.0
1328 1362 self.basicHeaderObj.utc = utc
1329 1363 self.basicHeaderObj.miliSecond = milisecond
1330 1364 self.basicHeaderObj.timeZone = self.dataOut.timeZone
1331 1365 self.basicHeaderObj.dstFlag = self.dataOut.dstFlag
1332 1366 self.basicHeaderObj.errorCount = self.dataOut.errorCount
1333 1367
1334 1368 def setFirstHeader(self):
1335 1369 """
1336 1370 Obtiene una copia del First Header
1337 1371
1338 1372 Affected:
1339 1373
1340 1374 self.basicHeaderObj
1341 1375 self.systemHeaderObj
1342 1376 self.radarControllerHeaderObj
1343 1377 self.processingHeaderObj self.
1344 1378
1345 1379 Return:
1346 1380 None
1347 1381 """
1348 1382
1349 1383 raise NotImplementedError
1350 1384
1351 1385 def __writeFirstHeader(self):
1352 1386 """
1353 1387 Escribe el primer header del file es decir el Basic header y el Long header (SystemHeader, RadarControllerHeader, ProcessingHeader)
1354 1388
1355 1389 Affected:
1356 1390 __dataType
1357 1391
1358 1392 Return:
1359 1393 None
1360 1394 """
1361 1395
1362 1396 # CALCULAR PARAMETROS
1363 1397
1364 1398 sizeLongHeader = self.systemHeaderObj.size + \
1365 1399 self.radarControllerHeaderObj.size + self.processingHeaderObj.size
1366 1400 self.basicHeaderObj.size = self.basicHeaderSize + sizeLongHeader
1367 1401
1368 1402 self.basicHeaderObj.write(self.fp)
1369 1403 self.systemHeaderObj.write(self.fp)
1370 1404 self.radarControllerHeaderObj.write(self.fp)
1371 1405 self.processingHeaderObj.write(self.fp)
1372 1406
1373 1407 def __setNewBlock(self):
1374 1408 """
1375 1409 Si es un nuevo file escribe el First Header caso contrario escribe solo el Basic Header
1376 1410
1377 1411 Return:
1378 1412 0 : si no pudo escribir nada
1379 1413 1 : Si escribio el Basic el First Header
1380 1414 """
1381 1415 if self.fp == None:
1382 1416 self.setNextFile()
1383 1417
1384 1418 if self.flagIsNewFile:
1385 1419 return 1
1386 1420
1387 1421 if self.blockIndex < self.processingHeaderObj.dataBlocksPerFile:
1388 1422 self.basicHeaderObj.write(self.fp)
1389 1423 return 1
1390 1424
1391 1425 if not(self.setNextFile()):
1392 1426 return 0
1393 1427
1394 1428 return 1
1395 1429
1396 1430 def writeNextBlock(self):
1397 1431 """
1398 1432 Selecciona el bloque siguiente de datos y los escribe en un file
1399 1433
1400 1434 Return:
1401 1435 0 : Si no hizo pudo escribir el bloque de datos
1402 1436 1 : Si no pudo escribir el bloque de datos
1403 1437 """
1404 1438 if not(self.__setNewBlock()):
1405 1439 return 0
1406 1440
1407 1441 self.writeBlock()
1408 1442
1409 1443 print("[Writing] Block No. %d/%d" % (self.blockIndex,
1410 1444 self.processingHeaderObj.dataBlocksPerFile))
1411 1445
1412 1446 return 1
1413 1447
1414 1448 def setNextFile(self):
1415 1449 """Determina el siguiente file que sera escrito
1416 1450
1417 1451 Affected:
1418 1452 self.filename
1419 1453 self.subfolder
1420 1454 self.fp
1421 1455 self.setFile
1422 1456 self.flagIsNewFile
1423 1457
1424 1458 Return:
1425 1459 0 : Si el archivo no puede ser escrito
1426 1460 1 : Si el archivo esta listo para ser escrito
1427 1461 """
1428 1462 ext = self.ext
1429 1463 path = self.path
1430 1464
1431 1465 if self.fp != None:
1432 1466 self.fp.close()
1433 1467
1434 1468 if not os.path.exists(path):
1435 1469 os.mkdir(path)
1436 1470
1437 1471 timeTuple = time.localtime(self.dataOut.utctime)
1438 1472 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year, timeTuple.tm_yday)
1439 1473
1440 1474 fullpath = os.path.join(path, subfolder)
1441 1475 setFile = self.setFile
1442 1476
1443 1477 if not(os.path.exists(fullpath)):
1444 1478 os.mkdir(fullpath)
1445 1479 setFile = -1 # inicializo mi contador de seteo
1446 1480 else:
1447 1481 filesList = os.listdir(fullpath)
1448 1482 if len(filesList) > 0:
1449 1483 filesList = sorted(filesList, key=str.lower)
1450 1484 filen = filesList[-1]
1451 1485 # el filename debera tener el siguiente formato
1452 1486 # 0 1234 567 89A BCDE (hex)
1453 1487 # x YYYY DDD SSS .ext
1454 1488 if isNumber(filen[8:11]):
1455 1489 # inicializo mi contador de seteo al seteo del ultimo file
1456 1490 setFile = int(filen[8:11])
1457 1491 else:
1458 1492 setFile = -1
1459 1493 else:
1460 1494 setFile = -1 # inicializo mi contador de seteo
1461 1495
1462 1496 setFile += 1
1463 1497
1464 1498 # If this is a new day it resets some values
1465 1499 if self.dataOut.datatime.date() > self.fileDate:
1466 1500 setFile = 0
1467 1501 self.nTotalBlocks = 0
1468 1502
1469 1503 filen = '{}{:04d}{:03d}{:03d}{}'.format(
1470 1504 self.optchar, timeTuple.tm_year, timeTuple.tm_yday, setFile, ext)
1471 1505
1472 1506 filename = os.path.join(path, subfolder, filen)
1473 1507
1474 1508 fp = open(filename, 'wb')
1475 1509
1476 1510 self.blockIndex = 0
1477 1511 self.filename = filename
1478 1512 self.subfolder = subfolder
1479 1513 self.fp = fp
1480 1514 self.setFile = setFile
1481 1515 self.flagIsNewFile = 1
1482 1516 self.fileDate = self.dataOut.datatime.date()
1483 1517 self.setFirstHeader()
1484 1518
1485 1519 print('[Writing] Opening file: %s' % self.filename)
1486 1520
1487 1521 self.__writeFirstHeader()
1488 1522
1489 1523 return 1
1490 1524
1491 1525 def setup(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=None, ext=None, datatype=4):
1492 1526 """
1493 1527 Setea el tipo de formato en la cual sera guardada la data y escribe el First Header
1494 1528
1495 1529 Inputs:
1496 1530 path : directory where data will be saved
1497 1531 profilesPerBlock : number of profiles per block
1498 1532 set : initial file set
1499 1533 datatype : An integer number that defines data type:
1500 1534 0 : int8 (1 byte)
1501 1535 1 : int16 (2 bytes)
1502 1536 2 : int32 (4 bytes)
1503 1537 3 : int64 (8 bytes)
1504 1538 4 : float32 (4 bytes)
1505 1539 5 : double64 (8 bytes)
1506 1540
1507 1541 Return:
1508 1542 0 : Si no realizo un buen seteo
1509 1543 1 : Si realizo un buen seteo
1510 1544 """
1511 1545
1512 1546 if ext == None:
1513 1547 ext = self.ext
1514 1548
1515 1549 self.ext = ext.lower()
1516 1550
1517 1551 self.path = path
1518 1552
1519 1553 if set is None:
1520 1554 self.setFile = -1
1521 1555 else:
1522 1556 self.setFile = set - 1
1523 1557
1524 1558 self.blocksPerFile = blocksPerFile
1525 1559 self.profilesPerBlock = profilesPerBlock
1526 1560 self.dataOut = dataOut
1527 1561 self.fileDate = self.dataOut.datatime.date()
1528 1562 self.dtype = self.dataOut.dtype
1529 1563
1530 1564 if datatype is not None:
1531 1565 self.dtype = get_numpy_dtype(datatype)
1532 1566
1533 1567 if not(self.setNextFile()):
1534 1568 print("[Writing] There isn't a next file")
1535 1569 return 0
1536 1570
1537 1571 self.setBlockDimension()
1538 1572
1539 1573 return 1
1540 1574
1541 1575 def run(self, dataOut, path, blocksPerFile=100, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs):
1542 1576
1543 1577 if not(self.isConfig):
1544 1578
1545 1579 self.setup(dataOut, path, blocksPerFile, profilesPerBlock=profilesPerBlock,
1546 1580 set=set, ext=ext, datatype=datatype, **kwargs)
1547 1581 self.isConfig = True
1548 1582
1549 1583 self.dataOut = dataOut
1550 1584 self.putData()
1551 1585 return self.dataOut
1552 1586
1553 1587 @MPDecorator
1554 1588 class printInfo(Operation):
1555 1589
1556 1590 def __init__(self):
1557 1591
1558 1592 Operation.__init__(self)
1559 1593 self.__printInfo = True
1560 1594
1561 1595 def run(self, dataOut, headers = ['systemHeaderObj', 'radarControllerHeaderObj', 'processingHeaderObj']):
1562 1596 if self.__printInfo == False:
1563 1597 return
1564 1598
1565 1599 for header in headers:
1566 1600 if hasattr(dataOut, header):
1567 1601 obj = getattr(dataOut, header)
1568 1602 if hasattr(obj, 'printInfo'):
1569 1603 obj.printInfo()
1570 1604 else:
1571 1605 print(obj)
1572 1606 else:
1573 1607 log.warning('Header {} Not found in object'.format(header))
1574 1608
1575 1609 self.__printInfo = False
@@ -1,793 +1,798
1 1 '''
2 2 Created on Jul 3, 2014
3 3
4 4 @author: roj-idl71
5 5 '''
6 6 # SUBCHANNELS EN VEZ DE CHANNELS
7 7 # BENCHMARKS -> PROBLEMAS CON ARCHIVOS GRANDES -> INCONSTANTE EN EL TIEMPO
8 8 # ACTUALIZACION DE VERSION
9 9 # HEADERS
10 10 # MODULO DE ESCRITURA
11 11 # METADATA
12 12
13 13 import os
14 14 import time
15 15 import datetime
16 16 import numpy
17 17 import timeit
18 18 from fractions import Fraction
19 19 from time import time
20 20 from time import sleep
21 21
22 22 import schainpy.admin
23 23 from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader
24 24 from schainpy.model.data.jrodata import Voltage
25 25 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
26 26
27 27 import pickle
28 28 try:
29 29 import digital_rf
30 30 except:
31 31 pass
32 32
33 33
34 34 class DigitalRFReader(ProcessingUnit):
35 35 '''
36 36 classdocs
37 37 '''
38 38
39 39 def __init__(self):
40 40 '''
41 41 Constructor
42 42 '''
43 43
44 44 ProcessingUnit.__init__(self)
45 45
46 46 self.dataOut = Voltage()
47 47 self.__printInfo = True
48 48 self.__flagDiscontinuousBlock = False
49 49 self.__bufferIndex = 9999999
50 50 self.__codeType = 0
51 51 self.__ippKm = None
52 52 self.__nCode = None
53 53 self.__nBaud = None
54 54 self.__code = None
55 55 self.dtype = None
56 56 self.oldAverage = None
57 57 self.path = None
58 58
59 59 def close(self):
60 60 print('Average of writing to digital rf format is ', self.oldAverage * 1000)
61 61 return
62 62
63 63 def __getCurrentSecond(self):
64 64
65 65 return self.__thisUnixSample / self.__sample_rate
66 66
67 67 thisSecond = property(__getCurrentSecond, "I'm the 'thisSecond' property.")
68 68
69 69 def __setFileHeader(self):
70 70 '''
71 71 In this method will be initialized every parameter of dataOut object (header, no data)
72 72 '''
73 73 ippSeconds = 1.0 * self.__nSamples / self.__sample_rate
74 74
75 75 nProfiles = 1.0 / ippSeconds # Number of profiles in one second
76 76
77 77 try:
78 78 self.dataOut.radarControllerHeaderObj = RadarControllerHeader(
79 79 self.__radarControllerHeader)
80 80 except:
81 81 self.dataOut.radarControllerHeaderObj = RadarControllerHeader(
82 82 txA=0,
83 83 txB=0,
84 84 nWindows=1,
85 85 nHeights=self.__nSamples,
86 86 firstHeight=self.__firstHeigth,
87 87 deltaHeight=self.__deltaHeigth,
88 88 codeType=self.__codeType,
89 89 nCode=self.__nCode, nBaud=self.__nBaud,
90 90 code=self.__code)
91 91
92 92 try:
93 93 self.dataOut.systemHeaderObj = SystemHeader(self.__systemHeader)
94 94 except:
95 95 self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples,
96 96 nProfiles=nProfiles,
97 97 nChannels=len(
98 98 self.__channelList),
99 99 adcResolution=14)
100 100 self.dataOut.type = "Voltage"
101 101
102 102 self.dataOut.data = None
103 103
104 104 self.dataOut.dtype = self.dtype
105 105
106 106 # self.dataOut.nChannels = 0
107 107
108 108 # self.dataOut.nHeights = 0
109 109
110 110 self.dataOut.nProfiles = int(nProfiles)
111 111
112 112 self.dataOut.heightList = self.__firstHeigth + \
113 113 numpy.arange(self.__nSamples, dtype=numpy.float) * \
114 114 self.__deltaHeigth
115 115
116 self.dataOut.channelList = list(range(self.__num_subchannels))
117
116 #self.dataOut.channelList = list(range(self.__num_subchannels))
117 self.dataOut.channelList = list(range(len(self.__channelList)))
118 118 self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights
119 119
120 120 # self.dataOut.channelIndexList = None
121 121
122 122 self.dataOut.flagNoData = True
123 123
124 124 self.dataOut.flagDataAsBlock = False
125 125 # Set to TRUE if the data is discontinuous
126 126 self.dataOut.flagDiscontinuousBlock = False
127 127
128 128 self.dataOut.utctime = None
129 129
130 130 # timezone like jroheader, difference in minutes between UTC and localtime
131 131 self.dataOut.timeZone = self.__timezone / 60
132 132
133 133 self.dataOut.dstFlag = 0
134 134
135 135 self.dataOut.errorCount = 0
136 136
137 137 try:
138 138 self.dataOut.nCohInt = self.fixed_metadata_dict.get(
139 139 'nCohInt', self.nCohInt)
140 140
141 141 # asumo que la data esta decodificada
142 142 self.dataOut.flagDecodeData = self.fixed_metadata_dict.get(
143 143 'flagDecodeData', self.flagDecodeData)
144 144
145 145 # asumo que la data esta sin flip
146 146 self.dataOut.flagDeflipData = self.fixed_metadata_dict['flagDeflipData']
147 147
148 148 self.dataOut.flagShiftFFT = self.fixed_metadata_dict['flagShiftFFT']
149 149
150 150 self.dataOut.useLocalTime = self.fixed_metadata_dict['useLocalTime']
151 151 except:
152 152 pass
153 153
154 154 self.dataOut.ippSeconds = ippSeconds
155 155
156 156 # Time interval between profiles
157 157 # self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt
158 158
159 159 self.dataOut.frequency = self.__frequency
160 160
161 161 self.dataOut.realtime = self.__online
162 162
163 163 def findDatafiles(self, path, startDate=None, endDate=None):
164 164
165 165 if not os.path.isdir(path):
166 166 return []
167 167
168 168 try:
169 169 digitalReadObj = digital_rf.DigitalRFReader(
170 170 path, load_all_metadata=True)
171 171 except:
172 172 digitalReadObj = digital_rf.DigitalRFReader(path)
173 173
174 174 channelNameList = digitalReadObj.get_channels()
175 175
176 176 if not channelNameList:
177 177 return []
178 178
179 179 metadata_dict = digitalReadObj.get_rf_file_metadata(channelNameList[0])
180 180
181 181 sample_rate = metadata_dict['sample_rate'][0]
182 182
183 183 this_metadata_file = digitalReadObj.get_metadata(channelNameList[0])
184 184
185 185 try:
186 186 timezone = this_metadata_file['timezone'].value
187 187 except:
188 188 timezone = 0
189 189
190 190 startUTCSecond, endUTCSecond = digitalReadObj.get_bounds(
191 191 channelNameList[0]) / sample_rate - timezone
192 192
193 193 startDatetime = datetime.datetime.utcfromtimestamp(startUTCSecond)
194 194 endDatatime = datetime.datetime.utcfromtimestamp(endUTCSecond)
195 195
196 196 if not startDate:
197 197 startDate = startDatetime.date()
198 198
199 199 if not endDate:
200 200 endDate = endDatatime.date()
201 201
202 202 dateList = []
203 203
204 204 thisDatetime = startDatetime
205 205
206 206 while(thisDatetime <= endDatatime):
207 207
208 208 thisDate = thisDatetime.date()
209 209
210 210 if thisDate < startDate:
211 211 continue
212 212
213 213 if thisDate > endDate:
214 214 break
215 215
216 216 dateList.append(thisDate)
217 217 thisDatetime += datetime.timedelta(1)
218 218
219 219 return dateList
220 220
221 221 def setup(self, path=None,
222 222 startDate=None,
223 223 endDate=None,
224 224 startTime=datetime.time(0, 0, 0),
225 225 endTime=datetime.time(23, 59, 59),
226 226 channelList=None,
227 227 nSamples=None,
228 228 online=False,
229 229 delay=60,
230 230 buffer_size=1024,
231 231 ippKm=None,
232 232 nCohInt=1,
233 233 nCode=1,
234 234 nBaud=1,
235 235 flagDecodeData=False,
236 236 code=numpy.ones((1, 1), dtype=numpy.int),
237 237 **kwargs):
238 238 '''
239 239 In this method we should set all initial parameters.
240 240
241 241 Inputs:
242 242 path
243 243 startDate
244 244 endDate
245 245 startTime
246 246 endTime
247 247 set
248 248 expLabel
249 249 ext
250 250 online
251 251 delay
252 252 '''
253 253 self.path = path
254 254 self.nCohInt = nCohInt
255 255 self.flagDecodeData = flagDecodeData
256 256 self.i = 0
257 257 if not os.path.isdir(path):
258 258 raise ValueError("[Reading] Directory %s does not exist" % path)
259 259
260 260 try:
261 261 self.digitalReadObj = digital_rf.DigitalRFReader(
262 262 path, load_all_metadata=True)
263 263 except:
264 264 self.digitalReadObj = digital_rf.DigitalRFReader(path)
265 265
266 266 channelNameList = self.digitalReadObj.get_channels()
267 267
268 268 if not channelNameList:
269 269 raise ValueError("[Reading] Directory %s does not have any files" % path)
270 270
271 271 if not channelList:
272 272 channelList = list(range(len(channelNameList)))
273 273
274 274 ########## Reading metadata ######################
275 275
276 276 top_properties = self.digitalReadObj.get_properties(
277 277 channelNameList[channelList[0]])
278 278
279 279 self.__num_subchannels = top_properties['num_subchannels']
280 280 self.__sample_rate = 1.0 * \
281 281 top_properties['sample_rate_numerator'] / \
282 282 top_properties['sample_rate_denominator']
283 283 # self.__samples_per_file = top_properties['samples_per_file'][0]
284 284 self.__deltaHeigth = 1e6 * 0.15 / self.__sample_rate # why 0.15?
285 285
286 286 this_metadata_file = self.digitalReadObj.get_digital_metadata(
287 287 channelNameList[channelList[0]])
288 288 metadata_bounds = this_metadata_file.get_bounds()
289 289 self.fixed_metadata_dict = this_metadata_file.read(
290 290 metadata_bounds[0])[metadata_bounds[0]] # GET FIRST HEADER
291 291
292 292 try:
293 293 self.__processingHeader = self.fixed_metadata_dict['processingHeader']
294 294 self.__radarControllerHeader = self.fixed_metadata_dict['radarControllerHeader']
295 295 self.__systemHeader = self.fixed_metadata_dict['systemHeader']
296 296 self.dtype = pickle.loads(self.fixed_metadata_dict['dtype'])
297 297 except:
298 298 pass
299 299
300 300 self.__frequency = None
301 301
302 302 self.__frequency = self.fixed_metadata_dict.get('frequency', 1)
303 303
304 304 self.__timezone = self.fixed_metadata_dict.get('timezone', 18000)
305 305
306 306 try:
307 307 nSamples = self.fixed_metadata_dict['nSamples']
308 308 except:
309 309 nSamples = None
310 310
311 311 self.__firstHeigth = 0
312 312
313 313 try:
314 314 codeType = self.__radarControllerHeader['codeType']
315 315 except:
316 316 codeType = 0
317 317
318 318 try:
319 319 if codeType:
320 320 nCode = self.__radarControllerHeader['nCode']
321 321 nBaud = self.__radarControllerHeader['nBaud']
322 322 code = self.__radarControllerHeader['code']
323 323 except:
324 324 pass
325 325
326 326 if not ippKm:
327 327 try:
328 328 # seconds to km
329 329 ippKm = self.__radarControllerHeader['ipp']
330 330 except:
331 331 ippKm = None
332 332 ####################################################
333 333 self.__ippKm = ippKm
334 334 startUTCSecond = None
335 335 endUTCSecond = None
336 336
337 337 if startDate:
338 338 startDatetime = datetime.datetime.combine(startDate, startTime)
339 339 startUTCSecond = (
340 340 startDatetime - datetime.datetime(1970, 1, 1)).total_seconds() + self.__timezone
341 341
342 342 if endDate:
343 343 endDatetime = datetime.datetime.combine(endDate, endTime)
344 344 endUTCSecond = (endDatetime - datetime.datetime(1970,
345 345 1, 1)).total_seconds() + self.__timezone
346 346
347
348 print(startUTCSecond,endUTCSecond)
347 349 start_index, end_index = self.digitalReadObj.get_bounds(
348 350 channelNameList[channelList[0]])
349 351
352 print("*****",start_index,end_index)
350 353 if not startUTCSecond:
351 354 startUTCSecond = start_index / self.__sample_rate
352 355
353 356 if start_index > startUTCSecond * self.__sample_rate:
354 357 startUTCSecond = start_index / self.__sample_rate
355 358
356 359 if not endUTCSecond:
357 360 endUTCSecond = end_index / self.__sample_rate
358 361
359 362 if end_index < endUTCSecond * self.__sample_rate:
360 363 endUTCSecond = end_index / self.__sample_rate
361 364 if not nSamples:
362 365 if not ippKm:
363 366 raise ValueError("[Reading] nSamples or ippKm should be defined")
364 367 nSamples = int(ippKm / (1e6 * 0.15 / self.__sample_rate))
365 368 channelBoundList = []
366 369 channelNameListFiltered = []
367 370
368 371 for thisIndexChannel in channelList:
369 372 thisChannelName = channelNameList[thisIndexChannel]
370 373 start_index, end_index = self.digitalReadObj.get_bounds(
371 374 thisChannelName)
372 375 channelBoundList.append((start_index, end_index))
373 376 channelNameListFiltered.append(thisChannelName)
374 377
375 378 self.profileIndex = 0
376 379 self.i = 0
377 380 self.__delay = delay
378 381
379 382 self.__codeType = codeType
380 383 self.__nCode = nCode
381 384 self.__nBaud = nBaud
382 385 self.__code = code
383 386
384 387 self.__datapath = path
385 388 self.__online = online
386 389 self.__channelList = channelList
387 390 self.__channelNameList = channelNameListFiltered
388 391 self.__channelBoundList = channelBoundList
389 392 self.__nSamples = nSamples
390 393 self.__samples_to_read = int(nSamples) # FIJO: AHORA 40
391 394 self.__nChannels = len(self.__channelList)
392 395
393 396 self.__startUTCSecond = startUTCSecond
394 397 self.__endUTCSecond = endUTCSecond
395 398
396 399 self.__timeInterval = 1.0 * self.__samples_to_read / \
397 400 self.__sample_rate # Time interval
398 401
399 402 if online:
400 403 # self.__thisUnixSample = int(endUTCSecond*self.__sample_rate - 4*self.__samples_to_read)
401 404 startUTCSecond = numpy.floor(endUTCSecond)
402 405
403 406 # por que en el otro metodo lo primero q se hace es sumar samplestoread
404 407 self.__thisUnixSample = int(startUTCSecond * self.__sample_rate) - self.__samples_to_read
405 408
406 self.__data_buffer = numpy.zeros(
407 (self.__num_subchannels, self.__samples_to_read), dtype=numpy.complex)
409 #self.__data_buffer = numpy.zeros(
410 # (self.__num_subchannels, self.__samples_to_read), dtype=numpy.complex)
411 self.__data_buffer = numpy.zeros((int(len(channelList)), self.__samples_to_read), dtype=numpy.complex)
412
408 413
409 414 self.__setFileHeader()
410 415 self.isConfig = True
411 416
412 417 print("[Reading] Digital RF Data was found from %s to %s " % (
413 418 datetime.datetime.utcfromtimestamp(
414 419 self.__startUTCSecond - self.__timezone),
415 420 datetime.datetime.utcfromtimestamp(
416 421 self.__endUTCSecond - self.__timezone)
417 422 ))
418 423
419 424 print("[Reading] Starting process from %s to %s" % (datetime.datetime.utcfromtimestamp(startUTCSecond - self.__timezone),
420 425 datetime.datetime.utcfromtimestamp(
421 426 endUTCSecond - self.__timezone)
422 427 ))
423 428 self.oldAverage = None
424 429 self.count = 0
425 430 self.executionTime = 0
426 431
427 432 def __reload(self):
428 433 # print
429 434 # print "%s not in range [%s, %s]" %(
430 435 # datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone),
431 436 # datetime.datetime.utcfromtimestamp(self.__startUTCSecond - self.__timezone),
432 437 # datetime.datetime.utcfromtimestamp(self.__endUTCSecond - self.__timezone)
433 438 # )
434 439 print("[Reading] reloading metadata ...")
435 440
436 441 try:
437 442 self.digitalReadObj.reload(complete_update=True)
438 443 except:
439 444 self.digitalReadObj = digital_rf.DigitalRFReader(self.path)
440 445
441 446 start_index, end_index = self.digitalReadObj.get_bounds(
442 447 self.__channelNameList[self.__channelList[0]])
443 448
444 449 if start_index > self.__startUTCSecond * self.__sample_rate:
445 450 self.__startUTCSecond = 1.0 * start_index / self.__sample_rate
446 451
447 452 if end_index > self.__endUTCSecond * self.__sample_rate:
448 453 self.__endUTCSecond = 1.0 * end_index / self.__sample_rate
449 454 print()
450 455 print("[Reading] New timerange found [%s, %s] " % (
451 456 datetime.datetime.utcfromtimestamp(
452 457 self.__startUTCSecond - self.__timezone),
453 458 datetime.datetime.utcfromtimestamp(
454 459 self.__endUTCSecond - self.__timezone)
455 460 ))
456 461
457 462 return True
458 463
459 464 return False
460 465
461 466 def timeit(self, toExecute):
462 467 t0 = time.time()
463 468 toExecute()
464 469 self.executionTime = time.time() - t0
465 470 if self.oldAverage is None:
466 471 self.oldAverage = self.executionTime
467 472 self.oldAverage = (self.executionTime + self.count *
468 473 self.oldAverage) / (self.count + 1.0)
469 474 self.count = self.count + 1.0
470 475 return
471 476
472 477 def __readNextBlock(self, seconds=30, volt_scale=1):
473 478 '''
474 479 '''
475 480
476 481 # Set the next data
477 482 self.__flagDiscontinuousBlock = False
478 483 self.__thisUnixSample += self.__samples_to_read
479 484
480 485 if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate:
481 486 print ("[Reading] There are no more data into selected time-range")
482 487 if self.__online:
483 488 sleep(3)
484 489 self.__reload()
485 490 else:
486 491 return False
487 492
488 493 if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate:
489 494 return False
490 495 self.__thisUnixSample -= self.__samples_to_read
491 496
492 497 indexChannel = 0
493 498
494 499 dataOk = False
495 500
496 501 for thisChannelName in self.__channelNameList: # TODO VARIOS CHANNELS?
497 502 for indexSubchannel in range(self.__num_subchannels):
498 503 try:
499 504 t0 = time()
500 505 result = self.digitalReadObj.read_vector_c81d(self.__thisUnixSample,
501 506 self.__samples_to_read,
502 507 thisChannelName, sub_channel=indexSubchannel)
503 508 self.executionTime = time() - t0
504 509 if self.oldAverage is None:
505 510 self.oldAverage = self.executionTime
506 511 self.oldAverage = (
507 512 self.executionTime + self.count * self.oldAverage) / (self.count + 1.0)
508 513 self.count = self.count + 1.0
509 514
510 515 except IOError as e:
511 516 # read next profile
512 517 self.__flagDiscontinuousBlock = True
513 518 print("[Reading] %s" % datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), e)
514 519 break
515 520
516 521 if result.shape[0] != self.__samples_to_read:
517 522 self.__flagDiscontinuousBlock = True
518 523 print("[Reading] %s: Too few samples were found, just %d/%d samples" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone),
519 524 result.shape[0],
520 525 self.__samples_to_read))
521 526 break
522 527
523 self.__data_buffer[indexSubchannel, :] = result * volt_scale
528 self.__data_buffer[indexChannel, :] = result * volt_scale
524 529 indexChannel+=1
525 530
526 531 dataOk = True
527 532
528 533 self.__utctime = self.__thisUnixSample / self.__sample_rate
529 534
530 535 if not dataOk:
531 536 return False
532 537
533 538 print("[Reading] %s: %d samples <> %f sec" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone),
534 539 self.__samples_to_read,
535 540 self.__timeInterval))
536 541
537 542 self.__bufferIndex = 0
538 543
539 544 return True
540 545
541 546 def __isBufferEmpty(self):
542 547 return self.__bufferIndex > self.__samples_to_read - self.__nSamples # 40960 - 40
543 548
544 549 def getData(self, seconds=30, nTries=5):
545 550 '''
546 551 This method gets the data from files and put the data into the dataOut object
547 552
548 553 In addition, increase el the buffer counter in one.
549 554
550 555 Return:
551 556 data : retorna un perfil de voltages (alturas * canales) copiados desde el
552 557 buffer. Si no hay mas archivos a leer retorna None.
553 558
554 559 Affected:
555 560 self.dataOut
556 561 self.profileIndex
557 562 self.flagDiscontinuousBlock
558 563 self.flagIsNewBlock
559 564 '''
560 565 #print("getdata")
561 566 err_counter = 0
562 567 self.dataOut.flagNoData = True
563 568
564 569 if self.__isBufferEmpty():
565 570 #print("hi")
566 571 self.__flagDiscontinuousBlock = False
567 572
568 573 while True:
569 574 #print ("q ha pasado")
570 575 if self.__readNextBlock():
571 576 break
572 577 if self.__thisUnixSample > self.__endUTCSecond * self.__sample_rate:
573 578 raise schainpy.admin.SchainError('Error')
574 579 return
575 580
576 581 if self.__flagDiscontinuousBlock:
577 582 raise schainpy.admin.SchainError('discontinuous block found')
578 583 return
579 584
580 585 if not self.__online:
581 586 raise schainpy.admin.SchainError('Online?')
582 587 return
583 588
584 589 err_counter += 1
585 590 if err_counter > nTries:
586 591 raise schainpy.admin.SchainError('Max retrys reach')
587 592 return
588 593
589 594 print('[Reading] waiting %d seconds to read a new block' % seconds)
590 time.sleep(seconds)
595 sleep(seconds)
591 596
592 597 self.dataOut.data = self.__data_buffer[:, self.__bufferIndex:self.__bufferIndex + self.__nSamples]
593 598 self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate
594 599 self.dataOut.flagNoData = False
595 600 self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock
596 601 self.dataOut.profileIndex = self.profileIndex
597 602
598 603 self.__bufferIndex += self.__nSamples
599 604 self.profileIndex += 1
600 605
601 606 if self.profileIndex == self.dataOut.nProfiles:
602 607 self.profileIndex = 0
603 608
604 609 return True
605 610
606 611 def printInfo(self):
607 612 '''
608 613 '''
609 614 if self.__printInfo == False:
610 615 return
611 616
612 617 # self.systemHeaderObj.printInfo()
613 618 # self.radarControllerHeaderObj.printInfo()
614 619
615 620 self.__printInfo = False
616 621
617 622 def printNumberOfBlock(self):
618 623 '''
619 624 '''
620 625 return
621 626 # print self.profileIndex
622 627
623 628 def run(self, **kwargs):
624 629 '''
625 630 This method will be called many times so here you should put all your code
626 631 '''
627 632
628 633 if not self.isConfig:
629 634 self.setup(**kwargs)
630 635 #self.i = self.i+1
631 636 self.getData(seconds=self.__delay)
632 637
633 638 return
634 639
635 640 @MPDecorator
636 641 class DigitalRFWriter(Operation):
637 642 '''
638 643 classdocs
639 644 '''
640 645
641 646 def __init__(self, **kwargs):
642 647 '''
643 648 Constructor
644 649 '''
645 650 Operation.__init__(self, **kwargs)
646 651 self.metadata_dict = {}
647 652 self.dataOut = None
648 653 self.dtype = None
649 654 self.oldAverage = 0
650 655
651 656 def setHeader(self):
652 657
653 658 self.metadata_dict['frequency'] = self.dataOut.frequency
654 659 self.metadata_dict['timezone'] = self.dataOut.timeZone
655 660 self.metadata_dict['dtype'] = pickle.dumps(self.dataOut.dtype)
656 661 self.metadata_dict['nProfiles'] = self.dataOut.nProfiles
657 662 self.metadata_dict['heightList'] = self.dataOut.heightList
658 663 self.metadata_dict['channelList'] = self.dataOut.channelList
659 664 self.metadata_dict['flagDecodeData'] = self.dataOut.flagDecodeData
660 665 self.metadata_dict['flagDeflipData'] = self.dataOut.flagDeflipData
661 666 self.metadata_dict['flagShiftFFT'] = self.dataOut.flagShiftFFT
662 667 self.metadata_dict['useLocalTime'] = self.dataOut.useLocalTime
663 668 self.metadata_dict['nCohInt'] = self.dataOut.nCohInt
664 669 self.metadata_dict['type'] = self.dataOut.type
665 670 self.metadata_dict['flagDataAsBlock']= getattr(
666 671 self.dataOut, 'flagDataAsBlock', None) # chequear
667 672
668 673 def setup(self, dataOut, path, frequency, fileCadence, dirCadence, metadataCadence, set=0, metadataFile='metadata', ext='.h5'):
669 674 '''
670 675 In this method we should set all initial parameters.
671 676 Input:
672 677 dataOut: Input data will also be outputa data
673 678 '''
674 679 self.setHeader()
675 680 self.__ippSeconds = dataOut.ippSeconds
676 681 self.__deltaH = dataOut.getDeltaH()
677 682 self.__sample_rate = 1e6 * 0.15 / self.__deltaH
678 683 self.__dtype = dataOut.dtype
679 684 if len(dataOut.dtype) == 2:
680 685 self.__dtype = dataOut.dtype[0]
681 686 self.__nSamples = dataOut.systemHeaderObj.nSamples
682 687 self.__nProfiles = dataOut.nProfiles
683 688
684 689 if self.dataOut.type != 'Voltage':
685 690 raise 'Digital RF cannot be used with this data type'
686 691 self.arr_data = numpy.ones((1, dataOut.nFFTPoints * len(
687 692 self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)])
688 693 else:
689 694 self.arr_data = numpy.ones((self.__nSamples, len(
690 695 self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)])
691 696
692 697 file_cadence_millisecs = 1000
693 698
694 699 sample_rate_fraction = Fraction(self.__sample_rate).limit_denominator()
695 700 sample_rate_numerator = int(sample_rate_fraction.numerator)
696 701 sample_rate_denominator = int(sample_rate_fraction.denominator)
697 702 start_global_index = dataOut.utctime * self.__sample_rate
698 703
699 704 uuid = 'prueba'
700 705 compression_level = 0
701 706 checksum = False
702 707 is_complex = True
703 708 num_subchannels = len(dataOut.channelList)
704 709 is_continuous = True
705 710 marching_periods = False
706 711
707 712 self.digitalWriteObj = digital_rf.DigitalRFWriter(path, self.__dtype, dirCadence,
708 713 fileCadence, start_global_index,
709 714 sample_rate_numerator, sample_rate_denominator, uuid, compression_level, checksum,
710 715 is_complex, num_subchannels, is_continuous, marching_periods)
711 716 metadata_dir = os.path.join(path, 'metadata')
712 717 os.system('mkdir %s' % (metadata_dir))
713 718 self.digitalMetadataWriteObj = digital_rf.DigitalMetadataWriter(metadata_dir, dirCadence, 1, # 236, file_cadence_millisecs / 1000
714 719 sample_rate_numerator, sample_rate_denominator,
715 720 metadataFile)
716 721 self.isConfig = True
717 722 self.currentSample = 0
718 723 self.oldAverage = 0
719 724 self.count = 0
720 725 return
721 726
722 727 def writeMetadata(self):
723 728 start_idx = self.__sample_rate * self.dataOut.utctime
724 729
725 730 self.metadata_dict['processingHeader'] = self.dataOut.processingHeaderObj.getAsDict(
726 731 )
727 732 self.metadata_dict['radarControllerHeader'] = self.dataOut.radarControllerHeaderObj.getAsDict(
728 733 )
729 734 self.metadata_dict['systemHeader'] = self.dataOut.systemHeaderObj.getAsDict(
730 735 )
731 736 self.digitalMetadataWriteObj.write(start_idx, self.metadata_dict)
732 737 return
733 738
734 739 def timeit(self, toExecute):
735 740 t0 = time()
736 741 toExecute()
737 742 self.executionTime = time() - t0
738 743 if self.oldAverage is None:
739 744 self.oldAverage = self.executionTime
740 745 self.oldAverage = (self.executionTime + self.count *
741 746 self.oldAverage) / (self.count + 1.0)
742 747 self.count = self.count + 1.0
743 748 return
744 749
745 750 def writeData(self):
746 751 if self.dataOut.type != 'Voltage':
747 752 raise 'Digital RF cannot be used with this data type'
748 753 for channel in self.dataOut.channelList:
749 754 for i in range(self.dataOut.nFFTPoints):
750 755 self.arr_data[1][channel * self.dataOut.nFFTPoints +
751 756 i]['r'] = self.dataOut.data[channel][i].real
752 757 self.arr_data[1][channel * self.dataOut.nFFTPoints +
753 758 i]['i'] = self.dataOut.data[channel][i].imag
754 759 else:
755 760 for i in range(self.dataOut.systemHeaderObj.nSamples):
756 761 for channel in self.dataOut.channelList:
757 762 self.arr_data[i][channel]['r'] = self.dataOut.data[channel][i].real
758 763 self.arr_data[i][channel]['i'] = self.dataOut.data[channel][i].imag
759 764
760 765 def f(): return self.digitalWriteObj.rf_write(self.arr_data)
761 766 self.timeit(f)
762 767
763 768 return
764 769
765 770 def run(self, dataOut, frequency=49.92e6, path=None, fileCadence=1000, dirCadence=36000, metadataCadence=1, **kwargs):
766 771 '''
767 772 This method will be called many times so here you should put all your code
768 773 Inputs:
769 774 dataOut: object with the data
770 775 '''
771 776 # print dataOut.__dict__
772 777 self.dataOut = dataOut
773 778 if not self.isConfig:
774 779 self.setup(dataOut, path, frequency, fileCadence,
775 780 dirCadence, metadataCadence, **kwargs)
776 781 self.writeMetadata()
777 782
778 783 self.writeData()
779 784
780 785 ## self.currentSample += 1
781 786 # if self.dataOut.flagDataAsBlock or self.currentSample == 1:
782 787 # self.writeMetadata()
783 788 ## if self.currentSample == self.__nProfiles: self.currentSample = 0
784 789
785 790 return dataOut# en la version 2.7 no aparece este return
786 791
787 792 def close(self):
788 793 print('[Writing] - Closing files ')
789 794 print('Average of writing to digital rf format is ', self.oldAverage * 1000)
790 795 try:
791 796 self.digitalWriteObj.close()
792 797 except:
793 798 pass
@@ -1,347 +1,351
1 1 import numpy
2 2
3 3 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
4 4 from schainpy.model.data.jrodata import SpectraHeis
5 5 from schainpy.utils import log
6 6
7 7
8 8
9 9 class SpectraHeisProc(ProcessingUnit):
10 10
11 11 def __init__(self):#, **kwargs):
12 12
13 13 ProcessingUnit.__init__(self)#, **kwargs)
14 14
15 15 # self.buffer = None
16 16 # self.firstdatatime = None
17 17 # self.profIndex = 0
18 18 self.dataOut = SpectraHeis()
19 19
20 20 def __updateObjFromVoltage(self):
21 21
22 22 self.dataOut.timeZone = self.dataIn.timeZone
23 23 self.dataOut.dstFlag = self.dataIn.dstFlag
24 24 self.dataOut.errorCount = self.dataIn.errorCount
25 25 self.dataOut.useLocalTime = self.dataIn.useLocalTime
26 26
27 27 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()#
28 28 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()#
29 29 self.dataOut.channelList = self.dataIn.channelList
30 30 self.dataOut.heightList = self.dataIn.heightList
31 31 # self.dataOut.dtype = self.dataIn.dtype
32 32 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
33 33 # self.dataOut.nHeights = self.dataIn.nHeights
34 34 # self.dataOut.nChannels = self.dataIn.nChannels
35 35 self.dataOut.nBaud = self.dataIn.nBaud
36 36 self.dataOut.nCode = self.dataIn.nCode
37 37 self.dataOut.code = self.dataIn.code
38 38 # self.dataOut.nProfiles = 1
39 39 self.dataOut.ippFactor = 1
40 40 self.dataOut.noise_estimation = None
41 41 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
42 42 self.dataOut.nFFTPoints = self.dataIn.nHeights
43 43 # self.dataOut.channelIndexList = self.dataIn.channelIndexList
44 44 # self.dataOut.flagNoData = self.dataIn.flagNoData
45 45 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
46 46 self.dataOut.utctime = self.dataIn.utctime
47 47 # self.dataOut.utctime = self.firstdatatime
48 48 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
49 49 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
50 50 # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
51 51 self.dataOut.nCohInt = self.dataIn.nCohInt
52 52 self.dataOut.nIncohInt = 1
53 53 # self.dataOut.ippSeconds= self.dataIn.ippSeconds
54 54 self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
55 55
56 56 # self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt
57 57 # self.dataOut.set=self.dataIn.set
58 58 # self.dataOut.deltaHeight=self.dataIn.deltaHeight
59 59
60 60
61 61 def __updateObjFromFits(self):
62 62
63 63 self.dataOut.utctime = self.dataIn.utctime
64 64 # self.dataOut.channelIndexList = self.dataIn.channelIndexList
65 65
66 66 self.dataOut.channelList = self.dataIn.channelList
67 67 self.dataOut.heightList = self.dataIn.heightList
68 68 self.dataOut.data_spc = self.dataIn.data
69 69 self.dataOut.ippSeconds = self.dataIn.ippSeconds
70 70 self.dataOut.nCohInt = self.dataIn.nCohInt
71 71 self.dataOut.nIncohInt = self.dataIn.nIncohInt
72 72 # self.dataOut.timeInterval = self.dataIn.timeInterval
73 73 self.dataOut.timeZone = self.dataIn.timeZone
74 74 self.dataOut.useLocalTime = True
75 75 # self.dataOut.
76 76 # self.dataOut.
77 77
78 78 def __getFft(self):
79 79
80 80 fft_volt = numpy.fft.fft(self.dataIn.data, axis=1)
81 81 fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
82 82 spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints)
83 83 self.dataOut.data_spc = spc
84 84
85 85 def run(self):
86 86
87 87 self.dataOut.flagNoData = True
88 88
89 89 if self.dataIn.type == "Fits":
90 90 self.__updateObjFromFits()
91 91 self.dataOut.flagNoData = False
92 92 return
93 93
94 94 if self.dataIn.type == "SpectraHeis":
95 95 self.dataOut.copy(self.dataIn)
96 96 return
97 97
98 98 if self.dataIn.type == "Voltage":
99 99 self.__updateObjFromVoltage()
100 100 self.__getFft()
101 101 self.dataOut.flagNoData = False
102 102
103 103 return
104 104
105 105 raise ValueError("The type object %s is not valid"%(self.dataIn.type))
106 106
107 107
108 108 def selectChannels(self, channelList):
109 109
110 110 channelIndexList = []
111 111
112 112 for channel in channelList:
113 113 index = self.dataOut.channelList.index(channel)
114 114 channelIndexList.append(index)
115 115
116 116 self.selectChannelsByIndex(channelIndexList)
117 117
118 118 def selectChannelsByIndex(self, channelIndexList):
119 119 """
120 120 Selecciona un bloque de datos en base a canales segun el channelIndexList
121 121
122 122 Input:
123 123 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
124 124
125 125 Affected:
126 126 self.dataOut.data
127 127 self.dataOut.channelIndexList
128 128 self.dataOut.nChannels
129 129 self.dataOut.m_ProcessingHeader.totalSpectra
130 130 self.dataOut.systemHeaderObj.numChannels
131 131 self.dataOut.m_ProcessingHeader.blockSize
132 132
133 133 Return:
134 134 None
135 135 """
136 136
137 137 for channelIndex in channelIndexList:
138 138 if channelIndex not in self.dataOut.channelIndexList:
139 139 raise ValueError("The value %d in channelIndexList is not valid" %channelIndex)
140 140
141 141 data_spc = self.dataOut.data_spc[channelIndexList,:]
142 142
143 143 self.dataOut.data_spc = data_spc
144 144 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
145 145
146 146 return 1
147 147
148 148
149 149 class IncohInt4SpectraHeis(Operation):
150 150
151 151 isConfig = False
152 152
153 153 __profIndex = 0
154 154 __withOverapping = False
155 155
156 156 __byTime = False
157 157 __initime = None
158 158 __lastdatatime = None
159 159 __integrationtime = None
160 160
161 161 __buffer = None
162 162
163 163 __dataReady = False
164 164
165 165 n = None
166 166
167 167 def __init__(self):#, **kwargs):
168 168
169 169 Operation.__init__(self)#, **kwargs)
170 170 # self.isConfig = False
171 171
172 172 def setup(self, n=None, timeInterval=None, overlapping=False):
173 173 """
174 174 Set the parameters of the integration class.
175 175
176 176 Inputs:
177 177
178 178 n : Number of coherent integrations
179 179 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
180 180 overlapping :
181 181
182 182 """
183 183
184 184 self.__initime = None
185 185 self.__lastdatatime = 0
186 186 self.__buffer = None
187 187 self.__dataReady = False
188 188
189 189
190 190 if n == None and timeInterval == None:
191 191 raise ValueError("n or timeInterval should be specified ...")
192 192
193 193 if n != None:
194 194 self.n = n
195 195 self.__byTime = False
196 196 else:
197 197 self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
198 198 self.n = 9999
199 199 self.__byTime = True
200 200
201 201 if overlapping:
202 202 self.__withOverapping = True
203 203 self.__buffer = None
204 204 else:
205 205 self.__withOverapping = False
206 206 self.__buffer = 0
207 207
208 208 self.__profIndex = 0
209 209
210 210 def putData(self, data):
211 211
212 212 """
213 213 Add a profile to the __buffer and increase in one the __profileIndex
214 214
215 215 """
216 216
217 217 if not self.__withOverapping:
218 218 self.__buffer += data.copy()
219 219 self.__profIndex += 1
220 220 return
221 221
222 222 #Overlapping data
223 223 nChannels, nHeis = data.shape
224 224 data = numpy.reshape(data, (1, nChannels, nHeis))
225 225
226 226 #If the buffer is empty then it takes the data value
227 227 if self.__buffer is None:
228 228 self.__buffer = data
229 229 self.__profIndex += 1
230 230 return
231 231
232 232 #If the buffer length is lower than n then stakcing the data value
233 233 if self.__profIndex < self.n:
234 234 self.__buffer = numpy.vstack((self.__buffer, data))
235 235 self.__profIndex += 1
236 236 return
237 237
238 238 #If the buffer length is equal to n then replacing the last buffer value with the data value
239 239 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
240 240 self.__buffer[self.n-1] = data
241 241 self.__profIndex = self.n
242 242 return
243 243
244 244
245 245 def pushData(self):
246 246 """
247 247 Return the sum of the last profiles and the profiles used in the sum.
248 248
249 249 Affected:
250 250
251 251 self.__profileIndex
252 252
253 253 """
254 254
255 255 if not self.__withOverapping:
256 256 data = self.__buffer
257 257 n = self.__profIndex
258 258
259 259 self.__buffer = 0
260 260 self.__profIndex = 0
261 261
262 262 return data, n
263 263
264 264 #Integration with Overlapping
265 265 data = numpy.sum(self.__buffer, axis=0)
266 266 n = self.__profIndex
267 267
268 268 return data, n
269 269
270 270 def byProfiles(self, data):
271 271
272 272 self.__dataReady = False
273 273 avgdata = None
274 274 # n = None
275 275
276 276 self.putData(data)
277 277
278 278 if self.__profIndex == self.n:
279 279
280 280 avgdata, n = self.pushData()
281 281 self.__dataReady = True
282 282
283 283 return avgdata
284 284
285 285 def byTime(self, data, datatime):
286 286
287 287 self.__dataReady = False
288 288 avgdata = None
289 289 n = None
290 290
291 291 self.putData(data)
292 292
293 293 if (datatime - self.__initime) >= self.__integrationtime:
294 294 avgdata, n = self.pushData()
295 295 self.n = n
296 296 self.__dataReady = True
297 297
298 298 return avgdata
299 299
300 300 def integrate(self, data, datatime=None):
301 301
302 302 if self.__initime == None:
303 303 self.__initime = datatime
304 304
305 #if self.__profIndex == 0:
306 # self.__initime = datatime
307
305 308 if self.__byTime:
306 309 avgdata = self.byTime(data, datatime)
307 310 else:
308 311 avgdata = self.byProfiles(data)
309 312
310 313
311 314 self.__lastdatatime = datatime
312 315
313 316 if avgdata is None:
314 317 return None, None
315 318
316 319 avgdatatime = self.__initime
317 320
318 321 deltatime = datatime -self.__lastdatatime
319 322
320 323 if not self.__withOverapping:
321 324 self.__initime = datatime
322 325 else:
323 326 self.__initime += deltatime
324 327
325 328 return avgdata, avgdatatime
326 329
327 330 def run(self, dataOut, n=None, timeInterval=None, overlapping=False, **kwargs):
328 331
329 332 if not self.isConfig:
330 333 self.setup(n=n, timeInterval=timeInterval, overlapping=overlapping)
331 334 self.isConfig = True
332 335
336 #print("utc_time",dataOut.utctime)
333 337 avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime)
334 338
335 339 # dataOut.timeInterval *= n
336 340 dataOut.flagNoData = True
337 341
338 342 if self.__dataReady:
339 343 dataOut.data_spc = avgdata
340 344 dataOut.nIncohInt *= self.n
341 345 # dataOut.nCohInt *= self.n
342 346 dataOut.utctime = avgdatatime
343 347 # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt
344 348 # dataOut.timeInterval = self.__timeInterval*self.n
345 349 dataOut.flagNoData = False
346 350
347 351 return dataOut
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
@@ -1,1625 +1,1627
1 1 import sys
2 2 import numpy,math
3 3 from scipy import interpolate
4 4 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
5 5 from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon
6 6 from schainpy.utils import log
7 7 from time import time
8 8
9 9
10 10
11 11 class VoltageProc(ProcessingUnit):
12 12
13 13 def __init__(self):
14 14
15 15 ProcessingUnit.__init__(self)
16 16
17 17 self.dataOut = Voltage()
18 18 self.flip = 1
19 19 self.setupReq = False
20 20
21 21 def run(self):
22 22
23 23 if self.dataIn.type == 'AMISR':
24 24 self.__updateObjFromAmisrInput()
25 25
26 26 if self.dataIn.type == 'Voltage':
27 27 self.dataOut.copy(self.dataIn)
28 28
29 29 def __updateObjFromAmisrInput(self):
30 30
31 31 self.dataOut.timeZone = self.dataIn.timeZone
32 32 self.dataOut.dstFlag = self.dataIn.dstFlag
33 33 self.dataOut.errorCount = self.dataIn.errorCount
34 34 self.dataOut.useLocalTime = self.dataIn.useLocalTime
35 35
36 36 self.dataOut.flagNoData = self.dataIn.flagNoData
37 37 self.dataOut.data = self.dataIn.data
38 38 self.dataOut.utctime = self.dataIn.utctime
39 39 self.dataOut.channelList = self.dataIn.channelList
40 40 #self.dataOut.timeInterval = self.dataIn.timeInterval
41 41 self.dataOut.heightList = self.dataIn.heightList
42 42 self.dataOut.nProfiles = self.dataIn.nProfiles
43 43
44 44 self.dataOut.nCohInt = self.dataIn.nCohInt
45 45 self.dataOut.ippSeconds = self.dataIn.ippSeconds
46 46 self.dataOut.frequency = self.dataIn.frequency
47 47
48 48 self.dataOut.azimuth = self.dataIn.azimuth
49 49 self.dataOut.zenith = self.dataIn.zenith
50 50
51 51 self.dataOut.beam.codeList = self.dataIn.beam.codeList
52 52 self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
53 53 self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
54 54
55 55
56 56 class selectChannels(Operation):
57 57
58 58 def run(self, dataOut, channelList):
59 59
60 60 channelIndexList = []
61 61 self.dataOut = dataOut
62 62 for channel in channelList:
63 63 if channel not in self.dataOut.channelList:
64 64 raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList)))
65 65
66 66 index = self.dataOut.channelList.index(channel)
67 67 channelIndexList.append(index)
68 68 self.selectChannelsByIndex(channelIndexList)
69 69 return self.dataOut
70 70
71 71 def selectChannelsByIndex(self, channelIndexList):
72 72 """
73 73 Selecciona un bloque de datos en base a canales segun el channelIndexList
74 74
75 75 Input:
76 76 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
77 77
78 78 Affected:
79 79 self.dataOut.data
80 80 self.dataOut.channelIndexList
81 81 self.dataOut.nChannels
82 82 self.dataOut.m_ProcessingHeader.totalSpectra
83 83 self.dataOut.systemHeaderObj.numChannels
84 84 self.dataOut.m_ProcessingHeader.blockSize
85 85
86 86 Return:
87 87 None
88 88 """
89 89
90 90 for channelIndex in channelIndexList:
91 91 if channelIndex not in self.dataOut.channelIndexList:
92 92 raise ValueError("The value %d in channelIndexList is not valid" %channelIndex)
93 93
94 94 if self.dataOut.type == 'Voltage':
95 95 if self.dataOut.flagDataAsBlock:
96 96 """
97 97 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
98 98 """
99 99 data = self.dataOut.data[channelIndexList,:,:]
100 100 else:
101 101 data = self.dataOut.data[channelIndexList,:]
102 102
103 103 self.dataOut.data = data
104 104 # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
105 105 self.dataOut.channelList = range(len(channelIndexList))
106 106
107 107 elif self.dataOut.type == 'Spectra':
108 108 data_spc = self.dataOut.data_spc[channelIndexList, :]
109 109 data_dc = self.dataOut.data_dc[channelIndexList, :]
110 110
111 111 self.dataOut.data_spc = data_spc
112 112 self.dataOut.data_dc = data_dc
113 113
114 114 # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
115 115 self.dataOut.channelList = range(len(channelIndexList))
116 116 self.__selectPairsByChannel(channelIndexList)
117 117
118 118 return 1
119 119
120 120 def __selectPairsByChannel(self, channelList=None):
121 121
122 122 if channelList == None:
123 123 return
124 124
125 125 pairsIndexListSelected = []
126 126 for pairIndex in self.dataOut.pairsIndexList:
127 127 # First pair
128 128 if self.dataOut.pairsList[pairIndex][0] not in channelList:
129 129 continue
130 130 # Second pair
131 131 if self.dataOut.pairsList[pairIndex][1] not in channelList:
132 132 continue
133 133
134 134 pairsIndexListSelected.append(pairIndex)
135 135
136 136 if not pairsIndexListSelected:
137 137 self.dataOut.data_cspc = None
138 138 self.dataOut.pairsList = []
139 139 return
140 140
141 141 self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
142 142 self.dataOut.pairsList = [self.dataOut.pairsList[i]
143 143 for i in pairsIndexListSelected]
144 144
145 145 return
146 146
147 147 class selectHeights(Operation):
148 148
149 149 def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None):
150 150 """
151 151 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
152 152 minHei <= height <= maxHei
153 153
154 154 Input:
155 155 minHei : valor minimo de altura a considerar
156 156 maxHei : valor maximo de altura a considerar
157 157
158 158 Affected:
159 159 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
160 160
161 161 Return:
162 162 1 si el metodo se ejecuto con exito caso contrario devuelve 0
163 163 """
164 164
165 165 self.dataOut = dataOut
166 166
167 167 if minHei and maxHei:
168 168
169 169 if (minHei < self.dataOut.heightList[0]):
170 170 minHei = self.dataOut.heightList[0]
171 171
172 172 if (maxHei > self.dataOut.heightList[-1]):
173 173 maxHei = self.dataOut.heightList[-1]
174 174
175 175 minIndex = 0
176 176 maxIndex = 0
177 177 heights = self.dataOut.heightList
178 178
179 179 inda = numpy.where(heights >= minHei)
180 180 indb = numpy.where(heights <= maxHei)
181 181
182 182 try:
183 183 minIndex = inda[0][0]
184 184 except:
185 185 minIndex = 0
186 186
187 187 try:
188 188 maxIndex = indb[0][-1]
189 189 except:
190 190 maxIndex = len(heights)
191 191
192 192 self.selectHeightsByIndex(minIndex, maxIndex)
193 193
194 194 return self.dataOut
195 195
196 196 def selectHeightsByIndex(self, minIndex, maxIndex):
197 197 """
198 198 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
199 199 minIndex <= index <= maxIndex
200 200
201 201 Input:
202 202 minIndex : valor de indice minimo de altura a considerar
203 203 maxIndex : valor de indice maximo de altura a considerar
204 204
205 205 Affected:
206 206 self.dataOut.data
207 207 self.dataOut.heightList
208 208
209 209 Return:
210 210 1 si el metodo se ejecuto con exito caso contrario devuelve 0
211 211 """
212 212
213 213 if self.dataOut.type == 'Voltage':
214 214 if (minIndex < 0) or (minIndex > maxIndex):
215 215 raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex))
216 216
217 217 if (maxIndex >= self.dataOut.nHeights):
218 218 maxIndex = self.dataOut.nHeights
219 219
220 220 #voltage
221 221 if self.dataOut.flagDataAsBlock:
222 222 """
223 223 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
224 224 """
225 225 data = self.dataOut.data[:,:, minIndex:maxIndex]
226 226 else:
227 227 data = self.dataOut.data[:, minIndex:maxIndex]
228 228
229 229 # firstHeight = self.dataOut.heightList[minIndex]
230 230
231 231 self.dataOut.data = data
232 232 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex]
233 233
234 234 if self.dataOut.nHeights <= 1:
235 235 raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights))
236 236 elif self.dataOut.type == 'Spectra':
237 237 if (minIndex < 0) or (minIndex > maxIndex):
238 238 raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (
239 239 minIndex, maxIndex))
240 240
241 241 if (maxIndex >= self.dataOut.nHeights):
242 242 maxIndex = self.dataOut.nHeights - 1
243 243
244 244 # Spectra
245 245 data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
246 246
247 247 data_cspc = None
248 248 if self.dataOut.data_cspc is not None:
249 249 data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
250 250
251 251 data_dc = None
252 252 if self.dataOut.data_dc is not None:
253 253 data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
254 254
255 255 self.dataOut.data_spc = data_spc
256 256 self.dataOut.data_cspc = data_cspc
257 257 self.dataOut.data_dc = data_dc
258 258
259 259 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
260 260
261 261 return 1
262 262
263 263
264 264 class filterByHeights(Operation):
265 265
266 266 def run(self, dataOut, window):
267 267
268 268 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
269 269
270 270 if window == None:
271 271 window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
272 272
273 273 newdelta = deltaHeight * window
274 274 r = dataOut.nHeights % window
275 275 newheights = (dataOut.nHeights-r)/window
276 276
277 277 if newheights <= 1:
278 278 raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window))
279 279
280 280 if dataOut.flagDataAsBlock:
281 281 """
282 282 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
283 283 """
284 284 buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)]
285 285 buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window)
286 286 buffer = numpy.sum(buffer,3)
287 287
288 288 else:
289 289 buffer = dataOut.data[:,0:int(dataOut.nHeights-r)]
290 290 buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window))
291 291 buffer = numpy.sum(buffer,2)
292 292
293 293 dataOut.data = buffer
294 294 dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta
295 295 dataOut.windowOfFilter = window
296 296
297 297 return dataOut
298 298
299 299
300 300 class setH0(Operation):
301 301
302 302 def run(self, dataOut, h0, deltaHeight = None):
303 303
304 304 if not deltaHeight:
305 305 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
306 306
307 307 nHeights = dataOut.nHeights
308 308
309 309 newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight
310 310
311 311 dataOut.heightList = newHeiRange
312 312
313 313 return dataOut
314 314
315 315
316 316 class deFlip(Operation):
317 317
318 318 def run(self, dataOut, channelList = []):
319 319
320 320 data = dataOut.data.copy()
321 321
322 322 if dataOut.flagDataAsBlock:
323 323 flip = self.flip
324 324 profileList = list(range(dataOut.nProfiles))
325 325
326 326 if not channelList:
327 327 for thisProfile in profileList:
328 328 data[:,thisProfile,:] = data[:,thisProfile,:]*flip
329 329 flip *= -1.0
330 330 else:
331 331 for thisChannel in channelList:
332 332 if thisChannel not in dataOut.channelList:
333 333 continue
334 334
335 335 for thisProfile in profileList:
336 336 data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip
337 337 flip *= -1.0
338 338
339 339 self.flip = flip
340 340
341 341 else:
342 342 if not channelList:
343 343 data[:,:] = data[:,:]*self.flip
344 344 else:
345 345 for thisChannel in channelList:
346 346 if thisChannel not in dataOut.channelList:
347 347 continue
348 348
349 349 data[thisChannel,:] = data[thisChannel,:]*self.flip
350 350
351 351 self.flip *= -1.
352 352
353 353 dataOut.data = data
354 354
355 355 return dataOut
356 356
357 357
358 358 class setAttribute(Operation):
359 359 '''
360 360 Set an arbitrary attribute(s) to dataOut
361 361 '''
362 362
363 363 def __init__(self):
364 364
365 365 Operation.__init__(self)
366 366 self._ready = False
367 367
368 368 def run(self, dataOut, **kwargs):
369 369
370 370 for key, value in kwargs.items():
371 371 setattr(dataOut, key, value)
372 372
373 373 return dataOut
374 374
375 375
376 376 @MPDecorator
377 377 class printAttribute(Operation):
378 378 '''
379 379 Print an arbitrary attribute of dataOut
380 380 '''
381 381
382 382 def __init__(self):
383 383
384 384 Operation.__init__(self)
385 385
386 386 def run(self, dataOut, attributes):
387 387
388 388 if isinstance(attributes, str):
389 389 attributes = [attributes]
390 390 for attr in attributes:
391 391 if hasattr(dataOut, attr):
392 392 log.log(getattr(dataOut, attr), attr)
393 393
394 394
395 395 class interpolateHeights(Operation):
396 396
397 397 def run(self, dataOut, topLim, botLim):
398 398 #69 al 72 para julia
399 399 #82-84 para meteoros
400 400 if len(numpy.shape(dataOut.data))==2:
401 401 sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2
402 402 sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1)))
403 403 #dataOut.data[:,botLim:limSup+1] = sampInterp
404 404 dataOut.data[:,botLim:topLim+1] = sampInterp
405 405 else:
406 406 nHeights = dataOut.data.shape[2]
407 407 x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights)))
408 408 y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))]
409 409 f = interpolate.interp1d(x, y, axis = 2)
410 410 xnew = numpy.arange(botLim,topLim+1)
411 411 ynew = f(xnew)
412 412 dataOut.data[:,:,botLim:topLim+1] = ynew
413 413
414 414 return dataOut
415 415
416 416
417 417 class CohInt(Operation):
418 418
419 419 isConfig = False
420 420 __profIndex = 0
421 421 __byTime = False
422 422 __initime = None
423 423 __lastdatatime = None
424 424 __integrationtime = None
425 425 __buffer = None
426 426 __bufferStride = []
427 427 __dataReady = False
428 428 __profIndexStride = 0
429 429 __dataToPutStride = False
430 430 n = None
431 431
432 432 def __init__(self, **kwargs):
433 433
434 434 Operation.__init__(self, **kwargs)
435 435
436 436 def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False):
437 437 """
438 438 Set the parameters of the integration class.
439 439
440 440 Inputs:
441 441
442 442 n : Number of coherent integrations
443 443 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
444 444 overlapping :
445 445 """
446 446
447 447 self.__initime = None
448 448 self.__lastdatatime = 0
449 449 self.__buffer = None
450 450 self.__dataReady = False
451 451 self.byblock = byblock
452 452 self.stride = stride
453 453
454 454 if n == None and timeInterval == None:
455 455 raise ValueError("n or timeInterval should be specified ...")
456 456
457 457 if n != None:
458 458 self.n = n
459 459 self.__byTime = False
460 460 else:
461 461 self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
462 462 self.n = 9999
463 463 self.__byTime = True
464 464
465 465 if overlapping:
466 466 self.__withOverlapping = True
467 467 self.__buffer = None
468 468 else:
469 469 self.__withOverlapping = False
470 470 self.__buffer = 0
471 471
472 472 self.__profIndex = 0
473 473
474 474 def putData(self, data):
475 475
476 476 """
477 477 Add a profile to the __buffer and increase in one the __profileIndex
478 478
479 479 """
480 480
481 481 if not self.__withOverlapping:
482 482 self.__buffer += data.copy()
483 483 self.__profIndex += 1
484 484 return
485 485
486 486 #Overlapping data
487 487 nChannels, nHeis = data.shape
488 488 data = numpy.reshape(data, (1, nChannels, nHeis))
489 489
490 490 #If the buffer is empty then it takes the data value
491 491 if self.__buffer is None:
492 492 self.__buffer = data
493 493 self.__profIndex += 1
494 494 return
495 495
496 496 #If the buffer length is lower than n then stakcing the data value
497 497 if self.__profIndex < self.n:
498 498 self.__buffer = numpy.vstack((self.__buffer, data))
499 499 self.__profIndex += 1
500 500 return
501 501
502 502 #If the buffer length is equal to n then replacing the last buffer value with the data value
503 503 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
504 504 self.__buffer[self.n-1] = data
505 505 self.__profIndex = self.n
506 506 return
507 507
508 508
509 509 def pushData(self):
510 510 """
511 511 Return the sum of the last profiles and the profiles used in the sum.
512 512
513 513 Affected:
514 514
515 515 self.__profileIndex
516 516
517 517 """
518 518
519 519 if not self.__withOverlapping:
520 520 data = self.__buffer
521 521 n = self.__profIndex
522 522
523 523 self.__buffer = 0
524 524 self.__profIndex = 0
525 525
526 526 return data, n
527 527
528 528 #Integration with Overlapping
529 529 data = numpy.sum(self.__buffer, axis=0)
530 530 # print data
531 531 # raise
532 532 n = self.__profIndex
533 533
534 534 return data, n
535 535
536 536 def byProfiles(self, data):
537 537
538 538 self.__dataReady = False
539 539 avgdata = None
540 540 # n = None
541 541 # print data
542 542 # raise
543 543 self.putData(data)
544 544
545 545 if self.__profIndex == self.n:
546 546 avgdata, n = self.pushData()
547 547 self.__dataReady = True
548 548
549 549 return avgdata
550 550
551 551 def byTime(self, data, datatime):
552 552
553 553 self.__dataReady = False
554 554 avgdata = None
555 555 n = None
556 556
557 557 self.putData(data)
558 558
559 559 if (datatime - self.__initime) >= self.__integrationtime:
560 560 avgdata, n = self.pushData()
561 561 self.n = n
562 562 self.__dataReady = True
563 563
564 564 return avgdata
565 565
566 566 def integrateByStride(self, data, datatime):
567 567 # print data
568 568 if self.__profIndex == 0:
569 569 self.__buffer = [[data.copy(), datatime]]
570 570 else:
571 571 self.__buffer.append([data.copy(),datatime])
572 572 self.__profIndex += 1
573 573 self.__dataReady = False
574 574
575 575 if self.__profIndex == self.n * self.stride :
576 576 self.__dataToPutStride = True
577 577 self.__profIndexStride = 0
578 578 self.__profIndex = 0
579 579 self.__bufferStride = []
580 580 for i in range(self.stride):
581 581 current = self.__buffer[i::self.stride]
582 582 data = numpy.sum([t[0] for t in current], axis=0)
583 583 avgdatatime = numpy.average([t[1] for t in current])
584 584 # print data
585 585 self.__bufferStride.append((data, avgdatatime))
586 586
587 587 if self.__dataToPutStride:
588 588 self.__dataReady = True
589 589 self.__profIndexStride += 1
590 590 if self.__profIndexStride == self.stride:
591 591 self.__dataToPutStride = False
592 592 # print self.__bufferStride[self.__profIndexStride - 1]
593 593 # raise
594 594 return self.__bufferStride[self.__profIndexStride - 1]
595 595
596 596
597 597 return None, None
598 598
599 599 def integrate(self, data, datatime=None):
600 600
601 601 if self.__initime == None:
602 602 self.__initime = datatime
603 603
604 604 if self.__byTime:
605 605 avgdata = self.byTime(data, datatime)
606 606 else:
607 607 avgdata = self.byProfiles(data)
608 608
609 609
610 610 self.__lastdatatime = datatime
611 611
612 612 if avgdata is None:
613 613 return None, None
614 614
615 615 avgdatatime = self.__initime
616 616
617 617 deltatime = datatime - self.__lastdatatime
618 618
619 619 if not self.__withOverlapping:
620 620 self.__initime = datatime
621 621 else:
622 622 self.__initime += deltatime
623 623
624 624 return avgdata, avgdatatime
625 625
626 626 def integrateByBlock(self, dataOut):
627 627
628 628 times = int(dataOut.data.shape[1]/self.n)
629 629 avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex)
630 630
631 631 id_min = 0
632 632 id_max = self.n
633 633
634 634 for i in range(times):
635 635 junk = dataOut.data[:,id_min:id_max,:]
636 636 avgdata[:,i,:] = junk.sum(axis=1)
637 637 id_min += self.n
638 638 id_max += self.n
639 639
640 640 timeInterval = dataOut.ippSeconds*self.n
641 641 avgdatatime = (times - 1) * timeInterval + dataOut.utctime
642 642 self.__dataReady = True
643 643 return avgdata, avgdatatime
644 644
645 645 def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs):
646 646
647 647 if not self.isConfig:
648 648 self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs)
649 649 self.isConfig = True
650 650
651 651 if dataOut.flagDataAsBlock:
652 652 """
653 653 Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis]
654 654 """
655 655 avgdata, avgdatatime = self.integrateByBlock(dataOut)
656 656 dataOut.nProfiles /= self.n
657 657 else:
658 658 if stride is None:
659 659 avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
660 660 else:
661 661 avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime)
662 662
663 663
664 664 # dataOut.timeInterval *= n
665 665 dataOut.flagNoData = True
666 666
667 667 if self.__dataReady:
668 668 dataOut.data = avgdata
669 669 if not dataOut.flagCohInt:
670 670 dataOut.nCohInt *= self.n
671 671 dataOut.flagCohInt = True
672 672 dataOut.utctime = avgdatatime
673 673 # print avgdata, avgdatatime
674 674 # raise
675 675 # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
676 676 dataOut.flagNoData = False
677 677 return dataOut
678 678
679 679 class Decoder(Operation):
680 680
681 681 isConfig = False
682 682 __profIndex = 0
683 683
684 684 code = None
685 685
686 686 nCode = None
687 687 nBaud = None
688 688
689 689 def __init__(self, **kwargs):
690 690
691 691 Operation.__init__(self, **kwargs)
692 692
693 693 self.times = None
694 694 self.osamp = None
695 695 # self.__setValues = False
696 696 self.isConfig = False
697 697 self.setupReq = False
698 698 def setup(self, code, osamp, dataOut):
699 699
700 700 self.__profIndex = 0
701 701
702 702 self.code = code
703 703
704 704 self.nCode = len(code)
705 705 self.nBaud = len(code[0])
706 706
707 707 if (osamp != None) and (osamp >1):
708 708 self.osamp = osamp
709 709 self.code = numpy.repeat(code, repeats=self.osamp, axis=1)
710 710 self.nBaud = self.nBaud*self.osamp
711 711
712 712 self.__nChannels = dataOut.nChannels
713 713 self.__nProfiles = dataOut.nProfiles
714 714 self.__nHeis = dataOut.nHeights
715 715
716 716 if self.__nHeis < self.nBaud:
717 717 raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud))
718 718
719 719 #Frequency
720 720 __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
721 721
722 722 __codeBuffer[:,0:self.nBaud] = self.code
723 723
724 724 self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
725 725
726 726 if dataOut.flagDataAsBlock:
727 727
728 728 self.ndatadec = self.__nHeis #- self.nBaud + 1
729 729
730 730 self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex)
731 731
732 732 else:
733 733
734 734 #Time
735 735 self.ndatadec = self.__nHeis #- self.nBaud + 1
736 736
737 737 self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
738 738
739 739 def __convolutionInFreq(self, data):
740 740
741 741 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
742 742
743 743 fft_data = numpy.fft.fft(data, axis=1)
744 744
745 745 conv = fft_data*fft_code
746 746
747 747 data = numpy.fft.ifft(conv,axis=1)
748 748
749 749 return data
750 750
751 751 def __convolutionInFreqOpt(self, data):
752 752
753 753 raise NotImplementedError
754 754
755 755 def __convolutionInTime(self, data):
756 756
757 757 code = self.code[self.__profIndex]
758 758 for i in range(self.__nChannels):
759 759 self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:]
760 760
761 761 return self.datadecTime
762 762
763 763 def __convolutionByBlockInTime(self, data):
764 764
765 765 repetitions = int(self.__nProfiles / self.nCode)
766 766 junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize))
767 767 junk = junk.flatten()
768 768 code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud))
769 769 profilesList = range(self.__nProfiles)
770 770
771 771 for i in range(self.__nChannels):
772 772 for j in profilesList:
773 773 self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:]
774 774 return self.datadecTime
775 775
776 776 def __convolutionByBlockInFreq(self, data):
777 777
778 778 raise NotImplementedError("Decoder by frequency fro Blocks not implemented")
779 779
780 780
781 781 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
782 782
783 783 fft_data = numpy.fft.fft(data, axis=2)
784 784
785 785 conv = fft_data*fft_code
786 786
787 787 data = numpy.fft.ifft(conv,axis=2)
788 788
789 789 return data
790 790
791 791
792 792 def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None):
793 793
794 794 if dataOut.flagDecodeData:
795 795 print("This data is already decoded, recoding again ...")
796 796
797 797 if not self.isConfig:
798 798
799 799 if code is None:
800 800 if dataOut.code is None:
801 801 raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type)
802 802
803 803 code = dataOut.code
804 804 else:
805 805 code = numpy.array(code).reshape(nCode,nBaud)
806 806 self.setup(code, osamp, dataOut)
807 807
808 808 self.isConfig = True
809 809
810 810 if mode == 3:
811 811 sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode)
812 812
813 813 if times != None:
814 814 sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n")
815 815
816 816 if self.code is None:
817 817 print("Fail decoding: Code is not defined.")
818 818 return
819 819
820 820 self.__nProfiles = dataOut.nProfiles
821 821 datadec = None
822 822
823 823 if mode == 3:
824 824 mode = 0
825 825
826 826 if dataOut.flagDataAsBlock:
827 827 """
828 828 Decoding when data have been read as block,
829 829 """
830 830
831 831 if mode == 0:
832 832 datadec = self.__convolutionByBlockInTime(dataOut.data)
833 833 if mode == 1:
834 834 datadec = self.__convolutionByBlockInFreq(dataOut.data)
835 835 else:
836 836 """
837 837 Decoding when data have been read profile by profile
838 838 """
839 839 if mode == 0:
840 840 datadec = self.__convolutionInTime(dataOut.data)
841 841
842 842 if mode == 1:
843 843 datadec = self.__convolutionInFreq(dataOut.data)
844 844
845 845 if mode == 2:
846 846 datadec = self.__convolutionInFreqOpt(dataOut.data)
847 847
848 848 if datadec is None:
849 849 raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode)
850 850
851 851 dataOut.code = self.code
852 852 dataOut.nCode = self.nCode
853 853 dataOut.nBaud = self.nBaud
854 854
855 855 dataOut.data = datadec
856 856
857 857 dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]]
858 858
859 859 dataOut.flagDecodeData = True #asumo q la data esta decodificada
860 860
861 861 if self.__profIndex == self.nCode-1:
862 862 self.__profIndex = 0
863 863 return dataOut
864 864
865 865 self.__profIndex += 1
866 866
867 867 return dataOut
868 868 # dataOut.flagDeflipData = True #asumo q la data no esta sin flip
869 869
870 870
871 871 class ProfileConcat(Operation):
872 872
873 873 isConfig = False
874 874 buffer = None
875 875
876 876 def __init__(self, **kwargs):
877 877
878 878 Operation.__init__(self, **kwargs)
879 879 self.profileIndex = 0
880 880
881 881 def reset(self):
882 882 self.buffer = numpy.zeros_like(self.buffer)
883 883 self.start_index = 0
884 884 self.times = 1
885 885
886 886 def setup(self, data, m, n=1):
887 887 self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
888 888 self.nHeights = data.shape[1]#.nHeights
889 889 self.start_index = 0
890 890 self.times = 1
891 891
892 892 def concat(self, data):
893 893
894 894 self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy()
895 895 self.start_index = self.start_index + self.nHeights
896 896
897 897 def run(self, dataOut, m):
898 898 dataOut.flagNoData = True
899 899
900 900 if not self.isConfig:
901 901 self.setup(dataOut.data, m, 1)
902 902 self.isConfig = True
903 903
904 904 if dataOut.flagDataAsBlock:
905 905 raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False")
906 906
907 907 else:
908 908 self.concat(dataOut.data)
909 909 self.times += 1
910 910 if self.times > m:
911 911 dataOut.data = self.buffer
912 912 self.reset()
913 913 dataOut.flagNoData = False
914 914 # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
915 915 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
916 916 xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m
917 917 dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
918 918 dataOut.ippSeconds *= m
919 919 return dataOut
920 920
921 921 class ProfileSelector(Operation):
922 922
923 923 profileIndex = None
924 924 # Tamanho total de los perfiles
925 925 nProfiles = None
926 926
927 927 def __init__(self, **kwargs):
928 928
929 929 Operation.__init__(self, **kwargs)
930 930 self.profileIndex = 0
931 931
932 932 def incProfileIndex(self):
933 933
934 934 self.profileIndex += 1
935 935
936 936 if self.profileIndex >= self.nProfiles:
937 937 self.profileIndex = 0
938 938
939 939 def isThisProfileInRange(self, profileIndex, minIndex, maxIndex):
940 940
941 941 if profileIndex < minIndex:
942 942 return False
943 943
944 944 if profileIndex > maxIndex:
945 945 return False
946 946
947 947 return True
948 948
949 949 def isThisProfileInList(self, profileIndex, profileList):
950 950
951 951 if profileIndex not in profileList:
952 952 return False
953 953
954 954 return True
955 955
956 956 def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None):
957 957
958 958 """
959 959 ProfileSelector:
960 960
961 961 Inputs:
962 962 profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8)
963 963
964 964 profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30)
965 965
966 966 rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256))
967 967
968 968 """
969 969
970 970 if rangeList is not None:
971 971 if type(rangeList[0]) not in (tuple, list):
972 972 rangeList = [rangeList]
973 973
974 974 dataOut.flagNoData = True
975 975
976 976 if dataOut.flagDataAsBlock:
977 977 """
978 978 data dimension = [nChannels, nProfiles, nHeis]
979 979 """
980 980 if profileList != None:
981 981 dataOut.data = dataOut.data[:,profileList,:]
982 982
983 983 if profileRangeList != None:
984 984 minIndex = profileRangeList[0]
985 985 maxIndex = profileRangeList[1]
986 986 profileList = list(range(minIndex, maxIndex+1))
987 987
988 988 dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:]
989 989
990 990 if rangeList != None:
991 991
992 992 profileList = []
993 993
994 994 for thisRange in rangeList:
995 995 minIndex = thisRange[0]
996 996 maxIndex = thisRange[1]
997 997
998 998 profileList.extend(list(range(minIndex, maxIndex+1)))
999 999
1000 1000 dataOut.data = dataOut.data[:,profileList,:]
1001 1001
1002 1002 dataOut.nProfiles = len(profileList)
1003 1003 dataOut.profileIndex = dataOut.nProfiles - 1
1004 1004 dataOut.flagNoData = False
1005 1005
1006 1006 return dataOut
1007 1007
1008 1008 """
1009 1009 data dimension = [nChannels, nHeis]
1010 1010 """
1011 1011
1012 1012 if profileList != None:
1013 1013
1014 1014 if self.isThisProfileInList(dataOut.profileIndex, profileList):
1015 1015
1016 1016 self.nProfiles = len(profileList)
1017 1017 dataOut.nProfiles = self.nProfiles
1018 1018 dataOut.profileIndex = self.profileIndex
1019 1019 dataOut.flagNoData = False
1020 1020
1021 1021 self.incProfileIndex()
1022 1022 return dataOut
1023 1023
1024 1024 if profileRangeList != None:
1025 1025
1026 1026 minIndex = profileRangeList[0]
1027 1027 maxIndex = profileRangeList[1]
1028 1028
1029 1029 if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
1030 1030
1031 1031 self.nProfiles = maxIndex - minIndex + 1
1032 1032 dataOut.nProfiles = self.nProfiles
1033 1033 dataOut.profileIndex = self.profileIndex
1034 1034 dataOut.flagNoData = False
1035 1035
1036 1036 self.incProfileIndex()
1037 1037 return dataOut
1038 1038
1039 1039 if rangeList != None:
1040 1040
1041 1041 nProfiles = 0
1042 1042
1043 1043 for thisRange in rangeList:
1044 1044 minIndex = thisRange[0]
1045 1045 maxIndex = thisRange[1]
1046 1046
1047 1047 nProfiles += maxIndex - minIndex + 1
1048 1048
1049 1049 for thisRange in rangeList:
1050 1050
1051 1051 minIndex = thisRange[0]
1052 1052 maxIndex = thisRange[1]
1053 1053
1054 1054 if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
1055 1055
1056 1056 self.nProfiles = nProfiles
1057 1057 dataOut.nProfiles = self.nProfiles
1058 1058 dataOut.profileIndex = self.profileIndex
1059 1059 dataOut.flagNoData = False
1060 1060
1061 1061 self.incProfileIndex()
1062 1062
1063 1063 break
1064 1064
1065 1065 return dataOut
1066 1066
1067 1067
1068 1068 if beam != None: #beam is only for AMISR data
1069 1069 if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]):
1070 1070 dataOut.flagNoData = False
1071 1071 dataOut.profileIndex = self.profileIndex
1072 1072
1073 1073 self.incProfileIndex()
1074 1074
1075 1075 return dataOut
1076 1076
1077 1077 raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter")
1078 1078
1079 1079
1080 1080 class Reshaper(Operation):
1081 1081
1082 1082 def __init__(self, **kwargs):
1083 1083
1084 1084 Operation.__init__(self, **kwargs)
1085 1085
1086 1086 self.__buffer = None
1087 1087 self.__nitems = 0
1088 1088
1089 1089 def __appendProfile(self, dataOut, nTxs):
1090 1090
1091 1091 if self.__buffer is None:
1092 1092 shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) )
1093 1093 self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype)
1094 1094
1095 1095 ini = dataOut.nHeights * self.__nitems
1096 1096 end = ini + dataOut.nHeights
1097 1097
1098 1098 self.__buffer[:, ini:end] = dataOut.data
1099 1099
1100 1100 self.__nitems += 1
1101 1101
1102 1102 return int(self.__nitems*nTxs)
1103 1103
1104 1104 def __getBuffer(self):
1105 1105
1106 1106 if self.__nitems == int(1./self.__nTxs):
1107 1107
1108 1108 self.__nitems = 0
1109 1109
1110 1110 return self.__buffer.copy()
1111 1111
1112 1112 return None
1113 1113
1114 1114 def __checkInputs(self, dataOut, shape, nTxs):
1115 1115
1116 1116 if shape is None and nTxs is None:
1117 1117 raise ValueError("Reshaper: shape of factor should be defined")
1118 1118
1119 1119 if nTxs:
1120 1120 if nTxs < 0:
1121 1121 raise ValueError("nTxs should be greater than 0")
1122 1122
1123 1123 if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0:
1124 1124 raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)))
1125 1125
1126 1126 shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs]
1127 1127
1128 1128 return shape, nTxs
1129 1129
1130 1130 if len(shape) != 2 and len(shape) != 3:
1131 1131 raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights))
1132 1132
1133 1133 if len(shape) == 2:
1134 1134 shape_tuple = [dataOut.nChannels]
1135 1135 shape_tuple.extend(shape)
1136 1136 else:
1137 1137 shape_tuple = list(shape)
1138 1138
1139 1139 nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles
1140 1140
1141 1141 return shape_tuple, nTxs
1142 1142
1143 1143 def run(self, dataOut, shape=None, nTxs=None):
1144 1144
1145 1145 shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs)
1146 1146
1147 1147 dataOut.flagNoData = True
1148 1148 profileIndex = None
1149 1149
1150 1150 if dataOut.flagDataAsBlock:
1151 1151
1152 1152 dataOut.data = numpy.reshape(dataOut.data, shape_tuple)
1153 1153 dataOut.flagNoData = False
1154 1154
1155 1155 profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1
1156 1156
1157 1157 else:
1158 1158
1159 1159 if self.__nTxs < 1:
1160 1160
1161 1161 self.__appendProfile(dataOut, self.__nTxs)
1162 1162 new_data = self.__getBuffer()
1163 1163
1164 1164 if new_data is not None:
1165 1165 dataOut.data = new_data
1166 1166 dataOut.flagNoData = False
1167 1167
1168 1168 profileIndex = dataOut.profileIndex*nTxs
1169 1169
1170 1170 else:
1171 1171 raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)")
1172 1172
1173 1173 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1174 1174
1175 1175 dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0]
1176 1176
1177 1177 dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs)
1178 1178
1179 1179 dataOut.profileIndex = profileIndex
1180 1180
1181 1181 dataOut.ippSeconds /= self.__nTxs
1182 1182
1183 1183 return dataOut
1184 1184
1185 1185 class SplitProfiles(Operation):
1186 1186
1187 1187 def __init__(self, **kwargs):
1188 1188
1189 1189 Operation.__init__(self, **kwargs)
1190 1190
1191 1191 def run(self, dataOut, n):
1192 1192
1193 1193 dataOut.flagNoData = True
1194 1194 profileIndex = None
1195 1195
1196 1196 if dataOut.flagDataAsBlock:
1197 1197
1198 1198 #nchannels, nprofiles, nsamples
1199 1199 shape = dataOut.data.shape
1200 1200
1201 1201 if shape[2] % n != 0:
1202 1202 raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]))
1203 1203
1204 1204 new_shape = shape[0], shape[1]*n, int(shape[2]/n)
1205 1205
1206 1206 dataOut.data = numpy.reshape(dataOut.data, new_shape)
1207 1207 dataOut.flagNoData = False
1208 1208
1209 1209 profileIndex = int(dataOut.nProfiles/n) - 1
1210 1210
1211 1211 else:
1212 1212
1213 1213 raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)")
1214 1214
1215 1215 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1216 1216
1217 1217 dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0]
1218 1218
1219 1219 dataOut.nProfiles = int(dataOut.nProfiles*n)
1220 1220
1221 1221 dataOut.profileIndex = profileIndex
1222 1222
1223 1223 dataOut.ippSeconds /= n
1224 1224
1225 1225 return dataOut
1226 1226
1227 1227 class CombineProfiles(Operation):
1228 1228 def __init__(self, **kwargs):
1229 1229
1230 1230 Operation.__init__(self, **kwargs)
1231 1231
1232 1232 self.__remData = None
1233 1233 self.__profileIndex = 0
1234 1234
1235 1235 def run(self, dataOut, n):
1236 1236
1237 1237 dataOut.flagNoData = True
1238 1238 profileIndex = None
1239 1239
1240 1240 if dataOut.flagDataAsBlock:
1241 1241
1242 1242 #nchannels, nprofiles, nsamples
1243 1243 shape = dataOut.data.shape
1244 1244 new_shape = shape[0], shape[1]/n, shape[2]*n
1245 1245
1246 1246 if shape[1] % n != 0:
1247 1247 raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]))
1248 1248
1249 1249 dataOut.data = numpy.reshape(dataOut.data, new_shape)
1250 1250 dataOut.flagNoData = False
1251 1251
1252 1252 profileIndex = int(dataOut.nProfiles*n) - 1
1253 1253
1254 1254 else:
1255 1255
1256 1256 #nchannels, nsamples
1257 1257 if self.__remData is None:
1258 1258 newData = dataOut.data
1259 1259 else:
1260 1260 newData = numpy.concatenate((self.__remData, dataOut.data), axis=1)
1261 1261
1262 1262 self.__profileIndex += 1
1263 1263
1264 1264 if self.__profileIndex < n:
1265 1265 self.__remData = newData
1266 1266 #continue
1267 1267 return
1268 1268
1269 1269 self.__profileIndex = 0
1270 1270 self.__remData = None
1271 1271
1272 1272 dataOut.data = newData
1273 1273 dataOut.flagNoData = False
1274 1274
1275 1275 profileIndex = dataOut.profileIndex/n
1276 1276
1277 1277
1278 1278 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1279 1279
1280 1280 dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0]
1281 1281
1282 1282 dataOut.nProfiles = int(dataOut.nProfiles/n)
1283 1283
1284 1284 dataOut.profileIndex = profileIndex
1285 1285
1286 1286 dataOut.ippSeconds *= n
1287 1287
1288 1288 return dataOut
1289 1289
1290 class PulsePairVoltage(Operation):
1290 class PulsePair(Operation):
1291 1291 '''
1292 1292 Function PulsePair(Signal Power, Velocity)
1293 1293 The real component of Lag[0] provides Intensity Information
1294 1294 The imag component of Lag[1] Phase provides Velocity Information
1295 1295
1296 1296 Configuration Parameters:
1297 1297 nPRF = Number of Several PRF
1298 1298 theta = Degree Azimuth angel Boundaries
1299 1299
1300 1300 Input:
1301 1301 self.dataOut
1302 1302 lag[N]
1303 1303 Affected:
1304 1304 self.dataOut.spc
1305 1305 '''
1306 1306 isConfig = False
1307 1307 __profIndex = 0
1308 1308 __initime = None
1309 1309 __lastdatatime = None
1310 1310 __buffer = None
1311 1311 noise = None
1312 1312 __dataReady = False
1313 1313 n = None
1314 1314 __nch = 0
1315 1315 __nHeis = 0
1316 1316 removeDC = False
1317 1317 ipp = None
1318 1318 lambda_ = 0
1319 1319
1320 1320 def __init__(self,**kwargs):
1321 1321 Operation.__init__(self,**kwargs)
1322 1322
1323 1323 def setup(self, dataOut, n = None, removeDC=False):
1324 1324 '''
1325 1325 n= Numero de PRF's de entrada
1326 1326 '''
1327 print("[INICIO]-setup del METODO PULSE PAIR")
1327 1328 self.__initime = None
1328 1329 self.__lastdatatime = 0
1329 1330 self.__dataReady = False
1330 1331 self.__buffer = 0
1331 1332 self.__profIndex = 0
1332 1333 self.noise = None
1333 1334 self.__nch = dataOut.nChannels
1334 1335 self.__nHeis = dataOut.nHeights
1335 1336 self.removeDC = removeDC
1336 1337 self.lambda_ = 3.0e8/(9345.0e6)
1337 1338 self.ippSec = dataOut.ippSeconds
1338 1339 self.nCohInt = dataOut.nCohInt
1339 1340 print("IPPseconds",dataOut.ippSeconds)
1340 1341
1341 1342 print("ELVALOR DE n es:", n)
1342 1343 if n == None:
1343 1344 raise ValueError("n should be specified.")
1344 1345
1345 1346 if n != None:
1346 1347 if n<2:
1347 1348 raise ValueError("n should be greater than 2")
1348 1349
1349 1350 self.n = n
1350 1351 self.__nProf = n
1351 1352
1352 1353 self.__buffer = numpy.zeros((dataOut.nChannels,
1353 1354 n,
1354 1355 dataOut.nHeights),
1355 1356 dtype='complex')
1356 1357
1357 1358 def putData(self,data):
1358 1359 '''
1359 1360 Add a profile to he __buffer and increase in one the __profiel Index
1360 1361 '''
1361 1362 self.__buffer[:,self.__profIndex,:]= data
1362 1363 self.__profIndex += 1
1363 1364 return
1364 1365
1365 1366 def pushData(self,dataOut):
1366 1367 '''
1367 1368 Return the PULSEPAIR and the profiles used in the operation
1368 1369 Affected : self.__profileIndex
1369 1370 '''
1370 1371 #----------------- Remove DC-----------------------------------
1371 1372 if self.removeDC==True:
1372 1373 mean = numpy.mean(self.__buffer,1)
1373 1374 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1374 1375 dc= numpy.tile(tmp,[1,self.__nProf,1])
1375 1376 self.__buffer = self.__buffer - dc
1376 1377 #------------------Calculo de Potencia ------------------------
1377 1378 pair0 = self.__buffer*numpy.conj(self.__buffer)
1378 1379 pair0 = pair0.real
1379 1380 lag_0 = numpy.sum(pair0,1)
1380 1381 #------------------Calculo de Ruido x canal--------------------
1381 1382 self.noise = numpy.zeros(self.__nch)
1382 1383 for i in range(self.__nch):
1383 1384 daux = numpy.sort(pair0[i,:,:],axis= None)
1384 1385 self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
1385 1386
1386 1387 self.noise = self.noise.reshape(self.__nch,1)
1387 1388 self.noise = numpy.tile(self.noise,[1,self.__nHeis])
1388 1389 noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
1389 1390 noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
1390 1391 #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N--
1391 1392 #------------------ P= S+N ,P=lag_0/N ---------------------------------
1392 1393 #-------------------- Power --------------------------------------------------
1393 1394 data_power = lag_0/(self.n*self.nCohInt)
1394 1395 #------------------ Senal ---------------------------------------------------
1395 1396 data_intensity = pair0 - noise_buffer
1396 1397 data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
1397 1398 #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
1398 1399 for i in range(self.__nch):
1399 1400 for j in range(self.__nHeis):
1400 1401 if data_intensity[i][j] < 0:
1401 1402 data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
1402 1403
1403 1404 #----------------- Calculo de Frecuencia y Velocidad doppler--------
1404 1405 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1405 1406 lag_1 = numpy.sum(pair1,1)
1406 1407 data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
1407 1408 data_velocity = (self.lambda_/2.0)*data_freq
1408 1409
1409 1410 #---------------- Potencia promedio estimada de la Senal-----------
1410 1411 lag_0 = lag_0/self.n
1411 1412 S = lag_0-self.noise
1412 1413
1413 1414 #---------------- Frecuencia Doppler promedio ---------------------
1414 1415 lag_1 = lag_1/(self.n-1)
1415 1416 R1 = numpy.abs(lag_1)
1416 1417
1417 1418 #---------------- Calculo del SNR----------------------------------
1418 1419 data_snrPP = S/self.noise
1419 1420 for i in range(self.__nch):
1420 1421 for j in range(self.__nHeis):
1421 1422 if data_snrPP[i][j] < 1.e-20:
1422 1423 data_snrPP[i][j] = 1.e-20
1423 1424
1424 1425 #----------------- Calculo del ancho espectral ----------------------
1425 1426 L = S/R1
1426 1427 L = numpy.where(L<0,1,L)
1427 1428 L = numpy.log(L)
1428 1429 tmp = numpy.sqrt(numpy.absolute(L))
1429 1430 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
1430 1431 n = self.__profIndex
1431 1432
1432 1433 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1433 1434 self.__profIndex = 0
1434 1435 return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n
1435 1436
1436 1437
1437 1438 def pulsePairbyProfiles(self,dataOut):
1438 1439
1439 1440 self.__dataReady = False
1440 1441 data_power = None
1441 1442 data_intensity = None
1442 1443 data_velocity = None
1443 1444 data_specwidth = None
1444 1445 data_snrPP = None
1445 1446 self.putData(data=dataOut.data)
1446 1447 if self.__profIndex == self.n:
1447 1448 data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut)
1448 1449 self.__dataReady = True
1449 1450
1450 1451 return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth
1451 1452
1452 1453
1453 1454 def pulsePairOp(self, dataOut, datatime= None):
1454 1455
1455 1456 if self.__initime == None:
1456 1457 self.__initime = datatime
1457 1458 data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut)
1458 1459 self.__lastdatatime = datatime
1459 1460
1460 1461 if data_power is None:
1461 1462 return None, None, None,None,None,None
1462 1463
1463 1464 avgdatatime = self.__initime
1464 1465 deltatime = datatime - self.__lastdatatime
1465 1466 self.__initime = datatime
1466 1467
1467 1468 return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime
1468 1469
1469 1470 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1470 1471
1471 1472 if not self.isConfig:
1472 1473 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1473 1474 self.isConfig = True
1474 1475 data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1475 1476 dataOut.flagNoData = True
1476 1477
1477 1478 if self.__dataReady:
1478 1479 dataOut.nCohInt *= self.n
1479 1480 dataOut.dataPP_POW = data_intensity # S
1480 1481 dataOut.dataPP_POWER = data_power # P
1481 1482 dataOut.dataPP_DOP = data_velocity
1482 1483 dataOut.dataPP_SNR = data_snrPP
1483 1484 dataOut.dataPP_WIDTH = data_specwidth
1484 1485 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1486 dataOut.nProfiles = int(dataOut.nProfiles/n)
1485 1487 dataOut.utctime = avgdatatime
1486 1488 dataOut.flagNoData = False
1487 1489 return dataOut
1488 1490
1489 1491
1490 1492
1491 1493 # import collections
1492 1494 # from scipy.stats import mode
1493 1495 #
1494 1496 # class Synchronize(Operation):
1495 1497 #
1496 1498 # isConfig = False
1497 1499 # __profIndex = 0
1498 1500 #
1499 1501 # def __init__(self, **kwargs):
1500 1502 #
1501 1503 # Operation.__init__(self, **kwargs)
1502 1504 # # self.isConfig = False
1503 1505 # self.__powBuffer = None
1504 1506 # self.__startIndex = 0
1505 1507 # self.__pulseFound = False
1506 1508 #
1507 1509 # def __findTxPulse(self, dataOut, channel=0, pulse_with = None):
1508 1510 #
1509 1511 # #Read data
1510 1512 #
1511 1513 # powerdB = dataOut.getPower(channel = channel)
1512 1514 # noisedB = dataOut.getNoise(channel = channel)[0]
1513 1515 #
1514 1516 # self.__powBuffer.extend(powerdB.flatten())
1515 1517 #
1516 1518 # dataArray = numpy.array(self.__powBuffer)
1517 1519 #
1518 1520 # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same")
1519 1521 #
1520 1522 # maxValue = numpy.nanmax(filteredPower)
1521 1523 #
1522 1524 # if maxValue < noisedB + 10:
1523 1525 # #No se encuentra ningun pulso de transmision
1524 1526 # return None
1525 1527 #
1526 1528 # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0]
1527 1529 #
1528 1530 # if len(maxValuesIndex) < 2:
1529 1531 # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX
1530 1532 # return None
1531 1533 #
1532 1534 # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples
1533 1535 #
1534 1536 # #Seleccionar solo valores con un espaciamiento de nSamples
1535 1537 # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex)
1536 1538 #
1537 1539 # if len(pulseIndex) < 2:
1538 1540 # #Solo se encontro un pulso de transmision con ancho mayor a 1
1539 1541 # return None
1540 1542 #
1541 1543 # spacing = pulseIndex[1:] - pulseIndex[:-1]
1542 1544 #
1543 1545 # #remover senales que se distancien menos de 10 unidades o muestras
1544 1546 # #(No deberian existir IPP menor a 10 unidades)
1545 1547 #
1546 1548 # realIndex = numpy.where(spacing > 10 )[0]
1547 1549 #
1548 1550 # if len(realIndex) < 2:
1549 1551 # #Solo se encontro un pulso de transmision con ancho mayor a 1
1550 1552 # return None
1551 1553 #
1552 1554 # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs)
1553 1555 # realPulseIndex = pulseIndex[realIndex]
1554 1556 #
1555 1557 # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0]
1556 1558 #
1557 1559 # print "IPP = %d samples" %period
1558 1560 #
1559 1561 # self.__newNSamples = dataOut.nHeights #int(period)
1560 1562 # self.__startIndex = int(realPulseIndex[0])
1561 1563 #
1562 1564 # return 1
1563 1565 #
1564 1566 #
1565 1567 # def setup(self, nSamples, nChannels, buffer_size = 4):
1566 1568 #
1567 1569 # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float),
1568 1570 # maxlen = buffer_size*nSamples)
1569 1571 #
1570 1572 # bufferList = []
1571 1573 #
1572 1574 # for i in range(nChannels):
1573 1575 # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN,
1574 1576 # maxlen = buffer_size*nSamples)
1575 1577 #
1576 1578 # bufferList.append(bufferByChannel)
1577 1579 #
1578 1580 # self.__nSamples = nSamples
1579 1581 # self.__nChannels = nChannels
1580 1582 # self.__bufferList = bufferList
1581 1583 #
1582 1584 # def run(self, dataOut, channel = 0):
1583 1585 #
1584 1586 # if not self.isConfig:
1585 1587 # nSamples = dataOut.nHeights
1586 1588 # nChannels = dataOut.nChannels
1587 1589 # self.setup(nSamples, nChannels)
1588 1590 # self.isConfig = True
1589 1591 #
1590 1592 # #Append new data to internal buffer
1591 1593 # for thisChannel in range(self.__nChannels):
1592 1594 # bufferByChannel = self.__bufferList[thisChannel]
1593 1595 # bufferByChannel.extend(dataOut.data[thisChannel])
1594 1596 #
1595 1597 # if self.__pulseFound:
1596 1598 # self.__startIndex -= self.__nSamples
1597 1599 #
1598 1600 # #Finding Tx Pulse
1599 1601 # if not self.__pulseFound:
1600 1602 # indexFound = self.__findTxPulse(dataOut, channel)
1601 1603 #
1602 1604 # if indexFound == None:
1603 1605 # dataOut.flagNoData = True
1604 1606 # return
1605 1607 #
1606 1608 # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex)
1607 1609 # self.__pulseFound = True
1608 1610 # self.__startIndex = indexFound
1609 1611 #
1610 1612 # #If pulse was found ...
1611 1613 # for thisChannel in range(self.__nChannels):
1612 1614 # bufferByChannel = self.__bufferList[thisChannel]
1613 1615 # #print self.__startIndex
1614 1616 # x = numpy.array(bufferByChannel)
1615 1617 # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples]
1616 1618 #
1617 1619 # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1618 1620 # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight
1619 1621 # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6
1620 1622 #
1621 1623 # dataOut.data = self.__arrayBuffer
1622 1624 #
1623 1625 # self.__startIndex += self.__newNSamples
1624 1626 #
1625 1627 # return
@@ -1,183 +1,248
1 1 #!python
2 2 '''
3 3 '''
4 4
5 5 import os, sys
6 6 import datetime
7 7 import time
8 8
9 9 #path = os.path.dirname(os.getcwd())
10 10 #path = os.path.dirname(path)
11 11 #sys.path.insert(0, path)
12 12
13 13 from schainpy.controller import Project
14 14
15 15 desc = "USRP_test"
16 16 filename = "USRP_processing.xml"
17 17 controllerObj = Project()
18 18 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
19 19
20 20 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
21 21
22 22 #######################################################################
23 23 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
24 24 #######################################################################
25 25 #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman'
26
27
28 path = '/home/soporte/data_hdf5' #### with clock 35.16 db noise
29
30 figpath = '/home/soporte/data_hdf5_imag'
26 #path = '/DATA_RM/TEST_INTEGRACION'
27 path = '/DATA_RM/TEST_ONLINE'
28 figpath = '/home/soporte/Pictures/TEST_INTEGRACION_IMG'
31 29 #remotefolder = "/home/wmaster/graficos"
32 30 #######################################################################
33 31 ################# RANGO DE PLOTEO######################################
34 32 #######################################################################
35 dBmin = '30'
36 dBmax = '60'
33 dBmin = '-5'
34 dBmax = '20'
37 35 xmin = '0'
38 36 xmax ='24'
39 37 ymin = '0'
40 38 ymax = '600'
41 39 #######################################################################
42 40 ########################FECHA##########################################
43 41 #######################################################################
44 42 str = datetime.date.today()
45 43 today = str.strftime("%Y/%m/%d")
46 44 str2 = str - datetime.timedelta(days=1)
47 45 yesterday = str2.strftime("%Y/%m/%d")
48 46 #######################################################################
49 47 ######################## UNIDAD DE LECTURA#############################
50 48 #######################################################################
51 49 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
52 50 path=path,
53 startDate="2019/01/01",#today,
54 endDate="2109/12/30",#today,
51 startDate="2021/01/01",#today,
52 endDate="2021/12/30",#today,
55 53 startTime='00:00:00',
56 54 endTime='23:59:59',
57 55 delay=0,
58 56 #set=0,
59 57 online=0,
60 58 walk=1,
61 ippKm = 1000)
59 ippKm = 60)
62 60
63 61 opObj11 = readUnitConfObj.addOperation(name='printInfo')
64 opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock')
62 #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock')
65 63 #######################################################################
66 64 ################ OPERACIONES DOMINIO DEL TIEMPO########################
67 65 #######################################################################
68 66
69 67 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
70 68 #
71 69 # codigo64='1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,'+\
72 70 # '1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1'
73 71
74 72 #opObj11 = procUnitConfObjA.addOperation(name='setRadarFrequency')
75 #opObj11.addParameter(name='frequency', value='30e6', format='float')
73 #opObj11.addParameter(name='frequency', value='70312500')
74
75 '''
76 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
77 opObj11.addParameter(name='n', value='625', format='int')#10
78 opObj11.addParameter(name='removeDC', value=1, format='int')
79 '''
76 80
77 #opObj10 = procUnitConfObjA.addOperation(name='Scope', optype='external')
81 # Ploteo TEST
82 '''
83 opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
84 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
85 opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
86 #opObj11.addParameter(name='xmax', value=8)
87 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
88 '''
89 # OJO SCOPE
90 #opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external')
78 91 #opObj10.addParameter(name='id', value='10', format='int')
79 92 ##opObj10.addParameter(name='xmin', value='0', format='int')
80 93 ##opObj10.addParameter(name='xmax', value='50', format='int')
81 94 #opObj10.addParameter(name='type', value='iq')
82 #opObj10.addParameter(name='ymin', value='-5000', format='int')
95 ##opObj10.addParameter(name='ymin', value='-5000', format='int')
83 96 ##opObj10.addParameter(name='ymax', value='8500', format='int')
97 #opObj11.addParameter(name='save', value=figpath, format='str')
98 #opObj11.addParameter(name='save_period', value=10, format='int')
84 99
85 100 #opObj10 = procUnitConfObjA.addOperation(name='setH0')
86 101 #opObj10.addParameter(name='h0', value='-5000', format='float')
87 102
88 103 #opObj11 = procUnitConfObjA.addOperation(name='filterByHeights')
89 104 #opObj11.addParameter(name='window', value='1', format='int')
90 105
91 106 #codigo='1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1'
92 107 #opObj11 = procUnitConfObjSousy.addOperation(name='Decoder', optype='other')
93 108 #opObj11.addParameter(name='code', value=codigo, format='floatlist')
94 109 #opObj11.addParameter(name='nCode', value='1', format='int')
95 110 #opObj11.addParameter(name='nBaud', value='28', format='int')
96 111
97 112 #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other')
98 113 #opObj11.addParameter(name='n', value='100', format='int')
99 114
100 115 #######################################################################
116 ########## OPERACIONES ParametersProc########################
117 #######################################################################
118 ###procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
119 '''
120
121 opObj11 = procUnitConfObjA.addOperation(name='PedestalInformation')
122 opObj11.addParameter(name='path_ped', value=path_ped)
123 opObj11.addParameter(name='path_adq', value=path_adq)
124 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
125 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
126 opObj11.addParameter(name='blocksPerfile', value='100', format='int')
127 opObj11.addParameter(name='f_a_p', value='25', format='int')
128 opObj11.addParameter(name='online', value='0', format='int')
129
130 opObj11 = procUnitConfObjA.addOperation(name='Block360')
131 opObj11.addParameter(name='n', value='40', format='int')
132
133 opObj11= procUnitConfObjA.addOperation(name='WeatherPlot',optype='other')
134 opObj11.addParameter(name='save', value=figpath)
135 opObj11.addParameter(name='save_period', value=1)
136
137
138 '''
139
140 #######################################################################
101 141 ########## OPERACIONES DOMINIO DE LA FRECUENCIA########################
102 142 #######################################################################
103 procUnitConfObjSousySpectra = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
104 procUnitConfObjSousySpectra.addParameter(name='nFFTPoints', value='100', format='int')
105 procUnitConfObjSousySpectra.addParameter(name='nProfiles', value='100', format='int')
106 #procUnitConfObjSousySpectra.addParameter(name='pairsList', value='(0,0),(1,1),(0,1)', format='pairsList')
107 143
108 #opObj13 = procUnitConfObjSousySpectra.addOperation(name='removeDC')
144 procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
145 procUnitConfObjB.addParameter(name='nFFTPoints', value='32', format='int')
146 procUnitConfObjB.addParameter(name='nProfiles', value='32', format='int')
147
148 procUnitConfObjC = controllerObj.addProcUnit(datatype='SpectraHeisProc', inputId=procUnitConfObjA.getId())
149 #procUnitConfObjB.addParameter(name='nFFTPoints', value='64', format='int')
150 #procUnitConfObjB.addParameter(name='nProfiles', value='64', format='int')
151 opObj11 = procUnitConfObjC.addOperation(name='IncohInt4SpectraHeis', optype='other')
152 opObj11.addParameter(name='timeInterval', value='8', format='int')
153
154
155 #procUnitConfObjB.addParameter(name='pairsList', value='(0,0),(1,1),(0,1)', format='pairsList')
156
157 #opObj13 = procUnitConfObjB.addOperation(name='removeDC')
109 158 #opObj13.addParameter(name='mode', value='2', format='int')
110 159
111 #opObj11 = procUnitConfObjSousySpectra.addOperation(name='IncohInt', optype='other')
112 #opObj11.addParameter(name='n', value='60', format='float')
160 opObj11 = procUnitConfObjB.addOperation(name='IncohInt', optype='other')
161 opObj11.addParameter(name='n', value='8', format='float')
113 162 #######################################################################
114 163 ########## PLOTEO DOMINIO DE LA FRECUENCIA#############################
115 164 #######################################################################
165 #----
166
167 opObj11 = procUnitConfObjC.addOperation(name='SpectraHeisPlot')
168 opObj11.addParameter(name='id', value='10', format='int')
169 opObj11.addParameter(name='wintitle', value='Spectra_Alturas', format='str')
170 #opObj11.addParameter(name='xmin', value=-100000, format='float')
171 #opObj11.addParameter(name='xmax', value=100000, format='float')
172 #opObj11.addParameter(name='zmin', value=dBmin, format='int')
173 #opObj11.addParameter(name='zmax', value=dBmax, format='int')
174 opObj11.addParameter(name='ymin', value=-20, format='int')
175 opObj11.addParameter(name='ymax', value=50, format='int')
176 opObj11.addParameter(name='showprofile', value='1', format='int')
177 opObj11.addParameter(name='save', value=figpath, format='str')
178 opObj11.addParameter(name='save_period', value=10, format='int')
179
180
116 181 #SpectraPlot
117 182
118 opObj11 = procUnitConfObjSousySpectra.addOperation(name='SpectraPlot', optype='external')
183 opObj11 = procUnitConfObjB.addOperation(name='SpectraPlot', optype='external')
119 184 opObj11.addParameter(name='id', value='1', format='int')
120 185 opObj11.addParameter(name='wintitle', value='Spectra', format='str')
121 186 #opObj11.addParameter(name='xmin', value=-0.01, format='float')
122 187 #opObj11.addParameter(name='xmax', value=0.01, format='float')
123 #opObj11.addParameter(name='zmin', value=dBmin, format='int')
124 #opObj11.addParameter(name='zmax', value=dBmax, format='int')
188 opObj11.addParameter(name='zmin', value=dBmin, format='int')
189 opObj11.addParameter(name='zmax', value=dBmax, format='int')
125 190 #opObj11.addParameter(name='ymin', value=ymin, format='int')
126 191 #opObj11.addParameter(name='ymax', value=ymax, format='int')
127 192 opObj11.addParameter(name='showprofile', value='1', format='int')
128 193 opObj11.addParameter(name='save', value=figpath, format='str')
129 194 opObj11.addParameter(name='save_period', value=10, format='int')
130 195
131
132 196 #RTIPLOT
133 197
134 opObj11 = procUnitConfObjSousySpectra.addOperation(name='RTIPlot', optype='external')
198 opObj11 = procUnitConfObjB.addOperation(name='RTIPlot', optype='external')
135 199 opObj11.addParameter(name='id', value='2', format='int')
136 200 opObj11.addParameter(name='wintitle', value='RTIPlot', format='str')
137 #opObj11.addParameter(name='zmin', value=dBmin, format='int')
138 #opObj11.addParameter(name='zmax', value=dBmax, format='int')
201 opObj11.addParameter(name='zmin', value=dBmin, format='int')
202 opObj11.addParameter(name='zmax', value=dBmax, format='int')
139 203 #opObj11.addParameter(name='ymin', value=ymin, format='int')
140 204 #opObj11.addParameter(name='ymax', value=ymax, format='int')
141 opObj11.addParameter(name='xmin', value=0, format='int')
142 opObj11.addParameter(name='xmax', value=23, format='int')
205 #opObj11.addParameter(name='xmin', value=15, format='int')
206 #opObj11.addParameter(name='xmax', value=16, format='int')
143 207
144 208 opObj11.addParameter(name='showprofile', value='1', format='int')
145 209 opObj11.addParameter(name='save', value=figpath, format='str')
146 210 opObj11.addParameter(name='save_period', value=10, format='int')
147 211
148 212
149 # opObj11 = procUnitConfObjSousySpectra.addOperation(name='CrossSpectraPlot', optype='other')
213 # opObj11 = procUnitConfObjB.addOperation(name='CrossSpectraPlot', optype='other')
150 214 # opObj11.addParameter(name='id', value='3', format='int')
151 215 # opObj11.addParameter(name='wintitle', value='CrossSpectraPlot', format='str')
152 216 # opObj11.addParameter(name='ymin', value=ymin, format='int')
153 217 # opObj11.addParameter(name='ymax', value=ymax, format='int')
154 218 # opObj11.addParameter(name='phase_cmap', value='jet', format='str')
155 219 # opObj11.addParameter(name='zmin', value=dBmin, format='int')
156 220 # opObj11.addParameter(name='zmax', value=dBmax, format='int')
157 221 # opObj11.addParameter(name='figpath', value=figures_path, format='str')
158 222 # opObj11.addParameter(name='save', value=0, format='bool')
159 223 # opObj11.addParameter(name='pairsList', value='(0,1)', format='pairsList')
160 224 # #
161 # opObj11 = procUnitConfObjSousySpectra.addOperation(name='CoherenceMap', optype='other')
225 # opObj11 = procUnitConfObjB.addOperation(name='CoherenceMap', optype='other')
162 226 # opObj11.addParameter(name='id', value='4', format='int')
163 227 # opObj11.addParameter(name='wintitle', value='Coherence', format='str')
164 228 # opObj11.addParameter(name='phase_cmap', value='jet', format='str')
165 229 # opObj11.addParameter(name='xmin', value=xmin, format='float')
166 230 # opObj11.addParameter(name='xmax', value=xmax, format='float')
167 231 # opObj11.addParameter(name='figpath', value=figures_path, format='str')
168 232 # opObj11.addParameter(name='save', value=0, format='bool')
169 233 # opObj11.addParameter(name='pairsList', value='(0,1)', format='pairsList')
170 234 #
235
236 '''
171 237 #######################################################################
172 238 ############### UNIDAD DE ESCRITURA ###################################
173 239 #######################################################################
174 #opObj11 = procUnitConfObjSousySpectra.addOperation(name='SpectraWriter', optype='other')
240 #opObj11 = procUnitConfObjB.addOperation(name='SpectraWriter', optype='other')
175 241 #opObj11.addParameter(name='path', value=wr_path)
176 242 #opObj11.addParameter(name='blocksPerFile', value='50', format='int')
177 243 print ("Escribiendo el archivo XML")
178 244 print ("Leyendo el archivo XML")
179
245 '''
180 246
181 247
182 248 controllerObj.start()
183
@@ -1,82 +1,93
1 1 import os, sys
2 2 import datetime
3 3 import time
4 4 from schainpy.controller import Project
5 '''
6 NOTA:
7 Este script de prueba.
8 - Unidad del lectura 'SimulatorReader'.
9 - Unidad de procesamiento VoltageProc
10 - Unidad de procesamiento SpectraProc (profileIndex no esta en metadata porque se queda en voltage.)
11 - Operacion removeDC.
12 - Unidad de procesamiento ParametersProc
13 - Operacion SpectralMoments
14 - Operacion SpectralMomentsPlot
15 - Unidad de escrituda 'HDFWriter'.
16 '''
5 17
6 18 desc = "USRP_test"
7 19 filename = "USRP_processing.xml"
8 20 controllerObj = Project()
9 21 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
10 22
11 23 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
12 24 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
13 path = '/home/alex/Downloads/test_rawdata'
14 figpath = '/home/alex/Downloads/hdf5_test'
25 path = '/home/soporte/Downloads/RAWDATA'
26 figpath = '/home/soporte/Downloads/IMAGE'
15 27 ######################## UNIDAD DE LECTURA#############################
16 28 '''
17 29 readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader',
18 30 path=path,
19 31 startDate="2020/01/01", #"2020/01/01",#today,
20 32 endDate= "2020/12/01", #"2020/12/30",#today,
21 33 startTime='00:00:00',
22 34 endTime='23:59:59',
23 35 delay=0,
24 36 #set=0,
25 37 online=0,
26 38 walk=1)
27 39
28 40 '''
29 41 readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader',
30 42 frequency=9.345e9,
31 43 FixRCP_IPP= 60,
32 44 Tau_0 = 30,
33 45 AcqH0_0=0,
34 46 samples=330,
35 47 AcqDH_0=0.15,
36 48 FixRCP_TXA=0.15,
37 49 FixRCP_TXB=0.15,
38 50 Fdoppler=600.0,
39 51 Hdoppler=36,
40 52 Adoppler=300,#300
41 53 delay=0,
42 54 online=0,
43 55 walk=0,
44 56 profilesPerBlock=625,
45 57 dataBlocksPerFile=100)
46 58 #nTotalReadFiles=2)
47 59
48 60
49 61 #opObj11 = readUnitConfObj.addOperation(name='printInfo')
50 62
51 63 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
52 64
53 65 procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
54 66 procUnitConfObjB.addParameter(name='nFFTPoints', value=625, format='int')
55 67 procUnitConfObjB.addParameter(name='nProfiles', value=625, format='int')
56 68
57 69 opObj11 = procUnitConfObjB.addOperation(name='removeDC')
58 70 opObj11.addParameter(name='mode', value=2)
59 71 #opObj11 = procUnitConfObjB.addOperation(name='SpectraPlot')
60 72 #opObj11 = procUnitConfObjB.addOperation(name='PowerProfilePlot')
61 73
62 74 procUnitConfObjC= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId())
63 75 procUnitConfObjC.addOperation(name='SpectralMoments')
64 76 #opObj11 = procUnitConfObjC.addOperation(name='PowerPlot')
65 77
66 '''
78
67 79 opObj11 = procUnitConfObjC.addOperation(name='SpectralMomentsPlot')
68 80 #opObj11.addParameter(name='xmin', value=14)
69 81 #opObj11.addParameter(name='xmax', value=15)
70 #opObj11.addParameter(name='save', value=figpath)
82 opObj11.addParameter(name='save', value=figpath)
71 83 opObj11.addParameter(name='showprofile', value=1)
72 #opObj11.addParameter(name='save_period', value=10)
73 '''
84 opObj11.addParameter(name='save_period', value=10)
74 85
75 opObj10 = procUnitConfObjC.addOperation(name='ParameterWriter')
76 opObj10.addParameter(name='path',value=figpath)
86 opObj10 = procUnitConfObjC.addOperation(name='HDFWriter')
87 opObj10.addParameter(name='path',value=path)
77 88 #opObj10.addParameter(name='mode',value=0)
78 89 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
79 opObj10.addParameter(name='metadataList',value='utctimeInit,timeInterval',format='list')
80 opObj10.addParameter(name='dataList',value='data_POW,data_DOP,data_WIDTH,data_SNR')#,format='list'
90 opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex
91 opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list'
81 92
82 93 controllerObj.start()
@@ -1,73 +1,73
1 1 import os,sys
2 2 import datetime
3 3 import time
4 4 from schainpy.controller import Project
5 path = '/home/alex/Downloads/NEW_WR2/spc16removeDC'
5 path = '/home/soporte/Downloads/RAWDATA_PP'
6 6 figpath = path
7 7 desc = "Simulator Test"
8 8
9 9 controllerObj = Project()
10 10
11 11 controllerObj.setup(id='10',name='Test Simulator',description=desc)
12 12
13 13 readUnitConfObj = controllerObj.addReadUnit(datatype='SimulatorReader',
14 14 frequency=9.345e9,
15 15 FixRCP_IPP= 60,
16 16 Tau_0 = 30,
17 17 AcqH0_0=0,
18 18 samples=330,
19 19 AcqDH_0=0.15,
20 20 FixRCP_TXA=0.15,
21 21 FixRCP_TXB=0.15,
22 22 Fdoppler=600.0,
23 23 Hdoppler=36,
24 24 Adoppler=300,#300
25 25 delay=0,
26 26 online=0,
27 27 walk=0,
28 28 profilesPerBlock=625,
29 29 dataBlocksPerFile=100)#,#nTotalReadFiles=2)
30 30 '''
31 31 readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader',
32 32 path=path,
33 33 startDate="2020/01/01", #"2020/01/01",#today,
34 34 endDate= "2020/12/01", #"2020/12/30",#today,
35 35 startTime='00:00:00',
36 36 endTime='23:59:59',
37 37 delay=0,
38 38 #set=0,
39 39 online=0,
40 40 walk=1)
41 41 '''
42 42 opObj11 = readUnitConfObj.addOperation(name='printInfo')
43 43
44 44 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
45 45 #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other')
46 46 #opObj11.addParameter(name='n', value='10', format='int')
47 47
48 48 #opObj10 = procUnitConfObjA.addOperation(name='selectChannels')
49 49 #opObj10.addParameter(name='channelList', value=[0])
50 50 opObj11 = procUnitConfObjA.addOperation(name='PulsePairVoltage', optype='other')
51 51 opObj11.addParameter(name='n', value='625', format='int')#10
52 52 opObj11.addParameter(name='removeDC', value=1, format='int')
53 53
54 54 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
55 55 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
56 56
57 57
58 58 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
59 59 #opObj11.addParameter(name='xmax', value=8)
60 60
61 61 #opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
62 62
63 63 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
64 64
65 65
66 opObj10 = procUnitConfObjB.addOperation(name='ParameterWriter')
66 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
67 67 opObj10.addParameter(name='path',value=figpath)
68 68 #opObj10.addParameter(name='mode',value=0)
69 69 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
70 opObj10.addParameter(name='metadataList',value='utctimeInit,timeInterval',format='list')
71 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,dataPP_SNR,dataPP_WIDTH')#,format='list'
70 opObj10.addParameter(name='metadataList',value='utctimeInit,paramInterval,profileIndex,heightList,flagDataAsBlock',format='list')
71 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,dataPP_SNR,dataPP_WIDTH,utctime',format='list')#,format='list'
72 72
73 73 controllerObj.start()
General Comments 0
You need to be logged in to leave comments. Login now