The requested changes are too big and content was truncated. Show full diff
@@ -0,0 +1,223 | |||||
|
1 | ''' | |||
|
2 | Base clases to create Processing units and operations, the MPDecorator | |||
|
3 | must be used in plotting and writing operations to allow to run as an | |||
|
4 | external process. | |||
|
5 | ''' | |||
|
6 | import os | |||
|
7 | import inspect | |||
|
8 | import zmq | |||
|
9 | import time | |||
|
10 | import pickle | |||
|
11 | import traceback | |||
|
12 | from threading import Thread | |||
|
13 | from multiprocessing import Process, Queue | |||
|
14 | from schainpy.utils import log | |||
|
15 | #isr-jro_proc_base.py | |||
|
16 | import copy | |||
|
17 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) | |||
|
18 | ||||
|
19 | class ProcessingUnit(object): | |||
|
20 | ''' | |||
|
21 | Base class to create Signal Chain Units | |||
|
22 | ''' | |||
|
23 | ||||
|
24 | proc_type = 'processing' | |||
|
25 | ||||
|
26 | def __init__(self): | |||
|
27 | ||||
|
28 | self.dataIn = None | |||
|
29 | self.dataOut = None | |||
|
30 | self.isConfig = False | |||
|
31 | self.operations = [] | |||
|
32 | self.name = 'Test' | |||
|
33 | self.inputs = [] | |||
|
34 | ||||
|
35 | def setInput(self, unit): | |||
|
36 | ||||
|
37 | attr = 'dataIn' | |||
|
38 | for i, u in enumerate(unit): | |||
|
39 | if i==0: | |||
|
40 | self.dataIn = u.dataOut#.copy() | |||
|
41 | self.inputs.append('dataIn') | |||
|
42 | else: | |||
|
43 | setattr(self, 'dataIn{}'.format(i), u.dataOut)#.copy()) | |||
|
44 | self.inputs.append('dataIn{}'.format(i)) | |||
|
45 | ||||
|
46 | def getAllowedArgs(self): | |||
|
47 | if hasattr(self, '__attrs__'): | |||
|
48 | return self.__attrs__ | |||
|
49 | else: | |||
|
50 | return inspect.getargspec(self.run).args | |||
|
51 | ||||
|
52 | def addOperation(self, conf, operation): | |||
|
53 | ''' | |||
|
54 | ''' | |||
|
55 | ||||
|
56 | self.operations.append((operation, conf.type, conf.getKwargs())) | |||
|
57 | ||||
|
58 | def getOperationObj(self, objId): | |||
|
59 | ||||
|
60 | if objId not in list(self.operations.keys()): | |||
|
61 | return None | |||
|
62 | ||||
|
63 | return self.operations[objId] | |||
|
64 | ||||
|
65 | def call(self, **kwargs): | |||
|
66 | ''' | |||
|
67 | ''' | |||
|
68 | ||||
|
69 | try: | |||
|
70 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: | |||
|
71 | if self.dataIn.runNextUnit: | |||
|
72 | return not self.dataIn.isReady() | |||
|
73 | else: | |||
|
74 | return self.dataIn.isReady() | |||
|
75 | elif self.dataIn is None or not self.dataIn.error: | |||
|
76 | self.run(**kwargs) | |||
|
77 | elif self.dataIn.error: | |||
|
78 | self.dataOut.error = self.dataIn.error | |||
|
79 | self.dataOut.flagNoData = True | |||
|
80 | except: | |||
|
81 | err = traceback.format_exc() | |||
|
82 | if 'SchainWarning' in err: | |||
|
83 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) | |||
|
84 | elif 'SchainError' in err: | |||
|
85 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) | |||
|
86 | else: | |||
|
87 | log.error(err, self.name) | |||
|
88 | self.dataOut.error = True | |||
|
89 | for op, optype, opkwargs in self.operations: | |||
|
90 | aux = self.dataOut.copy() | |||
|
91 | if optype == 'other' and not self.dataOut.flagNoData: | |||
|
92 | self.dataOut = op.run(self.dataOut, **opkwargs) | |||
|
93 | elif optype == 'external' and not self.dataOut.flagNoData: | |||
|
94 | op.queue.put(aux) | |||
|
95 | elif optype == 'external' and self.dataOut.error: | |||
|
96 | op.queue.put(aux) | |||
|
97 | try: | |||
|
98 | if self.dataOut.runNextUnit: | |||
|
99 | runNextUnit = self.dataOut.runNextUnit | |||
|
100 | else: | |||
|
101 | runNextUnit = self.dataOut.isReady() | |||
|
102 | except: | |||
|
103 | runNextUnit = self.dataOut.isReady() | |||
|
104 | return 'Error' if self.dataOut.error else runNextUnit# self.dataOut.isReady() | |||
|
105 | ||||
|
106 | def setup(self): | |||
|
107 | ||||
|
108 | raise NotImplementedError | |||
|
109 | ||||
|
110 | def run(self): | |||
|
111 | ||||
|
112 | raise NotImplementedError | |||
|
113 | ||||
|
114 | def close(self): | |||
|
115 | ||||
|
116 | return | |||
|
117 | ||||
|
118 | ||||
|
119 | class Operation(object): | |||
|
120 | ||||
|
121 | ''' | |||
|
122 | ''' | |||
|
123 | ||||
|
124 | proc_type = 'operation' | |||
|
125 | ||||
|
126 | def __init__(self): | |||
|
127 | ||||
|
128 | self.id = None | |||
|
129 | self.isConfig = False | |||
|
130 | ||||
|
131 | if not hasattr(self, 'name'): | |||
|
132 | self.name = self.__class__.__name__ | |||
|
133 | ||||
|
134 | def getAllowedArgs(self): | |||
|
135 | if hasattr(self, '__attrs__'): | |||
|
136 | return self.__attrs__ | |||
|
137 | else: | |||
|
138 | return inspect.getargspec(self.run).args | |||
|
139 | ||||
|
140 | def setup(self): | |||
|
141 | ||||
|
142 | self.isConfig = True | |||
|
143 | ||||
|
144 | raise NotImplementedError | |||
|
145 | ||||
|
146 | def run(self, dataIn, **kwargs): | |||
|
147 | """ | |||
|
148 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los | |||
|
149 | atributos del objeto dataIn. | |||
|
150 | ||||
|
151 | Input: | |||
|
152 | ||||
|
153 | dataIn : objeto del tipo JROData | |||
|
154 | ||||
|
155 | Return: | |||
|
156 | ||||
|
157 | None | |||
|
158 | ||||
|
159 | Affected: | |||
|
160 | __buffer : buffer de recepcion de datos. | |||
|
161 | ||||
|
162 | """ | |||
|
163 | if not self.isConfig: | |||
|
164 | self.setup(**kwargs) | |||
|
165 | ||||
|
166 | raise NotImplementedError | |||
|
167 | ||||
|
168 | def close(self): | |||
|
169 | ||||
|
170 | return | |||
|
171 | ||||
|
172 | ||||
|
173 | def MPDecorator(BaseClass): | |||
|
174 | """ | |||
|
175 | Multiprocessing class decorator | |||
|
176 | ||||
|
177 | This function add multiprocessing features to a BaseClass. | |||
|
178 | """ | |||
|
179 | ||||
|
180 | class MPClass(BaseClass, Process): | |||
|
181 | ||||
|
182 | def __init__(self, *args, **kwargs): | |||
|
183 | super(MPClass, self).__init__() | |||
|
184 | Process.__init__(self) | |||
|
185 | ||||
|
186 | self.args = args | |||
|
187 | self.kwargs = kwargs | |||
|
188 | self.t = time.time() | |||
|
189 | self.op_type = 'external' | |||
|
190 | self.name = BaseClass.__name__ | |||
|
191 | self.__doc__ = BaseClass.__doc__ | |||
|
192 | ||||
|
193 | if 'plot' in self.name.lower() and not self.name.endswith('_'): | |||
|
194 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') | |||
|
195 | ||||
|
196 | self.start_time = time.time() | |||
|
197 | self.err_queue = args[3] | |||
|
198 | self.queue = Queue(maxsize=QUEUE_SIZE) | |||
|
199 | self.myrun = BaseClass.run | |||
|
200 | ||||
|
201 | def run(self): | |||
|
202 | ||||
|
203 | while True: | |||
|
204 | ||||
|
205 | dataOut = self.queue.get() | |||
|
206 | ||||
|
207 | if not dataOut.error: | |||
|
208 | try: | |||
|
209 | BaseClass.run(self, dataOut, **self.kwargs) | |||
|
210 | except: | |||
|
211 | err = traceback.format_exc() | |||
|
212 | log.error(err, self.name) | |||
|
213 | else: | |||
|
214 | break | |||
|
215 | ||||
|
216 | self.close() | |||
|
217 | ||||
|
218 | def close(self): | |||
|
219 | ||||
|
220 | BaseClass.close(self) | |||
|
221 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time() - self.start_time), self.name) | |||
|
222 | ||||
|
223 | return MPClass No newline at end of file |
1 | NO CONTENT: new file 100644 |
|
NO CONTENT: new file 100644 | ||
The requested commit or file is too big and content was truncated. Show full diff |
This diff has been collapsed as it changes many lines, (982 lines changed) Show them Hide them | |||||
@@ -0,0 +1,982 | |||||
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |||
|
2 | # All rights reserved. | |||
|
3 | # | |||
|
4 | # Distributed under the terms of the BSD 3-clause license. | |||
|
5 | """Spectra processing Unit and operations | |||
|
6 | ||||
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |||
|
8 | to work with Spectra data type | |||
|
9 | """ | |||
|
10 | ||||
|
11 | import time | |||
|
12 | import itertools | |||
|
13 | ||||
|
14 | import numpy | |||
|
15 | ||||
|
16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |||
|
17 | from schainpy.model.data.jrodata import Spectra | |||
|
18 | from schainpy.model.data.jrodata import hildebrand_sekhon | |||
|
19 | from schainpy.utils import log | |||
|
20 | ||||
|
21 | ||||
|
22 | class SpectraProc(ProcessingUnit): | |||
|
23 | ||||
|
24 | def __init__(self): | |||
|
25 | ||||
|
26 | ProcessingUnit.__init__(self) | |||
|
27 | ||||
|
28 | self.buffer = None | |||
|
29 | self.firstdatatime = None | |||
|
30 | self.profIndex = 0 | |||
|
31 | self.dataOut = Spectra() | |||
|
32 | self.id_min = None | |||
|
33 | self.id_max = None | |||
|
34 | self.setupReq = False #Agregar a todas las unidades de proc | |||
|
35 | ||||
|
36 | def __updateSpecFromVoltage(self): | |||
|
37 | ||||
|
38 | self.dataOut.timeZone = self.dataIn.timeZone | |||
|
39 | self.dataOut.dstFlag = self.dataIn.dstFlag | |||
|
40 | self.dataOut.errorCount = self.dataIn.errorCount | |||
|
41 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |||
|
42 | try: | |||
|
43 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |||
|
44 | except: | |||
|
45 | pass | |||
|
46 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |||
|
47 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |||
|
48 | self.dataOut.channelList = self.dataIn.channelList | |||
|
49 | self.dataOut.heightList = self.dataIn.heightList | |||
|
50 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |||
|
51 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |||
|
52 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |||
|
53 | self.dataOut.utctime = self.firstdatatime | |||
|
54 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |||
|
55 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |||
|
56 | self.dataOut.flagShiftFFT = False | |||
|
57 | self.dataOut.nCohInt = self.dataIn.nCohInt | |||
|
58 | self.dataOut.nIncohInt = 1 | |||
|
59 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |||
|
60 | self.dataOut.frequency = self.dataIn.frequency | |||
|
61 | self.dataOut.realtime = self.dataIn.realtime | |||
|
62 | self.dataOut.azimuth = self.dataIn.azimuth | |||
|
63 | self.dataOut.zenith = self.dataIn.zenith | |||
|
64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |||
|
65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |||
|
66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |||
|
67 | self.dataOut.runNextUnit = self.dataIn.runNextUnit | |||
|
68 | try: | |||
|
69 | self.dataOut.step = self.dataIn.step | |||
|
70 | except: | |||
|
71 | pass | |||
|
72 | ||||
|
73 | def __getFft(self): | |||
|
74 | """ | |||
|
75 | Convierte valores de Voltaje a Spectra | |||
|
76 | ||||
|
77 | Affected: | |||
|
78 | self.dataOut.data_spc | |||
|
79 | self.dataOut.data_cspc | |||
|
80 | self.dataOut.data_dc | |||
|
81 | self.dataOut.heightList | |||
|
82 | self.profIndex | |||
|
83 | self.buffer | |||
|
84 | self.dataOut.flagNoData | |||
|
85 | """ | |||
|
86 | fft_volt = numpy.fft.fft( | |||
|
87 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |||
|
88 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |||
|
89 | dc = fft_volt[:, 0, :] | |||
|
90 | ||||
|
91 | # calculo de self-spectra | |||
|
92 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |||
|
93 | spc = fft_volt * numpy.conjugate(fft_volt) | |||
|
94 | spc = spc.real | |||
|
95 | ||||
|
96 | blocksize = 0 | |||
|
97 | blocksize += dc.size | |||
|
98 | blocksize += spc.size | |||
|
99 | ||||
|
100 | cspc = None | |||
|
101 | pairIndex = 0 | |||
|
102 | if self.dataOut.pairsList != None: | |||
|
103 | # calculo de cross-spectra | |||
|
104 | cspc = numpy.zeros( | |||
|
105 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |||
|
106 | for pair in self.dataOut.pairsList: | |||
|
107 | if pair[0] not in self.dataOut.channelList: | |||
|
108 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |||
|
109 | str(pair), str(self.dataOut.channelList))) | |||
|
110 | if pair[1] not in self.dataOut.channelList: | |||
|
111 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |||
|
112 | str(pair), str(self.dataOut.channelList))) | |||
|
113 | ||||
|
114 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |||
|
115 | numpy.conjugate(fft_volt[pair[1], :, :]) | |||
|
116 | pairIndex += 1 | |||
|
117 | blocksize += cspc.size | |||
|
118 | ||||
|
119 | self.dataOut.data_spc = spc | |||
|
120 | self.dataOut.data_cspc = cspc | |||
|
121 | self.dataOut.data_dc = dc | |||
|
122 | self.dataOut.blockSize = blocksize | |||
|
123 | self.dataOut.flagShiftFFT = False | |||
|
124 | ||||
|
125 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, runNextUnit = 0): | |||
|
126 | ||||
|
127 | self.dataIn.runNextUnit = runNextUnit | |||
|
128 | if self.dataIn.type == "Spectra": | |||
|
129 | ||||
|
130 | self.dataOut.copy(self.dataIn) | |||
|
131 | if shift_fft: | |||
|
132 | #desplaza a la derecha en el eje 2 determinadas posiciones | |||
|
133 | shift = int(self.dataOut.nFFTPoints/2) | |||
|
134 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |||
|
135 | ||||
|
136 | if self.dataOut.data_cspc is not None: | |||
|
137 | #desplaza a la derecha en el eje 2 determinadas posiciones | |||
|
138 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |||
|
139 | if pairsList: | |||
|
140 | self.__selectPairs(pairsList) | |||
|
141 | ||||
|
142 | elif self.dataIn.type == "Voltage": | |||
|
143 | ||||
|
144 | self.dataOut.flagNoData = True | |||
|
145 | ||||
|
146 | if nFFTPoints == None: | |||
|
147 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |||
|
148 | ||||
|
149 | if nProfiles == None: | |||
|
150 | nProfiles = nFFTPoints | |||
|
151 | #print(self.dataOut.ipp) | |||
|
152 | #exit(1) | |||
|
153 | if ippFactor == None: | |||
|
154 | self.dataOut.ippFactor = 1 | |||
|
155 | #if ippFactor is not None: | |||
|
156 | #self.dataOut.ippFactor = ippFactor | |||
|
157 | #print(ippFactor) | |||
|
158 | #print(self.dataOut.ippFactor) | |||
|
159 | #exit(1) | |||
|
160 | ||||
|
161 | self.dataOut.nFFTPoints = nFFTPoints | |||
|
162 | ||||
|
163 | if self.buffer is None: | |||
|
164 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |||
|
165 | nProfiles, | |||
|
166 | self.dataIn.nHeights), | |||
|
167 | dtype='complex') | |||
|
168 | ||||
|
169 | if self.dataIn.flagDataAsBlock: | |||
|
170 | nVoltProfiles = self.dataIn.data.shape[1] | |||
|
171 | ||||
|
172 | if nVoltProfiles == nProfiles: | |||
|
173 | self.buffer = self.dataIn.data.copy() | |||
|
174 | self.profIndex = nVoltProfiles | |||
|
175 | ||||
|
176 | elif nVoltProfiles < nProfiles: | |||
|
177 | ||||
|
178 | if self.profIndex == 0: | |||
|
179 | self.id_min = 0 | |||
|
180 | self.id_max = nVoltProfiles | |||
|
181 | #print(self.id_min) | |||
|
182 | #print(self.id_max) | |||
|
183 | #print(numpy.shape(self.buffer)) | |||
|
184 | self.buffer[:, self.id_min:self.id_max, | |||
|
185 | :] = self.dataIn.data | |||
|
186 | self.profIndex += nVoltProfiles | |||
|
187 | self.id_min += nVoltProfiles | |||
|
188 | self.id_max += nVoltProfiles | |||
|
189 | else: | |||
|
190 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |||
|
191 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |||
|
192 | self.dataOut.flagNoData = True | |||
|
193 | else: | |||
|
194 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |||
|
195 | self.profIndex += 1 | |||
|
196 | ||||
|
197 | if self.firstdatatime == None: | |||
|
198 | self.firstdatatime = self.dataIn.utctime | |||
|
199 | ||||
|
200 | if self.profIndex == nProfiles: | |||
|
201 | self.__updateSpecFromVoltage() | |||
|
202 | if pairsList == None: | |||
|
203 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |||
|
204 | else: | |||
|
205 | self.dataOut.pairsList = pairsList | |||
|
206 | self.__getFft() | |||
|
207 | self.dataOut.flagNoData = False | |||
|
208 | self.firstdatatime = None | |||
|
209 | self.profIndex = 0 | |||
|
210 | else: | |||
|
211 | raise ValueError("The type of input object '%s' is not valid".format( | |||
|
212 | self.dataIn.type)) | |||
|
213 | ||||
|
214 | ||||
|
215 | def __selectPairs(self, pairsList): | |||
|
216 | ||||
|
217 | if not pairsList: | |||
|
218 | return | |||
|
219 | ||||
|
220 | pairs = [] | |||
|
221 | pairsIndex = [] | |||
|
222 | ||||
|
223 | for pair in pairsList: | |||
|
224 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |||
|
225 | continue | |||
|
226 | pairs.append(pair) | |||
|
227 | pairsIndex.append(pairs.index(pair)) | |||
|
228 | ||||
|
229 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |||
|
230 | self.dataOut.pairsList = pairs | |||
|
231 | ||||
|
232 | return | |||
|
233 | ||||
|
234 | def selectFFTs(self, minFFT, maxFFT ): | |||
|
235 | """ | |||
|
236 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |||
|
237 | minFFT<= FFT <= maxFFT | |||
|
238 | """ | |||
|
239 | ||||
|
240 | if (minFFT > maxFFT): | |||
|
241 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |||
|
242 | ||||
|
243 | if (minFFT < self.dataOut.getFreqRange()[0]): | |||
|
244 | minFFT = self.dataOut.getFreqRange()[0] | |||
|
245 | ||||
|
246 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |||
|
247 | maxFFT = self.dataOut.getFreqRange()[-1] | |||
|
248 | ||||
|
249 | minIndex = 0 | |||
|
250 | maxIndex = 0 | |||
|
251 | FFTs = self.dataOut.getFreqRange() | |||
|
252 | ||||
|
253 | inda = numpy.where(FFTs >= minFFT) | |||
|
254 | indb = numpy.where(FFTs <= maxFFT) | |||
|
255 | ||||
|
256 | try: | |||
|
257 | minIndex = inda[0][0] | |||
|
258 | except: | |||
|
259 | minIndex = 0 | |||
|
260 | ||||
|
261 | try: | |||
|
262 | maxIndex = indb[0][-1] | |||
|
263 | except: | |||
|
264 | maxIndex = len(FFTs) | |||
|
265 | ||||
|
266 | self.selectFFTsByIndex(minIndex, maxIndex) | |||
|
267 | ||||
|
268 | return 1 | |||
|
269 | ||||
|
270 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |||
|
271 | newheis = numpy.where( | |||
|
272 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |||
|
273 | ||||
|
274 | if hei_ref != None: | |||
|
275 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |||
|
276 | ||||
|
277 | minIndex = min(newheis[0]) | |||
|
278 | maxIndex = max(newheis[0]) | |||
|
279 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |||
|
280 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |||
|
281 | ||||
|
282 | # determina indices | |||
|
283 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |||
|
284 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |||
|
285 | avg_dB = 10 * \ | |||
|
286 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |||
|
287 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |||
|
288 | beacon_heiIndexList = [] | |||
|
289 | for val in avg_dB.tolist(): | |||
|
290 | if val >= beacon_dB[0]: | |||
|
291 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |||
|
292 | ||||
|
293 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |||
|
294 | data_cspc = None | |||
|
295 | if self.dataOut.data_cspc is not None: | |||
|
296 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |||
|
297 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |||
|
298 | ||||
|
299 | data_dc = None | |||
|
300 | if self.dataOut.data_dc is not None: | |||
|
301 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |||
|
302 | #data_dc = data_dc[:,beacon_heiIndexList] | |||
|
303 | ||||
|
304 | self.dataOut.data_spc = data_spc | |||
|
305 | self.dataOut.data_cspc = data_cspc | |||
|
306 | self.dataOut.data_dc = data_dc | |||
|
307 | self.dataOut.heightList = heightList | |||
|
308 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |||
|
309 | ||||
|
310 | return 1 | |||
|
311 | ||||
|
312 | def selectFFTsByIndex(self, minIndex, maxIndex): | |||
|
313 | """ | |||
|
314 | ||||
|
315 | """ | |||
|
316 | ||||
|
317 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
318 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |||
|
319 | ||||
|
320 | if (maxIndex >= self.dataOut.nProfiles): | |||
|
321 | maxIndex = self.dataOut.nProfiles-1 | |||
|
322 | ||||
|
323 | #Spectra | |||
|
324 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |||
|
325 | ||||
|
326 | data_cspc = None | |||
|
327 | if self.dataOut.data_cspc is not None: | |||
|
328 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |||
|
329 | ||||
|
330 | data_dc = None | |||
|
331 | if self.dataOut.data_dc is not None: | |||
|
332 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |||
|
333 | ||||
|
334 | self.dataOut.data_spc = data_spc | |||
|
335 | self.dataOut.data_cspc = data_cspc | |||
|
336 | self.dataOut.data_dc = data_dc | |||
|
337 | ||||
|
338 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |||
|
339 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |||
|
340 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |||
|
341 | ||||
|
342 | return 1 | |||
|
343 | ||||
|
344 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |||
|
345 | # validacion de rango | |||
|
346 | print("NOISeeee") | |||
|
347 | if minHei == None: | |||
|
348 | minHei = self.dataOut.heightList[0] | |||
|
349 | ||||
|
350 | if maxHei == None: | |||
|
351 | maxHei = self.dataOut.heightList[-1] | |||
|
352 | ||||
|
353 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |||
|
354 | print('minHei: %.2f is out of the heights range' % (minHei)) | |||
|
355 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |||
|
356 | minHei = self.dataOut.heightList[0] | |||
|
357 | ||||
|
358 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |||
|
359 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |||
|
360 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |||
|
361 | maxHei = self.dataOut.heightList[-1] | |||
|
362 | ||||
|
363 | # validacion de velocidades | |||
|
364 | velrange = self.dataOut.getVelRange(1) | |||
|
365 | ||||
|
366 | if minVel == None: | |||
|
367 | minVel = velrange[0] | |||
|
368 | ||||
|
369 | if maxVel == None: | |||
|
370 | maxVel = velrange[-1] | |||
|
371 | ||||
|
372 | if (minVel < velrange[0]) or (minVel > maxVel): | |||
|
373 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |||
|
374 | print('minVel is setting to %.2f' % (velrange[0])) | |||
|
375 | minVel = velrange[0] | |||
|
376 | ||||
|
377 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |||
|
378 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |||
|
379 | print('maxVel is setting to %.2f' % (velrange[-1])) | |||
|
380 | maxVel = velrange[-1] | |||
|
381 | ||||
|
382 | # seleccion de indices para rango | |||
|
383 | minIndex = 0 | |||
|
384 | maxIndex = 0 | |||
|
385 | heights = self.dataOut.heightList | |||
|
386 | ||||
|
387 | inda = numpy.where(heights >= minHei) | |||
|
388 | indb = numpy.where(heights <= maxHei) | |||
|
389 | ||||
|
390 | try: | |||
|
391 | minIndex = inda[0][0] | |||
|
392 | except: | |||
|
393 | minIndex = 0 | |||
|
394 | ||||
|
395 | try: | |||
|
396 | maxIndex = indb[0][-1] | |||
|
397 | except: | |||
|
398 | maxIndex = len(heights) | |||
|
399 | ||||
|
400 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
401 | raise ValueError("some value in (%d,%d) is not valid" % ( | |||
|
402 | minIndex, maxIndex)) | |||
|
403 | ||||
|
404 | if (maxIndex >= self.dataOut.nHeights): | |||
|
405 | maxIndex = self.dataOut.nHeights - 1 | |||
|
406 | ||||
|
407 | # seleccion de indices para velocidades | |||
|
408 | indminvel = numpy.where(velrange >= minVel) | |||
|
409 | indmaxvel = numpy.where(velrange <= maxVel) | |||
|
410 | try: | |||
|
411 | minIndexVel = indminvel[0][0] | |||
|
412 | except: | |||
|
413 | minIndexVel = 0 | |||
|
414 | ||||
|
415 | try: | |||
|
416 | maxIndexVel = indmaxvel[0][-1] | |||
|
417 | except: | |||
|
418 | maxIndexVel = len(velrange) | |||
|
419 | ||||
|
420 | # seleccion del espectro | |||
|
421 | data_spc = self.dataOut.data_spc[:, | |||
|
422 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |||
|
423 | # estimacion de ruido | |||
|
424 | noise = numpy.zeros(self.dataOut.nChannels) | |||
|
425 | ||||
|
426 | for channel in range(self.dataOut.nChannels): | |||
|
427 | daux = data_spc[channel, :, :] | |||
|
428 | sortdata = numpy.sort(daux, axis=None) | |||
|
429 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |||
|
430 | ||||
|
431 | self.dataOut.noise_estimation = noise.copy() | |||
|
432 | ||||
|
433 | return 1 | |||
|
434 | ||||
|
435 | class GetSNR(Operation): | |||
|
436 | ''' | |||
|
437 | Written by R. Flores | |||
|
438 | ''' | |||
|
439 | """Operation to get SNR. | |||
|
440 | ||||
|
441 | Parameters: | |||
|
442 | ----------- | |||
|
443 | ||||
|
444 | Example | |||
|
445 | -------- | |||
|
446 | ||||
|
447 | op = proc_unit.addOperation(name='GetSNR', optype='other') | |||
|
448 | ||||
|
449 | """ | |||
|
450 | ||||
|
451 | def __init__(self, **kwargs): | |||
|
452 | ||||
|
453 | Operation.__init__(self, **kwargs) | |||
|
454 | ||||
|
455 | ||||
|
456 | def run(self,dataOut): | |||
|
457 | ||||
|
458 | #noise = dataOut.getNoise() | |||
|
459 | noise = dataOut.getNoise(ymin_index=-10) #RegiΓ³n superior donde solo deberΓa de haber ruido | |||
|
460 | #print("Noise: ", noise) | |||
|
461 | #print("Noise_dB: ", 10*numpy.log10(noise/dataOut.normFactor)) | |||
|
462 | #print("Heights: ", dataOut.heightList) | |||
|
463 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.normFactor) | |||
|
464 | ################dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.nFFTPoints) #Before 12Jan2023 | |||
|
465 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None])/(noise[:,None]) | |||
|
466 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently | |||
|
467 | dataOut.snl = numpy.log10(dataOut.data_snr) | |||
|
468 | #print("snl: ", dataOut.snl) | |||
|
469 | #exit(1) | |||
|
470 | #print(dataOut.heightList[-11]) | |||
|
471 | #print(numpy.shape(dataOut.heightList)) | |||
|
472 | #print(dataOut.data_snr) | |||
|
473 | #print(dataOut.data_snr[0,-11]) | |||
|
474 | #exit(1) | |||
|
475 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.5, numpy.nan, dataOut.data_snr) | |||
|
476 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.1, numpy.nan, dataOut.data_snr) | |||
|
477 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.0, numpy.nan, dataOut.data_snr) | |||
|
478 | #dataOut.data_snr = numpy.where(dataOut.data_snr<.05, numpy.nan, dataOut.data_snr) | |||
|
479 | #dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) | |||
|
480 | dataOut.snl = numpy.where(dataOut.snl<-1, numpy.nan, dataOut.snl) | |||
|
481 | ''' | |||
|
482 | import matplotlib.pyplot as plt | |||
|
483 | #plt.plot(10*numpy.log10(dataOut.data_snr[0]),dataOut.heightList) | |||
|
484 | plt.plot(dataOut.data_snr[0],dataOut.heightList)#,marker='*') | |||
|
485 | plt.xlim(-1,10) | |||
|
486 | plt.axvline(1,color='k') | |||
|
487 | plt.axvline(.1,color='k',linestyle='--') | |||
|
488 | plt.grid() | |||
|
489 | plt.show() | |||
|
490 | ''' | |||
|
491 | #dataOut.data_snr = 10*numpy.log10(dataOut.data_snr) | |||
|
492 | #dataOut.data_snr = numpy.expand_dims(dataOut.data_snr,axis=0) | |||
|
493 | #print(dataOut.data_snr.shape) | |||
|
494 | #exit(1) | |||
|
495 | #print("Before: ", dataOut.data_snr[0]) | |||
|
496 | ||||
|
497 | ||||
|
498 | return dataOut | |||
|
499 | ||||
|
500 | class removeDC(Operation): | |||
|
501 | ||||
|
502 | def run(self, dataOut, mode=2): | |||
|
503 | self.dataOut = dataOut | |||
|
504 | jspectra = self.dataOut.data_spc | |||
|
505 | jcspectra = self.dataOut.data_cspc | |||
|
506 | ||||
|
507 | num_chan = jspectra.shape[0] | |||
|
508 | num_hei = jspectra.shape[2] | |||
|
509 | ||||
|
510 | if jcspectra is not None: | |||
|
511 | jcspectraExist = True | |||
|
512 | num_pairs = jcspectra.shape[0] | |||
|
513 | else: | |||
|
514 | jcspectraExist = False | |||
|
515 | ||||
|
516 | freq_dc = int(jspectra.shape[1] / 2) | |||
|
517 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |||
|
518 | ind_vel = ind_vel.astype(int) | |||
|
519 | ||||
|
520 | if ind_vel[0] < 0: | |||
|
521 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |||
|
522 | ||||
|
523 | if mode == 1: | |||
|
524 | jspectra[:, freq_dc, :] = ( | |||
|
525 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |||
|
526 | ||||
|
527 | if jcspectraExist: | |||
|
528 | jcspectra[:, freq_dc, :] = ( | |||
|
529 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |||
|
530 | ||||
|
531 | if mode == 2: | |||
|
532 | ||||
|
533 | vel = numpy.array([-2, -1, 1, 2]) | |||
|
534 | xx = numpy.zeros([4, 4]) | |||
|
535 | ||||
|
536 | for fil in range(4): | |||
|
537 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |||
|
538 | ||||
|
539 | xx_inv = numpy.linalg.inv(xx) | |||
|
540 | xx_aux = xx_inv[0, :] | |||
|
541 | ||||
|
542 | for ich in range(num_chan): | |||
|
543 | yy = jspectra[ich, ind_vel, :] | |||
|
544 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |||
|
545 | ||||
|
546 | junkid = jspectra[ich, freq_dc, :] <= 0 | |||
|
547 | cjunkid = sum(junkid) | |||
|
548 | ||||
|
549 | if cjunkid.any(): | |||
|
550 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |||
|
551 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |||
|
552 | ||||
|
553 | if jcspectraExist: | |||
|
554 | for ip in range(num_pairs): | |||
|
555 | yy = jcspectra[ip, ind_vel, :] | |||
|
556 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |||
|
557 | ||||
|
558 | self.dataOut.data_spc = jspectra | |||
|
559 | self.dataOut.data_cspc = jcspectra | |||
|
560 | ||||
|
561 | return self.dataOut | |||
|
562 | ||||
|
563 | class removeInterference(Operation): | |||
|
564 | ||||
|
565 | def removeInterference2(self): | |||
|
566 | ||||
|
567 | cspc = self.dataOut.data_cspc | |||
|
568 | spc = self.dataOut.data_spc | |||
|
569 | Heights = numpy.arange(cspc.shape[2]) | |||
|
570 | realCspc = numpy.abs(cspc) | |||
|
571 | ||||
|
572 | for i in range(cspc.shape[0]): | |||
|
573 | LinePower= numpy.sum(realCspc[i], axis=0) | |||
|
574 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |||
|
575 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |||
|
576 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |||
|
577 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |||
|
578 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |||
|
579 | ||||
|
580 | ||||
|
581 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |||
|
582 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |||
|
583 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |||
|
584 | cspc[i,InterferenceRange,:] = numpy.NaN | |||
|
585 | ||||
|
586 | self.dataOut.data_cspc = cspc | |||
|
587 | ||||
|
588 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |||
|
589 | ||||
|
590 | jspectra = self.dataOut.data_spc | |||
|
591 | jcspectra = self.dataOut.data_cspc | |||
|
592 | jnoise = self.dataOut.getNoise() | |||
|
593 | num_incoh = self.dataOut.nIncohInt | |||
|
594 | ||||
|
595 | num_channel = jspectra.shape[0] | |||
|
596 | num_prof = jspectra.shape[1] | |||
|
597 | num_hei = jspectra.shape[2] | |||
|
598 | ||||
|
599 | # hei_interf | |||
|
600 | if hei_interf is None: | |||
|
601 | count_hei = int(num_hei / 2) | |||
|
602 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |||
|
603 | hei_interf = numpy.asarray(hei_interf)[0] | |||
|
604 | # nhei_interf | |||
|
605 | if (nhei_interf == None): | |||
|
606 | nhei_interf = 5 | |||
|
607 | if (nhei_interf < 1): | |||
|
608 | nhei_interf = 1 | |||
|
609 | if (nhei_interf > count_hei): | |||
|
610 | nhei_interf = count_hei | |||
|
611 | if (offhei_interf == None): | |||
|
612 | offhei_interf = 0 | |||
|
613 | ||||
|
614 | ind_hei = list(range(num_hei)) | |||
|
615 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |||
|
616 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |||
|
617 | mask_prof = numpy.asarray(list(range(num_prof))) | |||
|
618 | num_mask_prof = mask_prof.size | |||
|
619 | comp_mask_prof = [0, num_prof / 2] | |||
|
620 | ||||
|
621 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |||
|
622 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |||
|
623 | jnoise = numpy.nan | |||
|
624 | noise_exist = jnoise[0] < numpy.Inf | |||
|
625 | ||||
|
626 | # Subrutina de Remocion de la Interferencia | |||
|
627 | for ich in range(num_channel): | |||
|
628 | # Se ordena los espectros segun su potencia (menor a mayor) | |||
|
629 | power = jspectra[ich, mask_prof, :] | |||
|
630 | power = power[:, hei_interf] | |||
|
631 | power = power.sum(axis=0) | |||
|
632 | psort = power.ravel().argsort() | |||
|
633 | ||||
|
634 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |||
|
635 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |||
|
636 | offhei_interf, nhei_interf + offhei_interf))]]] | |||
|
637 | ||||
|
638 | if noise_exist: | |||
|
639 | # tmp_noise = jnoise[ich] / num_prof | |||
|
640 | tmp_noise = jnoise[ich] | |||
|
641 | junkspc_interf = junkspc_interf - tmp_noise | |||
|
642 | #junkspc_interf[:,comp_mask_prof] = 0 | |||
|
643 | ||||
|
644 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |||
|
645 | jspc_interf = jspc_interf.transpose() | |||
|
646 | # Calculando el espectro de interferencia promedio | |||
|
647 | noiseid = numpy.where( | |||
|
648 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |||
|
649 | noiseid = noiseid[0] | |||
|
650 | cnoiseid = noiseid.size | |||
|
651 | interfid = numpy.where( | |||
|
652 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |||
|
653 | interfid = interfid[0] | |||
|
654 | cinterfid = interfid.size | |||
|
655 | ||||
|
656 | if (cnoiseid > 0): | |||
|
657 | jspc_interf[noiseid] = 0 | |||
|
658 | ||||
|
659 | # Expandiendo los perfiles a limpiar | |||
|
660 | if (cinterfid > 0): | |||
|
661 | new_interfid = ( | |||
|
662 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |||
|
663 | new_interfid = numpy.asarray(new_interfid) | |||
|
664 | new_interfid = {x for x in new_interfid} | |||
|
665 | new_interfid = numpy.array(list(new_interfid)) | |||
|
666 | new_cinterfid = new_interfid.size | |||
|
667 | else: | |||
|
668 | new_cinterfid = 0 | |||
|
669 | ||||
|
670 | for ip in range(new_cinterfid): | |||
|
671 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |||
|
672 | jspc_interf[new_interfid[ip] | |||
|
673 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |||
|
674 | ||||
|
675 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |||
|
676 | ind_hei] - jspc_interf # Corregir indices | |||
|
677 | ||||
|
678 | # Removiendo la interferencia del punto de mayor interferencia | |||
|
679 | ListAux = jspc_interf[mask_prof].tolist() | |||
|
680 | maxid = ListAux.index(max(ListAux)) | |||
|
681 | ||||
|
682 | if cinterfid > 0: | |||
|
683 | for ip in range(cinterfid * (interf == 2) - 1): | |||
|
684 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |||
|
685 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |||
|
686 | cind = len(ind) | |||
|
687 | ||||
|
688 | if (cind > 0): | |||
|
689 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |||
|
690 | (1 + (numpy.random.uniform(cind) - 0.5) / | |||
|
691 | numpy.sqrt(num_incoh)) | |||
|
692 | ||||
|
693 | ind = numpy.array([-2, -1, 1, 2]) | |||
|
694 | xx = numpy.zeros([4, 4]) | |||
|
695 | ||||
|
696 | for id1 in range(4): | |||
|
697 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |||
|
698 | ||||
|
699 | xx_inv = numpy.linalg.inv(xx) | |||
|
700 | xx = xx_inv[:, 0] | |||
|
701 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |||
|
702 | yy = jspectra[ich, mask_prof[ind], :] | |||
|
703 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |||
|
704 | yy.transpose(), xx) | |||
|
705 | ||||
|
706 | indAux = (jspectra[ich, :, :] < tmp_noise * | |||
|
707 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |||
|
708 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |||
|
709 | (1 - 1 / numpy.sqrt(num_incoh)) | |||
|
710 | ||||
|
711 | # Remocion de Interferencia en el Cross Spectra | |||
|
712 | if jcspectra is None: | |||
|
713 | return jspectra, jcspectra | |||
|
714 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |||
|
715 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |||
|
716 | ||||
|
717 | for ip in range(num_pairs): | |||
|
718 | ||||
|
719 | #------------------------------------------- | |||
|
720 | ||||
|
721 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |||
|
722 | cspower = cspower[:, hei_interf] | |||
|
723 | cspower = cspower.sum(axis=0) | |||
|
724 | ||||
|
725 | cspsort = cspower.ravel().argsort() | |||
|
726 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |||
|
727 | offhei_interf, nhei_interf + offhei_interf))]]] | |||
|
728 | junkcspc_interf = junkcspc_interf.transpose() | |||
|
729 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |||
|
730 | ||||
|
731 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |||
|
732 | ||||
|
733 | median_real = int(numpy.median(numpy.real( | |||
|
734 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |||
|
735 | median_imag = int(numpy.median(numpy.imag( | |||
|
736 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |||
|
737 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |||
|
738 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |||
|
739 | median_real, median_imag) | |||
|
740 | ||||
|
741 | for iprof in range(num_prof): | |||
|
742 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |||
|
743 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |||
|
744 | ||||
|
745 | # Removiendo la Interferencia | |||
|
746 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |||
|
747 | :, ind_hei] - jcspc_interf | |||
|
748 | ||||
|
749 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |||
|
750 | maxid = ListAux.index(max(ListAux)) | |||
|
751 | ||||
|
752 | ind = numpy.array([-2, -1, 1, 2]) | |||
|
753 | xx = numpy.zeros([4, 4]) | |||
|
754 | ||||
|
755 | for id1 in range(4): | |||
|
756 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |||
|
757 | ||||
|
758 | xx_inv = numpy.linalg.inv(xx) | |||
|
759 | xx = xx_inv[:, 0] | |||
|
760 | ||||
|
761 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |||
|
762 | yy = jcspectra[ip, mask_prof[ind], :] | |||
|
763 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |||
|
764 | ||||
|
765 | # Guardar Resultados | |||
|
766 | self.dataOut.data_spc = jspectra | |||
|
767 | self.dataOut.data_cspc = jcspectra | |||
|
768 | ||||
|
769 | return 1 | |||
|
770 | ||||
|
771 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |||
|
772 | ||||
|
773 | self.dataOut = dataOut | |||
|
774 | ||||
|
775 | if mode == 1: | |||
|
776 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |||
|
777 | elif mode == 2: | |||
|
778 | self.removeInterference2() | |||
|
779 | ||||
|
780 | return self.dataOut | |||
|
781 | ||||
|
782 | ||||
|
783 | class IncohInt(Operation): | |||
|
784 | ||||
|
785 | __profIndex = 0 | |||
|
786 | __withOverapping = False | |||
|
787 | ||||
|
788 | __byTime = False | |||
|
789 | __initime = None | |||
|
790 | __lastdatatime = None | |||
|
791 | __integrationtime = None | |||
|
792 | ||||
|
793 | __buffer_spc = None | |||
|
794 | __buffer_cspc = None | |||
|
795 | __buffer_dc = None | |||
|
796 | ||||
|
797 | __dataReady = False | |||
|
798 | ||||
|
799 | __timeInterval = None | |||
|
800 | ||||
|
801 | n = None | |||
|
802 | ||||
|
803 | def __init__(self): | |||
|
804 | ||||
|
805 | Operation.__init__(self) | |||
|
806 | ||||
|
807 | def setup(self, n=None, timeInterval=None, overlapping=False): | |||
|
808 | """ | |||
|
809 | Set the parameters of the integration class. | |||
|
810 | ||||
|
811 | Inputs: | |||
|
812 | ||||
|
813 | n : Number of coherent integrations | |||
|
814 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |||
|
815 | overlapping : | |||
|
816 | ||||
|
817 | """ | |||
|
818 | ||||
|
819 | self.__initime = None | |||
|
820 | self.__lastdatatime = 0 | |||
|
821 | ||||
|
822 | self.__buffer_spc = 0 | |||
|
823 | self.__buffer_cspc = 0 | |||
|
824 | self.__buffer_dc = 0 | |||
|
825 | ||||
|
826 | self.__profIndex = 0 | |||
|
827 | self.__dataReady = False | |||
|
828 | self.__byTime = False | |||
|
829 | ||||
|
830 | if n is None and timeInterval is None: | |||
|
831 | raise ValueError("n or timeInterval should be specified ...") | |||
|
832 | ||||
|
833 | if n is not None: | |||
|
834 | self.n = int(n) | |||
|
835 | else: | |||
|
836 | ||||
|
837 | self.__integrationtime = int(timeInterval) | |||
|
838 | self.n = None | |||
|
839 | self.__byTime = True | |||
|
840 | ||||
|
841 | def putData(self, data_spc, data_cspc, data_dc): | |||
|
842 | """ | |||
|
843 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |||
|
844 | ||||
|
845 | """ | |||
|
846 | ||||
|
847 | self.__buffer_spc += data_spc | |||
|
848 | ||||
|
849 | if data_cspc is None: | |||
|
850 | self.__buffer_cspc = None | |||
|
851 | else: | |||
|
852 | self.__buffer_cspc += data_cspc | |||
|
853 | ||||
|
854 | if data_dc is None: | |||
|
855 | self.__buffer_dc = None | |||
|
856 | else: | |||
|
857 | self.__buffer_dc += data_dc | |||
|
858 | ||||
|
859 | self.__profIndex += 1 | |||
|
860 | ||||
|
861 | return | |||
|
862 | ||||
|
863 | def pushData(self): | |||
|
864 | """ | |||
|
865 | Return the sum of the last profiles and the profiles used in the sum. | |||
|
866 | ||||
|
867 | Affected: | |||
|
868 | ||||
|
869 | self.__profileIndex | |||
|
870 | ||||
|
871 | """ | |||
|
872 | ||||
|
873 | data_spc = self.__buffer_spc | |||
|
874 | data_cspc = self.__buffer_cspc | |||
|
875 | data_dc = self.__buffer_dc | |||
|
876 | n = self.__profIndex | |||
|
877 | ||||
|
878 | self.__buffer_spc = 0 | |||
|
879 | self.__buffer_cspc = 0 | |||
|
880 | self.__buffer_dc = 0 | |||
|
881 | self.__profIndex = 0 | |||
|
882 | ||||
|
883 | return data_spc, data_cspc, data_dc, n | |||
|
884 | ||||
|
885 | def byProfiles(self, *args): | |||
|
886 | ||||
|
887 | self.__dataReady = False | |||
|
888 | avgdata_spc = None | |||
|
889 | avgdata_cspc = None | |||
|
890 | avgdata_dc = None | |||
|
891 | ||||
|
892 | self.putData(*args) | |||
|
893 | ||||
|
894 | if self.__profIndex == self.n: | |||
|
895 | ||||
|
896 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |||
|
897 | self.n = n | |||
|
898 | self.__dataReady = True | |||
|
899 | ||||
|
900 | return avgdata_spc, avgdata_cspc, avgdata_dc | |||
|
901 | ||||
|
902 | def byTime(self, datatime, *args): | |||
|
903 | ||||
|
904 | self.__dataReady = False | |||
|
905 | avgdata_spc = None | |||
|
906 | avgdata_cspc = None | |||
|
907 | avgdata_dc = None | |||
|
908 | ||||
|
909 | self.putData(*args) | |||
|
910 | ||||
|
911 | if (datatime - self.__initime) >= self.__integrationtime: | |||
|
912 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |||
|
913 | self.n = n | |||
|
914 | self.__dataReady = True | |||
|
915 | ||||
|
916 | return avgdata_spc, avgdata_cspc, avgdata_dc | |||
|
917 | ||||
|
918 | def integrate(self, datatime, *args): | |||
|
919 | ||||
|
920 | if self.__profIndex == 0: | |||
|
921 | self.__initime = datatime | |||
|
922 | ||||
|
923 | if self.__byTime: | |||
|
924 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |||
|
925 | datatime, *args) | |||
|
926 | else: | |||
|
927 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |||
|
928 | ||||
|
929 | if not self.__dataReady: | |||
|
930 | return None, None, None, None | |||
|
931 | ||||
|
932 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |||
|
933 | ||||
|
934 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |||
|
935 | if n == 1: | |||
|
936 | return dataOut | |||
|
937 | print("JERE") | |||
|
938 | dataOut.flagNoData = True | |||
|
939 | ||||
|
940 | if not self.isConfig: | |||
|
941 | self.setup(n, timeInterval, overlapping) | |||
|
942 | self.isConfig = True | |||
|
943 | ||||
|
944 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |||
|
945 | dataOut.data_spc, | |||
|
946 | dataOut.data_cspc, | |||
|
947 | dataOut.data_dc) | |||
|
948 | ||||
|
949 | if self.__dataReady: | |||
|
950 | ||||
|
951 | dataOut.data_spc = avgdata_spc | |||
|
952 | print(numpy.sum(dataOut.data_spc)) | |||
|
953 | exit(1) | |||
|
954 | dataOut.data_cspc = avgdata_cspc | |||
|
955 | dataOut.data_dc = avgdata_dc | |||
|
956 | dataOut.nIncohInt *= self.n | |||
|
957 | dataOut.utctime = avgdatatime | |||
|
958 | dataOut.flagNoData = False | |||
|
959 | ||||
|
960 | return dataOut | |||
|
961 | ||||
|
962 | class dopplerFlip(Operation): | |||
|
963 | ||||
|
964 | def run(self, dataOut, chann = None): | |||
|
965 | # arreglo 1: (num_chan, num_profiles, num_heights) | |||
|
966 | self.dataOut = dataOut | |||
|
967 | # JULIA-oblicua, indice 2 | |||
|
968 | # arreglo 2: (num_profiles, num_heights) | |||
|
969 | jspectra = self.dataOut.data_spc[chann] | |||
|
970 | jspectra_tmp = numpy.zeros(jspectra.shape) | |||
|
971 | num_profiles = jspectra.shape[0] | |||
|
972 | freq_dc = int(num_profiles / 2) | |||
|
973 | # Flip con for | |||
|
974 | for j in range(num_profiles): | |||
|
975 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |||
|
976 | # Intercambio perfil de DC con perfil inmediato anterior | |||
|
977 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |||
|
978 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |||
|
979 | # canal modificado es re-escrito en el arreglo de canales | |||
|
980 | self.dataOut.data_spc[chann] = jspectra_tmp | |||
|
981 | ||||
|
982 | return self.dataOut |
This diff has been collapsed as it changes many lines, (1644 lines changed) Show them Hide them | |||||
@@ -0,0 +1,1644 | |||||
|
1 | ||||
|
2 | import os | |||
|
3 | import sys | |||
|
4 | import numpy, math | |||
|
5 | from scipy import interpolate | |||
|
6 | from scipy.optimize import nnls | |||
|
7 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |||
|
8 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |||
|
9 | from schainpy.utils import log | |||
|
10 | from time import time, mktime, strptime, gmtime, ctime | |||
|
11 | from scipy.optimize import least_squares | |||
|
12 | import datetime | |||
|
13 | import collections.abc | |||
|
14 | ||||
|
15 | try: | |||
|
16 | from schainpy.model.proc import fitacf_guess | |||
|
17 | from schainpy.model.proc import fitacf_fit_short | |||
|
18 | from schainpy.model.proc import fitacf_acf2 | |||
|
19 | from schainpy.model.proc import full_profile_profile | |||
|
20 | except: | |||
|
21 | log.warning('Missing Faraday fortran libs') | |||
|
22 | ||||
|
23 | class VoltageProc(ProcessingUnit): | |||
|
24 | ||||
|
25 | def __init__(self): | |||
|
26 | ||||
|
27 | ProcessingUnit.__init__(self) | |||
|
28 | ||||
|
29 | self.dataOut = Voltage() | |||
|
30 | self.flip = 1 | |||
|
31 | self.setupReq = False | |||
|
32 | ||||
|
33 | def run(self, runNextUnit = 0): | |||
|
34 | ||||
|
35 | if self.dataIn.type == 'AMISR': | |||
|
36 | self.__updateObjFromAmisrInput() | |||
|
37 | ||||
|
38 | if self.dataIn.type == 'Voltage': | |||
|
39 | self.dataOut.copy(self.dataIn) | |||
|
40 | self.dataOut.runNextUnit = runNextUnit | |||
|
41 | ||||
|
42 | def __updateObjFromAmisrInput(self): | |||
|
43 | ||||
|
44 | self.dataOut.timeZone = self.dataIn.timeZone | |||
|
45 | self.dataOut.dstFlag = self.dataIn.dstFlag | |||
|
46 | self.dataOut.errorCount = self.dataIn.errorCount | |||
|
47 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |||
|
48 | ||||
|
49 | self.dataOut.flagNoData = self.dataIn.flagNoData | |||
|
50 | self.dataOut.data = self.dataIn.data | |||
|
51 | self.dataOut.utctime = self.dataIn.utctime | |||
|
52 | self.dataOut.channelList = self.dataIn.channelList | |||
|
53 | #self.dataOut.timeInterval = self.dataIn.timeInterval | |||
|
54 | self.dataOut.heightList = self.dataIn.heightList | |||
|
55 | self.dataOut.nProfiles = self.dataIn.nProfiles | |||
|
56 | ||||
|
57 | self.dataOut.nCohInt = self.dataIn.nCohInt | |||
|
58 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |||
|
59 | self.dataOut.frequency = self.dataIn.frequency | |||
|
60 | ||||
|
61 | self.dataOut.azimuth = self.dataIn.azimuth | |||
|
62 | self.dataOut.zenith = self.dataIn.zenith | |||
|
63 | ||||
|
64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |||
|
65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |||
|
66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |||
|
67 | ||||
|
68 | ||||
|
69 | class selectChannels(Operation): | |||
|
70 | ||||
|
71 | def run(self, dataOut, channelList): | |||
|
72 | ||||
|
73 | channelIndexList = [] | |||
|
74 | self.dataOut = dataOut | |||
|
75 | for channel in channelList: | |||
|
76 | if channel not in self.dataOut.channelList: | |||
|
77 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) | |||
|
78 | ||||
|
79 | index = self.dataOut.channelList.index(channel) | |||
|
80 | channelIndexList.append(index) | |||
|
81 | self.selectChannelsByIndex(channelIndexList) | |||
|
82 | return self.dataOut | |||
|
83 | ||||
|
84 | def selectChannelsByIndex(self, channelIndexList): | |||
|
85 | """ | |||
|
86 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |||
|
87 | ||||
|
88 | Input: | |||
|
89 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |||
|
90 | ||||
|
91 | Affected: | |||
|
92 | self.dataOut.data | |||
|
93 | self.dataOut.channelIndexList | |||
|
94 | self.dataOut.nChannels | |||
|
95 | self.dataOut.m_ProcessingHeader.totalSpectra | |||
|
96 | self.dataOut.systemHeaderObj.numChannels | |||
|
97 | self.dataOut.m_ProcessingHeader.blockSize | |||
|
98 | ||||
|
99 | Return: | |||
|
100 | None | |||
|
101 | """ | |||
|
102 | ||||
|
103 | for channelIndex in channelIndexList: | |||
|
104 | if channelIndex not in self.dataOut.channelIndexList: | |||
|
105 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) | |||
|
106 | ||||
|
107 | if self.dataOut.type == 'Voltage': | |||
|
108 | if self.dataOut.flagDataAsBlock: | |||
|
109 | """ | |||
|
110 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |||
|
111 | """ | |||
|
112 | data = self.dataOut.data[channelIndexList,:,:] | |||
|
113 | else: | |||
|
114 | data = self.dataOut.data[channelIndexList,:] | |||
|
115 | ||||
|
116 | self.dataOut.data = data | |||
|
117 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |||
|
118 | self.dataOut.channelList = range(len(channelIndexList)) | |||
|
119 | ||||
|
120 | elif self.dataOut.type == 'Spectra': | |||
|
121 | data_spc = self.dataOut.data_spc[channelIndexList, :] | |||
|
122 | data_dc = self.dataOut.data_dc[channelIndexList, :] | |||
|
123 | ||||
|
124 | self.dataOut.data_spc = data_spc | |||
|
125 | self.dataOut.data_dc = data_dc | |||
|
126 | ||||
|
127 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |||
|
128 | self.dataOut.channelList = range(len(channelIndexList)) | |||
|
129 | self.__selectPairsByChannel(channelIndexList) | |||
|
130 | ||||
|
131 | return 1 | |||
|
132 | ||||
|
133 | def __selectPairsByChannel(self, channelList=None): | |||
|
134 | ||||
|
135 | if channelList == None: | |||
|
136 | return | |||
|
137 | ||||
|
138 | pairsIndexListSelected = [] | |||
|
139 | for pairIndex in self.dataOut.pairsIndexList: | |||
|
140 | # First pair | |||
|
141 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |||
|
142 | continue | |||
|
143 | # Second pair | |||
|
144 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |||
|
145 | continue | |||
|
146 | ||||
|
147 | pairsIndexListSelected.append(pairIndex) | |||
|
148 | ||||
|
149 | if not pairsIndexListSelected: | |||
|
150 | self.dataOut.data_cspc = None | |||
|
151 | self.dataOut.pairsList = [] | |||
|
152 | return | |||
|
153 | ||||
|
154 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |||
|
155 | self.dataOut.pairsList = [self.dataOut.pairsList[i] | |||
|
156 | for i in pairsIndexListSelected] | |||
|
157 | ||||
|
158 | return | |||
|
159 | ||||
|
160 | class selectHeights(Operation): | |||
|
161 | ||||
|
162 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |||
|
163 | """ | |||
|
164 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |||
|
165 | minHei <= height <= maxHei | |||
|
166 | ||||
|
167 | Input: | |||
|
168 | minHei : valor minimo de altura a considerar | |||
|
169 | maxHei : valor maximo de altura a considerar | |||
|
170 | ||||
|
171 | Affected: | |||
|
172 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |||
|
173 | ||||
|
174 | Return: | |||
|
175 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |||
|
176 | """ | |||
|
177 | ||||
|
178 | self.dataOut = dataOut | |||
|
179 | ||||
|
180 | if minHei and maxHei: | |||
|
181 | ||||
|
182 | if (minHei < self.dataOut.heightList[0]): | |||
|
183 | minHei = self.dataOut.heightList[0] | |||
|
184 | ||||
|
185 | if (maxHei > self.dataOut.heightList[-1]): | |||
|
186 | maxHei = self.dataOut.heightList[-1] | |||
|
187 | ||||
|
188 | minIndex = 0 | |||
|
189 | maxIndex = 0 | |||
|
190 | heights = self.dataOut.heightList | |||
|
191 | ||||
|
192 | inda = numpy.where(heights >= minHei) | |||
|
193 | indb = numpy.where(heights <= maxHei) | |||
|
194 | ||||
|
195 | try: | |||
|
196 | minIndex = inda[0][0] | |||
|
197 | except: | |||
|
198 | minIndex = 0 | |||
|
199 | ||||
|
200 | try: | |||
|
201 | maxIndex = indb[0][-1] | |||
|
202 | except: | |||
|
203 | maxIndex = len(heights) | |||
|
204 | ||||
|
205 | self.selectHeightsByIndex(minIndex, maxIndex) | |||
|
206 | ||||
|
207 | return self.dataOut | |||
|
208 | ||||
|
209 | def selectHeightsByIndex(self, minIndex, maxIndex): | |||
|
210 | """ | |||
|
211 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |||
|
212 | minIndex <= index <= maxIndex | |||
|
213 | ||||
|
214 | Input: | |||
|
215 | minIndex : valor de indice minimo de altura a considerar | |||
|
216 | maxIndex : valor de indice maximo de altura a considerar | |||
|
217 | ||||
|
218 | Affected: | |||
|
219 | self.dataOut.data | |||
|
220 | self.dataOut.heightList | |||
|
221 | ||||
|
222 | Return: | |||
|
223 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |||
|
224 | """ | |||
|
225 | ||||
|
226 | if self.dataOut.type == 'Voltage': | |||
|
227 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
228 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |||
|
229 | ||||
|
230 | if (maxIndex >= self.dataOut.nHeights): | |||
|
231 | maxIndex = self.dataOut.nHeights | |||
|
232 | ||||
|
233 | #voltage | |||
|
234 | if self.dataOut.flagDataAsBlock: | |||
|
235 | """ | |||
|
236 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |||
|
237 | """ | |||
|
238 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |||
|
239 | else: | |||
|
240 | data = self.dataOut.data[:, minIndex:maxIndex] | |||
|
241 | ||||
|
242 | # firstHeight = self.dataOut.heightList[minIndex] | |||
|
243 | ||||
|
244 | self.dataOut.data = data | |||
|
245 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |||
|
246 | ||||
|
247 | if self.dataOut.nHeights <= 1: | |||
|
248 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) | |||
|
249 | elif self.dataOut.type == 'Spectra': | |||
|
250 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
251 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |||
|
252 | minIndex, maxIndex)) | |||
|
253 | ||||
|
254 | if (maxIndex >= self.dataOut.nHeights): | |||
|
255 | maxIndex = self.dataOut.nHeights - 1 | |||
|
256 | ||||
|
257 | # Spectra | |||
|
258 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |||
|
259 | ||||
|
260 | data_cspc = None | |||
|
261 | if self.dataOut.data_cspc is not None: | |||
|
262 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |||
|
263 | ||||
|
264 | data_dc = None | |||
|
265 | if self.dataOut.data_dc is not None: | |||
|
266 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |||
|
267 | ||||
|
268 | self.dataOut.data_spc = data_spc | |||
|
269 | self.dataOut.data_cspc = data_cspc | |||
|
270 | self.dataOut.data_dc = data_dc | |||
|
271 | ||||
|
272 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |||
|
273 | ||||
|
274 | return 1 | |||
|
275 | ||||
|
276 | ||||
|
277 | class filterByHeights(Operation): | |||
|
278 | ||||
|
279 | def run(self, dataOut, window): | |||
|
280 | ||||
|
281 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
282 | ||||
|
283 | if window == None: | |||
|
284 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |||
|
285 | ||||
|
286 | newdelta = deltaHeight * window | |||
|
287 | r = dataOut.nHeights % window | |||
|
288 | newheights = (dataOut.nHeights-r)/window | |||
|
289 | ||||
|
290 | if newheights <= 1: | |||
|
291 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |||
|
292 | ||||
|
293 | if dataOut.flagDataAsBlock: | |||
|
294 | """ | |||
|
295 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |||
|
296 | """ | |||
|
297 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] | |||
|
298 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) | |||
|
299 | buffer = numpy.sum(buffer,3) | |||
|
300 | ||||
|
301 | else: | |||
|
302 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] | |||
|
303 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) | |||
|
304 | buffer = numpy.sum(buffer,2) | |||
|
305 | ||||
|
306 | dataOut.data = buffer | |||
|
307 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |||
|
308 | dataOut.windowOfFilter = window | |||
|
309 | ||||
|
310 | return dataOut | |||
|
311 | ||||
|
312 | ||||
|
313 | class setH0(Operation): | |||
|
314 | ||||
|
315 | def run(self, dataOut, h0, deltaHeight = None): | |||
|
316 | ||||
|
317 | if not deltaHeight: | |||
|
318 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
319 | ||||
|
320 | nHeights = dataOut.nHeights | |||
|
321 | ||||
|
322 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |||
|
323 | ||||
|
324 | dataOut.heightList = newHeiRange | |||
|
325 | ||||
|
326 | return dataOut | |||
|
327 | ||||
|
328 | ||||
|
329 | class deFlip(Operation): | |||
|
330 | def __init__(self): | |||
|
331 | ||||
|
332 | self.flip = 1 | |||
|
333 | ||||
|
334 | def run(self, dataOut, channelList = []): | |||
|
335 | ||||
|
336 | data = dataOut.data.copy() | |||
|
337 | ||||
|
338 | if channelList==1: #PARCHE #Lista de un solo canal produce error | |||
|
339 | channelList=[1] | |||
|
340 | ||||
|
341 | dataOut.FlipChannels=channelList | |||
|
342 | if dataOut.flagDataAsBlock: | |||
|
343 | flip = self.flip | |||
|
344 | profileList = list(range(dataOut.nProfiles)) | |||
|
345 | ||||
|
346 | if not channelList: | |||
|
347 | for thisProfile in profileList: | |||
|
348 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |||
|
349 | flip *= -1.0 | |||
|
350 | else: | |||
|
351 | for thisChannel in channelList: | |||
|
352 | if thisChannel not in dataOut.channelList: | |||
|
353 | continue | |||
|
354 | ||||
|
355 | for thisProfile in profileList: | |||
|
356 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |||
|
357 | flip *= -1.0 | |||
|
358 | ||||
|
359 | self.flip = flip | |||
|
360 | ||||
|
361 | else: | |||
|
362 | if not channelList: | |||
|
363 | data[:,:] = data[:,:]*self.flip | |||
|
364 | else: | |||
|
365 | for thisChannel in channelList: | |||
|
366 | if thisChannel not in dataOut.channelList: | |||
|
367 | continue | |||
|
368 | ||||
|
369 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |||
|
370 | ||||
|
371 | self.flip *= -1. | |||
|
372 | ||||
|
373 | dataOut.data = data | |||
|
374 | ||||
|
375 | return dataOut | |||
|
376 | ||||
|
377 | ||||
|
378 | class setAttribute(Operation): | |||
|
379 | ''' | |||
|
380 | Set an arbitrary attribute(s) to dataOut | |||
|
381 | ''' | |||
|
382 | ||||
|
383 | def __init__(self): | |||
|
384 | ||||
|
385 | Operation.__init__(self) | |||
|
386 | self._ready = False | |||
|
387 | ||||
|
388 | def run(self, dataOut, **kwargs): | |||
|
389 | ||||
|
390 | for key, value in kwargs.items(): | |||
|
391 | setattr(dataOut, key, value) | |||
|
392 | ||||
|
393 | return dataOut | |||
|
394 | ||||
|
395 | ||||
|
396 | @MPDecorator | |||
|
397 | class printAttribute(Operation): | |||
|
398 | ''' | |||
|
399 | Print an arbitrary attribute of dataOut | |||
|
400 | ''' | |||
|
401 | ||||
|
402 | def __init__(self): | |||
|
403 | ||||
|
404 | Operation.__init__(self) | |||
|
405 | ||||
|
406 | def run(self, dataOut, attributes): | |||
|
407 | ||||
|
408 | if isinstance(attributes, str): | |||
|
409 | attributes = [attributes] | |||
|
410 | for attr in attributes: | |||
|
411 | if hasattr(dataOut, attr): | |||
|
412 | log.log(getattr(dataOut, attr), attr) | |||
|
413 | ||||
|
414 | ||||
|
415 | class interpolateHeights(Operation): | |||
|
416 | ||||
|
417 | def run(self, dataOut, topLim, botLim): | |||
|
418 | #69 al 72 para julia | |||
|
419 | #82-84 para meteoros | |||
|
420 | if len(numpy.shape(dataOut.data))==2: | |||
|
421 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 | |||
|
422 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |||
|
423 | #dataOut.data[:,botLim:limSup+1] = sampInterp | |||
|
424 | dataOut.data[:,botLim:topLim+1] = sampInterp | |||
|
425 | else: | |||
|
426 | nHeights = dataOut.data.shape[2] | |||
|
427 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |||
|
428 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] | |||
|
429 | f = interpolate.interp1d(x, y, axis = 2) | |||
|
430 | xnew = numpy.arange(botLim,topLim+1) | |||
|
431 | ynew = f(xnew) | |||
|
432 | dataOut.data[:,:,botLim:topLim+1] = ynew | |||
|
433 | ||||
|
434 | return dataOut | |||
|
435 | ||||
|
436 | ||||
|
437 | class CohInt(Operation): | |||
|
438 | ||||
|
439 | isConfig = False | |||
|
440 | __profIndex = 0 | |||
|
441 | __byTime = False | |||
|
442 | __initime = None | |||
|
443 | __lastdatatime = None | |||
|
444 | __integrationtime = None | |||
|
445 | __buffer = None | |||
|
446 | __bufferStride = [] | |||
|
447 | __dataReady = False | |||
|
448 | __profIndexStride = 0 | |||
|
449 | __dataToPutStride = False | |||
|
450 | n = None | |||
|
451 | ||||
|
452 | def __init__(self, **kwargs): | |||
|
453 | ||||
|
454 | Operation.__init__(self, **kwargs) | |||
|
455 | ||||
|
456 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |||
|
457 | """ | |||
|
458 | Set the parameters of the integration class. | |||
|
459 | ||||
|
460 | Inputs: | |||
|
461 | ||||
|
462 | n : Number of coherent integrations | |||
|
463 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |||
|
464 | overlapping : | |||
|
465 | """ | |||
|
466 | ||||
|
467 | self.__initime = None | |||
|
468 | self.__lastdatatime = 0 | |||
|
469 | self.__buffer = None | |||
|
470 | self.__dataReady = False | |||
|
471 | self.byblock = byblock | |||
|
472 | self.stride = stride | |||
|
473 | ||||
|
474 | if n == None and timeInterval == None: | |||
|
475 | raise ValueError("n or timeInterval should be specified ...") | |||
|
476 | ||||
|
477 | if n != None: | |||
|
478 | self.n = n | |||
|
479 | self.__byTime = False | |||
|
480 | else: | |||
|
481 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |||
|
482 | self.n = 9999 | |||
|
483 | self.__byTime = True | |||
|
484 | ||||
|
485 | if overlapping: | |||
|
486 | self.__withOverlapping = True | |||
|
487 | self.__buffer = None | |||
|
488 | else: | |||
|
489 | self.__withOverlapping = False | |||
|
490 | self.__buffer = 0 | |||
|
491 | ||||
|
492 | self.__profIndex = 0 | |||
|
493 | ||||
|
494 | def putData(self, data): | |||
|
495 | ||||
|
496 | """ | |||
|
497 | Add a profile to the __buffer and increase in one the __profileIndex | |||
|
498 | ||||
|
499 | """ | |||
|
500 | ||||
|
501 | if not self.__withOverlapping: | |||
|
502 | self.__buffer += data.copy() | |||
|
503 | self.__profIndex += 1 | |||
|
504 | return | |||
|
505 | ||||
|
506 | #Overlapping data | |||
|
507 | nChannels, nHeis = data.shape | |||
|
508 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |||
|
509 | ||||
|
510 | #If the buffer is empty then it takes the data value | |||
|
511 | if self.__buffer is None: | |||
|
512 | self.__buffer = data | |||
|
513 | self.__profIndex += 1 | |||
|
514 | return | |||
|
515 | ||||
|
516 | #If the buffer length is lower than n then stakcing the data value | |||
|
517 | if self.__profIndex < self.n: | |||
|
518 | self.__buffer = numpy.vstack((self.__buffer, data)) | |||
|
519 | self.__profIndex += 1 | |||
|
520 | return | |||
|
521 | ||||
|
522 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |||
|
523 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |||
|
524 | self.__buffer[self.n-1] = data | |||
|
525 | self.__profIndex = self.n | |||
|
526 | return | |||
|
527 | ||||
|
528 | ||||
|
529 | def pushData(self): | |||
|
530 | """ | |||
|
531 | Return the sum of the last profiles and the profiles used in the sum. | |||
|
532 | ||||
|
533 | Affected: | |||
|
534 | ||||
|
535 | self.__profileIndex | |||
|
536 | ||||
|
537 | """ | |||
|
538 | ||||
|
539 | if not self.__withOverlapping: | |||
|
540 | data = self.__buffer | |||
|
541 | n = self.__profIndex | |||
|
542 | ||||
|
543 | self.__buffer = 0 | |||
|
544 | self.__profIndex = 0 | |||
|
545 | ||||
|
546 | return data, n | |||
|
547 | ||||
|
548 | #Integration with Overlapping | |||
|
549 | data = numpy.sum(self.__buffer, axis=0) | |||
|
550 | # print data | |||
|
551 | # raise | |||
|
552 | n = self.__profIndex | |||
|
553 | ||||
|
554 | return data, n | |||
|
555 | ||||
|
556 | def byProfiles(self, data): | |||
|
557 | ||||
|
558 | self.__dataReady = False | |||
|
559 | avgdata = None | |||
|
560 | # n = None | |||
|
561 | # print data | |||
|
562 | # raise | |||
|
563 | self.putData(data) | |||
|
564 | ||||
|
565 | if self.__profIndex == self.n: | |||
|
566 | avgdata, n = self.pushData() | |||
|
567 | self.__dataReady = True | |||
|
568 | ||||
|
569 | return avgdata | |||
|
570 | ||||
|
571 | def byTime(self, data, datatime): | |||
|
572 | ||||
|
573 | self.__dataReady = False | |||
|
574 | avgdata = None | |||
|
575 | n = None | |||
|
576 | ||||
|
577 | self.putData(data) | |||
|
578 | ||||
|
579 | if (datatime - self.__initime) >= self.__integrationtime: | |||
|
580 | avgdata, n = self.pushData() | |||
|
581 | self.n = n | |||
|
582 | self.__dataReady = True | |||
|
583 | ||||
|
584 | return avgdata | |||
|
585 | ||||
|
586 | def integrateByStride(self, data, datatime): | |||
|
587 | # print data | |||
|
588 | if self.__profIndex == 0: | |||
|
589 | self.__buffer = [[data.copy(), datatime]] | |||
|
590 | else: | |||
|
591 | self.__buffer.append([data.copy(),datatime]) | |||
|
592 | self.__profIndex += 1 | |||
|
593 | self.__dataReady = False | |||
|
594 | ||||
|
595 | if self.__profIndex == self.n * self.stride : | |||
|
596 | self.__dataToPutStride = True | |||
|
597 | self.__profIndexStride = 0 | |||
|
598 | self.__profIndex = 0 | |||
|
599 | self.__bufferStride = [] | |||
|
600 | for i in range(self.stride): | |||
|
601 | current = self.__buffer[i::self.stride] | |||
|
602 | data = numpy.sum([t[0] for t in current], axis=0) | |||
|
603 | avgdatatime = numpy.average([t[1] for t in current]) | |||
|
604 | # print data | |||
|
605 | self.__bufferStride.append((data, avgdatatime)) | |||
|
606 | ||||
|
607 | if self.__dataToPutStride: | |||
|
608 | self.__dataReady = True | |||
|
609 | self.__profIndexStride += 1 | |||
|
610 | if self.__profIndexStride == self.stride: | |||
|
611 | self.__dataToPutStride = False | |||
|
612 | # print self.__bufferStride[self.__profIndexStride - 1] | |||
|
613 | # raise | |||
|
614 | return self.__bufferStride[self.__profIndexStride - 1] | |||
|
615 | ||||
|
616 | ||||
|
617 | return None, None | |||
|
618 | ||||
|
619 | def integrate(self, data, datatime=None): | |||
|
620 | ||||
|
621 | if self.__initime == None: | |||
|
622 | self.__initime = datatime | |||
|
623 | ||||
|
624 | if self.__byTime: | |||
|
625 | avgdata = self.byTime(data, datatime) | |||
|
626 | else: | |||
|
627 | avgdata = self.byProfiles(data) | |||
|
628 | ||||
|
629 | ||||
|
630 | self.__lastdatatime = datatime | |||
|
631 | ||||
|
632 | if avgdata is None: | |||
|
633 | return None, None | |||
|
634 | ||||
|
635 | avgdatatime = self.__initime | |||
|
636 | ||||
|
637 | deltatime = datatime - self.__lastdatatime | |||
|
638 | ||||
|
639 | if not self.__withOverlapping: | |||
|
640 | self.__initime = datatime | |||
|
641 | else: | |||
|
642 | self.__initime += deltatime | |||
|
643 | ||||
|
644 | return avgdata, avgdatatime | |||
|
645 | ||||
|
646 | def integrateByBlock(self, dataOut): | |||
|
647 | ||||
|
648 | times = int(dataOut.data.shape[1]/self.n) | |||
|
649 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |||
|
650 | ||||
|
651 | id_min = 0 | |||
|
652 | id_max = self.n | |||
|
653 | ||||
|
654 | for i in range(times): | |||
|
655 | junk = dataOut.data[:,id_min:id_max,:] | |||
|
656 | avgdata[:,i,:] = junk.sum(axis=1) | |||
|
657 | id_min += self.n | |||
|
658 | id_max += self.n | |||
|
659 | ||||
|
660 | timeInterval = dataOut.ippSeconds*self.n | |||
|
661 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |||
|
662 | self.__dataReady = True | |||
|
663 | return avgdata, avgdatatime | |||
|
664 | ||||
|
665 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |||
|
666 | ||||
|
667 | if not self.isConfig: | |||
|
668 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |||
|
669 | self.isConfig = True | |||
|
670 | if dataOut.flagDataAsBlock: | |||
|
671 | """ | |||
|
672 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |||
|
673 | """ | |||
|
674 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |||
|
675 | dataOut.nProfiles /= self.n | |||
|
676 | else: | |||
|
677 | if stride is None: | |||
|
678 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |||
|
679 | else: | |||
|
680 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |||
|
681 | ||||
|
682 | ||||
|
683 | # dataOut.timeInterval *= n | |||
|
684 | dataOut.flagNoData = True | |||
|
685 | ||||
|
686 | if self.__dataReady: | |||
|
687 | dataOut.data = avgdata | |||
|
688 | if not dataOut.flagCohInt: | |||
|
689 | dataOut.nCohInt *= self.n | |||
|
690 | dataOut.flagCohInt = True | |||
|
691 | dataOut.utctime = avgdatatime | |||
|
692 | # print avgdata, avgdatatime | |||
|
693 | # raise | |||
|
694 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |||
|
695 | dataOut.flagNoData = False | |||
|
696 | return dataOut | |||
|
697 | ||||
|
698 | class Decoder(Operation): | |||
|
699 | ||||
|
700 | isConfig = False | |||
|
701 | __profIndex = 0 | |||
|
702 | ||||
|
703 | code = None | |||
|
704 | ||||
|
705 | nCode = None | |||
|
706 | nBaud = None | |||
|
707 | ||||
|
708 | def __init__(self, **kwargs): | |||
|
709 | ||||
|
710 | Operation.__init__(self, **kwargs) | |||
|
711 | ||||
|
712 | self.times = None | |||
|
713 | self.osamp = None | |||
|
714 | # self.__setValues = False | |||
|
715 | self.isConfig = False | |||
|
716 | self.setupReq = False | |||
|
717 | def setup(self, code, osamp, dataOut): | |||
|
718 | ||||
|
719 | self.__profIndex = 0 | |||
|
720 | ||||
|
721 | self.code = code | |||
|
722 | ||||
|
723 | self.nCode = len(code) | |||
|
724 | self.nBaud = len(code[0]) | |||
|
725 | ||||
|
726 | if (osamp != None) and (osamp >1): | |||
|
727 | self.osamp = osamp | |||
|
728 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |||
|
729 | self.nBaud = self.nBaud*self.osamp | |||
|
730 | ||||
|
731 | self.__nChannels = dataOut.nChannels | |||
|
732 | self.__nProfiles = dataOut.nProfiles | |||
|
733 | self.__nHeis = dataOut.nHeights | |||
|
734 | ||||
|
735 | if self.__nHeis < self.nBaud: | |||
|
736 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) | |||
|
737 | ||||
|
738 | #Frequency | |||
|
739 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |||
|
740 | ||||
|
741 | __codeBuffer[:,0:self.nBaud] = self.code | |||
|
742 | ||||
|
743 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |||
|
744 | ||||
|
745 | if dataOut.flagDataAsBlock: | |||
|
746 | ||||
|
747 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |||
|
748 | ||||
|
749 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |||
|
750 | ||||
|
751 | else: | |||
|
752 | ||||
|
753 | #Time | |||
|
754 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |||
|
755 | ||||
|
756 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |||
|
757 | ||||
|
758 | def __convolutionInFreq(self, data): | |||
|
759 | ||||
|
760 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |||
|
761 | ||||
|
762 | fft_data = numpy.fft.fft(data, axis=1) | |||
|
763 | ||||
|
764 | conv = fft_data*fft_code | |||
|
765 | ||||
|
766 | data = numpy.fft.ifft(conv,axis=1) | |||
|
767 | ||||
|
768 | return data | |||
|
769 | ||||
|
770 | def __convolutionInFreqOpt(self, data): | |||
|
771 | ||||
|
772 | raise NotImplementedError | |||
|
773 | ||||
|
774 | def __convolutionInTime(self, data): | |||
|
775 | ||||
|
776 | code = self.code[self.__profIndex] | |||
|
777 | for i in range(self.__nChannels): | |||
|
778 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |||
|
779 | ||||
|
780 | return self.datadecTime | |||
|
781 | ||||
|
782 | def __convolutionByBlockInTime(self, data): | |||
|
783 | ||||
|
784 | repetitions = int(self.__nProfiles / self.nCode) | |||
|
785 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |||
|
786 | junk = junk.flatten() | |||
|
787 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |||
|
788 | profilesList = range(self.__nProfiles) | |||
|
789 | ||||
|
790 | for i in range(self.__nChannels): | |||
|
791 | for j in profilesList: | |||
|
792 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |||
|
793 | return self.datadecTime | |||
|
794 | ||||
|
795 | def __convolutionByBlockInFreq(self, data): | |||
|
796 | ||||
|
797 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |||
|
798 | ||||
|
799 | ||||
|
800 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |||
|
801 | ||||
|
802 | fft_data = numpy.fft.fft(data, axis=2) | |||
|
803 | ||||
|
804 | conv = fft_data*fft_code | |||
|
805 | ||||
|
806 | data = numpy.fft.ifft(conv,axis=2) | |||
|
807 | ||||
|
808 | return data | |||
|
809 | ||||
|
810 | ||||
|
811 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |||
|
812 | ||||
|
813 | if dataOut.flagDecodeData: | |||
|
814 | print("This data is already decoded, recoding again ...") | |||
|
815 | ||||
|
816 | if not self.isConfig: | |||
|
817 | ||||
|
818 | if code is None: | |||
|
819 | if dataOut.code is None: | |||
|
820 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) | |||
|
821 | ||||
|
822 | code = dataOut.code | |||
|
823 | else: | |||
|
824 | code = numpy.array(code).reshape(nCode,nBaud) | |||
|
825 | self.setup(code, osamp, dataOut) | |||
|
826 | ||||
|
827 | self.isConfig = True | |||
|
828 | ||||
|
829 | if mode == 3: | |||
|
830 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |||
|
831 | ||||
|
832 | if times != None: | |||
|
833 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |||
|
834 | ||||
|
835 | if self.code is None: | |||
|
836 | print("Fail decoding: Code is not defined.") | |||
|
837 | return | |||
|
838 | ||||
|
839 | self.__nProfiles = dataOut.nProfiles | |||
|
840 | datadec = None | |||
|
841 | ||||
|
842 | if mode == 3: | |||
|
843 | mode = 0 | |||
|
844 | ||||
|
845 | if dataOut.flagDataAsBlock: | |||
|
846 | """ | |||
|
847 | Decoding when data have been read as block, | |||
|
848 | """ | |||
|
849 | ||||
|
850 | if mode == 0: | |||
|
851 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |||
|
852 | if mode == 1: | |||
|
853 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |||
|
854 | else: | |||
|
855 | """ | |||
|
856 | Decoding when data have been read profile by profile | |||
|
857 | """ | |||
|
858 | if mode == 0: | |||
|
859 | datadec = self.__convolutionInTime(dataOut.data) | |||
|
860 | ||||
|
861 | if mode == 1: | |||
|
862 | datadec = self.__convolutionInFreq(dataOut.data) | |||
|
863 | ||||
|
864 | if mode == 2: | |||
|
865 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |||
|
866 | ||||
|
867 | if datadec is None: | |||
|
868 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) | |||
|
869 | ||||
|
870 | dataOut.code = self.code | |||
|
871 | dataOut.nCode = self.nCode | |||
|
872 | dataOut.nBaud = self.nBaud | |||
|
873 | ||||
|
874 | dataOut.data = datadec | |||
|
875 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |||
|
876 | ||||
|
877 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |||
|
878 | ||||
|
879 | if self.__profIndex == self.nCode-1: | |||
|
880 | self.__profIndex = 0 | |||
|
881 | return dataOut | |||
|
882 | ||||
|
883 | self.__profIndex += 1 | |||
|
884 | ||||
|
885 | return dataOut | |||
|
886 | ||||
|
887 | ||||
|
888 | class ProfileConcat(Operation): | |||
|
889 | ||||
|
890 | isConfig = False | |||
|
891 | buffer = None | |||
|
892 | ||||
|
893 | def __init__(self, **kwargs): | |||
|
894 | ||||
|
895 | Operation.__init__(self, **kwargs) | |||
|
896 | self.profileIndex = 0 | |||
|
897 | ||||
|
898 | def reset(self): | |||
|
899 | self.buffer = numpy.zeros_like(self.buffer) | |||
|
900 | self.start_index = 0 | |||
|
901 | self.times = 1 | |||
|
902 | ||||
|
903 | def setup(self, data, m, n=1): | |||
|
904 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |||
|
905 | self.nHeights = data.shape[1]#.nHeights | |||
|
906 | self.start_index = 0 | |||
|
907 | self.times = 1 | |||
|
908 | ||||
|
909 | def concat(self, data): | |||
|
910 | ||||
|
911 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |||
|
912 | self.start_index = self.start_index + self.nHeights | |||
|
913 | ||||
|
914 | def run(self, dataOut, m): | |||
|
915 | dataOut.flagNoData = True | |||
|
916 | ||||
|
917 | if not self.isConfig: | |||
|
918 | self.setup(dataOut.data, m, 1) | |||
|
919 | self.isConfig = True | |||
|
920 | ||||
|
921 | if dataOut.flagDataAsBlock: | |||
|
922 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |||
|
923 | ||||
|
924 | else: | |||
|
925 | self.concat(dataOut.data) | |||
|
926 | self.times += 1 | |||
|
927 | if self.times > m: | |||
|
928 | dataOut.data = self.buffer | |||
|
929 | self.reset() | |||
|
930 | dataOut.flagNoData = False | |||
|
931 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |||
|
932 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
933 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |||
|
934 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |||
|
935 | dataOut.ippSeconds *= m | |||
|
936 | return dataOut | |||
|
937 | ||||
|
938 | class ProfileSelector(Operation): | |||
|
939 | ||||
|
940 | profileIndex = None | |||
|
941 | # Tamanho total de los perfiles | |||
|
942 | nProfiles = None | |||
|
943 | ||||
|
944 | def __init__(self, **kwargs): | |||
|
945 | ||||
|
946 | Operation.__init__(self, **kwargs) | |||
|
947 | self.profileIndex = 0 | |||
|
948 | ||||
|
949 | def incProfileIndex(self): | |||
|
950 | ||||
|
951 | self.profileIndex += 1 | |||
|
952 | ||||
|
953 | if self.profileIndex >= self.nProfiles: | |||
|
954 | self.profileIndex = 0 | |||
|
955 | ||||
|
956 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |||
|
957 | ||||
|
958 | if profileIndex < minIndex: | |||
|
959 | return False | |||
|
960 | ||||
|
961 | if profileIndex > maxIndex: | |||
|
962 | return False | |||
|
963 | ||||
|
964 | return True | |||
|
965 | ||||
|
966 | def isThisProfileInList(self, profileIndex, profileList): | |||
|
967 | ||||
|
968 | if profileIndex not in profileList: | |||
|
969 | return False | |||
|
970 | ||||
|
971 | return True | |||
|
972 | ||||
|
973 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |||
|
974 | ||||
|
975 | """ | |||
|
976 | ProfileSelector: | |||
|
977 | ||||
|
978 | Inputs: | |||
|
979 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |||
|
980 | ||||
|
981 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |||
|
982 | ||||
|
983 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |||
|
984 | ||||
|
985 | """ | |||
|
986 | ||||
|
987 | if rangeList is not None: | |||
|
988 | if type(rangeList[0]) not in (tuple, list): | |||
|
989 | rangeList = [rangeList] | |||
|
990 | ||||
|
991 | dataOut.flagNoData = True | |||
|
992 | ||||
|
993 | if dataOut.flagDataAsBlock: | |||
|
994 | """ | |||
|
995 | data dimension = [nChannels, nProfiles, nHeis] | |||
|
996 | """ | |||
|
997 | if profileList != None: | |||
|
998 | dataOut.data = dataOut.data[:,profileList,:] | |||
|
999 | ||||
|
1000 | if profileRangeList != None: | |||
|
1001 | minIndex = profileRangeList[0] | |||
|
1002 | maxIndex = profileRangeList[1] | |||
|
1003 | profileList = list(range(minIndex, maxIndex+1)) | |||
|
1004 | ||||
|
1005 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |||
|
1006 | ||||
|
1007 | if rangeList != None: | |||
|
1008 | ||||
|
1009 | profileList = [] | |||
|
1010 | ||||
|
1011 | for thisRange in rangeList: | |||
|
1012 | minIndex = thisRange[0] | |||
|
1013 | maxIndex = thisRange[1] | |||
|
1014 | ||||
|
1015 | profileList.extend(list(range(minIndex, maxIndex+1))) | |||
|
1016 | ||||
|
1017 | dataOut.data = dataOut.data[:,profileList,:] | |||
|
1018 | ||||
|
1019 | dataOut.nProfiles = len(profileList) | |||
|
1020 | dataOut.profileIndex = dataOut.nProfiles - 1 | |||
|
1021 | dataOut.flagNoData = False | |||
|
1022 | ||||
|
1023 | return dataOut | |||
|
1024 | ||||
|
1025 | """ | |||
|
1026 | data dimension = [nChannels, nHeis] | |||
|
1027 | """ | |||
|
1028 | ||||
|
1029 | if profileList != None: | |||
|
1030 | ||||
|
1031 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |||
|
1032 | ||||
|
1033 | self.nProfiles = len(profileList) | |||
|
1034 | dataOut.nProfiles = self.nProfiles | |||
|
1035 | dataOut.profileIndex = self.profileIndex | |||
|
1036 | dataOut.flagNoData = False | |||
|
1037 | ||||
|
1038 | self.incProfileIndex() | |||
|
1039 | return dataOut | |||
|
1040 | ||||
|
1041 | if profileRangeList != None: | |||
|
1042 | ||||
|
1043 | minIndex = profileRangeList[0] | |||
|
1044 | maxIndex = profileRangeList[1] | |||
|
1045 | ||||
|
1046 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |||
|
1047 | ||||
|
1048 | self.nProfiles = maxIndex - minIndex + 1 | |||
|
1049 | dataOut.nProfiles = self.nProfiles | |||
|
1050 | dataOut.profileIndex = self.profileIndex | |||
|
1051 | dataOut.flagNoData = False | |||
|
1052 | ||||
|
1053 | self.incProfileIndex() | |||
|
1054 | return dataOut | |||
|
1055 | ||||
|
1056 | if rangeList != None: | |||
|
1057 | ||||
|
1058 | nProfiles = 0 | |||
|
1059 | ||||
|
1060 | for thisRange in rangeList: | |||
|
1061 | minIndex = thisRange[0] | |||
|
1062 | maxIndex = thisRange[1] | |||
|
1063 | ||||
|
1064 | nProfiles += maxIndex - minIndex + 1 | |||
|
1065 | ||||
|
1066 | for thisRange in rangeList: | |||
|
1067 | ||||
|
1068 | minIndex = thisRange[0] | |||
|
1069 | maxIndex = thisRange[1] | |||
|
1070 | ||||
|
1071 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |||
|
1072 | ||||
|
1073 | self.nProfiles = nProfiles | |||
|
1074 | dataOut.nProfiles = self.nProfiles | |||
|
1075 | dataOut.profileIndex = self.profileIndex | |||
|
1076 | dataOut.flagNoData = False | |||
|
1077 | ||||
|
1078 | self.incProfileIndex() | |||
|
1079 | ||||
|
1080 | break | |||
|
1081 | ||||
|
1082 | return dataOut | |||
|
1083 | ||||
|
1084 | ||||
|
1085 | if beam != None: #beam is only for AMISR data | |||
|
1086 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |||
|
1087 | dataOut.flagNoData = False | |||
|
1088 | dataOut.profileIndex = self.profileIndex | |||
|
1089 | ||||
|
1090 | self.incProfileIndex() | |||
|
1091 | ||||
|
1092 | return dataOut | |||
|
1093 | ||||
|
1094 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |||
|
1095 | ||||
|
1096 | #return False | |||
|
1097 | return dataOut | |||
|
1098 | ||||
|
1099 | class Reshaper(Operation): | |||
|
1100 | ||||
|
1101 | def __init__(self, **kwargs): | |||
|
1102 | ||||
|
1103 | Operation.__init__(self, **kwargs) | |||
|
1104 | ||||
|
1105 | self.__buffer = None | |||
|
1106 | self.__nitems = 0 | |||
|
1107 | ||||
|
1108 | def __appendProfile(self, dataOut, nTxs): | |||
|
1109 | ||||
|
1110 | if self.__buffer is None: | |||
|
1111 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |||
|
1112 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |||
|
1113 | ||||
|
1114 | ini = dataOut.nHeights * self.__nitems | |||
|
1115 | end = ini + dataOut.nHeights | |||
|
1116 | ||||
|
1117 | self.__buffer[:, ini:end] = dataOut.data | |||
|
1118 | ||||
|
1119 | self.__nitems += 1 | |||
|
1120 | ||||
|
1121 | return int(self.__nitems*nTxs) | |||
|
1122 | ||||
|
1123 | def __getBuffer(self): | |||
|
1124 | ||||
|
1125 | if self.__nitems == int(1./self.__nTxs): | |||
|
1126 | ||||
|
1127 | self.__nitems = 0 | |||
|
1128 | ||||
|
1129 | return self.__buffer.copy() | |||
|
1130 | ||||
|
1131 | return None | |||
|
1132 | ||||
|
1133 | def __checkInputs(self, dataOut, shape, nTxs): | |||
|
1134 | ||||
|
1135 | if shape is None and nTxs is None: | |||
|
1136 | raise ValueError("Reshaper: shape of factor should be defined") | |||
|
1137 | ||||
|
1138 | if nTxs: | |||
|
1139 | if nTxs < 0: | |||
|
1140 | raise ValueError("nTxs should be greater than 0") | |||
|
1141 | ||||
|
1142 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |||
|
1143 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) | |||
|
1144 | ||||
|
1145 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |||
|
1146 | ||||
|
1147 | return shape, nTxs | |||
|
1148 | ||||
|
1149 | if len(shape) != 2 and len(shape) != 3: | |||
|
1150 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |||
|
1151 | ||||
|
1152 | if len(shape) == 2: | |||
|
1153 | shape_tuple = [dataOut.nChannels] | |||
|
1154 | shape_tuple.extend(shape) | |||
|
1155 | else: | |||
|
1156 | shape_tuple = list(shape) | |||
|
1157 | ||||
|
1158 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |||
|
1159 | ||||
|
1160 | return shape_tuple, nTxs | |||
|
1161 | ||||
|
1162 | def run(self, dataOut, shape=None, nTxs=None): | |||
|
1163 | ||||
|
1164 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |||
|
1165 | ||||
|
1166 | dataOut.flagNoData = True | |||
|
1167 | profileIndex = None | |||
|
1168 | ||||
|
1169 | if dataOut.flagDataAsBlock: | |||
|
1170 | ||||
|
1171 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |||
|
1172 | dataOut.flagNoData = False | |||
|
1173 | ||||
|
1174 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |||
|
1175 | ||||
|
1176 | else: | |||
|
1177 | ||||
|
1178 | if self.__nTxs < 1: | |||
|
1179 | ||||
|
1180 | self.__appendProfile(dataOut, self.__nTxs) | |||
|
1181 | new_data = self.__getBuffer() | |||
|
1182 | ||||
|
1183 | if new_data is not None: | |||
|
1184 | dataOut.data = new_data | |||
|
1185 | dataOut.flagNoData = False | |||
|
1186 | ||||
|
1187 | profileIndex = dataOut.profileIndex*nTxs | |||
|
1188 | ||||
|
1189 | else: | |||
|
1190 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |||
|
1191 | ||||
|
1192 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
1193 | ||||
|
1194 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |||
|
1195 | ||||
|
1196 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |||
|
1197 | ||||
|
1198 | dataOut.profileIndex = profileIndex | |||
|
1199 | ||||
|
1200 | dataOut.ippSeconds /= self.__nTxs | |||
|
1201 | ||||
|
1202 | return dataOut | |||
|
1203 | ||||
|
1204 | class SplitProfiles(Operation): | |||
|
1205 | ||||
|
1206 | def __init__(self, **kwargs): | |||
|
1207 | ||||
|
1208 | Operation.__init__(self, **kwargs) | |||
|
1209 | ||||
|
1210 | def run(self, dataOut, n): | |||
|
1211 | ||||
|
1212 | dataOut.flagNoData = True | |||
|
1213 | profileIndex = None | |||
|
1214 | ||||
|
1215 | if dataOut.flagDataAsBlock: | |||
|
1216 | ||||
|
1217 | #nchannels, nprofiles, nsamples | |||
|
1218 | shape = dataOut.data.shape | |||
|
1219 | ||||
|
1220 | if shape[2] % n != 0: | |||
|
1221 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) | |||
|
1222 | ||||
|
1223 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |||
|
1224 | ||||
|
1225 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |||
|
1226 | dataOut.flagNoData = False | |||
|
1227 | ||||
|
1228 | profileIndex = int(dataOut.nProfiles/n) - 1 | |||
|
1229 | ||||
|
1230 | else: | |||
|
1231 | ||||
|
1232 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |||
|
1233 | ||||
|
1234 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
1235 | ||||
|
1236 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |||
|
1237 | ||||
|
1238 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |||
|
1239 | ||||
|
1240 | dataOut.profileIndex = profileIndex | |||
|
1241 | ||||
|
1242 | dataOut.ippSeconds /= n | |||
|
1243 | ||||
|
1244 | return dataOut | |||
|
1245 | ||||
|
1246 | class CombineProfiles(Operation): | |||
|
1247 | def __init__(self, **kwargs): | |||
|
1248 | ||||
|
1249 | Operation.__init__(self, **kwargs) | |||
|
1250 | ||||
|
1251 | self.__remData = None | |||
|
1252 | self.__profileIndex = 0 | |||
|
1253 | ||||
|
1254 | def run(self, dataOut, n): | |||
|
1255 | ||||
|
1256 | dataOut.flagNoData = True | |||
|
1257 | profileIndex = None | |||
|
1258 | ||||
|
1259 | if dataOut.flagDataAsBlock: | |||
|
1260 | ||||
|
1261 | #nchannels, nprofiles, nsamples | |||
|
1262 | shape = dataOut.data.shape | |||
|
1263 | new_shape = shape[0], shape[1]/n, shape[2]*n | |||
|
1264 | ||||
|
1265 | if shape[1] % n != 0: | |||
|
1266 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) | |||
|
1267 | ||||
|
1268 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |||
|
1269 | dataOut.flagNoData = False | |||
|
1270 | ||||
|
1271 | profileIndex = int(dataOut.nProfiles*n) - 1 | |||
|
1272 | ||||
|
1273 | else: | |||
|
1274 | ||||
|
1275 | #nchannels, nsamples | |||
|
1276 | if self.__remData is None: | |||
|
1277 | newData = dataOut.data | |||
|
1278 | else: | |||
|
1279 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |||
|
1280 | ||||
|
1281 | self.__profileIndex += 1 | |||
|
1282 | ||||
|
1283 | if self.__profileIndex < n: | |||
|
1284 | self.__remData = newData | |||
|
1285 | #continue | |||
|
1286 | return | |||
|
1287 | ||||
|
1288 | self.__profileIndex = 0 | |||
|
1289 | self.__remData = None | |||
|
1290 | ||||
|
1291 | dataOut.data = newData | |||
|
1292 | dataOut.flagNoData = False | |||
|
1293 | ||||
|
1294 | profileIndex = dataOut.profileIndex/n | |||
|
1295 | ||||
|
1296 | ||||
|
1297 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
1298 | ||||
|
1299 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |||
|
1300 | ||||
|
1301 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |||
|
1302 | ||||
|
1303 | dataOut.profileIndex = profileIndex | |||
|
1304 | ||||
|
1305 | dataOut.ippSeconds *= n | |||
|
1306 | ||||
|
1307 | return dataOut | |||
|
1308 | ||||
|
1309 | class PulsePairVoltage(Operation): | |||
|
1310 | ''' | |||
|
1311 | Function PulsePair(Signal Power, Velocity) | |||
|
1312 | The real component of Lag[0] provides Intensity Information | |||
|
1313 | The imag component of Lag[1] Phase provides Velocity Information | |||
|
1314 | ||||
|
1315 | Configuration Parameters: | |||
|
1316 | nPRF = Number of Several PRF | |||
|
1317 | theta = Degree Azimuth angel Boundaries | |||
|
1318 | ||||
|
1319 | Input: | |||
|
1320 | self.dataOut | |||
|
1321 | lag[N] | |||
|
1322 | Affected: | |||
|
1323 | self.dataOut.spc | |||
|
1324 | ''' | |||
|
1325 | isConfig = False | |||
|
1326 | __profIndex = 0 | |||
|
1327 | __initime = None | |||
|
1328 | __lastdatatime = None | |||
|
1329 | __buffer = None | |||
|
1330 | noise = None | |||
|
1331 | __dataReady = False | |||
|
1332 | n = None | |||
|
1333 | __nch = 0 | |||
|
1334 | __nHeis = 0 | |||
|
1335 | removeDC = False | |||
|
1336 | ipp = None | |||
|
1337 | lambda_ = 0 | |||
|
1338 | ||||
|
1339 | def __init__(self,**kwargs): | |||
|
1340 | Operation.__init__(self,**kwargs) | |||
|
1341 | ||||
|
1342 | def setup(self, dataOut, n = None, removeDC=False): | |||
|
1343 | ''' | |||
|
1344 | n= Numero de PRF's de entrada | |||
|
1345 | ''' | |||
|
1346 | self.__initime = None | |||
|
1347 | self.__lastdatatime = 0 | |||
|
1348 | self.__dataReady = False | |||
|
1349 | self.__buffer = 0 | |||
|
1350 | self.__profIndex = 0 | |||
|
1351 | self.noise = None | |||
|
1352 | self.__nch = dataOut.nChannels | |||
|
1353 | self.__nHeis = dataOut.nHeights | |||
|
1354 | self.removeDC = removeDC | |||
|
1355 | self.lambda_ = 3.0e8/(9345.0e6) | |||
|
1356 | self.ippSec = dataOut.ippSeconds | |||
|
1357 | self.nCohInt = dataOut.nCohInt | |||
|
1358 | print("IPPseconds",dataOut.ippSeconds) | |||
|
1359 | ||||
|
1360 | print("ELVALOR DE n es:", n) | |||
|
1361 | if n == None: | |||
|
1362 | raise ValueError("n should be specified.") | |||
|
1363 | ||||
|
1364 | if n != None: | |||
|
1365 | if n<2: | |||
|
1366 | raise ValueError("n should be greater than 2") | |||
|
1367 | ||||
|
1368 | self.n = n | |||
|
1369 | self.__nProf = n | |||
|
1370 | ||||
|
1371 | self.__buffer = numpy.zeros((dataOut.nChannels, | |||
|
1372 | n, | |||
|
1373 | dataOut.nHeights), | |||
|
1374 | dtype='complex') | |||
|
1375 | ||||
|
1376 | def putData(self,data): | |||
|
1377 | ''' | |||
|
1378 | Add a profile to he __buffer and increase in one the __profiel Index | |||
|
1379 | ''' | |||
|
1380 | self.__buffer[:,self.__profIndex,:]= data | |||
|
1381 | self.__profIndex += 1 | |||
|
1382 | return | |||
|
1383 | ||||
|
1384 | def pushData(self,dataOut): | |||
|
1385 | ''' | |||
|
1386 | Return the PULSEPAIR and the profiles used in the operation | |||
|
1387 | Affected : self.__profileIndex | |||
|
1388 | ''' | |||
|
1389 | #----------------- Remove DC----------------------------------- | |||
|
1390 | if self.removeDC==True: | |||
|
1391 | mean = numpy.mean(self.__buffer,1) | |||
|
1392 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |||
|
1393 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |||
|
1394 | self.__buffer = self.__buffer - dc | |||
|
1395 | #------------------Calculo de Potencia ------------------------ | |||
|
1396 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |||
|
1397 | pair0 = pair0.real | |||
|
1398 | lag_0 = numpy.sum(pair0,1) | |||
|
1399 | #------------------Calculo de Ruido x canal-------------------- | |||
|
1400 | self.noise = numpy.zeros(self.__nch) | |||
|
1401 | for i in range(self.__nch): | |||
|
1402 | daux = numpy.sort(pair0[i,:,:],axis= None) | |||
|
1403 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |||
|
1404 | ||||
|
1405 | self.noise = self.noise.reshape(self.__nch,1) | |||
|
1406 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |||
|
1407 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |||
|
1408 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |||
|
1409 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |||
|
1410 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |||
|
1411 | #-------------------- Power -------------------------------------------------- | |||
|
1412 | data_power = lag_0/(self.n*self.nCohInt) | |||
|
1413 | #------------------ Senal --------------------------------------------------- | |||
|
1414 | data_intensity = pair0 - noise_buffer | |||
|
1415 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |||
|
1416 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |||
|
1417 | for i in range(self.__nch): | |||
|
1418 | for j in range(self.__nHeis): | |||
|
1419 | if data_intensity[i][j] < 0: | |||
|
1420 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |||
|
1421 | ||||
|
1422 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |||
|
1423 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |||
|
1424 | lag_1 = numpy.sum(pair1,1) | |||
|
1425 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |||
|
1426 | data_velocity = (self.lambda_/2.0)*data_freq | |||
|
1427 | ||||
|
1428 | #---------------- Potencia promedio estimada de la Senal----------- | |||
|
1429 | lag_0 = lag_0/self.n | |||
|
1430 | S = lag_0-self.noise | |||
|
1431 | ||||
|
1432 | #---------------- Frecuencia Doppler promedio --------------------- | |||
|
1433 | lag_1 = lag_1/(self.n-1) | |||
|
1434 | R1 = numpy.abs(lag_1) | |||
|
1435 | ||||
|
1436 | #---------------- Calculo del SNR---------------------------------- | |||
|
1437 | data_snrPP = S/self.noise | |||
|
1438 | for i in range(self.__nch): | |||
|
1439 | for j in range(self.__nHeis): | |||
|
1440 | if data_snrPP[i][j] < 1.e-20: | |||
|
1441 | data_snrPP[i][j] = 1.e-20 | |||
|
1442 | ||||
|
1443 | #----------------- Calculo del ancho espectral ---------------------- | |||
|
1444 | L = S/R1 | |||
|
1445 | L = numpy.where(L<0,1,L) | |||
|
1446 | L = numpy.log(L) | |||
|
1447 | tmp = numpy.sqrt(numpy.absolute(L)) | |||
|
1448 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |||
|
1449 | n = self.__profIndex | |||
|
1450 | ||||
|
1451 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |||
|
1452 | self.__profIndex = 0 | |||
|
1453 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n | |||
|
1454 | ||||
|
1455 | ||||
|
1456 | def pulsePairbyProfiles(self,dataOut): | |||
|
1457 | ||||
|
1458 | self.__dataReady = False | |||
|
1459 | data_power = None | |||
|
1460 | data_intensity = None | |||
|
1461 | data_velocity = None | |||
|
1462 | data_specwidth = None | |||
|
1463 | data_snrPP = None | |||
|
1464 | self.putData(data=dataOut.data) | |||
|
1465 | if self.__profIndex == self.n: | |||
|
1466 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |||
|
1467 | self.__dataReady = True | |||
|
1468 | ||||
|
1469 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |||
|
1470 | ||||
|
1471 | ||||
|
1472 | def pulsePairOp(self, dataOut, datatime= None): | |||
|
1473 | ||||
|
1474 | if self.__initime == None: | |||
|
1475 | self.__initime = datatime | |||
|
1476 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |||
|
1477 | self.__lastdatatime = datatime | |||
|
1478 | ||||
|
1479 | if data_power is None: | |||
|
1480 | return None, None, None,None,None,None | |||
|
1481 | ||||
|
1482 | avgdatatime = self.__initime | |||
|
1483 | deltatime = datatime - self.__lastdatatime | |||
|
1484 | self.__initime = datatime | |||
|
1485 | ||||
|
1486 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |||
|
1487 | ||||
|
1488 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |||
|
1489 | ||||
|
1490 | if not self.isConfig: | |||
|
1491 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |||
|
1492 | self.isConfig = True | |||
|
1493 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |||
|
1494 | dataOut.flagNoData = True | |||
|
1495 | ||||
|
1496 | if self.__dataReady: | |||
|
1497 | dataOut.nCohInt *= self.n | |||
|
1498 | dataOut.dataPP_POW = data_intensity # S | |||
|
1499 | dataOut.dataPP_POWER = data_power # P | |||
|
1500 | dataOut.dataPP_DOP = data_velocity | |||
|
1501 | dataOut.dataPP_SNR = data_snrPP | |||
|
1502 | dataOut.dataPP_WIDTH = data_specwidth | |||
|
1503 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |||
|
1504 | dataOut.utctime = avgdatatime | |||
|
1505 | dataOut.flagNoData = False | |||
|
1506 | return dataOut | |||
|
1507 | ||||
|
1508 | ||||
|
1509 | ||||
|
1510 | # import collections | |||
|
1511 | # from scipy.stats import mode | |||
|
1512 | # | |||
|
1513 | # class Synchronize(Operation): | |||
|
1514 | # | |||
|
1515 | # isConfig = False | |||
|
1516 | # __profIndex = 0 | |||
|
1517 | # | |||
|
1518 | # def __init__(self, **kwargs): | |||
|
1519 | # | |||
|
1520 | # Operation.__init__(self, **kwargs) | |||
|
1521 | # # self.isConfig = False | |||
|
1522 | # self.__powBuffer = None | |||
|
1523 | # self.__startIndex = 0 | |||
|
1524 | # self.__pulseFound = False | |||
|
1525 | # | |||
|
1526 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |||
|
1527 | # | |||
|
1528 | # #Read data | |||
|
1529 | # | |||
|
1530 | # powerdB = dataOut.getPower(channel = channel) | |||
|
1531 | # noisedB = dataOut.getNoise(channel = channel)[0] | |||
|
1532 | # | |||
|
1533 | # self.__powBuffer.extend(powerdB.flatten()) | |||
|
1534 | # | |||
|
1535 | # dataArray = numpy.array(self.__powBuffer) | |||
|
1536 | # | |||
|
1537 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |||
|
1538 | # | |||
|
1539 | # maxValue = numpy.nanmax(filteredPower) | |||
|
1540 | # | |||
|
1541 | # if maxValue < noisedB + 10: | |||
|
1542 | # #No se encuentra ningun pulso de transmision | |||
|
1543 | # return None | |||
|
1544 | # | |||
|
1545 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |||
|
1546 | # | |||
|
1547 | # if len(maxValuesIndex) < 2: | |||
|
1548 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |||
|
1549 | # return None | |||
|
1550 | # | |||
|
1551 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |||
|
1552 | # | |||
|
1553 | # #Seleccionar solo valores con un espaciamiento de nSamples | |||
|
1554 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |||
|
1555 | # | |||
|
1556 | # if len(pulseIndex) < 2: | |||
|
1557 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |||
|
1558 | # return None | |||
|
1559 | # | |||
|
1560 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |||
|
1561 | # | |||
|
1562 | # #remover senales que se distancien menos de 10 unidades o muestras | |||
|
1563 | # #(No deberian existir IPP menor a 10 unidades) | |||
|
1564 | # | |||
|
1565 | # realIndex = numpy.where(spacing > 10 )[0] | |||
|
1566 | # | |||
|
1567 | # if len(realIndex) < 2: | |||
|
1568 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |||
|
1569 | # return None | |||
|
1570 | # | |||
|
1571 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |||
|
1572 | # realPulseIndex = pulseIndex[realIndex] | |||
|
1573 | # | |||
|
1574 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |||
|
1575 | # | |||
|
1576 | # print "IPP = %d samples" %period | |||
|
1577 | # | |||
|
1578 | # self.__newNSamples = dataOut.nHeights #int(period) | |||
|
1579 | # self.__startIndex = int(realPulseIndex[0]) | |||
|
1580 | # | |||
|
1581 | # return 1 | |||
|
1582 | # | |||
|
1583 | # | |||
|
1584 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |||
|
1585 | # | |||
|
1586 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |||
|
1587 | # maxlen = buffer_size*nSamples) | |||
|
1588 | # | |||
|
1589 | # bufferList = [] | |||
|
1590 | # | |||
|
1591 | # for i in range(nChannels): | |||
|
1592 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |||
|
1593 | # maxlen = buffer_size*nSamples) | |||
|
1594 | # | |||
|
1595 | # bufferList.append(bufferByChannel) | |||
|
1596 | # | |||
|
1597 | # self.__nSamples = nSamples | |||
|
1598 | # self.__nChannels = nChannels | |||
|
1599 | # self.__bufferList = bufferList | |||
|
1600 | # | |||
|
1601 | # def run(self, dataOut, channel = 0): | |||
|
1602 | # | |||
|
1603 | # if not self.isConfig: | |||
|
1604 | # nSamples = dataOut.nHeights | |||
|
1605 | # nChannels = dataOut.nChannels | |||
|
1606 | # self.setup(nSamples, nChannels) | |||
|
1607 | # self.isConfig = True | |||
|
1608 | # | |||
|
1609 | # #Append new data to internal buffer | |||
|
1610 | # for thisChannel in range(self.__nChannels): | |||
|
1611 | # bufferByChannel = self.__bufferList[thisChannel] | |||
|
1612 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |||
|
1613 | # | |||
|
1614 | # if self.__pulseFound: | |||
|
1615 | # self.__startIndex -= self.__nSamples | |||
|
1616 | # | |||
|
1617 | # #Finding Tx Pulse | |||
|
1618 | # if not self.__pulseFound: | |||
|
1619 | # indexFound = self.__findTxPulse(dataOut, channel) | |||
|
1620 | # | |||
|
1621 | # if indexFound == None: | |||
|
1622 | # dataOut.flagNoData = True | |||
|
1623 | # return | |||
|
1624 | # | |||
|
1625 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |||
|
1626 | # self.__pulseFound = True | |||
|
1627 | # self.__startIndex = indexFound | |||
|
1628 | # | |||
|
1629 | # #If pulse was found ... | |||
|
1630 | # for thisChannel in range(self.__nChannels): | |||
|
1631 | # bufferByChannel = self.__bufferList[thisChannel] | |||
|
1632 | # #print self.__startIndex | |||
|
1633 | # x = numpy.array(bufferByChannel) | |||
|
1634 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |||
|
1635 | # | |||
|
1636 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
1637 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |||
|
1638 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |||
|
1639 | # | |||
|
1640 | # dataOut.data = self.__arrayBuffer | |||
|
1641 | # | |||
|
1642 | # self.__startIndex += self.__newNSamples | |||
|
1643 | # | |||
|
1644 | # return No newline at end of file |
This diff has been collapsed as it changes many lines, (833 lines changed) Show them Hide them | |||||
@@ -0,0 +1,833 | |||||
|
1 | class SpectralFitting(Operation): | |||
|
2 | ''' | |||
|
3 | Function GetMoments() | |||
|
4 | ||||
|
5 | Input: | |||
|
6 | Output: | |||
|
7 | Variables modified: | |||
|
8 | ''' | |||
|
9 | isConfig = False | |||
|
10 | __dataReady = False | |||
|
11 | bloques = None | |||
|
12 | bloque0 = None | |||
|
13 | index = 0 | |||
|
14 | fint = 0 | |||
|
15 | buffer = 0 | |||
|
16 | buffer2 = 0 | |||
|
17 | buffer3 = 0 | |||
|
18 | ||||
|
19 | def __init__(self): | |||
|
20 | Operation.__init__(self) | |||
|
21 | self.i=0 | |||
|
22 | self.isConfig = False | |||
|
23 | ||||
|
24 | ||||
|
25 | def setup(self,nChan,nProf,nHei,nBlocks): | |||
|
26 | self.__dataReady = False | |||
|
27 | self.bloques = numpy.zeros([2, nProf, nHei,nBlocks], dtype= complex) | |||
|
28 | self.bloque0 = numpy.zeros([nChan, nProf, nHei, nBlocks]) | |||
|
29 | ||||
|
30 | def __calculateMoments(self,oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |||
|
31 | ||||
|
32 | if (nicoh is None): nicoh = 1 | |||
|
33 | if (graph is None): graph = 0 | |||
|
34 | if (smooth is None): smooth = 0 | |||
|
35 | elif (self.smooth < 3): smooth = 0 | |||
|
36 | ||||
|
37 | if (type1 is None): type1 = 0 | |||
|
38 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |||
|
39 | if (snrth is None): snrth = -3 | |||
|
40 | if (dc is None): dc = 0 | |||
|
41 | if (aliasing is None): aliasing = 0 | |||
|
42 | if (oldfd is None): oldfd = 0 | |||
|
43 | if (wwauto is None): wwauto = 0 | |||
|
44 | ||||
|
45 | if (n0 < 1.e-20): n0 = 1.e-20 | |||
|
46 | ||||
|
47 | freq = oldfreq | |||
|
48 | vec_power = numpy.zeros(oldspec.shape[1]) | |||
|
49 | vec_fd = numpy.zeros(oldspec.shape[1]) | |||
|
50 | vec_w = numpy.zeros(oldspec.shape[1]) | |||
|
51 | vec_snr = numpy.zeros(oldspec.shape[1]) | |||
|
52 | ||||
|
53 | oldspec = numpy.ma.masked_invalid(oldspec) | |||
|
54 | ||||
|
55 | for ind in range(oldspec.shape[1]): | |||
|
56 | ||||
|
57 | spec = oldspec[:,ind] | |||
|
58 | aux = spec*fwindow | |||
|
59 | max_spec = aux.max() | |||
|
60 | m = list(aux).index(max_spec) | |||
|
61 | ||||
|
62 | #Smooth | |||
|
63 | if (smooth == 0): spec2 = spec | |||
|
64 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |||
|
65 | ||||
|
66 | # Calculo de Momentos | |||
|
67 | bb = spec2[list(range(m,spec2.size))] | |||
|
68 | bb = (bb<n0).nonzero() | |||
|
69 | bb = bb[0] | |||
|
70 | ||||
|
71 | ss = spec2[list(range(0,m + 1))] | |||
|
72 | ss = (ss<n0).nonzero() | |||
|
73 | ss = ss[0] | |||
|
74 | ||||
|
75 | if (bb.size == 0): | |||
|
76 | bb0 = spec.size - 1 - m | |||
|
77 | else: | |||
|
78 | bb0 = bb[0] - 1 | |||
|
79 | if (bb0 < 0): | |||
|
80 | bb0 = 0 | |||
|
81 | ||||
|
82 | if (ss.size == 0): ss1 = 1 | |||
|
83 | else: ss1 = max(ss) + 1 | |||
|
84 | ||||
|
85 | if (ss1 > m): ss1 = m | |||
|
86 | ||||
|
87 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 | |||
|
88 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |||
|
89 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |||
|
90 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |||
|
91 | snr = (spec2.mean()-n0)/n0 | |||
|
92 | ||||
|
93 | if (snr < 1.e-20) : | |||
|
94 | snr = 1.e-20 | |||
|
95 | ||||
|
96 | vec_power[ind] = power | |||
|
97 | vec_fd[ind] = fd | |||
|
98 | vec_w[ind] = w | |||
|
99 | vec_snr[ind] = snr | |||
|
100 | ||||
|
101 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |||
|
102 | return moments | |||
|
103 | ||||
|
104 | def __DiffCoherent(self, spectra, cspectra, dataOut, noise, snrth, coh_th, hei_th): | |||
|
105 | ||||
|
106 | nProf = dataOut.nProfiles | |||
|
107 | heights = dataOut.heightList | |||
|
108 | nHei = len(heights) | |||
|
109 | channels = dataOut.channelList | |||
|
110 | nChan = len(channels) | |||
|
111 | crosspairs = dataOut.groupList | |||
|
112 | nPairs = len(crosspairs) | |||
|
113 | #Separar espectros incoherentes de coherentes snr > 20 dB' | |||
|
114 | snr_th = 10**(snrth/10.0) | |||
|
115 | my_incoh_spectra = numpy.zeros([nChan, nProf,nHei], dtype='float') | |||
|
116 | my_incoh_cspectra = numpy.zeros([nPairs,nProf, nHei], dtype='complex') | |||
|
117 | my_incoh_aver = numpy.zeros([nChan, nHei]) | |||
|
118 | my_coh_aver = numpy.zeros([nChan, nHei]) | |||
|
119 | ||||
|
120 | coh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |||
|
121 | coh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |||
|
122 | coh_aver = numpy.zeros([nChan, nHei]) | |||
|
123 | ||||
|
124 | incoh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |||
|
125 | incoh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |||
|
126 | incoh_aver = numpy.zeros([nChan, nHei]) | |||
|
127 | power = numpy.sum(spectra, axis=1) | |||
|
128 | ||||
|
129 | if coh_th == None : coh_th = numpy.array([0.75,0.65,0.15]) # 0.65 | |||
|
130 | if hei_th == None : hei_th = numpy.array([60,300,650]) | |||
|
131 | for ic in range(nPairs): | |||
|
132 | pair = crosspairs[ic] | |||
|
133 | #si el SNR es mayor que el SNR threshold los datos se toman coherentes | |||
|
134 | s_n0 = power[pair[0],:]/noise[pair[0]] | |||
|
135 | s_n1 = power[pair[1],:]/noise[pair[1]] | |||
|
136 | valid1 =(s_n0>=snr_th).nonzero() | |||
|
137 | valid2 = (s_n1>=snr_th).nonzero() | |||
|
138 | valid1 = numpy.array(valid1[0]) | |||
|
139 | valid2 = numpy.array(valid2[0]) | |||
|
140 | valid = valid1 | |||
|
141 | for iv in range(len(valid2)): | |||
|
142 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
143 | if len(indv[0]) == 0 : | |||
|
144 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |||
|
145 | if len(valid)>0: | |||
|
146 | my_coh_aver[pair[0],valid]=1 | |||
|
147 | my_coh_aver[pair[1],valid]=1 | |||
|
148 | # si la coherencia es mayor a la coherencia threshold los datos se toman | |||
|
149 | coh = numpy.squeeze(numpy.nansum(cspectra[ic,:,:], axis=0)/numpy.sqrt(numpy.nansum(spectra[pair[0],:,:], axis=0)*numpy.nansum(spectra[pair[1],:,:], axis=0))) | |||
|
150 | for ih in range(len(hei_th)): | |||
|
151 | hvalid = (heights>hei_th[ih]).nonzero() | |||
|
152 | hvalid = hvalid[0] | |||
|
153 | if len(hvalid)>0: | |||
|
154 | valid = (numpy.absolute(coh[hvalid])>coh_th[ih]).nonzero() | |||
|
155 | valid = valid[0] | |||
|
156 | if len(valid)>0: | |||
|
157 | my_coh_aver[pair[0],hvalid[valid]] =1 | |||
|
158 | my_coh_aver[pair[1],hvalid[valid]] =1 | |||
|
159 | ||||
|
160 | coh_echoes = (my_coh_aver[pair[0],:] == 1).nonzero() | |||
|
161 | incoh_echoes = (my_coh_aver[pair[0],:] != 1).nonzero() | |||
|
162 | incoh_echoes = incoh_echoes[0] | |||
|
163 | if len(incoh_echoes) > 0: | |||
|
164 | my_incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |||
|
165 | my_incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |||
|
166 | my_incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |||
|
167 | my_incoh_aver[pair[0],incoh_echoes] = 1 | |||
|
168 | my_incoh_aver[pair[1],incoh_echoes] = 1 | |||
|
169 | ||||
|
170 | ||||
|
171 | for ic in range(nPairs): | |||
|
172 | pair = crosspairs[ic] | |||
|
173 | ||||
|
174 | valid1 =(my_coh_aver[pair[0],:]==1 ).nonzero() | |||
|
175 | valid2 = (my_coh_aver[pair[1],:]==1).nonzero() | |||
|
176 | valid1 = numpy.array(valid1[0]) | |||
|
177 | valid2 = numpy.array(valid2[0]) | |||
|
178 | valid = valid1 | |||
|
179 | ||||
|
180 | for iv in range(len(valid2)): | |||
|
181 | ||||
|
182 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
183 | if len(indv[0]) == 0 : | |||
|
184 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |||
|
185 | valid1 =(my_coh_aver[pair[0],:] !=1 ).nonzero() | |||
|
186 | valid2 = (my_coh_aver[pair[1],:] !=1).nonzero() | |||
|
187 | valid1 = numpy.array(valid1[0]) | |||
|
188 | valid2 = numpy.array(valid2[0]) | |||
|
189 | incoh_echoes = valid1 | |||
|
190 | for iv in range(len(valid2)): | |||
|
191 | ||||
|
192 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
193 | if len(indv[0]) == 0 : | |||
|
194 | incoh_echoes = numpy.concatenate(( incoh_echoes,valid2[iv]), axis=None) | |||
|
195 | ||||
|
196 | if len(valid)>0: | |||
|
197 | coh_spectra[pair[0],:,valid] = spectra[pair[0],:,valid] | |||
|
198 | coh_spectra[pair[1],:,valid] = spectra[pair[1],:,valid] | |||
|
199 | coh_cspectra[ic,:,valid] = cspectra[ic,:,valid] | |||
|
200 | coh_aver[pair[0],valid]=1 | |||
|
201 | coh_aver[pair[1],valid]=1 | |||
|
202 | if len(incoh_echoes)>0: | |||
|
203 | incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |||
|
204 | incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |||
|
205 | incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |||
|
206 | incoh_aver[pair[0],incoh_echoes]=1 | |||
|
207 | incoh_aver[pair[1],incoh_echoes]=1 | |||
|
208 | return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver | |||
|
209 | ||||
|
210 | ||||
|
211 | def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index): | |||
|
212 | ||||
|
213 | nProf = dataOut.nProfiles | |||
|
214 | heights = dataOut.heightList | |||
|
215 | nHei = len(heights) | |||
|
216 | channels = dataOut.channelList | |||
|
217 | nChan = len(channels) | |||
|
218 | crosspairs = dataOut.groupList | |||
|
219 | nPairs = len(crosspairs) | |||
|
220 | ||||
|
221 | absc = dataOut.abscissaList[:-1] | |||
|
222 | data_param = numpy.zeros((nChan, 4, spectra.shape[2])) | |||
|
223 | clean_coh_spectra = spectra.copy() | |||
|
224 | clean_coh_cspectra = cspectra.copy() | |||
|
225 | clean_coh_aver = coh_aver.copy() | |||
|
226 | ||||
|
227 | spwd_th=[10,6] #spwd_th[0] --> For satellites ; spwd_th[1] --> For special events like SUN. | |||
|
228 | coh_th = 0.75 | |||
|
229 | ||||
|
230 | rtime0 = [6,18] # periodo sin ESF | |||
|
231 | rtime1 = [10.5,13.5] # periodo con alta coherencia y alto ancho espectral (esperado): SOL. | |||
|
232 | ||||
|
233 | time = index*5./60 # en base a 5 min de proceso | |||
|
234 | if clean_coh_echoes == 1 : | |||
|
235 | for ind in range(nChan): | |||
|
236 | data_param[ind,:,:] = self.__calculateMoments( spectra[ind,:,:] , absc , noise[ind] ) | |||
|
237 | spwd = data_param[:,3] | |||
|
238 | # SPECB_JULIA,header=anal_header,jspectra=spectra,vel=velocities,hei=heights, num_aver=1, mode_fit=0,smoothing=smoothing,jvelr=velr,jspwd=spwd,jsnr=snr,jnoise=noise,jstdvnoise=stdvnoise | |||
|
239 | # para obtener spwd | |||
|
240 | for ic in range(nPairs): | |||
|
241 | pair = crosspairs[ic] | |||
|
242 | coh = numpy.squeeze(numpy.sum(cspectra[ic,:,:], axis=1)/numpy.sqrt(numpy.sum(spectra[pair[0],:,:], axis=1)*numpy.sum(spectra[pair[1],:,:], axis=1))) | |||
|
243 | for ih in range(nHei) : | |||
|
244 | # Considering heights higher than 200km in order to avoid removing phenomena like EEJ. | |||
|
245 | if heights[ih] >= 200 and coh_aver[pair[0],ih] == 1 and coh_aver[pair[1],ih] == 1 : | |||
|
246 | # Checking coherence | |||
|
247 | if (numpy.abs(coh[ih]) <= coh_th) or (time >= rtime0[0] and time <= rtime0[1]) : | |||
|
248 | # Checking spectral widths | |||
|
249 | if (spwd[pair[0],ih] > spwd_th[0]) or (spwd[pair[1],ih] > spwd_th[0]) : | |||
|
250 | # satelite | |||
|
251 | clean_coh_spectra[pair,ih,:] = 0.0 | |||
|
252 | clean_coh_cspectra[ic,ih,:] = 0.0 | |||
|
253 | clean_coh_aver[pair,ih] = 0 | |||
|
254 | else : | |||
|
255 | if ((spwd[pair[0],ih] < spwd_th[1]) or (spwd[pair[1],ih] < spwd_th[1])) : | |||
|
256 | # Especial event like sun. | |||
|
257 | clean_coh_spectra[pair,ih,:] = 0.0 | |||
|
258 | clean_coh_cspectra[ic,ih,:] = 0.0 | |||
|
259 | clean_coh_aver[pair,ih] = 0 | |||
|
260 | ||||
|
261 | return clean_coh_spectra, clean_coh_cspectra, clean_coh_aver | |||
|
262 | ||||
|
263 | def CleanRayleigh(self,dataOut,spectra,cspectra,save_drifts): | |||
|
264 | ||||
|
265 | rfunc = cspectra.copy() | |||
|
266 | n_funct = len(rfunc[0,:,0,0]) | |||
|
267 | val_spc = spectra*0.0 | |||
|
268 | val_cspc = cspectra*0.0 | |||
|
269 | in_sat_spectra = spectra.copy() | |||
|
270 | in_sat_cspectra = cspectra.copy() | |||
|
271 | ||||
|
272 | min_hei = 200 | |||
|
273 | nProf = dataOut.nProfiles | |||
|
274 | heights = dataOut.heightList | |||
|
275 | nHei = len(heights) | |||
|
276 | channels = dataOut.channelList | |||
|
277 | nChan = len(channels) | |||
|
278 | crosspairs = dataOut.groupList | |||
|
279 | nPairs = len(crosspairs) | |||
|
280 | hval=(heights >= min_hei).nonzero() | |||
|
281 | ih=hval[0] | |||
|
282 | for ih in range(hval[0][0],nHei): | |||
|
283 | for ifreq in range(nProf): | |||
|
284 | for ii in range(n_funct): | |||
|
285 | ||||
|
286 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) | |||
|
287 | val = (numpy.isfinite(func2clean)==True).nonzero() | |||
|
288 | if len(val)>0: | |||
|
289 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |||
|
290 | if min_val <= -40 : min_val = -40 | |||
|
291 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |||
|
292 | if max_val >= 200 : max_val = 200 | |||
|
293 | step = 1 | |||
|
294 | #Getting bins and the histogram | |||
|
295 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |||
|
296 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |||
|
297 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |||
|
298 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |||
|
299 | parg = [numpy.amax(y_dist),mean,sigma] | |||
|
300 | try : | |||
|
301 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |||
|
302 | mode = gauss_fit[1] | |||
|
303 | stdv = gauss_fit[2] | |||
|
304 | except: | |||
|
305 | mode = mean | |||
|
306 | stdv = sigma | |||
|
307 | ||||
|
308 | #Removing echoes greater than mode + 3*stdv | |||
|
309 | factor_stdv = 2.5 | |||
|
310 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |||
|
311 | ||||
|
312 | if len(noval[0]) > 0: | |||
|
313 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |||
|
314 | cross_pairs = crosspairs[ii] | |||
|
315 | #Getting coherent echoes which are removed. | |||
|
316 | if len(novall[0]) > 0: | |||
|
317 | val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |||
|
318 | val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |||
|
319 | val_cspc[novall[0],ii,ifreq,ih] = 1 | |||
|
320 | #Removing coherent from ISR data | |||
|
321 | spectra[noval,cross_pairs[0],ifreq,ih] = numpy.nan | |||
|
322 | spectra[noval,cross_pairs[1],ifreq,ih] = numpy.nan | |||
|
323 | cspectra[noval,ii,ifreq,ih] = numpy.nan | |||
|
324 | ||||
|
325 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |||
|
326 | out_spectra = numpy.zeros([nChan,nProf,nHei], dtype=float) #+numpy.nan | |||
|
327 | out_cspectra = numpy.zeros([nPairs,nProf,nHei], dtype=complex) #+numpy.nan | |||
|
328 | for ih in range(nHei): | |||
|
329 | for ifreq in range(nProf): | |||
|
330 | for ich in range(nChan): | |||
|
331 | tmp = spectra[:,ich,ifreq,ih] | |||
|
332 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |||
|
333 | if len(valid[0]) >0 : | |||
|
334 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
335 | for icr in range(nPairs): | |||
|
336 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |||
|
337 | valid = (numpy.isfinite(tmp)==True).nonzero() | |||
|
338 | if len(valid[0]) > 0: | |||
|
339 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
340 | #Removing fake coherent echoes (at least 4 points around the point) | |||
|
341 | val_spectra = numpy.sum(val_spc,0) | |||
|
342 | val_cspectra = numpy.sum(val_cspc,0) | |||
|
343 | ||||
|
344 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) | |||
|
345 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) | |||
|
346 | ||||
|
347 | for i in range(nChan): | |||
|
348 | for j in range(nProf): | |||
|
349 | for k in range(nHei): | |||
|
350 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : | |||
|
351 | val_spc[:,i,j,k] = 0.0 | |||
|
352 | for i in range(nPairs): | |||
|
353 | for j in range(nProf): | |||
|
354 | for k in range(nHei): | |||
|
355 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : | |||
|
356 | val_cspc[:,i,j,k] = 0.0 | |||
|
357 | ||||
|
358 | tmp_sat_spectra = spectra.copy() | |||
|
359 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan | |||
|
360 | tmp_sat_cspectra = cspectra.copy() | |||
|
361 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan | |||
|
362 | val = (val_spc > 0).nonzero() | |||
|
363 | if len(val[0]) > 0: | |||
|
364 | tmp_sat_spectra[val] = in_sat_spectra[val] | |||
|
365 | ||||
|
366 | val = (val_cspc > 0).nonzero() | |||
|
367 | if len(val[0]) > 0: | |||
|
368 | tmp_sat_cspectra[val] = in_sat_cspectra[val] | |||
|
369 | ||||
|
370 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |||
|
371 | sat_spectra = numpy.zeros((nChan,nProf,nHei), dtype=float) | |||
|
372 | sat_cspectra = numpy.zeros((nPairs,nProf,nHei), dtype=complex) | |||
|
373 | for ih in range(nHei): | |||
|
374 | for ifreq in range(nProf): | |||
|
375 | for ich in range(nChan): | |||
|
376 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) | |||
|
377 | valid = (numpy.isfinite(tmp)).nonzero() | |||
|
378 | if len(valid[0]) > 0: | |||
|
379 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
380 | ||||
|
381 | for icr in range(nPairs): | |||
|
382 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) | |||
|
383 | valid = (numpy.isfinite(tmp)).nonzero() | |||
|
384 | if len(valid[0]) > 0: | |||
|
385 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
386 | return out_spectra, out_cspectra,sat_spectra,sat_cspectra | |||
|
387 | def REM_ISOLATED_POINTS(self,array,rth): | |||
|
388 | if rth == None : rth = 4 | |||
|
389 | num_prof = len(array[0,:,0]) | |||
|
390 | num_hei = len(array[0,0,:]) | |||
|
391 | n2d = len(array[:,0,0]) | |||
|
392 | ||||
|
393 | for ii in range(n2d) : | |||
|
394 | tmp = array[ii,:,:] | |||
|
395 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |||
|
396 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |||
|
397 | indxs2 = (tmp > 0).nonzero() | |||
|
398 | indxs1 = (indxs1[0]) | |||
|
399 | indxs2 = indxs2[0] | |||
|
400 | indxs = None | |||
|
401 | for iv in range(len(indxs2)): | |||
|
402 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |||
|
403 | if len(indv[0]) > 0 : | |||
|
404 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |||
|
405 | indxs = indxs[1:] | |||
|
406 | if len(indxs) < 4 : | |||
|
407 | array[ii,:,:] = 0. | |||
|
408 | return | |||
|
409 | ||||
|
410 | xpos = numpy.mod(indxs ,num_hei) | |||
|
411 | ypos = (indxs / num_hei) | |||
|
412 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |||
|
413 | xpos = xpos[sx] | |||
|
414 | ypos = ypos[sx] | |||
|
415 | # *********************************** Cleaning isolated points ********************************** | |||
|
416 | ic = 0 | |||
|
417 | while True : | |||
|
418 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |||
|
419 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |||
|
420 | no_coh2 = (r <= rth).nonzero() | |||
|
421 | no_coh1 = numpy.array(no_coh1[0]) | |||
|
422 | no_coh2 = numpy.array(no_coh2[0]) | |||
|
423 | no_coh = None | |||
|
424 | for iv in range(len(no_coh2)): | |||
|
425 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |||
|
426 | if len(indv[0]) > 0 : | |||
|
427 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |||
|
428 | no_coh = no_coh[1:] | |||
|
429 | if len(no_coh) < 4 : | |||
|
430 | xpos[ic] = numpy.nan | |||
|
431 | ypos[ic] = numpy.nan | |||
|
432 | ||||
|
433 | ic = ic + 1 | |||
|
434 | if (ic == len(indxs)) : | |||
|
435 | break | |||
|
436 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |||
|
437 | if len(indxs[0]) < 4 : | |||
|
438 | array[ii,:,:] = 0. | |||
|
439 | return | |||
|
440 | ||||
|
441 | xpos = xpos[indxs[0]] | |||
|
442 | ypos = ypos[indxs[0]] | |||
|
443 | for i in range(0,len(ypos)): | |||
|
444 | ypos[i]=int(ypos[i]) | |||
|
445 | junk = tmp | |||
|
446 | tmp = junk*0.0 | |||
|
447 | ||||
|
448 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |||
|
449 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |||
|
450 | return array | |||
|
451 | ||||
|
452 | def moments(self,doppler,yarray,npoints): | |||
|
453 | ytemp = yarray | |||
|
454 | val = (ytemp > 0).nonzero() | |||
|
455 | val = val[0] | |||
|
456 | if len(val) == 0 : val = range(npoints-1) | |||
|
457 | ||||
|
458 | ynew = 0.5*(ytemp[val[0]]+ytemp[val[len(val)-1]]) | |||
|
459 | ytemp[len(ytemp):] = [ynew] | |||
|
460 | ||||
|
461 | index = 0 | |||
|
462 | index = numpy.argmax(ytemp) | |||
|
463 | ytemp = numpy.roll(ytemp,int(npoints/2)-1-index) | |||
|
464 | ytemp = ytemp[0:npoints-1] | |||
|
465 | ||||
|
466 | fmom = numpy.sum(doppler*ytemp)/numpy.sum(ytemp)+(index-(npoints/2-1))*numpy.abs(doppler[1]-doppler[0]) | |||
|
467 | smom = numpy.sum(doppler*doppler*ytemp)/numpy.sum(ytemp) | |||
|
468 | return [fmom,numpy.sqrt(smom)] | |||
|
469 | ||||
|
470 | ||||
|
471 | ||||
|
472 | ||||
|
473 | ||||
|
474 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None, filec=None,coh_th=None, hei_th=None,taver=None,proc=None,nhei=None,nprofs=None,ipp=None,channelList=None): | |||
|
475 | if not numpy.any(proc): | |||
|
476 | nChannels = dataOut.nChannels | |||
|
477 | nHeights= dataOut.heightList.size | |||
|
478 | nProf = dataOut.nProfiles | |||
|
479 | if numpy.any(taver): taver=int(taver) | |||
|
480 | else : taver = 5 | |||
|
481 | tini=time.localtime(dataOut.utctime) | |||
|
482 | if (tini.tm_min % taver) == 0 and (tini.tm_sec < 5 and self.fint==0): | |||
|
483 | self.index = 0 | |||
|
484 | jspc = self.buffer | |||
|
485 | jcspc = self.buffer2 | |||
|
486 | jnoise = self.buffer3 | |||
|
487 | self.buffer = dataOut.data_spc | |||
|
488 | self.buffer2 = dataOut.data_cspc | |||
|
489 | self.buffer3 = dataOut.noise | |||
|
490 | self.fint = 1 | |||
|
491 | if numpy.any(jspc) : | |||
|
492 | jspc= numpy.reshape(jspc,(int(len(jspc)/nChannels),nChannels,nProf,nHeights)) | |||
|
493 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/int(nChannels/2)),int(nChannels/2),nProf,nHeights)) | |||
|
494 | jnoise= numpy.reshape(jnoise,(int(len(jnoise)/nChannels),nChannels)) | |||
|
495 | else: | |||
|
496 | dataOut.flagNoData = True | |||
|
497 | return dataOut | |||
|
498 | else : | |||
|
499 | if (tini.tm_min % taver) == 0 : self.fint = 1 | |||
|
500 | else : self.fint = 0 | |||
|
501 | self.index += 1 | |||
|
502 | if numpy.any(self.buffer): | |||
|
503 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |||
|
504 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |||
|
505 | self.buffer3 = numpy.concatenate((self.buffer3,dataOut.noise), axis=0) | |||
|
506 | else: | |||
|
507 | self.buffer = dataOut.data_spc | |||
|
508 | self.buffer2 = dataOut.data_cspc | |||
|
509 | self.buffer3 = dataOut.noise | |||
|
510 | dataOut.flagNoData = True | |||
|
511 | return dataOut | |||
|
512 | if path != None: | |||
|
513 | sys.path.append(path) | |||
|
514 | self.library = importlib.import_module(file) | |||
|
515 | if filec != None: | |||
|
516 | self.weightf = importlib.import_module(filec) | |||
|
517 | ||||
|
518 | #To be inserted as a parameter | |||
|
519 | groupArray = numpy.array(groupList) | |||
|
520 | #groupArray = numpy.array([[0,1],[2,3]]) | |||
|
521 | dataOut.groupList = groupArray | |||
|
522 | nGroups = groupArray.shape[0] | |||
|
523 | nChannels = dataOut.nChannels | |||
|
524 | nHeights = dataOut.heightList.size | |||
|
525 | ||||
|
526 | #Parameters Array | |||
|
527 | dataOut.data_param = None | |||
|
528 | dataOut.data_paramC = None | |||
|
529 | dataOut.clean_num_aver = None | |||
|
530 | dataOut.coh_num_aver = None | |||
|
531 | dataOut.tmp_spectra_i = None | |||
|
532 | dataOut.tmp_cspectra_i = None | |||
|
533 | dataOut.tmp_spectra_c = None | |||
|
534 | dataOut.tmp_cspectra_c = None | |||
|
535 | dataOut.index = None | |||
|
536 | ||||
|
537 | #Set constants | |||
|
538 | constants = self.library.setConstants(dataOut) | |||
|
539 | dataOut.constants = constants | |||
|
540 | M = dataOut.normFactor | |||
|
541 | N = dataOut.nFFTPoints | |||
|
542 | ippSeconds = dataOut.ippSeconds | |||
|
543 | K = dataOut.nIncohInt | |||
|
544 | pairsArray = numpy.array(dataOut.pairsList) | |||
|
545 | snrth= 20 | |||
|
546 | spectra = dataOut.data_spc | |||
|
547 | cspectra = dataOut.data_cspc | |||
|
548 | nProf = dataOut.nProfiles | |||
|
549 | heights = dataOut.heightList | |||
|
550 | nHei = len(heights) | |||
|
551 | channels = dataOut.channelList | |||
|
552 | nChan = len(channels) | |||
|
553 | nIncohInt = dataOut.nIncohInt | |||
|
554 | crosspairs = dataOut.groupList | |||
|
555 | noise = dataOut.noise | |||
|
556 | jnoise = jnoise/N | |||
|
557 | noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) | |||
|
558 | power = numpy.sum(spectra, axis=1) | |||
|
559 | nPairs = len(crosspairs) | |||
|
560 | absc = dataOut.abscissaList[:-1] | |||
|
561 | ||||
|
562 | if not self.isConfig: | |||
|
563 | self.isConfig = True | |||
|
564 | ||||
|
565 | index = tini.tm_hour*12+tini.tm_min/taver | |||
|
566 | dataOut.index= index | |||
|
567 | jspc = jspc/N/N | |||
|
568 | jcspc = jcspc/N/N | |||
|
569 | tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.CleanRayleigh(dataOut,jspc,jcspc,2) | |||
|
570 | jspectra = tmp_spectra*len(jspc[:,0,0,0]) | |||
|
571 | jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) | |||
|
572 | my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver = self.__DiffCoherent(jspectra, jcspectra, dataOut, noise, snrth,coh_th, hei_th) | |||
|
573 | clean_coh_spectra, clean_coh_cspectra, clean_coh_aver = self.__CleanCoherent(snrth, coh_spectra, coh_cspectra, coh_aver, dataOut, noise,1,index) | |||
|
574 | dataOut.data_spc = incoh_spectra | |||
|
575 | dataOut.data_cspc = incoh_cspectra | |||
|
576 | clean_num_aver = incoh_aver*len(jspc[:,0,0,0]) | |||
|
577 | coh_num_aver = clean_coh_aver*len(jspc[:,0,0,0]) | |||
|
578 | dataOut.clean_num_aver = clean_num_aver | |||
|
579 | dataOut.coh_num_aver = coh_num_aver | |||
|
580 | dataOut.tmp_spectra_i = incoh_spectra | |||
|
581 | dataOut.tmp_cspectra_i = incoh_cspectra | |||
|
582 | dataOut.tmp_spectra_c = clean_coh_spectra | |||
|
583 | dataOut.tmp_cspectra_c = clean_coh_cspectra | |||
|
584 | #List of possible combinations | |||
|
585 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |||
|
586 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |||
|
587 | if getSNR: | |||
|
588 | listChannels = groupArray.reshape((groupArray.size)) | |||
|
589 | listChannels.sort() | |||
|
590 | dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels]) | |||
|
591 | else: | |||
|
592 | clean_num_aver = dataOut.clean_num_aver | |||
|
593 | coh_num_aver = dataOut.coh_num_aver | |||
|
594 | dataOut.data_spc = dataOut.tmp_spectra_i | |||
|
595 | dataOut.data_cspc = dataOut.tmp_cspectra_i | |||
|
596 | clean_coh_spectra = dataOut.tmp_spectra_c | |||
|
597 | clean_coh_cspectra = dataOut.tmp_cspectra_c | |||
|
598 | jspectra = dataOut.data_spc+clean_coh_spectra | |||
|
599 | nHeights = len(dataOut.heightList) # nhei | |||
|
600 | nProf = int(dataOut.nProfiles) | |||
|
601 | dataOut.nProfiles = nProf | |||
|
602 | dataOut.data_param = None | |||
|
603 | dataOut.data_paramC = None | |||
|
604 | dataOut.code = numpy.array([[-1.,-1.,1.],[1.,1.,-1.]]) | |||
|
605 | #M=600 | |||
|
606 | #N=200 | |||
|
607 | dataOut.flagDecodeData=True | |||
|
608 | M = int(dataOut.normFactor) | |||
|
609 | N = int(dataOut.nFFTPoints) | |||
|
610 | dataOut.nFFTPoints = N | |||
|
611 | dataOut.nIncohInt= int(dataOut.nIncohInt) | |||
|
612 | dataOut.nProfiles = int(dataOut.nProfiles) | |||
|
613 | dataOut.nCohInt = int(dataOut.nCohInt) | |||
|
614 | print('sale',dataOut.nProfiles,dataOut.nHeights) | |||
|
615 | #dataOut.nFFTPoints=nprofs | |||
|
616 | #dataOut.normFactor = nprofs | |||
|
617 | dataOut.channelList = channelList | |||
|
618 | #dataOut.ippFactor=1 | |||
|
619 | #ipp = ipp/150*1.e-3 | |||
|
620 | vmax = (300000000/49920000.0/2) / (dataOut.ippSeconds) | |||
|
621 | #dataOut.ippSeconds=ipp | |||
|
622 | absc = vmax*( numpy.arange(nProf,dtype='float')-nProf/2.)/nProf | |||
|
623 | print('sale 2',dataOut.ippSeconds,M,N) | |||
|
624 | print('Empieza procesamiento offline') | |||
|
625 | if path != None: | |||
|
626 | sys.path.append(path) | |||
|
627 | self.library = importlib.import_module(file) | |||
|
628 | constants = self.library.setConstants(dataOut) | |||
|
629 | constants['M'] = M | |||
|
630 | dataOut.constants = constants | |||
|
631 | ||||
|
632 | groupArray = numpy.array(groupList) | |||
|
633 | dataOut.groupList = groupArray | |||
|
634 | nGroups = groupArray.shape[0] | |||
|
635 | #List of possible combinations | |||
|
636 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |||
|
637 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |||
|
638 | if dataOut.data_paramC is None: | |||
|
639 | dataOut.data_paramC = numpy.zeros((nGroups*4, nHeights,2))*numpy.nan | |||
|
640 | for i in range(nGroups): | |||
|
641 | coord = groupArray[i,:] | |||
|
642 | #Input data array | |||
|
643 | data = dataOut.data_spc[coord,:,:]/(M*N) | |||
|
644 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |||
|
645 | ||||
|
646 | #Cross Spectra data array for Covariance Matrixes | |||
|
647 | ind = 0 | |||
|
648 | for pairs in listComb: | |||
|
649 | pairsSel = numpy.array([coord[x],coord[y]]) | |||
|
650 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |||
|
651 | ind += 1 | |||
|
652 | dataCross = dataOut.data_cspc[indCross,:,:]/(M*N) | |||
|
653 | dataCross = dataCross**2 | |||
|
654 | nhei = nHeights | |||
|
655 | poweri = numpy.sum(dataOut.data_spc[:,1:nProf-0,:],axis=1)/clean_num_aver[:,:] | |||
|
656 | if i == 0 : my_noises = numpy.zeros(4,dtype=float) | |||
|
657 | n0i = numpy.nanmin(poweri[0+i*2,0:nhei-0])/(nProf-1) | |||
|
658 | n1i = numpy.nanmin(poweri[1+i*2,0:nhei-0])/(nProf-1) | |||
|
659 | n0 = n0i | |||
|
660 | n1= n1i | |||
|
661 | my_noises[2*i+0] = n0 | |||
|
662 | my_noises[2*i+1] = n1 | |||
|
663 | snrth = -15.0 # -4 -16 -25 | |||
|
664 | snrth = 10**(snrth/10.0) | |||
|
665 | jvelr = numpy.zeros(nHeights, dtype = 'float') | |||
|
666 | hvalid = [0] | |||
|
667 | coh2 = abs(dataOut.data_cspc[i,1:nProf,:])**2/(dataOut.data_spc[0+i*2,1:nProf-0,:]*dataOut.data_spc[1+i*2,1:nProf-0,:]) | |||
|
668 | for h in range(nHeights): | |||
|
669 | smooth = clean_num_aver[i+1,h] | |||
|
670 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth | |||
|
671 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth | |||
|
672 | signal0 = signalpn0-n0 | |||
|
673 | signal1 = signalpn1-n1 | |||
|
674 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
675 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
676 | gamma = coh2[:,h] | |||
|
677 | indxs = (numpy.isfinite(list(gamma))==True).nonzero() | |||
|
678 | if len(indxs) >0: | |||
|
679 | if numpy.nanmean(gamma) > 0.07: | |||
|
680 | maxp0 = numpy.argmax(signal0*gamma) | |||
|
681 | maxp1 = numpy.argmax(signal1*gamma) | |||
|
682 | #print('usa gamma',numpy.nanmean(gamma)) | |||
|
683 | else: | |||
|
684 | maxp0 = numpy.argmax(signal0) | |||
|
685 | maxp1 = numpy.argmax(signal1) | |||
|
686 | jvelr[h] = (absc[maxp0]+absc[maxp1])/2. | |||
|
687 | else: jvelr[h] = absc[0] | |||
|
688 | if snr0 > 0.1 and snr1 > 0.1: hvalid = numpy.concatenate((hvalid,h), axis=None) | |||
|
689 | #print(maxp0,absc[maxp0],snr0,jvelr[h]) | |||
|
690 | ||||
|
691 | if len(hvalid)> 1: fd0 = numpy.median(jvelr[hvalid[1:]])*-1 | |||
|
692 | else: fd0 = numpy.nan | |||
|
693 | for h in range(nHeights): | |||
|
694 | d = data[:,h] | |||
|
695 | smooth = clean_num_aver[i+1,h] #dataOut.data_spc[:,1:nProf-0,:] | |||
|
696 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth | |||
|
697 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth | |||
|
698 | signal0 = signalpn0-n0 | |||
|
699 | signal1 = signalpn1-n1 | |||
|
700 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
701 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
702 | if snr0 > snrth and snr1 > snrth and clean_num_aver[i+1,h] > 0 : | |||
|
703 | #Covariance Matrix | |||
|
704 | D = numpy.diag(d**2) | |||
|
705 | ind = 0 | |||
|
706 | for pairs in listComb: | |||
|
707 | #Coordinates in Covariance Matrix | |||
|
708 | x = pairs[0] | |||
|
709 | y = pairs[1] | |||
|
710 | #Channel Index | |||
|
711 | S12 = dataCross[ind,:,h] | |||
|
712 | D12 = numpy.diag(S12) | |||
|
713 | #Completing Covariance Matrix with Cross Spectras | |||
|
714 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |||
|
715 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |||
|
716 | ind += 1 | |||
|
717 | diagD = numpy.zeros(256) | |||
|
718 | ||||
|
719 | try: | |||
|
720 | Dinv=numpy.linalg.inv(D) | |||
|
721 | L=numpy.linalg.cholesky(Dinv) | |||
|
722 | except: | |||
|
723 | Dinv = D*numpy.nan | |||
|
724 | L= D*numpy.nan | |||
|
725 | LT=L.T | |||
|
726 | ||||
|
727 | dp = numpy.dot(LT,d) | |||
|
728 | #Initial values | |||
|
729 | data_spc = dataOut.data_spc[coord,:,h] | |||
|
730 | w = data_spc/data_spc | |||
|
731 | if filec != None: | |||
|
732 | w = self.weightf.weightfit(w,tini.tm_year,tini.tm_yday,index,h,i) | |||
|
733 | if (h>6)and(error1[3]<25): | |||
|
734 | p0 = dataOut.data_param[i,:,h-1] | |||
|
735 | else: | |||
|
736 | p0 = numpy.array(self.library.initialValuesFunction(data_spc*w, constants))# sin el i(data_spc, constants, i) | |||
|
737 | p0[3] = fd0 | |||
|
738 | if filec != None: | |||
|
739 | p0 = self.weightf.Vrfit(p0,tini.tm_year,tini.tm_yday,index,h,i) | |||
|
740 | try: | |||
|
741 | #Least Squares | |||
|
742 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |||
|
743 | #minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |||
|
744 | #Chi square error | |||
|
745 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |||
|
746 | #Error with Jacobian | |||
|
747 | error1 = self.library.errorFunction(minp,constants,LT) | |||
|
748 | ||||
|
749 | except: | |||
|
750 | minp = p0*numpy.nan | |||
|
751 | error0 = numpy.nan | |||
|
752 | error1 = p0*numpy.nan | |||
|
753 | else : | |||
|
754 | data_spc = dataOut.data_spc[coord,:,h] | |||
|
755 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants)) | |||
|
756 | minp = p0*numpy.nan | |||
|
757 | error0 = numpy.nan | |||
|
758 | error1 = p0*numpy.nan | |||
|
759 | if dataOut.data_param is None: | |||
|
760 | dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |||
|
761 | dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |||
|
762 | ||||
|
763 | dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |||
|
764 | dataOut.data_param[i,:,h] = minp | |||
|
765 | for ht in range(nHeights-1) : | |||
|
766 | smooth = coh_num_aver[i+1,ht] #datc[0,ht,0,beam] | |||
|
767 | dataOut.data_paramC[4*i,ht,1] = smooth | |||
|
768 | signalpn0 = (clean_coh_spectra[i*2 ,1:(nProf-0),ht])/smooth #coh_spectra | |||
|
769 | signalpn1 = (clean_coh_spectra[i*2+1,1:(nProf-0),ht])/smooth | |||
|
770 | val0 = (signalpn0 > 0).nonzero() | |||
|
771 | val0 = val0[0] | |||
|
772 | if len(val0) == 0 : val0_npoints = nProf | |||
|
773 | else : val0_npoints = len(val0) | |||
|
774 | ||||
|
775 | val1 = (signalpn1 > 0).nonzero() | |||
|
776 | val1 = val1[0] | |||
|
777 | if len(val1) == 0 : val1_npoints = nProf | |||
|
778 | else : val1_npoints = len(val1) | |||
|
779 | ||||
|
780 | dataOut.data_paramC[0+4*i,ht,0] = numpy.sum((signalpn0/val0_npoints))/n0 | |||
|
781 | dataOut.data_paramC[1+4*i,ht,0] = numpy.sum((signalpn1/val1_npoints))/n1 | |||
|
782 | ||||
|
783 | signal0 = (signalpn0-n0) | |||
|
784 | vali = (signal0 < 0).nonzero() | |||
|
785 | vali = vali[0] | |||
|
786 | if len(vali) > 0 : signal0[vali] = 0 | |||
|
787 | signal1 = (signalpn1-n1) | |||
|
788 | vali = (signal1 < 0).nonzero() | |||
|
789 | vali = vali[0] | |||
|
790 | if len(vali) > 0 : signal1[vali] = 0 | |||
|
791 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
792 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
793 | doppler = absc[1:] | |||
|
794 | if snr0 >= snrth and snr1 >= snrth and smooth : | |||
|
795 | signalpn0_n0 = signalpn0 | |||
|
796 | signalpn0_n0[val0] = signalpn0[val0] - n0 | |||
|
797 | mom0 = self.moments(doppler,signalpn0-n0,nProf) | |||
|
798 | signalpn1_n1 = signalpn1 | |||
|
799 | signalpn1_n1[val1] = signalpn1[val1] - n1 | |||
|
800 | mom1 = self.moments(doppler,signalpn1_n1,nProf) | |||
|
801 | dataOut.data_paramC[2+4*i,ht,0] = (mom0[0]+mom1[0])/2. | |||
|
802 | dataOut.data_paramC[3+4*i,ht,0] = (mom0[1]+mom1[1])/2. | |||
|
803 | ||||
|
804 | dataOut.data_spc = jspectra | |||
|
805 | dataOut.spc_noise = my_noises*nProf*M | |||
|
806 | if numpy.any(proc): dataOut.spc_noise = my_noises*nProf*M | |||
|
807 | if getSNR: | |||
|
808 | listChannels = groupArray.reshape((groupArray.size)) | |||
|
809 | listChannels.sort() | |||
|
810 | ||||
|
811 | dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], my_noises[listChannels]) | |||
|
812 | return dataOut | |||
|
813 | ||||
|
814 | def __residFunction(self, p, dp, LT, constants): | |||
|
815 | ||||
|
816 | fm = self.library.modelFunction(p, constants) | |||
|
817 | fmp=numpy.dot(LT,fm) | |||
|
818 | return dp-fmp | |||
|
819 | ||||
|
820 | def __getSNR(self, z, noise): | |||
|
821 | ||||
|
822 | avg = numpy.average(z, axis=1) | |||
|
823 | SNR = (avg.T-noise)/noise | |||
|
824 | SNR = SNR.T | |||
|
825 | return SNR | |||
|
826 | ||||
|
827 | def __chisq(self, p, chindex, hindex): | |||
|
828 | #similar to Resid but calculates CHI**2 | |||
|
829 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |||
|
830 | dp=numpy.dot(LT,d) | |||
|
831 | fmp=numpy.dot(LT,fm) | |||
|
832 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |||
|
833 | return chisq |
@@ -1,966 +1,966 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 | import numpy |
|
13 | import numpy | |
14 | # repositorio |
|
14 | # repositorio | |
15 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
15 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
16 | from schainpy.model.data.jrodata import Spectra |
|
16 | from schainpy.model.data.jrodata import Spectra | |
17 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
17 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
18 | from schainpy.utils import log |
|
18 | from schainpy.utils import log | |
19 |
|
19 | |||
20 |
|
20 | |||
21 | class SpectraProc(ProcessingUnit): |
|
21 | class SpectraProc(ProcessingUnit): | |
22 |
|
22 | |||
23 | def __init__(self): |
|
23 | def __init__(self): | |
24 |
|
24 | |||
25 | ProcessingUnit.__init__(self) |
|
25 | ProcessingUnit.__init__(self) | |
26 |
|
26 | |||
27 | self.buffer = None |
|
27 | self.buffer = None | |
28 | self.firstdatatime = None |
|
28 | self.firstdatatime = None | |
29 | self.profIndex = 0 |
|
29 | self.profIndex = 0 | |
30 | self.dataOut = Spectra() |
|
30 | self.dataOut = Spectra() | |
31 | self.id_min = None |
|
31 | self.id_min = None | |
32 | self.id_max = None |
|
32 | self.id_max = None | |
33 | self.setupReq = False #Agregar a todas las unidades de proc |
|
33 | self.setupReq = False #Agregar a todas las unidades de proc | |
34 |
|
34 | |||
35 | def __updateSpecFromVoltage(self): |
|
35 | def __updateSpecFromVoltage(self): | |
36 |
|
36 | |||
37 | self.dataOut.timeZone = self.dataIn.timeZone |
|
37 | self.dataOut.timeZone = self.dataIn.timeZone | |
38 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
38 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
39 | self.dataOut.errorCount = self.dataIn.errorCount |
|
39 | self.dataOut.errorCount = self.dataIn.errorCount | |
40 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
40 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
41 | try: |
|
41 | try: | |
42 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
42 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
43 | except: |
|
43 | except: | |
44 | pass |
|
44 | pass | |
45 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
45 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
46 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
46 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
47 | self.dataOut.channelList = self.dataIn.channelList |
|
47 | self.dataOut.channelList = self.dataIn.channelList | |
48 | self.dataOut.heightList = self.dataIn.heightList |
|
48 | self.dataOut.heightList = self.dataIn.heightList | |
49 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
49 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
50 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
50 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
51 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
51 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
52 | self.dataOut.utctime = self.firstdatatime |
|
52 | self.dataOut.utctime = self.firstdatatime | |
53 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
53 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
54 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
54 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
55 | self.dataOut.flagShiftFFT = False |
|
55 | self.dataOut.flagShiftFFT = False | |
56 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
56 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
57 | self.dataOut.nIncohInt = 1 |
|
57 | self.dataOut.nIncohInt = 1 | |
58 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
58 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
59 | self.dataOut.frequency = self.dataIn.frequency |
|
59 | self.dataOut.frequency = self.dataIn.frequency | |
60 | self.dataOut.realtime = self.dataIn.realtime |
|
60 | self.dataOut.realtime = self.dataIn.realtime | |
61 | self.dataOut.azimuth = self.dataIn.azimuth |
|
61 | self.dataOut.azimuth = self.dataIn.azimuth | |
62 | self.dataOut.zenith = self.dataIn.zenith |
|
62 | self.dataOut.zenith = self.dataIn.zenith | |
63 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
63 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
64 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
64 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
65 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
65 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
66 | self.dataOut.runNextUnit = self.dataIn.runNextUnit |
|
66 | self.dataOut.runNextUnit = self.dataIn.runNextUnit | |
67 | try: |
|
67 | try: | |
68 | self.dataOut.step = self.dataIn.step |
|
68 | self.dataOut.step = self.dataIn.step | |
69 | except: |
|
69 | except: | |
70 | pass |
|
70 | pass | |
71 |
|
71 | |||
72 | def __getFft(self): |
|
72 | def __getFft(self): | |
73 | """ |
|
73 | """ | |
74 | Convierte valores de Voltaje a Spectra |
|
74 | Convierte valores de Voltaje a Spectra | |
75 |
|
75 | |||
76 | Affected: |
|
76 | Affected: | |
77 | self.dataOut.data_spc |
|
77 | self.dataOut.data_spc | |
78 | self.dataOut.data_cspc |
|
78 | self.dataOut.data_cspc | |
79 | self.dataOut.data_dc |
|
79 | self.dataOut.data_dc | |
80 | self.dataOut.heightList |
|
80 | self.dataOut.heightList | |
81 | self.profIndex |
|
81 | self.profIndex | |
82 | self.buffer |
|
82 | self.buffer | |
83 | self.dataOut.flagNoData |
|
83 | self.dataOut.flagNoData | |
84 | """ |
|
84 | """ | |
85 | fft_volt = numpy.fft.fft( |
|
85 | fft_volt = numpy.fft.fft( | |
86 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
86 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
87 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
87 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
88 | dc = fft_volt[:, 0, :] |
|
88 | dc = fft_volt[:, 0, :] | |
89 |
|
89 | |||
90 | # calculo de self-spectra |
|
90 | # calculo de self-spectra | |
91 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
91 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
92 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
92 | spc = fft_volt * numpy.conjugate(fft_volt) | |
93 | spc = spc.real |
|
93 | spc = spc.real | |
94 |
|
94 | |||
95 | blocksize = 0 |
|
95 | blocksize = 0 | |
96 | blocksize += dc.size |
|
96 | blocksize += dc.size | |
97 | blocksize += spc.size |
|
97 | blocksize += spc.size | |
98 |
|
98 | |||
99 | cspc = None |
|
99 | cspc = None | |
100 | pairIndex = 0 |
|
100 | pairIndex = 0 | |
101 | if self.dataOut.pairsList != None: |
|
101 | if self.dataOut.pairsList != None: | |
102 | # calculo de cross-spectra |
|
102 | # calculo de cross-spectra | |
103 | cspc = numpy.zeros( |
|
103 | cspc = numpy.zeros( | |
104 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
104 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
105 | for pair in self.dataOut.pairsList: |
|
105 | for pair in self.dataOut.pairsList: | |
106 | if pair[0] not in self.dataOut.channelList: |
|
106 | if pair[0] not in self.dataOut.channelList: | |
107 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
107 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
108 | str(pair), str(self.dataOut.channelList))) |
|
108 | str(pair), str(self.dataOut.channelList))) | |
109 | if pair[1] not in self.dataOut.channelList: |
|
109 | if pair[1] not in self.dataOut.channelList: | |
110 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
110 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
111 | str(pair), str(self.dataOut.channelList))) |
|
111 | str(pair), str(self.dataOut.channelList))) | |
112 |
|
112 | |||
113 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
113 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
114 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
114 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
115 | pairIndex += 1 |
|
115 | pairIndex += 1 | |
116 | blocksize += cspc.size |
|
116 | blocksize += cspc.size | |
117 |
|
117 | |||
118 | self.dataOut.data_spc = spc |
|
118 | self.dataOut.data_spc = spc | |
119 | self.dataOut.data_cspc = cspc |
|
119 | self.dataOut.data_cspc = cspc | |
120 | self.dataOut.data_dc = dc |
|
120 | self.dataOut.data_dc = dc | |
121 | self.dataOut.blockSize = blocksize |
|
121 | self.dataOut.blockSize = blocksize | |
122 | self.dataOut.flagShiftFFT = False |
|
122 | self.dataOut.flagShiftFFT = False | |
123 |
|
123 | |||
124 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, runNextUnit = 0): |
|
124 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, runNextUnit = 0): | |
125 |
|
125 | |||
126 | self.dataIn.runNextUnit = runNextUnit |
|
126 | self.dataIn.runNextUnit = runNextUnit | |
127 | if self.dataIn.type == "Spectra": |
|
127 | if self.dataIn.type == "Spectra": | |
128 | self.dataOut.copy(self.dataIn) |
|
128 | self.dataOut.copy(self.dataIn) | |
129 | if shift_fft: |
|
129 | if shift_fft: | |
130 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
130 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
131 | shift = int(self.dataOut.nFFTPoints/2) |
|
131 | shift = int(self.dataOut.nFFTPoints/2) | |
132 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
132 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
133 |
|
133 | |||
134 | if self.dataOut.data_cspc is not None: |
|
134 | if self.dataOut.data_cspc is not None: | |
135 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
135 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
136 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
136 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
137 | if pairsList: |
|
137 | if pairsList: | |
138 | self.__selectPairs(pairsList) |
|
138 | self.__selectPairs(pairsList) | |
139 |
|
139 | |||
140 | elif self.dataIn.type == "Voltage": |
|
140 | elif self.dataIn.type == "Voltage": | |
141 |
|
141 | |||
142 | self.dataOut.flagNoData = True |
|
142 | self.dataOut.flagNoData = True | |
143 |
|
143 | |||
144 | if nFFTPoints == None: |
|
144 | if nFFTPoints == None: | |
145 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
145 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
146 |
|
146 | |||
147 | if nProfiles == None: |
|
147 | if nProfiles == None: | |
148 | nProfiles = nFFTPoints |
|
148 | nProfiles = nFFTPoints | |
149 |
|
149 | |||
150 | if ippFactor == None: |
|
150 | if ippFactor == None: | |
151 | self.dataOut.ippFactor = 1 |
|
151 | self.dataOut.ippFactor = 1 | |
152 |
|
152 | |||
153 | self.dataOut.nFFTPoints = nFFTPoints |
|
153 | self.dataOut.nFFTPoints = nFFTPoints | |
154 |
|
154 | |||
155 | if self.buffer is None: |
|
155 | if self.buffer is None: | |
156 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
156 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
157 | nProfiles, |
|
157 | nProfiles, | |
158 | self.dataIn.nHeights), |
|
158 | self.dataIn.nHeights), | |
159 | dtype='complex') |
|
159 | dtype='complex') | |
160 |
|
160 | |||
161 | if self.dataIn.flagDataAsBlock: |
|
161 | if self.dataIn.flagDataAsBlock: | |
162 | nVoltProfiles = self.dataIn.data.shape[1] |
|
162 | nVoltProfiles = self.dataIn.data.shape[1] | |
163 | if nVoltProfiles == nProfiles: |
|
163 | if nVoltProfiles == nProfiles: | |
164 | self.buffer = self.dataIn.data.copy() |
|
164 | self.buffer = self.dataIn.data.copy() | |
165 | self.profIndex = nVoltProfiles |
|
165 | self.profIndex = nVoltProfiles | |
166 |
|
166 | |||
167 | elif nVoltProfiles < nProfiles: |
|
167 | elif nVoltProfiles < nProfiles: | |
168 |
|
168 | |||
169 | if self.profIndex == 0: |
|
169 | if self.profIndex == 0: | |
170 | self.id_min = 0 |
|
170 | self.id_min = 0 | |
171 | self.id_max = nVoltProfiles |
|
171 | self.id_max = nVoltProfiles | |
172 |
|
172 | |||
173 | self.buffer[:, self.id_min:self.id_max, |
|
173 | self.buffer[:, self.id_min:self.id_max, | |
174 | :] = self.dataIn.data |
|
174 | :] = self.dataIn.data | |
175 | self.profIndex += nVoltProfiles |
|
175 | self.profIndex += nVoltProfiles | |
176 | self.id_min += nVoltProfiles |
|
176 | self.id_min += nVoltProfiles | |
177 | self.id_max += nVoltProfiles |
|
177 | self.id_max += nVoltProfiles | |
178 | elif nVoltProfiles > nProfiles: |
|
178 | elif nVoltProfiles > nProfiles: | |
179 | self.reader.bypass = True |
|
179 | self.reader.bypass = True | |
180 | if self.profIndex == 0: |
|
180 | if self.profIndex == 0: | |
181 | self.id_min = 0 |
|
181 | self.id_min = 0 | |
182 | self.id_max = nProfiles |
|
182 | self.id_max = nProfiles | |
183 |
|
183 | |||
184 | self.buffer = self.dataIn.data[:, self.id_min:self.id_max,:] |
|
184 | self.buffer = self.dataIn.data[:, self.id_min:self.id_max,:] | |
185 | self.profIndex += nProfiles |
|
185 | self.profIndex += nProfiles | |
186 | self.id_min += nProfiles |
|
186 | self.id_min += nProfiles | |
187 | self.id_max += nProfiles |
|
187 | self.id_max += nProfiles | |
188 | if self.id_max == nVoltProfiles: |
|
188 | if self.id_max == nVoltProfiles: | |
189 | self.reader.bypass = False |
|
189 | self.reader.bypass = False | |
190 |
|
190 | |||
191 | else: |
|
191 | else: | |
192 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
192 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
193 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
193 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
194 | self.dataOut.flagNoData = True |
|
194 | self.dataOut.flagNoData = True | |
195 | else: |
|
195 | else: | |
196 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
196 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
197 | self.profIndex += 1 |
|
197 | self.profIndex += 1 | |
198 |
|
198 | |||
199 | if self.firstdatatime == None: |
|
199 | if self.firstdatatime == None: | |
200 | self.firstdatatime = self.dataIn.utctime |
|
200 | self.firstdatatime = self.dataIn.utctime | |
201 |
|
201 | |||
202 | if self.profIndex == nProfiles: |
|
202 | if self.profIndex == nProfiles: | |
203 | self.__updateSpecFromVoltage() |
|
203 | self.__updateSpecFromVoltage() | |
204 | if pairsList == None: |
|
204 | if pairsList == None: | |
205 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
205 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
206 | else: |
|
206 | else: | |
207 | self.dataOut.pairsList = pairsList |
|
207 | self.dataOut.pairsList = pairsList | |
208 | self.__getFft() |
|
208 | self.__getFft() | |
209 | self.dataOut.flagNoData = False |
|
209 | self.dataOut.flagNoData = False | |
210 | self.firstdatatime = None |
|
210 | self.firstdatatime = None | |
211 | #if not self.reader.bypass: |
|
211 | #if not self.reader.bypass: | |
212 | self.profIndex = 0 |
|
212 | self.profIndex = 0 | |
213 | else: |
|
213 | else: | |
214 | raise ValueError("The type of input object '%s' is not valid".format( |
|
214 | raise ValueError("The type of input object '%s' is not valid".format( | |
215 | self.dataIn.type)) |
|
215 | self.dataIn.type)) | |
216 |
|
216 | |||
217 | def __selectPairs(self, pairsList): |
|
217 | def __selectPairs(self, pairsList): | |
218 |
|
218 | |||
219 | if not pairsList: |
|
219 | if not pairsList: | |
220 | return |
|
220 | return | |
221 |
|
221 | |||
222 | pairs = [] |
|
222 | pairs = [] | |
223 | pairsIndex = [] |
|
223 | pairsIndex = [] | |
224 |
|
224 | |||
225 | for pair in pairsList: |
|
225 | for pair in pairsList: | |
226 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
226 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
227 | continue |
|
227 | continue | |
228 | pairs.append(pair) |
|
228 | pairs.append(pair) | |
229 | pairsIndex.append(pairs.index(pair)) |
|
229 | pairsIndex.append(pairs.index(pair)) | |
230 |
|
230 | |||
231 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
231 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
232 | self.dataOut.pairsList = pairs |
|
232 | self.dataOut.pairsList = pairs | |
233 |
|
233 | |||
234 | return |
|
234 | return | |
235 |
|
235 | |||
236 | def selectFFTs(self, minFFT, maxFFT ): |
|
236 | def selectFFTs(self, minFFT, maxFFT ): | |
237 | """ |
|
237 | """ | |
238 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
238 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
239 | minFFT<= FFT <= maxFFT |
|
239 | minFFT<= FFT <= maxFFT | |
240 | """ |
|
240 | """ | |
241 |
|
241 | |||
242 | if (minFFT > maxFFT): |
|
242 | if (minFFT > maxFFT): | |
243 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
243 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
244 |
|
244 | |||
245 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
245 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
246 | minFFT = self.dataOut.getFreqRange()[0] |
|
246 | minFFT = self.dataOut.getFreqRange()[0] | |
247 |
|
247 | |||
248 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
248 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
249 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
249 | maxFFT = self.dataOut.getFreqRange()[-1] | |
250 |
|
250 | |||
251 | minIndex = 0 |
|
251 | minIndex = 0 | |
252 | maxIndex = 0 |
|
252 | maxIndex = 0 | |
253 | FFTs = self.dataOut.getFreqRange() |
|
253 | FFTs = self.dataOut.getFreqRange() | |
254 |
|
254 | |||
255 | inda = numpy.where(FFTs >= minFFT) |
|
255 | inda = numpy.where(FFTs >= minFFT) | |
256 | indb = numpy.where(FFTs <= maxFFT) |
|
256 | indb = numpy.where(FFTs <= maxFFT) | |
257 |
|
257 | |||
258 | try: |
|
258 | try: | |
259 | minIndex = inda[0][0] |
|
259 | minIndex = inda[0][0] | |
260 | except: |
|
260 | except: | |
261 | minIndex = 0 |
|
261 | minIndex = 0 | |
262 |
|
262 | |||
263 | try: |
|
263 | try: | |
264 | maxIndex = indb[0][-1] |
|
264 | maxIndex = indb[0][-1] | |
265 | except: |
|
265 | except: | |
266 | maxIndex = len(FFTs) |
|
266 | maxIndex = len(FFTs) | |
267 |
|
267 | |||
268 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
268 | self.selectFFTsByIndex(minIndex, maxIndex) | |
269 |
|
269 | |||
270 | return 1 |
|
270 | return 1 | |
271 |
|
271 | |||
272 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
272 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
273 | newheis = numpy.where( |
|
273 | newheis = numpy.where( | |
274 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
274 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
275 |
|
275 | |||
276 | if hei_ref != None: |
|
276 | if hei_ref != None: | |
277 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
277 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
278 |
|
278 | |||
279 | minIndex = min(newheis[0]) |
|
279 | minIndex = min(newheis[0]) | |
280 | maxIndex = max(newheis[0]) |
|
280 | maxIndex = max(newheis[0]) | |
281 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
281 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
282 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
282 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
283 |
|
283 | |||
284 | # determina indices |
|
284 | # determina indices | |
285 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
285 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
286 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
286 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
287 | avg_dB = 10 * \ |
|
287 | avg_dB = 10 * \ | |
288 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
288 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
289 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
289 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
290 | beacon_heiIndexList = [] |
|
290 | beacon_heiIndexList = [] | |
291 | for val in avg_dB.tolist(): |
|
291 | for val in avg_dB.tolist(): | |
292 | if val >= beacon_dB[0]: |
|
292 | if val >= beacon_dB[0]: | |
293 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
293 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
294 |
|
294 | |||
295 | data_cspc = None |
|
295 | data_cspc = None | |
296 | if self.dataOut.data_cspc is not None: |
|
296 | if self.dataOut.data_cspc is not None: | |
297 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
297 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
298 |
|
298 | |||
299 | data_dc = None |
|
299 | data_dc = None | |
300 | if self.dataOut.data_dc is not None: |
|
300 | if self.dataOut.data_dc is not None: | |
301 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
301 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
302 |
|
302 | |||
303 | self.dataOut.data_spc = data_spc |
|
303 | self.dataOut.data_spc = data_spc | |
304 | self.dataOut.data_cspc = data_cspc |
|
304 | self.dataOut.data_cspc = data_cspc | |
305 | self.dataOut.data_dc = data_dc |
|
305 | self.dataOut.data_dc = data_dc | |
306 | self.dataOut.heightList = heightList |
|
306 | self.dataOut.heightList = heightList | |
307 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
307 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
308 |
|
308 | |||
309 | return 1 |
|
309 | return 1 | |
310 |
|
310 | |||
311 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
311 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
312 | """ |
|
312 | """ | |
313 |
|
313 | |||
314 | """ |
|
314 | """ | |
315 |
|
315 | |||
316 | if (minIndex < 0) or (minIndex > maxIndex): |
|
316 | if (minIndex < 0) or (minIndex > maxIndex): | |
317 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
317 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
318 |
|
318 | |||
319 | if (maxIndex >= self.dataOut.nProfiles): |
|
319 | if (maxIndex >= self.dataOut.nProfiles): | |
320 | maxIndex = self.dataOut.nProfiles-1 |
|
320 | maxIndex = self.dataOut.nProfiles-1 | |
321 |
|
321 | |||
322 | #Spectra |
|
322 | #Spectra | |
323 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
323 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
324 |
|
324 | |||
325 | data_cspc = None |
|
325 | data_cspc = None | |
326 | if self.dataOut.data_cspc is not None: |
|
326 | if self.dataOut.data_cspc is not None: | |
327 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
327 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
328 |
|
328 | |||
329 | data_dc = None |
|
329 | data_dc = None | |
330 | if self.dataOut.data_dc is not None: |
|
330 | if self.dataOut.data_dc is not None: | |
331 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
331 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
332 |
|
332 | |||
333 | self.dataOut.data_spc = data_spc |
|
333 | self.dataOut.data_spc = data_spc | |
334 | self.dataOut.data_cspc = data_cspc |
|
334 | self.dataOut.data_cspc = data_cspc | |
335 | self.dataOut.data_dc = data_dc |
|
335 | self.dataOut.data_dc = data_dc | |
336 |
|
336 | |||
337 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
337 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
338 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
338 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
339 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
339 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
340 |
|
340 | |||
341 | return 1 |
|
341 | return 1 | |
342 |
|
342 | |||
343 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
343 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
344 | # validacion de rango |
|
344 | # validacion de rango | |
345 | if minHei == None: |
|
345 | if minHei == None: | |
346 | minHei = self.dataOut.heightList[0] |
|
346 | minHei = self.dataOut.heightList[0] | |
347 |
|
347 | |||
348 | if maxHei == None: |
|
348 | if maxHei == None: | |
349 | maxHei = self.dataOut.heightList[-1] |
|
349 | maxHei = self.dataOut.heightList[-1] | |
350 |
|
350 | |||
351 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
351 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
352 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
352 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
353 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
353 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
354 | minHei = self.dataOut.heightList[0] |
|
354 | minHei = self.dataOut.heightList[0] | |
355 |
|
355 | |||
356 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
356 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
357 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
357 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
358 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
358 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
359 | maxHei = self.dataOut.heightList[-1] |
|
359 | maxHei = self.dataOut.heightList[-1] | |
360 |
|
360 | |||
361 | # validacion de velocidades |
|
361 | # validacion de velocidades | |
362 | velrange = self.dataOut.getVelRange(1) |
|
362 | velrange = self.dataOut.getVelRange(1) | |
363 |
|
363 | |||
364 | if minVel == None: |
|
364 | if minVel == None: | |
365 | minVel = velrange[0] |
|
365 | minVel = velrange[0] | |
366 |
|
366 | |||
367 | if maxVel == None: |
|
367 | if maxVel == None: | |
368 | maxVel = velrange[-1] |
|
368 | maxVel = velrange[-1] | |
369 |
|
369 | |||
370 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
370 | if (minVel < velrange[0]) or (minVel > maxVel): | |
371 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
371 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
372 | print('minVel is setting to %.2f' % (velrange[0])) |
|
372 | print('minVel is setting to %.2f' % (velrange[0])) | |
373 | minVel = velrange[0] |
|
373 | minVel = velrange[0] | |
374 |
|
374 | |||
375 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
375 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
376 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
376 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
377 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
377 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
378 | maxVel = velrange[-1] |
|
378 | maxVel = velrange[-1] | |
379 |
|
379 | |||
380 | # seleccion de indices para rango |
|
380 | # seleccion de indices para rango | |
381 | minIndex = 0 |
|
381 | minIndex = 0 | |
382 | maxIndex = 0 |
|
382 | maxIndex = 0 | |
383 | heights = self.dataOut.heightList |
|
383 | heights = self.dataOut.heightList | |
384 |
|
384 | |||
385 | inda = numpy.where(heights >= minHei) |
|
385 | inda = numpy.where(heights >= minHei) | |
386 | indb = numpy.where(heights <= maxHei) |
|
386 | indb = numpy.where(heights <= maxHei) | |
387 |
|
387 | |||
388 | try: |
|
388 | try: | |
389 | minIndex = inda[0][0] |
|
389 | minIndex = inda[0][0] | |
390 | except: |
|
390 | except: | |
391 | minIndex = 0 |
|
391 | minIndex = 0 | |
392 |
|
392 | |||
393 | try: |
|
393 | try: | |
394 | maxIndex = indb[0][-1] |
|
394 | maxIndex = indb[0][-1] | |
395 | except: |
|
395 | except: | |
396 | maxIndex = len(heights) |
|
396 | maxIndex = len(heights) | |
397 |
|
397 | |||
398 | if (minIndex < 0) or (minIndex > maxIndex): |
|
398 | if (minIndex < 0) or (minIndex > maxIndex): | |
399 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
399 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
400 | minIndex, maxIndex)) |
|
400 | minIndex, maxIndex)) | |
401 |
|
401 | |||
402 | if (maxIndex >= self.dataOut.nHeights): |
|
402 | if (maxIndex >= self.dataOut.nHeights): | |
403 | maxIndex = self.dataOut.nHeights - 1 |
|
403 | maxIndex = self.dataOut.nHeights - 1 | |
404 |
|
404 | |||
405 | # seleccion de indices para velocidades |
|
405 | # seleccion de indices para velocidades | |
406 | indminvel = numpy.where(velrange >= minVel) |
|
406 | indminvel = numpy.where(velrange >= minVel) | |
407 | indmaxvel = numpy.where(velrange <= maxVel) |
|
407 | indmaxvel = numpy.where(velrange <= maxVel) | |
408 | try: |
|
408 | try: | |
409 | minIndexVel = indminvel[0][0] |
|
409 | minIndexVel = indminvel[0][0] | |
410 | except: |
|
410 | except: | |
411 | minIndexVel = 0 |
|
411 | minIndexVel = 0 | |
412 |
|
412 | |||
413 | try: |
|
413 | try: | |
414 | maxIndexVel = indmaxvel[0][-1] |
|
414 | maxIndexVel = indmaxvel[0][-1] | |
415 | except: |
|
415 | except: | |
416 | maxIndexVel = len(velrange) |
|
416 | maxIndexVel = len(velrange) | |
417 |
|
417 | |||
418 | # seleccion del espectro |
|
418 | # seleccion del espectro | |
419 | data_spc = self.dataOut.data_spc[:, |
|
419 | data_spc = self.dataOut.data_spc[:, | |
420 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
420 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
421 | # estimacion de ruido |
|
421 | # estimacion de ruido | |
422 | noise = numpy.zeros(self.dataOut.nChannels) |
|
422 | noise = numpy.zeros(self.dataOut.nChannels) | |
423 |
|
423 | |||
424 | for channel in range(self.dataOut.nChannels): |
|
424 | for channel in range(self.dataOut.nChannels): | |
425 | daux = data_spc[channel, :, :] |
|
425 | daux = data_spc[channel, :, :] | |
426 | sortdata = numpy.sort(daux, axis=None) |
|
426 | sortdata = numpy.sort(daux, axis=None) | |
427 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
427 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
428 |
|
428 | |||
429 | self.dataOut.noise_estimation = noise.copy() |
|
429 | self.dataOut.noise_estimation = noise.copy() | |
430 |
|
430 | |||
431 | return 1 |
|
431 | return 1 | |
432 |
|
432 | |||
433 | class GetSNR(Operation): |
|
433 | class GetSNR(Operation): | |
434 | ''' |
|
434 | ''' | |
435 | Written by R. Flores |
|
435 | Written by R. Flores | |
436 | ''' |
|
436 | ''' | |
437 | """Operation to get SNR. |
|
437 | """Operation to get SNR. | |
438 |
|
438 | |||
439 | Parameters: |
|
439 | Parameters: | |
440 | ----------- |
|
440 | ----------- | |
441 |
|
441 | |||
442 | Example |
|
442 | Example | |
443 | -------- |
|
443 | -------- | |
444 |
|
444 | |||
445 | op = proc_unit.addOperation(name='GetSNR', optype='other') |
|
445 | op = proc_unit.addOperation(name='GetSNR', optype='other') | |
446 |
|
446 | |||
447 | """ |
|
447 | """ | |
448 |
|
448 | |||
449 | def __init__(self, **kwargs): |
|
449 | def __init__(self, **kwargs): | |
450 |
|
450 | |||
451 | Operation.__init__(self, **kwargs) |
|
451 | Operation.__init__(self, **kwargs) | |
452 |
|
452 | |||
453 | def run(self,dataOut): |
|
453 | def run(self,dataOut): | |
454 |
|
454 | |||
455 | noise = dataOut.getNoise(ymin_index=-10) #RegiΓ³n superior donde solo deberΓa de haber ruido |
|
455 | noise = dataOut.getNoise(ymin_index=-10) #RegiΓ³n superior donde solo deberΓa de haber ruido | |
456 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently |
|
456 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently | |
457 | dataOut.snl = numpy.log10(dataOut.data_snr) |
|
457 | dataOut.snl = numpy.log10(dataOut.data_snr) | |
458 | dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) |
|
458 | dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) | |
459 |
|
459 | |||
460 | return dataOut |
|
460 | return dataOut | |
461 |
|
461 | |||
462 | class removeDC(Operation): |
|
462 | class removeDC(Operation): | |
463 |
|
463 | |||
464 | def run(self, dataOut, mode=2): |
|
464 | def run(self, dataOut, mode=2): | |
465 | self.dataOut = dataOut |
|
465 | self.dataOut = dataOut | |
466 | jspectra = self.dataOut.data_spc |
|
466 | jspectra = self.dataOut.data_spc | |
467 | jcspectra = self.dataOut.data_cspc |
|
467 | jcspectra = self.dataOut.data_cspc | |
468 |
|
468 | |||
469 | num_chan = jspectra.shape[0] |
|
469 | num_chan = jspectra.shape[0] | |
470 | num_hei = jspectra.shape[2] |
|
470 | num_hei = jspectra.shape[2] | |
471 |
|
471 | |||
472 | if jcspectra is not None: |
|
472 | if jcspectra is not None: | |
473 | jcspectraExist = True |
|
473 | jcspectraExist = True | |
474 | num_pairs = jcspectra.shape[0] |
|
474 | num_pairs = jcspectra.shape[0] | |
475 | else: |
|
475 | else: | |
476 | jcspectraExist = False |
|
476 | jcspectraExist = False | |
477 |
|
477 | |||
478 | freq_dc = int(jspectra.shape[1] / 2) |
|
478 | freq_dc = int(jspectra.shape[1] / 2) | |
479 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
479 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
480 | ind_vel = ind_vel.astype(int) |
|
480 | ind_vel = ind_vel.astype(int) | |
481 |
|
481 | |||
482 | if ind_vel[0] < 0: |
|
482 | if ind_vel[0] < 0: | |
483 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
483 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
484 |
|
484 | |||
485 | if mode == 1: |
|
485 | if mode == 1: | |
486 | jspectra[:, freq_dc, :] = ( |
|
486 | jspectra[:, freq_dc, :] = ( | |
487 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
487 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
488 |
|
488 | |||
489 | if jcspectraExist: |
|
489 | if jcspectraExist: | |
490 | jcspectra[:, freq_dc, :] = ( |
|
490 | jcspectra[:, freq_dc, :] = ( | |
491 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
491 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
492 |
|
492 | |||
493 | if mode == 2: |
|
493 | if mode == 2: | |
494 |
|
494 | |||
495 | vel = numpy.array([-2, -1, 1, 2]) |
|
495 | vel = numpy.array([-2, -1, 1, 2]) | |
496 | xx = numpy.zeros([4, 4]) |
|
496 | xx = numpy.zeros([4, 4]) | |
497 |
|
497 | |||
498 | for fil in range(4): |
|
498 | for fil in range(4): | |
499 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
499 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
500 |
|
500 | |||
501 | xx_inv = numpy.linalg.inv(xx) |
|
501 | xx_inv = numpy.linalg.inv(xx) | |
502 | xx_aux = xx_inv[0, :] |
|
502 | xx_aux = xx_inv[0, :] | |
503 |
|
503 | |||
504 | for ich in range(num_chan): |
|
504 | for ich in range(num_chan): | |
505 | yy = jspectra[ich, ind_vel, :] |
|
505 | yy = jspectra[ich, ind_vel, :] | |
506 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
506 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
507 |
|
507 | |||
508 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
508 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
509 | cjunkid = sum(junkid) |
|
509 | cjunkid = sum(junkid) | |
510 |
|
510 | |||
511 | if cjunkid.any(): |
|
511 | if cjunkid.any(): | |
512 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
512 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
513 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
513 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
514 |
|
514 | |||
515 | if jcspectraExist: |
|
515 | if jcspectraExist: | |
516 | for ip in range(num_pairs): |
|
516 | for ip in range(num_pairs): | |
517 | yy = jcspectra[ip, ind_vel, :] |
|
517 | yy = jcspectra[ip, ind_vel, :] | |
518 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
518 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
519 |
|
519 | |||
520 | self.dataOut.data_spc = jspectra |
|
520 | self.dataOut.data_spc = jspectra | |
521 | self.dataOut.data_cspc = jcspectra |
|
521 | self.dataOut.data_cspc = jcspectra | |
522 |
|
522 | |||
523 | return self.dataOut |
|
523 | return self.dataOut | |
524 |
|
524 | |||
525 | class removeInterference(Operation): |
|
525 | class removeInterference(Operation): | |
526 |
|
526 | |||
527 | def removeInterference2(self): |
|
527 | def removeInterference2(self): | |
528 |
|
528 | |||
529 | cspc = self.dataOut.data_cspc |
|
529 | cspc = self.dataOut.data_cspc | |
530 | spc = self.dataOut.data_spc |
|
530 | spc = self.dataOut.data_spc | |
531 | Heights = numpy.arange(cspc.shape[2]) |
|
531 | Heights = numpy.arange(cspc.shape[2]) | |
532 | realCspc = numpy.abs(cspc) |
|
532 | realCspc = numpy.abs(cspc) | |
533 |
|
533 | |||
534 | for i in range(cspc.shape[0]): |
|
534 | for i in range(cspc.shape[0]): | |
535 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
535 | LinePower= numpy.sum(realCspc[i], axis=0) | |
536 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
536 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
537 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
537 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
538 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
538 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
539 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
539 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
540 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
540 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
541 |
|
541 | |||
542 |
|
542 | |||
543 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
543 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
544 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
544 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
545 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
545 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
546 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
546 | cspc[i,InterferenceRange,:] = numpy.NaN | |
547 |
|
547 | |||
548 | self.dataOut.data_cspc = cspc |
|
548 | self.dataOut.data_cspc = cspc | |
549 |
|
549 | |||
550 | def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): |
|
550 | def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): | |
551 |
|
551 | |||
552 | jspectra = self.dataOut.data_spc |
|
552 | jspectra = self.dataOut.data_spc | |
553 | jcspectra = self.dataOut.data_cspc |
|
553 | jcspectra = self.dataOut.data_cspc | |
554 | jnoise = self.dataOut.getNoise() |
|
554 | jnoise = self.dataOut.getNoise() | |
555 | num_incoh = self.dataOut.nIncohInt |
|
555 | num_incoh = self.dataOut.nIncohInt | |
556 |
|
556 | |||
557 | num_channel = jspectra.shape[0] |
|
557 | num_channel = jspectra.shape[0] | |
558 | num_prof = jspectra.shape[1] |
|
558 | num_prof = jspectra.shape[1] | |
559 | num_hei = jspectra.shape[2] |
|
559 | num_hei = jspectra.shape[2] | |
560 |
|
560 | |||
561 | # hei_interf |
|
561 | # hei_interf | |
562 | if hei_interf is None: |
|
562 | if hei_interf is None: | |
563 | count_hei = int(num_hei / 2) |
|
563 | count_hei = int(num_hei / 2) | |
564 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
564 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
565 | hei_interf = numpy.asarray(hei_interf)[0] |
|
565 | hei_interf = numpy.asarray(hei_interf)[0] | |
566 | # nhei_interf |
|
566 | # nhei_interf | |
567 | if (nhei_interf == None): |
|
567 | if (nhei_interf == None): | |
568 | nhei_interf = 5 |
|
568 | nhei_interf = 5 | |
569 | if (nhei_interf < 1): |
|
569 | if (nhei_interf < 1): | |
570 | nhei_interf = 1 |
|
570 | nhei_interf = 1 | |
571 | if (nhei_interf > count_hei): |
|
571 | if (nhei_interf > count_hei): | |
572 | nhei_interf = count_hei |
|
572 | nhei_interf = count_hei | |
573 | if (offhei_interf == None): |
|
573 | if (offhei_interf == None): | |
574 | offhei_interf = 0 |
|
574 | offhei_interf = 0 | |
575 |
|
575 | |||
576 | ind_hei = list(range(num_hei)) |
|
576 | ind_hei = list(range(num_hei)) | |
577 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
577 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
578 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
578 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
579 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
579 | mask_prof = numpy.asarray(list(range(num_prof))) | |
580 | num_mask_prof = mask_prof.size |
|
580 | num_mask_prof = mask_prof.size | |
581 | comp_mask_prof = [0, num_prof / 2] |
|
581 | comp_mask_prof = [0, num_prof / 2] | |
582 |
|
582 | |||
583 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
583 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
584 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
584 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
585 | jnoise = numpy.nan |
|
585 | jnoise = numpy.nan | |
586 | noise_exist = jnoise[0] < numpy.Inf |
|
586 | noise_exist = jnoise[0] < numpy.Inf | |
587 |
|
587 | |||
588 | # Subrutina de Remocion de la Interferencia |
|
588 | # Subrutina de Remocion de la Interferencia | |
589 | for ich in range(num_channel): |
|
589 | for ich in range(num_channel): | |
590 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
590 | # Se ordena los espectros segun su potencia (menor a mayor) | |
591 | power = jspectra[ich, mask_prof, :] |
|
591 | power = jspectra[ich, mask_prof, :] | |
592 | power = power[:, hei_interf] |
|
592 | power = power[:, hei_interf] | |
593 | power = power.sum(axis=0) |
|
593 | power = power.sum(axis=0) | |
594 | psort = power.ravel().argsort() |
|
594 | psort = power.ravel().argsort() | |
595 |
|
595 | |||
596 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
596 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
597 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
597 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
598 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
598 | offhei_interf, nhei_interf + offhei_interf))]]] | |
599 |
|
599 | |||
600 | if noise_exist: |
|
600 | if noise_exist: | |
601 | # tmp_noise = jnoise[ich] / num_prof |
|
601 | # tmp_noise = jnoise[ich] / num_prof | |
602 | tmp_noise = jnoise[ich] |
|
602 | tmp_noise = jnoise[ich] | |
603 | junkspc_interf = junkspc_interf - tmp_noise |
|
603 | junkspc_interf = junkspc_interf - tmp_noise | |
604 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
604 | #junkspc_interf[:,comp_mask_prof] = 0 | |
605 |
|
605 | |||
606 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
606 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
607 | jspc_interf = jspc_interf.transpose() |
|
607 | jspc_interf = jspc_interf.transpose() | |
608 | # Calculando el espectro de interferencia promedio |
|
608 | # Calculando el espectro de interferencia promedio | |
609 | noiseid = numpy.where( |
|
609 | noiseid = numpy.where( | |
610 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
610 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
611 | noiseid = noiseid[0] |
|
611 | noiseid = noiseid[0] | |
612 | cnoiseid = noiseid.size |
|
612 | cnoiseid = noiseid.size | |
613 | interfid = numpy.where( |
|
613 | interfid = numpy.where( | |
614 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
614 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
615 | interfid = interfid[0] |
|
615 | interfid = interfid[0] | |
616 | cinterfid = interfid.size |
|
616 | cinterfid = interfid.size | |
617 |
|
617 | |||
618 | if (cnoiseid > 0): |
|
618 | if (cnoiseid > 0): | |
619 | jspc_interf[noiseid] = 0 |
|
619 | jspc_interf[noiseid] = 0 | |
620 |
|
620 | |||
621 | # Expandiendo los perfiles a limpiar |
|
621 | # Expandiendo los perfiles a limpiar | |
622 | if (cinterfid > 0): |
|
622 | if (cinterfid > 0): | |
623 | new_interfid = ( |
|
623 | new_interfid = ( | |
624 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
624 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
625 | new_interfid = numpy.asarray(new_interfid) |
|
625 | new_interfid = numpy.asarray(new_interfid) | |
626 | new_interfid = {x for x in new_interfid} |
|
626 | new_interfid = {x for x in new_interfid} | |
627 | new_interfid = numpy.array(list(new_interfid)) |
|
627 | new_interfid = numpy.array(list(new_interfid)) | |
628 | new_cinterfid = new_interfid.size |
|
628 | new_cinterfid = new_interfid.size | |
629 | else: |
|
629 | else: | |
630 | new_cinterfid = 0 |
|
630 | new_cinterfid = 0 | |
631 |
|
631 | |||
632 | for ip in range(new_cinterfid): |
|
632 | for ip in range(new_cinterfid): | |
633 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
633 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
634 | jspc_interf[new_interfid[ip] |
|
634 | jspc_interf[new_interfid[ip] | |
635 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
635 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
636 |
|
636 | |||
637 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
637 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
638 | ind_hei] - jspc_interf # Corregir indices |
|
638 | ind_hei] - jspc_interf # Corregir indices | |
639 |
|
639 | |||
640 | # Removiendo la interferencia del punto de mayor interferencia |
|
640 | # Removiendo la interferencia del punto de mayor interferencia | |
641 | ListAux = jspc_interf[mask_prof].tolist() |
|
641 | ListAux = jspc_interf[mask_prof].tolist() | |
642 | maxid = ListAux.index(max(ListAux)) |
|
642 | maxid = ListAux.index(max(ListAux)) | |
643 |
|
643 | |||
644 | if cinterfid > 0: |
|
644 | if cinterfid > 0: | |
645 | for ip in range(cinterfid * (interf == 2) - 1): |
|
645 | for ip in range(cinterfid * (interf == 2) - 1): | |
646 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
646 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
647 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
647 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
648 | cind = len(ind) |
|
648 | cind = len(ind) | |
649 |
|
649 | |||
650 | if (cind > 0): |
|
650 | if (cind > 0): | |
651 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
651 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
652 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
652 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
653 | numpy.sqrt(num_incoh)) |
|
653 | numpy.sqrt(num_incoh)) | |
654 |
|
654 | |||
655 | ind = numpy.array([-2, -1, 1, 2]) |
|
655 | ind = numpy.array([-2, -1, 1, 2]) | |
656 | xx = numpy.zeros([4, 4]) |
|
656 | xx = numpy.zeros([4, 4]) | |
657 |
|
657 | |||
658 | for id1 in range(4): |
|
658 | for id1 in range(4): | |
659 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
659 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
660 |
|
660 | |||
661 | xx_inv = numpy.linalg.inv(xx) |
|
661 | xx_inv = numpy.linalg.inv(xx) | |
662 | xx = xx_inv[:, 0] |
|
662 | xx = xx_inv[:, 0] | |
663 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
663 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
664 | yy = jspectra[ich, mask_prof[ind], :] |
|
664 | yy = jspectra[ich, mask_prof[ind], :] | |
665 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
665 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
666 | yy.transpose(), xx) |
|
666 | yy.transpose(), xx) | |
667 |
|
667 | |||
668 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
668 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
669 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
669 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
670 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
670 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
671 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
671 | (1 - 1 / numpy.sqrt(num_incoh)) | |
672 |
|
672 | |||
673 | # Remocion de Interferencia en el Cross Spectra |
|
673 | # Remocion de Interferencia en el Cross Spectra | |
674 | if jcspectra is None: |
|
674 | if jcspectra is None: | |
675 | return jspectra, jcspectra |
|
675 | return jspectra, jcspectra | |
676 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
676 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
677 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
677 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
678 |
|
678 | |||
679 | for ip in range(num_pairs): |
|
679 | for ip in range(num_pairs): | |
680 |
|
680 | |||
681 | #------------------------------------------- |
|
681 | #------------------------------------------- | |
682 |
|
682 | |||
683 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
683 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
684 | cspower = cspower[:, hei_interf] |
|
684 | cspower = cspower[:, hei_interf] | |
685 | cspower = cspower.sum(axis=0) |
|
685 | cspower = cspower.sum(axis=0) | |
686 |
|
686 | |||
687 | cspsort = cspower.ravel().argsort() |
|
687 | cspsort = cspower.ravel().argsort() | |
688 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
688 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
689 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
689 | offhei_interf, nhei_interf + offhei_interf))]]] | |
690 | junkcspc_interf = junkcspc_interf.transpose() |
|
690 | junkcspc_interf = junkcspc_interf.transpose() | |
691 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
691 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
692 |
|
692 | |||
693 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
693 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
694 |
|
694 | |||
695 | median_real = int(numpy.median(numpy.real( |
|
695 | median_real = int(numpy.median(numpy.real( | |
696 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
696 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
697 | median_imag = int(numpy.median(numpy.imag( |
|
697 | median_imag = int(numpy.median(numpy.imag( | |
698 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
698 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
699 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
699 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
700 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
700 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
701 | median_real, median_imag) |
|
701 | median_real, median_imag) | |
702 |
|
702 | |||
703 | for iprof in range(num_prof): |
|
703 | for iprof in range(num_prof): | |
704 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
704 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
705 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
705 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
706 |
|
706 | |||
707 | # Removiendo la Interferencia |
|
707 | # Removiendo la Interferencia | |
708 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
708 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
709 | :, ind_hei] - jcspc_interf |
|
709 | :, ind_hei] - jcspc_interf | |
710 |
|
710 | |||
711 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
711 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
712 | maxid = ListAux.index(max(ListAux)) |
|
712 | maxid = ListAux.index(max(ListAux)) | |
713 |
|
713 | |||
714 | ind = numpy.array([-2, -1, 1, 2]) |
|
714 | ind = numpy.array([-2, -1, 1, 2]) | |
715 | xx = numpy.zeros([4, 4]) |
|
715 | xx = numpy.zeros([4, 4]) | |
716 |
|
716 | |||
717 | for id1 in range(4): |
|
717 | for id1 in range(4): | |
718 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
718 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
719 |
|
719 | |||
720 | xx_inv = numpy.linalg.inv(xx) |
|
720 | xx_inv = numpy.linalg.inv(xx) | |
721 | xx = xx_inv[:, 0] |
|
721 | xx = xx_inv[:, 0] | |
722 |
|
722 | |||
723 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
723 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
724 | yy = jcspectra[ip, mask_prof[ind], :] |
|
724 | yy = jcspectra[ip, mask_prof[ind], :] | |
725 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
725 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
726 |
|
726 | |||
727 | # Guardar Resultados |
|
727 | # Guardar Resultados | |
728 | self.dataOut.data_spc = jspectra |
|
728 | self.dataOut.data_spc = jspectra | |
729 | self.dataOut.data_cspc = jcspectra |
|
729 | self.dataOut.data_cspc = jcspectra | |
730 |
|
730 | |||
731 | return 1 |
|
731 | return 1 | |
732 |
|
732 | |||
733 | def run(self, dataOut, interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None, mode=1): |
|
733 | def run(self, dataOut, interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None, mode=1): | |
734 |
|
734 | |||
735 | self.dataOut = dataOut |
|
735 | self.dataOut = dataOut | |
736 |
|
736 | |||
737 | if mode == 1: |
|
737 | if mode == 1: | |
738 | self.removeInterference(interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None) |
|
738 | self.removeInterference(interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None) | |
739 | elif mode == 2: |
|
739 | elif mode == 2: | |
740 | self.removeInterference2() |
|
740 | self.removeInterference2() | |
741 |
|
741 | |||
742 | return self.dataOut |
|
742 | return self.dataOut | |
743 |
|
743 | |||
744 |
|
744 | |||
745 | class deflip(Operation): |
|
745 | class deflip(Operation): | |
746 |
|
746 | |||
747 | def run(self, dataOut): |
|
747 | def run(self, dataOut): | |
748 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
748 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
749 | self.dataOut = dataOut |
|
749 | self.dataOut = dataOut | |
750 |
|
750 | |||
751 | # JULIA-oblicua, indice 2 |
|
751 | # JULIA-oblicua, indice 2 | |
752 | # arreglo 2: (num_profiles, num_heights) |
|
752 | # arreglo 2: (num_profiles, num_heights) | |
753 | jspectra = self.dataOut.data_spc[2] |
|
753 | jspectra = self.dataOut.data_spc[2] | |
754 | jspectra_tmp=numpy.zeros(jspectra.shape) |
|
754 | jspectra_tmp=numpy.zeros(jspectra.shape) | |
755 | num_profiles=jspectra.shape[0] |
|
755 | num_profiles=jspectra.shape[0] | |
756 | freq_dc = int(num_profiles / 2) |
|
756 | freq_dc = int(num_profiles / 2) | |
757 | # Flip con for |
|
757 | # Flip con for | |
758 | for j in range(num_profiles): |
|
758 | for j in range(num_profiles): | |
759 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
759 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
760 | # Intercambio perfil de DC con perfil inmediato anterior |
|
760 | # Intercambio perfil de DC con perfil inmediato anterior | |
761 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
761 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
762 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
762 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
763 | # canal modificado es re-escrito en el arreglo de canales |
|
763 | # canal modificado es re-escrito en el arreglo de canales | |
764 | self.dataOut.data_spc[2] = jspectra_tmp |
|
764 | self.dataOut.data_spc[2] = jspectra_tmp | |
765 |
|
765 | |||
766 | return self.dataOut |
|
766 | return self.dataOut | |
767 |
|
767 | |||
768 |
|
768 | |||
769 | class IncohInt(Operation): |
|
769 | class IncohInt(Operation): | |
770 |
|
770 | |||
771 | __profIndex = 0 |
|
771 | __profIndex = 0 | |
772 | __withOverapping = False |
|
772 | __withOverapping = False | |
773 |
|
773 | |||
774 | __byTime = False |
|
774 | __byTime = False | |
775 | __initime = None |
|
775 | __initime = None | |
776 | __lastdatatime = None |
|
776 | __lastdatatime = None | |
777 | __integrationtime = None |
|
777 | __integrationtime = None | |
778 |
|
778 | |||
779 | __buffer_spc = None |
|
779 | __buffer_spc = None | |
780 | __buffer_cspc = None |
|
780 | __buffer_cspc = None | |
781 | __buffer_dc = None |
|
781 | __buffer_dc = None | |
782 |
|
782 | |||
783 | __dataReady = False |
|
783 | __dataReady = False | |
784 |
|
784 | |||
785 | __timeInterval = None |
|
785 | __timeInterval = None | |
786 |
|
786 | |||
787 | n = None |
|
787 | n = None | |
788 |
|
788 | |||
789 | def __init__(self): |
|
789 | def __init__(self): | |
790 |
|
790 | |||
791 | Operation.__init__(self) |
|
791 | Operation.__init__(self) | |
792 |
|
792 | |||
793 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
793 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
794 | """ |
|
794 | """ | |
795 | Set the parameters of the integration class. |
|
795 | Set the parameters of the integration class. | |
796 |
|
796 | |||
797 | Inputs: |
|
797 | Inputs: | |
798 |
|
798 | |||
799 | n : Number of coherent integrations |
|
799 | n : Number of coherent integrations | |
800 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
800 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
801 | overlapping : |
|
801 | overlapping : | |
802 |
|
802 | |||
803 | """ |
|
803 | """ | |
804 |
|
804 | |||
805 | self.__initime = None |
|
805 | self.__initime = None | |
806 | self.__lastdatatime = 0 |
|
806 | self.__lastdatatime = 0 | |
807 |
|
807 | |||
808 | self.__buffer_spc = 0 |
|
808 | self.__buffer_spc = 0 | |
809 | self.__buffer_cspc = 0 |
|
809 | self.__buffer_cspc = 0 | |
810 | self.__buffer_dc = 0 |
|
810 | self.__buffer_dc = 0 | |
811 |
|
811 | |||
812 | self.__profIndex = 0 |
|
812 | self.__profIndex = 0 | |
813 | self.__dataReady = False |
|
813 | self.__dataReady = False | |
814 | self.__byTime = False |
|
814 | self.__byTime = False | |
815 |
|
815 | |||
816 | if n is None and timeInterval is None: |
|
816 | if n is None and timeInterval is None: | |
817 | raise ValueError("n or timeInterval should be specified ...") |
|
817 | raise ValueError("n or timeInterval should be specified ...") | |
818 |
|
818 | |||
819 | if n is not None: |
|
819 | if n is not None: | |
820 | self.n = int(n) |
|
820 | self.n = int(n) | |
821 | else: |
|
821 | else: | |
822 |
|
822 | |||
823 | self.__integrationtime = int(timeInterval) |
|
823 | self.__integrationtime = int(timeInterval) | |
824 | self.n = None |
|
824 | self.n = None | |
825 | self.__byTime = True |
|
825 | self.__byTime = True | |
826 |
|
826 | |||
827 | def putData(self, data_spc, data_cspc, data_dc): |
|
827 | def putData(self, data_spc, data_cspc, data_dc): | |
828 | """ |
|
828 | """ | |
829 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
829 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
830 |
|
830 | |||
831 | """ |
|
831 | """ | |
832 |
|
832 | |||
833 | self.__buffer_spc += data_spc |
|
833 | self.__buffer_spc += data_spc | |
834 |
|
834 | |||
835 | if data_cspc is None: |
|
835 | if data_cspc is None: | |
836 | self.__buffer_cspc = None |
|
836 | self.__buffer_cspc = None | |
837 | else: |
|
837 | else: | |
838 | self.__buffer_cspc += data_cspc |
|
838 | self.__buffer_cspc += data_cspc | |
839 |
|
839 | |||
840 | if data_dc is None: |
|
840 | if data_dc is None: | |
841 | self.__buffer_dc = None |
|
841 | self.__buffer_dc = None | |
842 | else: |
|
842 | else: | |
843 | self.__buffer_dc += data_dc |
|
843 | self.__buffer_dc += data_dc | |
844 |
|
844 | |||
845 | self.__profIndex += 1 |
|
845 | self.__profIndex += 1 | |
846 |
|
846 | |||
847 | return |
|
847 | return | |
848 |
|
848 | |||
849 | def pushData(self): |
|
849 | def pushData(self): | |
850 | """ |
|
850 | """ | |
851 | Return the sum of the last profiles and the profiles used in the sum. |
|
851 | Return the sum of the last profiles and the profiles used in the sum. | |
852 |
|
852 | |||
853 | Affected: |
|
853 | Affected: | |
854 |
|
854 | |||
855 | self.__profileIndex |
|
855 | self.__profileIndex | |
856 |
|
856 | |||
857 | """ |
|
857 | """ | |
858 |
|
858 | |||
859 | data_spc = self.__buffer_spc |
|
859 | data_spc = self.__buffer_spc | |
860 | data_cspc = self.__buffer_cspc |
|
860 | data_cspc = self.__buffer_cspc | |
861 | data_dc = self.__buffer_dc |
|
861 | data_dc = self.__buffer_dc | |
862 | n = self.__profIndex |
|
862 | n = self.__profIndex | |
863 |
|
863 | |||
864 | self.__buffer_spc = 0 |
|
864 | self.__buffer_spc = 0 | |
865 | self.__buffer_cspc = 0 |
|
865 | self.__buffer_cspc = 0 | |
866 | self.__buffer_dc = 0 |
|
866 | self.__buffer_dc = 0 | |
867 | self.__profIndex = 0 |
|
867 | self.__profIndex = 0 | |
868 |
|
868 | |||
869 | return data_spc, data_cspc, data_dc, n |
|
869 | return data_spc, data_cspc, data_dc, n | |
870 |
|
870 | |||
871 | def byProfiles(self, *args): |
|
871 | def byProfiles(self, *args): | |
872 |
|
872 | |||
873 | self.__dataReady = False |
|
873 | self.__dataReady = False | |
874 | avgdata_spc = None |
|
874 | avgdata_spc = None | |
875 | avgdata_cspc = None |
|
875 | avgdata_cspc = None | |
876 | avgdata_dc = None |
|
876 | avgdata_dc = None | |
877 |
|
877 | |||
878 | self.putData(*args) |
|
878 | self.putData(*args) | |
879 |
|
879 | |||
880 | if self.__profIndex == self.n: |
|
880 | if self.__profIndex == self.n: | |
881 |
|
881 | |||
882 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
882 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
883 | self.n = n |
|
883 | self.n = n | |
884 | self.__dataReady = True |
|
884 | self.__dataReady = True | |
885 |
|
885 | |||
886 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
886 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
887 |
|
887 | |||
888 | def byTime(self, datatime, *args): |
|
888 | def byTime(self, datatime, *args): | |
889 |
|
889 | |||
890 | self.__dataReady = False |
|
890 | self.__dataReady = False | |
891 | avgdata_spc = None |
|
891 | avgdata_spc = None | |
892 | avgdata_cspc = None |
|
892 | avgdata_cspc = None | |
893 | avgdata_dc = None |
|
893 | avgdata_dc = None | |
894 |
|
894 | |||
895 | self.putData(*args) |
|
895 | self.putData(*args) | |
896 |
|
896 | |||
897 | if (datatime - self.__initime) >= self.__integrationtime: |
|
897 | if (datatime - self.__initime) >= self.__integrationtime: | |
898 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
898 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
899 | self.n = n |
|
899 | self.n = n | |
900 | self.__dataReady = True |
|
900 | self.__dataReady = True | |
901 |
|
901 | |||
902 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
902 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
903 |
|
903 | |||
904 | def integrate(self, datatime, *args): |
|
904 | def integrate(self, datatime, *args): | |
905 |
|
905 | |||
906 | if self.__profIndex == 0: |
|
906 | if self.__profIndex == 0: | |
907 | self.__initime = datatime |
|
907 | self.__initime = datatime | |
908 |
|
908 | |||
909 | if self.__byTime: |
|
909 | if self.__byTime: | |
910 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
910 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
911 | datatime, *args) |
|
911 | datatime, *args) | |
912 | else: |
|
912 | else: | |
913 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
913 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
914 |
|
914 | |||
915 | if not self.__dataReady: |
|
915 | if not self.__dataReady: | |
916 | return None, None, None, None |
|
916 | return None, None, None, None | |
917 |
|
917 | |||
918 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
918 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
919 |
|
919 | |||
920 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
920 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
921 | if n == 1: |
|
921 | if n == 1: | |
922 | return dataOut |
|
922 | return dataOut | |
923 |
|
923 | |||
924 | dataOut.flagNoData = True |
|
924 | dataOut.flagNoData = True | |
925 |
|
925 | |||
926 | if not self.isConfig: |
|
926 | if not self.isConfig: | |
927 | self.setup(n, timeInterval, overlapping) |
|
927 | self.setup(n, timeInterval, overlapping) | |
928 | self.isConfig = True |
|
928 | self.isConfig = True | |
929 |
|
929 | |||
930 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
930 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
931 | dataOut.data_spc, |
|
931 | dataOut.data_spc, | |
932 | dataOut.data_cspc, |
|
932 | dataOut.data_cspc, | |
933 | dataOut.data_dc) |
|
933 | dataOut.data_dc) | |
934 |
|
934 | |||
935 | if self.__dataReady: |
|
935 | if self.__dataReady: | |
936 |
|
936 | |||
937 | dataOut.data_spc = avgdata_spc |
|
937 | dataOut.data_spc = avgdata_spc | |
938 | dataOut.data_cspc = avgdata_cspc |
|
938 | dataOut.data_cspc = avgdata_cspc | |
939 | dataOut.data_dc = avgdata_dc |
|
939 | dataOut.data_dc = avgdata_dc | |
940 | dataOut.nIncohInt *= self.n |
|
940 | dataOut.nIncohInt *= self.n | |
941 | dataOut.utctime = avgdatatime |
|
941 | dataOut.utctime = avgdatatime | |
942 | dataOut.flagNoData = False |
|
942 | dataOut.flagNoData = False | |
943 |
|
943 | |||
944 | return dataOut |
|
944 | return dataOut | |
945 |
|
945 | |||
946 | class dopplerFlip(Operation): |
|
946 | class dopplerFlip(Operation): | |
947 |
|
947 | |||
948 | def run(self, dataOut): |
|
948 | def run(self, dataOut, chann = None): | |
949 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
949 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
950 | self.dataOut = dataOut |
|
950 | self.dataOut = dataOut | |
951 | # JULIA-oblicua, indice 2 |
|
951 | # JULIA-oblicua, indice 2 | |
952 | # arreglo 2: (num_profiles, num_heights) |
|
952 | # arreglo 2: (num_profiles, num_heights) | |
953 |
jspectra = self.dataOut.data_spc[ |
|
953 | jspectra = self.dataOut.data_spc[chann] | |
954 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
954 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
955 | num_profiles = jspectra.shape[0] |
|
955 | num_profiles = jspectra.shape[0] | |
956 | freq_dc = int(num_profiles / 2) |
|
956 | freq_dc = int(num_profiles / 2) | |
957 | # Flip con for |
|
957 | # Flip con for | |
958 | for j in range(num_profiles): |
|
958 | for j in range(num_profiles): | |
959 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
959 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
960 | # Intercambio perfil de DC con perfil inmediato anterior |
|
960 | # Intercambio perfil de DC con perfil inmediato anterior | |
961 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
961 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
962 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
962 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
963 | # canal modificado es re-escrito en el arreglo de canales |
|
963 | # canal modificado es re-escrito en el arreglo de canales | |
964 |
self.dataOut.data_spc[ |
|
964 | self.dataOut.data_spc[chann] = jspectra_tmp | |
965 |
|
965 | |||
966 | return self.dataOut No newline at end of file |
|
966 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now