@@ -0,0 +1,223 | |||||
|
1 | ''' | |||
|
2 | Base clases to create Processing units and operations, the MPDecorator | |||
|
3 | must be used in plotting and writing operations to allow to run as an | |||
|
4 | external process. | |||
|
5 | ''' | |||
|
6 | import os | |||
|
7 | import inspect | |||
|
8 | import zmq | |||
|
9 | import time | |||
|
10 | import pickle | |||
|
11 | import traceback | |||
|
12 | from threading import Thread | |||
|
13 | from multiprocessing import Process, Queue | |||
|
14 | from schainpy.utils import log | |||
|
15 | #isr-jro_proc_base.py | |||
|
16 | import copy | |||
|
17 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) | |||
|
18 | ||||
|
19 | class ProcessingUnit(object): | |||
|
20 | ''' | |||
|
21 | Base class to create Signal Chain Units | |||
|
22 | ''' | |||
|
23 | ||||
|
24 | proc_type = 'processing' | |||
|
25 | ||||
|
26 | def __init__(self): | |||
|
27 | ||||
|
28 | self.dataIn = None | |||
|
29 | self.dataOut = None | |||
|
30 | self.isConfig = False | |||
|
31 | self.operations = [] | |||
|
32 | self.name = 'Test' | |||
|
33 | self.inputs = [] | |||
|
34 | ||||
|
35 | def setInput(self, unit): | |||
|
36 | ||||
|
37 | attr = 'dataIn' | |||
|
38 | for i, u in enumerate(unit): | |||
|
39 | if i==0: | |||
|
40 | self.dataIn = u.dataOut#.copy() | |||
|
41 | self.inputs.append('dataIn') | |||
|
42 | else: | |||
|
43 | setattr(self, 'dataIn{}'.format(i), u.dataOut)#.copy()) | |||
|
44 | self.inputs.append('dataIn{}'.format(i)) | |||
|
45 | ||||
|
46 | def getAllowedArgs(self): | |||
|
47 | if hasattr(self, '__attrs__'): | |||
|
48 | return self.__attrs__ | |||
|
49 | else: | |||
|
50 | return inspect.getargspec(self.run).args | |||
|
51 | ||||
|
52 | def addOperation(self, conf, operation): | |||
|
53 | ''' | |||
|
54 | ''' | |||
|
55 | ||||
|
56 | self.operations.append((operation, conf.type, conf.getKwargs())) | |||
|
57 | ||||
|
58 | def getOperationObj(self, objId): | |||
|
59 | ||||
|
60 | if objId not in list(self.operations.keys()): | |||
|
61 | return None | |||
|
62 | ||||
|
63 | return self.operations[objId] | |||
|
64 | ||||
|
65 | def call(self, **kwargs): | |||
|
66 | ''' | |||
|
67 | ''' | |||
|
68 | ||||
|
69 | try: | |||
|
70 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: | |||
|
71 | if self.dataIn.runNextUnit: | |||
|
72 | return not self.dataIn.isReady() | |||
|
73 | else: | |||
|
74 | return self.dataIn.isReady() | |||
|
75 | elif self.dataIn is None or not self.dataIn.error: | |||
|
76 | self.run(**kwargs) | |||
|
77 | elif self.dataIn.error: | |||
|
78 | self.dataOut.error = self.dataIn.error | |||
|
79 | self.dataOut.flagNoData = True | |||
|
80 | except: | |||
|
81 | err = traceback.format_exc() | |||
|
82 | if 'SchainWarning' in err: | |||
|
83 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) | |||
|
84 | elif 'SchainError' in err: | |||
|
85 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) | |||
|
86 | else: | |||
|
87 | log.error(err, self.name) | |||
|
88 | self.dataOut.error = True | |||
|
89 | for op, optype, opkwargs in self.operations: | |||
|
90 | aux = self.dataOut.copy() | |||
|
91 | if optype == 'other' and not self.dataOut.flagNoData: | |||
|
92 | self.dataOut = op.run(self.dataOut, **opkwargs) | |||
|
93 | elif optype == 'external' and not self.dataOut.flagNoData: | |||
|
94 | op.queue.put(aux) | |||
|
95 | elif optype == 'external' and self.dataOut.error: | |||
|
96 | op.queue.put(aux) | |||
|
97 | try: | |||
|
98 | if self.dataOut.runNextUnit: | |||
|
99 | runNextUnit = self.dataOut.runNextUnit | |||
|
100 | else: | |||
|
101 | runNextUnit = self.dataOut.isReady() | |||
|
102 | except: | |||
|
103 | runNextUnit = self.dataOut.isReady() | |||
|
104 | return 'Error' if self.dataOut.error else runNextUnit# self.dataOut.isReady() | |||
|
105 | ||||
|
106 | def setup(self): | |||
|
107 | ||||
|
108 | raise NotImplementedError | |||
|
109 | ||||
|
110 | def run(self): | |||
|
111 | ||||
|
112 | raise NotImplementedError | |||
|
113 | ||||
|
114 | def close(self): | |||
|
115 | ||||
|
116 | return | |||
|
117 | ||||
|
118 | ||||
|
119 | class Operation(object): | |||
|
120 | ||||
|
121 | ''' | |||
|
122 | ''' | |||
|
123 | ||||
|
124 | proc_type = 'operation' | |||
|
125 | ||||
|
126 | def __init__(self): | |||
|
127 | ||||
|
128 | self.id = None | |||
|
129 | self.isConfig = False | |||
|
130 | ||||
|
131 | if not hasattr(self, 'name'): | |||
|
132 | self.name = self.__class__.__name__ | |||
|
133 | ||||
|
134 | def getAllowedArgs(self): | |||
|
135 | if hasattr(self, '__attrs__'): | |||
|
136 | return self.__attrs__ | |||
|
137 | else: | |||
|
138 | return inspect.getargspec(self.run).args | |||
|
139 | ||||
|
140 | def setup(self): | |||
|
141 | ||||
|
142 | self.isConfig = True | |||
|
143 | ||||
|
144 | raise NotImplementedError | |||
|
145 | ||||
|
146 | def run(self, dataIn, **kwargs): | |||
|
147 | """ | |||
|
148 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los | |||
|
149 | atributos del objeto dataIn. | |||
|
150 | ||||
|
151 | Input: | |||
|
152 | ||||
|
153 | dataIn : objeto del tipo JROData | |||
|
154 | ||||
|
155 | Return: | |||
|
156 | ||||
|
157 | None | |||
|
158 | ||||
|
159 | Affected: | |||
|
160 | __buffer : buffer de recepcion de datos. | |||
|
161 | ||||
|
162 | """ | |||
|
163 | if not self.isConfig: | |||
|
164 | self.setup(**kwargs) | |||
|
165 | ||||
|
166 | raise NotImplementedError | |||
|
167 | ||||
|
168 | def close(self): | |||
|
169 | ||||
|
170 | return | |||
|
171 | ||||
|
172 | ||||
|
173 | def MPDecorator(BaseClass): | |||
|
174 | """ | |||
|
175 | Multiprocessing class decorator | |||
|
176 | ||||
|
177 | This function add multiprocessing features to a BaseClass. | |||
|
178 | """ | |||
|
179 | ||||
|
180 | class MPClass(BaseClass, Process): | |||
|
181 | ||||
|
182 | def __init__(self, *args, **kwargs): | |||
|
183 | super(MPClass, self).__init__() | |||
|
184 | Process.__init__(self) | |||
|
185 | ||||
|
186 | self.args = args | |||
|
187 | self.kwargs = kwargs | |||
|
188 | self.t = time.time() | |||
|
189 | self.op_type = 'external' | |||
|
190 | self.name = BaseClass.__name__ | |||
|
191 | self.__doc__ = BaseClass.__doc__ | |||
|
192 | ||||
|
193 | if 'plot' in self.name.lower() and not self.name.endswith('_'): | |||
|
194 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') | |||
|
195 | ||||
|
196 | self.start_time = time.time() | |||
|
197 | self.err_queue = args[3] | |||
|
198 | self.queue = Queue(maxsize=QUEUE_SIZE) | |||
|
199 | self.myrun = BaseClass.run | |||
|
200 | ||||
|
201 | def run(self): | |||
|
202 | ||||
|
203 | while True: | |||
|
204 | ||||
|
205 | dataOut = self.queue.get() | |||
|
206 | ||||
|
207 | if not dataOut.error: | |||
|
208 | try: | |||
|
209 | BaseClass.run(self, dataOut, **self.kwargs) | |||
|
210 | except: | |||
|
211 | err = traceback.format_exc() | |||
|
212 | log.error(err, self.name) | |||
|
213 | else: | |||
|
214 | break | |||
|
215 | ||||
|
216 | self.close() | |||
|
217 | ||||
|
218 | def close(self): | |||
|
219 | ||||
|
220 | BaseClass.close(self) | |||
|
221 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time() - self.start_time), self.name) | |||
|
222 | ||||
|
223 | return MPClass No newline at end of file |
This diff has been collapsed as it changes many lines, (7333 lines changed) Show them Hide them | |||||
@@ -0,0 +1,7333 | |||||
|
1 | import numpy | |||
|
2 | import math | |||
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |||
|
4 | import scipy | |||
|
5 | from scipy.optimize import least_squares | |||
|
6 | import re | |||
|
7 | import datetime | |||
|
8 | import copy | |||
|
9 | import sys | |||
|
10 | import importlib | |||
|
11 | import itertools | |||
|
12 | from multiprocessing import Pool, TimeoutError, Process | |||
|
13 | from multiprocessing.pool import ThreadPool | |||
|
14 | import time | |||
|
15 | from threading import Thread | |||
|
16 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |||
|
17 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |||
|
18 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |||
|
19 | from scipy import asarray as ar,exp | |||
|
20 | from scipy.optimize import fmin, curve_fit | |||
|
21 | from schainpy.utils import log | |||
|
22 | import warnings | |||
|
23 | from numpy import NaN | |||
|
24 | from scipy.optimize.optimize import OptimizeWarning | |||
|
25 | warnings.filterwarnings('ignore') | |||
|
26 | ||||
|
27 | ||||
|
28 | SPEED_OF_LIGHT = 299792458 | |||
|
29 | ||||
|
30 | '''solving pickling issue''' | |||
|
31 | ||||
|
32 | def _pickle_method(method): | |||
|
33 | func_name = method.__func__.__name__ | |||
|
34 | obj = method.__self__ | |||
|
35 | cls = method.__self__.__class__ | |||
|
36 | return _unpickle_method, (func_name, obj, cls) | |||
|
37 | ||||
|
38 | def _unpickle_method(func_name, obj, cls): | |||
|
39 | for cls in cls.mro(): | |||
|
40 | try: | |||
|
41 | func = cls.__dict__[func_name] | |||
|
42 | except KeyError: | |||
|
43 | pass | |||
|
44 | else: | |||
|
45 | break | |||
|
46 | return func.__get__(obj, cls) | |||
|
47 | ||||
|
48 | # @MPDecorator | |||
|
49 | class ParametersProc(ProcessingUnit): | |||
|
50 | ||||
|
51 | METHODS = {} | |||
|
52 | nSeconds = None | |||
|
53 | ||||
|
54 | def __init__(self): | |||
|
55 | ProcessingUnit.__init__(self) | |||
|
56 | ||||
|
57 | self.buffer = None | |||
|
58 | self.firstdatatime = None | |||
|
59 | self.profIndex = 0 | |||
|
60 | self.dataOut = Parameters() | |||
|
61 | self.setupReq = False #Agregar a todas las unidades de proc | |||
|
62 | ||||
|
63 | def __updateObjFromInput(self): | |||
|
64 | ||||
|
65 | self.dataOut.inputUnit = self.dataIn.type | |||
|
66 | ||||
|
67 | self.dataOut.timeZone = self.dataIn.timeZone | |||
|
68 | self.dataOut.dstFlag = self.dataIn.dstFlag | |||
|
69 | self.dataOut.errorCount = self.dataIn.errorCount | |||
|
70 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |||
|
71 | ||||
|
72 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |||
|
73 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |||
|
74 | self.dataOut.channelList = self.dataIn.channelList | |||
|
75 | self.dataOut.heightList = self.dataIn.heightList | |||
|
76 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |||
|
77 | # self.dataOut.nHeights = self.dataIn.nHeights | |||
|
78 | # self.dataOut.nChannels = self.dataIn.nChannels | |||
|
79 | # self.dataOut.nBaud = self.dataIn.nBaud | |||
|
80 | # self.dataOut.nCode = self.dataIn.nCode | |||
|
81 | # self.dataOut.code = self.dataIn.code | |||
|
82 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |||
|
83 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |||
|
84 | # self.dataOut.utctime = self.firstdatatime | |||
|
85 | self.dataOut.utctime = self.dataIn.utctime | |||
|
86 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |||
|
87 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |||
|
88 | self.dataOut.nCohInt = self.dataIn.nCohInt | |||
|
89 | # self.dataOut.nIncohInt = 1 | |||
|
90 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds | |||
|
91 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |||
|
92 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |||
|
93 | self.dataOut.heightList = self.dataIn.heightList | |||
|
94 | self.dataOut.frequency = self.dataIn.frequency | |||
|
95 | #self.dataOut.runNextUnit = self.dataIn.runNextUnit | |||
|
96 | #self.dataOut.noise = self.dataIn.noise | |||
|
97 | ||||
|
98 | def run(self): | |||
|
99 | ||||
|
100 | #---------------------- Voltage Data --------------------------- | |||
|
101 | ||||
|
102 | if self.dataIn.type == "Voltage": | |||
|
103 | ||||
|
104 | self.__updateObjFromInput() | |||
|
105 | self.dataOut.data_pre = self.dataIn.data.copy() | |||
|
106 | self.dataOut.flagNoData = False | |||
|
107 | self.dataOut.utctimeInit = self.dataIn.utctime | |||
|
108 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |||
|
109 | if hasattr(self.dataIn, 'dataPP_POW'): | |||
|
110 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW | |||
|
111 | ||||
|
112 | if hasattr(self.dataIn, 'dataPP_POWER'): | |||
|
113 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER | |||
|
114 | ||||
|
115 | if hasattr(self.dataIn, 'dataPP_DOP'): | |||
|
116 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP | |||
|
117 | ||||
|
118 | if hasattr(self.dataIn, 'dataPP_SNR'): | |||
|
119 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR | |||
|
120 | ||||
|
121 | if hasattr(self.dataIn, 'dataPP_WIDTH'): | |||
|
122 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH | |||
|
123 | return | |||
|
124 | ||||
|
125 | #---------------------- Spectra Data --------------------------- | |||
|
126 | ||||
|
127 | if self.dataIn.type == "Spectra": | |||
|
128 | ||||
|
129 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] | |||
|
130 | self.dataOut.data_spc = self.dataIn.data_spc | |||
|
131 | self.dataOut.data_cspc = self.dataIn.data_cspc | |||
|
132 | self.dataOut.nProfiles = self.dataIn.nProfiles | |||
|
133 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |||
|
134 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |||
|
135 | self.dataOut.ippFactor = self.dataIn.ippFactor | |||
|
136 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |||
|
137 | self.dataOut.spc_noise = self.dataIn.getNoise() | |||
|
138 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |||
|
139 | # self.dataOut.normFactor = self.dataIn.normFactor | |||
|
140 | self.dataOut.pairsList = self.dataIn.pairsList | |||
|
141 | self.dataOut.groupList = self.dataIn.pairsList | |||
|
142 | self.dataOut.flagNoData = False | |||
|
143 | ||||
|
144 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |||
|
145 | self.dataOut.ChanDist = self.dataIn.ChanDist | |||
|
146 | else: self.dataOut.ChanDist = None | |||
|
147 | ||||
|
148 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |||
|
149 | # self.dataOut.VelRange = self.dataIn.VelRange | |||
|
150 | #else: self.dataOut.VelRange = None | |||
|
151 | ||||
|
152 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |||
|
153 | self.dataOut.RadarConst = self.dataIn.RadarConst | |||
|
154 | ||||
|
155 | if hasattr(self.dataIn, 'NPW'): #NPW | |||
|
156 | self.dataOut.NPW = self.dataIn.NPW | |||
|
157 | ||||
|
158 | if hasattr(self.dataIn, 'COFA'): #COFA | |||
|
159 | self.dataOut.COFA = self.dataIn.COFA | |||
|
160 | ||||
|
161 | #self.dataOut.runNextUnit = self.dataIn.runNextUnit | |||
|
162 | ||||
|
163 | ||||
|
164 | #---------------------- Correlation Data --------------------------- | |||
|
165 | ||||
|
166 | if self.dataIn.type == "Correlation": | |||
|
167 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |||
|
168 | ||||
|
169 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |||
|
170 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |||
|
171 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |||
|
172 | ||||
|
173 | self.dataOut.abscissaList = self.dataIn.lagRange | |||
|
174 | self.dataOut.noise = self.dataIn.noise | |||
|
175 | self.dataOut.data_snr = self.dataIn.SNR | |||
|
176 | self.dataOut.flagNoData = False | |||
|
177 | self.dataOut.nAvg = self.dataIn.nAvg | |||
|
178 | ||||
|
179 | #---------------------- Parameters Data --------------------------- | |||
|
180 | ||||
|
181 | if self.dataIn.type == "Parameters": | |||
|
182 | self.dataOut.copy(self.dataIn) | |||
|
183 | self.dataOut.flagNoData = False | |||
|
184 | ||||
|
185 | return True | |||
|
186 | ||||
|
187 | self.__updateObjFromInput() | |||
|
188 | self.dataOut.utctimeInit = self.dataIn.utctime | |||
|
189 | self.dataOut.paramInterval = self.dataIn.timeInterval | |||
|
190 | ||||
|
191 | return | |||
|
192 | ||||
|
193 | ||||
|
194 | def target(tups): | |||
|
195 | ||||
|
196 | obj, args = tups | |||
|
197 | ||||
|
198 | return obj.FitGau(args) | |||
|
199 | ||||
|
200 | class RemoveWideGC(Operation): | |||
|
201 | ''' This class remove the wide clutter and replace it with a simple interpolation points | |||
|
202 | This mainly applies to CLAIRE radar | |||
|
203 | ||||
|
204 | ClutterWidth : Width to look for the clutter peak | |||
|
205 | ||||
|
206 | Input: | |||
|
207 | ||||
|
208 | self.dataOut.data_pre : SPC and CSPC | |||
|
209 | self.dataOut.spc_range : To select wind and rainfall velocities | |||
|
210 | ||||
|
211 | Affected: | |||
|
212 | ||||
|
213 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |||
|
214 | ||||
|
215 | Written by D. Scipión 25.02.2021 | |||
|
216 | ''' | |||
|
217 | def __init__(self): | |||
|
218 | Operation.__init__(self) | |||
|
219 | self.i = 0 | |||
|
220 | self.ich = 0 | |||
|
221 | self.ir = 0 | |||
|
222 | ||||
|
223 | def run(self, dataOut, ClutterWidth=2.5): | |||
|
224 | ||||
|
225 | self.spc = dataOut.data_pre[0].copy() | |||
|
226 | self.spc_out = dataOut.data_pre[0].copy() | |||
|
227 | self.Num_Chn = self.spc.shape[0] | |||
|
228 | self.Num_Hei = self.spc.shape[2] | |||
|
229 | VelRange = dataOut.spc_range[2][:-1] | |||
|
230 | dv = VelRange[1]-VelRange[0] | |||
|
231 | ||||
|
232 | # Find the velocities that corresponds to zero | |||
|
233 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) | |||
|
234 | ||||
|
235 | # Removing novalid data from the spectra | |||
|
236 | for ich in range(self.Num_Chn) : | |||
|
237 | for ir in range(self.Num_Hei) : | |||
|
238 | # Estimate the noise at each range | |||
|
239 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) | |||
|
240 | ||||
|
241 | # Removing the noise floor at each range | |||
|
242 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) | |||
|
243 | self.spc[ich,novalid,ir] = HSn | |||
|
244 | ||||
|
245 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) | |||
|
246 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) | |||
|
247 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) | |||
|
248 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : | |||
|
249 | continue | |||
|
250 | junk3 = numpy.squeeze(numpy.diff(j1index)) | |||
|
251 | junk4 = numpy.squeeze(numpy.diff(j2index)) | |||
|
252 | ||||
|
253 | valleyindex = j2index[numpy.where(junk4>1)] | |||
|
254 | peakindex = j1index[numpy.where(junk3>1)] | |||
|
255 | ||||
|
256 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) | |||
|
257 | if numpy.size(isvalid) == 0 : | |||
|
258 | continue | |||
|
259 | if numpy.size(isvalid) >1 : | |||
|
260 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) | |||
|
261 | isvalid = isvalid[vindex] | |||
|
262 | ||||
|
263 | # clutter peak | |||
|
264 | gcpeak = peakindex[isvalid] | |||
|
265 | vl = numpy.where(valleyindex < gcpeak) | |||
|
266 | if numpy.size(vl) == 0: | |||
|
267 | continue | |||
|
268 | gcvl = valleyindex[vl[0][-1]] | |||
|
269 | vr = numpy.where(valleyindex > gcpeak) | |||
|
270 | if numpy.size(vr) == 0: | |||
|
271 | continue | |||
|
272 | gcvr = valleyindex[vr[0][0]] | |||
|
273 | ||||
|
274 | # Removing the clutter | |||
|
275 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) | |||
|
276 | gcindex = gc_values[gcvl+1:gcvr-1] | |||
|
277 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) | |||
|
278 | ||||
|
279 | dataOut.data_pre[0] = self.spc_out | |||
|
280 | ||||
|
281 | return dataOut | |||
|
282 | ||||
|
283 | class SpectralFilters(Operation): | |||
|
284 | ''' This class allows to replace the novalid values with noise for each channel | |||
|
285 | This applies to CLAIRE RADAR | |||
|
286 | ||||
|
287 | PositiveLimit : RightLimit of novalid data | |||
|
288 | NegativeLimit : LeftLimit of novalid data | |||
|
289 | ||||
|
290 | Input: | |||
|
291 | ||||
|
292 | self.dataOut.data_pre : SPC and CSPC | |||
|
293 | self.dataOut.spc_range : To select wind and rainfall velocities | |||
|
294 | ||||
|
295 | Affected: | |||
|
296 | ||||
|
297 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |||
|
298 | ||||
|
299 | Written by D. Scipión 29.01.2021 | |||
|
300 | ''' | |||
|
301 | def __init__(self): | |||
|
302 | Operation.__init__(self) | |||
|
303 | self.i = 0 | |||
|
304 | ||||
|
305 | def run(self, dataOut, ): | |||
|
306 | ||||
|
307 | self.spc = dataOut.data_pre[0].copy() | |||
|
308 | self.Num_Chn = self.spc.shape[0] | |||
|
309 | VelRange = dataOut.spc_range[2] | |||
|
310 | ||||
|
311 | # novalid corresponds to data within the Negative and PositiveLimit | |||
|
312 | ||||
|
313 | ||||
|
314 | # Removing novalid data from the spectra | |||
|
315 | for i in range(self.Num_Chn): | |||
|
316 | self.spc[i,novalid,:] = dataOut.noise[i] | |||
|
317 | dataOut.data_pre[0] = self.spc | |||
|
318 | return dataOut | |||
|
319 | ||||
|
320 | ||||
|
321 | ||||
|
322 | class GaussianFit(Operation): | |||
|
323 | ||||
|
324 | ''' | |||
|
325 | Function that fit of one and two generalized gaussians (gg) based | |||
|
326 | on the PSD shape across an "power band" identified from a cumsum of | |||
|
327 | the measured spectrum - noise. | |||
|
328 | ||||
|
329 | Input: | |||
|
330 | self.dataOut.data_pre : SelfSpectra | |||
|
331 | ||||
|
332 | Output: | |||
|
333 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |||
|
334 | ||||
|
335 | ''' | |||
|
336 | def __init__(self): | |||
|
337 | Operation.__init__(self) | |||
|
338 | self.i=0 | |||
|
339 | ||||
|
340 | ||||
|
341 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |||
|
342 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |||
|
343 | """This routine will find a couple of generalized Gaussians to a power spectrum | |||
|
344 | methods: generalized, squared | |||
|
345 | input: spc | |||
|
346 | output: | |||
|
347 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |||
|
348 | """ | |||
|
349 | print ('Entering ',method,' double Gaussian fit') | |||
|
350 | self.spc = dataOut.data_pre[0].copy() | |||
|
351 | self.Num_Hei = self.spc.shape[2] | |||
|
352 | self.Num_Bin = self.spc.shape[1] | |||
|
353 | self.Num_Chn = self.spc.shape[0] | |||
|
354 | ||||
|
355 | start_time = time.time() | |||
|
356 | ||||
|
357 | pool = Pool(processes=self.Num_Chn) | |||
|
358 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |||
|
359 | objs = [self for __ in range(self.Num_Chn)] | |||
|
360 | attrs = list(zip(objs, args)) | |||
|
361 | DGauFitParam = pool.map(target, attrs) | |||
|
362 | # Parameters: | |||
|
363 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | |||
|
364 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |||
|
365 | ||||
|
366 | # Double Gaussian Curves | |||
|
367 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |||
|
368 | gau0[:] = numpy.NaN | |||
|
369 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |||
|
370 | gau1[:] = numpy.NaN | |||
|
371 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |||
|
372 | for iCh in range(self.Num_Chn): | |||
|
373 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |||
|
374 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |||
|
375 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |||
|
376 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |||
|
377 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |||
|
378 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |||
|
379 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |||
|
380 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |||
|
381 | if method == 'generalized': | |||
|
382 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |||
|
383 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |||
|
384 | elif method == 'squared': | |||
|
385 | p0 = 2. | |||
|
386 | p1 = 2. | |||
|
387 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |||
|
388 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |||
|
389 | dataOut.GaussFit0 = gau0 | |||
|
390 | dataOut.GaussFit1 = gau1 | |||
|
391 | ||||
|
392 | print('Leaving ',method ,' double Gaussian fit') | |||
|
393 | return dataOut | |||
|
394 | ||||
|
395 | def FitGau(self, X): | |||
|
396 | # print('Entering FitGau') | |||
|
397 | # Assigning the variables | |||
|
398 | Vrange, ch, wnoise, num_intg, SNRlimit = X | |||
|
399 | # Noise Limits | |||
|
400 | noisebl = wnoise * 0.9 | |||
|
401 | noisebh = wnoise * 1.1 | |||
|
402 | # Radar Velocity | |||
|
403 | Va = max(Vrange) | |||
|
404 | deltav = Vrange[1] - Vrange[0] | |||
|
405 | x = numpy.arange(self.Num_Bin) | |||
|
406 | ||||
|
407 | # print ('stop 0') | |||
|
408 | ||||
|
409 | # 5 parameters, 2 Gaussians | |||
|
410 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |||
|
411 | DGauFitParam[:] = numpy.NaN | |||
|
412 | ||||
|
413 | # SPCparam = [] | |||
|
414 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
415 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
416 | # SPC_ch1[:] = 0 #numpy.NaN | |||
|
417 | # SPC_ch2[:] = 0 #numpy.NaN | |||
|
418 | # print ('stop 1') | |||
|
419 | for ht in range(self.Num_Hei): | |||
|
420 | # print (ht) | |||
|
421 | # print ('stop 2') | |||
|
422 | # Spectra at each range | |||
|
423 | spc = numpy.asarray(self.spc)[ch,:,ht] | |||
|
424 | snr = ( spc.mean() - wnoise ) / wnoise | |||
|
425 | snrdB = 10.*numpy.log10(snr) | |||
|
426 | ||||
|
427 | #print ('stop 3') | |||
|
428 | if snrdB < SNRlimit : | |||
|
429 | # snr = numpy.NaN | |||
|
430 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
431 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
432 | # SPCparam = (SPC_ch1,SPC_ch2) | |||
|
433 | # print ('SNR less than SNRth') | |||
|
434 | continue | |||
|
435 | # wnoise = hildebrand_sekhon(spc,num_intg) | |||
|
436 | # print ('stop 2.01') | |||
|
437 | ############################################# | |||
|
438 | # normalizing spc and noise | |||
|
439 | # This part differs from gg1 | |||
|
440 | # spc_norm_max = max(spc) #commented by D. Scipión 19.03.2021 | |||
|
441 | #spc = spc / spc_norm_max | |||
|
442 | # pnoise = pnoise #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |||
|
443 | ############################################# | |||
|
444 | ||||
|
445 | # print ('stop 2.1') | |||
|
446 | fatspectra=1.0 | |||
|
447 | # noise per channel.... we might want to use the noise at each range | |||
|
448 | ||||
|
449 | # wnoise = noise_ #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |||
|
450 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |||
|
451 | #if wnoise>1.1*pnoise: # to be tested later | |||
|
452 | # wnoise=pnoise | |||
|
453 | # noisebl = wnoise*0.9 | |||
|
454 | # noisebh = wnoise*1.1 | |||
|
455 | spc = spc - wnoise # signal | |||
|
456 | ||||
|
457 | # print ('stop 2.2') | |||
|
458 | minx = numpy.argmin(spc) | |||
|
459 | #spcs=spc.copy() | |||
|
460 | spcs = numpy.roll(spc,-minx) | |||
|
461 | cum = numpy.cumsum(spcs) | |||
|
462 | # tot_noise = wnoise * self.Num_Bin #64; | |||
|
463 | ||||
|
464 | # print ('stop 2.3') | |||
|
465 | # snr = sum(spcs) / tot_noise | |||
|
466 | # snrdB = 10.*numpy.log10(snr) | |||
|
467 | #print ('stop 3') | |||
|
468 | # if snrdB < SNRlimit : | |||
|
469 | # snr = numpy.NaN | |||
|
470 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
471 | # SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
472 | # SPCparam = (SPC_ch1,SPC_ch2) | |||
|
473 | # print ('SNR less than SNRth') | |||
|
474 | # continue | |||
|
475 | ||||
|
476 | ||||
|
477 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |||
|
478 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |||
|
479 | # print ('stop 4') | |||
|
480 | cummax = max(cum) | |||
|
481 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |||
|
482 | cumlo = cummax * epsi | |||
|
483 | cumhi = cummax * (1-epsi) | |||
|
484 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |||
|
485 | ||||
|
486 | # print ('stop 5') | |||
|
487 | if len(powerindex) < 1:# case for powerindex 0 | |||
|
488 | # print ('powerindex < 1') | |||
|
489 | continue | |||
|
490 | powerlo = powerindex[0] | |||
|
491 | powerhi = powerindex[-1] | |||
|
492 | powerwidth = powerhi-powerlo | |||
|
493 | if powerwidth <= 1: | |||
|
494 | # print('powerwidth <= 1') | |||
|
495 | continue | |||
|
496 | ||||
|
497 | # print ('stop 6') | |||
|
498 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |||
|
499 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |||
|
500 | midpeak = (firstpeak + secondpeak)/2. | |||
|
501 | firstamp = spcs[int(firstpeak)] | |||
|
502 | secondamp = spcs[int(secondpeak)] | |||
|
503 | midamp = spcs[int(midpeak)] | |||
|
504 | ||||
|
505 | y_data = spc + wnoise | |||
|
506 | ||||
|
507 | ''' single Gaussian ''' | |||
|
508 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) | |||
|
509 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 | |||
|
510 | power0 = 2. | |||
|
511 | amplitude0 = midamp | |||
|
512 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |||
|
513 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
514 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |||
|
515 | # print ('stop 7.1') | |||
|
516 | # print (bnds) | |||
|
517 | ||||
|
518 | chiSq1=lsq1[1] | |||
|
519 | ||||
|
520 | # print ('stop 8') | |||
|
521 | if fatspectra<1.0 and powerwidth<4: | |||
|
522 | choice=0 | |||
|
523 | Amplitude0=lsq1[0][2] | |||
|
524 | shift0=lsq1[0][0] | |||
|
525 | width0=lsq1[0][1] | |||
|
526 | p0=lsq1[0][3] | |||
|
527 | Amplitude1=0. | |||
|
528 | shift1=0. | |||
|
529 | width1=0. | |||
|
530 | p1=0. | |||
|
531 | noise=lsq1[0][4] | |||
|
532 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |||
|
533 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |||
|
534 | # print ('stop 9') | |||
|
535 | ''' two Gaussians ''' | |||
|
536 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |||
|
537 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |||
|
538 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |||
|
539 | width0 = powerwidth/6. | |||
|
540 | width1 = width0 | |||
|
541 | power0 = 2. | |||
|
542 | power1 = power0 | |||
|
543 | amplitude0 = firstamp | |||
|
544 | amplitude1 = secondamp | |||
|
545 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |||
|
546 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
547 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
548 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |||
|
549 | ||||
|
550 | # print ('stop 10') | |||
|
551 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |||
|
552 | ||||
|
553 | # print ('stop 11') | |||
|
554 | chiSq2 = lsq2[1] | |||
|
555 | ||||
|
556 | # print ('stop 12') | |||
|
557 | ||||
|
558 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |||
|
559 | ||||
|
560 | # print ('stop 13') | |||
|
561 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |||
|
562 | if oneG: | |||
|
563 | choice = 0 | |||
|
564 | else: | |||
|
565 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |||
|
566 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |||
|
567 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |||
|
568 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |||
|
569 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |||
|
570 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |||
|
571 | ||||
|
572 | if gp1>gp2: | |||
|
573 | if a1>0.7*a2: | |||
|
574 | choice = 1 | |||
|
575 | else: | |||
|
576 | choice = 2 | |||
|
577 | elif gp2>gp1: | |||
|
578 | if a2>0.7*a1: | |||
|
579 | choice = 2 | |||
|
580 | else: | |||
|
581 | choice = 1 | |||
|
582 | else: | |||
|
583 | choice = numpy.argmax([a1,a2])+1 | |||
|
584 | #else: | |||
|
585 | #choice=argmin([std2a,std2b])+1 | |||
|
586 | ||||
|
587 | else: # with low SNR go to the most energetic peak | |||
|
588 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |||
|
589 | ||||
|
590 | # print ('stop 14') | |||
|
591 | shift0 = lsq2[0][0] | |||
|
592 | vel0 = Vrange[0] + shift0 * deltav | |||
|
593 | shift1 = lsq2[0][4] | |||
|
594 | # vel1=Vrange[0] + shift1 * deltav | |||
|
595 | ||||
|
596 | # max_vel = 1.0 | |||
|
597 | # Va = max(Vrange) | |||
|
598 | # deltav = Vrange[1]-Vrange[0] | |||
|
599 | # print ('stop 15') | |||
|
600 | #first peak will be 0, second peak will be 1 | |||
|
601 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.Scipión 19.03.2021 | |||
|
602 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |||
|
603 | shift0 = lsq2[0][0] | |||
|
604 | width0 = lsq2[0][1] | |||
|
605 | Amplitude0 = lsq2[0][2] | |||
|
606 | p0 = lsq2[0][3] | |||
|
607 | ||||
|
608 | shift1 = lsq2[0][4] | |||
|
609 | width1 = lsq2[0][5] | |||
|
610 | Amplitude1 = lsq2[0][6] | |||
|
611 | p1 = lsq2[0][7] | |||
|
612 | noise = lsq2[0][8] | |||
|
613 | else: | |||
|
614 | shift1 = lsq2[0][0] | |||
|
615 | width1 = lsq2[0][1] | |||
|
616 | Amplitude1 = lsq2[0][2] | |||
|
617 | p1 = lsq2[0][3] | |||
|
618 | ||||
|
619 | shift0 = lsq2[0][4] | |||
|
620 | width0 = lsq2[0][5] | |||
|
621 | Amplitude0 = lsq2[0][6] | |||
|
622 | p0 = lsq2[0][7] | |||
|
623 | noise = lsq2[0][8] | |||
|
624 | ||||
|
625 | if Amplitude0<0.05: # in case the peak is noise | |||
|
626 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |||
|
627 | if Amplitude1<0.05: | |||
|
628 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |||
|
629 | ||||
|
630 | # print ('stop 16 ') | |||
|
631 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |||
|
632 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |||
|
633 | # SPCparam = (SPC_ch1,SPC_ch2) | |||
|
634 | ||||
|
635 | DGauFitParam[0,ht,0] = noise | |||
|
636 | DGauFitParam[0,ht,1] = noise | |||
|
637 | DGauFitParam[1,ht,0] = Amplitude0 | |||
|
638 | DGauFitParam[1,ht,1] = Amplitude1 | |||
|
639 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |||
|
640 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |||
|
641 | DGauFitParam[3,ht,0] = width0 * deltav | |||
|
642 | DGauFitParam[3,ht,1] = width1 * deltav | |||
|
643 | DGauFitParam[4,ht,0] = p0 | |||
|
644 | DGauFitParam[4,ht,1] = p1 | |||
|
645 | ||||
|
646 | return DGauFitParam | |||
|
647 | ||||
|
648 | def y_model1(self,x,state): | |||
|
649 | shift0, width0, amplitude0, power0, noise = state | |||
|
650 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |||
|
651 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |||
|
652 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |||
|
653 | return model0 + model0u + model0d + noise | |||
|
654 | ||||
|
655 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |||
|
656 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |||
|
657 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |||
|
658 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |||
|
659 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |||
|
660 | ||||
|
661 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |||
|
662 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |||
|
663 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | |||
|
664 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |||
|
665 | ||||
|
666 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |||
|
667 | ||||
|
668 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |||
|
669 | ||||
|
670 | def misfit2(self,state,y_data,x,num_intg): | |||
|
671 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |||
|
672 | ||||
|
673 | class Oblique_Gauss_Fit(Operation): | |||
|
674 | ''' | |||
|
675 | Written by R. Flores | |||
|
676 | ''' | |||
|
677 | def __init__(self): | |||
|
678 | Operation.__init__(self) | |||
|
679 | ||||
|
680 | def Gauss_fit(self,spc,x,nGauss): | |||
|
681 | ||||
|
682 | ||||
|
683 | def gaussian(x, a, b, c, d): | |||
|
684 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |||
|
685 | return val | |||
|
686 | ||||
|
687 | if nGauss == 'first': | |||
|
688 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) | |||
|
689 | spc_2_aux = numpy.flip(spc_1_aux) | |||
|
690 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) | |||
|
691 | ||||
|
692 | len_dif = len(x)-len(spc_3_aux) | |||
|
693 | ||||
|
694 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] | |||
|
695 | ||||
|
696 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) | |||
|
697 | ||||
|
698 | y = spc_new | |||
|
699 | ||||
|
700 | elif nGauss == 'second': | |||
|
701 | y = spc | |||
|
702 | ||||
|
703 | ||||
|
704 | # estimate starting values from the data | |||
|
705 | a = y.max() | |||
|
706 | b = x[numpy.argmax(y)] | |||
|
707 | if nGauss == 'first': | |||
|
708 | c = 1.#b#b#numpy.std(spc) | |||
|
709 | elif nGauss == 'second': | |||
|
710 | c = b | |||
|
711 | else: | |||
|
712 | print("ERROR") | |||
|
713 | ||||
|
714 | d = numpy.mean(y[-100:]) | |||
|
715 | ||||
|
716 | # define a least squares function to optimize | |||
|
717 | def minfunc(params): | |||
|
718 | return sum((y-gaussian(x,params[0],params[1],params[2],params[3]))**2) | |||
|
719 | ||||
|
720 | # fit | |||
|
721 | popt = fmin(minfunc,[a,b,c,d],disp=False) | |||
|
722 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) | |||
|
723 | ||||
|
724 | ||||
|
725 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] | |||
|
726 | ||||
|
727 | def Gauss_fit_2(self,spc,x,nGauss): | |||
|
728 | ||||
|
729 | ||||
|
730 | def gaussian(x, a, b, c, d): | |||
|
731 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |||
|
732 | return val | |||
|
733 | ||||
|
734 | if nGauss == 'first': | |||
|
735 | spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1]) | |||
|
736 | spc_2_aux = numpy.flip(spc_1_aux) | |||
|
737 | spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:])) | |||
|
738 | ||||
|
739 | len_dif = len(x)-len(spc_3_aux) | |||
|
740 | ||||
|
741 | spc_zeros = numpy.ones(len_dif)*spc_1_aux[0] | |||
|
742 | ||||
|
743 | spc_new = numpy.concatenate((spc_3_aux,spc_zeros)) | |||
|
744 | ||||
|
745 | y = spc_new | |||
|
746 | ||||
|
747 | elif nGauss == 'second': | |||
|
748 | y = spc | |||
|
749 | ||||
|
750 | ||||
|
751 | # estimate starting values from the data | |||
|
752 | a = y.max() | |||
|
753 | b = x[numpy.argmax(y)] | |||
|
754 | if nGauss == 'first': | |||
|
755 | c = 1.#b#b#numpy.std(spc) | |||
|
756 | elif nGauss == 'second': | |||
|
757 | c = b | |||
|
758 | else: | |||
|
759 | print("ERROR") | |||
|
760 | ||||
|
761 | d = numpy.mean(y[-100:]) | |||
|
762 | ||||
|
763 | # define a least squares function to optimize | |||
|
764 | popt,pcov = curve_fit(gaussian,x,y,p0=[a,b,c,d]) | |||
|
765 | #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d]) | |||
|
766 | ||||
|
767 | ||||
|
768 | #return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3] | |||
|
769 | return gaussian(x, popt[0], popt[1], popt[2], popt[3]),popt[0], popt[1], popt[2], popt[3] | |||
|
770 | ||||
|
771 | def Double_Gauss_fit(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |||
|
772 | ||||
|
773 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |||
|
774 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |||
|
775 | return val | |||
|
776 | ||||
|
777 | ||||
|
778 | y = spc | |||
|
779 | ||||
|
780 | # estimate starting values from the data | |||
|
781 | a1 = A1 | |||
|
782 | b1 = B1 | |||
|
783 | c1 = C1#numpy.std(spc) | |||
|
784 | ||||
|
785 | a2 = A2#y.max() | |||
|
786 | b2 = B2#x[numpy.argmax(y)] | |||
|
787 | c2 = C2#numpy.std(spc) | |||
|
788 | d = D | |||
|
789 | ||||
|
790 | # define a least squares function to optimize | |||
|
791 | def minfunc(params): | |||
|
792 | return sum((y-double_gaussian(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2) | |||
|
793 | ||||
|
794 | # fit | |||
|
795 | popt = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d],disp=False) | |||
|
796 | ||||
|
797 | return double_gaussian(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
798 | ||||
|
799 | def Double_Gauss_fit_2(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |||
|
800 | ||||
|
801 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |||
|
802 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |||
|
803 | return val | |||
|
804 | ||||
|
805 | ||||
|
806 | y = spc | |||
|
807 | ||||
|
808 | # estimate starting values from the data | |||
|
809 | a1 = A1 | |||
|
810 | b1 = B1 | |||
|
811 | c1 = C1#numpy.std(spc) | |||
|
812 | ||||
|
813 | a2 = A2#y.max() | |||
|
814 | b2 = B2#x[numpy.argmax(y)] | |||
|
815 | c2 = C2#numpy.std(spc) | |||
|
816 | d = D | |||
|
817 | ||||
|
818 | # fit | |||
|
819 | ||||
|
820 | popt,pcov = curve_fit(double_gaussian,x,y,p0=[a1,b1,c1,a2,b2,c2,d]) | |||
|
821 | ||||
|
822 | error = numpy.sqrt(numpy.diag(pcov)) | |||
|
823 | ||||
|
824 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6], error[0], error[1], error[2], error[3], error[4], error[5], error[6] | |||
|
825 | ||||
|
826 | def windowing_double(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |||
|
827 | from scipy.optimize import curve_fit,fmin | |||
|
828 | ||||
|
829 | def R_gaussian(x, a, b, c): | |||
|
830 | N = int(numpy.shape(x)[0]) | |||
|
831 | val = a * numpy.exp(-((x)*c*2*2*numpy.pi)**2 / (2))* numpy.exp(1.j*b*x*4*numpy.pi) | |||
|
832 | return val | |||
|
833 | ||||
|
834 | def T(x,N): | |||
|
835 | T = 1-abs(x)/N | |||
|
836 | return T | |||
|
837 | ||||
|
838 | def R_T_spc_fun(x, a1, b1, c1, a2, b2, c2, d): | |||
|
839 | ||||
|
840 | N = int(numpy.shape(x)[0]) | |||
|
841 | ||||
|
842 | x_max = x[-1] | |||
|
843 | ||||
|
844 | x_pos = x[1600:] | |||
|
845 | x_neg = x[:1600] | |||
|
846 | ||||
|
847 | R_T_neg_1 = R_gaussian(x, a1, b1, c1)[:1600]*T(x_neg,-x[0]) | |||
|
848 | R_T_pos_1 = R_gaussian(x, a1, b1, c1)[1600:]*T(x_pos,x[-1]) | |||
|
849 | R_T_sum_1 = R_T_pos_1 + R_T_neg_1 | |||
|
850 | R_T_spc_1 = numpy.fft.fft(R_T_sum_1).real | |||
|
851 | R_T_spc_1 = numpy.fft.fftshift(R_T_spc_1) | |||
|
852 | max_val_1 = numpy.max(R_T_spc_1) | |||
|
853 | R_T_spc_1 = R_T_spc_1*a1/max_val_1 | |||
|
854 | ||||
|
855 | R_T_neg_2 = R_gaussian(x, a2, b2, c2)[:1600]*T(x_neg,-x[0]) | |||
|
856 | R_T_pos_2 = R_gaussian(x, a2, b2, c2)[1600:]*T(x_pos,x[-1]) | |||
|
857 | R_T_sum_2 = R_T_pos_2 + R_T_neg_2 | |||
|
858 | R_T_spc_2 = numpy.fft.fft(R_T_sum_2).real | |||
|
859 | R_T_spc_2 = numpy.fft.fftshift(R_T_spc_2) | |||
|
860 | max_val_2 = numpy.max(R_T_spc_2) | |||
|
861 | R_T_spc_2 = R_T_spc_2*a2/max_val_2 | |||
|
862 | ||||
|
863 | R_T_d = d*numpy.fft.fftshift(signal.unit_impulse(N)) | |||
|
864 | R_T_d_neg = R_T_d[:1600]*T(x_neg,-x[0]) | |||
|
865 | R_T_d_pos = R_T_d[1600:]*T(x_pos,x[-1]) | |||
|
866 | R_T_d_sum = R_T_d_pos + R_T_d_neg | |||
|
867 | R_T_spc_3 = numpy.fft.fft(R_T_d_sum).real | |||
|
868 | R_T_spc_3 = numpy.fft.fftshift(R_T_spc_3) | |||
|
869 | ||||
|
870 | R_T_final = R_T_spc_1 + R_T_spc_2 + R_T_spc_3 | |||
|
871 | ||||
|
872 | return R_T_final | |||
|
873 | ||||
|
874 | y = spc#gaussian(x, a, meanY, sigmaY) + a*0.1*numpy.random.normal(0, 1, size=len(x)) | |||
|
875 | ||||
|
876 | from scipy.stats import norm | |||
|
877 | mean,std=norm.fit(spc) | |||
|
878 | ||||
|
879 | # estimate starting values from the data | |||
|
880 | a1 = A1 | |||
|
881 | b1 = B1 | |||
|
882 | c1 = C1#numpy.std(spc) | |||
|
883 | ||||
|
884 | a2 = A2#y.max() | |||
|
885 | b2 = B2#x[numpy.argmax(y)] | |||
|
886 | c2 = C2#numpy.std(spc) | |||
|
887 | d = D | |||
|
888 | ||||
|
889 | ippSeconds = 250*20*1.e-6/3 | |||
|
890 | ||||
|
891 | x_t = ippSeconds * (numpy.arange(1600) -1600 / 2.) | |||
|
892 | ||||
|
893 | x_t = numpy.linspace(x_t[0],x_t[-1],3200) | |||
|
894 | ||||
|
895 | x_freq = numpy.fft.fftfreq(1600,d=ippSeconds) | |||
|
896 | x_freq = numpy.fft.fftshift(x_freq) | |||
|
897 | ||||
|
898 | # define a least squares function to optimize | |||
|
899 | def minfunc(params): | |||
|
900 | #print(params[2]) | |||
|
901 | #print(numpy.shape(params[2])) | |||
|
902 | return sum((y-R_T_spc_fun(x_t,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2/1)#y**2) | |||
|
903 | ||||
|
904 | # fit | |||
|
905 | ||||
|
906 | popt_full = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d],full_output=True) | |||
|
907 | #print("nIter", popt_full[2]) | |||
|
908 | popt = popt_full[0] | |||
|
909 | ||||
|
910 | #return R_T_spc_fun(x_t,popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
911 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
912 | ||||
|
913 | def Double_Gauss_fit_weight(self,spc,x,A1,B1,C1,A2,B2,C2,D): | |||
|
914 | from scipy.optimize import curve_fit,fmin | |||
|
915 | ||||
|
916 | def double_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |||
|
917 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |||
|
918 | return val | |||
|
919 | ||||
|
920 | y = spc | |||
|
921 | ||||
|
922 | from scipy.stats import norm | |||
|
923 | mean,std=norm.fit(spc) | |||
|
924 | ||||
|
925 | # estimate starting values from the data | |||
|
926 | a1 = A1 | |||
|
927 | b1 = B1 | |||
|
928 | c1 = C1#numpy.std(spc) | |||
|
929 | ||||
|
930 | a2 = A2#y.max() | |||
|
931 | b2 = B2#x[numpy.argmax(y)] | |||
|
932 | c2 = C2#numpy.std(spc) | |||
|
933 | d = D | |||
|
934 | ||||
|
935 | y_clean = signal.medfilt(y) | |||
|
936 | # define a least squares function to optimize | |||
|
937 | def minfunc(params): | |||
|
938 | return sum((y-double_gaussian(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2/(y_clean**2/1)) | |||
|
939 | ||||
|
940 | # fit | |||
|
941 | popt_full = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d], disp =False, full_output=True) | |||
|
942 | #print("nIter", popt_full[2]) | |||
|
943 | popt = popt_full[0] | |||
|
944 | #popt,pcov = curve_fit(double_gaussian,x,y,p0=[a1,b1,c1,a2,b2,c2,d]) | |||
|
945 | ||||
|
946 | #return double_gaussian(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
947 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
948 | ||||
|
949 | def DH_mode(self,spectra,VelRange): | |||
|
950 | ||||
|
951 | from scipy.optimize import curve_fit | |||
|
952 | ||||
|
953 | def double_gauss(x, a1,b1,c1, a2,b2,c2, d): | |||
|
954 | val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d | |||
|
955 | return val | |||
|
956 | ||||
|
957 | spec = (spectra.copy()).flatten() | |||
|
958 | amp=spec.max() | |||
|
959 | params=numpy.array([amp,-400,30,amp/4,-200,150,1.0e7]) | |||
|
960 | #try: | |||
|
961 | popt,pcov=curve_fit(double_gauss, VelRange, spec, p0=params,bounds=([0,-460,0,0,-400,120,0],[numpy.inf,-340,50,numpy.inf,0,250,numpy.inf])) | |||
|
962 | ||||
|
963 | error = numpy.sqrt(numpy.diag(pcov)) | |||
|
964 | #doppler_2=popt[4] | |||
|
965 | #err_2 = numpy.sqrt(pcov[4][4]) | |||
|
966 | ||||
|
967 | #except: | |||
|
968 | #pass | |||
|
969 | #doppler_2=numpy.NAN | |||
|
970 | #err_2 = numpy.NAN | |||
|
971 | ||||
|
972 | #return doppler_2, err_2 | |||
|
973 | ||||
|
974 | return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6], error[0], error[1], error[2], error[3], error[4], error[5], error[6] | |||
|
975 | ||||
|
976 | def Tri_Marco(self,spc,freq,a1,b1,c1,a2,b2,c2,d): | |||
|
977 | ||||
|
978 | from scipy.optimize import least_squares | |||
|
979 | ||||
|
980 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
981 | spc_max = numpy.max(spc) | |||
|
982 | ||||
|
983 | def tri_gaussian(x, a1, b1, c1, a2, b2, c2, a3, b3, c3, d): | |||
|
984 | z1 = (x-b1)/c1 | |||
|
985 | z2 = (x-b2)/c2 | |||
|
986 | z3 = (x-b3)/c3 | |||
|
987 | val = a1 * numpy.exp(-z1**2/2) + a2 * numpy.exp(-z2**2/2) + a3 * numpy.exp(-z3**2/2) + d | |||
|
988 | return val | |||
|
989 | ||||
|
990 | from scipy.signal import medfilt | |||
|
991 | Nincoh = 20 | |||
|
992 | spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
993 | c1 = abs(c1) | |||
|
994 | c2 = abs(c2) | |||
|
995 | ||||
|
996 | # define a least squares function to optimize | |||
|
997 | def lsq_func(params): | |||
|
998 | return (spc-tri_gaussian(freq,params[0],params[1],params[2],params[3],params[4],params[5],params[6],params[7],params[8],params[9]))/spcm | |||
|
999 | ||||
|
1000 | # fit | |||
|
1001 | #bounds=([0,-460,0,0,-400,120,0],[numpy.inf,-340,50,numpy.inf,0,250,numpy.inf]) | |||
|
1002 | bounds=([0,-numpy.inf,0,0,-numpy.inf,0,0,0,0,0],[numpy.inf,-100,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf,600,numpy.inf,numpy.inf]) | |||
|
1003 | #bounds=([0,-180,0,0,-100,30,0,110,0,0],[numpy.inf,-110,20,numpy.inf,33,80,numpy.inf,150,16,numpy.inf]) | |||
|
1004 | #bounds=([0,-540,0,0,-300,100,0,330,0,0],[numpy.inf,-330,60,numpy.inf,100,240,numpy.inf,450,80,numpy.inf]) | |||
|
1005 | ||||
|
1006 | params_scale = [spc_max,freq_max,freq_max,spc_max,freq_max,freq_max,spc_max,freq_max,freq_max,spc_max] | |||
|
1007 | #print(a1,b1,c1,a2,b2,c2,d) | |||
|
1008 | popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,a2/4,-b1,c1,d],x_scale=params_scale,bounds=bounds) | |||
|
1009 | ||||
|
1010 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2] | |||
|
1011 | A2f = popt.x[3]; B2f = popt.x[4]; C2f = popt.x[5] | |||
|
1012 | A3f = popt.x[6]; B3f = popt.x[7]; C3f = popt.x[8] | |||
|
1013 | Df = popt.x[9] | |||
|
1014 | ||||
|
1015 | return A1f, B1f, C1f, A2f, B2f, C2f, Df | |||
|
1016 | ||||
|
1017 | def Tri_Marco(self,spc,freq,a1,b1,c1,a2,b2,c2,d): | |||
|
1018 | ||||
|
1019 | from scipy.optimize import least_squares | |||
|
1020 | ||||
|
1021 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1022 | spc_max = numpy.max(spc) | |||
|
1023 | ||||
|
1024 | def duo_gaussian(x, a1, b1, c1, a2, b2, c2, d): | |||
|
1025 | z1 = (x-b1)/c1 | |||
|
1026 | z2 = (x-b2)/c2 | |||
|
1027 | #z3 = (x-b3)/c3 | |||
|
1028 | val = a1 * numpy.exp(-z1**2/2) + a2 * numpy.exp(-z2**2/2) + d | |||
|
1029 | return val | |||
|
1030 | ||||
|
1031 | from scipy.signal import medfilt | |||
|
1032 | Nincoh = 20 | |||
|
1033 | spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
1034 | c1 = abs(c1) | |||
|
1035 | c2 = abs(c2) | |||
|
1036 | ||||
|
1037 | # define a least squares function to optimize | |||
|
1038 | def lsq_func(params): | |||
|
1039 | return (spc-tri_gaussian(freq,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))/spcm | |||
|
1040 | ||||
|
1041 | # fit | |||
|
1042 | #bounds=([0,-460,0,0,-400,120,0],[numpy.inf,-340,50,numpy.inf,0,250,numpy.inf]) | |||
|
1043 | bounds=([0,-numpy.inf,0,0,-numpy.inf,0,0],[numpy.inf,-100,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf]) | |||
|
1044 | #bounds=([0,-180,0,0,-100,30,0,110,0,0],[numpy.inf,-110,20,numpy.inf,33,80,numpy.inf,150,16,numpy.inf]) | |||
|
1045 | #bounds=([0,-540,0,0,-300,100,0,330,0,0],[numpy.inf,-330,60,numpy.inf,100,240,numpy.inf,450,80,numpy.inf]) | |||
|
1046 | ||||
|
1047 | params_scale = [spc_max,freq_max,freq_max,spc_max,freq_max,freq_max,spc_max] | |||
|
1048 | #print(a1,b1,c1,a2,b2,c2,d) | |||
|
1049 | popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,d],x_scale=params_scale,bounds=bounds) | |||
|
1050 | ||||
|
1051 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2] | |||
|
1052 | A2f = popt.x[3]; B2f = popt.x[4]; C2f = popt.x[5] | |||
|
1053 | #A3f = popt.x[6]; B3f = popt.x[7]; C3f = popt.x[8] | |||
|
1054 | Df = popt.x[9] | |||
|
1055 | ||||
|
1056 | return A1f, B1f, C1f, A2f, B2f, C2f, Df | |||
|
1057 | ||||
|
1058 | def double_gaussian_skew(self,x, a1, b1, c1, a2, b2, c2, k2, d): | |||
|
1059 | #from scipy import special | |||
|
1060 | z1 = (x-b1)/c1 | |||
|
1061 | z2 = (x-b2)/c2 | |||
|
1062 | h2 = 1-k2*z2 | |||
|
1063 | h2[h2<0] = 0 | |||
|
1064 | y2 = -1/k2*numpy.log(h2) | |||
|
1065 | val = a1 * numpy.exp(-z1**2/2) + a2 * numpy.exp(-y2**2/2)/(1-k2*z2) + d | |||
|
1066 | return val | |||
|
1067 | ||||
|
1068 | def gaussian(self, x, a, b, c, d): | |||
|
1069 | z = (x-b)/c | |||
|
1070 | val = a * numpy.exp(-z**2/2) + d | |||
|
1071 | return val | |||
|
1072 | ||||
|
1073 | def double_gaussian(self, x, a1, b1, c1, a2, b2, c2, d): | |||
|
1074 | z1 = (x-b1)/c1 | |||
|
1075 | z2 = (x-b2)/c2 | |||
|
1076 | val = a1 * numpy.exp(-z1**2/2) + a2 * numpy.exp(-z2**2/2) + d | |||
|
1077 | return val | |||
|
1078 | ||||
|
1079 | def double_gaussian_double_skew(self,x, a1, b1, c1, k1, a2, b2, c2, k2, d): | |||
|
1080 | ||||
|
1081 | z1 = (x-b1)/c1 | |||
|
1082 | h1 = 1-k1*z1 | |||
|
1083 | h1[h1<0] = 0 | |||
|
1084 | y1 = -1/k1*numpy.log(h1) | |||
|
1085 | ||||
|
1086 | z2 = (x-b2)/c2 | |||
|
1087 | h2 = 1-k2*z2 | |||
|
1088 | h2[h2<0] = 0 | |||
|
1089 | y2 = -1/k2*numpy.log(h2) | |||
|
1090 | ||||
|
1091 | val = a1 * numpy.exp(-y1**2/2)/(1-k1*z1) + a2 * numpy.exp(-y2**2/2)/(1-k2*z2) + d | |||
|
1092 | return val | |||
|
1093 | ||||
|
1094 | def gaussian_skew(self,x, a2, b2, c2, k2, d): | |||
|
1095 | #from scipy import special | |||
|
1096 | z2 = (x-b2)/c2 | |||
|
1097 | h2 = 1-k2*z2 | |||
|
1098 | h2[h2<0] = 0 | |||
|
1099 | y2 = -1/k2*numpy.log(h2) | |||
|
1100 | val = a2 * numpy.exp(-y2**2/2)/(1-k2*z2) + d | |||
|
1101 | return val | |||
|
1102 | ||||
|
1103 | def triple_gaussian_skew(self,x, a1, b1, c1, a2, b2, c2, k2, a3, b3, c3, k3, d): | |||
|
1104 | #from scipy import special | |||
|
1105 | z1 = (x-b1)/c1 | |||
|
1106 | z2 = (x-b2)/c2 | |||
|
1107 | z3 = (x-b3)/c3 | |||
|
1108 | h2 = 1-k2*z2 | |||
|
1109 | h2[h2<0] = 0 | |||
|
1110 | y2 = -1/k2*numpy.log(h2) | |||
|
1111 | h3 = 1-k3*z3 | |||
|
1112 | h3[h3<0] = 0 | |||
|
1113 | y3 = -1/k3*numpy.log(h3) | |||
|
1114 | val = a1 * numpy.exp(-z1**2/2) + a2 * numpy.exp(-y2**2/2)/(1-k2*z2) + a3 * numpy.exp(-y3**2/2)/(1-k3*z3) + d | |||
|
1115 | return val | |||
|
1116 | ||||
|
1117 | def Double_Gauss_Skew_fit_weight_bound_no_inputs(self,spc,freq): | |||
|
1118 | ||||
|
1119 | from scipy.optimize import least_squares | |||
|
1120 | ||||
|
1121 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1122 | spc_max = numpy.max(spc) | |||
|
1123 | ||||
|
1124 | from scipy.signal import medfilt | |||
|
1125 | Nincoh = 20 | |||
|
1126 | spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
1127 | ||||
|
1128 | # define a least squares function to optimize | |||
|
1129 | def lsq_func(params): | |||
|
1130 | return (spc-self.double_gaussian_skew(freq,params[0],params[1],params[2],params[3],params[4],params[5],params[6],params[7]))/spcm | |||
|
1131 | ||||
|
1132 | # fit | |||
|
1133 | # bounds=([0,-460,0,0,-400,120,0],[numpy.inf,-340,50,numpy.inf,0,250,numpy.inf]) | |||
|
1134 | # bounds=([0,-numpy.inf,0,0,-numpy.inf,0,-numpy.inf,0],[numpy.inf,-200,numpy.inf,numpy.inf,0,numpy.inf,0,numpy.inf]) | |||
|
1135 | #print(a1,b1,c1,a2,b2,c2,k2,d) | |||
|
1136 | bounds=([0,-numpy.inf,0,0,-400,0,0,0],[numpy.inf,-340,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1137 | #print(bounds) | |||
|
1138 | #bounds=([0,-numpy.inf,0,0,-numpy.inf,0,0,0],[numpy.inf,-200,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1139 | params_scale = [spc_max,freq_max,freq_max,spc_max,freq_max,freq_max,1,spc_max] | |||
|
1140 | x0_value = numpy.array([spc_max,-400,30,spc_max/4,-200,150,1,1.0e7]) | |||
|
1141 | #popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,k2,d],x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=1) | |||
|
1142 | popt = least_squares(lsq_func,x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=0) | |||
|
1143 | # popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,k2,d],x_scale=params_scale,verbose=1) | |||
|
1144 | ||||
|
1145 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2] | |||
|
1146 | A2f = popt.x[3]; B2f = popt.x[4]; C2f = popt.x[5]; K2f = popt.x[6] | |||
|
1147 | Df = popt.x[7] | |||
|
1148 | ||||
|
1149 | aux = self.gaussian_skew(freq, A2f, B2f, C2f, K2f, Df) | |||
|
1150 | doppler = freq[numpy.argmax(aux)] | |||
|
1151 | ||||
|
1152 | #return A1f, B1f, C1f, A2f, B2f, C2f, K2f, Df, doppler | |||
|
1153 | return A1f, B1f, C1f, A2f, B2f, C2f, K2f, Df, doppler | |||
|
1154 | ||||
|
1155 | def Double_Gauss_Double_Skew_fit_weight_bound_no_inputs(self,spc,freq,Nincoh,hei): | |||
|
1156 | ||||
|
1157 | from scipy.optimize import least_squares | |||
|
1158 | ||||
|
1159 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1160 | spc_max = numpy.max(spc) | |||
|
1161 | ||||
|
1162 | #from scipy.signal import medfilt | |||
|
1163 | #Nincoh = 20 | |||
|
1164 | #Nincoh = 80 | |||
|
1165 | Nincoh = Nincoh | |||
|
1166 | #spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
1167 | spcm = spc/numpy.sqrt(Nincoh) | |||
|
1168 | ||||
|
1169 | # define a least squares function to optimize | |||
|
1170 | def lsq_func(params): | |||
|
1171 | return (spc-self.double_gaussian_double_skew(freq,params[0],params[1],params[2],params[3],params[4],params[5],params[6],params[7],params[8]))/spcm | |||
|
1172 | ||||
|
1173 | # fit | |||
|
1174 | # bounds=([0,-460,0,0,-400,120,0],[numpy.inf,-340,50,numpy.inf,0,250,numpy.inf]) | |||
|
1175 | # bounds=([0,-numpy.inf,0,0,-numpy.inf,0,-numpy.inf,0],[numpy.inf,-200,numpy.inf,numpy.inf,0,numpy.inf,0,numpy.inf]) | |||
|
1176 | #print(a1,b1,c1,a2,b2,c2,k2,d) | |||
|
1177 | #bounds=([0,-numpy.inf,0,-numpy.inf,0,-400,0,0,0],[numpy.inf,-340,numpy.inf,0,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1178 | #bounds=([0,-numpy.inf,0,-numpy.inf,0,-400,0,0,0],[numpy.inf,-140,numpy.inf,0,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1179 | bounds=([0,-numpy.inf,0,-5,0,-400,0,0,0],[numpy.inf,-200,numpy.inf,5,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1180 | ||||
|
1181 | #print(bounds) | |||
|
1182 | #bounds=([0,-numpy.inf,0,0,-numpy.inf,0,0,0],[numpy.inf,-200,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1183 | params_scale = [spc_max,freq_max,freq_max,1,spc_max,freq_max,freq_max,1,spc_max] | |||
|
1184 | ####################x0_value = numpy.array([spc_max,-400,30,-.1,spc_max/4,-200,150,1,1.0e7]) | |||
|
1185 | ||||
|
1186 | dop1_x0 = freq[numpy.argmax(spc)] | |||
|
1187 | ####dop1_x0 = freq[numpy.argmax(spcm)] | |||
|
1188 | if dop1_x0 < 0: | |||
|
1189 | dop2_x0 = dop1_x0 + 100 | |||
|
1190 | if dop1_x0 > 0: | |||
|
1191 | dop2_x0 = dop1_x0 - 100 | |||
|
1192 | ||||
|
1193 | ###########x0_value = numpy.array([spc_max,-200.5,30,-.1,spc_max/4,-100.5,150,1,1.0e7]) | |||
|
1194 | x0_value = numpy.array([spc_max,dop1_x0,30,-.1,spc_max/4, dop2_x0,150,1,1.0e7]) | |||
|
1195 | #x0_value = numpy.array([spc_max,-400.5,30,-.1,spc_max/4,-200.5,150,1,1.0e7]) | |||
|
1196 | #popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,k2,d],x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=1) | |||
|
1197 | ''' | |||
|
1198 | print("INSIDE 1") | |||
|
1199 | print("x0_value: ", x0_value) | |||
|
1200 | print("boundaries: ", bounds) | |||
|
1201 | import matplotlib.pyplot as plt | |||
|
1202 | plt.plot(freq,spc) | |||
|
1203 | plt.plot(freq,self.double_gaussian_double_skew(freq,x0_value[0],x0_value[1],x0_value[2],x0_value[3],x0_value[4],x0_value[5],x0_value[6],x0_value[7],x0_value[8])) | |||
|
1204 | plt.title(hei) | |||
|
1205 | plt.show() | |||
|
1206 | ''' | |||
|
1207 | popt = least_squares(lsq_func,x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=0) | |||
|
1208 | # popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,k2,d],x_scale=params_scale,verbose=1) | |||
|
1209 | #print(popt) | |||
|
1210 | #########print("INSIDE 2") | |||
|
1211 | J = popt.jac | |||
|
1212 | ||||
|
1213 | try: | |||
|
1214 | cov = numpy.linalg.inv(J.T.dot(J)) | |||
|
1215 | error = numpy.sqrt(numpy.diagonal(cov)) | |||
|
1216 | except: | |||
|
1217 | error = numpy.ones((9))*numpy.NAN | |||
|
1218 | #print("error_inside",error) | |||
|
1219 | #exit(1) | |||
|
1220 | ||||
|
1221 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2]; K1f = popt.x[3] | |||
|
1222 | A2f = popt.x[4]; B2f = popt.x[5]; C2f = popt.x[6]; K2f = popt.x[7] | |||
|
1223 | Df = popt.x[8] | |||
|
1224 | ''' | |||
|
1225 | A1f_err = error.x[0]; B1f_err= error.x[1]; C1f_err = error.x[2]; K1f_err = error.x[3] | |||
|
1226 | A2f_err = error.x[4]; B2f_err = error.x[5]; C2f_err = error.x[6]; K2f_err = error.x[7] | |||
|
1227 | Df_err = error.x[8] | |||
|
1228 | ''' | |||
|
1229 | aux1 = self.gaussian_skew(freq, A1f, B1f, C1f, K1f, Df) | |||
|
1230 | doppler1 = freq[numpy.argmax(aux1)] | |||
|
1231 | ||||
|
1232 | aux2 = self.gaussian_skew(freq, A2f, B2f, C2f, K2f, Df) | |||
|
1233 | doppler2 = freq[numpy.argmax(aux2)] | |||
|
1234 | #print("error",error) | |||
|
1235 | #exit(1) | |||
|
1236 | ||||
|
1237 | ||||
|
1238 | return A1f, B1f, C1f, K1f, A2f, B2f, C2f, K2f, Df, doppler1, doppler2, error | |||
|
1239 | ||||
|
1240 | def Double_Gauss_fit_weight_bound_no_inputs(self,spc,freq,Nincoh): | |||
|
1241 | ||||
|
1242 | from scipy.optimize import least_squares | |||
|
1243 | ||||
|
1244 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1245 | spc_max = numpy.max(spc) | |||
|
1246 | ||||
|
1247 | from scipy.signal import medfilt | |||
|
1248 | Nincoh = 20 | |||
|
1249 | Nincoh = 80 | |||
|
1250 | Nincoh = Nincoh | |||
|
1251 | spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
1252 | ||||
|
1253 | # define a least squares function to optimize | |||
|
1254 | def lsq_func(params): | |||
|
1255 | return (spc-self.double_gaussian(freq,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))/spcm | |||
|
1256 | ||||
|
1257 | # fit | |||
|
1258 | # bounds=([0,-460,0,0,-400,120,0],[numpy.inf,-340,50,numpy.inf,0,250,numpy.inf]) | |||
|
1259 | # bounds=([0,-numpy.inf,0,0,-numpy.inf,0,-numpy.inf,0],[numpy.inf,-200,numpy.inf,numpy.inf,0,numpy.inf,0,numpy.inf]) | |||
|
1260 | #print(a1,b1,c1,a2,b2,c2,k2,d) | |||
|
1261 | ||||
|
1262 | dop1_x0 = freq[numpy.argmax(spcm)] | |||
|
1263 | ||||
|
1264 | #####bounds=([0,-numpy.inf,0,0,-400,0,0],[numpy.inf,-340,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf]) | |||
|
1265 | #####bounds=([0,-numpy.inf,0,0,dop1_x0-50,0,0],[numpy.inf,-340,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf]) | |||
|
1266 | bounds=([0,-numpy.inf,0,0,dop1_x0-50,0,0],[numpy.inf,-300,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf]) | |||
|
1267 | #####bounds=([0,-numpy.inf,0,0,-500,0,0],[numpy.inf,-340,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf]) | |||
|
1268 | #bounds=([0,-numpy.inf,0,-numpy.inf,0,-500,0,0,0],[numpy.inf,-240,numpy.inf,0,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1269 | #print(bounds) | |||
|
1270 | #bounds=([0,-numpy.inf,0,0,-numpy.inf,0,0,0],[numpy.inf,-200,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1271 | params_scale = [spc_max,freq_max,freq_max,spc_max,freq_max,freq_max,spc_max] | |||
|
1272 | #x0_value = numpy.array([spc_max,-400.5,30,spc_max/4,-200.5,150,1.0e7]) | |||
|
1273 | x0_value = numpy.array([spc_max,-400.5,30,spc_max/4,dop1_x0,150,1.0e7]) | |||
|
1274 | #x0_value = numpy.array([spc_max,-420.5,30,-.1,spc_max/4,-50,150,.1,numpy.mean(spc[-50:])]) | |||
|
1275 | #print("before popt") | |||
|
1276 | #print(x0_value) | |||
|
1277 | #print("freq: ",freq) | |||
|
1278 | #popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,k2,d],x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=1) | |||
|
1279 | popt = least_squares(lsq_func,x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=0) | |||
|
1280 | # popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,k2,d],x_scale=params_scale,verbose=1) | |||
|
1281 | #print("after popt") | |||
|
1282 | J = popt.jac | |||
|
1283 | ||||
|
1284 | try: | |||
|
1285 | cov = numpy.linalg.inv(J.T.dot(J)) | |||
|
1286 | error = numpy.sqrt(numpy.diagonal(cov)) | |||
|
1287 | except: | |||
|
1288 | error = numpy.ones((7))*numpy.NAN | |||
|
1289 | ||||
|
1290 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2] | |||
|
1291 | A2f = popt.x[3]; B2f = popt.x[4]; C2f = popt.x[5] | |||
|
1292 | Df = popt.x[6] | |||
|
1293 | #print("before return") | |||
|
1294 | return A1f, B1f, C1f, A2f, B2f, C2f, Df, error | |||
|
1295 | ||||
|
1296 | def Double_Gauss_Double_Skew_fit_weight_bound_with_inputs(self, spc, freq, a1, b1, c1, a2, b2, c2, k2, d): | |||
|
1297 | ||||
|
1298 | from scipy.optimize import least_squares | |||
|
1299 | ||||
|
1300 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1301 | spc_max = numpy.max(spc) | |||
|
1302 | ||||
|
1303 | from scipy.signal import medfilt | |||
|
1304 | Nincoh = dataOut.nIncohInt | |||
|
1305 | spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
1306 | ||||
|
1307 | # define a least squares function to optimize | |||
|
1308 | def lsq_func(params): | |||
|
1309 | return (spc-self.double_gaussian_double_skew(freq,params[0],params[1],params[2],params[3],params[4],params[5],params[6],params[7],params[8]))/spcm | |||
|
1310 | ||||
|
1311 | ||||
|
1312 | bounds=([0,-numpy.inf,0,-numpy.inf,0,-400,0,0,0],[numpy.inf,-340,numpy.inf,0,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1313 | ||||
|
1314 | params_scale = [spc_max,freq_max,freq_max,1,spc_max,freq_max,freq_max,1,spc_max] | |||
|
1315 | ||||
|
1316 | x0_value = numpy.array([a1,b1,c1,-.1,a2,b2,c2,k2,d]) | |||
|
1317 | ||||
|
1318 | popt = least_squares(lsq_func,x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=0) | |||
|
1319 | ||||
|
1320 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2]; K1f = popt.x[3] | |||
|
1321 | A2f = popt.x[4]; B2f = popt.x[5]; C2f = popt.x[6]; K2f = popt.x[7] | |||
|
1322 | Df = popt.x[8] | |||
|
1323 | ||||
|
1324 | aux = self.gaussian_skew(freq, A2f, B2f, C2f, K2f, Df) | |||
|
1325 | doppler = x[numpy.argmax(aux)] | |||
|
1326 | ||||
|
1327 | return A1f, B1f, C1f, K1f, A2f, B2f, C2f, K2f, Df, doppler | |||
|
1328 | ||||
|
1329 | def Triple_Gauss_Skew_fit_weight_bound_no_inputs(self,spc,freq): | |||
|
1330 | ||||
|
1331 | from scipy.optimize import least_squares | |||
|
1332 | ||||
|
1333 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1334 | spc_max = numpy.max(spc) | |||
|
1335 | ||||
|
1336 | from scipy.signal import medfilt | |||
|
1337 | Nincoh = 20 | |||
|
1338 | spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
1339 | ||||
|
1340 | # define a least squares function to optimize | |||
|
1341 | def lsq_func(params): | |||
|
1342 | return (spc-self.triple_gaussian_skew(freq,params[0],params[1],params[2],params[3],params[4],params[5],params[6],params[7],params[8],params[9],params[10],params[11]))/spcm | |||
|
1343 | ||||
|
1344 | # fit | |||
|
1345 | # bounds=([0,-460,0,0,-400,120,0],[numpy.inf,-340,50,numpy.inf,0,250,numpy.inf]) | |||
|
1346 | # bounds=([0,-numpy.inf,0,0,-numpy.inf,0,-numpy.inf,0],[numpy.inf,-200,numpy.inf,numpy.inf,0,numpy.inf,0,numpy.inf]) | |||
|
1347 | #print(a1,b1,c1,a2,b2,c2,k2,d) | |||
|
1348 | bounds=([0,-numpy.inf,0,0,-400,0,0,0,0,0,0,0],[numpy.inf,-340,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf,numpy.inf,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1349 | #print(bounds) | |||
|
1350 | #bounds=([0,-numpy.inf,0,0,-numpy.inf,0,0,0],[numpy.inf,-200,numpy.inf,numpy.inf,0,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1351 | params_scale = [spc_max,freq_max,freq_max,spc_max,freq_max,freq_max,1,spc_max,freq_max,freq_max,1,spc_max] | |||
|
1352 | x0_value = numpy.array([spc_max,-400,30,spc_max/4,-200,150,1,spc_max/4,400,150,1,1.0e7]) | |||
|
1353 | #popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,k2,d],x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=1) | |||
|
1354 | popt = least_squares(lsq_func,x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=0) | |||
|
1355 | # popt = least_squares(lsq_func,[a1,b1,c1,a2,b2,c2,k2,d],x_scale=params_scale,verbose=1) | |||
|
1356 | ||||
|
1357 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2] | |||
|
1358 | A2f = popt.x[3]; B2f = popt.x[4]; C2f = popt.x[5]; K2f = popt.x[6] | |||
|
1359 | A3f = popt.x[7]; B3f = popt.x[8]; C3f = popt.x[9]; K3f = popt.x[10] | |||
|
1360 | Df = popt.x[11] | |||
|
1361 | ||||
|
1362 | aux = self.gaussian_skew(freq, A2f, B2f, C2f, K2f, Df) | |||
|
1363 | doppler = freq[numpy.argmax(aux)] | |||
|
1364 | ||||
|
1365 | return A1f, B1f, C1f, A2f, B2f, C2f, K2f, A3f, B3f, C3f, K3f, Df, doppler | |||
|
1366 | ||||
|
1367 | def CEEJ_Skew_fit_weight_bound_no_inputs(self,spc,freq,Nincoh): | |||
|
1368 | ||||
|
1369 | from scipy.optimize import least_squares | |||
|
1370 | ||||
|
1371 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1372 | spc_max = numpy.max(spc) | |||
|
1373 | ||||
|
1374 | from scipy.signal import medfilt | |||
|
1375 | Nincoh = 20 | |||
|
1376 | Nincoh = 80 | |||
|
1377 | Nincoh = Nincoh | |||
|
1378 | spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
1379 | ||||
|
1380 | # define a least squares function to optimize | |||
|
1381 | def lsq_func(params): | |||
|
1382 | return (spc-self.gaussian_skew(freq,params[0],params[1],params[2],params[3],params[4]))#/spcm | |||
|
1383 | ||||
|
1384 | ||||
|
1385 | bounds=([0,0,0,-numpy.inf,0],[numpy.inf,numpy.inf,numpy.inf,0,numpy.inf]) | |||
|
1386 | ||||
|
1387 | params_scale = [spc_max,freq_max,freq_max,1,spc_max] | |||
|
1388 | ||||
|
1389 | x0_value = numpy.array([spc_max,freq[numpy.argmax(spc)],30,-.1,numpy.mean(spc[:50])]) | |||
|
1390 | ||||
|
1391 | popt = least_squares(lsq_func,x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=0) | |||
|
1392 | ||||
|
1393 | J = popt.jac | |||
|
1394 | ||||
|
1395 | try: | |||
|
1396 | error = numpy.ones((9))*numpy.NAN | |||
|
1397 | cov = numpy.linalg.inv(J.T.dot(J)) | |||
|
1398 | error[:4] = numpy.sqrt(numpy.diagonal(cov))[:4] | |||
|
1399 | error[-1] = numpy.sqrt(numpy.diagonal(cov))[-1] | |||
|
1400 | except: | |||
|
1401 | error = numpy.ones((9))*numpy.NAN | |||
|
1402 | ||||
|
1403 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2]; K1f = popt.x[3] | |||
|
1404 | Df = popt.x[4] | |||
|
1405 | ||||
|
1406 | aux1 = self.gaussian_skew(freq, A1f, B1f, C1f, K1f, Df) | |||
|
1407 | doppler1 = freq[numpy.argmax(aux1)] | |||
|
1408 | #print("CEEJ ERROR:",error) | |||
|
1409 | ||||
|
1410 | return A1f, B1f, C1f, K1f, numpy.NAN, numpy.NAN, numpy.NAN, numpy.NAN, Df, doppler1, numpy.NAN, error | |||
|
1411 | ||||
|
1412 | def CEEJ_fit_weight_bound_no_inputs(self,spc,freq,Nincoh): | |||
|
1413 | ||||
|
1414 | from scipy.optimize import least_squares | |||
|
1415 | ||||
|
1416 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1417 | spc_max = numpy.max(spc) | |||
|
1418 | ||||
|
1419 | from scipy.signal import medfilt | |||
|
1420 | Nincoh = 20 | |||
|
1421 | Nincoh = 80 | |||
|
1422 | Nincoh = Nincoh | |||
|
1423 | spcm = medfilt(spc,11)/numpy.sqrt(Nincoh) | |||
|
1424 | ||||
|
1425 | # define a least squares function to optimize | |||
|
1426 | def lsq_func(params): | |||
|
1427 | return (spc-self.gaussian(freq,params[0],params[1],params[2],params[3]))#/spcm | |||
|
1428 | ||||
|
1429 | ||||
|
1430 | bounds=([0,0,0,0],[numpy.inf,numpy.inf,numpy.inf,numpy.inf]) | |||
|
1431 | ||||
|
1432 | params_scale = [spc_max,freq_max,freq_max,spc_max] | |||
|
1433 | ||||
|
1434 | x0_value = numpy.array([spc_max,freq[numpy.argmax(spcm)],30,numpy.mean(spc[:50])]) | |||
|
1435 | ||||
|
1436 | popt = least_squares(lsq_func,x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=0) | |||
|
1437 | ||||
|
1438 | J = popt.jac | |||
|
1439 | ||||
|
1440 | try: | |||
|
1441 | error = numpy.ones((4))*numpy.NAN | |||
|
1442 | cov = numpy.linalg.inv(J.T.dot(J)) | |||
|
1443 | error = numpy.sqrt(numpy.diagonal(cov)) | |||
|
1444 | except: | |||
|
1445 | error = numpy.ones((4))*numpy.NAN | |||
|
1446 | ||||
|
1447 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2] | |||
|
1448 | Df = popt.x[3] | |||
|
1449 | ||||
|
1450 | return A1f, B1f, C1f, Df, error | |||
|
1451 | ||||
|
1452 | def Simple_fit_bound(self,spc,freq,Nincoh): | |||
|
1453 | ||||
|
1454 | freq_max = numpy.max(numpy.abs(freq)) | |||
|
1455 | spc_max = numpy.max(spc) | |||
|
1456 | ||||
|
1457 | Nincoh = Nincoh | |||
|
1458 | ||||
|
1459 | def lsq_func(params): | |||
|
1460 | return (spc-self.gaussian(freq,params[0],params[1],params[2],params[3])) | |||
|
1461 | ||||
|
1462 | bounds=([0,-50,0,0],[numpy.inf,+50,numpy.inf,numpy.inf]) | |||
|
1463 | ||||
|
1464 | params_scale = [spc_max,freq_max,freq_max,spc_max] | |||
|
1465 | ||||
|
1466 | x0_value = numpy.array([spc_max,-20.5,5,1.0e7]) | |||
|
1467 | ||||
|
1468 | popt = least_squares(lsq_func,x0=x0_value,x_scale=params_scale,bounds=bounds,verbose=0) | |||
|
1469 | ||||
|
1470 | J = popt.jac | |||
|
1471 | ||||
|
1472 | try: | |||
|
1473 | cov = numpy.linalg.inv(J.T.dot(J)) | |||
|
1474 | error = numpy.sqrt(numpy.diagonal(cov)) | |||
|
1475 | except: | |||
|
1476 | error = numpy.ones((4))*numpy.NAN | |||
|
1477 | ||||
|
1478 | A1f = popt.x[0]; B1f = popt.x[1]; C1f = popt.x[2] | |||
|
1479 | Df = popt.x[3] | |||
|
1480 | ||||
|
1481 | return A1f, B1f, C1f, Df, error | |||
|
1482 | ||||
|
1483 | def clean_outliers(self,param): | |||
|
1484 | ||||
|
1485 | threshold = 700 | |||
|
1486 | ||||
|
1487 | param = numpy.where(param < -threshold, numpy.nan, param) | |||
|
1488 | param = numpy.where(param > +threshold, numpy.nan, param) | |||
|
1489 | ||||
|
1490 | return param | |||
|
1491 | ||||
|
1492 | def windowing_single(self,spc,x,A,B,C,D,nFFTPoints): | |||
|
1493 | from scipy.optimize import curve_fit,fmin | |||
|
1494 | ||||
|
1495 | def R_gaussian(x, a, b, c): | |||
|
1496 | N = int(numpy.shape(x)[0]) | |||
|
1497 | val = a * numpy.exp(-((x)*c*2*2*numpy.pi)**2 / (2))* numpy.exp(1.j*b*x*4*numpy.pi) | |||
|
1498 | return val | |||
|
1499 | ||||
|
1500 | def T(x,N): | |||
|
1501 | T = 1-abs(x)/N | |||
|
1502 | return T | |||
|
1503 | ||||
|
1504 | def R_T_spc_fun(x, a, b, c, d, nFFTPoints): | |||
|
1505 | ||||
|
1506 | N = int(numpy.shape(x)[0]) | |||
|
1507 | ||||
|
1508 | x_max = x[-1] | |||
|
1509 | ||||
|
1510 | x_pos = x[int(nFFTPoints/2):] | |||
|
1511 | x_neg = x[:int(nFFTPoints/2)] | |||
|
1512 | ||||
|
1513 | R_T_neg_1 = R_gaussian(x, a, b, c)[:int(nFFTPoints/2)]*T(x_neg,-x[0]) | |||
|
1514 | R_T_pos_1 = R_gaussian(x, a, b, c)[int(nFFTPoints/2):]*T(x_pos,x[-1]) | |||
|
1515 | R_T_sum_1 = R_T_pos_1 + R_T_neg_1 | |||
|
1516 | R_T_spc_1 = numpy.fft.fft(R_T_sum_1).real | |||
|
1517 | R_T_spc_1 = numpy.fft.fftshift(R_T_spc_1) | |||
|
1518 | max_val_1 = numpy.max(R_T_spc_1) | |||
|
1519 | R_T_spc_1 = R_T_spc_1*a/max_val_1 | |||
|
1520 | ||||
|
1521 | R_T_d = d*numpy.fft.fftshift(signal.unit_impulse(N)) | |||
|
1522 | R_T_d_neg = R_T_d[:int(nFFTPoints/2)]*T(x_neg,-x[0]) | |||
|
1523 | R_T_d_pos = R_T_d[int(nFFTPoints/2):]*T(x_pos,x[-1]) | |||
|
1524 | R_T_d_sum = R_T_d_pos + R_T_d_neg | |||
|
1525 | R_T_spc_3 = numpy.fft.fft(R_T_d_sum).real | |||
|
1526 | R_T_spc_3 = numpy.fft.fftshift(R_T_spc_3) | |||
|
1527 | ||||
|
1528 | R_T_final = R_T_spc_1 + R_T_spc_3 | |||
|
1529 | ||||
|
1530 | return R_T_final | |||
|
1531 | ||||
|
1532 | y = spc#gaussian(x, a, meanY, sigmaY) + a*0.1*numpy.random.normal(0, 1, size=len(x)) | |||
|
1533 | ||||
|
1534 | from scipy.stats import norm | |||
|
1535 | mean,std=norm.fit(spc) | |||
|
1536 | ||||
|
1537 | # estimate starting values from the data | |||
|
1538 | a = A | |||
|
1539 | b = B | |||
|
1540 | c = C#numpy.std(spc) | |||
|
1541 | d = D | |||
|
1542 | ''' | |||
|
1543 | ippSeconds = 250*20*1.e-6/3 | |||
|
1544 | ||||
|
1545 | x_t = ippSeconds * (numpy.arange(1600) -1600 / 2.) | |||
|
1546 | ||||
|
1547 | x_t = numpy.linspace(x_t[0],x_t[-1],3200) | |||
|
1548 | ||||
|
1549 | x_freq = numpy.fft.fftfreq(1600,d=ippSeconds) | |||
|
1550 | x_freq = numpy.fft.fftshift(x_freq) | |||
|
1551 | ''' | |||
|
1552 | # define a least squares function to optimize | |||
|
1553 | def minfunc(params): | |||
|
1554 | return sum((y-R_T_spc_fun(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2/1)#y**2) | |||
|
1555 | ||||
|
1556 | # fit | |||
|
1557 | ||||
|
1558 | popt_full = fmin(minfunc,[a,b,c,d],full_output=True) | |||
|
1559 | #print("nIter", popt_full[2]) | |||
|
1560 | popt = popt_full[0] | |||
|
1561 | ||||
|
1562 | #return R_T_spc_fun(x_t,popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
1563 | return popt[0], popt[1], popt[2], popt[3] | |||
|
1564 | ||||
|
1565 | def run(self, dataOut, mode = 0, Hmin1 = None, Hmax1 = None, Hmin2 = None, Hmax2 = None, Dop = 'Shift'): | |||
|
1566 | ||||
|
1567 | pwcode = 1 | |||
|
1568 | ||||
|
1569 | if dataOut.flagDecodeData: | |||
|
1570 | pwcode = numpy.sum(dataOut.code[0]**2) | |||
|
1571 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |||
|
1572 | normFactor = dataOut.nProfiles * dataOut.nIncohInt * dataOut.nCohInt * pwcode * dataOut.windowOfFilter | |||
|
1573 | factor = normFactor | |||
|
1574 | z = dataOut.data_spc / factor | |||
|
1575 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |||
|
1576 | dataOut.power = numpy.average(z, axis=1) | |||
|
1577 | dataOut.powerdB = 10 * numpy.log10(dataOut.power) | |||
|
1578 | ||||
|
1579 | x = dataOut.getVelRange(0) | |||
|
1580 | ||||
|
1581 | dataOut.Oblique_params = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |||
|
1582 | dataOut.Oblique_param_errors = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |||
|
1583 | dataOut.dplr_2_u = numpy.ones((1,1,dataOut.nHeights))*numpy.NAN | |||
|
1584 | ||||
|
1585 | if mode == 6: | |||
|
1586 | dataOut.Oblique_params = numpy.ones((1,9,dataOut.nHeights))*numpy.NAN | |||
|
1587 | elif mode == 7: | |||
|
1588 | dataOut.Oblique_params = numpy.ones((1,13,dataOut.nHeights))*numpy.NAN | |||
|
1589 | elif mode == 8: | |||
|
1590 | dataOut.Oblique_params = numpy.ones((1,10,dataOut.nHeights))*numpy.NAN | |||
|
1591 | elif mode == 9: | |||
|
1592 | dataOut.Oblique_params = numpy.ones((1,11,dataOut.nHeights))*numpy.NAN | |||
|
1593 | dataOut.Oblique_param_errors = numpy.ones((1,9,dataOut.nHeights))*numpy.NAN | |||
|
1594 | elif mode == 11: | |||
|
1595 | dataOut.Oblique_params = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |||
|
1596 | dataOut.Oblique_param_errors = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN | |||
|
1597 | elif mode == 10: #150 km | |||
|
1598 | dataOut.Oblique_params = numpy.ones((1,4,dataOut.nHeights))*numpy.NAN | |||
|
1599 | dataOut.Oblique_param_errors = numpy.ones((1,4,dataOut.nHeights))*numpy.NAN | |||
|
1600 | dataOut.snr_log10 = numpy.ones((1,dataOut.nHeights))*numpy.NAN | |||
|
1601 | ||||
|
1602 | dataOut.VelRange = x | |||
|
1603 | ||||
|
1604 | ||||
|
1605 | ||||
|
1606 | #l1=range(22,36) #+62 | |||
|
1607 | #l1=range(32,36) | |||
|
1608 | #l2=range(58,99) #+62 | |||
|
1609 | ||||
|
1610 | #if Hmin1 == None or Hmax1 == None or Hmin2 == None or Hmax2 == None: | |||
|
1611 | ||||
|
1612 | minHei1 = 105. | |||
|
1613 | maxHei1 = 122.5 | |||
|
1614 | maxHei1 = 130.5 | |||
|
1615 | ||||
|
1616 | if mode == 10: #150 km | |||
|
1617 | minHei1 = 100 | |||
|
1618 | maxHei1 = 100 | |||
|
1619 | ||||
|
1620 | inda1 = numpy.where(dataOut.heightList >= minHei1) | |||
|
1621 | indb1 = numpy.where(dataOut.heightList <= maxHei1) | |||
|
1622 | ||||
|
1623 | minIndex1 = inda1[0][0] | |||
|
1624 | maxIndex1 = indb1[0][-1] | |||
|
1625 | ||||
|
1626 | minHei2 = 150. | |||
|
1627 | maxHei2 = 201.25 | |||
|
1628 | maxHei2 = 225.3 | |||
|
1629 | ||||
|
1630 | if mode == 10: #150 km | |||
|
1631 | minHei2 = 110 | |||
|
1632 | maxHei2 = 165 | |||
|
1633 | ||||
|
1634 | inda2 = numpy.where(dataOut.heightList >= minHei2) | |||
|
1635 | indb2 = numpy.where(dataOut.heightList <= maxHei2) | |||
|
1636 | ||||
|
1637 | minIndex2 = inda2[0][0] | |||
|
1638 | maxIndex2 = indb2[0][-1] | |||
|
1639 | ||||
|
1640 | l1=range(minIndex1,maxIndex1) | |||
|
1641 | l2=range(minIndex2,maxIndex2) | |||
|
1642 | ||||
|
1643 | if mode == 4: | |||
|
1644 | ''' | |||
|
1645 | for ind in range(dataOut.nHeights): | |||
|
1646 | if(dataOut.heightList[ind]>=168 and dataOut.heightList[ind]<188): | |||
|
1647 | try: | |||
|
1648 | dataOut.Oblique_params[0,0,ind],dataOut.Oblique_params[0,1,ind],dataOut.Oblique_params[0,2,ind],dataOut.Oblique_params[0,3,ind],dataOut.Oblique_params[0,4,ind],dataOut.Oblique_params[0,5,ind],dataOut.Oblique_params[0,6,ind],dataOut.Oblique_param_errors[0,0,ind],dataOut.Oblique_param_errors[0,1,ind],dataOut.Oblique_param_errors[0,2,ind],dataOut.Oblique_param_errors[0,3,ind],dataOut.Oblique_param_errors[0,4,ind],dataOut.Oblique_param_errors[0,5,ind],dataOut.Oblique_param_errors[0,6,ind] = self.DH_mode(dataOut.data_spc[0,:,ind],dataOut.VelRange) | |||
|
1649 | except: | |||
|
1650 | pass | |||
|
1651 | ''' | |||
|
1652 | for ind in itertools.chain(l1, l2): | |||
|
1653 | ||||
|
1654 | try: | |||
|
1655 | dataOut.Oblique_params[0,0,ind],dataOut.Oblique_params[0,1,ind],dataOut.Oblique_params[0,2,ind],dataOut.Oblique_params[0,3,ind],dataOut.Oblique_params[0,4,ind],dataOut.Oblique_params[0,5,ind],dataOut.Oblique_params[0,6,ind],dataOut.Oblique_param_errors[0,0,ind],dataOut.Oblique_param_errors[0,1,ind],dataOut.Oblique_param_errors[0,2,ind],dataOut.Oblique_param_errors[0,3,ind],dataOut.Oblique_param_errors[0,4,ind],dataOut.Oblique_param_errors[0,5,ind],dataOut.Oblique_param_errors[0,6,ind] = self.DH_mode(dataOut.data_spc[0,:,ind],dataOut.VelRange) | |||
|
1656 | dataOut.dplr_2_u[0,0,ind] = dataOut.Oblique_params[0,4,ind]/numpy.sin(numpy.arccos(102/dataOut.heightList[ind])) | |||
|
1657 | except: | |||
|
1658 | pass | |||
|
1659 | ||||
|
1660 | else: | |||
|
1661 | #print("After: ", dataOut.data_snr[0]) | |||
|
1662 | #######import matplotlib.pyplot as plt | |||
|
1663 | #######plt.plot(dataOut.data_snr[0],dataOut.heightList,marker='*',linestyle='--') | |||
|
1664 | #######plt.show() | |||
|
1665 | #print("l1: ", dataOut.heightList[l1]) | |||
|
1666 | #print("l2: ", dataOut.heightList[l2]) | |||
|
1667 | for hei in itertools.chain(l1, l2): | |||
|
1668 | #for hei in range(79,81): | |||
|
1669 | #if numpy.isnan(dataOut.data_snr[0,hei]) or numpy.isnan(numpy.log10(dataOut.data_snr[0,hei])): | |||
|
1670 | if numpy.isnan(dataOut.snl[0,hei]) or dataOut.snl[0,hei]<.0: | |||
|
1671 | ||||
|
1672 | continue #Avoids the analysis when there is only noise | |||
|
1673 | ||||
|
1674 | try: | |||
|
1675 | spc = dataOut.data_spc[0,:,hei] | |||
|
1676 | ||||
|
1677 | if mode == 6: #Skew Weighted Bounded | |||
|
1678 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_params[0,7,hei],dataOut.Oblique_params[0,8,hei] = self.Double_Gauss_Skew_fit_weight_bound_no_inputs(spc,x) | |||
|
1679 | dataOut.dplr_2_u[0,0,hei] = dataOut.Oblique_params[0,8,hei]/numpy.sin(numpy.arccos(100./dataOut.heightList[hei])) | |||
|
1680 | ||||
|
1681 | elif mode == 7: #Triple Skew Weighted Bounded | |||
|
1682 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_params[0,7,hei],dataOut.Oblique_params[0,8,hei],dataOut.Oblique_params[0,9,hei],dataOut.Oblique_params[0,10,hei],dataOut.Oblique_params[0,11,hei],dataOut.Oblique_params[0,12,hei] = self.Triple_Gauss_Skew_fit_weight_bound_no_inputs(spc,x) | |||
|
1683 | dataOut.dplr_2_u[0,0,hei] = dataOut.Oblique_params[0,12,hei]/numpy.sin(numpy.arccos(100./dataOut.heightList[hei])) | |||
|
1684 | ||||
|
1685 | elif mode == 8: #Double Skewed Weighted Bounded with inputs | |||
|
1686 | a1, b1, c1, a2, b2, c2, k2, d, dopp = self.Double_Gauss_Skew_fit_weight_bound_no_inputs(spc,x) | |||
|
1687 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_params[0,7,hei],dataOut.Oblique_params[0,8,hei],dataOut.Oblique_params[0,9,hei] = self.Double_Gauss_Skew_fit_weight_bound_no_inputs(spc,x, a1, b1, c1, a2, b2, c2, k2, d) | |||
|
1688 | dataOut.dplr_2_u[0,0,hei] = dataOut.Oblique_params[0,9,hei]/numpy.sin(numpy.arccos(100./dataOut.heightList[hei])) | |||
|
1689 | ||||
|
1690 | elif mode == 9: #Double Skewed Weighted Bounded no inputs | |||
|
1691 | #if numpy.max(spc) <= 0: | |||
|
1692 | from scipy.signal import medfilt | |||
|
1693 | spcm = medfilt(spc,11) | |||
|
1694 | if x[numpy.argmax(spcm)] <= 0: | |||
|
1695 | #print("EEJ", dataOut.heightList[hei], hei) | |||
|
1696 | #if hei != 70: | |||
|
1697 | #continue | |||
|
1698 | #else: | |||
|
1699 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_params[0,7,hei],dataOut.Oblique_params[0,8,hei],dataOut.Oblique_params[0,9,hei],dataOut.Oblique_params[0,10,hei],dataOut.Oblique_param_errors[0,:,hei] = self.Double_Gauss_Double_Skew_fit_weight_bound_no_inputs(spcm,x,dataOut.nIncohInt,dataOut.heightList[hei]) | |||
|
1700 | #if dataOut.Oblique_params[0,-2,hei] < -500 or dataOut.Oblique_params[0,-2,hei] > 500 or dataOut.Oblique_params[0,-1,hei] < -500 or dataOut.Oblique_params[0,-1,hei] > 500: | |||
|
1701 | # dataOut.Oblique_params[0,:,hei] *= numpy.NAN | |||
|
1702 | dataOut.dplr_2_u[0,0,hei] = dataOut.Oblique_params[0,10,hei]/numpy.sin(numpy.arccos(100./dataOut.heightList[hei])) | |||
|
1703 | ||||
|
1704 | else: | |||
|
1705 | #print("CEEJ") | |||
|
1706 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_params[0,7,hei],dataOut.Oblique_params[0,8,hei],dataOut.Oblique_params[0,9,hei],dataOut.Oblique_params[0,10,hei],dataOut.Oblique_param_errors[0,:,hei] = self.CEEJ_Skew_fit_weight_bound_no_inputs(spcm,x,dataOut.nIncohInt) | |||
|
1707 | #if dataOut.Oblique_params[0,-2,hei] < -500 or dataOut.Oblique_params[0,-2,hei] > 500 or dataOut.Oblique_params[0,-1,hei] < -500 or dataOut.Oblique_params[0,-1,hei] > 500: | |||
|
1708 | # dataOut.Oblique_params[0,:,hei] *= numpy.NAN | |||
|
1709 | dataOut.dplr_2_u[0,0,hei] = dataOut.Oblique_params[0,10,hei]/numpy.sin(numpy.arccos(100./dataOut.heightList[hei])) | |||
|
1710 | elif mode == 11: #Double Weighted Bounded no inputs | |||
|
1711 | #if numpy.max(spc) <= 0: | |||
|
1712 | from scipy.signal import medfilt | |||
|
1713 | spcm = medfilt(spc,11) | |||
|
1714 | ||||
|
1715 | if x[numpy.argmax(spcm)] <= 0: | |||
|
1716 | #print("EEJ") | |||
|
1717 | #print("EEJ",dataOut.heightList[hei]) | |||
|
1718 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_param_errors[0,:,hei] = self.Double_Gauss_fit_weight_bound_no_inputs(spc,x,dataOut.nIncohInt) | |||
|
1719 | #if dataOut.Oblique_params[0,-2,hei] < -500 or dataOut.Oblique_params[0,-2,hei] > 500 or dataOut.Oblique_params[0,-1,hei] < -500 or dataOut.Oblique_params[0,-1,hei] > 500: | |||
|
1720 | # dataOut.Oblique_params[0,:,hei] *= numpy.NAN | |||
|
1721 | else: | |||
|
1722 | #print("CEEJ",dataOut.heightList[hei]) | |||
|
1723 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_param_errors[0,:,hei] = self.CEEJ_fit_weight_bound_no_inputs(spc,x,dataOut.nIncohInt) | |||
|
1724 | ||||
|
1725 | elif mode == 10: #150km | |||
|
1726 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_param_errors[0,:,hei] = self.Simple_fit_bound(spc,x,dataOut.nIncohInt) | |||
|
1727 | snr = (dataOut.power[0,hei]*factor - dataOut.Oblique_params[0,3,hei])/dataOut.Oblique_params[0,3,hei] | |||
|
1728 | dataOut.snr_log10[0,hei] = numpy.log10(snr) | |||
|
1729 | ||||
|
1730 | else: | |||
|
1731 | spc_fit, A1, B1, C1, D1 = self.Gauss_fit_2(spc,x,'first') | |||
|
1732 | ||||
|
1733 | spc_diff = spc - spc_fit | |||
|
1734 | spc_diff[spc_diff < 0] = 0 | |||
|
1735 | ||||
|
1736 | spc_fit_diff, A2, B2, C2, D2 = self.Gauss_fit_2(spc_diff,x,'second') | |||
|
1737 | ||||
|
1738 | D = (D1+D2) | |||
|
1739 | ||||
|
1740 | if mode == 0: #Double Fit | |||
|
1741 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_param_errors[0,0,hei],dataOut.Oblique_param_errors[0,1,hei],dataOut.Oblique_param_errors[0,2,hei],dataOut.Oblique_param_errors[0,3,hei],dataOut.Oblique_param_errors[0,4,hei],dataOut.Oblique_param_errors[0,5,hei],dataOut.Oblique_param_errors[0,6,hei] = self.Double_Gauss_fit_2(spc,x,A1,B1,C1,A2,B2,C2,D) | |||
|
1742 | #spc_double_fit,dataOut.Oblique_params = self.Double_Gauss_fit(spc,x,A1,B1,C1,A2,B2,C2,D) | |||
|
1743 | ||||
|
1744 | elif mode == 1: #Double Fit Windowed | |||
|
1745 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei] = self.windowing_double(spc,dataOut.getFreqRange(0),A1,B1,C1,A2,B2,C2,D) | |||
|
1746 | ||||
|
1747 | elif mode == 2: #Double Fit Weight | |||
|
1748 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei] = self.Double_Gauss_fit_weight(spc,x,A1,B1,C1,A2,B2,C2,D) | |||
|
1749 | ||||
|
1750 | elif mode == 3: #Simple Fit | |||
|
1751 | dataOut.Oblique_params[0,0,hei] = A1 | |||
|
1752 | dataOut.Oblique_params[0,1,hei] = B1 | |||
|
1753 | dataOut.Oblique_params[0,2,hei] = C1 | |||
|
1754 | dataOut.Oblique_params[0,3,hei] = A2 | |||
|
1755 | dataOut.Oblique_params[0,4,hei] = B2 | |||
|
1756 | dataOut.Oblique_params[0,5,hei] = C2 | |||
|
1757 | dataOut.Oblique_params[0,6,hei] = D | |||
|
1758 | ||||
|
1759 | elif mode == 5: #Triple Fit Weight | |||
|
1760 | if hei in l1: | |||
|
1761 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei] = self.duo_Marco(spc,x,A1,B1,C1,A2,B2,C2,D) | |||
|
1762 | dataOut.dplr_2_u[0,0,hei] = dataOut.Oblique_params[0,4,hei]/numpy.sin(numpy.arccos(102/dataOut.heightList[hei])) | |||
|
1763 | #print(dataOut.Oblique_params[0,0,hei]) | |||
|
1764 | #print(dataOut.dplr_2_u[0,0,hei]) | |||
|
1765 | else: | |||
|
1766 | dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei] = self.Double_Gauss_fit_weight(spc,x,A1,B1,C1,A2,B2,C2,D) | |||
|
1767 | dataOut.dplr_2_u[0,0,hei] = dataOut.Oblique_params[0,4,hei]/numpy.sin(numpy.arccos(102/dataOut.heightList[hei])) | |||
|
1768 | ||||
|
1769 | ||||
|
1770 | except: | |||
|
1771 | ###dataOut.Oblique_params[0,:,hei] = dataOut.Oblique_params[0,:,hei]*numpy.NAN | |||
|
1772 | pass | |||
|
1773 | ||||
|
1774 | #exit(1) | |||
|
1775 | dataOut.paramInterval = dataOut.nProfiles*dataOut.nCohInt*dataOut.ippSeconds | |||
|
1776 | dataOut.lat=-11.95 | |||
|
1777 | dataOut.lon=-76.87 | |||
|
1778 | ''' | |||
|
1779 | dataOut.Oblique_params = numpy.where(dataOut.Oblique_params<-700, numpy.nan, dop_t1) | |||
|
1780 | dataOut.Oblique_params = numpy.where(dataOut.Oblique_params<+700, numpy.nan, dop_t1) | |||
|
1781 | Aquí debo exceptuar las amplitudes | |||
|
1782 | ''' | |||
|
1783 | if mode == 9: #Double Skew Gaussian | |||
|
1784 | #dataOut.Dop_EEJ_T1 = dataOut.Oblique_params[:,-2,:] #Pos[Max_value] | |||
|
1785 | #dataOut.Dop_EEJ_T1 = dataOut.Oblique_params[:,1,:] #Shift | |||
|
1786 | dataOut.Spec_W_T1 = dataOut.Oblique_params[:,2,:] | |||
|
1787 | #dataOut.Dop_EEJ_T2 = dataOut.Oblique_params[:,-1,:] #Pos[Max_value] | |||
|
1788 | #dataOut.Dop_EEJ_T2 = dataOut.Oblique_params[:,5,:] #Shift | |||
|
1789 | dataOut.Spec_W_T2 = dataOut.Oblique_params[:,6,:] | |||
|
1790 | if Dop == 'Shift': | |||
|
1791 | dataOut.Dop_EEJ_T1 = dataOut.Oblique_params[:,1,:] #Shift | |||
|
1792 | dataOut.Dop_EEJ_T2 = dataOut.Oblique_params[:,5,:] #Shift | |||
|
1793 | elif Dop == 'Max': | |||
|
1794 | dataOut.Dop_EEJ_T1 = dataOut.Oblique_params[:,-2,:] #Pos[Max_value] | |||
|
1795 | dataOut.Dop_EEJ_T2 = dataOut.Oblique_params[:,-1,:] #Pos[Max_value] | |||
|
1796 | ||||
|
1797 | dataOut.Err_Dop_EEJ_T1 = dataOut.Oblique_param_errors[:,1,:] #En realidad este es el error? | |||
|
1798 | dataOut.Err_Spec_W_T1 = dataOut.Oblique_param_errors[:,2,:] | |||
|
1799 | dataOut.Err_Dop_EEJ_T2 = dataOut.Oblique_param_errors[:,5,:] #En realidad este es el error? | |||
|
1800 | dataOut.Err_Spec_W_T2 = dataOut.Oblique_param_errors[:,6,:] | |||
|
1801 | ||||
|
1802 | elif mode == 11: #Double Gaussian | |||
|
1803 | dataOut.Dop_EEJ_T1 = dataOut.Oblique_params[:,1,:] | |||
|
1804 | dataOut.Spec_W_T1 = dataOut.Oblique_params[:,2,:] | |||
|
1805 | dataOut.Dop_EEJ_T2 = dataOut.Oblique_params[:,4,:] | |||
|
1806 | dataOut.Spec_W_T2 = dataOut.Oblique_params[:,5,:] | |||
|
1807 | ||||
|
1808 | dataOut.Err_Dop_EEJ_T1 = dataOut.Oblique_param_errors[:,1,:] | |||
|
1809 | dataOut.Err_Spec_W_T1 = dataOut.Oblique_param_errors[:,2,:] | |||
|
1810 | dataOut.Err_Dop_EEJ_T2 = dataOut.Oblique_param_errors[:,4,:] | |||
|
1811 | dataOut.Err_Spec_W_T2 = dataOut.Oblique_param_errors[:,5,:] | |||
|
1812 | ||||
|
1813 | #print("Before: ", dataOut.Dop_EEJ_T2) | |||
|
1814 | dataOut.Spec_W_T1 = self.clean_outliers(dataOut.Spec_W_T1) | |||
|
1815 | dataOut.Spec_W_T2 = self.clean_outliers(dataOut.Spec_W_T2) | |||
|
1816 | dataOut.Dop_EEJ_T1 = self.clean_outliers(dataOut.Dop_EEJ_T1) | |||
|
1817 | dataOut.Dop_EEJ_T2 = self.clean_outliers(dataOut.Dop_EEJ_T2) | |||
|
1818 | #print("After: ", dataOut.Dop_EEJ_T2) | |||
|
1819 | dataOut.Err_Spec_W_T1 = self.clean_outliers(dataOut.Err_Spec_W_T1) | |||
|
1820 | dataOut.Err_Spec_W_T2 = self.clean_outliers(dataOut.Err_Spec_W_T2) | |||
|
1821 | dataOut.Err_Dop_EEJ_T1 = self.clean_outliers(dataOut.Err_Dop_EEJ_T1) | |||
|
1822 | dataOut.Err_Dop_EEJ_T2 = self.clean_outliers(dataOut.Err_Dop_EEJ_T2) | |||
|
1823 | #print("Before data_snr: ", dataOut.data_snr) | |||
|
1824 | #dataOut.data_snr = numpy.where(numpy.isnan(dataOut.Dop_EEJ_T1), numpy.nan, dataOut.data_snr) | |||
|
1825 | dataOut.snl = numpy.where(numpy.isnan(dataOut.Dop_EEJ_T1), numpy.nan, dataOut.snl) | |||
|
1826 | ||||
|
1827 | #print("After data_snr: ", dataOut.data_snr) | |||
|
1828 | dataOut.mode = mode | |||
|
1829 | dataOut.flagNoData = numpy.all(numpy.isnan(dataOut.Dop_EEJ_T1)) #Si todos los valores son NaN no se prosigue | |||
|
1830 | ###dataOut.flagNoData = False #Descomentar solo para ploteo sino mantener comentado (para guardado) | |||
|
1831 | ||||
|
1832 | return dataOut | |||
|
1833 | ||||
|
1834 | class Gaussian_Windowed(Operation): | |||
|
1835 | ''' | |||
|
1836 | Written by R. Flores | |||
|
1837 | ''' | |||
|
1838 | def __init__(self): | |||
|
1839 | Operation.__init__(self) | |||
|
1840 | ||||
|
1841 | def windowing_single(self,spc,x,A,B,C,D,nFFTPoints): | |||
|
1842 | from scipy.optimize import curve_fit,fmin | |||
|
1843 | ||||
|
1844 | def gaussian(x, a, b, c, d): | |||
|
1845 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |||
|
1846 | return val | |||
|
1847 | ||||
|
1848 | def R_gaussian(x, a, b, c): | |||
|
1849 | N = int(numpy.shape(x)[0]) | |||
|
1850 | val = a * numpy.exp(-((x)*c*2*2*numpy.pi)**2 / (2))* numpy.exp(1.j*b*x*4*numpy.pi) | |||
|
1851 | return val | |||
|
1852 | ||||
|
1853 | def T(x,N): | |||
|
1854 | T = 1-abs(x)/N | |||
|
1855 | return T | |||
|
1856 | ||||
|
1857 | def R_T_spc_fun(x, a, b, c, d, nFFTPoints): | |||
|
1858 | ||||
|
1859 | N = int(numpy.shape(x)[0]) | |||
|
1860 | ||||
|
1861 | x_max = x[-1] | |||
|
1862 | ||||
|
1863 | x_pos = x[nFFTPoints:] | |||
|
1864 | x_neg = x[:nFFTPoints] | |||
|
1865 | #print([int(nFFTPoints/2)) | |||
|
1866 | #print("x: ", x) | |||
|
1867 | #print("x_neg: ", x_neg) | |||
|
1868 | #print("x_pos: ", x_pos) | |||
|
1869 | ||||
|
1870 | ||||
|
1871 | R_T_neg_1 = R_gaussian(x, a, b, c)[:nFFTPoints]*T(x_neg,-x[0]) | |||
|
1872 | R_T_pos_1 = R_gaussian(x, a, b, c)[nFFTPoints:]*T(x_pos,x[-1]) | |||
|
1873 | #print(T(x_pos,x[-1]),x_pos,x[-1]) | |||
|
1874 | #print(R_T_neg_1.shape,R_T_pos_1.shape) | |||
|
1875 | R_T_sum_1 = R_T_pos_1 + R_T_neg_1 | |||
|
1876 | R_T_spc_1 = numpy.fft.fft(R_T_sum_1).real | |||
|
1877 | R_T_spc_1 = numpy.fft.fftshift(R_T_spc_1) | |||
|
1878 | max_val_1 = numpy.max(R_T_spc_1) | |||
|
1879 | R_T_spc_1 = R_T_spc_1*a/max_val_1 | |||
|
1880 | ||||
|
1881 | R_T_d = d*numpy.fft.fftshift(signal.unit_impulse(N)) | |||
|
1882 | R_T_d_neg = R_T_d[:nFFTPoints]*T(x_neg,-x[0]) | |||
|
1883 | R_T_d_pos = R_T_d[nFFTPoints:]*T(x_pos,x[-1]) | |||
|
1884 | R_T_d_sum = R_T_d_pos + R_T_d_neg | |||
|
1885 | R_T_spc_3 = numpy.fft.fft(R_T_d_sum).real | |||
|
1886 | R_T_spc_3 = numpy.fft.fftshift(R_T_spc_3) | |||
|
1887 | ||||
|
1888 | R_T_final = R_T_spc_1 + R_T_spc_3 | |||
|
1889 | ||||
|
1890 | return R_T_final | |||
|
1891 | ||||
|
1892 | y = spc#gaussian(x, a, meanY, sigmaY) + a*0.1*numpy.random.normal(0, 1, size=len(x)) | |||
|
1893 | ||||
|
1894 | from scipy.stats import norm | |||
|
1895 | mean,std=norm.fit(spc) | |||
|
1896 | ||||
|
1897 | # estimate starting values from the data | |||
|
1898 | a = A | |||
|
1899 | b = B | |||
|
1900 | c = C#numpy.std(spc) | |||
|
1901 | d = D | |||
|
1902 | #''' | |||
|
1903 | #ippSeconds = 250*20*1.e-6/3 | |||
|
1904 | ||||
|
1905 | #x_t = ippSeconds * (numpy.arange(nFFTPoints) - nFFTPoints / 2.) | |||
|
1906 | ||||
|
1907 | #x_t = numpy.linspace(x_t[0],x_t[-1],3200) | |||
|
1908 | #print("x_t: ", x_t) | |||
|
1909 | #print("nFFTPoints: ", nFFTPoints) | |||
|
1910 | x_vel = numpy.linspace(x[0],x[-1],int(2*nFFTPoints)) | |||
|
1911 | #print("x_vel: ", x_vel) | |||
|
1912 | #x_freq = numpy.fft.fftfreq(1600,d=ippSeconds) | |||
|
1913 | #x_freq = numpy.fft.fftshift(x_freq) | |||
|
1914 | #''' | |||
|
1915 | # define a least squares function to optimize | |||
|
1916 | def minfunc(params): | |||
|
1917 | #print("y.shape: ", numpy.shape(y)) | |||
|
1918 | return sum((y-R_T_spc_fun(x_vel,params[0],params[1],params[2],params[3],nFFTPoints))**2/1)#y**2) | |||
|
1919 | ||||
|
1920 | # fit | |||
|
1921 | ||||
|
1922 | popt_full = fmin(minfunc,[a,b,c,d], disp=False) | |||
|
1923 | #print("nIter", popt_full[2]) | |||
|
1924 | popt = popt_full#[0] | |||
|
1925 | ||||
|
1926 | fun = gaussian(x, popt[0], popt[1], popt[2], popt[3]) | |||
|
1927 | ||||
|
1928 | #return R_T_spc_fun(x_t,popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
1929 | return fun, popt[0], popt[1], popt[2], popt[3] | |||
|
1930 | ||||
|
1931 | def run(self, dataOut): | |||
|
1932 | ||||
|
1933 | from scipy.signal import medfilt | |||
|
1934 | import matplotlib.pyplot as plt | |||
|
1935 | dataOut.moments = numpy.ones((dataOut.nChannels,4,dataOut.nHeights))*numpy.NAN | |||
|
1936 | dataOut.VelRange = dataOut.getVelRange(0) | |||
|
1937 | for nChannel in range(dataOut.nChannels): | |||
|
1938 | for hei in range(dataOut.heightList.shape[0]): | |||
|
1939 | #print("ipp: ", dataOut.ippSeconds) | |||
|
1940 | spc = numpy.copy(dataOut.data_spc[nChannel,:,hei]) | |||
|
1941 | ||||
|
1942 | #print(VelRange) | |||
|
1943 | #print(dataOut.getFreqRange(64)) | |||
|
1944 | spcm = medfilt(spc,11) | |||
|
1945 | spc_max = numpy.max(spcm) | |||
|
1946 | dop1_x0 = dataOut.VelRange[numpy.argmax(spcm)] | |||
|
1947 | D = numpy.min(spcm) | |||
|
1948 | ||||
|
1949 | fun, A, B, C, D = self.windowing_single(spc,dataOut.VelRange,spc_max,dop1_x0,abs(dop1_x0),D,dataOut.nFFTPoints) | |||
|
1950 | dataOut.moments[nChannel,0,hei] = A | |||
|
1951 | dataOut.moments[nChannel,1,hei] = B | |||
|
1952 | dataOut.moments[nChannel,2,hei] = C | |||
|
1953 | dataOut.moments[nChannel,3,hei] = D | |||
|
1954 | ''' | |||
|
1955 | plt.figure() | |||
|
1956 | plt.plot(VelRange,spc,marker='*',linestyle='') | |||
|
1957 | plt.plot(VelRange,fun) | |||
|
1958 | plt.title(dataOut.heightList[hei]) | |||
|
1959 | plt.show() | |||
|
1960 | ''' | |||
|
1961 | ||||
|
1962 | return dataOut | |||
|
1963 | ||||
|
1964 | class PrecipitationProc(Operation): | |||
|
1965 | ||||
|
1966 | ''' | |||
|
1967 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |||
|
1968 | ||||
|
1969 | Input: | |||
|
1970 | self.dataOut.data_pre : SelfSpectra | |||
|
1971 | ||||
|
1972 | Output: | |||
|
1973 | ||||
|
1974 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |||
|
1975 | ||||
|
1976 | ||||
|
1977 | Parameters affected: | |||
|
1978 | ''' | |||
|
1979 | ||||
|
1980 | def __init__(self): | |||
|
1981 | Operation.__init__(self) | |||
|
1982 | self.i=0 | |||
|
1983 | ||||
|
1984 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |||
|
1985 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30): | |||
|
1986 | ||||
|
1987 | # print ('Entering PrecepitationProc ... ') | |||
|
1988 | ||||
|
1989 | if radar == "MIRA35C" : | |||
|
1990 | ||||
|
1991 | self.spc = dataOut.data_pre[0].copy() | |||
|
1992 | self.Num_Hei = self.spc.shape[2] | |||
|
1993 | self.Num_Bin = self.spc.shape[1] | |||
|
1994 | self.Num_Chn = self.spc.shape[0] | |||
|
1995 | Ze = self.dBZeMODE2(dataOut) | |||
|
1996 | ||||
|
1997 | else: | |||
|
1998 | ||||
|
1999 | self.spc = dataOut.data_pre[0].copy() | |||
|
2000 | ||||
|
2001 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX | |||
|
2002 | self.spc[:,:,0:7]= numpy.NaN | |||
|
2003 | ||||
|
2004 | self.Num_Hei = self.spc.shape[2] | |||
|
2005 | self.Num_Bin = self.spc.shape[1] | |||
|
2006 | self.Num_Chn = self.spc.shape[0] | |||
|
2007 | ||||
|
2008 | VelRange = dataOut.spc_range[2] | |||
|
2009 | ||||
|
2010 | ''' Se obtiene la constante del RADAR ''' | |||
|
2011 | ||||
|
2012 | self.Pt = Pt | |||
|
2013 | self.Gt = Gt | |||
|
2014 | self.Gr = Gr | |||
|
2015 | self.Lambda = Lambda | |||
|
2016 | self.aL = aL | |||
|
2017 | self.tauW = tauW | |||
|
2018 | self.ThetaT = ThetaT | |||
|
2019 | self.ThetaR = ThetaR | |||
|
2020 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB | |||
|
2021 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB | |||
|
2022 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB | |||
|
2023 | ||||
|
2024 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |||
|
2025 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |||
|
2026 | RadarConstant = 10e-26 * Numerator / Denominator # | |||
|
2027 | ExpConstant = 10**(40/10) #Constante Experimental | |||
|
2028 | ||||
|
2029 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |||
|
2030 | for i in range(self.Num_Chn): | |||
|
2031 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] | |||
|
2032 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 | |||
|
2033 | ||||
|
2034 | SPCmean = numpy.mean(SignalPower, 0) | |||
|
2035 | Pr = SPCmean[:,:]/dataOut.normFactor | |||
|
2036 | ||||
|
2037 | # Declaring auxiliary variables | |||
|
2038 | Range = dataOut.heightList*1000. #Range in m | |||
|
2039 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] | |||
|
2040 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) | |||
|
2041 | zMtrx = rMtrx+Altitude | |||
|
2042 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] | |||
|
2043 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) | |||
|
2044 | ||||
|
2045 | # height dependence to air density Foote and Du Toit (1969) | |||
|
2046 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 | |||
|
2047 | VMtrx = VelMtrx / delv_z #Normalized velocity | |||
|
2048 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN | |||
|
2049 | # Diameter is related to the fall speed of falling drops | |||
|
2050 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] | |||
|
2051 | # Only valid for D>= 0.16 mm | |||
|
2052 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN | |||
|
2053 | ||||
|
2054 | #Calculate Radar Reflectivity ETAn | |||
|
2055 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) | |||
|
2056 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z | |||
|
2057 | # Radar Cross Section | |||
|
2058 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 | |||
|
2059 | # Drop Size Distribution | |||
|
2060 | DSD = ETAn / sigmaD | |||
|
2061 | # Equivalente Reflectivy | |||
|
2062 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) | |||
|
2063 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] | |||
|
2064 | # RainFall Rate | |||
|
2065 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr | |||
|
2066 | ||||
|
2067 | # Censoring the data | |||
|
2068 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal | |||
|
2069 | SNRth = 10**(SNRdBlimit/10) #-30dB | |||
|
2070 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better | |||
|
2071 | W = numpy.nanmean(dataOut.data_dop,0) | |||
|
2072 | W[novalid] = numpy.NaN | |||
|
2073 | Ze_org[novalid] = numpy.NaN | |||
|
2074 | RR[novalid] = numpy.NaN | |||
|
2075 | ||||
|
2076 | dataOut.data_output = RR[8] | |||
|
2077 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |||
|
2078 | dataOut.channelList = [0,1,2] | |||
|
2079 | ||||
|
2080 | dataOut.data_param[0]=10*numpy.log10(Ze_org) | |||
|
2081 | dataOut.data_param[1]=-W | |||
|
2082 | dataOut.data_param[2]=RR | |||
|
2083 | ||||
|
2084 | # print ('Leaving PrecepitationProc ... ') | |||
|
2085 | return dataOut | |||
|
2086 | ||||
|
2087 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |||
|
2088 | ||||
|
2089 | NPW = dataOut.NPW | |||
|
2090 | COFA = dataOut.COFA | |||
|
2091 | ||||
|
2092 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |||
|
2093 | RadarConst = dataOut.RadarConst | |||
|
2094 | #frequency = 34.85*10**9 | |||
|
2095 | ||||
|
2096 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |||
|
2097 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |||
|
2098 | ||||
|
2099 | ETA = numpy.sum(SNR,1) | |||
|
2100 | ||||
|
2101 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) | |||
|
2102 | ||||
|
2103 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |||
|
2104 | ||||
|
2105 | for r in range(self.Num_Hei): | |||
|
2106 | ||||
|
2107 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |||
|
2108 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |||
|
2109 | ||||
|
2110 | return Ze | |||
|
2111 | ||||
|
2112 | # def GetRadarConstant(self): | |||
|
2113 | # | |||
|
2114 | # """ | |||
|
2115 | # Constants: | |||
|
2116 | # | |||
|
2117 | # Pt: Transmission Power dB 5kW 5000 | |||
|
2118 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |||
|
2119 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |||
|
2120 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |||
|
2121 | # aL: Attenuation loses dB 4dB 2.5118 | |||
|
2122 | # tauW: Width of transmission pulse s 4us 4e-6 | |||
|
2123 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |||
|
2124 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |||
|
2125 | # | |||
|
2126 | # """ | |||
|
2127 | # | |||
|
2128 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |||
|
2129 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |||
|
2130 | # RadarConstant = Numerator / Denominator | |||
|
2131 | # | |||
|
2132 | # return RadarConstant | |||
|
2133 | ||||
|
2134 | ||||
|
2135 | class FullSpectralAnalysis(Operation): | |||
|
2136 | ||||
|
2137 | """ | |||
|
2138 | Function that implements Full Spectral Analysis technique. | |||
|
2139 | ||||
|
2140 | Input: | |||
|
2141 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data | |||
|
2142 | self.dataOut.groupList : Pairlist of channels | |||
|
2143 | self.dataOut.ChanDist : Physical distance between receivers | |||
|
2144 | ||||
|
2145 | ||||
|
2146 | Output: | |||
|
2147 | ||||
|
2148 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind | |||
|
2149 | ||||
|
2150 | ||||
|
2151 | Parameters affected: Winds, height range, SNR | |||
|
2152 | ||||
|
2153 | """ | |||
|
2154 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, | |||
|
2155 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): | |||
|
2156 | ||||
|
2157 | spc = dataOut.data_pre[0].copy() | |||
|
2158 | cspc = dataOut.data_pre[1] | |||
|
2159 | nHeights = spc.shape[2] | |||
|
2160 | ||||
|
2161 | # first_height = 0.75 #km (ref: data header 20170822) | |||
|
2162 | # resolution_height = 0.075 #km | |||
|
2163 | ''' | |||
|
2164 | finding height range. check this when radar parameters are changed! | |||
|
2165 | ''' | |||
|
2166 | if maxheight is not None: | |||
|
2167 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical | |||
|
2168 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better | |||
|
2169 | else: | |||
|
2170 | range_max = nHeights | |||
|
2171 | if minheight is not None: | |||
|
2172 | # range_min = int((minheight - first_height) / resolution_height) # theoretical | |||
|
2173 | range_min = int(13.26 * minheight - 5) # empirical, works better | |||
|
2174 | if range_min < 0: | |||
|
2175 | range_min = 0 | |||
|
2176 | else: | |||
|
2177 | range_min = 0 | |||
|
2178 | ||||
|
2179 | pairsList = dataOut.groupList | |||
|
2180 | if dataOut.ChanDist is not None : | |||
|
2181 | ChanDist = dataOut.ChanDist | |||
|
2182 | else: | |||
|
2183 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |||
|
2184 | ||||
|
2185 | # 4 variables: zonal, meridional, vertical, and average SNR | |||
|
2186 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN | |||
|
2187 | velocityX = numpy.zeros([nHeights]) * numpy.NaN | |||
|
2188 | velocityY = numpy.zeros([nHeights]) * numpy.NaN | |||
|
2189 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN | |||
|
2190 | ||||
|
2191 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) | |||
|
2192 | ||||
|
2193 | '''***********************************************WIND ESTIMATION**************************************''' | |||
|
2194 | for Height in range(nHeights): | |||
|
2195 | ||||
|
2196 | if Height >= range_min and Height < range_max: | |||
|
2197 | # error_code will be useful in future analysis | |||
|
2198 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, | |||
|
2199 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) | |||
|
2200 | ||||
|
2201 | if abs(Vzon) < 100. and abs(Vmer) < 100.: | |||
|
2202 | velocityX[Height] = Vzon | |||
|
2203 | velocityY[Height] = -Vmer | |||
|
2204 | velocityZ[Height] = Vver | |||
|
2205 | ||||
|
2206 | # Censoring data with SNR threshold | |||
|
2207 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN | |||
|
2208 | ||||
|
2209 | data_param[0] = velocityX | |||
|
2210 | data_param[1] = velocityY | |||
|
2211 | data_param[2] = velocityZ | |||
|
2212 | data_param[3] = dbSNR | |||
|
2213 | dataOut.data_param = data_param | |||
|
2214 | return dataOut | |||
|
2215 | ||||
|
2216 | def moving_average(self,x, N=2): | |||
|
2217 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ | |||
|
2218 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |||
|
2219 | ||||
|
2220 | def gaus(self,xSamples,Amp,Mu,Sigma): | |||
|
2221 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) | |||
|
2222 | ||||
|
2223 | def Moments(self, ySamples, xSamples): | |||
|
2224 | Power = numpy.nanmean(ySamples) # Power, 0th Moment | |||
|
2225 | yNorm = ySamples / numpy.nansum(ySamples) | |||
|
2226 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment | |||
|
2227 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment | |||
|
2228 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral | |||
|
2229 | return numpy.array([Power,RadVel,StdDev]) | |||
|
2230 | ||||
|
2231 | def StopWindEstimation(self, error_code): | |||
|
2232 | Vzon = numpy.NaN | |||
|
2233 | Vmer = numpy.NaN | |||
|
2234 | Vver = numpy.NaN | |||
|
2235 | return Vzon, Vmer, Vver, error_code | |||
|
2236 | ||||
|
2237 | def AntiAliasing(self, interval, maxstep): | |||
|
2238 | """ | |||
|
2239 | function to prevent errors from aliased values when computing phaseslope | |||
|
2240 | """ | |||
|
2241 | antialiased = numpy.zeros(len(interval)) | |||
|
2242 | copyinterval = interval.copy() | |||
|
2243 | ||||
|
2244 | antialiased[0] = copyinterval[0] | |||
|
2245 | ||||
|
2246 | for i in range(1,len(antialiased)): | |||
|
2247 | step = interval[i] - interval[i-1] | |||
|
2248 | if step > maxstep: | |||
|
2249 | copyinterval -= 2*numpy.pi | |||
|
2250 | antialiased[i] = copyinterval[i] | |||
|
2251 | elif step < maxstep*(-1): | |||
|
2252 | copyinterval += 2*numpy.pi | |||
|
2253 | antialiased[i] = copyinterval[i] | |||
|
2254 | else: | |||
|
2255 | antialiased[i] = copyinterval[i].copy() | |||
|
2256 | ||||
|
2257 | return antialiased | |||
|
2258 | ||||
|
2259 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): | |||
|
2260 | """ | |||
|
2261 | Function that Calculates Zonal, Meridional and Vertical wind velocities. | |||
|
2262 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. | |||
|
2263 | ||||
|
2264 | Input: | |||
|
2265 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. | |||
|
2266 | pairsList : Pairlist of channels | |||
|
2267 | ChanDist : array of xi_ij and eta_ij | |||
|
2268 | Height : height at which data is processed | |||
|
2269 | noise : noise in [channels] format for specific height | |||
|
2270 | Abbsisarange : range of the frequencies or velocities | |||
|
2271 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit | |||
|
2272 | ||||
|
2273 | Output: | |||
|
2274 | Vzon, Vmer, Vver : wind velocities | |||
|
2275 | error_code : int that states where code is terminated | |||
|
2276 | ||||
|
2277 | 0 : no error detected | |||
|
2278 | 1 : Gaussian of mean spc exceeds widthlimit | |||
|
2279 | 2 : no Gaussian of mean spc found | |||
|
2280 | 3 : SNR to low or velocity to high -> prec. e.g. | |||
|
2281 | 4 : at least one Gaussian of cspc exceeds widthlimit | |||
|
2282 | 5 : zero out of three cspc Gaussian fits converged | |||
|
2283 | 6 : phase slope fit could not be found | |||
|
2284 | 7 : arrays used to fit phase have different length | |||
|
2285 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) | |||
|
2286 | ||||
|
2287 | """ | |||
|
2288 | ||||
|
2289 | error_code = 0 | |||
|
2290 | ||||
|
2291 | nChan = spc.shape[0] | |||
|
2292 | nProf = spc.shape[1] | |||
|
2293 | nPair = cspc.shape[0] | |||
|
2294 | ||||
|
2295 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height | |||
|
2296 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values | |||
|
2297 | phase = numpy.zeros([nPair, nProf]) # phase between channels | |||
|
2298 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise | |||
|
2299 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise | |||
|
2300 | xFrec = AbbsisaRange[0][:-1] # frequency range | |||
|
2301 | xVel = AbbsisaRange[2][:-1] # velocity range | |||
|
2302 | xSamples = xFrec # the frequency range is taken | |||
|
2303 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x | |||
|
2304 | ||||
|
2305 | # only consider velocities with in NegativeLimit and PositiveLimit | |||
|
2306 | if (NegativeLimit is None): | |||
|
2307 | NegativeLimit = numpy.min(xVel) | |||
|
2308 | if (PositiveLimit is None): | |||
|
2309 | PositiveLimit = numpy.max(xVel) | |||
|
2310 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) | |||
|
2311 | xSamples_zoom = xSamples[xvalid] | |||
|
2312 | ||||
|
2313 | '''Getting Eij and Nij''' | |||
|
2314 | Xi01, Xi02, Xi12 = ChanDist[:,0] | |||
|
2315 | Eta01, Eta02, Eta12 = ChanDist[:,1] | |||
|
2316 | ||||
|
2317 | # spwd limit - updated by D. Scipión 30.03.2021 | |||
|
2318 | widthlimit = 10 | |||
|
2319 | '''************************* SPC is normalized ********************************''' | |||
|
2320 | spc_norm = spc.copy() | |||
|
2321 | # For each channel | |||
|
2322 | for i in range(nChan): | |||
|
2323 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power | |||
|
2324 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) | |||
|
2325 | ||||
|
2326 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' | |||
|
2327 | ||||
|
2328 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because | |||
|
2329 | you only fit the curve and don't need the absolute value of height for calculation, | |||
|
2330 | only for estimation of width. for normalization of cross spectra, you need initial, | |||
|
2331 | unnormalized self-spectra With noise. | |||
|
2332 | ||||
|
2333 | Technically, you don't even need to normalize the self-spectra, as you only need the | |||
|
2334 | width of the peak. However, it was left this way. Note that the normalization has a flaw: | |||
|
2335 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be | |||
|
2336 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) | |||
|
2337 | """ | |||
|
2338 | # initial conditions | |||
|
2339 | popt = [1e-10,0,1e-10] | |||
|
2340 | # Spectra average | |||
|
2341 | SPCMean = numpy.average(SPC_Samples,0) | |||
|
2342 | # Moments in frequency | |||
|
2343 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) | |||
|
2344 | ||||
|
2345 | # Gauss Fit SPC in frequency domain | |||
|
2346 | if dbSNR > SNRlimit: # only if SNR > SNRth | |||
|
2347 | try: | |||
|
2348 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) | |||
|
2349 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION | |||
|
2350 | return self.StopWindEstimation(error_code = 1) | |||
|
2351 | FitGauss = self.gaus(xSamples_zoom,*popt) | |||
|
2352 | except :#RuntimeError: | |||
|
2353 | return self.StopWindEstimation(error_code = 2) | |||
|
2354 | else: | |||
|
2355 | return self.StopWindEstimation(error_code = 3) | |||
|
2356 | ||||
|
2357 | '''***************************** CSPC Normalization ************************* | |||
|
2358 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation | |||
|
2359 | influence the norm which is not desired. First, a range is identified where the | |||
|
2360 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |||
|
2361 | around it gets cut off and values replaced by mean determined by the boundary | |||
|
2362 | data -> sum_noise (spc is not normalized here, thats why the noise is important) | |||
|
2363 | ||||
|
2364 | The sums are then added and multiplied by range/datapoints, because you need | |||
|
2365 | an integral and not a sum for normalization. | |||
|
2366 | ||||
|
2367 | A norm is found according to Briggs 92. | |||
|
2368 | ''' | |||
|
2369 | # for each pair | |||
|
2370 | for i in range(nPair): | |||
|
2371 | cspc_norm = cspc[i,:].copy() | |||
|
2372 | chan_index0 = pairsList[i][0] | |||
|
2373 | chan_index1 = pairsList[i][1] | |||
|
2374 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) | |||
|
2375 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) | |||
|
2376 | ||||
|
2377 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), | |||
|
2378 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), | |||
|
2379 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) | |||
|
2380 | ||||
|
2381 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] | |||
|
2382 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) | |||
|
2383 | ||||
|
2384 | '''*******************************FIT GAUSS CSPC************************************''' | |||
|
2385 | try: | |||
|
2386 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) | |||
|
2387 | if popt01[2] > widthlimit: # CONDITION | |||
|
2388 | return self.StopWindEstimation(error_code = 4) | |||
|
2389 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) | |||
|
2390 | if popt02[2] > widthlimit: # CONDITION | |||
|
2391 | return self.StopWindEstimation(error_code = 4) | |||
|
2392 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) | |||
|
2393 | if popt12[2] > widthlimit: # CONDITION | |||
|
2394 | return self.StopWindEstimation(error_code = 4) | |||
|
2395 | ||||
|
2396 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) | |||
|
2397 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) | |||
|
2398 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) | |||
|
2399 | except: | |||
|
2400 | return self.StopWindEstimation(error_code = 5) | |||
|
2401 | ||||
|
2402 | ||||
|
2403 | '''************* Getting Fij ***************''' | |||
|
2404 | # x-axis point of the gaussian where the center is located from GaussFit of spectra | |||
|
2405 | GaussCenter = popt[1] | |||
|
2406 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] | |||
|
2407 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] | |||
|
2408 | ||||
|
2409 | # Point where e^-1 is located in the gaussian | |||
|
2410 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) | |||
|
2411 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" | |||
|
2412 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |||
|
2413 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) | |||
|
2414 | ||||
|
2415 | '''********** Taking frequency ranges from mean SPCs **********''' | |||
|
2416 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 | |||
|
2417 | Range = numpy.empty(2) | |||
|
2418 | Range[0] = GaussCenter - GauWidth | |||
|
2419 | Range[1] = GaussCenter + GauWidth | |||
|
2420 | # Point in x-axis where the bandwidth is located (min:max) | |||
|
2421 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] | |||
|
2422 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] | |||
|
2423 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] | |||
|
2424 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] | |||
|
2425 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) | |||
|
2426 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] | |||
|
2427 | ||||
|
2428 | '''************************** Getting Phase Slope ***************************''' | |||
|
2429 | for i in range(nPair): | |||
|
2430 | if len(FrecRange) > 5: | |||
|
2431 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() | |||
|
2432 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |||
|
2433 | if len(FrecRange) == len(PhaseRange): | |||
|
2434 | try: | |||
|
2435 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) | |||
|
2436 | PhaseSlope[i] = slope | |||
|
2437 | PhaseInter[i] = intercept | |||
|
2438 | except: | |||
|
2439 | return self.StopWindEstimation(error_code = 6) | |||
|
2440 | else: | |||
|
2441 | return self.StopWindEstimation(error_code = 7) | |||
|
2442 | else: | |||
|
2443 | return self.StopWindEstimation(error_code = 8) | |||
|
2444 | ||||
|
2445 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' | |||
|
2446 | ||||
|
2447 | '''Getting constant C''' | |||
|
2448 | cC=(Fij*numpy.pi)**2 | |||
|
2449 | ||||
|
2450 | '''****** Getting constants F and G ******''' | |||
|
2451 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |||
|
2452 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) | |||
|
2453 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) | |||
|
2454 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |||
|
2455 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |||
|
2456 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) | |||
|
2457 | MijResults = numpy.array([MijResult1, MijResult2]) | |||
|
2458 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |||
|
2459 | ||||
|
2460 | '''****** Getting constants A, B and H ******''' | |||
|
2461 | W01 = numpy.nanmax( FitGauss01 ) | |||
|
2462 | W02 = numpy.nanmax( FitGauss02 ) | |||
|
2463 | W12 = numpy.nanmax( FitGauss12 ) | |||
|
2464 | ||||
|
2465 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |||
|
2466 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |||
|
2467 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |||
|
2468 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) | |||
|
2469 | ||||
|
2470 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |||
|
2471 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |||
|
2472 | ||||
|
2473 | VxVy = numpy.array([[cA,cH],[cH,cB]]) | |||
|
2474 | VxVyResults = numpy.array([-cF,-cG]) | |||
|
2475 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) | |||
|
2476 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) | |||
|
2477 | error_code = 0 | |||
|
2478 | ||||
|
2479 | return Vzon, Vmer, Vver, error_code | |||
|
2480 | ||||
|
2481 | class SpectralMoments(Operation): | |||
|
2482 | ||||
|
2483 | ''' | |||
|
2484 | Function SpectralMoments() | |||
|
2485 | ||||
|
2486 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |||
|
2487 | ||||
|
2488 | Type of dataIn: Spectra | |||
|
2489 | ||||
|
2490 | Configuration Parameters: | |||
|
2491 | ||||
|
2492 | dirCosx : Cosine director in X axis | |||
|
2493 | dirCosy : Cosine director in Y axis | |||
|
2494 | ||||
|
2495 | elevation : | |||
|
2496 | azimuth : | |||
|
2497 | ||||
|
2498 | Input: | |||
|
2499 | channelList : simple channel list to select e.g. [2,3,7] | |||
|
2500 | self.dataOut.data_pre : Spectral data | |||
|
2501 | self.dataOut.abscissaList : List of frequencies | |||
|
2502 | self.dataOut.noise : Noise level per channel | |||
|
2503 | ||||
|
2504 | Affected: | |||
|
2505 | self.dataOut.moments : Parameters per channel | |||
|
2506 | self.dataOut.data_snr : SNR per channel | |||
|
2507 | ||||
|
2508 | ''' | |||
|
2509 | ||||
|
2510 | def run(self, dataOut): | |||
|
2511 | ||||
|
2512 | data = dataOut.data_pre[0] | |||
|
2513 | absc = dataOut.abscissaList[:-1] | |||
|
2514 | noise = dataOut.noise | |||
|
2515 | nChannel = data.shape[0] | |||
|
2516 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |||
|
2517 | ||||
|
2518 | for ind in range(nChannel): | |||
|
2519 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |||
|
2520 | ||||
|
2521 | dataOut.moments = data_param[:,1:,:] | |||
|
2522 | dataOut.data_snr = data_param[:,0] | |||
|
2523 | dataOut.data_pow = data_param[:,1] | |||
|
2524 | dataOut.data_dop = data_param[:,2] | |||
|
2525 | dataOut.data_width = data_param[:,3] | |||
|
2526 | ||||
|
2527 | return dataOut | |||
|
2528 | ||||
|
2529 | def __calculateMoments(self, oldspec, oldfreq, n0, | |||
|
2530 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |||
|
2531 | ||||
|
2532 | if (nicoh is None): nicoh = 1 | |||
|
2533 | if (graph is None): graph = 0 | |||
|
2534 | if (smooth is None): smooth = 0 | |||
|
2535 | elif (self.smooth < 3): smooth = 0 | |||
|
2536 | ||||
|
2537 | if (type1 is None): type1 = 0 | |||
|
2538 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |||
|
2539 | if (snrth is None): snrth = -3 | |||
|
2540 | if (dc is None): dc = 0 | |||
|
2541 | if (aliasing is None): aliasing = 0 | |||
|
2542 | if (oldfd is None): oldfd = 0 | |||
|
2543 | if (wwauto is None): wwauto = 0 | |||
|
2544 | ||||
|
2545 | if (n0 < 1.e-20): n0 = 1.e-20 | |||
|
2546 | ||||
|
2547 | freq = oldfreq | |||
|
2548 | vec_power = numpy.zeros(oldspec.shape[1]) | |||
|
2549 | vec_fd = numpy.zeros(oldspec.shape[1]) | |||
|
2550 | vec_w = numpy.zeros(oldspec.shape[1]) | |||
|
2551 | vec_snr = numpy.zeros(oldspec.shape[1]) | |||
|
2552 | ||||
|
2553 | # oldspec = numpy.ma.masked_invalid(oldspec) | |||
|
2554 | ||||
|
2555 | for ind in range(oldspec.shape[1]): | |||
|
2556 | ||||
|
2557 | spec = oldspec[:,ind] | |||
|
2558 | aux = spec*fwindow | |||
|
2559 | max_spec = aux.max() | |||
|
2560 | m = aux.tolist().index(max_spec) | |||
|
2561 | ||||
|
2562 | # Smooth | |||
|
2563 | if (smooth == 0): | |||
|
2564 | spec2 = spec | |||
|
2565 | else: | |||
|
2566 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |||
|
2567 | ||||
|
2568 | # Moments Estimation | |||
|
2569 | bb = spec2[numpy.arange(m,spec2.size)] | |||
|
2570 | bb = (bb<n0).nonzero() | |||
|
2571 | bb = bb[0] | |||
|
2572 | ||||
|
2573 | ss = spec2[numpy.arange(0,m + 1)] | |||
|
2574 | ss = (ss<n0).nonzero() | |||
|
2575 | ss = ss[0] | |||
|
2576 | ||||
|
2577 | if (bb.size == 0): | |||
|
2578 | bb0 = spec.size - 1 - m | |||
|
2579 | else: | |||
|
2580 | bb0 = bb[0] - 1 | |||
|
2581 | if (bb0 < 0): | |||
|
2582 | bb0 = 0 | |||
|
2583 | ||||
|
2584 | if (ss.size == 0): | |||
|
2585 | ss1 = 1 | |||
|
2586 | else: | |||
|
2587 | ss1 = max(ss) + 1 | |||
|
2588 | ||||
|
2589 | if (ss1 > m): | |||
|
2590 | ss1 = m | |||
|
2591 | ||||
|
2592 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |||
|
2593 | ||||
|
2594 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. Scipión added with correct definition | |||
|
2595 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. Scipión added with correct definition | |||
|
2596 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() | |||
|
2597 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power | |||
|
2598 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) | |||
|
2599 | snr = (spec2.mean()-n0)/n0 | |||
|
2600 | if (snr < 1.e-20) : | |||
|
2601 | snr = 1.e-20 | |||
|
2602 | ||||
|
2603 | # vec_power[ind] = power #D. Scipión replaced with the line below | |||
|
2604 | vec_power[ind] = total_power | |||
|
2605 | vec_fd[ind] = fd | |||
|
2606 | vec_w[ind] = w | |||
|
2607 | vec_snr[ind] = snr | |||
|
2608 | ||||
|
2609 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |||
|
2610 | ||||
|
2611 | ||||
|
2612 | ||||
|
2613 | class SALags(Operation): | |||
|
2614 | ''' | |||
|
2615 | Function GetMoments() | |||
|
2616 | ||||
|
2617 | Input: | |||
|
2618 | self.dataOut.data_pre | |||
|
2619 | self.dataOut.abscissaList | |||
|
2620 | self.dataOut.noise | |||
|
2621 | self.dataOut.normFactor | |||
|
2622 | self.dataOut.data_snr | |||
|
2623 | self.dataOut.groupList | |||
|
2624 | self.dataOut.nChannels | |||
|
2625 | ||||
|
2626 | Affected: | |||
|
2627 | self.dataOut.data_param | |||
|
2628 | ||||
|
2629 | ''' | |||
|
2630 | def run(self, dataOut): | |||
|
2631 | data_acf = dataOut.data_pre[0] | |||
|
2632 | data_ccf = dataOut.data_pre[1] | |||
|
2633 | normFactor_acf = dataOut.normFactor[0] | |||
|
2634 | normFactor_ccf = dataOut.normFactor[1] | |||
|
2635 | pairs_acf = dataOut.groupList[0] | |||
|
2636 | pairs_ccf = dataOut.groupList[1] | |||
|
2637 | ||||
|
2638 | nHeights = dataOut.nHeights | |||
|
2639 | absc = dataOut.abscissaList | |||
|
2640 | noise = dataOut.noise | |||
|
2641 | SNR = dataOut.data_snr | |||
|
2642 | nChannels = dataOut.nChannels | |||
|
2643 | # pairsList = dataOut.groupList | |||
|
2644 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |||
|
2645 | ||||
|
2646 | for l in range(len(pairs_acf)): | |||
|
2647 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |||
|
2648 | ||||
|
2649 | for l in range(len(pairs_ccf)): | |||
|
2650 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |||
|
2651 | ||||
|
2652 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |||
|
2653 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |||
|
2654 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |||
|
2655 | return | |||
|
2656 | ||||
|
2657 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |||
|
2658 | # | |||
|
2659 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |||
|
2660 | # | |||
|
2661 | # for l in range(len(pairsList)): | |||
|
2662 | # firstChannel = pairsList[l][0] | |||
|
2663 | # secondChannel = pairsList[l][1] | |||
|
2664 | # | |||
|
2665 | # #Obteniendo pares de Autocorrelacion | |||
|
2666 | # if firstChannel == secondChannel: | |||
|
2667 | # pairsAutoCorr[firstChannel] = int(l) | |||
|
2668 | # | |||
|
2669 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |||
|
2670 | # | |||
|
2671 | # pairsCrossCorr = range(len(pairsList)) | |||
|
2672 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |||
|
2673 | # | |||
|
2674 | # return pairsAutoCorr, pairsCrossCorr | |||
|
2675 | ||||
|
2676 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |||
|
2677 | ||||
|
2678 | lag0 = data_acf.shape[1]/2 | |||
|
2679 | #Funcion de Autocorrelacion | |||
|
2680 | mean_acf = stats.nanmean(data_acf, axis = 0) | |||
|
2681 | ||||
|
2682 | #Obtencion Indice de TauCross | |||
|
2683 | ind_ccf = data_ccf.argmax(axis = 1) | |||
|
2684 | #Obtencion Indice de TauAuto | |||
|
2685 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |||
|
2686 | ccf_lag0 = data_ccf[:,lag0,:] | |||
|
2687 | ||||
|
2688 | for i in range(ccf_lag0.shape[0]): | |||
|
2689 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |||
|
2690 | ||||
|
2691 | #Obtencion de TauCross y TauAuto | |||
|
2692 | tau_ccf = lagRange[ind_ccf] | |||
|
2693 | tau_acf = lagRange[ind_acf] | |||
|
2694 | ||||
|
2695 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |||
|
2696 | ||||
|
2697 | tau_ccf[Nan1,Nan2] = numpy.nan | |||
|
2698 | tau_acf[Nan1,Nan2] = numpy.nan | |||
|
2699 | tau = numpy.vstack((tau_ccf,tau_acf)) | |||
|
2700 | ||||
|
2701 | return tau | |||
|
2702 | ||||
|
2703 | def __calculateLag1Phase(self, data, lagTRange): | |||
|
2704 | data1 = stats.nanmean(data, axis = 0) | |||
|
2705 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |||
|
2706 | ||||
|
2707 | phase = numpy.angle(data1[lag1,:]) | |||
|
2708 | ||||
|
2709 | return phase | |||
|
2710 | ||||
|
2711 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |||
|
2712 | z = (x - a1) / a2 | |||
|
2713 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |||
|
2714 | return y | |||
|
2715 | ||||
|
2716 | ||||
|
2717 | class SpectralFitting(Operation): | |||
|
2718 | ''' | |||
|
2719 | Function GetMoments() | |||
|
2720 | ||||
|
2721 | Input: | |||
|
2722 | Output: | |||
|
2723 | Variables modified: | |||
|
2724 | ''' | |||
|
2725 | def __calculateMoments(self,oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |||
|
2726 | ||||
|
2727 | if (nicoh is None): nicoh = 1 | |||
|
2728 | if (graph is None): graph = 0 | |||
|
2729 | if (smooth is None): smooth = 0 | |||
|
2730 | elif (self.smooth < 3): smooth = 0 | |||
|
2731 | ||||
|
2732 | if (type1 is None): type1 = 0 | |||
|
2733 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |||
|
2734 | if (snrth is None): snrth = -3 | |||
|
2735 | if (dc is None): dc = 0 | |||
|
2736 | if (aliasing is None): aliasing = 0 | |||
|
2737 | if (oldfd is None): oldfd = 0 | |||
|
2738 | if (wwauto is None): wwauto = 0 | |||
|
2739 | ||||
|
2740 | if (n0 < 1.e-20): n0 = 1.e-20 | |||
|
2741 | ||||
|
2742 | freq = oldfreq | |||
|
2743 | vec_power = numpy.zeros(oldspec.shape[1]) | |||
|
2744 | vec_fd = numpy.zeros(oldspec.shape[1]) | |||
|
2745 | vec_w = numpy.zeros(oldspec.shape[1]) | |||
|
2746 | vec_snr = numpy.zeros(oldspec.shape[1]) | |||
|
2747 | ||||
|
2748 | oldspec = numpy.ma.masked_invalid(oldspec) | |||
|
2749 | ||||
|
2750 | for ind in range(oldspec.shape[1]): | |||
|
2751 | ||||
|
2752 | spec = oldspec[:,ind] | |||
|
2753 | aux = spec*fwindow | |||
|
2754 | max_spec = aux.max() | |||
|
2755 | m = list(aux).index(max_spec) | |||
|
2756 | ||||
|
2757 | #Smooth | |||
|
2758 | if (smooth == 0): spec2 = spec | |||
|
2759 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |||
|
2760 | ||||
|
2761 | # Calculo de Momentos | |||
|
2762 | bb = spec2[list(range(m,spec2.size))] | |||
|
2763 | bb = (bb<n0).nonzero() | |||
|
2764 | bb = bb[0] | |||
|
2765 | ||||
|
2766 | ss = spec2[list(range(0,m + 1))] | |||
|
2767 | ss = (ss<n0).nonzero() | |||
|
2768 | ss = ss[0] | |||
|
2769 | ||||
|
2770 | if (bb.size == 0): | |||
|
2771 | bb0 = spec.size - 1 - m | |||
|
2772 | else: | |||
|
2773 | bb0 = bb[0] - 1 | |||
|
2774 | if (bb0 < 0): | |||
|
2775 | bb0 = 0 | |||
|
2776 | ||||
|
2777 | if (ss.size == 0): ss1 = 1 | |||
|
2778 | else: ss1 = max(ss) + 1 | |||
|
2779 | ||||
|
2780 | if (ss1 > m): ss1 = m | |||
|
2781 | ||||
|
2782 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 | |||
|
2783 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |||
|
2784 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |||
|
2785 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |||
|
2786 | snr = (spec2.mean()-n0)/n0 | |||
|
2787 | ||||
|
2788 | if (snr < 1.e-20) : | |||
|
2789 | snr = 1.e-20 | |||
|
2790 | ||||
|
2791 | vec_power[ind] = power | |||
|
2792 | vec_fd[ind] = fd | |||
|
2793 | vec_w[ind] = w | |||
|
2794 | vec_snr[ind] = snr | |||
|
2795 | ||||
|
2796 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |||
|
2797 | return moments | |||
|
2798 | ||||
|
2799 | #def __DiffCoherent(self,snrth, spectra, cspectra, nProf, heights,nChan, nHei, nPairs, channels, noise, crosspairs): | |||
|
2800 | def __DiffCoherent(self, spectra, cspectra, dataOut, noise, snrth, coh_th, hei_th): | |||
|
2801 | ||||
|
2802 | #import matplotlib.pyplot as plt | |||
|
2803 | nProf = dataOut.nProfiles | |||
|
2804 | heights = dataOut.heightList | |||
|
2805 | nHei = len(heights) | |||
|
2806 | channels = dataOut.channelList | |||
|
2807 | nChan = len(channels) | |||
|
2808 | crosspairs = dataOut.groupList | |||
|
2809 | nPairs = len(crosspairs) | |||
|
2810 | #Separar espectros incoherentes de coherentes snr > 20 dB' | |||
|
2811 | snr_th = 10**(snrth/10.0) | |||
|
2812 | my_incoh_spectra = numpy.zeros([nChan, nProf,nHei], dtype='float') | |||
|
2813 | my_incoh_cspectra = numpy.zeros([nPairs,nProf, nHei], dtype='complex') | |||
|
2814 | my_incoh_aver = numpy.zeros([nChan, nHei]) | |||
|
2815 | my_coh_aver = numpy.zeros([nChan, nHei]) | |||
|
2816 | ||||
|
2817 | coh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |||
|
2818 | coh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |||
|
2819 | coh_aver = numpy.zeros([nChan, nHei]) | |||
|
2820 | ||||
|
2821 | incoh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |||
|
2822 | incoh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |||
|
2823 | incoh_aver = numpy.zeros([nChan, nHei]) | |||
|
2824 | power = numpy.sum(spectra, axis=1) | |||
|
2825 | ||||
|
2826 | if coh_th == None : coh_th = numpy.array([0.75,0.65,0.15]) # 0.65 | |||
|
2827 | if hei_th == None : hei_th = numpy.array([60,300,650]) | |||
|
2828 | for ic in range(nPairs): | |||
|
2829 | pair = crosspairs[ic] | |||
|
2830 | #si el SNR es mayor que el SNR threshold los datos se toman coherentes | |||
|
2831 | s_n0 = power[pair[0],:]/noise[pair[0]] | |||
|
2832 | s_n1 = power[pair[1],:]/noise[pair[1]] | |||
|
2833 | valid1 =(s_n0>=snr_th).nonzero() | |||
|
2834 | valid2 = (s_n1>=snr_th).nonzero() | |||
|
2835 | ||||
|
2836 | valid1 = numpy.array(valid1[0]) | |||
|
2837 | valid2 = numpy.array(valid2[0]) | |||
|
2838 | valid = valid1 | |||
|
2839 | for iv in range(len(valid2)): | |||
|
2840 | ||||
|
2841 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
2842 | if len(indv[0]) == 0 : | |||
|
2843 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |||
|
2844 | if len(valid)>0: | |||
|
2845 | my_coh_aver[pair[0],valid]=1 | |||
|
2846 | my_coh_aver[pair[1],valid]=1 | |||
|
2847 | # si la coherencia es mayor a la coherencia threshold los datos se toman | |||
|
2848 | ||||
|
2849 | coh = numpy.squeeze(numpy.nansum(cspectra[ic,:,:], axis=0)/numpy.sqrt(numpy.nansum(spectra[pair[0],:,:], axis=0)*numpy.nansum(spectra[pair[1],:,:], axis=0))) | |||
|
2850 | ||||
|
2851 | for ih in range(len(hei_th)): | |||
|
2852 | hvalid = (heights>hei_th[ih]).nonzero() | |||
|
2853 | hvalid = hvalid[0] | |||
|
2854 | if len(hvalid)>0: | |||
|
2855 | valid = (numpy.absolute(coh[hvalid])>coh_th[ih]).nonzero() | |||
|
2856 | valid = valid[0] | |||
|
2857 | ||||
|
2858 | if len(valid)>0: | |||
|
2859 | my_coh_aver[pair[0],hvalid[valid]] =1 | |||
|
2860 | my_coh_aver[pair[1],hvalid[valid]] =1 | |||
|
2861 | ||||
|
2862 | coh_echoes = (my_coh_aver[pair[0],:] == 1).nonzero() | |||
|
2863 | incoh_echoes = (my_coh_aver[pair[0],:] != 1).nonzero() | |||
|
2864 | incoh_echoes = incoh_echoes[0] | |||
|
2865 | if len(incoh_echoes) > 0: | |||
|
2866 | my_incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |||
|
2867 | my_incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |||
|
2868 | my_incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |||
|
2869 | my_incoh_aver[pair[0],incoh_echoes] = 1 | |||
|
2870 | my_incoh_aver[pair[1],incoh_echoes] = 1 | |||
|
2871 | ||||
|
2872 | ||||
|
2873 | for ic in range(nPairs): | |||
|
2874 | pair = crosspairs[ic] | |||
|
2875 | ||||
|
2876 | valid1 =(my_coh_aver[pair[0],:]==1 ).nonzero() | |||
|
2877 | valid2 = (my_coh_aver[pair[1],:]==1).nonzero() | |||
|
2878 | valid1 = numpy.array(valid1[0]) | |||
|
2879 | valid2 = numpy.array(valid2[0]) | |||
|
2880 | valid = valid1 | |||
|
2881 | ||||
|
2882 | for iv in range(len(valid2)): | |||
|
2883 | ||||
|
2884 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
2885 | if len(indv[0]) == 0 : | |||
|
2886 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |||
|
2887 | valid1 =(my_coh_aver[pair[0],:] !=1 ).nonzero() | |||
|
2888 | valid2 = (my_coh_aver[pair[1],:] !=1).nonzero() | |||
|
2889 | valid1 = numpy.array(valid1[0]) | |||
|
2890 | valid2 = numpy.array(valid2[0]) | |||
|
2891 | incoh_echoes = valid1 | |||
|
2892 | ||||
|
2893 | for iv in range(len(valid2)): | |||
|
2894 | ||||
|
2895 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
2896 | if len(indv[0]) == 0 : | |||
|
2897 | incoh_echoes = numpy.concatenate(( incoh_echoes,valid2[iv]), axis=None) | |||
|
2898 | ||||
|
2899 | if len(valid)>0: | |||
|
2900 | coh_spectra[pair[0],:,valid] = spectra[pair[0],:,valid] | |||
|
2901 | coh_spectra[pair[1],:,valid] = spectra[pair[1],:,valid] | |||
|
2902 | coh_cspectra[ic,:,valid] = cspectra[ic,:,valid] | |||
|
2903 | coh_aver[pair[0],valid]=1 | |||
|
2904 | coh_aver[pair[1],valid]=1 | |||
|
2905 | if len(incoh_echoes)>0: | |||
|
2906 | incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |||
|
2907 | incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |||
|
2908 | incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |||
|
2909 | incoh_aver[pair[0],incoh_echoes]=1 | |||
|
2910 | incoh_aver[pair[1],incoh_echoes]=1 | |||
|
2911 | ||||
|
2912 | return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver | |||
|
2913 | ||||
|
2914 | def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index): | |||
|
2915 | ||||
|
2916 | #import matplotlib.pyplot as plt | |||
|
2917 | nProf = dataOut.nProfiles | |||
|
2918 | heights = dataOut.heightList | |||
|
2919 | nHei = len(heights) | |||
|
2920 | channels = dataOut.channelList | |||
|
2921 | nChan = len(channels) | |||
|
2922 | crosspairs = dataOut.groupList | |||
|
2923 | nPairs = len(crosspairs) | |||
|
2924 | ||||
|
2925 | absc = dataOut.abscissaList[:-1] | |||
|
2926 | data_param = numpy.zeros((nChan, 4, spectra.shape[2])) | |||
|
2927 | ||||
|
2928 | clean_coh_spectra = spectra.copy() | |||
|
2929 | clean_coh_cspectra = cspectra.copy() | |||
|
2930 | clean_coh_aver = coh_aver.copy() | |||
|
2931 | ||||
|
2932 | spwd_th=[10,6] #spwd_th[0] --> For satellites ; spwd_th[1] --> For special events like SUN. | |||
|
2933 | coh_th = 0.75 | |||
|
2934 | ||||
|
2935 | rtime0 = [6,18] # periodo sin ESF | |||
|
2936 | rtime1 = [10.5,13.5] # periodo con alta coherencia y alto ancho espectral (esperado): SOL. | |||
|
2937 | ||||
|
2938 | time = index*5./60 # en base a 5 min de proceso | |||
|
2939 | if clean_coh_echoes == 1 : | |||
|
2940 | for ind in range(nChan): | |||
|
2941 | data_param[ind,:,:] = self.__calculateMoments( spectra[ind,:,:] , absc , noise[ind] ) | |||
|
2942 | ||||
|
2943 | spwd = data_param[:,3] | |||
|
2944 | ||||
|
2945 | # SPECB_JULIA,header=anal_header,jspectra=spectra,vel=velocities,hei=heights, num_aver=1, mode_fit=0,smoothing=smoothing,jvelr=velr,jspwd=spwd,jsnr=snr,jnoise=noise,jstdvnoise=stdvnoise | |||
|
2946 | # para obtener spwd | |||
|
2947 | for ic in range(nPairs): | |||
|
2948 | pair = crosspairs[ic] | |||
|
2949 | coh = numpy.squeeze(numpy.sum(cspectra[ic,:,:], axis=1)/numpy.sqrt(numpy.sum(spectra[pair[0],:,:], axis=1)*numpy.sum(spectra[pair[1],:,:], axis=1))) | |||
|
2950 | for ih in range(nHei) : | |||
|
2951 | # Considering heights higher than 200km in order to avoid removing phenomena like EEJ. | |||
|
2952 | if heights[ih] >= 200 and coh_aver[pair[0],ih] == 1 and coh_aver[pair[1],ih] == 1 : | |||
|
2953 | # Checking coherence | |||
|
2954 | if (numpy.abs(coh[ih]) <= coh_th) or (time >= rtime0[0] and time <= rtime0[1]) : | |||
|
2955 | # Checking spectral widths | |||
|
2956 | if (spwd[pair[0],ih] > spwd_th[0]) or (spwd[pair[1],ih] > spwd_th[0]) : | |||
|
2957 | # satelite | |||
|
2958 | clean_coh_spectra[pair,ih,:] = 0.0 | |||
|
2959 | clean_coh_cspectra[ic,ih,:] = 0.0 | |||
|
2960 | clean_coh_aver[pair,ih] = 0 | |||
|
2961 | else : | |||
|
2962 | if ((spwd[pair[0],ih] < spwd_th[1]) or (spwd[pair[1],ih] < spwd_th[1])) : | |||
|
2963 | # Especial event like sun. | |||
|
2964 | clean_coh_spectra[pair,ih,:] = 0.0 | |||
|
2965 | clean_coh_cspectra[ic,ih,:] = 0.0 | |||
|
2966 | clean_coh_aver[pair,ih] = 0 | |||
|
2967 | ||||
|
2968 | return clean_coh_spectra, clean_coh_cspectra, clean_coh_aver | |||
|
2969 | ||||
|
2970 | isConfig = False | |||
|
2971 | __dataReady = False | |||
|
2972 | bloques = None | |||
|
2973 | bloque0 = None | |||
|
2974 | ||||
|
2975 | def __init__(self): | |||
|
2976 | Operation.__init__(self) | |||
|
2977 | self.i=0 | |||
|
2978 | self.isConfig = False | |||
|
2979 | ||||
|
2980 | def setup(self,nChan,nProf,nHei,nBlocks): | |||
|
2981 | self.__dataReady = False | |||
|
2982 | self.bloques = numpy.zeros([2, nProf, nHei,nBlocks], dtype= complex) | |||
|
2983 | self.bloque0 = numpy.zeros([nChan, nProf, nHei, nBlocks]) | |||
|
2984 | ||||
|
2985 | def CleanRayleigh(self,dataOut,spectra,cspectra,save_drifts): | |||
|
2986 | ||||
|
2987 | rfunc = cspectra.copy() | |||
|
2988 | n_funct = len(rfunc[0,:,0,0]) | |||
|
2989 | val_spc = spectra*0.0 | |||
|
2990 | val_cspc = cspectra*0.0 | |||
|
2991 | in_sat_spectra = spectra.copy() | |||
|
2992 | in_sat_cspectra = cspectra.copy() | |||
|
2993 | ||||
|
2994 | min_hei = 200 | |||
|
2995 | nProf = dataOut.nProfiles | |||
|
2996 | heights = dataOut.heightList | |||
|
2997 | nHei = len(heights) | |||
|
2998 | channels = dataOut.channelList | |||
|
2999 | nChan = len(channels) | |||
|
3000 | crosspairs = dataOut.groupList | |||
|
3001 | nPairs = len(crosspairs) | |||
|
3002 | hval=(heights >= min_hei).nonzero() | |||
|
3003 | ih=hval[0] | |||
|
3004 | for ih in range(hval[0][0],nHei): | |||
|
3005 | for ifreq in range(nProf): | |||
|
3006 | for ii in range(n_funct): | |||
|
3007 | ||||
|
3008 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) | |||
|
3009 | ||||
|
3010 | val = (numpy.isfinite(func2clean)==True).nonzero() | |||
|
3011 | if len(val)>0: | |||
|
3012 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |||
|
3013 | if min_val <= -40 : min_val = -40 | |||
|
3014 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |||
|
3015 | if max_val >= 200 : max_val = 200 | |||
|
3016 | ||||
|
3017 | step = 1 | |||
|
3018 | #Getting bins and the histogram | |||
|
3019 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |||
|
3020 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |||
|
3021 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |||
|
3022 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |||
|
3023 | parg = [numpy.amax(y_dist),mean,sigma] | |||
|
3024 | try : | |||
|
3025 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |||
|
3026 | mode = gauss_fit[1] | |||
|
3027 | stdv = gauss_fit[2] | |||
|
3028 | except: | |||
|
3029 | mode = mean | |||
|
3030 | stdv = sigma | |||
|
3031 | ||||
|
3032 | #Removing echoes greater than mode + 3*stdv | |||
|
3033 | factor_stdv = 2.5 | |||
|
3034 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |||
|
3035 | ||||
|
3036 | if len(noval[0]) > 0: | |||
|
3037 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |||
|
3038 | cross_pairs = crosspairs[ii] | |||
|
3039 | #Getting coherent echoes which are removed. | |||
|
3040 | if len(novall[0]) > 0: | |||
|
3041 | val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |||
|
3042 | val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |||
|
3043 | val_cspc[novall[0],ii,ifreq,ih] = 1 | |||
|
3044 | #Removing coherent from ISR data | |||
|
3045 | spectra[noval,cross_pairs[0],ifreq,ih] = numpy.nan | |||
|
3046 | spectra[noval,cross_pairs[1],ifreq,ih] = numpy.nan | |||
|
3047 | cspectra[noval,ii,ifreq,ih] = numpy.nan | |||
|
3048 | # | |||
|
3049 | #no sale es para savedrifts >2 | |||
|
3050 | ''' channels = dataOut.channelList | |||
|
3051 | cross_pairs = dataOut.groupList | |||
|
3052 | #print("OUT NOVALL 2") | |||
|
3053 | ||||
|
3054 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() | |||
|
3055 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() | |||
|
3056 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) | |||
|
3057 | #print('vcros =', vcross) | |||
|
3058 | ||||
|
3059 | #Getting coherent echoes which are removed. | |||
|
3060 | if len(novall) > 0: | |||
|
3061 | #val_spc[novall,ii,ifreq,ih] = 1 | |||
|
3062 | val_spc[ii,ifreq,ih,novall] = 1 | |||
|
3063 | if len(vcross) > 0: | |||
|
3064 | val_cspc[vcross,ifreq,ih,novall] = 1 | |||
|
3065 | ||||
|
3066 | #Removing coherent from ISR data. | |||
|
3067 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan | |||
|
3068 | if len(vcross) > 0: | |||
|
3069 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan | |||
|
3070 | ''' | |||
|
3071 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |||
|
3072 | ||||
|
3073 | out_spectra = numpy.zeros([nChan,nProf,nHei], dtype=float) #+numpy.nan | |||
|
3074 | out_cspectra = numpy.zeros([nPairs,nProf,nHei], dtype=complex) #+numpy.nan | |||
|
3075 | for ih in range(nHei): | |||
|
3076 | for ifreq in range(nProf): | |||
|
3077 | for ich in range(nChan): | |||
|
3078 | tmp = spectra[:,ich,ifreq,ih] | |||
|
3079 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |||
|
3080 | if len(valid[0]) >0 : | |||
|
3081 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
3082 | ||||
|
3083 | for icr in range(nPairs): | |||
|
3084 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |||
|
3085 | valid = (numpy.isfinite(tmp)==True).nonzero() | |||
|
3086 | if len(valid[0]) > 0: | |||
|
3087 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
3088 | #Removing fake coherent echoes (at least 4 points around the point) | |||
|
3089 | val_spectra = numpy.sum(val_spc,0) | |||
|
3090 | val_cspectra = numpy.sum(val_cspc,0) | |||
|
3091 | ||||
|
3092 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) | |||
|
3093 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) | |||
|
3094 | ||||
|
3095 | for i in range(nChan): | |||
|
3096 | for j in range(nProf): | |||
|
3097 | for k in range(nHei): | |||
|
3098 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : | |||
|
3099 | val_spc[:,i,j,k] = 0.0 | |||
|
3100 | for i in range(nPairs): | |||
|
3101 | for j in range(nProf): | |||
|
3102 | for k in range(nHei): | |||
|
3103 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : | |||
|
3104 | val_cspc[:,i,j,k] = 0.0 | |||
|
3105 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHei*nChan)) | |||
|
3106 | # if numpy.isfinite(val_spectra)==str(True): | |||
|
3107 | # noval = (val_spectra<1).nonzero() | |||
|
3108 | # if len(noval) > 0: | |||
|
3109 | # val_spc[:,noval] = 0.0 | |||
|
3110 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHei)) | |||
|
3111 | ||||
|
3112 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHei*nProf)) | |||
|
3113 | #if numpy.isfinite(val_cspectra)==str(True): | |||
|
3114 | # noval = (val_cspectra<1).nonzero() | |||
|
3115 | # if len(noval) > 0: | |||
|
3116 | # val_cspc[:,noval] = 0.0 | |||
|
3117 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHei)) | |||
|
3118 | ||||
|
3119 | tmp_sat_spectra = spectra.copy() | |||
|
3120 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan | |||
|
3121 | tmp_sat_cspectra = cspectra.copy() | |||
|
3122 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan | |||
|
3123 | ||||
|
3124 | val = (val_spc > 0).nonzero() | |||
|
3125 | if len(val[0]) > 0: | |||
|
3126 | tmp_sat_spectra[val] = in_sat_spectra[val] | |||
|
3127 | ||||
|
3128 | val = (val_cspc > 0).nonzero() | |||
|
3129 | if len(val[0]) > 0: | |||
|
3130 | tmp_sat_cspectra[val] = in_sat_cspectra[val] | |||
|
3131 | ||||
|
3132 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |||
|
3133 | sat_spectra = numpy.zeros((nChan,nProf,nHei), dtype=float) | |||
|
3134 | sat_cspectra = numpy.zeros((nPairs,nProf,nHei), dtype=complex) | |||
|
3135 | for ih in range(nHei): | |||
|
3136 | for ifreq in range(nProf): | |||
|
3137 | for ich in range(nChan): | |||
|
3138 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) | |||
|
3139 | valid = (numpy.isfinite(tmp)).nonzero() | |||
|
3140 | if len(valid[0]) > 0: | |||
|
3141 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
3142 | ||||
|
3143 | for icr in range(nPairs): | |||
|
3144 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) | |||
|
3145 | valid = (numpy.isfinite(tmp)).nonzero() | |||
|
3146 | if len(valid[0]) > 0: | |||
|
3147 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
3148 | ||||
|
3149 | return out_spectra, out_cspectra,sat_spectra,sat_cspectra | |||
|
3150 | def REM_ISOLATED_POINTS(self,array,rth): | |||
|
3151 | if rth == None : rth = 4 | |||
|
3152 | num_prof = len(array[0,:,0]) | |||
|
3153 | num_hei = len(array[0,0,:]) | |||
|
3154 | n2d = len(array[:,0,0]) | |||
|
3155 | ||||
|
3156 | for ii in range(n2d) : | |||
|
3157 | tmp = array[ii,:,:] | |||
|
3158 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |||
|
3159 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |||
|
3160 | indxs2 = (tmp > 0).nonzero() | |||
|
3161 | indxs1 = (indxs1[0]) | |||
|
3162 | indxs2 = indxs2[0] | |||
|
3163 | indxs = None | |||
|
3164 | ||||
|
3165 | for iv in range(len(indxs2)): | |||
|
3166 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |||
|
3167 | if len(indv[0]) > 0 : | |||
|
3168 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |||
|
3169 | ||||
|
3170 | indxs = indxs[1:] | |||
|
3171 | if len(indxs) < 4 : | |||
|
3172 | array[ii,:,:] = 0. | |||
|
3173 | return | |||
|
3174 | ||||
|
3175 | xpos = numpy.mod(indxs ,num_hei) | |||
|
3176 | ypos = (indxs / num_hei) | |||
|
3177 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |||
|
3178 | xpos = xpos[sx] | |||
|
3179 | ypos = ypos[sx] | |||
|
3180 | ||||
|
3181 | # *********************************** Cleaning isolated points ********************************** | |||
|
3182 | ic = 0 | |||
|
3183 | while True : | |||
|
3184 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |||
|
3185 | ||||
|
3186 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |||
|
3187 | no_coh2 = (r <= rth).nonzero() | |||
|
3188 | no_coh1 = numpy.array(no_coh1[0]) | |||
|
3189 | no_coh2 = numpy.array(no_coh2[0]) | |||
|
3190 | no_coh = None | |||
|
3191 | for iv in range(len(no_coh2)): | |||
|
3192 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |||
|
3193 | if len(indv[0]) > 0 : | |||
|
3194 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |||
|
3195 | no_coh = no_coh[1:] | |||
|
3196 | if len(no_coh) < 4 : | |||
|
3197 | xpos[ic] = numpy.nan | |||
|
3198 | ypos[ic] = numpy.nan | |||
|
3199 | ||||
|
3200 | ic = ic + 1 | |||
|
3201 | if (ic == len(indxs)) : | |||
|
3202 | break | |||
|
3203 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |||
|
3204 | if len(indxs[0]) < 4 : | |||
|
3205 | array[ii,:,:] = 0. | |||
|
3206 | return | |||
|
3207 | ||||
|
3208 | xpos = xpos[indxs[0]] | |||
|
3209 | ypos = ypos[indxs[0]] | |||
|
3210 | for i in range(0,len(ypos)): | |||
|
3211 | ypos[i]=int(ypos[i]) | |||
|
3212 | junk = tmp | |||
|
3213 | tmp = junk*0.0 | |||
|
3214 | ||||
|
3215 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |||
|
3216 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |||
|
3217 | ||||
|
3218 | return array | |||
|
3219 | def moments(self,doppler,yarray,npoints): | |||
|
3220 | ytemp = yarray | |||
|
3221 | val = (ytemp > 0).nonzero() | |||
|
3222 | val = val[0] | |||
|
3223 | if len(val) == 0 : val = range(npoints-1) | |||
|
3224 | ||||
|
3225 | ynew = 0.5*(ytemp[val[0]]+ytemp[val[len(val)-1]]) | |||
|
3226 | ytemp[len(ytemp):] = [ynew] | |||
|
3227 | ||||
|
3228 | index = 0 | |||
|
3229 | index = numpy.argmax(ytemp) | |||
|
3230 | ytemp = numpy.roll(ytemp,int(npoints/2)-1-index) | |||
|
3231 | ytemp = ytemp[0:npoints-1] | |||
|
3232 | ||||
|
3233 | fmom = numpy.sum(doppler*ytemp)/numpy.sum(ytemp)+(index-(npoints/2-1))*numpy.abs(doppler[1]-doppler[0]) | |||
|
3234 | smom = numpy.sum(doppler*doppler*ytemp)/numpy.sum(ytemp) | |||
|
3235 | return [fmom,numpy.sqrt(smom)] | |||
|
3236 | ||||
|
3237 | def windowing_single_old(self,spc,x,A,B,C,D,nFFTPoints): | |||
|
3238 | ''' | |||
|
3239 | Written by R. Flores | |||
|
3240 | ''' | |||
|
3241 | from scipy.optimize import curve_fit,fmin | |||
|
3242 | ||||
|
3243 | def gaussian(x, a, b, c, d): | |||
|
3244 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |||
|
3245 | return val | |||
|
3246 | ||||
|
3247 | def R_gaussian(x, a, b, c): | |||
|
3248 | N = int(numpy.shape(x)[0]) | |||
|
3249 | val = a * numpy.exp(-((x)*c*2*2*numpy.pi)**2 / (2))* numpy.exp(1.j*b*x*4*numpy.pi) | |||
|
3250 | return val | |||
|
3251 | ||||
|
3252 | def T(x,N): | |||
|
3253 | T = 1-abs(x)/N | |||
|
3254 | return T | |||
|
3255 | ||||
|
3256 | def R_T_spc_fun(x, a, b, c, d, nFFTPoints): | |||
|
3257 | ||||
|
3258 | N = int(numpy.shape(x)[0]) | |||
|
3259 | ||||
|
3260 | x_max = x[-1] | |||
|
3261 | ||||
|
3262 | x_pos = x[nFFTPoints:] | |||
|
3263 | x_neg = x[:nFFTPoints] | |||
|
3264 | ||||
|
3265 | R_T_neg_1 = R_gaussian(x, a, b, c)[:nFFTPoints]*T(x_neg,-x[0]) | |||
|
3266 | R_T_pos_1 = R_gaussian(x, a, b, c)[nFFTPoints:]*T(x_pos,x[-1]) | |||
|
3267 | #print(T(x_pos,x[-1]),x_pos,x[-1]) | |||
|
3268 | #print(R_T_neg_1.shape,R_T_pos_1.shape) | |||
|
3269 | R_T_sum_1 = R_T_pos_1 + R_T_neg_1 | |||
|
3270 | R_T_spc_1 = numpy.fft.fft(R_T_sum_1).real | |||
|
3271 | R_T_spc_1 = numpy.fft.fftshift(R_T_spc_1) | |||
|
3272 | max_val_1 = numpy.max(R_T_spc_1) | |||
|
3273 | R_T_spc_1 = R_T_spc_1*a/max_val_1 | |||
|
3274 | print("R_T_spc_1: ", R_T_spc_1) | |||
|
3275 | ||||
|
3276 | R_T_d = d*numpy.fft.fftshift(signal.unit_impulse(N)) | |||
|
3277 | R_T_d_neg = R_T_d[:nFFTPoints]*T(x_neg,-x[0]) | |||
|
3278 | R_T_d_pos = R_T_d[nFFTPoints:]*T(x_pos,x[-1]) | |||
|
3279 | R_T_d_sum = R_T_d_pos + R_T_d_neg | |||
|
3280 | R_T_spc_3 = numpy.fft.fft(R_T_d_sum).real | |||
|
3281 | R_T_spc_3 = numpy.fft.fftshift(R_T_spc_3) | |||
|
3282 | ||||
|
3283 | R_T_final = R_T_spc_1# + R_T_spc_3 | |||
|
3284 | ||||
|
3285 | return R_T_final | |||
|
3286 | ||||
|
3287 | y = spc#gaussian(x, a, meanY, sigmaY) + a*0.1*numpy.random.normal(0, 1, size=len(x)) | |||
|
3288 | ||||
|
3289 | from scipy.stats import norm | |||
|
3290 | mean,std=norm.fit(spc) | |||
|
3291 | ||||
|
3292 | # estimate starting values from the data | |||
|
3293 | print("A: ", A) | |||
|
3294 | a = A-D | |||
|
3295 | b = B | |||
|
3296 | c = C#numpy.std(spc) #C | |||
|
3297 | d = D | |||
|
3298 | #''' | |||
|
3299 | #ippSeconds = 250*20*1.e-6/3 | |||
|
3300 | ||||
|
3301 | #x_t = ippSeconds * (numpy.arange(nFFTPoints) - nFFTPoints / 2.) | |||
|
3302 | ||||
|
3303 | #x_t = numpy.linspace(x_t[0],x_t[-1],3200) | |||
|
3304 | #print("x_t: ", x_t) | |||
|
3305 | #print("nFFTPoints: ", nFFTPoints) | |||
|
3306 | x_vel = numpy.linspace(x[0],x[-1],int(2*nFFTPoints)) | |||
|
3307 | #print("x_vel: ", x_vel) | |||
|
3308 | #x_freq = numpy.fft.fftfreq(1600,d=ippSeconds) | |||
|
3309 | #x_freq = numpy.fft.fftshift(x_freq) | |||
|
3310 | #''' | |||
|
3311 | # define a least squares function to optimize | |||
|
3312 | import matplotlib.pyplot as plt | |||
|
3313 | aui = R_T_spc_fun(x_vel,a,b,c,d,nFFTPoints) | |||
|
3314 | print("aux_max: ", numpy.nanmax(aui)) | |||
|
3315 | #print(dataOut.heightList[hei]) | |||
|
3316 | plt.figure() | |||
|
3317 | plt.plot(x,spc,marker='*',linestyle='--') | |||
|
3318 | plt.plot(x,gaussian(x, a, b, c, d),color='b',marker='^',linestyle='') | |||
|
3319 | plt.plot(x,aui,color='k') | |||
|
3320 | #plt.title(dataOut.heightList[hei]) | |||
|
3321 | plt.show() | |||
|
3322 | ||||
|
3323 | def minfunc(params): | |||
|
3324 | #print("y.shape: ", numpy.shape(y)) | |||
|
3325 | return sum((y-R_T_spc_fun(x_vel,params[0],params[1],params[2],params[3],nFFTPoints))**2/1)#y**2) | |||
|
3326 | ||||
|
3327 | # fit | |||
|
3328 | ||||
|
3329 | popt_full = fmin(minfunc,[a,b,c,d], disp=False) | |||
|
3330 | #print("nIter", popt_full[2]) | |||
|
3331 | popt = popt_full#[0] | |||
|
3332 | ||||
|
3333 | fun = gaussian(x, popt[0], popt[1], popt[2], popt[3]) | |||
|
3334 | print("pop1[0]: ", popt[0]) | |||
|
3335 | #return R_T_spc_fun(x_t,popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6] | |||
|
3336 | return fun, popt[0], popt[1], popt[2], popt[3] | |||
|
3337 | ||||
|
3338 | def windowing_single(self,spc,x,A,B,C,D,nFFTPoints): | |||
|
3339 | ''' | |||
|
3340 | Written by R. Flores | |||
|
3341 | ''' | |||
|
3342 | from scipy.optimize import curve_fit,fmin | |||
|
3343 | ||||
|
3344 | def gaussian(x, a, b, c, d): | |||
|
3345 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |||
|
3346 | return val | |||
|
3347 | ||||
|
3348 | def R_gaussian(x, a, b, c): | |||
|
3349 | N = int(numpy.shape(x)[0]) | |||
|
3350 | ||||
|
3351 | val = (a*numpy.exp((-(1/2)*x*(x*c**2 + 2*1.j*b)))/numpy.sqrt(1/c**2)) | |||
|
3352 | ||||
|
3353 | return val | |||
|
3354 | ||||
|
3355 | def T(x,N): | |||
|
3356 | T = 1-abs(x)/N | |||
|
3357 | return T | |||
|
3358 | ||||
|
3359 | def R_T_spc_fun(x, a, id_dop, c, d, nFFTPoints): | |||
|
3360 | ||||
|
3361 | N = int(numpy.shape(x)[0]) | |||
|
3362 | b = 0 | |||
|
3363 | x_max = x[-1] | |||
|
3364 | ||||
|
3365 | x_pos = x[nFFTPoints:] | |||
|
3366 | x_neg = x[:nFFTPoints] | |||
|
3367 | R_T_neg_1 = R_gaussian(x, a, b, c)[:nFFTPoints]*T(x_neg,-x[0]) | |||
|
3368 | R_T_pos_1 = R_gaussian(x, a, b, c)[nFFTPoints:]*T(x_pos,x[-1]) | |||
|
3369 | ||||
|
3370 | R_T_sum_1 = R_T_pos_1 + R_T_neg_1 | |||
|
3371 | R_T_spc_1 = numpy.fft.fft(R_T_sum_1).real | |||
|
3372 | R_T_spc_1 = numpy.fft.fftshift(R_T_spc_1) | |||
|
3373 | max_val_1 = numpy.max(R_T_spc_1) | |||
|
3374 | R_T_spc_1 = R_T_spc_1*a/max_val_1 | |||
|
3375 | #raise NotImplementedError | |||
|
3376 | R_T_d = d*numpy.fft.fftshift(signal.unit_impulse(N)) | |||
|
3377 | R_T_d_neg = R_T_d[:nFFTPoints]*T(x_neg,-x[0]) | |||
|
3378 | R_T_d_pos = R_T_d[nFFTPoints:]*T(x_pos,x[-1]) | |||
|
3379 | R_T_d_sum = R_T_d_pos + R_T_d_neg | |||
|
3380 | R_T_spc_3 = numpy.fft.fft(R_T_d_sum).real | |||
|
3381 | R_T_spc_3 = numpy.fft.fftshift(R_T_spc_3) | |||
|
3382 | ||||
|
3383 | R_T_final = R_T_spc_1 + R_T_spc_3 | |||
|
3384 | ||||
|
3385 | id_dop = int(id_dop) | |||
|
3386 | ||||
|
3387 | R_T_final = numpy.roll(R_T_final,-id_dop) | |||
|
3388 | ||||
|
3389 | return R_T_final | |||
|
3390 | ||||
|
3391 | y = spc#gaussian(x, a, meanY, sigmaY) + a*0.1*numpy.random.normal(0, 1, size=len(x)) | |||
|
3392 | ||||
|
3393 | from scipy.stats import norm | |||
|
3394 | mean,std=norm.fit(spc) | |||
|
3395 | ||||
|
3396 | # estimate starting values from the data | |||
|
3397 | a = A-D | |||
|
3398 | b = B | |||
|
3399 | c = C#numpy.std(spc) #C | |||
|
3400 | d = D | |||
|
3401 | ||||
|
3402 | id_dop = numpy.argmax(spc) | |||
|
3403 | id_dop = int(spc.shape[0]/2 - id_dop) | |||
|
3404 | ||||
|
3405 | x_vel = numpy.linspace(x[0],x[-1],int(2*nFFTPoints)) | |||
|
3406 | ||||
|
3407 | # define a least squares function to optimize | |||
|
3408 | ||||
|
3409 | def minfunc(params): | |||
|
3410 | #print("y.shape: ", numpy.shape(y)) | |||
|
3411 | return sum((y-R_T_spc_fun(x_vel,params[0],params[1],params[2],params[3],nFFTPoints))**2/1)#y**2) | |||
|
3412 | ||||
|
3413 | # fit | |||
|
3414 | popt_full = fmin(minfunc,[a,id_dop,c,d], disp=False) | |||
|
3415 | popt = popt_full#[0] | |||
|
3416 | ||||
|
3417 | fun = gaussian(x, a, 0, popt[2], popt[3]) | |||
|
3418 | fun = numpy.roll(fun,-int(popt[1])) | |||
|
3419 | ||||
|
3420 | return fun, popt[0], popt[1], popt[2], popt[3] | |||
|
3421 | ||||
|
3422 | def windowing_single_direct(self,spc_mod,x,A,B,C,D,nFFTPoints,timeInterval): | |||
|
3423 | ''' | |||
|
3424 | Written by R. Flores | |||
|
3425 | ''' | |||
|
3426 | from scipy.optimize import curve_fit,fmin | |||
|
3427 | ||||
|
3428 | def gaussian(x, a, b, c, d): | |||
|
3429 | val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d | |||
|
3430 | return val | |||
|
3431 | ||||
|
3432 | def R_gaussian(x, a, b, c, d): | |||
|
3433 | N = int(numpy.shape(x)[0]) | |||
|
3434 | val = (a*numpy.exp(-2*c**2*x**2 + 2*x*1.j*b))*(numpy.sqrt(2*numpy.pi)*c)/((numpy.pi)) + d*signal.unit_impulse(N)*numpy.shape(x)[0]/2 | |||
|
3435 | ||||
|
3436 | return 2*val/numpy.shape(val)[0] | |||
|
3437 | ||||
|
3438 | def T(x,N): | |||
|
3439 | T = 1-abs(x)/N | |||
|
3440 | return T | |||
|
3441 | ||||
|
3442 | def R_T_spc_fun(x, a, b, c, d, nFFTPoints, timeInterval): #"x" should be time | |||
|
3443 | ||||
|
3444 | #timeInterval = 2 | |||
|
3445 | x_double = numpy.linspace(0,timeInterval,nFFTPoints) | |||
|
3446 | x_double_m = numpy.flip(x_double) | |||
|
3447 | x_double_aux = numpy.linspace(0,x_double[-2],nFFTPoints) | |||
|
3448 | x_double_t = numpy.concatenate((x_double_m,x_double_aux)) | |||
|
3449 | x_double_t /= max(x_double_t) | |||
|
3450 | ||||
|
3451 | ||||
|
3452 | R_T_sum_1 = R_gaussian(x, a, b, c, d) | |||
|
3453 | ||||
|
3454 | R_T_sum_1_flip = numpy.copy(numpy.flip(R_T_sum_1)) | |||
|
3455 | R_T_sum_1_flip[-1] = R_T_sum_1_flip[0] | |||
|
3456 | R_T_sum_1_flip = numpy.roll(R_T_sum_1_flip,1) | |||
|
3457 | ||||
|
3458 | R_T_sum_1_flip.imag *= -1 | |||
|
3459 | ||||
|
3460 | R_T_sum_1_total = numpy.concatenate((R_T_sum_1,R_T_sum_1_flip)) | |||
|
3461 | R_T_sum_1_total *= x_double_t #times trian_fun | |||
|
3462 | ||||
|
3463 | R_T_sum_1_total = R_T_sum_1_total[:nFFTPoints] + R_T_sum_1_total[nFFTPoints:] | |||
|
3464 | ||||
|
3465 | R_T_spc_1 = numpy.fft.fft(R_T_sum_1_total).real | |||
|
3466 | R_T_spc_1 = numpy.fft.fftshift(R_T_spc_1) | |||
|
3467 | ||||
|
3468 | freq = numpy.fft.fftfreq(nFFTPoints, d=timeInterval/nFFTPoints) | |||
|
3469 | ||||
|
3470 | freq = numpy.fft.fftshift(freq) | |||
|
3471 | ||||
|
3472 | freq *= 6/2 #lambda/2 | |||
|
3473 | ||||
|
3474 | return R_T_spc_1 | |||
|
3475 | ||||
|
3476 | y = spc_mod | |||
|
3477 | ||||
|
3478 | #from scipy.stats import norm | |||
|
3479 | ||||
|
3480 | # estimate starting values from the data | |||
|
3481 | ||||
|
3482 | a = A-D | |||
|
3483 | b = B | |||
|
3484 | c = C | |||
|
3485 | d = D | |||
|
3486 | ||||
|
3487 | # define a least squares function to optimize | |||
|
3488 | import matplotlib.pyplot as plt | |||
|
3489 | #ippSeconds = 2 | |||
|
3490 | t_range = numpy.linspace(0,timeInterval,nFFTPoints) | |||
|
3491 | #aui = R_T_spc_fun(t_range,a,b,c,d,nFFTPoints,timeInterval) | |||
|
3492 | ||||
|
3493 | def minfunc(params): | |||
|
3494 | return sum((y-R_T_spc_fun(t_range,params[0],params[1],params[2],params[3],nFFTPoints,timeInterval))**2/1)#y**2) | |||
|
3495 | ||||
|
3496 | # fit | |||
|
3497 | popt_full = fmin(minfunc,[a,b,c,d], disp=False) | |||
|
3498 | popt = popt_full | |||
|
3499 | ||||
|
3500 | fun = R_T_spc_fun(t_range,popt[0],popt[1],popt[2],popt[3],nFFTPoints,timeInterval) | |||
|
3501 | ||||
|
3502 | return fun, popt[0], popt[1], popt[2], popt[3] | |||
|
3503 | ||||
|
3504 | # ********************************************************************************************** | |||
|
3505 | index = 0 | |||
|
3506 | fint = 0 | |||
|
3507 | buffer = 0 | |||
|
3508 | buffer2 = 0 | |||
|
3509 | buffer3 = 0 | |||
|
3510 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None, filec=None,coh_th=None, hei_th=None,taver=None,Gaussian_Windowed=0): | |||
|
3511 | nChannels = dataOut.nChannels | |||
|
3512 | nHeights= dataOut.heightList.size | |||
|
3513 | nProf = dataOut.nProfiles | |||
|
3514 | if numpy.any(taver): taver=int(taver) | |||
|
3515 | else : taver = 15 | |||
|
3516 | tini=time.localtime(dataOut.utctime) | |||
|
3517 | if (tini.tm_min % taver) == 0 and (tini.tm_sec < 5 and self.fint==0): | |||
|
3518 | ||||
|
3519 | self.index = 0 | |||
|
3520 | jspc = self.buffer | |||
|
3521 | jcspc = self.buffer2 | |||
|
3522 | jnoise = self.buffer3 | |||
|
3523 | self.buffer = dataOut.data_spc | |||
|
3524 | self.buffer2 = dataOut.data_cspc | |||
|
3525 | self.buffer3 = dataOut.noise | |||
|
3526 | self.fint = 1 | |||
|
3527 | if numpy.any(jspc) : | |||
|
3528 | jspc= numpy.reshape(jspc,(int(len(jspc)/nChannels),nChannels,nProf,nHeights)) | |||
|
3529 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/int(nChannels/2)),int(nChannels/2),nProf,nHeights)) | |||
|
3530 | jnoise= numpy.reshape(jnoise,(int(len(jnoise)/nChannels),nChannels)) | |||
|
3531 | else: | |||
|
3532 | dataOut.flagNoData = True | |||
|
3533 | return dataOut | |||
|
3534 | else : | |||
|
3535 | if (tini.tm_min % taver) == 0 : self.fint = 1 | |||
|
3536 | else : self.fint = 0 | |||
|
3537 | self.index += 1 | |||
|
3538 | if numpy.any(self.buffer): | |||
|
3539 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |||
|
3540 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |||
|
3541 | self.buffer3 = numpy.concatenate((self.buffer3,dataOut.noise), axis=0) | |||
|
3542 | else: | |||
|
3543 | self.buffer = dataOut.data_spc | |||
|
3544 | self.buffer2 = dataOut.data_cspc | |||
|
3545 | self.buffer3 = dataOut.noise | |||
|
3546 | dataOut.flagNoData = True | |||
|
3547 | return dataOut | |||
|
3548 | if path != None: | |||
|
3549 | sys.path.append(path) | |||
|
3550 | try: | |||
|
3551 | self.library = importlib.import_module(file) | |||
|
3552 | except: | |||
|
3553 | pass | |||
|
3554 | if filec != None: | |||
|
3555 | self.weightf = importlib.import_module(filec) | |||
|
3556 | #self.weightf = importlib.import_module('weightfit') | |||
|
3557 | ||||
|
3558 | #To be inserted as a parameter | |||
|
3559 | groupArray = numpy.array(groupList) | |||
|
3560 | #groupArray = numpy.array([[0,1],[2,3]]) | |||
|
3561 | dataOut.groupList = groupArray | |||
|
3562 | ||||
|
3563 | nGroups = groupArray.shape[0] | |||
|
3564 | nChannels = dataOut.nChannels | |||
|
3565 | nHeights = dataOut.heightList.size | |||
|
3566 | ||||
|
3567 | #Parameters Array | |||
|
3568 | dataOut.data_param = None | |||
|
3569 | dataOut.data_paramC = None | |||
|
3570 | ||||
|
3571 | #Set constants | |||
|
3572 | try: | |||
|
3573 | constants = self.library.setConstants(dataOut) | |||
|
3574 | dataOut.constants = constants | |||
|
3575 | except: | |||
|
3576 | pass | |||
|
3577 | M = dataOut.normFactor | |||
|
3578 | N = dataOut.nFFTPoints | |||
|
3579 | ippSeconds = dataOut.ippSeconds | |||
|
3580 | K = dataOut.nIncohInt | |||
|
3581 | pairsArray = numpy.array(dataOut.pairsList) | |||
|
3582 | ||||
|
3583 | snrth= 20 | |||
|
3584 | spectra = dataOut.data_spc | |||
|
3585 | cspectra = dataOut.data_cspc | |||
|
3586 | nProf = dataOut.nProfiles | |||
|
3587 | heights = dataOut.heightList | |||
|
3588 | nHei = len(heights) | |||
|
3589 | channels = dataOut.channelList | |||
|
3590 | nChan = len(channels) | |||
|
3591 | nIncohInt = dataOut.nIncohInt | |||
|
3592 | crosspairs = dataOut.groupList | |||
|
3593 | noise = dataOut.noise | |||
|
3594 | jnoise = jnoise/N | |||
|
3595 | noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) | |||
|
3596 | power = numpy.sum(spectra, axis=1) | |||
|
3597 | nPairs = len(crosspairs) | |||
|
3598 | absc = dataOut.abscissaList[:-1] | |||
|
3599 | ||||
|
3600 | if not self.isConfig: | |||
|
3601 | self.isConfig = True | |||
|
3602 | ||||
|
3603 | index = tini.tm_hour*12+tini.tm_min/taver | |||
|
3604 | jspc = jspc/N/N | |||
|
3605 | jcspc = jcspc/N/N | |||
|
3606 | tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.CleanRayleigh(dataOut,jspc,jcspc,2) | |||
|
3607 | jspectra = tmp_spectra*len(jspc[:,0,0,0]) | |||
|
3608 | jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) | |||
|
3609 | my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver = self.__DiffCoherent(jspectra, jcspectra, dataOut, noise, snrth,coh_th, hei_th) | |||
|
3610 | clean_coh_spectra, clean_coh_cspectra, clean_coh_aver = self.__CleanCoherent(snrth, coh_spectra, coh_cspectra, coh_aver, dataOut, noise,1,index) | |||
|
3611 | dataOut.data_spc = incoh_spectra | |||
|
3612 | dataOut.data_cspc = incoh_cspectra | |||
|
3613 | #dataOut.data_spc = tmp_spectra | |||
|
3614 | #dataOut.data_cspc = tmp_cspectra | |||
|
3615 | ||||
|
3616 | clean_num_aver = incoh_aver*len(jspc[:,0,0,0]) | |||
|
3617 | coh_num_aver = clean_coh_aver*len(jspc[:,0,0,0]) | |||
|
3618 | #clean_num_aver = (numpy.zeros([nChan, nHei])+1)*len(jspc[:,0,0,0]) | |||
|
3619 | #coh_num_aver = numpy.zeros([nChan, nHei])*0*len(jspc[:,0,0,0]) | |||
|
3620 | #List of possible combinations | |||
|
3621 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |||
|
3622 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |||
|
3623 | if Gaussian_Windowed == 1: | |||
|
3624 | #dataOut.data_spc = jspectra | |||
|
3625 | ''' | |||
|
3626 | Written by R. Flores | |||
|
3627 | ''' | |||
|
3628 | print("normFactor: ", dataOut.normFactor) | |||
|
3629 | data_spc_aux = numpy.copy(dataOut.data_spc)#[:,0,:] | |||
|
3630 | data_spc_aux[:,0,:] = (data_spc_aux[:,1,:]+data_spc_aux[:,-1,:])/2 | |||
|
3631 | #''' | |||
|
3632 | from scipy.signal import medfilt | |||
|
3633 | import matplotlib.pyplot as plt | |||
|
3634 | dataOut.moments = numpy.ones((dataOut.nChannels,4,dataOut.nHeights))*numpy.NAN | |||
|
3635 | dataOut.VelRange = dataOut.getVelRange(0) | |||
|
3636 | for nChannel in range(dataOut.nChannels): | |||
|
3637 | for hei in range(dataOut.heightList.shape[0]): | |||
|
3638 | #print("ipp: ", dataOut.ippSeconds) | |||
|
3639 | #spc = numpy.copy(dataOut.data_spc[nChannel,:,hei]) | |||
|
3640 | spc = data_spc_aux[nChannel,:,hei] | |||
|
3641 | if spc.all() == 0.: | |||
|
3642 | print("CONTINUE") | |||
|
3643 | continue | |||
|
3644 | #print(VelRange) | |||
|
3645 | #print(dataOut.getFreqRange(64)) | |||
|
3646 | #print("Hei: ", dataOut.heightList[hei]) | |||
|
3647 | ||||
|
3648 | spc_mod = numpy.copy(spc) | |||
|
3649 | spcm = medfilt(spc_mod,11) | |||
|
3650 | spc_max = numpy.max(spcm) | |||
|
3651 | dop1_x0 = dataOut.VelRange[numpy.argmax(spcm)] | |||
|
3652 | #D = numpy.min(spcm) | |||
|
3653 | D_in = (numpy.mean(spcm[:15])+numpy.mean(spcm[-15:]))/2. | |||
|
3654 | #print("spc_max: ", spc_max) | |||
|
3655 | #print("dataOut.ippSeconds: ", dataOut.ippSeconds, dataOut.timeInterval) | |||
|
3656 | ##fun, A, B, C, D = self.windowing_single(spc,dataOut.VelRange,spc_max,dop1_x0,abs(dop1_x0),D,dataOut.nFFTPoints) | |||
|
3657 | #fun, A, B, C, D = self.windowing_single(spc,dataOut.VelRange,spc_max,dop1_x0,abs(dop1_x0),D,dataOut.nFFTPoints) | |||
|
3658 | fun, A, B, C, D = self.windowing_single_direct(spc_mod,dataOut.VelRange,spc_max,dop1_x0,abs(dop1_x0/5),D_in,dataOut.nFFTPoints,dataOut.timeInterval) | |||
|
3659 | ||||
|
3660 | dataOut.moments[nChannel,0,hei] = A | |||
|
3661 | dataOut.moments[nChannel,1,hei] = B | |||
|
3662 | dataOut.moments[nChannel,2,hei] = C | |||
|
3663 | dataOut.moments[nChannel,3,hei] = D | |||
|
3664 | ''' | |||
|
3665 | if nChannel == 0: | |||
|
3666 | print(dataOut.heightList[hei]) | |||
|
3667 | plt.figure() | |||
|
3668 | plt.plot(dataOut.VelRange,spc,marker='*',linestyle='--') | |||
|
3669 | plt.plot(dataOut.VelRange,fun) | |||
|
3670 | plt.title(dataOut.heightList[hei]) | |||
|
3671 | plt.show() | |||
|
3672 | ''' | |||
|
3673 | #plt.show() | |||
|
3674 | #''' | |||
|
3675 | dataOut.data_spc = jspectra | |||
|
3676 | print("SUCCESS") | |||
|
3677 | return dataOut | |||
|
3678 | ||||
|
3679 | elif Gaussian_Windowed == 2: #Only to clean spc | |||
|
3680 | dataOut.VelRange = dataOut.getVelRange(0) | |||
|
3681 | return dataOut | |||
|
3682 | else: | |||
|
3683 | if getSNR: | |||
|
3684 | listChannels = groupArray.reshape((groupArray.size)) | |||
|
3685 | listChannels.sort() | |||
|
3686 | dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels]) | |||
|
3687 | if dataOut.data_paramC is None: | |||
|
3688 | dataOut.data_paramC = numpy.zeros((nGroups*4, nHeights,2))*numpy.nan | |||
|
3689 | for i in range(nGroups): | |||
|
3690 | coord = groupArray[i,:] | |||
|
3691 | #Input data array | |||
|
3692 | data = dataOut.data_spc[coord,:,:]/(M*N) | |||
|
3693 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |||
|
3694 | ||||
|
3695 | #Cross Spectra data array for Covariance Matrixes | |||
|
3696 | ind = 0 | |||
|
3697 | for pairs in listComb: | |||
|
3698 | pairsSel = numpy.array([coord[x],coord[y]]) | |||
|
3699 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |||
|
3700 | ind += 1 | |||
|
3701 | dataCross = dataOut.data_cspc[indCross,:,:]/(M*N) | |||
|
3702 | dataCross = dataCross**2 | |||
|
3703 | nhei = nHeights | |||
|
3704 | poweri = numpy.sum(dataOut.data_spc[:,1:nProf-0,:],axis=1)/clean_num_aver[:,:] | |||
|
3705 | if i == 0 : my_noises = numpy.zeros(4,dtype=float) | |||
|
3706 | n0i = numpy.nanmin(poweri[0+i*2,0:nhei-0])/(nProf-1) | |||
|
3707 | n1i = numpy.nanmin(poweri[1+i*2,0:nhei-0])/(nProf-1) | |||
|
3708 | n0 = n0i | |||
|
3709 | n1= n1i | |||
|
3710 | my_noises[2*i+0] = n0 | |||
|
3711 | my_noises[2*i+1] = n1 | |||
|
3712 | snrth = -25.0 # -4 | |||
|
3713 | snrth = 10**(snrth/10.0) | |||
|
3714 | jvelr = numpy.zeros(nHeights, dtype = 'float') | |||
|
3715 | #snr0 = numpy.zeros(nHeights, dtype = 'float') | |||
|
3716 | #snr1 = numpy.zeros(nHeights, dtype = 'float') | |||
|
3717 | hvalid = [0] | |||
|
3718 | ||||
|
3719 | coh2 = abs(dataOut.data_cspc[i,1:nProf,:])**2/(dataOut.data_spc[0+i*2,1:nProf-0,:]*dataOut.data_spc[1+i*2,1:nProf-0,:]) | |||
|
3720 | ||||
|
3721 | for h in range(nHeights): | |||
|
3722 | smooth = clean_num_aver[i+1,h] | |||
|
3723 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth | |||
|
3724 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth | |||
|
3725 | signal0 = signalpn0-n0 | |||
|
3726 | signal1 = signalpn1-n1 | |||
|
3727 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
3728 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
3729 | #jmax0 = MAX(signal0,maxp0) | |||
|
3730 | #jmax1 = MAX(signal1,maxp1) | |||
|
3731 | gamma = coh2[:,h] | |||
|
3732 | ||||
|
3733 | indxs = (numpy.isfinite(list(gamma))==True).nonzero() | |||
|
3734 | ||||
|
3735 | if len(indxs) >0: | |||
|
3736 | if numpy.nanmean(gamma) > 0.07: | |||
|
3737 | maxp0 = numpy.argmax(signal0*gamma) | |||
|
3738 | maxp1 = numpy.argmax(signal1*gamma) | |||
|
3739 | #print('usa gamma',numpy.nanmean(gamma)) | |||
|
3740 | else: | |||
|
3741 | maxp0 = numpy.argmax(signal0) | |||
|
3742 | maxp1 = numpy.argmax(signal1) | |||
|
3743 | jvelr[h] = (absc[maxp0]+absc[maxp1])/2. | |||
|
3744 | else: jvelr[h] = absc[0] | |||
|
3745 | if snr0 > 0.1 and snr1 > 0.1: hvalid = numpy.concatenate((hvalid,h), axis=None) | |||
|
3746 | #print(maxp0,absc[maxp0],snr0,jvelr[h]) | |||
|
3747 | ||||
|
3748 | if len(hvalid)> 1: fd0 = numpy.median(jvelr[hvalid[1:]])*-1 | |||
|
3749 | else: fd0 = numpy.nan | |||
|
3750 | #print(fd0,hvalid) | |||
|
3751 | for h in range(nHeights): | |||
|
3752 | d = data[:,h] | |||
|
3753 | smooth = clean_num_aver[i+1,h] #dataOut.data_spc[:,1:nProf-0,:] | |||
|
3754 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth | |||
|
3755 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth | |||
|
3756 | signal0 = signalpn0-n0 | |||
|
3757 | signal1 = signalpn1-n1 | |||
|
3758 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
3759 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
3760 | ||||
|
3761 | if snr0 > snrth and snr1 > snrth and clean_num_aver[i+1,h] > 0 : | |||
|
3762 | #Covariance Matrix | |||
|
3763 | D = numpy.diag(d**2) | |||
|
3764 | ind = 0 | |||
|
3765 | for pairs in listComb: | |||
|
3766 | #Coordinates in Covariance Matrix | |||
|
3767 | x = pairs[0] | |||
|
3768 | y = pairs[1] | |||
|
3769 | #Channel Index | |||
|
3770 | S12 = dataCross[ind,:,h] | |||
|
3771 | D12 = numpy.diag(S12) | |||
|
3772 | #Completing Covariance Matrix with Cross Spectras | |||
|
3773 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |||
|
3774 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |||
|
3775 | ind += 1 | |||
|
3776 | diagD = numpy.zeros(256) | |||
|
3777 | ||||
|
3778 | #Dinv=numpy.linalg.inv(D) | |||
|
3779 | #L=numpy.linalg.cholesky(Dinv) | |||
|
3780 | try: | |||
|
3781 | Dinv=numpy.linalg.inv(D) | |||
|
3782 | L=numpy.linalg.cholesky(Dinv) | |||
|
3783 | except: | |||
|
3784 | Dinv = D*numpy.nan | |||
|
3785 | L= D*numpy.nan | |||
|
3786 | LT=L.T | |||
|
3787 | ||||
|
3788 | dp = numpy.dot(LT,d) | |||
|
3789 | ||||
|
3790 | #Initial values | |||
|
3791 | data_spc = dataOut.data_spc[coord,:,h] | |||
|
3792 | w = data_spc/data_spc | |||
|
3793 | if filec != None: | |||
|
3794 | w = self.weightf.weightfit(w,tini.tm_year,tini.tm_yday,index,h,i) | |||
|
3795 | ||||
|
3796 | if (h>6) and (error1[3]<25): | |||
|
3797 | p0 = dataOut.data_param[i,:,h-1] | |||
|
3798 | #print('usa anterior') | |||
|
3799 | else: | |||
|
3800 | p0 = numpy.array(self.library.initialValuesFunction(data_spc*w, constants))# sin el i(data_spc, constants, i) | |||
|
3801 | ||||
|
3802 | if filec != None: | |||
|
3803 | p0 = self.weightf.Vrfit(p0,tini.tm_year,tini.tm_yday,index,h,i) | |||
|
3804 | p0[3] = fd0 | |||
|
3805 | #if index == 175 and i==1 and h>=27 and h<=35: p0[3]=30 | |||
|
3806 | #if h >= 6 and i==1 and h<= 10: print(p0) | |||
|
3807 | try: | |||
|
3808 | #Least Squares | |||
|
3809 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |||
|
3810 | #minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |||
|
3811 | #Chi square error | |||
|
3812 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |||
|
3813 | #Error with Jacobian | |||
|
3814 | error1 = self.library.errorFunction(minp,constants,LT) | |||
|
3815 | #if h >= 0 and h<= 10 and i ==0: print(p0,minp,error1) | |||
|
3816 | #if i>=0 and h>=0: print(index,h,minp[3]) | |||
|
3817 | # print self.__residFunction(p0,dp,LT, constants) | |||
|
3818 | # print infodict['fvec'] | |||
|
3819 | # print self.__residFunction(minp,dp,LT,constants) | |||
|
3820 | ||||
|
3821 | except: | |||
|
3822 | minp = p0*numpy.nan | |||
|
3823 | error0 = numpy.nan | |||
|
3824 | error1 = p0*numpy.nan | |||
|
3825 | # s_sq = (self.__residFunction(minp,dp,LT,constants)).sum()/(len(dp)-len(p0)) | |||
|
3826 | # covp = covp*s_sq | |||
|
3827 | # error = [] | |||
|
3828 | # for ip in range(len(minp)): | |||
|
3829 | # try: | |||
|
3830 | # error.append(numpy.absolute(covp[ip][ip])**0.5) | |||
|
3831 | # except: | |||
|
3832 | # error.append( 0.00 ) | |||
|
3833 | #if i==1 and h==11 and index == 139: print(p0, minp,data_spc) | |||
|
3834 | else : | |||
|
3835 | data_spc = dataOut.data_spc[coord,:,h] | |||
|
3836 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants)) | |||
|
3837 | minp = p0*numpy.nan | |||
|
3838 | error0 = numpy.nan | |||
|
3839 | error1 = p0*numpy.nan | |||
|
3840 | ||||
|
3841 | if dataOut.data_param is None: | |||
|
3842 | dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |||
|
3843 | dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |||
|
3844 | ||||
|
3845 | dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |||
|
3846 | dataOut.data_param[i,:,h] = minp | |||
|
3847 | ||||
|
3848 | for ht in range(nHeights-1) : | |||
|
3849 | smooth = coh_num_aver[i+1,ht] #datc[0,ht,0,beam] | |||
|
3850 | dataOut.data_paramC[4*i,ht,1] = smooth | |||
|
3851 | signalpn0 = (coh_spectra[i*2 ,1:(nProf-0),ht])/smooth #coh_spectra | |||
|
3852 | signalpn1 = (coh_spectra[i*2+1,1:(nProf-0),ht])/smooth | |||
|
3853 | ||||
|
3854 | val0 = (signalpn0 > 0).nonzero() | |||
|
3855 | val0 = val0[0] | |||
|
3856 | ||||
|
3857 | if len(val0) == 0 : val0_npoints = nProf | |||
|
3858 | else : val0_npoints = len(val0) | |||
|
3859 | ||||
|
3860 | val1 = (signalpn1 > 0).nonzero() | |||
|
3861 | val1 = val1[0] | |||
|
3862 | if len(val1) == 0 : val1_npoints = nProf | |||
|
3863 | else : val1_npoints = len(val1) | |||
|
3864 | ||||
|
3865 | dataOut.data_paramC[0+4*i,ht,0] = numpy.sum((signalpn0/val0_npoints))/n0 | |||
|
3866 | dataOut.data_paramC[1+4*i,ht,0] = numpy.sum((signalpn1/val1_npoints))/n1 | |||
|
3867 | ||||
|
3868 | signal0 = (signalpn0-n0) | |||
|
3869 | vali = (signal0 < 0).nonzero() | |||
|
3870 | vali = vali[0] | |||
|
3871 | if len(vali) > 0 : signal0[vali] = 0 | |||
|
3872 | signal1 = (signalpn1-n1) | |||
|
3873 | vali = (signal1 < 0).nonzero() | |||
|
3874 | vali = vali[0] | |||
|
3875 | if len(vali) > 0 : signal1[vali] = 0 | |||
|
3876 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
3877 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
3878 | doppler = absc[1:] | |||
|
3879 | if snr0 >= snrth and snr1 >= snrth and smooth : | |||
|
3880 | signalpn0_n0 = signalpn0 | |||
|
3881 | signalpn0_n0[val0] = signalpn0[val0] - n0 | |||
|
3882 | mom0 = self.moments(doppler,signalpn0-n0,nProf) | |||
|
3883 | ||||
|
3884 | signalpn1_n1 = signalpn1 | |||
|
3885 | signalpn1_n1[val1] = signalpn1[val1] - n1 | |||
|
3886 | mom1 = self.moments(doppler,signalpn1_n1,nProf) | |||
|
3887 | dataOut.data_paramC[2+4*i,ht,0] = (mom0[0]+mom1[0])/2. | |||
|
3888 | dataOut.data_paramC[3+4*i,ht,0] = (mom0[1]+mom1[1])/2. | |||
|
3889 | ||||
|
3890 | dataOut.data_spc = jspectra | |||
|
3891 | if getSNR: | |||
|
3892 | listChannels = groupArray.reshape((groupArray.size)) | |||
|
3893 | listChannels.sort() | |||
|
3894 | ||||
|
3895 | dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], my_noises[listChannels]) | |||
|
3896 | return dataOut | |||
|
3897 | ||||
|
3898 | def __residFunction(self, p, dp, LT, constants): | |||
|
3899 | ||||
|
3900 | fm = self.library.modelFunction(p, constants) | |||
|
3901 | fmp=numpy.dot(LT,fm) | |||
|
3902 | return dp-fmp | |||
|
3903 | ||||
|
3904 | def __getSNR(self, z, noise): | |||
|
3905 | ||||
|
3906 | avg = numpy.average(z, axis=1) | |||
|
3907 | SNR = (avg.T-noise)/noise | |||
|
3908 | SNR = SNR.T | |||
|
3909 | return SNR | |||
|
3910 | ||||
|
3911 | def __chisq(self, p, chindex, hindex): | |||
|
3912 | #similar to Resid but calculates CHI**2 | |||
|
3913 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |||
|
3914 | dp=numpy.dot(LT,d) | |||
|
3915 | fmp=numpy.dot(LT,fm) | |||
|
3916 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |||
|
3917 | return chisq | |||
|
3918 | ||||
|
3919 | class WindProfiler_V0(Operation): | |||
|
3920 | ||||
|
3921 | __isConfig = False | |||
|
3922 | ||||
|
3923 | __initime = None | |||
|
3924 | __lastdatatime = None | |||
|
3925 | __integrationtime = None | |||
|
3926 | ||||
|
3927 | __buffer = None | |||
|
3928 | ||||
|
3929 | __dataReady = False | |||
|
3930 | ||||
|
3931 | __firstdata = None | |||
|
3932 | ||||
|
3933 | n = None | |||
|
3934 | ||||
|
3935 | def __init__(self): | |||
|
3936 | Operation.__init__(self) | |||
|
3937 | ||||
|
3938 | def __calculateCosDir(self, elev, azim): | |||
|
3939 | zen = (90 - elev)*numpy.pi/180 | |||
|
3940 | azim = azim*numpy.pi/180 | |||
|
3941 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |||
|
3942 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |||
|
3943 | ||||
|
3944 | signX = numpy.sign(numpy.cos(azim)) | |||
|
3945 | signY = numpy.sign(numpy.sin(azim)) | |||
|
3946 | ||||
|
3947 | cosDirX = numpy.copysign(cosDirX, signX) | |||
|
3948 | cosDirY = numpy.copysign(cosDirY, signY) | |||
|
3949 | return cosDirX, cosDirY | |||
|
3950 | ||||
|
3951 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |||
|
3952 | ||||
|
3953 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |||
|
3954 | zenith_arr = numpy.arccos(dir_cosw) | |||
|
3955 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |||
|
3956 | ||||
|
3957 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |||
|
3958 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |||
|
3959 | ||||
|
3960 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |||
|
3961 | ||||
|
3962 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |||
|
3963 | ||||
|
3964 | if horOnly: | |||
|
3965 | A = numpy.c_[dir_cosu,dir_cosv] | |||
|
3966 | else: | |||
|
3967 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |||
|
3968 | A = numpy.asmatrix(A) | |||
|
3969 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |||
|
3970 | ||||
|
3971 | return A1 | |||
|
3972 | ||||
|
3973 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |||
|
3974 | listPhi = phi.tolist() | |||
|
3975 | maxid = listPhi.index(max(listPhi)) | |||
|
3976 | minid = listPhi.index(min(listPhi)) | |||
|
3977 | ||||
|
3978 | rango = list(range(len(phi))) | |||
|
3979 | # rango = numpy.delete(rango,maxid) | |||
|
3980 | ||||
|
3981 | heiRang1 = heiRang*math.cos(phi[maxid]) | |||
|
3982 | heiRangAux = heiRang*math.cos(phi[minid]) | |||
|
3983 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |||
|
3984 | heiRang1 = numpy.delete(heiRang1,indOut) | |||
|
3985 | ||||
|
3986 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
|
3987 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
|
3988 | ||||
|
3989 | for i in rango: | |||
|
3990 | x = heiRang*math.cos(phi[i]) | |||
|
3991 | y1 = velRadial[i,:] | |||
|
3992 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |||
|
3993 | ||||
|
3994 | x1 = heiRang1 | |||
|
3995 | y11 = f1(x1) | |||
|
3996 | ||||
|
3997 | y2 = SNR[i,:] | |||
|
3998 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |||
|
3999 | y21 = f2(x1) | |||
|
4000 | ||||
|
4001 | velRadial1[i,:] = y11 | |||
|
4002 | SNR1[i,:] = y21 | |||
|
4003 | ||||
|
4004 | return heiRang1, velRadial1, SNR1 | |||
|
4005 | ||||
|
4006 | def __calculateVelUVW(self, A, velRadial): | |||
|
4007 | ||||
|
4008 | #Operacion Matricial | |||
|
4009 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |||
|
4010 | # for ind in range(velRadial.shape[1]): | |||
|
4011 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |||
|
4012 | # velUVW = velUVW.transpose() | |||
|
4013 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |||
|
4014 | velUVW[:,:] = numpy.dot(A,velRadial) | |||
|
4015 | ||||
|
4016 | ||||
|
4017 | return velUVW | |||
|
4018 | ||||
|
4019 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |||
|
4020 | ||||
|
4021 | def techniqueDBS(self, kwargs): | |||
|
4022 | """ | |||
|
4023 | Function that implements Doppler Beam Swinging (DBS) technique. | |||
|
4024 | ||||
|
4025 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |||
|
4026 | Direction correction (if necessary), Ranges and SNR | |||
|
4027 | ||||
|
4028 | Output: Winds estimation (Zonal, Meridional and Vertical) | |||
|
4029 | ||||
|
4030 | Parameters affected: Winds, height range, SNR | |||
|
4031 | """ | |||
|
4032 | velRadial0 = kwargs['velRadial'] | |||
|
4033 | heiRang = kwargs['heightList'] | |||
|
4034 | SNR0 = kwargs['SNR'] | |||
|
4035 | ||||
|
4036 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: | |||
|
4037 | theta_x = numpy.array(kwargs['dirCosx']) | |||
|
4038 | theta_y = numpy.array(kwargs['dirCosy']) | |||
|
4039 | else: | |||
|
4040 | elev = numpy.array(kwargs['elevation']) | |||
|
4041 | azim = numpy.array(kwargs['azimuth']) | |||
|
4042 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |||
|
4043 | azimuth = kwargs['correctAzimuth'] | |||
|
4044 | if 'horizontalOnly' in kwargs: | |||
|
4045 | horizontalOnly = kwargs['horizontalOnly'] | |||
|
4046 | else: horizontalOnly = False | |||
|
4047 | if 'correctFactor' in kwargs: | |||
|
4048 | correctFactor = kwargs['correctFactor'] | |||
|
4049 | else: correctFactor = 1 | |||
|
4050 | if 'channelList' in kwargs: | |||
|
4051 | channelList = kwargs['channelList'] | |||
|
4052 | if len(channelList) == 2: | |||
|
4053 | horizontalOnly = True | |||
|
4054 | arrayChannel = numpy.array(channelList) | |||
|
4055 | param = param[arrayChannel,:,:] | |||
|
4056 | theta_x = theta_x[arrayChannel] | |||
|
4057 | theta_y = theta_y[arrayChannel] | |||
|
4058 | ||||
|
4059 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |||
|
4060 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |||
|
4061 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |||
|
4062 | ||||
|
4063 | #Calculo de Componentes de la velocidad con DBS | |||
|
4064 | winds = self.__calculateVelUVW(A,velRadial1) | |||
|
4065 | ||||
|
4066 | return winds, heiRang1, SNR1 | |||
|
4067 | ||||
|
4068 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |||
|
4069 | ||||
|
4070 | nPairs = len(pairs_ccf) | |||
|
4071 | posx = numpy.asarray(posx) | |||
|
4072 | posy = numpy.asarray(posy) | |||
|
4073 | ||||
|
4074 | #Rotacion Inversa para alinear con el azimuth | |||
|
4075 | if azimuth!= None: | |||
|
4076 | azimuth = azimuth*math.pi/180 | |||
|
4077 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |||
|
4078 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |||
|
4079 | else: | |||
|
4080 | posx1 = posx | |||
|
4081 | posy1 = posy | |||
|
4082 | ||||
|
4083 | #Calculo de Distancias | |||
|
4084 | distx = numpy.zeros(nPairs) | |||
|
4085 | disty = numpy.zeros(nPairs) | |||
|
4086 | dist = numpy.zeros(nPairs) | |||
|
4087 | ang = numpy.zeros(nPairs) | |||
|
4088 | ||||
|
4089 | for i in range(nPairs): | |||
|
4090 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |||
|
4091 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |||
|
4092 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |||
|
4093 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |||
|
4094 | ||||
|
4095 | return distx, disty, dist, ang | |||
|
4096 | #Calculo de Matrices | |||
|
4097 | # nPairs = len(pairs) | |||
|
4098 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |||
|
4099 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |||
|
4100 | # | |||
|
4101 | # for j in range(nPairs): | |||
|
4102 | # dist1[j,0,0] = dist[pairs[j][0]] | |||
|
4103 | # dist1[j,1,0] = dist[pairs[j][1]] | |||
|
4104 | # ang1[j,0,0] = ang[pairs[j][0]] | |||
|
4105 | # ang1[j,1,0] = ang[pairs[j][1]] | |||
|
4106 | # | |||
|
4107 | # return distx,disty, dist1,ang1 | |||
|
4108 | ||||
|
4109 | ||||
|
4110 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |||
|
4111 | ||||
|
4112 | Ts = lagTRange[1] - lagTRange[0] | |||
|
4113 | velW = -_lambda*phase/(4*math.pi*Ts) | |||
|
4114 | ||||
|
4115 | return velW | |||
|
4116 | ||||
|
4117 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |||
|
4118 | nPairs = tau1.shape[0] | |||
|
4119 | nHeights = tau1.shape[1] | |||
|
4120 | vel = numpy.zeros((nPairs,3,nHeights)) | |||
|
4121 | dist1 = numpy.reshape(dist, (dist.size,1)) | |||
|
4122 | ||||
|
4123 | angCos = numpy.cos(ang) | |||
|
4124 | angSin = numpy.sin(ang) | |||
|
4125 | ||||
|
4126 | vel0 = dist1*tau1/(2*tau2**2) | |||
|
4127 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |||
|
4128 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |||
|
4129 | ||||
|
4130 | ind = numpy.where(numpy.isinf(vel)) | |||
|
4131 | vel[ind] = numpy.nan | |||
|
4132 | ||||
|
4133 | return vel | |||
|
4134 | ||||
|
4135 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |||
|
4136 | # | |||
|
4137 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |||
|
4138 | # | |||
|
4139 | # for l in range(len(pairsList)): | |||
|
4140 | # firstChannel = pairsList[l][0] | |||
|
4141 | # secondChannel = pairsList[l][1] | |||
|
4142 | # | |||
|
4143 | # #Obteniendo pares de Autocorrelacion | |||
|
4144 | # if firstChannel == secondChannel: | |||
|
4145 | # pairsAutoCorr[firstChannel] = int(l) | |||
|
4146 | # | |||
|
4147 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |||
|
4148 | # | |||
|
4149 | # pairsCrossCorr = range(len(pairsList)) | |||
|
4150 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |||
|
4151 | # | |||
|
4152 | # return pairsAutoCorr, pairsCrossCorr | |||
|
4153 | ||||
|
4154 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |||
|
4155 | def techniqueSA(self, kwargs): | |||
|
4156 | ||||
|
4157 | """ | |||
|
4158 | Function that implements Spaced Antenna (SA) technique. | |||
|
4159 | ||||
|
4160 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |||
|
4161 | Direction correction (if necessary), Ranges and SNR | |||
|
4162 | ||||
|
4163 | Output: Winds estimation (Zonal, Meridional and Vertical) | |||
|
4164 | ||||
|
4165 | Parameters affected: Winds | |||
|
4166 | """ | |||
|
4167 | position_x = kwargs['positionX'] | |||
|
4168 | position_y = kwargs['positionY'] | |||
|
4169 | azimuth = kwargs['azimuth'] | |||
|
4170 | ||||
|
4171 | if 'correctFactor' in kwargs: | |||
|
4172 | correctFactor = kwargs['correctFactor'] | |||
|
4173 | else: | |||
|
4174 | correctFactor = 1 | |||
|
4175 | ||||
|
4176 | groupList = kwargs['groupList'] | |||
|
4177 | pairs_ccf = groupList[1] | |||
|
4178 | tau = kwargs['tau'] | |||
|
4179 | _lambda = kwargs['_lambda'] | |||
|
4180 | ||||
|
4181 | #Cross Correlation pairs obtained | |||
|
4182 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |||
|
4183 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |||
|
4184 | # pairsSelArray = numpy.array(pairsSelected) | |||
|
4185 | # pairs = [] | |||
|
4186 | # | |||
|
4187 | # #Wind estimation pairs obtained | |||
|
4188 | # for i in range(pairsSelArray.shape[0]/2): | |||
|
4189 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |||
|
4190 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |||
|
4191 | # pairs.append((ind1,ind2)) | |||
|
4192 | ||||
|
4193 | indtau = tau.shape[0]/2 | |||
|
4194 | tau1 = tau[:indtau,:] | |||
|
4195 | tau2 = tau[indtau:-1,:] | |||
|
4196 | # tau1 = tau1[pairs,:] | |||
|
4197 | # tau2 = tau2[pairs,:] | |||
|
4198 | phase1 = tau[-1,:] | |||
|
4199 | ||||
|
4200 | #--------------------------------------------------------------------- | |||
|
4201 | #Metodo Directo | |||
|
4202 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |||
|
4203 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |||
|
4204 | winds = stats.nanmean(winds, axis=0) | |||
|
4205 | #--------------------------------------------------------------------- | |||
|
4206 | #Metodo General | |||
|
4207 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |||
|
4208 | # #Calculo Coeficientes de Funcion de Correlacion | |||
|
4209 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |||
|
4210 | # #Calculo de Velocidades | |||
|
4211 | # winds = self.calculateVelUV(F,G,A,B,H) | |||
|
4212 | ||||
|
4213 | #--------------------------------------------------------------------- | |||
|
4214 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |||
|
4215 | winds = correctFactor*winds | |||
|
4216 | return winds | |||
|
4217 | ||||
|
4218 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |||
|
4219 | ||||
|
4220 | dataTime = currentTime + paramInterval | |||
|
4221 | deltaTime = dataTime - self.__initime | |||
|
4222 | ||||
|
4223 | if deltaTime >= outputInterval or deltaTime < 0: | |||
|
4224 | self.__dataReady = True | |||
|
4225 | return | |||
|
4226 | ||||
|
4227 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |||
|
4228 | ''' | |||
|
4229 | Function that implements winds estimation technique with detected meteors. | |||
|
4230 | ||||
|
4231 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |||
|
4232 | ||||
|
4233 | Output: Winds estimation (Zonal and Meridional) | |||
|
4234 | ||||
|
4235 | Parameters affected: Winds | |||
|
4236 | ''' | |||
|
4237 | #Settings | |||
|
4238 | nInt = (heightMax - heightMin)/2 | |||
|
4239 | nInt = int(nInt) | |||
|
4240 | winds = numpy.zeros((2,nInt))*numpy.nan | |||
|
4241 | ||||
|
4242 | #Filter errors | |||
|
4243 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |||
|
4244 | finalMeteor = arrayMeteor[error,:] | |||
|
4245 | ||||
|
4246 | #Meteor Histogram | |||
|
4247 | finalHeights = finalMeteor[:,2] | |||
|
4248 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |||
|
4249 | nMeteorsPerI = hist[0] | |||
|
4250 | heightPerI = hist[1] | |||
|
4251 | ||||
|
4252 | #Sort of meteors | |||
|
4253 | indSort = finalHeights.argsort() | |||
|
4254 | finalMeteor2 = finalMeteor[indSort,:] | |||
|
4255 | ||||
|
4256 | # Calculating winds | |||
|
4257 | ind1 = 0 | |||
|
4258 | ind2 = 0 | |||
|
4259 | ||||
|
4260 | for i in range(nInt): | |||
|
4261 | nMet = nMeteorsPerI[i] | |||
|
4262 | ind1 = ind2 | |||
|
4263 | ind2 = ind1 + nMet | |||
|
4264 | ||||
|
4265 | meteorAux = finalMeteor2[ind1:ind2,:] | |||
|
4266 | ||||
|
4267 | if meteorAux.shape[0] >= meteorThresh: | |||
|
4268 | vel = meteorAux[:, 6] | |||
|
4269 | zen = meteorAux[:, 4]*numpy.pi/180 | |||
|
4270 | azim = meteorAux[:, 3]*numpy.pi/180 | |||
|
4271 | ||||
|
4272 | n = numpy.cos(zen) | |||
|
4273 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |||
|
4274 | # l = m*numpy.tan(azim) | |||
|
4275 | l = numpy.sin(zen)*numpy.sin(azim) | |||
|
4276 | m = numpy.sin(zen)*numpy.cos(azim) | |||
|
4277 | ||||
|
4278 | A = numpy.vstack((l, m)).transpose() | |||
|
4279 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |||
|
4280 | windsAux = numpy.dot(A1, vel) | |||
|
4281 | ||||
|
4282 | winds[0,i] = windsAux[0] | |||
|
4283 | winds[1,i] = windsAux[1] | |||
|
4284 | ||||
|
4285 | return winds, heightPerI[:-1] | |||
|
4286 | ||||
|
4287 | def techniqueNSM_SA(self, **kwargs): | |||
|
4288 | metArray = kwargs['metArray'] | |||
|
4289 | heightList = kwargs['heightList'] | |||
|
4290 | timeList = kwargs['timeList'] | |||
|
4291 | ||||
|
4292 | rx_location = kwargs['rx_location'] | |||
|
4293 | groupList = kwargs['groupList'] | |||
|
4294 | azimuth = kwargs['azimuth'] | |||
|
4295 | dfactor = kwargs['dfactor'] | |||
|
4296 | k = kwargs['k'] | |||
|
4297 | ||||
|
4298 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |||
|
4299 | d = dist*dfactor | |||
|
4300 | #Phase calculation | |||
|
4301 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |||
|
4302 | ||||
|
4303 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |||
|
4304 | ||||
|
4305 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |||
|
4306 | azimuth1 = azimuth1*numpy.pi/180 | |||
|
4307 | ||||
|
4308 | for i in range(heightList.size): | |||
|
4309 | h = heightList[i] | |||
|
4310 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |||
|
4311 | metHeight = metArray1[indH,:] | |||
|
4312 | if metHeight.shape[0] >= 2: | |||
|
4313 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |||
|
4314 | iazim = metHeight[:,1].astype(int) | |||
|
4315 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |||
|
4316 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |||
|
4317 | A = numpy.asmatrix(A) | |||
|
4318 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |||
|
4319 | velHor = numpy.dot(A1,velAux) | |||
|
4320 | ||||
|
4321 | velEst[i,:] = numpy.squeeze(velHor) | |||
|
4322 | return velEst | |||
|
4323 | ||||
|
4324 | def __getPhaseSlope(self, metArray, heightList, timeList): | |||
|
4325 | meteorList = [] | |||
|
4326 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |||
|
4327 | #Putting back together the meteor matrix | |||
|
4328 | utctime = metArray[:,0] | |||
|
4329 | uniqueTime = numpy.unique(utctime) | |||
|
4330 | ||||
|
4331 | phaseDerThresh = 0.5 | |||
|
4332 | ippSeconds = timeList[1] - timeList[0] | |||
|
4333 | sec = numpy.where(timeList>1)[0][0] | |||
|
4334 | nPairs = metArray.shape[1] - 6 | |||
|
4335 | nHeights = len(heightList) | |||
|
4336 | ||||
|
4337 | for t in uniqueTime: | |||
|
4338 | metArray1 = metArray[utctime==t,:] | |||
|
4339 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |||
|
4340 | tmet = metArray1[:,1].astype(int) | |||
|
4341 | hmet = metArray1[:,2].astype(int) | |||
|
4342 | ||||
|
4343 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |||
|
4344 | metPhase[:,:] = numpy.nan | |||
|
4345 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |||
|
4346 | ||||
|
4347 | #Delete short trails | |||
|
4348 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |||
|
4349 | heightVect = numpy.sum(metBool, axis = 1) | |||
|
4350 | metBool[heightVect<sec,:] = False | |||
|
4351 | metPhase[:,heightVect<sec,:] = numpy.nan | |||
|
4352 | ||||
|
4353 | #Derivative | |||
|
4354 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |||
|
4355 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |||
|
4356 | metPhase[phDerAux] = numpy.nan | |||
|
4357 | ||||
|
4358 | #--------------------------METEOR DETECTION ----------------------------------------- | |||
|
4359 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |||
|
4360 | ||||
|
4361 | for p in numpy.arange(nPairs): | |||
|
4362 | phase = metPhase[p,:,:] | |||
|
4363 | phDer = metDer[p,:,:] | |||
|
4364 | ||||
|
4365 | for h in indMet: | |||
|
4366 | height = heightList[h] | |||
|
4367 | phase1 = phase[h,:] #82 | |||
|
4368 | phDer1 = phDer[h,:] | |||
|
4369 | ||||
|
4370 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |||
|
4371 | ||||
|
4372 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |||
|
4373 | initMet = indValid[0] | |||
|
4374 | endMet = 0 | |||
|
4375 | ||||
|
4376 | for i in range(len(indValid)-1): | |||
|
4377 | ||||
|
4378 | #Time difference | |||
|
4379 | inow = indValid[i] | |||
|
4380 | inext = indValid[i+1] | |||
|
4381 | idiff = inext - inow | |||
|
4382 | #Phase difference | |||
|
4383 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |||
|
4384 | ||||
|
4385 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |||
|
4386 | sizeTrail = inow - initMet + 1 | |||
|
4387 | if sizeTrail>3*sec: #Too short meteors | |||
|
4388 | x = numpy.arange(initMet,inow+1)*ippSeconds | |||
|
4389 | y = phase1[initMet:inow+1] | |||
|
4390 | ynnan = ~numpy.isnan(y) | |||
|
4391 | x = x[ynnan] | |||
|
4392 | y = y[ynnan] | |||
|
4393 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |||
|
4394 | ylin = x*slope + intercept | |||
|
4395 | rsq = r_value**2 | |||
|
4396 | if rsq > 0.5: | |||
|
4397 | vel = slope#*height*1000/(k*d) | |||
|
4398 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |||
|
4399 | meteorList.append(estAux) | |||
|
4400 | initMet = inext | |||
|
4401 | metArray2 = numpy.array(meteorList) | |||
|
4402 | ||||
|
4403 | return metArray2 | |||
|
4404 | ||||
|
4405 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |||
|
4406 | ||||
|
4407 | azimuth1 = numpy.zeros(len(pairslist)) | |||
|
4408 | dist = numpy.zeros(len(pairslist)) | |||
|
4409 | ||||
|
4410 | for i in range(len(rx_location)): | |||
|
4411 | ch0 = pairslist[i][0] | |||
|
4412 | ch1 = pairslist[i][1] | |||
|
4413 | ||||
|
4414 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |||
|
4415 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |||
|
4416 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |||
|
4417 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |||
|
4418 | ||||
|
4419 | azimuth1 -= azimuth0 | |||
|
4420 | return azimuth1, dist | |||
|
4421 | ||||
|
4422 | def techniqueNSM_DBS(self, **kwargs): | |||
|
4423 | metArray = kwargs['metArray'] | |||
|
4424 | heightList = kwargs['heightList'] | |||
|
4425 | timeList = kwargs['timeList'] | |||
|
4426 | azimuth = kwargs['azimuth'] | |||
|
4427 | theta_x = numpy.array(kwargs['theta_x']) | |||
|
4428 | theta_y = numpy.array(kwargs['theta_y']) | |||
|
4429 | ||||
|
4430 | utctime = metArray[:,0] | |||
|
4431 | cmet = metArray[:,1].astype(int) | |||
|
4432 | hmet = metArray[:,3].astype(int) | |||
|
4433 | SNRmet = metArray[:,4] | |||
|
4434 | vmet = metArray[:,5] | |||
|
4435 | spcmet = metArray[:,6] | |||
|
4436 | ||||
|
4437 | nChan = numpy.max(cmet) + 1 | |||
|
4438 | nHeights = len(heightList) | |||
|
4439 | ||||
|
4440 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |||
|
4441 | hmet = heightList[hmet] | |||
|
4442 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights | |||
|
4443 | ||||
|
4444 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |||
|
4445 | ||||
|
4446 | for i in range(nHeights - 1): | |||
|
4447 | hmin = heightList[i] | |||
|
4448 | hmax = heightList[i + 1] | |||
|
4449 | ||||
|
4450 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |||
|
4451 | indthisH = numpy.where(thisH) | |||
|
4452 | ||||
|
4453 | if numpy.size(indthisH) > 3: | |||
|
4454 | ||||
|
4455 | vel_aux = vmet[thisH] | |||
|
4456 | chan_aux = cmet[thisH] | |||
|
4457 | cosu_aux = dir_cosu[chan_aux] | |||
|
4458 | cosv_aux = dir_cosv[chan_aux] | |||
|
4459 | cosw_aux = dir_cosw[chan_aux] | |||
|
4460 | ||||
|
4461 | nch = numpy.size(numpy.unique(chan_aux)) | |||
|
4462 | if nch > 1: | |||
|
4463 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |||
|
4464 | velEst[i,:] = numpy.dot(A,vel_aux) | |||
|
4465 | ||||
|
4466 | return velEst | |||
|
4467 | ||||
|
4468 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |||
|
4469 | ||||
|
4470 | param = dataOut.data_param | |||
|
4471 | #if dataOut.abscissaList != None: | |||
|
4472 | if numpy.any(dataOut.abscissaList): | |||
|
4473 | absc = dataOut.abscissaList[:-1] | |||
|
4474 | # noise = dataOut.noise | |||
|
4475 | heightList = dataOut.heightList | |||
|
4476 | SNR = dataOut.data_snr | |||
|
4477 | ||||
|
4478 | if technique == 'DBS': | |||
|
4479 | ||||
|
4480 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |||
|
4481 | kwargs['heightList'] = heightList | |||
|
4482 | kwargs['SNR'] = SNR | |||
|
4483 | ||||
|
4484 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function | |||
|
4485 | dataOut.utctimeInit = dataOut.utctime | |||
|
4486 | dataOut.outputInterval = dataOut.paramInterval | |||
|
4487 | ||||
|
4488 | elif technique == 'SA': | |||
|
4489 | ||||
|
4490 | #Parameters | |||
|
4491 | # position_x = kwargs['positionX'] | |||
|
4492 | # position_y = kwargs['positionY'] | |||
|
4493 | # azimuth = kwargs['azimuth'] | |||
|
4494 | # | |||
|
4495 | # if kwargs.has_key('crosspairsList'): | |||
|
4496 | # pairs = kwargs['crosspairsList'] | |||
|
4497 | # else: | |||
|
4498 | # pairs = None | |||
|
4499 | # | |||
|
4500 | # if kwargs.has_key('correctFactor'): | |||
|
4501 | # correctFactor = kwargs['correctFactor'] | |||
|
4502 | # else: | |||
|
4503 | # correctFactor = 1 | |||
|
4504 | ||||
|
4505 | # tau = dataOut.data_param | |||
|
4506 | # _lambda = dataOut.C/dataOut.frequency | |||
|
4507 | # pairsList = dataOut.groupList | |||
|
4508 | # nChannels = dataOut.nChannels | |||
|
4509 | ||||
|
4510 | kwargs['groupList'] = dataOut.groupList | |||
|
4511 | kwargs['tau'] = dataOut.data_param | |||
|
4512 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |||
|
4513 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |||
|
4514 | dataOut.data_output = self.techniqueSA(kwargs) | |||
|
4515 | dataOut.utctimeInit = dataOut.utctime | |||
|
4516 | dataOut.outputInterval = dataOut.timeInterval | |||
|
4517 | ||||
|
4518 | elif technique == 'Meteors': | |||
|
4519 | dataOut.flagNoData = True | |||
|
4520 | self.__dataReady = False | |||
|
4521 | ||||
|
4522 | if 'nHours' in kwargs: | |||
|
4523 | nHours = kwargs['nHours'] | |||
|
4524 | else: | |||
|
4525 | nHours = 1 | |||
|
4526 | ||||
|
4527 | if 'meteorsPerBin' in kwargs: | |||
|
4528 | meteorThresh = kwargs['meteorsPerBin'] | |||
|
4529 | else: | |||
|
4530 | meteorThresh = 6 | |||
|
4531 | ||||
|
4532 | if 'hmin' in kwargs: | |||
|
4533 | hmin = kwargs['hmin'] | |||
|
4534 | else: hmin = 70 | |||
|
4535 | if 'hmax' in kwargs: | |||
|
4536 | hmax = kwargs['hmax'] | |||
|
4537 | else: hmax = 110 | |||
|
4538 | ||||
|
4539 | dataOut.outputInterval = nHours*3600 | |||
|
4540 | ||||
|
4541 | if self.__isConfig == False: | |||
|
4542 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |||
|
4543 | #Get Initial LTC time | |||
|
4544 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |||
|
4545 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
4546 | ||||
|
4547 | self.__isConfig = True | |||
|
4548 | ||||
|
4549 | if self.__buffer is None: | |||
|
4550 | self.__buffer = dataOut.data_param | |||
|
4551 | self.__firstdata = copy.copy(dataOut) | |||
|
4552 | ||||
|
4553 | else: | |||
|
4554 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |||
|
4555 | ||||
|
4556 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |||
|
4557 | ||||
|
4558 | if self.__dataReady: | |||
|
4559 | dataOut.utctimeInit = self.__initime | |||
|
4560 | ||||
|
4561 | self.__initime += dataOut.outputInterval #to erase time offset | |||
|
4562 | ||||
|
4563 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |||
|
4564 | dataOut.flagNoData = False | |||
|
4565 | self.__buffer = None | |||
|
4566 | ||||
|
4567 | elif technique == 'Meteors1': | |||
|
4568 | dataOut.flagNoData = True | |||
|
4569 | self.__dataReady = False | |||
|
4570 | ||||
|
4571 | if 'nMins' in kwargs: | |||
|
4572 | nMins = kwargs['nMins'] | |||
|
4573 | else: nMins = 20 | |||
|
4574 | if 'rx_location' in kwargs: | |||
|
4575 | rx_location = kwargs['rx_location'] | |||
|
4576 | else: rx_location = [(0,1),(1,1),(1,0)] | |||
|
4577 | if 'azimuth' in kwargs: | |||
|
4578 | azimuth = kwargs['azimuth'] | |||
|
4579 | else: azimuth = 51.06 | |||
|
4580 | if 'dfactor' in kwargs: | |||
|
4581 | dfactor = kwargs['dfactor'] | |||
|
4582 | if 'mode' in kwargs: | |||
|
4583 | mode = kwargs['mode'] | |||
|
4584 | if 'theta_x' in kwargs: | |||
|
4585 | theta_x = kwargs['theta_x'] | |||
|
4586 | if 'theta_y' in kwargs: | |||
|
4587 | theta_y = kwargs['theta_y'] | |||
|
4588 | else: mode = 'SA' | |||
|
4589 | ||||
|
4590 | #Borrar luego esto | |||
|
4591 | if dataOut.groupList is None: | |||
|
4592 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |||
|
4593 | groupList = dataOut.groupList | |||
|
4594 | C = 3e8 | |||
|
4595 | freq = 50e6 | |||
|
4596 | lamb = C/freq | |||
|
4597 | k = 2*numpy.pi/lamb | |||
|
4598 | ||||
|
4599 | timeList = dataOut.abscissaList | |||
|
4600 | heightList = dataOut.heightList | |||
|
4601 | ||||
|
4602 | if self.__isConfig == False: | |||
|
4603 | dataOut.outputInterval = nMins*60 | |||
|
4604 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |||
|
4605 | #Get Initial LTC time | |||
|
4606 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |||
|
4607 | minuteAux = initime.minute | |||
|
4608 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |||
|
4609 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
4610 | ||||
|
4611 | self.__isConfig = True | |||
|
4612 | ||||
|
4613 | if self.__buffer is None: | |||
|
4614 | self.__buffer = dataOut.data_param | |||
|
4615 | self.__firstdata = copy.copy(dataOut) | |||
|
4616 | ||||
|
4617 | else: | |||
|
4618 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |||
|
4619 | ||||
|
4620 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |||
|
4621 | ||||
|
4622 | if self.__dataReady: | |||
|
4623 | dataOut.utctimeInit = self.__initime | |||
|
4624 | self.__initime += dataOut.outputInterval #to erase time offset | |||
|
4625 | ||||
|
4626 | metArray = self.__buffer | |||
|
4627 | if mode == 'SA': | |||
|
4628 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |||
|
4629 | elif mode == 'DBS': | |||
|
4630 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) | |||
|
4631 | dataOut.data_output = dataOut.data_output.T | |||
|
4632 | dataOut.flagNoData = False | |||
|
4633 | self.__buffer = None | |||
|
4634 | ||||
|
4635 | return | |||
|
4636 | ||||
|
4637 | class WindProfiler(Operation): | |||
|
4638 | ||||
|
4639 | __isConfig = False | |||
|
4640 | ||||
|
4641 | __initime = None | |||
|
4642 | __lastdatatime = None | |||
|
4643 | __integrationtime = None | |||
|
4644 | ||||
|
4645 | __buffer = None | |||
|
4646 | ||||
|
4647 | __dataReady = False | |||
|
4648 | ||||
|
4649 | __firstdata = None | |||
|
4650 | ||||
|
4651 | n = None | |||
|
4652 | ||||
|
4653 | def __init__(self): | |||
|
4654 | Operation.__init__(self) | |||
|
4655 | ||||
|
4656 | def __calculateCosDir(self, elev, azim): | |||
|
4657 | zen = (90 - elev)*numpy.pi/180 | |||
|
4658 | azim = azim*numpy.pi/180 | |||
|
4659 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |||
|
4660 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |||
|
4661 | ||||
|
4662 | signX = numpy.sign(numpy.cos(azim)) | |||
|
4663 | signY = numpy.sign(numpy.sin(azim)) | |||
|
4664 | ||||
|
4665 | cosDirX = numpy.copysign(cosDirX, signX) | |||
|
4666 | cosDirY = numpy.copysign(cosDirY, signY) | |||
|
4667 | return cosDirX, cosDirY | |||
|
4668 | ||||
|
4669 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |||
|
4670 | ||||
|
4671 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |||
|
4672 | zenith_arr = numpy.arccos(dir_cosw) | |||
|
4673 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |||
|
4674 | ||||
|
4675 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |||
|
4676 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |||
|
4677 | ||||
|
4678 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |||
|
4679 | ||||
|
4680 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |||
|
4681 | ||||
|
4682 | if horOnly: | |||
|
4683 | A = numpy.c_[dir_cosu,dir_cosv] | |||
|
4684 | else: | |||
|
4685 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |||
|
4686 | A = numpy.asmatrix(A) | |||
|
4687 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |||
|
4688 | ||||
|
4689 | return A1 | |||
|
4690 | ||||
|
4691 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |||
|
4692 | listPhi = phi.tolist() | |||
|
4693 | maxid = listPhi.index(max(listPhi)) | |||
|
4694 | minid = listPhi.index(min(listPhi)) | |||
|
4695 | ||||
|
4696 | rango = list(range(len(phi))) | |||
|
4697 | # rango = numpy.delete(rango,maxid) | |||
|
4698 | ||||
|
4699 | heiRang1 = heiRang*math.cos(phi[maxid]) | |||
|
4700 | heiRangAux = heiRang*math.cos(phi[minid]) | |||
|
4701 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |||
|
4702 | heiRang1 = numpy.delete(heiRang1,indOut) | |||
|
4703 | ||||
|
4704 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
|
4705 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
|
4706 | ||||
|
4707 | for i in rango: | |||
|
4708 | x = heiRang*math.cos(phi[i]) | |||
|
4709 | y1 = velRadial[i,:] | |||
|
4710 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |||
|
4711 | ||||
|
4712 | x1 = heiRang1 | |||
|
4713 | y11 = f1(x1) | |||
|
4714 | ||||
|
4715 | y2 = SNR[i,:] | |||
|
4716 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |||
|
4717 | y21 = f2(x1) | |||
|
4718 | ||||
|
4719 | velRadial1[i,:] = y11 | |||
|
4720 | SNR1[i,:] = y21 | |||
|
4721 | ||||
|
4722 | return heiRang1, velRadial1, SNR1 | |||
|
4723 | ||||
|
4724 | def __calculateVelUVW(self, A, velRadial): | |||
|
4725 | ||||
|
4726 | #Operacion Matricial | |||
|
4727 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |||
|
4728 | # for ind in range(velRadial.shape[1]): | |||
|
4729 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |||
|
4730 | # velUVW = velUVW.transpose() | |||
|
4731 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |||
|
4732 | velUVW[:,:] = numpy.dot(A,velRadial) | |||
|
4733 | ||||
|
4734 | ||||
|
4735 | return velUVW | |||
|
4736 | ||||
|
4737 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |||
|
4738 | ||||
|
4739 | def techniqueDBS(self, kwargs): | |||
|
4740 | """ | |||
|
4741 | Function that implements Doppler Beam Swinging (DBS) technique. | |||
|
4742 | ||||
|
4743 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |||
|
4744 | Direction correction (if necessary), Ranges and SNR | |||
|
4745 | ||||
|
4746 | Output: Winds estimation (Zonal, Meridional and Vertical) | |||
|
4747 | ||||
|
4748 | Parameters affected: Winds, height range, SNR | |||
|
4749 | """ | |||
|
4750 | velRadial0 = kwargs['velRadial'] | |||
|
4751 | heiRang = kwargs['heightList'] | |||
|
4752 | SNR0 = kwargs['SNR'] | |||
|
4753 | ||||
|
4754 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: | |||
|
4755 | theta_x = numpy.array(kwargs['dirCosx']) | |||
|
4756 | theta_y = numpy.array(kwargs['dirCosy']) | |||
|
4757 | else: | |||
|
4758 | elev = numpy.array(kwargs['elevation']) | |||
|
4759 | azim = numpy.array(kwargs['azimuth']) | |||
|
4760 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |||
|
4761 | azimuth = kwargs['correctAzimuth'] | |||
|
4762 | if 'horizontalOnly' in kwargs: | |||
|
4763 | horizontalOnly = kwargs['horizontalOnly'] | |||
|
4764 | else: horizontalOnly = False | |||
|
4765 | if 'correctFactor' in kwargs: | |||
|
4766 | correctFactor = kwargs['correctFactor'] | |||
|
4767 | else: correctFactor = 1 | |||
|
4768 | if 'channelList' in kwargs: | |||
|
4769 | channelList = kwargs['channelList'] | |||
|
4770 | if len(channelList) == 2: | |||
|
4771 | horizontalOnly = True | |||
|
4772 | arrayChannel = numpy.array(channelList) | |||
|
4773 | param = param[arrayChannel,:,:] | |||
|
4774 | theta_x = theta_x[arrayChannel] | |||
|
4775 | theta_y = theta_y[arrayChannel] | |||
|
4776 | ||||
|
4777 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |||
|
4778 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |||
|
4779 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |||
|
4780 | ||||
|
4781 | #Calculo de Componentes de la velocidad con DBS | |||
|
4782 | winds = self.__calculateVelUVW(A,velRadial1) | |||
|
4783 | ||||
|
4784 | return winds, heiRang1, SNR1 | |||
|
4785 | ||||
|
4786 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |||
|
4787 | ||||
|
4788 | nPairs = len(pairs_ccf) | |||
|
4789 | posx = numpy.asarray(posx) | |||
|
4790 | posy = numpy.asarray(posy) | |||
|
4791 | ||||
|
4792 | #Rotacion Inversa para alinear con el azimuth | |||
|
4793 | if azimuth!= None: | |||
|
4794 | azimuth = azimuth*math.pi/180 | |||
|
4795 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |||
|
4796 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |||
|
4797 | else: | |||
|
4798 | posx1 = posx | |||
|
4799 | posy1 = posy | |||
|
4800 | ||||
|
4801 | #Calculo de Distancias | |||
|
4802 | distx = numpy.zeros(nPairs) | |||
|
4803 | disty = numpy.zeros(nPairs) | |||
|
4804 | dist = numpy.zeros(nPairs) | |||
|
4805 | ang = numpy.zeros(nPairs) | |||
|
4806 | ||||
|
4807 | for i in range(nPairs): | |||
|
4808 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |||
|
4809 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |||
|
4810 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |||
|
4811 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |||
|
4812 | ||||
|
4813 | return distx, disty, dist, ang | |||
|
4814 | #Calculo de Matrices | |||
|
4815 | # nPairs = len(pairs) | |||
|
4816 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |||
|
4817 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |||
|
4818 | # | |||
|
4819 | # for j in range(nPairs): | |||
|
4820 | # dist1[j,0,0] = dist[pairs[j][0]] | |||
|
4821 | # dist1[j,1,0] = dist[pairs[j][1]] | |||
|
4822 | # ang1[j,0,0] = ang[pairs[j][0]] | |||
|
4823 | # ang1[j,1,0] = ang[pairs[j][1]] | |||
|
4824 | # | |||
|
4825 | # return distx,disty, dist1,ang1 | |||
|
4826 | ||||
|
4827 | ||||
|
4828 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |||
|
4829 | ||||
|
4830 | Ts = lagTRange[1] - lagTRange[0] | |||
|
4831 | velW = -_lambda*phase/(4*math.pi*Ts) | |||
|
4832 | ||||
|
4833 | return velW | |||
|
4834 | ||||
|
4835 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |||
|
4836 | nPairs = tau1.shape[0] | |||
|
4837 | nHeights = tau1.shape[1] | |||
|
4838 | vel = numpy.zeros((nPairs,3,nHeights)) | |||
|
4839 | dist1 = numpy.reshape(dist, (dist.size,1)) | |||
|
4840 | ||||
|
4841 | angCos = numpy.cos(ang) | |||
|
4842 | angSin = numpy.sin(ang) | |||
|
4843 | ||||
|
4844 | vel0 = dist1*tau1/(2*tau2**2) | |||
|
4845 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |||
|
4846 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |||
|
4847 | ||||
|
4848 | ind = numpy.where(numpy.isinf(vel)) | |||
|
4849 | vel[ind] = numpy.nan | |||
|
4850 | ||||
|
4851 | return vel | |||
|
4852 | ||||
|
4853 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |||
|
4854 | # | |||
|
4855 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |||
|
4856 | # | |||
|
4857 | # for l in range(len(pairsList)): | |||
|
4858 | # firstChannel = pairsList[l][0] | |||
|
4859 | # secondChannel = pairsList[l][1] | |||
|
4860 | # | |||
|
4861 | # #Obteniendo pares de Autocorrelacion | |||
|
4862 | # if firstChannel == secondChannel: | |||
|
4863 | # pairsAutoCorr[firstChannel] = int(l) | |||
|
4864 | # | |||
|
4865 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |||
|
4866 | # | |||
|
4867 | # pairsCrossCorr = range(len(pairsList)) | |||
|
4868 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |||
|
4869 | # | |||
|
4870 | # return pairsAutoCorr, pairsCrossCorr | |||
|
4871 | ||||
|
4872 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |||
|
4873 | def techniqueSA(self, kwargs): | |||
|
4874 | ||||
|
4875 | """ | |||
|
4876 | Function that implements Spaced Antenna (SA) technique. | |||
|
4877 | ||||
|
4878 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |||
|
4879 | Direction correction (if necessary), Ranges and SNR | |||
|
4880 | ||||
|
4881 | Output: Winds estimation (Zonal, Meridional and Vertical) | |||
|
4882 | ||||
|
4883 | Parameters affected: Winds | |||
|
4884 | """ | |||
|
4885 | position_x = kwargs['positionX'] | |||
|
4886 | position_y = kwargs['positionY'] | |||
|
4887 | azimuth = kwargs['azimuth'] | |||
|
4888 | ||||
|
4889 | if 'correctFactor' in kwargs: | |||
|
4890 | correctFactor = kwargs['correctFactor'] | |||
|
4891 | else: | |||
|
4892 | correctFactor = 1 | |||
|
4893 | ||||
|
4894 | groupList = kwargs['groupList'] | |||
|
4895 | pairs_ccf = groupList[1] | |||
|
4896 | tau = kwargs['tau'] | |||
|
4897 | _lambda = kwargs['_lambda'] | |||
|
4898 | ||||
|
4899 | #Cross Correlation pairs obtained | |||
|
4900 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |||
|
4901 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |||
|
4902 | # pairsSelArray = numpy.array(pairsSelected) | |||
|
4903 | # pairs = [] | |||
|
4904 | # | |||
|
4905 | # #Wind estimation pairs obtained | |||
|
4906 | # for i in range(pairsSelArray.shape[0]/2): | |||
|
4907 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |||
|
4908 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |||
|
4909 | # pairs.append((ind1,ind2)) | |||
|
4910 | ||||
|
4911 | indtau = tau.shape[0]/2 | |||
|
4912 | tau1 = tau[:indtau,:] | |||
|
4913 | tau2 = tau[indtau:-1,:] | |||
|
4914 | # tau1 = tau1[pairs,:] | |||
|
4915 | # tau2 = tau2[pairs,:] | |||
|
4916 | phase1 = tau[-1,:] | |||
|
4917 | ||||
|
4918 | #--------------------------------------------------------------------- | |||
|
4919 | #Metodo Directo | |||
|
4920 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |||
|
4921 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |||
|
4922 | winds = stats.nanmean(winds, axis=0) | |||
|
4923 | #--------------------------------------------------------------------- | |||
|
4924 | #Metodo General | |||
|
4925 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |||
|
4926 | # #Calculo Coeficientes de Funcion de Correlacion | |||
|
4927 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |||
|
4928 | # #Calculo de Velocidades | |||
|
4929 | # winds = self.calculateVelUV(F,G,A,B,H) | |||
|
4930 | ||||
|
4931 | #--------------------------------------------------------------------- | |||
|
4932 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |||
|
4933 | winds = correctFactor*winds | |||
|
4934 | return winds | |||
|
4935 | ||||
|
4936 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |||
|
4937 | ||||
|
4938 | dataTime = currentTime + paramInterval | |||
|
4939 | deltaTime = dataTime - self.__initime | |||
|
4940 | ||||
|
4941 | if deltaTime >= outputInterval or deltaTime < 0: | |||
|
4942 | self.__dataReady = True | |||
|
4943 | return | |||
|
4944 | ||||
|
4945 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |||
|
4946 | ''' | |||
|
4947 | Function that implements winds estimation technique with detected meteors. | |||
|
4948 | ||||
|
4949 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |||
|
4950 | ||||
|
4951 | Output: Winds estimation (Zonal and Meridional) | |||
|
4952 | ||||
|
4953 | Parameters affected: Winds | |||
|
4954 | ''' | |||
|
4955 | #Settings | |||
|
4956 | nInt = (heightMax - heightMin)/2 | |||
|
4957 | nInt = int(nInt) | |||
|
4958 | winds = numpy.zeros((2,nInt))*numpy.nan | |||
|
4959 | ||||
|
4960 | #Filter errors | |||
|
4961 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |||
|
4962 | finalMeteor = arrayMeteor[error,:] | |||
|
4963 | ||||
|
4964 | #Meteor Histogram | |||
|
4965 | finalHeights = finalMeteor[:,2] | |||
|
4966 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |||
|
4967 | nMeteorsPerI = hist[0] | |||
|
4968 | heightPerI = hist[1] | |||
|
4969 | ||||
|
4970 | #Sort of meteors | |||
|
4971 | indSort = finalHeights.argsort() | |||
|
4972 | finalMeteor2 = finalMeteor[indSort,:] | |||
|
4973 | ||||
|
4974 | # Calculating winds | |||
|
4975 | ind1 = 0 | |||
|
4976 | ind2 = 0 | |||
|
4977 | ||||
|
4978 | for i in range(nInt): | |||
|
4979 | nMet = nMeteorsPerI[i] | |||
|
4980 | ind1 = ind2 | |||
|
4981 | ind2 = ind1 + nMet | |||
|
4982 | ||||
|
4983 | meteorAux = finalMeteor2[ind1:ind2,:] | |||
|
4984 | ||||
|
4985 | if meteorAux.shape[0] >= meteorThresh: | |||
|
4986 | vel = meteorAux[:, 6] | |||
|
4987 | zen = meteorAux[:, 4]*numpy.pi/180 | |||
|
4988 | azim = meteorAux[:, 3]*numpy.pi/180 | |||
|
4989 | ||||
|
4990 | n = numpy.cos(zen) | |||
|
4991 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |||
|
4992 | # l = m*numpy.tan(azim) | |||
|
4993 | l = numpy.sin(zen)*numpy.sin(azim) | |||
|
4994 | m = numpy.sin(zen)*numpy.cos(azim) | |||
|
4995 | ||||
|
4996 | A = numpy.vstack((l, m)).transpose() | |||
|
4997 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |||
|
4998 | windsAux = numpy.dot(A1, vel) | |||
|
4999 | ||||
|
5000 | winds[0,i] = windsAux[0] | |||
|
5001 | winds[1,i] = windsAux[1] | |||
|
5002 | ||||
|
5003 | return winds, heightPerI[:-1] | |||
|
5004 | ||||
|
5005 | def techniqueNSM_SA(self, **kwargs): | |||
|
5006 | metArray = kwargs['metArray'] | |||
|
5007 | heightList = kwargs['heightList'] | |||
|
5008 | timeList = kwargs['timeList'] | |||
|
5009 | ||||
|
5010 | rx_location = kwargs['rx_location'] | |||
|
5011 | groupList = kwargs['groupList'] | |||
|
5012 | azimuth = kwargs['azimuth'] | |||
|
5013 | dfactor = kwargs['dfactor'] | |||
|
5014 | k = kwargs['k'] | |||
|
5015 | ||||
|
5016 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |||
|
5017 | d = dist*dfactor | |||
|
5018 | #Phase calculation | |||
|
5019 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |||
|
5020 | ||||
|
5021 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |||
|
5022 | ||||
|
5023 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |||
|
5024 | azimuth1 = azimuth1*numpy.pi/180 | |||
|
5025 | ||||
|
5026 | for i in range(heightList.size): | |||
|
5027 | h = heightList[i] | |||
|
5028 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |||
|
5029 | metHeight = metArray1[indH,:] | |||
|
5030 | if metHeight.shape[0] >= 2: | |||
|
5031 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |||
|
5032 | iazim = metHeight[:,1].astype(int) | |||
|
5033 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |||
|
5034 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |||
|
5035 | A = numpy.asmatrix(A) | |||
|
5036 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |||
|
5037 | velHor = numpy.dot(A1,velAux) | |||
|
5038 | ||||
|
5039 | velEst[i,:] = numpy.squeeze(velHor) | |||
|
5040 | return velEst | |||
|
5041 | ||||
|
5042 | def __getPhaseSlope(self, metArray, heightList, timeList): | |||
|
5043 | meteorList = [] | |||
|
5044 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |||
|
5045 | #Putting back together the meteor matrix | |||
|
5046 | utctime = metArray[:,0] | |||
|
5047 | uniqueTime = numpy.unique(utctime) | |||
|
5048 | ||||
|
5049 | phaseDerThresh = 0.5 | |||
|
5050 | ippSeconds = timeList[1] - timeList[0] | |||
|
5051 | sec = numpy.where(timeList>1)[0][0] | |||
|
5052 | nPairs = metArray.shape[1] - 6 | |||
|
5053 | nHeights = len(heightList) | |||
|
5054 | ||||
|
5055 | for t in uniqueTime: | |||
|
5056 | metArray1 = metArray[utctime==t,:] | |||
|
5057 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |||
|
5058 | tmet = metArray1[:,1].astype(int) | |||
|
5059 | hmet = metArray1[:,2].astype(int) | |||
|
5060 | ||||
|
5061 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |||
|
5062 | metPhase[:,:] = numpy.nan | |||
|
5063 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |||
|
5064 | ||||
|
5065 | #Delete short trails | |||
|
5066 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |||
|
5067 | heightVect = numpy.sum(metBool, axis = 1) | |||
|
5068 | metBool[heightVect<sec,:] = False | |||
|
5069 | metPhase[:,heightVect<sec,:] = numpy.nan | |||
|
5070 | ||||
|
5071 | #Derivative | |||
|
5072 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |||
|
5073 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |||
|
5074 | metPhase[phDerAux] = numpy.nan | |||
|
5075 | ||||
|
5076 | #--------------------------METEOR DETECTION ----------------------------------------- | |||
|
5077 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |||
|
5078 | ||||
|
5079 | for p in numpy.arange(nPairs): | |||
|
5080 | phase = metPhase[p,:,:] | |||
|
5081 | phDer = metDer[p,:,:] | |||
|
5082 | ||||
|
5083 | for h in indMet: | |||
|
5084 | height = heightList[h] | |||
|
5085 | phase1 = phase[h,:] #82 | |||
|
5086 | phDer1 = phDer[h,:] | |||
|
5087 | ||||
|
5088 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |||
|
5089 | ||||
|
5090 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |||
|
5091 | initMet = indValid[0] | |||
|
5092 | endMet = 0 | |||
|
5093 | ||||
|
5094 | for i in range(len(indValid)-1): | |||
|
5095 | ||||
|
5096 | #Time difference | |||
|
5097 | inow = indValid[i] | |||
|
5098 | inext = indValid[i+1] | |||
|
5099 | idiff = inext - inow | |||
|
5100 | #Phase difference | |||
|
5101 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |||
|
5102 | ||||
|
5103 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |||
|
5104 | sizeTrail = inow - initMet + 1 | |||
|
5105 | if sizeTrail>3*sec: #Too short meteors | |||
|
5106 | x = numpy.arange(initMet,inow+1)*ippSeconds | |||
|
5107 | y = phase1[initMet:inow+1] | |||
|
5108 | ynnan = ~numpy.isnan(y) | |||
|
5109 | x = x[ynnan] | |||
|
5110 | y = y[ynnan] | |||
|
5111 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |||
|
5112 | ylin = x*slope + intercept | |||
|
5113 | rsq = r_value**2 | |||
|
5114 | if rsq > 0.5: | |||
|
5115 | vel = slope#*height*1000/(k*d) | |||
|
5116 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |||
|
5117 | meteorList.append(estAux) | |||
|
5118 | initMet = inext | |||
|
5119 | metArray2 = numpy.array(meteorList) | |||
|
5120 | ||||
|
5121 | return metArray2 | |||
|
5122 | ||||
|
5123 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |||
|
5124 | ||||
|
5125 | azimuth1 = numpy.zeros(len(pairslist)) | |||
|
5126 | dist = numpy.zeros(len(pairslist)) | |||
|
5127 | ||||
|
5128 | for i in range(len(rx_location)): | |||
|
5129 | ch0 = pairslist[i][0] | |||
|
5130 | ch1 = pairslist[i][1] | |||
|
5131 | ||||
|
5132 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |||
|
5133 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |||
|
5134 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |||
|
5135 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |||
|
5136 | ||||
|
5137 | azimuth1 -= azimuth0 | |||
|
5138 | return azimuth1, dist | |||
|
5139 | ||||
|
5140 | def techniqueNSM_DBS(self, **kwargs): | |||
|
5141 | metArray = kwargs['metArray'] | |||
|
5142 | heightList = kwargs['heightList'] | |||
|
5143 | timeList = kwargs['timeList'] | |||
|
5144 | azimuth = kwargs['azimuth'] | |||
|
5145 | theta_x = numpy.array(kwargs['theta_x']) | |||
|
5146 | theta_y = numpy.array(kwargs['theta_y']) | |||
|
5147 | ||||
|
5148 | utctime = metArray[:,0] | |||
|
5149 | cmet = metArray[:,1].astype(int) | |||
|
5150 | hmet = metArray[:,3].astype(int) | |||
|
5151 | SNRmet = metArray[:,4] | |||
|
5152 | vmet = metArray[:,5] | |||
|
5153 | spcmet = metArray[:,6] | |||
|
5154 | ||||
|
5155 | nChan = numpy.max(cmet) + 1 | |||
|
5156 | nHeights = len(heightList) | |||
|
5157 | ||||
|
5158 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |||
|
5159 | hmet = heightList[hmet] | |||
|
5160 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights | |||
|
5161 | ||||
|
5162 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |||
|
5163 | ||||
|
5164 | for i in range(nHeights - 1): | |||
|
5165 | hmin = heightList[i] | |||
|
5166 | hmax = heightList[i + 1] | |||
|
5167 | ||||
|
5168 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |||
|
5169 | indthisH = numpy.where(thisH) | |||
|
5170 | ||||
|
5171 | if numpy.size(indthisH) > 3: | |||
|
5172 | ||||
|
5173 | vel_aux = vmet[thisH] | |||
|
5174 | chan_aux = cmet[thisH] | |||
|
5175 | cosu_aux = dir_cosu[chan_aux] | |||
|
5176 | cosv_aux = dir_cosv[chan_aux] | |||
|
5177 | cosw_aux = dir_cosw[chan_aux] | |||
|
5178 | ||||
|
5179 | nch = numpy.size(numpy.unique(chan_aux)) | |||
|
5180 | if nch > 1: | |||
|
5181 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |||
|
5182 | velEst[i,:] = numpy.dot(A,vel_aux) | |||
|
5183 | ||||
|
5184 | return velEst | |||
|
5185 | ||||
|
5186 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |||
|
5187 | ||||
|
5188 | param = dataOut.moments | |||
|
5189 | #param = dataOut.data_param | |||
|
5190 | #if dataOut.abscissaList != None: | |||
|
5191 | if numpy.any(dataOut.abscissaList) : | |||
|
5192 | absc = dataOut.abscissaList[:-1] | |||
|
5193 | # noise = dataOut.noise | |||
|
5194 | heightList = dataOut.heightList | |||
|
5195 | SNR = dataOut.data_snr | |||
|
5196 | ||||
|
5197 | if technique == 'DBS': | |||
|
5198 | ||||
|
5199 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |||
|
5200 | kwargs['heightList'] = heightList | |||
|
5201 | kwargs['SNR'] = SNR | |||
|
5202 | ||||
|
5203 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function | |||
|
5204 | dataOut.utctimeInit = dataOut.utctime | |||
|
5205 | dataOut.outputInterval = dataOut.paramInterval | |||
|
5206 | ||||
|
5207 | elif technique == 'SA': | |||
|
5208 | ||||
|
5209 | #Parameters | |||
|
5210 | # position_x = kwargs['positionX'] | |||
|
5211 | # position_y = kwargs['positionY'] | |||
|
5212 | # azimuth = kwargs['azimuth'] | |||
|
5213 | # | |||
|
5214 | # if kwargs.has_key('crosspairsList'): | |||
|
5215 | # pairs = kwargs['crosspairsList'] | |||
|
5216 | # else: | |||
|
5217 | # pairs = None | |||
|
5218 | # | |||
|
5219 | # if kwargs.has_key('correctFactor'): | |||
|
5220 | # correctFactor = kwargs['correctFactor'] | |||
|
5221 | # else: | |||
|
5222 | # correctFactor = 1 | |||
|
5223 | ||||
|
5224 | # tau = dataOut.data_param | |||
|
5225 | # _lambda = dataOut.C/dataOut.frequency | |||
|
5226 | # pairsList = dataOut.groupList | |||
|
5227 | # nChannels = dataOut.nChannels | |||
|
5228 | ||||
|
5229 | kwargs['groupList'] = dataOut.groupList | |||
|
5230 | kwargs['tau'] = dataOut.data_param | |||
|
5231 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |||
|
5232 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |||
|
5233 | dataOut.data_output = self.techniqueSA(kwargs) | |||
|
5234 | dataOut.utctimeInit = dataOut.utctime | |||
|
5235 | dataOut.outputInterval = dataOut.timeInterval | |||
|
5236 | ||||
|
5237 | elif technique == 'Meteors': | |||
|
5238 | dataOut.flagNoData = True | |||
|
5239 | self.__dataReady = False | |||
|
5240 | ||||
|
5241 | if 'nHours' in kwargs: | |||
|
5242 | nHours = kwargs['nHours'] | |||
|
5243 | else: | |||
|
5244 | nHours = 1 | |||
|
5245 | ||||
|
5246 | if 'meteorsPerBin' in kwargs: | |||
|
5247 | meteorThresh = kwargs['meteorsPerBin'] | |||
|
5248 | else: | |||
|
5249 | meteorThresh = 6 | |||
|
5250 | ||||
|
5251 | if 'hmin' in kwargs: | |||
|
5252 | hmin = kwargs['hmin'] | |||
|
5253 | else: hmin = 70 | |||
|
5254 | if 'hmax' in kwargs: | |||
|
5255 | hmax = kwargs['hmax'] | |||
|
5256 | else: hmax = 110 | |||
|
5257 | ||||
|
5258 | dataOut.outputInterval = nHours*3600 | |||
|
5259 | ||||
|
5260 | if self.__isConfig == False: | |||
|
5261 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |||
|
5262 | #Get Initial LTC time | |||
|
5263 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |||
|
5264 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
5265 | ||||
|
5266 | self.__isConfig = True | |||
|
5267 | ||||
|
5268 | if self.__buffer is None: | |||
|
5269 | self.__buffer = dataOut.data_param | |||
|
5270 | self.__firstdata = copy.copy(dataOut) | |||
|
5271 | ||||
|
5272 | else: | |||
|
5273 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |||
|
5274 | ||||
|
5275 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |||
|
5276 | ||||
|
5277 | if self.__dataReady: | |||
|
5278 | dataOut.utctimeInit = self.__initime | |||
|
5279 | ||||
|
5280 | self.__initime += dataOut.outputInterval #to erase time offset | |||
|
5281 | ||||
|
5282 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |||
|
5283 | dataOut.flagNoData = False | |||
|
5284 | self.__buffer = None | |||
|
5285 | ||||
|
5286 | elif technique == 'Meteors1': | |||
|
5287 | dataOut.flagNoData = True | |||
|
5288 | self.__dataReady = False | |||
|
5289 | ||||
|
5290 | if 'nMins' in kwargs: | |||
|
5291 | nMins = kwargs['nMins'] | |||
|
5292 | else: nMins = 20 | |||
|
5293 | if 'rx_location' in kwargs: | |||
|
5294 | rx_location = kwargs['rx_location'] | |||
|
5295 | else: rx_location = [(0,1),(1,1),(1,0)] | |||
|
5296 | if 'azimuth' in kwargs: | |||
|
5297 | azimuth = kwargs['azimuth'] | |||
|
5298 | else: azimuth = 51.06 | |||
|
5299 | if 'dfactor' in kwargs: | |||
|
5300 | dfactor = kwargs['dfactor'] | |||
|
5301 | if 'mode' in kwargs: | |||
|
5302 | mode = kwargs['mode'] | |||
|
5303 | if 'theta_x' in kwargs: | |||
|
5304 | theta_x = kwargs['theta_x'] | |||
|
5305 | if 'theta_y' in kwargs: | |||
|
5306 | theta_y = kwargs['theta_y'] | |||
|
5307 | else: mode = 'SA' | |||
|
5308 | ||||
|
5309 | #Borrar luego esto | |||
|
5310 | if dataOut.groupList is None: | |||
|
5311 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |||
|
5312 | groupList = dataOut.groupList | |||
|
5313 | C = 3e8 | |||
|
5314 | freq = 50e6 | |||
|
5315 | lamb = C/freq | |||
|
5316 | k = 2*numpy.pi/lamb | |||
|
5317 | ||||
|
5318 | timeList = dataOut.abscissaList | |||
|
5319 | heightList = dataOut.heightList | |||
|
5320 | ||||
|
5321 | if self.__isConfig == False: | |||
|
5322 | dataOut.outputInterval = nMins*60 | |||
|
5323 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |||
|
5324 | #Get Initial LTC time | |||
|
5325 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |||
|
5326 | minuteAux = initime.minute | |||
|
5327 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |||
|
5328 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
5329 | ||||
|
5330 | self.__isConfig = True | |||
|
5331 | ||||
|
5332 | if self.__buffer is None: | |||
|
5333 | self.__buffer = dataOut.data_param | |||
|
5334 | self.__firstdata = copy.copy(dataOut) | |||
|
5335 | ||||
|
5336 | else: | |||
|
5337 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |||
|
5338 | ||||
|
5339 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |||
|
5340 | ||||
|
5341 | if self.__dataReady: | |||
|
5342 | dataOut.utctimeInit = self.__initime | |||
|
5343 | self.__initime += dataOut.outputInterval #to erase time offset | |||
|
5344 | ||||
|
5345 | metArray = self.__buffer | |||
|
5346 | if mode == 'SA': | |||
|
5347 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |||
|
5348 | elif mode == 'DBS': | |||
|
5349 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) | |||
|
5350 | dataOut.data_output = dataOut.data_output.T | |||
|
5351 | dataOut.flagNoData = False | |||
|
5352 | self.__buffer = None | |||
|
5353 | #print("ENDDD") | |||
|
5354 | return dataOut | |||
|
5355 | ||||
|
5356 | class EWDriftsEstimation(Operation): | |||
|
5357 | ||||
|
5358 | def __init__(self): | |||
|
5359 | Operation.__init__(self) | |||
|
5360 | ||||
|
5361 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |||
|
5362 | listPhi = phi.tolist() | |||
|
5363 | maxid = listPhi.index(max(listPhi)) | |||
|
5364 | minid = listPhi.index(min(listPhi)) | |||
|
5365 | ||||
|
5366 | rango = list(range(len(phi))) | |||
|
5367 | # rango = numpy.delete(rango,maxid) | |||
|
5368 | ||||
|
5369 | heiRang1 = heiRang*math.cos(phi[maxid]) | |||
|
5370 | heiRangAux = heiRang*math.cos(phi[minid]) | |||
|
5371 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |||
|
5372 | heiRang1 = numpy.delete(heiRang1,indOut) | |||
|
5373 | ||||
|
5374 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
|
5375 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
|
5376 | ||||
|
5377 | for i in rango: | |||
|
5378 | x = heiRang*math.cos(phi[i]) | |||
|
5379 | y1 = velRadial[i,:] | |||
|
5380 | vali= (numpy.isfinite(y1)==True).nonzero() | |||
|
5381 | y1=y1[vali] | |||
|
5382 | x = x[vali] | |||
|
5383 | f1 = interpolate.interp1d(x,y1,kind = 'cubic',bounds_error=False) | |||
|
5384 | ||||
|
5385 | #heiRang1 = x*math.cos(phi[maxid]) | |||
|
5386 | x1 = heiRang1 | |||
|
5387 | y11 = f1(x1) | |||
|
5388 | ||||
|
5389 | y2 = SNR[i,:] | |||
|
5390 | #print 'snr ', y2 | |||
|
5391 | x = heiRang*math.cos(phi[i]) | |||
|
5392 | vali= (y2 != -1).nonzero() | |||
|
5393 | y2 = y2[vali] | |||
|
5394 | x = x[vali] | |||
|
5395 | #print 'snr ',y2 | |||
|
5396 | f2 = interpolate.interp1d(x,y2,kind = 'cubic',bounds_error=False) | |||
|
5397 | y21 = f2(x1) | |||
|
5398 | ||||
|
5399 | velRadial1[i,:] = y11 | |||
|
5400 | SNR1[i,:] = y21 | |||
|
5401 | ||||
|
5402 | return heiRang1, velRadial1, SNR1 | |||
|
5403 | ||||
|
5404 | ||||
|
5405 | ||||
|
5406 | def run(self, dataOut, zenith, zenithCorrection): | |||
|
5407 | ||||
|
5408 | heiRang = dataOut.heightList | |||
|
5409 | velRadial = dataOut.data_param[:,3,:] | |||
|
5410 | velRadialm = dataOut.data_param[:,2:4,:]*-1 | |||
|
5411 | ||||
|
5412 | rbufc=dataOut.data_paramC[:,:,0] | |||
|
5413 | ebufc=dataOut.data_paramC[:,:,1] | |||
|
5414 | SNR = dataOut.data_snr | |||
|
5415 | velRerr = dataOut.data_error[:,4,:] | |||
|
5416 | moments=numpy.vstack(([velRadialm[0,:]],[velRadialm[0,:]],[velRadialm[1,:]],[velRadialm[1,:]])) | |||
|
5417 | dataOut.moments=moments | |||
|
5418 | # Coherent | |||
|
5419 | smooth_wC = ebufc[0,:] | |||
|
5420 | p_w0C = rbufc[0,:] | |||
|
5421 | p_w1C = rbufc[1,:] | |||
|
5422 | w_wC = rbufc[2,:]*-1 #*radial_sign(radial EQ 1) | |||
|
5423 | t_wC = rbufc[3,:] | |||
|
5424 | my_nbeams = 2 | |||
|
5425 | ||||
|
5426 | zenith = numpy.array(zenith) | |||
|
5427 | zenith -= zenithCorrection | |||
|
5428 | zenith *= numpy.pi/180 | |||
|
5429 | if zenithCorrection != 0 : | |||
|
5430 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |||
|
5431 | else : | |||
|
5432 | heiRang1 = heiRang | |||
|
5433 | velRadial1 = velRadial | |||
|
5434 | SNR1 = SNR | |||
|
5435 | ||||
|
5436 | alp = zenith[0] | |||
|
5437 | bet = zenith[1] | |||
|
5438 | ||||
|
5439 | w_w = velRadial1[0,:] | |||
|
5440 | w_e = velRadial1[1,:] | |||
|
5441 | w_w_err = velRerr[0,:] | |||
|
5442 | w_e_err = velRerr[1,:] | |||
|
5443 | ||||
|
5444 | val = (numpy.isfinite(w_w)==False).nonzero() | |||
|
5445 | val = val[0] | |||
|
5446 | bad = val | |||
|
5447 | if len(bad) > 0 : | |||
|
5448 | w_w[bad] = w_wC[bad] | |||
|
5449 | w_w_err[bad]= numpy.nan | |||
|
5450 | if my_nbeams == 2: | |||
|
5451 | smooth_eC=ebufc[4,:] | |||
|
5452 | p_e0C = rbufc[4,:] | |||
|
5453 | p_e1C = rbufc[5,:] | |||
|
5454 | w_eC = rbufc[6,:]*-1 | |||
|
5455 | t_eC = rbufc[7,:] | |||
|
5456 | val = (numpy.isfinite(w_e)==False).nonzero() | |||
|
5457 | val = val[0] | |||
|
5458 | bad = val | |||
|
5459 | if len(bad) > 0 : | |||
|
5460 | w_e[bad] = w_eC[bad] | |||
|
5461 | w_e_err[bad]= numpy.nan | |||
|
5462 | ||||
|
5463 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |||
|
5464 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |||
|
5465 | ||||
|
5466 | w_err = numpy.sqrt((w_w_err*numpy.sin(bet))**2.+(w_e_err*numpy.sin(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) | |||
|
5467 | u_err = numpy.sqrt((w_w_err*numpy.cos(bet))**2.+(w_e_err*numpy.cos(alp))**2.)/ numpy.absolute(numpy.cos(alp)*numpy.sin(bet)-numpy.cos(bet)*numpy.sin(alp)) | |||
|
5468 | ||||
|
5469 | winds = numpy.vstack((w,u)) | |||
|
5470 | ||||
|
5471 | dataOut.heightList = heiRang1 | |||
|
5472 | dataOut.data_output = winds | |||
|
5473 | ||||
|
5474 | snr1 = 10*numpy.log10(SNR1[0]) | |||
|
5475 | dataOut.data_snr1 = numpy.reshape(snr1,(1,snr1.shape[0])) | |||
|
5476 | dataOut.utctimeInit = dataOut.utctime | |||
|
5477 | dataOut.outputInterval = dataOut.timeInterval | |||
|
5478 | ||||
|
5479 | hei_aver0 = 218 | |||
|
5480 | jrange = 450 #900 para HA drifts | |||
|
5481 | deltah = 15.0 #dataOut.spacing(0) | |||
|
5482 | h0 = 0.0 #dataOut.first_height(0) | |||
|
5483 | heights = dataOut.heightList | |||
|
5484 | nhei = len(heights) | |||
|
5485 | ||||
|
5486 | range1 = numpy.arange(nhei) * deltah + h0 | |||
|
5487 | ||||
|
5488 | #jhei = WHERE(range1 GE hei_aver0 , jcount) | |||
|
5489 | jhei = (range1 >= hei_aver0).nonzero() | |||
|
5490 | if len(jhei[0]) > 0 : | |||
|
5491 | h0_index = jhei[0][0] # Initial height for getting averages 218km | |||
|
5492 | ||||
|
5493 | mynhei = 7 | |||
|
5494 | nhei_avg = int(jrange/deltah) | |||
|
5495 | h_avgs = int(nhei_avg/mynhei) | |||
|
5496 | nhei_avg = h_avgs*(mynhei-1)+mynhei | |||
|
5497 | ||||
|
5498 | navgs = numpy.zeros(mynhei,dtype='float') | |||
|
5499 | delta_h = numpy.zeros(mynhei,dtype='float') | |||
|
5500 | range_aver = numpy.zeros(mynhei,dtype='float') | |||
|
5501 | for ih in range( mynhei-1 ): | |||
|
5502 | range_aver[ih] = numpy.sum(range1[h0_index+h_avgs*ih:h0_index+h_avgs*(ih+1)-0])/h_avgs | |||
|
5503 | navgs[ih] = h_avgs | |||
|
5504 | delta_h[ih] = deltah*h_avgs | |||
|
5505 | ||||
|
5506 | range_aver[mynhei-1] = numpy.sum(range1[h0_index:h0_index+6*h_avgs-0])/(6*h_avgs) | |||
|
5507 | navgs[mynhei-1] = 6*h_avgs | |||
|
5508 | delta_h[mynhei-1] = deltah*6*h_avgs | |||
|
5509 | ||||
|
5510 | wA = w[h0_index:h0_index+nhei_avg-0] | |||
|
5511 | wA_err = w_err[h0_index:h0_index+nhei_avg-0] | |||
|
5512 | ||||
|
5513 | for i in range(5) : | |||
|
5514 | vals = wA[i*h_avgs:(i+1)*h_avgs-0] | |||
|
5515 | errs = wA_err[i*h_avgs:(i+1)*h_avgs-0] | |||
|
5516 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |||
|
5517 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |||
|
5518 | wA[6*h_avgs+i] = avg | |||
|
5519 | wA_err[6*h_avgs+i] = sigma | |||
|
5520 | ||||
|
5521 | ||||
|
5522 | vals = wA[0:6*h_avgs-0] | |||
|
5523 | errs=wA_err[0:6*h_avgs-0] | |||
|
5524 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2) | |||
|
5525 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |||
|
5526 | wA[nhei_avg-1] = avg | |||
|
5527 | wA_err[nhei_avg-1] = sigma | |||
|
5528 | ||||
|
5529 | wA = wA[6*h_avgs:nhei_avg-0] | |||
|
5530 | wA_err=wA_err[6*h_avgs:nhei_avg-0] | |||
|
5531 | if my_nbeams == 2 : | |||
|
5532 | ||||
|
5533 | uA = u[h0_index:h0_index+nhei_avg] | |||
|
5534 | uA_err=u_err[h0_index:h0_index+nhei_avg] | |||
|
5535 | ||||
|
5536 | for i in range(5) : | |||
|
5537 | vals = uA[i*h_avgs:(i+1)*h_avgs-0] | |||
|
5538 | errs=uA_err[i*h_avgs:(i+1)*h_avgs-0] | |||
|
5539 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |||
|
5540 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |||
|
5541 | uA[6*h_avgs+i] = avg | |||
|
5542 | uA_err[6*h_avgs+i]=sigma | |||
|
5543 | ||||
|
5544 | vals = uA[0:6*h_avgs-0] | |||
|
5545 | errs = uA_err[0:6*h_avgs-0] | |||
|
5546 | avg = numpy.nansum(vals/errs**2.)/numpy.nansum(1./errs**2.) | |||
|
5547 | sigma = numpy.sqrt(1./numpy.nansum(1./errs**2.)) | |||
|
5548 | uA[nhei_avg-1] = avg | |||
|
5549 | uA_err[nhei_avg-1] = sigma | |||
|
5550 | uA = uA[6*h_avgs:nhei_avg-0] | |||
|
5551 | uA_err = uA_err[6*h_avgs:nhei_avg-0] | |||
|
5552 | ||||
|
5553 | dataOut.drifts_avg = numpy.vstack((wA,uA)) | |||
|
5554 | ||||
|
5555 | tini=time.localtime(dataOut.utctime) | |||
|
5556 | datefile= str(tini[0]).zfill(4)+str(tini[1]).zfill(2)+str(tini[2]).zfill(2) | |||
|
5557 | nfile = '/home/pcondor/Database/ewdriftsschain2019/jro'+datefile+'drifts_sch3.txt' | |||
|
5558 | ||||
|
5559 | f1 = open(nfile,'a') | |||
|
5560 | ||||
|
5561 | datedriftavg=str(tini[0])+' '+str(tini[1])+' '+str(tini[2])+' '+str(tini[3])+' '+str(tini[4]) | |||
|
5562 | driftavgstr=str(dataOut.drifts_avg) | |||
|
5563 | ||||
|
5564 | numpy.savetxt(f1,numpy.column_stack([tini[0],tini[1],tini[2],tini[3],tini[4]]),fmt='%4i') | |||
|
5565 | numpy.savetxt(f1,dataOut.drifts_avg,fmt='%10.2f') | |||
|
5566 | f1.close() | |||
|
5567 | ||||
|
5568 | return dataOut | |||
|
5569 | ||||
|
5570 | #--------------- Non Specular Meteor ---------------- | |||
|
5571 | ||||
|
5572 | class NonSpecularMeteorDetection(Operation): | |||
|
5573 | ||||
|
5574 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |||
|
5575 | data_acf = dataOut.data_pre[0] | |||
|
5576 | data_ccf = dataOut.data_pre[1] | |||
|
5577 | pairsList = dataOut.groupList[1] | |||
|
5578 | ||||
|
5579 | lamb = dataOut.C/dataOut.frequency | |||
|
5580 | tSamp = dataOut.ippSeconds*dataOut.nCohInt | |||
|
5581 | paramInterval = dataOut.paramInterval | |||
|
5582 | ||||
|
5583 | nChannels = data_acf.shape[0] | |||
|
5584 | nLags = data_acf.shape[1] | |||
|
5585 | nProfiles = data_acf.shape[2] | |||
|
5586 | nHeights = dataOut.nHeights | |||
|
5587 | nCohInt = dataOut.nCohInt | |||
|
5588 | sec = numpy.round(nProfiles/dataOut.paramInterval) | |||
|
5589 | heightList = dataOut.heightList | |||
|
5590 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg | |||
|
5591 | utctime = dataOut.utctime | |||
|
5592 | ||||
|
5593 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |||
|
5594 | ||||
|
5595 | #------------------------ SNR -------------------------------------- | |||
|
5596 | power = data_acf[:,0,:,:].real | |||
|
5597 | noise = numpy.zeros(nChannels) | |||
|
5598 | SNR = numpy.zeros(power.shape) | |||
|
5599 | for i in range(nChannels): | |||
|
5600 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |||
|
5601 | SNR[i] = (power[i]-noise[i])/noise[i] | |||
|
5602 | SNRm = numpy.nanmean(SNR, axis = 0) | |||
|
5603 | SNRdB = 10*numpy.log10(SNR) | |||
|
5604 | ||||
|
5605 | if mode == 'SA': | |||
|
5606 | dataOut.groupList = dataOut.groupList[1] | |||
|
5607 | nPairs = data_ccf.shape[0] | |||
|
5608 | #---------------------- Coherence and Phase -------------------------- | |||
|
5609 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |||
|
5610 | # phase1 = numpy.copy(phase) | |||
|
5611 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |||
|
5612 | ||||
|
5613 | for p in range(nPairs): | |||
|
5614 | ch0 = pairsList[p][0] | |||
|
5615 | ch1 = pairsList[p][1] | |||
|
5616 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |||
|
5617 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |||
|
5618 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |||
|
5619 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |||
|
5620 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |||
|
5621 | coh = numpy.nanmax(coh1, axis = 0) | |||
|
5622 | # struc = numpy.ones((5,1)) | |||
|
5623 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |||
|
5624 | #---------------------- Radial Velocity ---------------------------- | |||
|
5625 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |||
|
5626 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |||
|
5627 | ||||
|
5628 | if allData: | |||
|
5629 | boolMetFin = ~numpy.isnan(SNRm) | |||
|
5630 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |||
|
5631 | else: | |||
|
5632 | #------------------------ Meteor mask --------------------------------- | |||
|
5633 | # #SNR mask | |||
|
5634 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |||
|
5635 | # | |||
|
5636 | # #Erase small objects | |||
|
5637 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |||
|
5638 | # | |||
|
5639 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |||
|
5640 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |||
|
5641 | # indEEJ = numpy.where(indOver)[0] | |||
|
5642 | # indNEEJ = numpy.where(~indOver)[0] | |||
|
5643 | # | |||
|
5644 | # boolMetFin = boolMet1 | |||
|
5645 | # | |||
|
5646 | # if indEEJ.size > 0: | |||
|
5647 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |||
|
5648 | # | |||
|
5649 | # boolMet2 = coh > cohThresh | |||
|
5650 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |||
|
5651 | # | |||
|
5652 | # #Final Meteor mask | |||
|
5653 | # boolMetFin = boolMet1|boolMet2 | |||
|
5654 | ||||
|
5655 | #Coherence mask | |||
|
5656 | boolMet1 = coh > 0.75 | |||
|
5657 | struc = numpy.ones((30,1)) | |||
|
5658 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |||
|
5659 | ||||
|
5660 | #Derivative mask | |||
|
5661 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |||
|
5662 | boolMet2 = derPhase < 0.2 | |||
|
5663 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |||
|
5664 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |||
|
5665 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |||
|
5666 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |||
|
5667 | # #Final mask | |||
|
5668 | # boolMetFin = boolMet2 | |||
|
5669 | boolMetFin = boolMet1&boolMet2 | |||
|
5670 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |||
|
5671 | #Creating data_param | |||
|
5672 | coordMet = numpy.where(boolMetFin) | |||
|
5673 | ||||
|
5674 | tmet = coordMet[0] | |||
|
5675 | hmet = coordMet[1] | |||
|
5676 | ||||
|
5677 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |||
|
5678 | data_param[:,0] = utctime | |||
|
5679 | data_param[:,1] = tmet | |||
|
5680 | data_param[:,2] = hmet | |||
|
5681 | data_param[:,3] = SNRm[tmet,hmet] | |||
|
5682 | data_param[:,4] = velRad[tmet,hmet] | |||
|
5683 | data_param[:,5] = coh[tmet,hmet] | |||
|
5684 | data_param[:,6:] = phase[:,tmet,hmet].T | |||
|
5685 | ||||
|
5686 | elif mode == 'DBS': | |||
|
5687 | dataOut.groupList = numpy.arange(nChannels) | |||
|
5688 | ||||
|
5689 | #Radial Velocities | |||
|
5690 | phase = numpy.angle(data_acf[:,1,:,:]) | |||
|
5691 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |||
|
5692 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |||
|
5693 | ||||
|
5694 | #Spectral width | |||
|
5695 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |||
|
5696 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |||
|
5697 | acf1 = data_acf[:,1,:,:] | |||
|
5698 | acf2 = data_acf[:,2,:,:] | |||
|
5699 | ||||
|
5700 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |||
|
5701 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |||
|
5702 | if allData: | |||
|
5703 | boolMetFin = ~numpy.isnan(SNRdB) | |||
|
5704 | else: | |||
|
5705 | #SNR | |||
|
5706 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |||
|
5707 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |||
|
5708 | ||||
|
5709 | #Radial velocity | |||
|
5710 | boolMet2 = numpy.abs(velRad) < 20 | |||
|
5711 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |||
|
5712 | ||||
|
5713 | #Spectral Width | |||
|
5714 | boolMet3 = spcWidth < 30 | |||
|
5715 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |||
|
5716 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |||
|
5717 | boolMetFin = boolMet1&boolMet2&boolMet3 | |||
|
5718 | ||||
|
5719 | #Creating data_param | |||
|
5720 | coordMet = numpy.where(boolMetFin) | |||
|
5721 | ||||
|
5722 | cmet = coordMet[0] | |||
|
5723 | tmet = coordMet[1] | |||
|
5724 | hmet = coordMet[2] | |||
|
5725 | ||||
|
5726 | data_param = numpy.zeros((tmet.size, 7)) | |||
|
5727 | data_param[:,0] = utctime | |||
|
5728 | data_param[:,1] = cmet | |||
|
5729 | data_param[:,2] = tmet | |||
|
5730 | data_param[:,3] = hmet | |||
|
5731 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |||
|
5732 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |||
|
5733 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |||
|
5734 | ||||
|
5735 | # self.dataOut.data_param = data_int | |||
|
5736 | if len(data_param) == 0: | |||
|
5737 | dataOut.flagNoData = True | |||
|
5738 | else: | |||
|
5739 | dataOut.data_param = data_param | |||
|
5740 | ||||
|
5741 | def __erase_small(self, binArray, threshX, threshY): | |||
|
5742 | labarray, numfeat = ndimage.measurements.label(binArray) | |||
|
5743 | binArray1 = numpy.copy(binArray) | |||
|
5744 | ||||
|
5745 | for i in range(1,numfeat + 1): | |||
|
5746 | auxBin = (labarray==i) | |||
|
5747 | auxSize = auxBin.sum() | |||
|
5748 | ||||
|
5749 | x,y = numpy.where(auxBin) | |||
|
5750 | widthX = x.max() - x.min() | |||
|
5751 | widthY = y.max() - y.min() | |||
|
5752 | ||||
|
5753 | #width X: 3 seg -> 12.5*3 | |||
|
5754 | #width Y: | |||
|
5755 | ||||
|
5756 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |||
|
5757 | binArray1[auxBin] = False | |||
|
5758 | ||||
|
5759 | return binArray1 | |||
|
5760 | ||||
|
5761 | #--------------- Specular Meteor ---------------- | |||
|
5762 | ||||
|
5763 | class SMDetection(Operation): | |||
|
5764 | ''' | |||
|
5765 | Function DetectMeteors() | |||
|
5766 | Project developed with paper: | |||
|
5767 | HOLDSWORTH ET AL. 2004 | |||
|
5768 | ||||
|
5769 | Input: | |||
|
5770 | self.dataOut.data_pre | |||
|
5771 | ||||
|
5772 | centerReceiverIndex: From the channels, which is the center receiver | |||
|
5773 | ||||
|
5774 | hei_ref: Height reference for the Beacon signal extraction | |||
|
5775 | tauindex: | |||
|
5776 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |||
|
5777 | ||||
|
5778 | cohDetection: Whether to user Coherent detection or not | |||
|
5779 | cohDet_timeStep: Coherent Detection calculation time step | |||
|
5780 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |||
|
5781 | ||||
|
5782 | noise_timeStep: Noise calculation time step | |||
|
5783 | noise_multiple: Noise multiple to define signal threshold | |||
|
5784 | ||||
|
5785 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |||
|
5786 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |||
|
5787 | ||||
|
5788 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |||
|
5789 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |||
|
5790 | ||||
|
5791 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |||
|
5792 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |||
|
5793 | azimuth: Azimuth angle correction | |||
|
5794 | ||||
|
5795 | Affected: | |||
|
5796 | self.dataOut.data_param | |||
|
5797 | ||||
|
5798 | Rejection Criteria (Errors): | |||
|
5799 | 0: No error; analysis OK | |||
|
5800 | 1: SNR < SNR threshold | |||
|
5801 | 2: angle of arrival (AOA) ambiguously determined | |||
|
5802 | 3: AOA estimate not feasible | |||
|
5803 | 4: Large difference in AOAs obtained from different antenna baselines | |||
|
5804 | 5: echo at start or end of time series | |||
|
5805 | 6: echo less than 5 examples long; too short for analysis | |||
|
5806 | 7: echo rise exceeds 0.3s | |||
|
5807 | 8: echo decay time less than twice rise time | |||
|
5808 | 9: large power level before echo | |||
|
5809 | 10: large power level after echo | |||
|
5810 | 11: poor fit to amplitude for estimation of decay time | |||
|
5811 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |||
|
5812 | 13: height unresolvable echo: not valid height within 70 to 110 km | |||
|
5813 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |||
|
5814 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |||
|
5815 | 16: oscilatory echo, indicating event most likely not an underdense echo | |||
|
5816 | ||||
|
5817 | 17: phase difference in meteor Reestimation | |||
|
5818 | ||||
|
5819 | Data Storage: | |||
|
5820 | Meteors for Wind Estimation (8): | |||
|
5821 | Utc Time | Range Height | |||
|
5822 | Azimuth Zenith errorCosDir | |||
|
5823 | VelRad errorVelRad | |||
|
5824 | Phase0 Phase1 Phase2 Phase3 | |||
|
5825 | TypeError | |||
|
5826 | ||||
|
5827 | ''' | |||
|
5828 | ||||
|
5829 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |||
|
5830 | phaseOffsets = None, | |||
|
5831 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |||
|
5832 | noise_timeStep = 4, noise_multiple = 4, | |||
|
5833 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |||
|
5834 | phaseThresh = 20, SNRThresh = 5, | |||
|
5835 | hmin = 50, hmax=150, azimuth = 0, | |||
|
5836 | channelPositions = None) : | |||
|
5837 | ||||
|
5838 | ||||
|
5839 | #Getting Pairslist | |||
|
5840 | if channelPositions is None: | |||
|
5841 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |||
|
5842 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |||
|
5843 | meteorOps = SMOperations() | |||
|
5844 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |||
|
5845 | heiRang = dataOut.heightList | |||
|
5846 | #Get Beacon signal - No Beacon signal anymore | |||
|
5847 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |||
|
5848 | # | |||
|
5849 | # if hei_ref != None: | |||
|
5850 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |||
|
5851 | # | |||
|
5852 | ||||
|
5853 | ||||
|
5854 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |||
|
5855 | # see if the user put in pre defined phase shifts | |||
|
5856 | voltsPShift = dataOut.data_pre.copy() | |||
|
5857 | ||||
|
5858 | # if predefinedPhaseShifts != None: | |||
|
5859 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |||
|
5860 | # | |||
|
5861 | # # elif beaconPhaseShifts: | |||
|
5862 | # # #get hardware phase shifts using beacon signal | |||
|
5863 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |||
|
5864 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |||
|
5865 | # | |||
|
5866 | # else: | |||
|
5867 | # hardwarePhaseShifts = numpy.zeros(5) | |||
|
5868 | # | |||
|
5869 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |||
|
5870 | # for i in range(self.dataOut.data_pre.shape[0]): | |||
|
5871 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |||
|
5872 | ||||
|
5873 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |||
|
5874 | ||||
|
5875 | #Remove DC | |||
|
5876 | voltsDC = numpy.mean(voltsPShift,1) | |||
|
5877 | voltsDC = numpy.mean(voltsDC,1) | |||
|
5878 | for i in range(voltsDC.shape[0]): | |||
|
5879 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |||
|
5880 | ||||
|
5881 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |||
|
5882 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |||
|
5883 | ||||
|
5884 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |||
|
5885 | #Coherent Detection | |||
|
5886 | if cohDetection: | |||
|
5887 | #use coherent detection to get the net power | |||
|
5888 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |||
|
5889 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |||
|
5890 | ||||
|
5891 | #Non-coherent detection! | |||
|
5892 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |||
|
5893 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |||
|
5894 | ||||
|
5895 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |||
|
5896 | #Get noise | |||
|
5897 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |||
|
5898 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |||
|
5899 | #Get signal threshold | |||
|
5900 | signalThresh = noise_multiple*noise | |||
|
5901 | #Meteor echoes detection | |||
|
5902 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |||
|
5903 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |||
|
5904 | ||||
|
5905 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |||
|
5906 | #Parameters | |||
|
5907 | heiRange = dataOut.heightList | |||
|
5908 | rangeInterval = heiRange[1] - heiRange[0] | |||
|
5909 | rangeLimit = multDet_rangeLimit/rangeInterval | |||
|
5910 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |||
|
5911 | #Multiple detection removals | |||
|
5912 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |||
|
5913 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |||
|
5914 | ||||
|
5915 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |||
|
5916 | #Parameters | |||
|
5917 | phaseThresh = phaseThresh*numpy.pi/180 | |||
|
5918 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |||
|
5919 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |||
|
5920 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |||
|
5921 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |||
|
5922 | #Estimation of decay times (Errors N 7, 8, 11) | |||
|
5923 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |||
|
5924 | #******************* END OF METEOR REESTIMATION ******************* | |||
|
5925 | ||||
|
5926 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |||
|
5927 | #Calculating Radial Velocity (Error N 15) | |||
|
5928 | radialStdThresh = 10 | |||
|
5929 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |||
|
5930 | ||||
|
5931 | if len(listMeteors4) > 0: | |||
|
5932 | #Setting New Array | |||
|
5933 | date = dataOut.utctime | |||
|
5934 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |||
|
5935 | ||||
|
5936 | #Correcting phase offset | |||
|
5937 | if phaseOffsets != None: | |||
|
5938 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |||
|
5939 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |||
|
5940 | ||||
|
5941 | #Second Pairslist | |||
|
5942 | pairsList = [] | |||
|
5943 | pairx = (0,1) | |||
|
5944 | pairy = (2,3) | |||
|
5945 | pairsList.append(pairx) | |||
|
5946 | pairsList.append(pairy) | |||
|
5947 | ||||
|
5948 | jph = numpy.array([0,0,0,0]) | |||
|
5949 | h = (hmin,hmax) | |||
|
5950 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |||
|
5951 | ||||
|
5952 | # #Calculate AOA (Error N 3, 4) | |||
|
5953 | # #JONES ET AL. 1998 | |||
|
5954 | # error = arrayParameters[:,-1] | |||
|
5955 | # AOAthresh = numpy.pi/8 | |||
|
5956 | # phases = -arrayParameters[:,9:13] | |||
|
5957 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |||
|
5958 | # | |||
|
5959 | # #Calculate Heights (Error N 13 and 14) | |||
|
5960 | # error = arrayParameters[:,-1] | |||
|
5961 | # Ranges = arrayParameters[:,2] | |||
|
5962 | # zenith = arrayParameters[:,5] | |||
|
5963 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |||
|
5964 | # error = arrayParameters[:,-1] | |||
|
5965 | #********************* END OF PARAMETERS CALCULATION ************************** | |||
|
5966 | ||||
|
5967 | #***************************+ PASS DATA TO NEXT STEP ********************** | |||
|
5968 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |||
|
5969 | dataOut.data_param = arrayParameters | |||
|
5970 | ||||
|
5971 | if arrayParameters is None: | |||
|
5972 | dataOut.flagNoData = True | |||
|
5973 | else: | |||
|
5974 | dataOut.flagNoData = True | |||
|
5975 | ||||
|
5976 | return | |||
|
5977 | ||||
|
5978 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |||
|
5979 | ||||
|
5980 | minIndex = min(newheis[0]) | |||
|
5981 | maxIndex = max(newheis[0]) | |||
|
5982 | ||||
|
5983 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |||
|
5984 | nLength = voltage.shape[1]/n | |||
|
5985 | nMin = 0 | |||
|
5986 | nMax = 0 | |||
|
5987 | phaseOffset = numpy.zeros((len(pairslist),n)) | |||
|
5988 | ||||
|
5989 | for i in range(n): | |||
|
5990 | nMax += nLength | |||
|
5991 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |||
|
5992 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |||
|
5993 | phaseOffset[:,i] = phaseCCF.transpose() | |||
|
5994 | nMin = nMax | |||
|
5995 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |||
|
5996 | ||||
|
5997 | #Remove Outliers | |||
|
5998 | factor = 2 | |||
|
5999 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |||
|
6000 | dw = numpy.std(wt,axis = 1) | |||
|
6001 | dw = dw.reshape((dw.size,1)) | |||
|
6002 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |||
|
6003 | phaseOffset[ind] = numpy.nan | |||
|
6004 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |||
|
6005 | ||||
|
6006 | return phaseOffset | |||
|
6007 | ||||
|
6008 | def __shiftPhase(self, data, phaseShift): | |||
|
6009 | #this will shift the phase of a complex number | |||
|
6010 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |||
|
6011 | return dataShifted | |||
|
6012 | ||||
|
6013 | def __estimatePhaseDifference(self, array, pairslist): | |||
|
6014 | nChannel = array.shape[0] | |||
|
6015 | nHeights = array.shape[2] | |||
|
6016 | numPairs = len(pairslist) | |||
|
6017 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |||
|
6018 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |||
|
6019 | ||||
|
6020 | #Correct phases | |||
|
6021 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |||
|
6022 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |||
|
6023 | ||||
|
6024 | if indDer[0].shape[0] > 0: | |||
|
6025 | for i in range(indDer[0].shape[0]): | |||
|
6026 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |||
|
6027 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |||
|
6028 | ||||
|
6029 | # for j in range(numSides): | |||
|
6030 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |||
|
6031 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |||
|
6032 | # | |||
|
6033 | #Linear | |||
|
6034 | phaseInt = numpy.zeros((numPairs,1)) | |||
|
6035 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |||
|
6036 | for j in range(numPairs): | |||
|
6037 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |||
|
6038 | phaseInt[j] = fit[1] | |||
|
6039 | #Phase Differences | |||
|
6040 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |||
|
6041 | phaseArrival = phaseInt.reshape(phaseInt.size) | |||
|
6042 | ||||
|
6043 | #Dealias | |||
|
6044 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |||
|
6045 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |||
|
6046 | # phaseArrival[indAlias] -= 2*numpy.pi | |||
|
6047 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |||
|
6048 | # phaseArrival[indAlias] += 2*numpy.pi | |||
|
6049 | ||||
|
6050 | return phaseDiff, phaseArrival | |||
|
6051 | ||||
|
6052 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |||
|
6053 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |||
|
6054 | #find the phase shifts of each channel over 1 second intervals | |||
|
6055 | #only look at ranges below the beacon signal | |||
|
6056 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |||
|
6057 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |||
|
6058 | numHeights = volts.shape[2] | |||
|
6059 | nChannel = volts.shape[0] | |||
|
6060 | voltsCohDet = volts.copy() | |||
|
6061 | ||||
|
6062 | pairsarray = numpy.array(pairslist) | |||
|
6063 | indSides = pairsarray[:,1] | |||
|
6064 | # indSides = numpy.array(range(nChannel)) | |||
|
6065 | # indSides = numpy.delete(indSides, indCenter) | |||
|
6066 | # | |||
|
6067 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |||
|
6068 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |||
|
6069 | ||||
|
6070 | startInd = 0 | |||
|
6071 | endInd = 0 | |||
|
6072 | ||||
|
6073 | for i in range(numBlocks): | |||
|
6074 | startInd = endInd | |||
|
6075 | endInd = endInd + listBlocks[i].shape[1] | |||
|
6076 | ||||
|
6077 | arrayBlock = listBlocks[i] | |||
|
6078 | # arrayBlockCenter = listCenter[i] | |||
|
6079 | ||||
|
6080 | #Estimate the Phase Difference | |||
|
6081 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |||
|
6082 | #Phase Difference RMS | |||
|
6083 | arrayPhaseRMS = numpy.abs(phaseDiff) | |||
|
6084 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |||
|
6085 | indPhase = numpy.where(phaseRMSaux==4) | |||
|
6086 | #Shifting | |||
|
6087 | if indPhase[0].shape[0] > 0: | |||
|
6088 | for j in range(indSides.size): | |||
|
6089 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |||
|
6090 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |||
|
6091 | ||||
|
6092 | return voltsCohDet | |||
|
6093 | ||||
|
6094 | def __calculateCCF(self, volts, pairslist ,laglist): | |||
|
6095 | ||||
|
6096 | nHeights = volts.shape[2] | |||
|
6097 | nPoints = volts.shape[1] | |||
|
6098 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |||
|
6099 | ||||
|
6100 | for i in range(len(pairslist)): | |||
|
6101 | volts1 = volts[pairslist[i][0]] | |||
|
6102 | volts2 = volts[pairslist[i][1]] | |||
|
6103 | ||||
|
6104 | for t in range(len(laglist)): | |||
|
6105 | idxT = laglist[t] | |||
|
6106 | if idxT >= 0: | |||
|
6107 | vStacked = numpy.vstack((volts2[idxT:,:], | |||
|
6108 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |||
|
6109 | else: | |||
|
6110 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |||
|
6111 | volts2[:(nPoints + idxT),:])) | |||
|
6112 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |||
|
6113 | ||||
|
6114 | vStacked = None | |||
|
6115 | return voltsCCF | |||
|
6116 | ||||
|
6117 | def __getNoise(self, power, timeSegment, timeInterval): | |||
|
6118 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |||
|
6119 | numBlocks = int(power.shape[0]/numProfPerBlock) | |||
|
6120 | numHeights = power.shape[1] | |||
|
6121 | ||||
|
6122 | listPower = numpy.array_split(power, numBlocks, 0) | |||
|
6123 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |||
|
6124 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |||
|
6125 | ||||
|
6126 | startInd = 0 | |||
|
6127 | endInd = 0 | |||
|
6128 | ||||
|
6129 | for i in range(numBlocks): #split por canal | |||
|
6130 | startInd = endInd | |||
|
6131 | endInd = endInd + listPower[i].shape[0] | |||
|
6132 | ||||
|
6133 | arrayBlock = listPower[i] | |||
|
6134 | noiseAux = numpy.mean(arrayBlock, 0) | |||
|
6135 | # noiseAux = numpy.median(noiseAux) | |||
|
6136 | # noiseAux = numpy.mean(arrayBlock) | |||
|
6137 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |||
|
6138 | ||||
|
6139 | noiseAux1 = numpy.mean(arrayBlock) | |||
|
6140 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |||
|
6141 | ||||
|
6142 | return noise, noise1 | |||
|
6143 | ||||
|
6144 | def __findMeteors(self, power, thresh): | |||
|
6145 | nProf = power.shape[0] | |||
|
6146 | nHeights = power.shape[1] | |||
|
6147 | listMeteors = [] | |||
|
6148 | ||||
|
6149 | for i in range(nHeights): | |||
|
6150 | powerAux = power[:,i] | |||
|
6151 | threshAux = thresh[:,i] | |||
|
6152 | ||||
|
6153 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |||
|
6154 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |||
|
6155 | ||||
|
6156 | j = 0 | |||
|
6157 | ||||
|
6158 | while (j < indUPthresh.size - 2): | |||
|
6159 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |||
|
6160 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |||
|
6161 | indDNthresh = indDNthresh[indDNAux] | |||
|
6162 | ||||
|
6163 | if (indDNthresh.size > 0): | |||
|
6164 | indEnd = indDNthresh[0] - 1 | |||
|
6165 | indInit = indUPthresh[j] | |||
|
6166 | ||||
|
6167 | meteor = powerAux[indInit:indEnd + 1] | |||
|
6168 | indPeak = meteor.argmax() + indInit | |||
|
6169 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |||
|
6170 | ||||
|
6171 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |||
|
6172 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |||
|
6173 | else: j+=1 | |||
|
6174 | else: j+=1 | |||
|
6175 | ||||
|
6176 | return listMeteors | |||
|
6177 | ||||
|
6178 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |||
|
6179 | ||||
|
6180 | arrayMeteors = numpy.asarray(listMeteors) | |||
|
6181 | listMeteors1 = [] | |||
|
6182 | ||||
|
6183 | while arrayMeteors.shape[0] > 0: | |||
|
6184 | FLAs = arrayMeteors[:,4] | |||
|
6185 | maxFLA = FLAs.argmax() | |||
|
6186 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |||
|
6187 | ||||
|
6188 | MeteorInitTime = arrayMeteors[maxFLA,1] | |||
|
6189 | MeteorEndTime = arrayMeteors[maxFLA,3] | |||
|
6190 | MeteorHeight = arrayMeteors[maxFLA,0] | |||
|
6191 | ||||
|
6192 | #Check neighborhood | |||
|
6193 | maxHeightIndex = MeteorHeight + rangeLimit | |||
|
6194 | minHeightIndex = MeteorHeight - rangeLimit | |||
|
6195 | minTimeIndex = MeteorInitTime - timeLimit | |||
|
6196 | maxTimeIndex = MeteorEndTime + timeLimit | |||
|
6197 | ||||
|
6198 | #Check Heights | |||
|
6199 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |||
|
6200 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |||
|
6201 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |||
|
6202 | ||||
|
6203 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |||
|
6204 | ||||
|
6205 | return listMeteors1 | |||
|
6206 | ||||
|
6207 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |||
|
6208 | numHeights = volts.shape[2] | |||
|
6209 | nChannel = volts.shape[0] | |||
|
6210 | ||||
|
6211 | thresholdPhase = thresh[0] | |||
|
6212 | thresholdNoise = thresh[1] | |||
|
6213 | thresholdDB = float(thresh[2]) | |||
|
6214 | ||||
|
6215 | thresholdDB1 = 10**(thresholdDB/10) | |||
|
6216 | pairsarray = numpy.array(pairslist) | |||
|
6217 | indSides = pairsarray[:,1] | |||
|
6218 | ||||
|
6219 | pairslist1 = list(pairslist) | |||
|
6220 | pairslist1.append((0,1)) | |||
|
6221 | pairslist1.append((3,4)) | |||
|
6222 | ||||
|
6223 | listMeteors1 = [] | |||
|
6224 | listPowerSeries = [] | |||
|
6225 | listVoltageSeries = [] | |||
|
6226 | #volts has the war data | |||
|
6227 | ||||
|
6228 | if frequency == 30e6: | |||
|
6229 | timeLag = 45*10**-3 | |||
|
6230 | else: | |||
|
6231 | timeLag = 15*10**-3 | |||
|
6232 | lag = numpy.ceil(timeLag/timeInterval) | |||
|
6233 | ||||
|
6234 | for i in range(len(listMeteors)): | |||
|
6235 | ||||
|
6236 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |||
|
6237 | meteorAux = numpy.zeros(16) | |||
|
6238 | ||||
|
6239 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |||
|
6240 | mHeight = listMeteors[i][0] | |||
|
6241 | mStart = listMeteors[i][1] | |||
|
6242 | mPeak = listMeteors[i][2] | |||
|
6243 | mEnd = listMeteors[i][3] | |||
|
6244 | ||||
|
6245 | #get the volt data between the start and end times of the meteor | |||
|
6246 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |||
|
6247 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |||
|
6248 | ||||
|
6249 | #3.6. Phase Difference estimation | |||
|
6250 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |||
|
6251 | ||||
|
6252 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |||
|
6253 | #meteorVolts0.- all Channels, all Profiles | |||
|
6254 | meteorVolts0 = volts[:,:,mHeight] | |||
|
6255 | meteorThresh = noise[:,mHeight]*thresholdNoise | |||
|
6256 | meteorNoise = noise[:,mHeight] | |||
|
6257 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |||
|
6258 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |||
|
6259 | ||||
|
6260 | #Times reestimation | |||
|
6261 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |||
|
6262 | if mStart1.size > 0: | |||
|
6263 | mStart1 = mStart1[-1] + 1 | |||
|
6264 | ||||
|
6265 | else: | |||
|
6266 | mStart1 = mPeak | |||
|
6267 | ||||
|
6268 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |||
|
6269 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |||
|
6270 | if mEndDecayTime1.size == 0: | |||
|
6271 | mEndDecayTime1 = powerNet0.size | |||
|
6272 | else: | |||
|
6273 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |||
|
6274 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |||
|
6275 | ||||
|
6276 | #meteorVolts1.- all Channels, from start to end | |||
|
6277 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |||
|
6278 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |||
|
6279 | if meteorVolts2.shape[1] == 0: | |||
|
6280 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |||
|
6281 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |||
|
6282 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |||
|
6283 | ##################### END PARAMETERS REESTIMATION ######################### | |||
|
6284 | ||||
|
6285 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |||
|
6286 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |||
|
6287 | if meteorVolts2.shape[1] > 0: | |||
|
6288 | #Phase Difference re-estimation | |||
|
6289 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |||
|
6290 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |||
|
6291 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |||
|
6292 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |||
|
6293 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |||
|
6294 | ||||
|
6295 | #Phase Difference RMS | |||
|
6296 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |||
|
6297 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |||
|
6298 | #Data from Meteor | |||
|
6299 | mPeak1 = powerNet1.argmax() + mStart1 | |||
|
6300 | mPeakPower1 = powerNet1.max() | |||
|
6301 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |||
|
6302 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |||
|
6303 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |||
|
6304 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |||
|
6305 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |||
|
6306 | #Vectorize | |||
|
6307 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |||
|
6308 | meteorAux[7:11] = phaseDiffint[0:4] | |||
|
6309 | ||||
|
6310 | #Rejection Criterions | |||
|
6311 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |||
|
6312 | meteorAux[-1] = 17 | |||
|
6313 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |||
|
6314 | meteorAux[-1] = 1 | |||
|
6315 | ||||
|
6316 | ||||
|
6317 | else: | |||
|
6318 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |||
|
6319 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |||
|
6320 | PowerSeries = 0 | |||
|
6321 | ||||
|
6322 | listMeteors1.append(meteorAux) | |||
|
6323 | listPowerSeries.append(PowerSeries) | |||
|
6324 | listVoltageSeries.append(meteorVolts1) | |||
|
6325 | ||||
|
6326 | return listMeteors1, listPowerSeries, listVoltageSeries | |||
|
6327 | ||||
|
6328 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |||
|
6329 | ||||
|
6330 | threshError = 10 | |||
|
6331 | #Depending if it is 30 or 50 MHz | |||
|
6332 | if frequency == 30e6: | |||
|
6333 | timeLag = 45*10**-3 | |||
|
6334 | else: | |||
|
6335 | timeLag = 15*10**-3 | |||
|
6336 | lag = numpy.ceil(timeLag/timeInterval) | |||
|
6337 | ||||
|
6338 | listMeteors1 = [] | |||
|
6339 | ||||
|
6340 | for i in range(len(listMeteors)): | |||
|
6341 | meteorPower = listPower[i] | |||
|
6342 | meteorAux = listMeteors[i] | |||
|
6343 | ||||
|
6344 | if meteorAux[-1] == 0: | |||
|
6345 | ||||
|
6346 | try: | |||
|
6347 | indmax = meteorPower.argmax() | |||
|
6348 | indlag = indmax + lag | |||
|
6349 | ||||
|
6350 | y = meteorPower[indlag:] | |||
|
6351 | x = numpy.arange(0, y.size)*timeLag | |||
|
6352 | ||||
|
6353 | #first guess | |||
|
6354 | a = y[0] | |||
|
6355 | tau = timeLag | |||
|
6356 | #exponential fit | |||
|
6357 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |||
|
6358 | y1 = self.__exponential_function(x, *popt) | |||
|
6359 | #error estimation | |||
|
6360 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |||
|
6361 | ||||
|
6362 | decayTime = popt[1] | |||
|
6363 | riseTime = indmax*timeInterval | |||
|
6364 | meteorAux[11:13] = [decayTime, error] | |||
|
6365 | ||||
|
6366 | #Table items 7, 8 and 11 | |||
|
6367 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |||
|
6368 | meteorAux[-1] = 7 | |||
|
6369 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |||
|
6370 | meteorAux[-1] = 8 | |||
|
6371 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |||
|
6372 | meteorAux[-1] = 11 | |||
|
6373 | ||||
|
6374 | ||||
|
6375 | except: | |||
|
6376 | meteorAux[-1] = 11 | |||
|
6377 | ||||
|
6378 | ||||
|
6379 | listMeteors1.append(meteorAux) | |||
|
6380 | ||||
|
6381 | return listMeteors1 | |||
|
6382 | ||||
|
6383 | #Exponential Function | |||
|
6384 | ||||
|
6385 | def __exponential_function(self, x, a, tau): | |||
|
6386 | y = a*numpy.exp(-x/tau) | |||
|
6387 | return y | |||
|
6388 | ||||
|
6389 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |||
|
6390 | ||||
|
6391 | pairslist1 = list(pairslist) | |||
|
6392 | pairslist1.append((0,1)) | |||
|
6393 | pairslist1.append((3,4)) | |||
|
6394 | numPairs = len(pairslist1) | |||
|
6395 | #Time Lag | |||
|
6396 | timeLag = 45*10**-3 | |||
|
6397 | c = 3e8 | |||
|
6398 | lag = numpy.ceil(timeLag/timeInterval) | |||
|
6399 | freq = 30e6 | |||
|
6400 | ||||
|
6401 | listMeteors1 = [] | |||
|
6402 | ||||
|
6403 | for i in range(len(listMeteors)): | |||
|
6404 | meteorAux = listMeteors[i] | |||
|
6405 | if meteorAux[-1] == 0: | |||
|
6406 | mStart = listMeteors[i][1] | |||
|
6407 | mPeak = listMeteors[i][2] | |||
|
6408 | mLag = mPeak - mStart + lag | |||
|
6409 | ||||
|
6410 | #get the volt data between the start and end times of the meteor | |||
|
6411 | meteorVolts = listVolts[i] | |||
|
6412 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |||
|
6413 | ||||
|
6414 | #Get CCF | |||
|
6415 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |||
|
6416 | ||||
|
6417 | #Method 2 | |||
|
6418 | slopes = numpy.zeros(numPairs) | |||
|
6419 | time = numpy.array([-2,-1,1,2])*timeInterval | |||
|
6420 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |||
|
6421 | ||||
|
6422 | #Correct phases | |||
|
6423 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |||
|
6424 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |||
|
6425 | ||||
|
6426 | if indDer[0].shape[0] > 0: | |||
|
6427 | for i in range(indDer[0].shape[0]): | |||
|
6428 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |||
|
6429 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |||
|
6430 | ||||
|
6431 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |||
|
6432 | for j in range(numPairs): | |||
|
6433 | fit = stats.linregress(time, angAllCCF[j,:]) | |||
|
6434 | slopes[j] = fit[0] | |||
|
6435 | ||||
|
6436 | #Remove Outlier | |||
|
6437 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |||
|
6438 | # slopes = numpy.delete(slopes,indOut) | |||
|
6439 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |||
|
6440 | # slopes = numpy.delete(slopes,indOut) | |||
|
6441 | ||||
|
6442 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |||
|
6443 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |||
|
6444 | meteorAux[-2] = radialError | |||
|
6445 | meteorAux[-3] = radialVelocity | |||
|
6446 | ||||
|
6447 | #Setting Error | |||
|
6448 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |||
|
6449 | if numpy.abs(radialVelocity) > 200: | |||
|
6450 | meteorAux[-1] = 15 | |||
|
6451 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |||
|
6452 | elif radialError > radialStdThresh: | |||
|
6453 | meteorAux[-1] = 12 | |||
|
6454 | ||||
|
6455 | listMeteors1.append(meteorAux) | |||
|
6456 | return listMeteors1 | |||
|
6457 | ||||
|
6458 | def __setNewArrays(self, listMeteors, date, heiRang): | |||
|
6459 | ||||
|
6460 | #New arrays | |||
|
6461 | arrayMeteors = numpy.array(listMeteors) | |||
|
6462 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |||
|
6463 | ||||
|
6464 | #Date inclusion | |||
|
6465 | # date = re.findall(r'\((.*?)\)', date) | |||
|
6466 | # date = date[0].split(',') | |||
|
6467 | # date = map(int, date) | |||
|
6468 | # | |||
|
6469 | # if len(date)<6: | |||
|
6470 | # date.append(0) | |||
|
6471 | # | |||
|
6472 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |||
|
6473 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |||
|
6474 | arrayDate = numpy.tile(date, (len(listMeteors))) | |||
|
6475 | ||||
|
6476 | #Meteor array | |||
|
6477 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |||
|
6478 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |||
|
6479 | ||||
|
6480 | #Parameters Array | |||
|
6481 | arrayParameters[:,0] = arrayDate #Date | |||
|
6482 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |||
|
6483 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |||
|
6484 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |||
|
6485 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |||
|
6486 | ||||
|
6487 | ||||
|
6488 | return arrayParameters | |||
|
6489 | ||||
|
6490 | class CorrectSMPhases(Operation): | |||
|
6491 | ||||
|
6492 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |||
|
6493 | ||||
|
6494 | arrayParameters = dataOut.data_param | |||
|
6495 | pairsList = [] | |||
|
6496 | pairx = (0,1) | |||
|
6497 | pairy = (2,3) | |||
|
6498 | pairsList.append(pairx) | |||
|
6499 | pairsList.append(pairy) | |||
|
6500 | jph = numpy.zeros(4) | |||
|
6501 | ||||
|
6502 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |||
|
6503 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |||
|
6504 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |||
|
6505 | ||||
|
6506 | meteorOps = SMOperations() | |||
|
6507 | if channelPositions is None: | |||
|
6508 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |||
|
6509 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |||
|
6510 | ||||
|
6511 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |||
|
6512 | h = (hmin,hmax) | |||
|
6513 | ||||
|
6514 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |||
|
6515 | ||||
|
6516 | dataOut.data_param = arrayParameters | |||
|
6517 | return | |||
|
6518 | ||||
|
6519 | class SMPhaseCalibration(Operation): | |||
|
6520 | ||||
|
6521 | __buffer = None | |||
|
6522 | ||||
|
6523 | __initime = None | |||
|
6524 | ||||
|
6525 | __dataReady = False | |||
|
6526 | ||||
|
6527 | __isConfig = False | |||
|
6528 | ||||
|
6529 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |||
|
6530 | ||||
|
6531 | dataTime = currentTime + paramInterval | |||
|
6532 | deltaTime = dataTime - initTime | |||
|
6533 | ||||
|
6534 | if deltaTime >= outputInterval or deltaTime < 0: | |||
|
6535 | return True | |||
|
6536 | ||||
|
6537 | return False | |||
|
6538 | ||||
|
6539 | def __getGammas(self, pairs, d, phases): | |||
|
6540 | gammas = numpy.zeros(2) | |||
|
6541 | ||||
|
6542 | for i in range(len(pairs)): | |||
|
6543 | ||||
|
6544 | pairi = pairs[i] | |||
|
6545 | ||||
|
6546 | phip3 = phases[:,pairi[0]] | |||
|
6547 | d3 = d[pairi[0]] | |||
|
6548 | phip2 = phases[:,pairi[1]] | |||
|
6549 | d2 = d[pairi[1]] | |||
|
6550 | #Calculating gamma | |||
|
6551 | # jdcos = alp1/(k*d1) | |||
|
6552 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |||
|
6553 | jgamma = -phip2*d3/d2 - phip3 | |||
|
6554 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |||
|
6555 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |||
|
6556 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |||
|
6557 | ||||
|
6558 | #Revised distribution | |||
|
6559 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |||
|
6560 | ||||
|
6561 | #Histogram | |||
|
6562 | nBins = 64 | |||
|
6563 | rmin = -0.5*numpy.pi | |||
|
6564 | rmax = 0.5*numpy.pi | |||
|
6565 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |||
|
6566 | ||||
|
6567 | meteorsY = phaseHisto[0] | |||
|
6568 | phasesX = phaseHisto[1][:-1] | |||
|
6569 | width = phasesX[1] - phasesX[0] | |||
|
6570 | phasesX += width/2 | |||
|
6571 | ||||
|
6572 | #Gaussian aproximation | |||
|
6573 | bpeak = meteorsY.argmax() | |||
|
6574 | peak = meteorsY.max() | |||
|
6575 | jmin = bpeak - 5 | |||
|
6576 | jmax = bpeak + 5 + 1 | |||
|
6577 | ||||
|
6578 | if jmin<0: | |||
|
6579 | jmin = 0 | |||
|
6580 | jmax = 6 | |||
|
6581 | elif jmax > meteorsY.size: | |||
|
6582 | jmin = meteorsY.size - 6 | |||
|
6583 | jmax = meteorsY.size | |||
|
6584 | ||||
|
6585 | x0 = numpy.array([peak,bpeak,50]) | |||
|
6586 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |||
|
6587 | ||||
|
6588 | #Gammas | |||
|
6589 | gammas[i] = coeff[0][1] | |||
|
6590 | ||||
|
6591 | return gammas | |||
|
6592 | ||||
|
6593 | def __residualFunction(self, coeffs, y, t): | |||
|
6594 | ||||
|
6595 | return y - self.__gauss_function(t, coeffs) | |||
|
6596 | ||||
|
6597 | def __gauss_function(self, t, coeffs): | |||
|
6598 | ||||
|
6599 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |||
|
6600 | ||||
|
6601 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |||
|
6602 | meteorOps = SMOperations() | |||
|
6603 | nchan = 4 | |||
|
6604 | pairx = pairsList[0] #x es 0 | |||
|
6605 | pairy = pairsList[1] #y es 1 | |||
|
6606 | center_xangle = 0 | |||
|
6607 | center_yangle = 0 | |||
|
6608 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |||
|
6609 | ntimes = len(range_angle) | |||
|
6610 | ||||
|
6611 | nstepsx = 20 | |||
|
6612 | nstepsy = 20 | |||
|
6613 | ||||
|
6614 | for iz in range(ntimes): | |||
|
6615 | min_xangle = -range_angle[iz]/2 + center_xangle | |||
|
6616 | max_xangle = range_angle[iz]/2 + center_xangle | |||
|
6617 | min_yangle = -range_angle[iz]/2 + center_yangle | |||
|
6618 | max_yangle = range_angle[iz]/2 + center_yangle | |||
|
6619 | ||||
|
6620 | inc_x = (max_xangle-min_xangle)/nstepsx | |||
|
6621 | inc_y = (max_yangle-min_yangle)/nstepsy | |||
|
6622 | ||||
|
6623 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |||
|
6624 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |||
|
6625 | penalty = numpy.zeros((nstepsx,nstepsy)) | |||
|
6626 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |||
|
6627 | jph = numpy.zeros(nchan) | |||
|
6628 | ||||
|
6629 | # Iterations looking for the offset | |||
|
6630 | for iy in range(int(nstepsy)): | |||
|
6631 | for ix in range(int(nstepsx)): | |||
|
6632 | d3 = d[pairsList[1][0]] | |||
|
6633 | d2 = d[pairsList[1][1]] | |||
|
6634 | d5 = d[pairsList[0][0]] | |||
|
6635 | d4 = d[pairsList[0][1]] | |||
|
6636 | ||||
|
6637 | alp2 = alpha_y[iy] #gamma 1 | |||
|
6638 | alp4 = alpha_x[ix] #gamma 0 | |||
|
6639 | ||||
|
6640 | alp3 = -alp2*d3/d2 - gammas[1] | |||
|
6641 | alp5 = -alp4*d5/d4 - gammas[0] | |||
|
6642 | # jph[pairy[1]] = alpha_y[iy] | |||
|
6643 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |||
|
6644 | ||||
|
6645 | # jph[pairx[1]] = alpha_x[ix] | |||
|
6646 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |||
|
6647 | jph[pairsList[0][1]] = alp4 | |||
|
6648 | jph[pairsList[0][0]] = alp5 | |||
|
6649 | jph[pairsList[1][0]] = alp3 | |||
|
6650 | jph[pairsList[1][1]] = alp2 | |||
|
6651 | jph_array[:,ix,iy] = jph | |||
|
6652 | # d = [2.0,2.5,2.5,2.0] | |||
|
6653 | #falta chequear si va a leer bien los meteoros | |||
|
6654 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |||
|
6655 | error = meteorsArray1[:,-1] | |||
|
6656 | ind1 = numpy.where(error==0)[0] | |||
|
6657 | penalty[ix,iy] = ind1.size | |||
|
6658 | ||||
|
6659 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |||
|
6660 | phOffset = jph_array[:,i,j] | |||
|
6661 | ||||
|
6662 | center_xangle = phOffset[pairx[1]] | |||
|
6663 | center_yangle = phOffset[pairy[1]] | |||
|
6664 | ||||
|
6665 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |||
|
6666 | phOffset = phOffset*180/numpy.pi | |||
|
6667 | return phOffset | |||
|
6668 | ||||
|
6669 | ||||
|
6670 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |||
|
6671 | ||||
|
6672 | dataOut.flagNoData = True | |||
|
6673 | self.__dataReady = False | |||
|
6674 | dataOut.outputInterval = nHours*3600 | |||
|
6675 | ||||
|
6676 | if self.__isConfig == False: | |||
|
6677 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |||
|
6678 | #Get Initial LTC time | |||
|
6679 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |||
|
6680 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
6681 | ||||
|
6682 | self.__isConfig = True | |||
|
6683 | ||||
|
6684 | if self.__buffer is None: | |||
|
6685 | self.__buffer = dataOut.data_param.copy() | |||
|
6686 | ||||
|
6687 | else: | |||
|
6688 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |||
|
6689 | ||||
|
6690 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |||
|
6691 | ||||
|
6692 | if self.__dataReady: | |||
|
6693 | dataOut.utctimeInit = self.__initime | |||
|
6694 | self.__initime += dataOut.outputInterval #to erase time offset | |||
|
6695 | ||||
|
6696 | freq = dataOut.frequency | |||
|
6697 | c = dataOut.C #m/s | |||
|
6698 | lamb = c/freq | |||
|
6699 | k = 2*numpy.pi/lamb | |||
|
6700 | azimuth = 0 | |||
|
6701 | h = (hmin, hmax) | |||
|
6702 | # pairs = ((0,1),(2,3)) #Estrella | |||
|
6703 | # pairs = ((1,0),(2,3)) #T | |||
|
6704 | ||||
|
6705 | if channelPositions is None: | |||
|
6706 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |||
|
6707 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |||
|
6708 | meteorOps = SMOperations() | |||
|
6709 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |||
|
6710 | ||||
|
6711 | #Checking correct order of pairs | |||
|
6712 | pairs = [] | |||
|
6713 | if distances[1] > distances[0]: | |||
|
6714 | pairs.append((1,0)) | |||
|
6715 | else: | |||
|
6716 | pairs.append((0,1)) | |||
|
6717 | ||||
|
6718 | if distances[3] > distances[2]: | |||
|
6719 | pairs.append((3,2)) | |||
|
6720 | else: | |||
|
6721 | pairs.append((2,3)) | |||
|
6722 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |||
|
6723 | ||||
|
6724 | meteorsArray = self.__buffer | |||
|
6725 | error = meteorsArray[:,-1] | |||
|
6726 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |||
|
6727 | ind1 = numpy.where(boolError)[0] | |||
|
6728 | meteorsArray = meteorsArray[ind1,:] | |||
|
6729 | meteorsArray[:,-1] = 0 | |||
|
6730 | phases = meteorsArray[:,8:12] | |||
|
6731 | ||||
|
6732 | #Calculate Gammas | |||
|
6733 | gammas = self.__getGammas(pairs, distances, phases) | |||
|
6734 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |||
|
6735 | #Calculate Phases | |||
|
6736 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |||
|
6737 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |||
|
6738 | dataOut.data_output = -phasesOff | |||
|
6739 | dataOut.flagNoData = False | |||
|
6740 | self.__buffer = None | |||
|
6741 | ||||
|
6742 | ||||
|
6743 | return | |||
|
6744 | ||||
|
6745 | class SMOperations(): | |||
|
6746 | ||||
|
6747 | def __init__(self): | |||
|
6748 | ||||
|
6749 | return | |||
|
6750 | ||||
|
6751 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |||
|
6752 | ||||
|
6753 | arrayParameters = arrayParameters0.copy() | |||
|
6754 | hmin = h[0] | |||
|
6755 | hmax = h[1] | |||
|
6756 | ||||
|
6757 | #Calculate AOA (Error N 3, 4) | |||
|
6758 | #JONES ET AL. 1998 | |||
|
6759 | AOAthresh = numpy.pi/8 | |||
|
6760 | error = arrayParameters[:,-1] | |||
|
6761 | phases = -arrayParameters[:,8:12] + jph | |||
|
6762 | # phases = numpy.unwrap(phases) | |||
|
6763 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |||
|
6764 | ||||
|
6765 | #Calculate Heights (Error N 13 and 14) | |||
|
6766 | error = arrayParameters[:,-1] | |||
|
6767 | Ranges = arrayParameters[:,1] | |||
|
6768 | zenith = arrayParameters[:,4] | |||
|
6769 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |||
|
6770 | ||||
|
6771 | #----------------------- Get Final data ------------------------------------ | |||
|
6772 | # error = arrayParameters[:,-1] | |||
|
6773 | # ind1 = numpy.where(error==0)[0] | |||
|
6774 | # arrayParameters = arrayParameters[ind1,:] | |||
|
6775 | ||||
|
6776 | return arrayParameters | |||
|
6777 | ||||
|
6778 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |||
|
6779 | ||||
|
6780 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |||
|
6781 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |||
|
6782 | ||||
|
6783 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |||
|
6784 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |||
|
6785 | arrayAOA[:,2] = cosDirError | |||
|
6786 | ||||
|
6787 | azimuthAngle = arrayAOA[:,0] | |||
|
6788 | zenithAngle = arrayAOA[:,1] | |||
|
6789 | ||||
|
6790 | #Setting Error | |||
|
6791 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |||
|
6792 | error[indError] = 0 | |||
|
6793 | #Number 3: AOA not fesible | |||
|
6794 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |||
|
6795 | error[indInvalid] = 3 | |||
|
6796 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |||
|
6797 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |||
|
6798 | error[indInvalid] = 4 | |||
|
6799 | return arrayAOA, error | |||
|
6800 | ||||
|
6801 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |||
|
6802 | ||||
|
6803 | #Initializing some variables | |||
|
6804 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |||
|
6805 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |||
|
6806 | ||||
|
6807 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |||
|
6808 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |||
|
6809 | ||||
|
6810 | ||||
|
6811 | for i in range(2): | |||
|
6812 | ph0 = arrayPhase[:,pairsList[i][0]] | |||
|
6813 | ph1 = arrayPhase[:,pairsList[i][1]] | |||
|
6814 | d0 = distances[pairsList[i][0]] | |||
|
6815 | d1 = distances[pairsList[i][1]] | |||
|
6816 | ||||
|
6817 | ph0_aux = ph0 + ph1 | |||
|
6818 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |||
|
6819 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |||
|
6820 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |||
|
6821 | #First Estimation | |||
|
6822 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |||
|
6823 | ||||
|
6824 | #Most-Accurate Second Estimation | |||
|
6825 | phi1_aux = ph0 - ph1 | |||
|
6826 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |||
|
6827 | #Direction Cosine 1 | |||
|
6828 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |||
|
6829 | ||||
|
6830 | #Searching the correct Direction Cosine | |||
|
6831 | cosdir0_aux = cosdir0[:,i] | |||
|
6832 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |||
|
6833 | #Minimum Distance | |||
|
6834 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |||
|
6835 | indcos = cosDiff.argmin(axis = 1) | |||
|
6836 | #Saving Value obtained | |||
|
6837 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |||
|
6838 | ||||
|
6839 | return cosdir0, cosdir | |||
|
6840 | ||||
|
6841 | def __calculateAOA(self, cosdir, azimuth): | |||
|
6842 | cosdirX = cosdir[:,0] | |||
|
6843 | cosdirY = cosdir[:,1] | |||
|
6844 | ||||
|
6845 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |||
|
6846 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |||
|
6847 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |||
|
6848 | ||||
|
6849 | return angles | |||
|
6850 | ||||
|
6851 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |||
|
6852 | ||||
|
6853 | Ramb = 375 #Ramb = c/(2*PRF) | |||
|
6854 | Re = 6371 #Earth Radius | |||
|
6855 | heights = numpy.zeros(Ranges.shape) | |||
|
6856 | ||||
|
6857 | R_aux = numpy.array([0,1,2])*Ramb | |||
|
6858 | R_aux = R_aux.reshape(1,R_aux.size) | |||
|
6859 | ||||
|
6860 | Ranges = Ranges.reshape(Ranges.size,1) | |||
|
6861 | ||||
|
6862 | Ri = Ranges + R_aux | |||
|
6863 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |||
|
6864 | ||||
|
6865 | #Check if there is a height between 70 and 110 km | |||
|
6866 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |||
|
6867 | ind_h = numpy.where(h_bool == 1)[0] | |||
|
6868 | ||||
|
6869 | hCorr = hi[ind_h, :] | |||
|
6870 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |||
|
6871 | ||||
|
6872 | hCorr = hi[ind_hCorr][:len(ind_h)] | |||
|
6873 | heights[ind_h] = hCorr | |||
|
6874 | ||||
|
6875 | #Setting Error | |||
|
6876 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |||
|
6877 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |||
|
6878 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |||
|
6879 | error[indError] = 0 | |||
|
6880 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |||
|
6881 | error[indInvalid2] = 14 | |||
|
6882 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |||
|
6883 | error[indInvalid1] = 13 | |||
|
6884 | ||||
|
6885 | return heights, error | |||
|
6886 | ||||
|
6887 | def getPhasePairs(self, channelPositions): | |||
|
6888 | chanPos = numpy.array(channelPositions) | |||
|
6889 | listOper = list(itertools.combinations(list(range(5)),2)) | |||
|
6890 | ||||
|
6891 | distances = numpy.zeros(4) | |||
|
6892 | axisX = [] | |||
|
6893 | axisY = [] | |||
|
6894 | distX = numpy.zeros(3) | |||
|
6895 | distY = numpy.zeros(3) | |||
|
6896 | ix = 0 | |||
|
6897 | iy = 0 | |||
|
6898 | ||||
|
6899 | pairX = numpy.zeros((2,2)) | |||
|
6900 | pairY = numpy.zeros((2,2)) | |||
|
6901 | ||||
|
6902 | for i in range(len(listOper)): | |||
|
6903 | pairi = listOper[i] | |||
|
6904 | ||||
|
6905 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |||
|
6906 | ||||
|
6907 | if posDif[0] == 0: | |||
|
6908 | axisY.append(pairi) | |||
|
6909 | distY[iy] = posDif[1] | |||
|
6910 | iy += 1 | |||
|
6911 | elif posDif[1] == 0: | |||
|
6912 | axisX.append(pairi) | |||
|
6913 | distX[ix] = posDif[0] | |||
|
6914 | ix += 1 | |||
|
6915 | ||||
|
6916 | for i in range(2): | |||
|
6917 | if i==0: | |||
|
6918 | dist0 = distX | |||
|
6919 | axis0 = axisX | |||
|
6920 | else: | |||
|
6921 | dist0 = distY | |||
|
6922 | axis0 = axisY | |||
|
6923 | ||||
|
6924 | side = numpy.argsort(dist0)[:-1] | |||
|
6925 | axis0 = numpy.array(axis0)[side,:] | |||
|
6926 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |||
|
6927 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |||
|
6928 | side = axis1[axis1 != chanC] | |||
|
6929 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |||
|
6930 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |||
|
6931 | if diff1<0: | |||
|
6932 | chan2 = side[0] | |||
|
6933 | d2 = numpy.abs(diff1) | |||
|
6934 | chan1 = side[1] | |||
|
6935 | d1 = numpy.abs(diff2) | |||
|
6936 | else: | |||
|
6937 | chan2 = side[1] | |||
|
6938 | d2 = numpy.abs(diff2) | |||
|
6939 | chan1 = side[0] | |||
|
6940 | d1 = numpy.abs(diff1) | |||
|
6941 | ||||
|
6942 | if i==0: | |||
|
6943 | chanCX = chanC | |||
|
6944 | chan1X = chan1 | |||
|
6945 | chan2X = chan2 | |||
|
6946 | distances[0:2] = numpy.array([d1,d2]) | |||
|
6947 | else: | |||
|
6948 | chanCY = chanC | |||
|
6949 | chan1Y = chan1 | |||
|
6950 | chan2Y = chan2 | |||
|
6951 | distances[2:4] = numpy.array([d1,d2]) | |||
|
6952 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |||
|
6953 | # | |||
|
6954 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |||
|
6955 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |||
|
6956 | # | |||
|
6957 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |||
|
6958 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |||
|
6959 | # channel25X = int(pairX[0,ind25X]) | |||
|
6960 | # channel20X = int(pairX[1,ind20X]) | |||
|
6961 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |||
|
6962 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |||
|
6963 | # channel25Y = int(pairY[0,ind25Y]) | |||
|
6964 | # channel20Y = int(pairY[1,ind20Y]) | |||
|
6965 | ||||
|
6966 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |||
|
6967 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |||
|
6968 | ||||
|
6969 | return pairslist, distances | |||
|
6970 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |||
|
6971 | # | |||
|
6972 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |||
|
6973 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |||
|
6974 | # | |||
|
6975 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |||
|
6976 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |||
|
6977 | # arrayAOA[:,2] = cosDirError | |||
|
6978 | # | |||
|
6979 | # azimuthAngle = arrayAOA[:,0] | |||
|
6980 | # zenithAngle = arrayAOA[:,1] | |||
|
6981 | # | |||
|
6982 | # #Setting Error | |||
|
6983 | # #Number 3: AOA not fesible | |||
|
6984 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |||
|
6985 | # error[indInvalid] = 3 | |||
|
6986 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |||
|
6987 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |||
|
6988 | # error[indInvalid] = 4 | |||
|
6989 | # return arrayAOA, error | |||
|
6990 | # | |||
|
6991 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |||
|
6992 | # | |||
|
6993 | # #Initializing some variables | |||
|
6994 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |||
|
6995 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |||
|
6996 | # | |||
|
6997 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |||
|
6998 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |||
|
6999 | # | |||
|
7000 | # | |||
|
7001 | # for i in range(2): | |||
|
7002 | # #First Estimation | |||
|
7003 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |||
|
7004 | # #Dealias | |||
|
7005 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |||
|
7006 | # phi0_aux[indcsi] -= 2*numpy.pi | |||
|
7007 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |||
|
7008 | # phi0_aux[indcsi] += 2*numpy.pi | |||
|
7009 | # #Direction Cosine 0 | |||
|
7010 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |||
|
7011 | # | |||
|
7012 | # #Most-Accurate Second Estimation | |||
|
7013 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |||
|
7014 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |||
|
7015 | # #Direction Cosine 1 | |||
|
7016 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |||
|
7017 | # | |||
|
7018 | # #Searching the correct Direction Cosine | |||
|
7019 | # cosdir0_aux = cosdir0[:,i] | |||
|
7020 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |||
|
7021 | # #Minimum Distance | |||
|
7022 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |||
|
7023 | # indcos = cosDiff.argmin(axis = 1) | |||
|
7024 | # #Saving Value obtained | |||
|
7025 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |||
|
7026 | # | |||
|
7027 | # return cosdir0, cosdir | |||
|
7028 | # | |||
|
7029 | # def __calculateAOA(self, cosdir, azimuth): | |||
|
7030 | # cosdirX = cosdir[:,0] | |||
|
7031 | # cosdirY = cosdir[:,1] | |||
|
7032 | # | |||
|
7033 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |||
|
7034 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |||
|
7035 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |||
|
7036 | # | |||
|
7037 | # return angles | |||
|
7038 | # | |||
|
7039 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |||
|
7040 | # | |||
|
7041 | # Ramb = 375 #Ramb = c/(2*PRF) | |||
|
7042 | # Re = 6371 #Earth Radius | |||
|
7043 | # heights = numpy.zeros(Ranges.shape) | |||
|
7044 | # | |||
|
7045 | # R_aux = numpy.array([0,1,2])*Ramb | |||
|
7046 | # R_aux = R_aux.reshape(1,R_aux.size) | |||
|
7047 | # | |||
|
7048 | # Ranges = Ranges.reshape(Ranges.size,1) | |||
|
7049 | # | |||
|
7050 | # Ri = Ranges + R_aux | |||
|
7051 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |||
|
7052 | # | |||
|
7053 | # #Check if there is a height between 70 and 110 km | |||
|
7054 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |||
|
7055 | # ind_h = numpy.where(h_bool == 1)[0] | |||
|
7056 | # | |||
|
7057 | # hCorr = hi[ind_h, :] | |||
|
7058 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |||
|
7059 | # | |||
|
7060 | # hCorr = hi[ind_hCorr] | |||
|
7061 | # heights[ind_h] = hCorr | |||
|
7062 | # | |||
|
7063 | # #Setting Error | |||
|
7064 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |||
|
7065 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |||
|
7066 | # | |||
|
7067 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |||
|
7068 | # error[indInvalid2] = 14 | |||
|
7069 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |||
|
7070 | # error[indInvalid1] = 13 | |||
|
7071 | # | |||
|
7072 | # return heights, error | |||
|
7073 | ||||
|
7074 | class IGRFModel(Operation): | |||
|
7075 | ''' | |||
|
7076 | Written by R. Flores | |||
|
7077 | ''' | |||
|
7078 | """Operation to calculate Geomagnetic parameters. | |||
|
7079 | ||||
|
7080 | Parameters: | |||
|
7081 | ----------- | |||
|
7082 | None | |||
|
7083 | ||||
|
7084 | Example | |||
|
7085 | -------- | |||
|
7086 | ||||
|
7087 | op = proc_unit.addOperation(name='IGRFModel', optype='other') | |||
|
7088 | ||||
|
7089 | """ | |||
|
7090 | ||||
|
7091 | def __init__(self, **kwargs): | |||
|
7092 | ||||
|
7093 | Operation.__init__(self, **kwargs) | |||
|
7094 | ||||
|
7095 | self.aux=1 | |||
|
7096 | ||||
|
7097 | def run(self,dataOut): | |||
|
7098 | ||||
|
7099 | try: | |||
|
7100 | from schainpy.model.proc import mkfact_short_2020_2 | |||
|
7101 | except: | |||
|
7102 | log.warning('You should install "mkfact_short_2020" module to process IGRF Model') | |||
|
7103 | ||||
|
7104 | if self.aux==1: | |||
|
7105 | ||||
|
7106 | #dataOut.TimeBlockSeconds_First_Time=time.mktime(time.strptime(dataOut.TimeBlockDate)) | |||
|
7107 | #### we do not use dataOut.datatime.ctime() because it's the time of the second (next) block | |||
|
7108 | dataOut.TimeBlockSeconds_First_Time=dataOut.TimeBlockSeconds | |||
|
7109 | dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_First_Time) | |||
|
7110 | dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 | |||
|
7111 | dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 | |||
|
7112 | ||||
|
7113 | self.aux=0 | |||
|
7114 | dh = dataOut.heightList[1]-dataOut.heightList[0] | |||
|
7115 | #dataOut.h=numpy.arange(0.0,15.0*dataOut.MAXNRANGENDT,15.0,dtype='float32') | |||
|
7116 | dataOut.h=numpy.arange(0.0,dh*dataOut.MAXNRANGENDT,dh,dtype='float32') | |||
|
7117 | dataOut.bfm=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |||
|
7118 | dataOut.bfm=numpy.array(dataOut.bfm,order='F') | |||
|
7119 | dataOut.thb=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |||
|
7120 | dataOut.thb=numpy.array(dataOut.thb,order='F') | |||
|
7121 | dataOut.bki=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32') | |||
|
7122 | dataOut.bki=numpy.array(dataOut.bki,order='F') | |||
|
7123 | #print("bki: ", dataOut.bki) | |||
|
7124 | #print("**** mkfact WRAPPER ***** ",mkfact_short_2020.mkfact.__doc__ ) | |||
|
7125 | #print("IDs: ", id(dataOut.bki)) | |||
|
7126 | #print("bki shape: ", numpy.shape(dataOut.bki),numpy.shape(dataOut.h),dataOut.year) | |||
|
7127 | ||||
|
7128 | mkfact_short_2020_2.mkfact(dataOut.year,dataOut.h,dataOut.bfm,dataOut.thb,dataOut.bki,dataOut.MAXNRANGENDT) | |||
|
7129 | ||||
|
7130 | #mkfact_short_2020.mkfact(dataOut.year,dataOut.h,dataOut.bfm,dataOut.thb,dataOut.bki,dataOut.MAXNRANGENDT) | |||
|
7131 | #print("bki: ", dataOut.bki[:10]) | |||
|
7132 | #print("thb: ", dataOut.thb[:10]) | |||
|
7133 | #print("bfm: ", dataOut.bfm[:10]) | |||
|
7134 | #print("IDs: ", id(dataOut.bki)) | |||
|
7135 | ||||
|
7136 | return dataOut | |||
|
7137 | ||||
|
7138 | class MergeProc(ProcessingUnit): | |||
|
7139 | ||||
|
7140 | def __init__(self): | |||
|
7141 | ProcessingUnit.__init__(self) | |||
|
7142 | ||||
|
7143 | def run(self, attr_data, attr_data_2 = None, attr_data_3 = None, attr_data_4 = None, attr_data_5 = None, mode=0): | |||
|
7144 | #print("*****************************Merge***************") | |||
|
7145 | ||||
|
7146 | self.dataOut = getattr(self, self.inputs[0]) | |||
|
7147 | data_inputs = [getattr(self, attr) for attr in self.inputs] | |||
|
7148 | #print(data_inputs) | |||
|
7149 | #print("Run: ",self.dataOut.runNextUnit) | |||
|
7150 | #exit(1) | |||
|
7151 | #print("a:", [getattr(data, attr_data) for data in data_inputs][1]) | |||
|
7152 | #exit(1) | |||
|
7153 | if mode==0: | |||
|
7154 | data = numpy.concatenate([getattr(data, attr_data) for data in data_inputs]) | |||
|
7155 | setattr(self.dataOut, attr_data, data) | |||
|
7156 | ||||
|
7157 | if mode==1: #Hybrid | |||
|
7158 | #data = numpy.concatenate([getattr(data, attr_data) for data in data_inputs],axis=1) | |||
|
7159 | #setattr(self.dataOut, attr_data, data) | |||
|
7160 | setattr(self.dataOut, 'dataLag_spc', [getattr(data, attr_data) for data in data_inputs][0]) | |||
|
7161 | setattr(self.dataOut, 'dataLag_spc_LP', [getattr(data, attr_data) for data in data_inputs][1]) | |||
|
7162 | setattr(self.dataOut, 'dataLag_cspc', [getattr(data, attr_data_2) for data in data_inputs][0]) | |||
|
7163 | setattr(self.dataOut, 'dataLag_cspc_LP', [getattr(data, attr_data_2) for data in data_inputs][1]) | |||
|
7164 | #setattr(self.dataOut, 'nIncohInt', [getattr(data, attr_data_3) for data in data_inputs][0]) | |||
|
7165 | #setattr(self.dataOut, 'nIncohInt_LP', [getattr(data, attr_data_3) for data in data_inputs][1]) | |||
|
7166 | ''' | |||
|
7167 | print(self.dataOut.dataLag_spc_LP.shape) | |||
|
7168 | print(self.dataOut.dataLag_cspc_LP.shape) | |||
|
7169 | exit(1) | |||
|
7170 | ''' | |||
|
7171 | ||||
|
7172 | #self.dataOut.dataLag_spc_LP = numpy.transpose(self.dataOut.dataLag_spc_LP[0],(2,0,1)) | |||
|
7173 | #self.dataOut.dataLag_cspc_LP = numpy.transpose(self.dataOut.dataLag_cspc_LP,(3,1,2,0)) | |||
|
7174 | ''' | |||
|
7175 | print("Merge") | |||
|
7176 | print(numpy.shape(self.dataOut.dataLag_spc)) | |||
|
7177 | print(numpy.shape(self.dataOut.dataLag_spc_LP)) | |||
|
7178 | print(numpy.shape(self.dataOut.dataLag_cspc)) | |||
|
7179 | print(numpy.shape(self.dataOut.dataLag_cspc_LP)) | |||
|
7180 | exit(1) | |||
|
7181 | ''' | |||
|
7182 | #print(numpy.sum(self.dataOut.dataLag_spc_LP[2,:,164])/128) | |||
|
7183 | #print(numpy.sum(self.dataOut.dataLag_cspc_LP[0,:,30,1])/128) | |||
|
7184 | #exit(1) | |||
|
7185 | #print(self.dataOut.NDP) | |||
|
7186 | #print(self.dataOut.nNoiseProfiles) | |||
|
7187 | ||||
|
7188 | #self.dataOut.nIncohInt_LP = 128 | |||
|
7189 | self.dataOut.nProfiles_LP = 128#self.dataOut.nIncohInt_LP | |||
|
7190 | self.dataOut.nIncohInt_LP = self.dataOut.nIncohInt | |||
|
7191 | self.dataOut.NLAG = 16 | |||
|
7192 | self.dataOut.NRANGE = 200 | |||
|
7193 | self.dataOut.NSCAN = 128 | |||
|
7194 | #print(numpy.shape(self.dataOut.data_spc)) | |||
|
7195 | ||||
|
7196 | #exit(1) | |||
|
7197 | ||||
|
7198 | if mode==2: #HAE 2022 | |||
|
7199 | data = numpy.sum([getattr(data, attr_data) for data in data_inputs],axis=0) | |||
|
7200 | setattr(self.dataOut, attr_data, data) | |||
|
7201 | ||||
|
7202 | self.dataOut.nIncohInt *= 2 | |||
|
7203 | #meta = self.dataOut.getFreqRange(1)/1000. | |||
|
7204 | self.dataOut.freqRange = self.dataOut.getFreqRange(1)/1000. | |||
|
7205 | ||||
|
7206 | #exit(1) | |||
|
7207 | ||||
|
7208 | if mode==4: #Hybrid LP-SSheightProfiles | |||
|
7209 | #data = numpy.concatenate([getattr(data, attr_data) for data in data_inputs],axis=1) | |||
|
7210 | #setattr(self.dataOut, attr_data, data) | |||
|
7211 | setattr(self.dataOut, 'dataLag_spc', getattr(data_inputs[0], attr_data)) #DP | |||
|
7212 | setattr(self.dataOut, 'dataLag_cspc', getattr(data_inputs[0], attr_data_2)) #DP | |||
|
7213 | setattr(self.dataOut, 'dataLag_spc_LP', getattr(data_inputs[1], attr_data_3)) #LP | |||
|
7214 | #setattr(self.dataOut, 'dataLag_cspc_LP', getattr(data_inputs[1], attr_data_4)) #LP | |||
|
7215 | #setattr(self.dataOut, 'data_acf', getattr(data_inputs[1], attr_data_5)) #LP | |||
|
7216 | setattr(self.dataOut, 'data_acf', getattr(data_inputs[1], attr_data_5)) #LP | |||
|
7217 | #print("Merge data_acf: ",self.dataOut.data_acf.shape) | |||
|
7218 | ||||
|
7219 | ||||
|
7220 | #self.dataOut.nIncohInt_LP = 128 | |||
|
7221 | #self.dataOut.nProfiles_LP = 128#self.dataOut.nIncohInt_LP | |||
|
7222 | self.dataOut.nProfiles_LP = 16#28#self.dataOut.nIncohInt_LP | |||
|
7223 | self.dataOut.nProfiles_LP = self.dataOut.data_acf.shape[1]#28#self.dataOut.nIncohInt_LP | |||
|
7224 | self.dataOut.NSCAN = 128 | |||
|
7225 | self.dataOut.nIncohInt_LP = self.dataOut.nIncohInt*self.dataOut.NSCAN | |||
|
7226 | #print("sahpi",self.dataOut.nIncohInt_LP) | |||
|
7227 | #exit(1) | |||
|
7228 | self.dataOut.NLAG = 16 | |||
|
7229 | self.dataOut.NLAG = self.dataOut.data_acf.shape[1] | |||
|
7230 | self.dataOut.NRANGE = self.dataOut.data_acf.shape[-1] | |||
|
7231 | ||||
|
7232 | #print(numpy.shape(self.dataOut.data_spc)) | |||
|
7233 | ||||
|
7234 | #exit(1) | |||
|
7235 | if mode==5: | |||
|
7236 | data = numpy.concatenate([getattr(data, attr_data) for data in data_inputs]) | |||
|
7237 | setattr(self.dataOut, attr_data, data) | |||
|
7238 | data = numpy.concatenate([getattr(data, attr_data_2) for data in data_inputs]) | |||
|
7239 | setattr(self.dataOut, attr_data_2, data) | |||
|
7240 | ||||
|
7241 | if mode==6: #Hybrid Spectra-Voltage | |||
|
7242 | #data = numpy.concatenate([getattr(data, attr_data) for data in data_inputs],axis=1) | |||
|
7243 | #setattr(self.dataOut, attr_data, data) | |||
|
7244 | setattr(self.dataOut, 'dataLag_spc', getattr(data_inputs[1], attr_data)) #DP | |||
|
7245 | setattr(self.dataOut, 'dataLag_cspc', getattr(data_inputs[1], attr_data_2)) #DP | |||
|
7246 | setattr(self.dataOut, 'output_LP_integrated', getattr(data_inputs[0], attr_data_3)) #LP | |||
|
7247 | #setattr(self.dataOut, 'dataLag_cspc_LP', getattr(data_inputs[1], attr_data_4)) #LP | |||
|
7248 | #setattr(self.dataOut, 'data_acf', getattr(data_inputs[1], attr_data_5)) #LP | |||
|
7249 | #setattr(self.dataOut, 'data_acf', getattr(data_inputs[1], attr_data_5)) #LP | |||
|
7250 | #print("Merge data_acf: ",self.dataOut.data_acf.shape) | |||
|
7251 | #print(self.dataOut.NSCAN) | |||
|
7252 | self.dataOut.nIncohInt = int(self.dataOut.NAVG * self.dataOut.nint) | |||
|
7253 | #print(self.dataOut.dataLag_spc.shape) | |||
|
7254 | self.dataOut.nProfiles = self.dataOut.nProfiles_DP = self.dataOut.dataLag_spc.shape[1] | |||
|
7255 | ''' | |||
|
7256 | #self.dataOut.nIncohInt_LP = 128 | |||
|
7257 | #self.dataOut.nProfiles_LP = 128#self.dataOut.nIncohInt_LP | |||
|
7258 | self.dataOut.nProfiles_LP = 16#28#self.dataOut.nIncohInt_LP | |||
|
7259 | self.dataOut.nProfiles_LP = self.dataOut.data_acf.shape[1]#28#self.dataOut.nIncohInt_LP | |||
|
7260 | self.dataOut.NSCAN = 128 | |||
|
7261 | self.dataOut.nIncohInt_LP = self.dataOut.nIncohInt*self.dataOut.NSCAN | |||
|
7262 | #print("sahpi",self.dataOut.nIncohInt_LP) | |||
|
7263 | #exit(1) | |||
|
7264 | self.dataOut.NLAG = 16 | |||
|
7265 | self.dataOut.NLAG = self.dataOut.data_acf.shape[1] | |||
|
7266 | self.dataOut.NRANGE = self.dataOut.data_acf.shape[-1] | |||
|
7267 | ''' | |||
|
7268 | #print(numpy.shape(self.dataOut.data_spc)) | |||
|
7269 | #print("*************************GOOD*************************") | |||
|
7270 | #exit(1) | |||
|
7271 | ||||
|
7272 | if mode==11: #MST ISR | |||
|
7273 | #data = numpy.concatenate([getattr(data, attr_data) for data in data_inputs],axis=1) | |||
|
7274 | #setattr(self.dataOut, attr_data, data) | |||
|
7275 | #setattr(self.dataOut, 'ph2', [getattr(data, attr_data) for data in data_inputs][1]) | |||
|
7276 | #setattr(self.dataOut, 'dphi', [getattr(data, attr_data_2) for data in data_inputs][1]) | |||
|
7277 | #setattr(self.dataOut, 'sdp2', [getattr(data, attr_data_3) for data in data_inputs][1]) | |||
|
7278 | ||||
|
7279 | setattr(self.dataOut, 'ph2', getattr(data_inputs[1], attr_data)) #DP | |||
|
7280 | setattr(self.dataOut, 'dphi', getattr(data_inputs[1], attr_data_2)) #DP | |||
|
7281 | setattr(self.dataOut, 'sdp2', getattr(data_inputs[1], attr_data_3)) #DP | |||
|
7282 | ||||
|
7283 | print("MST Density", numpy.shape(self.dataOut.ph2)) | |||
|
7284 | print("cf MST: ", self.dataOut.cf) | |||
|
7285 | #exit(1) | |||
|
7286 | #print("MST Density", self.dataOut.ph2[116:283]) | |||
|
7287 | print("MST Density", self.dataOut.ph2[80:120]) | |||
|
7288 | print("MST dPhi", self.dataOut.dphi[80:120]) | |||
|
7289 | self.dataOut.ph2 *= self.dataOut.cf#0.0008136899 | |||
|
7290 | #print("MST Density", self.dataOut.ph2[116:283]) | |||
|
7291 | self.dataOut.sdp2 *= 0#self.dataOut.cf#0.0008136899 | |||
|
7292 | #print("MST Density", self.dataOut.ph2[116:283]) | |||
|
7293 | print("MST Density", self.dataOut.ph2[80:120]) | |||
|
7294 | self.dataOut.NSHTS = int(numpy.shape(self.dataOut.ph2)[0]) | |||
|
7295 | dH = self.dataOut.heightList[1]-self.dataOut.heightList[0] | |||
|
7296 | dH /= self.dataOut.windowOfFilter | |||
|
7297 | self.dataOut.heightList = numpy.arange(0,self.dataOut.NSHTS)*dH + dH | |||
|
7298 | #print("heightList: ", self.dataOut.heightList) | |||
|
7299 | self.dataOut.NDP = self.dataOut.NSHTS | |||
|
7300 | #exit(1) | |||
|
7301 | #print(self.dataOut.heightList) | |||
|
7302 | ||||
|
7303 | class MST_Den_Conv(Operation): | |||
|
7304 | ''' | |||
|
7305 | Written by R. Flores | |||
|
7306 | ''' | |||
|
7307 | """Operation to calculate Geomagnetic parameters. | |||
|
7308 | ||||
|
7309 | Parameters: | |||
|
7310 | ----------- | |||
|
7311 | None | |||
|
7312 | ||||
|
7313 | Example | |||
|
7314 | -------- | |||
|
7315 | ||||
|
7316 | op = proc_unit.addOperation(name='MST_Den_Conv', optype='other') | |||
|
7317 | ||||
|
7318 | """ | |||
|
7319 | ||||
|
7320 | def __init__(self, **kwargs): | |||
|
7321 | ||||
|
7322 | Operation.__init__(self, **kwargs) | |||
|
7323 | ||||
|
7324 | def run(self,dataOut): | |||
|
7325 | ||||
|
7326 | dataOut.PowDen = numpy.zeros((1,dataOut.NDP)) | |||
|
7327 | dataOut.PowDen[0] = numpy.copy(dataOut.ph2[:dataOut.NDP]) | |||
|
7328 | ||||
|
7329 | dataOut.FarDen = numpy.zeros((1,dataOut.NDP)) | |||
|
7330 | dataOut.FarDen[0] = numpy.copy(dataOut.dphi[:dataOut.NDP]) | |||
|
7331 | print("pow den shape", numpy.shape(dataOut.PowDen)) | |||
|
7332 | print("far den shape", numpy.shape(dataOut.FarDen)) | |||
|
7333 | return dataOut No newline at end of file |
This diff has been collapsed as it changes many lines, (982 lines changed) Show them Hide them | |||||
@@ -0,0 +1,982 | |||||
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |||
|
2 | # All rights reserved. | |||
|
3 | # | |||
|
4 | # Distributed under the terms of the BSD 3-clause license. | |||
|
5 | """Spectra processing Unit and operations | |||
|
6 | ||||
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |||
|
8 | to work with Spectra data type | |||
|
9 | """ | |||
|
10 | ||||
|
11 | import time | |||
|
12 | import itertools | |||
|
13 | ||||
|
14 | import numpy | |||
|
15 | ||||
|
16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |||
|
17 | from schainpy.model.data.jrodata import Spectra | |||
|
18 | from schainpy.model.data.jrodata import hildebrand_sekhon | |||
|
19 | from schainpy.utils import log | |||
|
20 | ||||
|
21 | ||||
|
22 | class SpectraProc(ProcessingUnit): | |||
|
23 | ||||
|
24 | def __init__(self): | |||
|
25 | ||||
|
26 | ProcessingUnit.__init__(self) | |||
|
27 | ||||
|
28 | self.buffer = None | |||
|
29 | self.firstdatatime = None | |||
|
30 | self.profIndex = 0 | |||
|
31 | self.dataOut = Spectra() | |||
|
32 | self.id_min = None | |||
|
33 | self.id_max = None | |||
|
34 | self.setupReq = False #Agregar a todas las unidades de proc | |||
|
35 | ||||
|
36 | def __updateSpecFromVoltage(self): | |||
|
37 | ||||
|
38 | self.dataOut.timeZone = self.dataIn.timeZone | |||
|
39 | self.dataOut.dstFlag = self.dataIn.dstFlag | |||
|
40 | self.dataOut.errorCount = self.dataIn.errorCount | |||
|
41 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |||
|
42 | try: | |||
|
43 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |||
|
44 | except: | |||
|
45 | pass | |||
|
46 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |||
|
47 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |||
|
48 | self.dataOut.channelList = self.dataIn.channelList | |||
|
49 | self.dataOut.heightList = self.dataIn.heightList | |||
|
50 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |||
|
51 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |||
|
52 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |||
|
53 | self.dataOut.utctime = self.firstdatatime | |||
|
54 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |||
|
55 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |||
|
56 | self.dataOut.flagShiftFFT = False | |||
|
57 | self.dataOut.nCohInt = self.dataIn.nCohInt | |||
|
58 | self.dataOut.nIncohInt = 1 | |||
|
59 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |||
|
60 | self.dataOut.frequency = self.dataIn.frequency | |||
|
61 | self.dataOut.realtime = self.dataIn.realtime | |||
|
62 | self.dataOut.azimuth = self.dataIn.azimuth | |||
|
63 | self.dataOut.zenith = self.dataIn.zenith | |||
|
64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |||
|
65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |||
|
66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |||
|
67 | self.dataOut.runNextUnit = self.dataIn.runNextUnit | |||
|
68 | try: | |||
|
69 | self.dataOut.step = self.dataIn.step | |||
|
70 | except: | |||
|
71 | pass | |||
|
72 | ||||
|
73 | def __getFft(self): | |||
|
74 | """ | |||
|
75 | Convierte valores de Voltaje a Spectra | |||
|
76 | ||||
|
77 | Affected: | |||
|
78 | self.dataOut.data_spc | |||
|
79 | self.dataOut.data_cspc | |||
|
80 | self.dataOut.data_dc | |||
|
81 | self.dataOut.heightList | |||
|
82 | self.profIndex | |||
|
83 | self.buffer | |||
|
84 | self.dataOut.flagNoData | |||
|
85 | """ | |||
|
86 | fft_volt = numpy.fft.fft( | |||
|
87 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |||
|
88 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |||
|
89 | dc = fft_volt[:, 0, :] | |||
|
90 | ||||
|
91 | # calculo de self-spectra | |||
|
92 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |||
|
93 | spc = fft_volt * numpy.conjugate(fft_volt) | |||
|
94 | spc = spc.real | |||
|
95 | ||||
|
96 | blocksize = 0 | |||
|
97 | blocksize += dc.size | |||
|
98 | blocksize += spc.size | |||
|
99 | ||||
|
100 | cspc = None | |||
|
101 | pairIndex = 0 | |||
|
102 | if self.dataOut.pairsList != None: | |||
|
103 | # calculo de cross-spectra | |||
|
104 | cspc = numpy.zeros( | |||
|
105 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |||
|
106 | for pair in self.dataOut.pairsList: | |||
|
107 | if pair[0] not in self.dataOut.channelList: | |||
|
108 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |||
|
109 | str(pair), str(self.dataOut.channelList))) | |||
|
110 | if pair[1] not in self.dataOut.channelList: | |||
|
111 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |||
|
112 | str(pair), str(self.dataOut.channelList))) | |||
|
113 | ||||
|
114 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |||
|
115 | numpy.conjugate(fft_volt[pair[1], :, :]) | |||
|
116 | pairIndex += 1 | |||
|
117 | blocksize += cspc.size | |||
|
118 | ||||
|
119 | self.dataOut.data_spc = spc | |||
|
120 | self.dataOut.data_cspc = cspc | |||
|
121 | self.dataOut.data_dc = dc | |||
|
122 | self.dataOut.blockSize = blocksize | |||
|
123 | self.dataOut.flagShiftFFT = False | |||
|
124 | ||||
|
125 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, runNextUnit = 0): | |||
|
126 | ||||
|
127 | self.dataIn.runNextUnit = runNextUnit | |||
|
128 | if self.dataIn.type == "Spectra": | |||
|
129 | ||||
|
130 | self.dataOut.copy(self.dataIn) | |||
|
131 | if shift_fft: | |||
|
132 | #desplaza a la derecha en el eje 2 determinadas posiciones | |||
|
133 | shift = int(self.dataOut.nFFTPoints/2) | |||
|
134 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |||
|
135 | ||||
|
136 | if self.dataOut.data_cspc is not None: | |||
|
137 | #desplaza a la derecha en el eje 2 determinadas posiciones | |||
|
138 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |||
|
139 | if pairsList: | |||
|
140 | self.__selectPairs(pairsList) | |||
|
141 | ||||
|
142 | elif self.dataIn.type == "Voltage": | |||
|
143 | ||||
|
144 | self.dataOut.flagNoData = True | |||
|
145 | ||||
|
146 | if nFFTPoints == None: | |||
|
147 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |||
|
148 | ||||
|
149 | if nProfiles == None: | |||
|
150 | nProfiles = nFFTPoints | |||
|
151 | #print(self.dataOut.ipp) | |||
|
152 | #exit(1) | |||
|
153 | if ippFactor == None: | |||
|
154 | self.dataOut.ippFactor = 1 | |||
|
155 | #if ippFactor is not None: | |||
|
156 | #self.dataOut.ippFactor = ippFactor | |||
|
157 | #print(ippFactor) | |||
|
158 | #print(self.dataOut.ippFactor) | |||
|
159 | #exit(1) | |||
|
160 | ||||
|
161 | self.dataOut.nFFTPoints = nFFTPoints | |||
|
162 | ||||
|
163 | if self.buffer is None: | |||
|
164 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |||
|
165 | nProfiles, | |||
|
166 | self.dataIn.nHeights), | |||
|
167 | dtype='complex') | |||
|
168 | ||||
|
169 | if self.dataIn.flagDataAsBlock: | |||
|
170 | nVoltProfiles = self.dataIn.data.shape[1] | |||
|
171 | ||||
|
172 | if nVoltProfiles == nProfiles: | |||
|
173 | self.buffer = self.dataIn.data.copy() | |||
|
174 | self.profIndex = nVoltProfiles | |||
|
175 | ||||
|
176 | elif nVoltProfiles < nProfiles: | |||
|
177 | ||||
|
178 | if self.profIndex == 0: | |||
|
179 | self.id_min = 0 | |||
|
180 | self.id_max = nVoltProfiles | |||
|
181 | #print(self.id_min) | |||
|
182 | #print(self.id_max) | |||
|
183 | #print(numpy.shape(self.buffer)) | |||
|
184 | self.buffer[:, self.id_min:self.id_max, | |||
|
185 | :] = self.dataIn.data | |||
|
186 | self.profIndex += nVoltProfiles | |||
|
187 | self.id_min += nVoltProfiles | |||
|
188 | self.id_max += nVoltProfiles | |||
|
189 | else: | |||
|
190 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |||
|
191 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |||
|
192 | self.dataOut.flagNoData = True | |||
|
193 | else: | |||
|
194 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |||
|
195 | self.profIndex += 1 | |||
|
196 | ||||
|
197 | if self.firstdatatime == None: | |||
|
198 | self.firstdatatime = self.dataIn.utctime | |||
|
199 | ||||
|
200 | if self.profIndex == nProfiles: | |||
|
201 | self.__updateSpecFromVoltage() | |||
|
202 | if pairsList == None: | |||
|
203 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |||
|
204 | else: | |||
|
205 | self.dataOut.pairsList = pairsList | |||
|
206 | self.__getFft() | |||
|
207 | self.dataOut.flagNoData = False | |||
|
208 | self.firstdatatime = None | |||
|
209 | self.profIndex = 0 | |||
|
210 | else: | |||
|
211 | raise ValueError("The type of input object '%s' is not valid".format( | |||
|
212 | self.dataIn.type)) | |||
|
213 | ||||
|
214 | ||||
|
215 | def __selectPairs(self, pairsList): | |||
|
216 | ||||
|
217 | if not pairsList: | |||
|
218 | return | |||
|
219 | ||||
|
220 | pairs = [] | |||
|
221 | pairsIndex = [] | |||
|
222 | ||||
|
223 | for pair in pairsList: | |||
|
224 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |||
|
225 | continue | |||
|
226 | pairs.append(pair) | |||
|
227 | pairsIndex.append(pairs.index(pair)) | |||
|
228 | ||||
|
229 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |||
|
230 | self.dataOut.pairsList = pairs | |||
|
231 | ||||
|
232 | return | |||
|
233 | ||||
|
234 | def selectFFTs(self, minFFT, maxFFT ): | |||
|
235 | """ | |||
|
236 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |||
|
237 | minFFT<= FFT <= maxFFT | |||
|
238 | """ | |||
|
239 | ||||
|
240 | if (minFFT > maxFFT): | |||
|
241 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |||
|
242 | ||||
|
243 | if (minFFT < self.dataOut.getFreqRange()[0]): | |||
|
244 | minFFT = self.dataOut.getFreqRange()[0] | |||
|
245 | ||||
|
246 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |||
|
247 | maxFFT = self.dataOut.getFreqRange()[-1] | |||
|
248 | ||||
|
249 | minIndex = 0 | |||
|
250 | maxIndex = 0 | |||
|
251 | FFTs = self.dataOut.getFreqRange() | |||
|
252 | ||||
|
253 | inda = numpy.where(FFTs >= minFFT) | |||
|
254 | indb = numpy.where(FFTs <= maxFFT) | |||
|
255 | ||||
|
256 | try: | |||
|
257 | minIndex = inda[0][0] | |||
|
258 | except: | |||
|
259 | minIndex = 0 | |||
|
260 | ||||
|
261 | try: | |||
|
262 | maxIndex = indb[0][-1] | |||
|
263 | except: | |||
|
264 | maxIndex = len(FFTs) | |||
|
265 | ||||
|
266 | self.selectFFTsByIndex(minIndex, maxIndex) | |||
|
267 | ||||
|
268 | return 1 | |||
|
269 | ||||
|
270 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |||
|
271 | newheis = numpy.where( | |||
|
272 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |||
|
273 | ||||
|
274 | if hei_ref != None: | |||
|
275 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |||
|
276 | ||||
|
277 | minIndex = min(newheis[0]) | |||
|
278 | maxIndex = max(newheis[0]) | |||
|
279 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |||
|
280 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |||
|
281 | ||||
|
282 | # determina indices | |||
|
283 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |||
|
284 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |||
|
285 | avg_dB = 10 * \ | |||
|
286 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |||
|
287 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |||
|
288 | beacon_heiIndexList = [] | |||
|
289 | for val in avg_dB.tolist(): | |||
|
290 | if val >= beacon_dB[0]: | |||
|
291 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |||
|
292 | ||||
|
293 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |||
|
294 | data_cspc = None | |||
|
295 | if self.dataOut.data_cspc is not None: | |||
|
296 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |||
|
297 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |||
|
298 | ||||
|
299 | data_dc = None | |||
|
300 | if self.dataOut.data_dc is not None: | |||
|
301 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |||
|
302 | #data_dc = data_dc[:,beacon_heiIndexList] | |||
|
303 | ||||
|
304 | self.dataOut.data_spc = data_spc | |||
|
305 | self.dataOut.data_cspc = data_cspc | |||
|
306 | self.dataOut.data_dc = data_dc | |||
|
307 | self.dataOut.heightList = heightList | |||
|
308 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |||
|
309 | ||||
|
310 | return 1 | |||
|
311 | ||||
|
312 | def selectFFTsByIndex(self, minIndex, maxIndex): | |||
|
313 | """ | |||
|
314 | ||||
|
315 | """ | |||
|
316 | ||||
|
317 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
318 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |||
|
319 | ||||
|
320 | if (maxIndex >= self.dataOut.nProfiles): | |||
|
321 | maxIndex = self.dataOut.nProfiles-1 | |||
|
322 | ||||
|
323 | #Spectra | |||
|
324 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |||
|
325 | ||||
|
326 | data_cspc = None | |||
|
327 | if self.dataOut.data_cspc is not None: | |||
|
328 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |||
|
329 | ||||
|
330 | data_dc = None | |||
|
331 | if self.dataOut.data_dc is not None: | |||
|
332 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |||
|
333 | ||||
|
334 | self.dataOut.data_spc = data_spc | |||
|
335 | self.dataOut.data_cspc = data_cspc | |||
|
336 | self.dataOut.data_dc = data_dc | |||
|
337 | ||||
|
338 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |||
|
339 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |||
|
340 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |||
|
341 | ||||
|
342 | return 1 | |||
|
343 | ||||
|
344 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |||
|
345 | # validacion de rango | |||
|
346 | print("NOISeeee") | |||
|
347 | if minHei == None: | |||
|
348 | minHei = self.dataOut.heightList[0] | |||
|
349 | ||||
|
350 | if maxHei == None: | |||
|
351 | maxHei = self.dataOut.heightList[-1] | |||
|
352 | ||||
|
353 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |||
|
354 | print('minHei: %.2f is out of the heights range' % (minHei)) | |||
|
355 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |||
|
356 | minHei = self.dataOut.heightList[0] | |||
|
357 | ||||
|
358 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |||
|
359 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |||
|
360 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |||
|
361 | maxHei = self.dataOut.heightList[-1] | |||
|
362 | ||||
|
363 | # validacion de velocidades | |||
|
364 | velrange = self.dataOut.getVelRange(1) | |||
|
365 | ||||
|
366 | if minVel == None: | |||
|
367 | minVel = velrange[0] | |||
|
368 | ||||
|
369 | if maxVel == None: | |||
|
370 | maxVel = velrange[-1] | |||
|
371 | ||||
|
372 | if (minVel < velrange[0]) or (minVel > maxVel): | |||
|
373 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |||
|
374 | print('minVel is setting to %.2f' % (velrange[0])) | |||
|
375 | minVel = velrange[0] | |||
|
376 | ||||
|
377 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |||
|
378 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |||
|
379 | print('maxVel is setting to %.2f' % (velrange[-1])) | |||
|
380 | maxVel = velrange[-1] | |||
|
381 | ||||
|
382 | # seleccion de indices para rango | |||
|
383 | minIndex = 0 | |||
|
384 | maxIndex = 0 | |||
|
385 | heights = self.dataOut.heightList | |||
|
386 | ||||
|
387 | inda = numpy.where(heights >= minHei) | |||
|
388 | indb = numpy.where(heights <= maxHei) | |||
|
389 | ||||
|
390 | try: | |||
|
391 | minIndex = inda[0][0] | |||
|
392 | except: | |||
|
393 | minIndex = 0 | |||
|
394 | ||||
|
395 | try: | |||
|
396 | maxIndex = indb[0][-1] | |||
|
397 | except: | |||
|
398 | maxIndex = len(heights) | |||
|
399 | ||||
|
400 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
401 | raise ValueError("some value in (%d,%d) is not valid" % ( | |||
|
402 | minIndex, maxIndex)) | |||
|
403 | ||||
|
404 | if (maxIndex >= self.dataOut.nHeights): | |||
|
405 | maxIndex = self.dataOut.nHeights - 1 | |||
|
406 | ||||
|
407 | # seleccion de indices para velocidades | |||
|
408 | indminvel = numpy.where(velrange >= minVel) | |||
|
409 | indmaxvel = numpy.where(velrange <= maxVel) | |||
|
410 | try: | |||
|
411 | minIndexVel = indminvel[0][0] | |||
|
412 | except: | |||
|
413 | minIndexVel = 0 | |||
|
414 | ||||
|
415 | try: | |||
|
416 | maxIndexVel = indmaxvel[0][-1] | |||
|
417 | except: | |||
|
418 | maxIndexVel = len(velrange) | |||
|
419 | ||||
|
420 | # seleccion del espectro | |||
|
421 | data_spc = self.dataOut.data_spc[:, | |||
|
422 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |||
|
423 | # estimacion de ruido | |||
|
424 | noise = numpy.zeros(self.dataOut.nChannels) | |||
|
425 | ||||
|
426 | for channel in range(self.dataOut.nChannels): | |||
|
427 | daux = data_spc[channel, :, :] | |||
|
428 | sortdata = numpy.sort(daux, axis=None) | |||
|
429 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |||
|
430 | ||||
|
431 | self.dataOut.noise_estimation = noise.copy() | |||
|
432 | ||||
|
433 | return 1 | |||
|
434 | ||||
|
435 | class GetSNR(Operation): | |||
|
436 | ''' | |||
|
437 | Written by R. Flores | |||
|
438 | ''' | |||
|
439 | """Operation to get SNR. | |||
|
440 | ||||
|
441 | Parameters: | |||
|
442 | ----------- | |||
|
443 | ||||
|
444 | Example | |||
|
445 | -------- | |||
|
446 | ||||
|
447 | op = proc_unit.addOperation(name='GetSNR', optype='other') | |||
|
448 | ||||
|
449 | """ | |||
|
450 | ||||
|
451 | def __init__(self, **kwargs): | |||
|
452 | ||||
|
453 | Operation.__init__(self, **kwargs) | |||
|
454 | ||||
|
455 | ||||
|
456 | def run(self,dataOut): | |||
|
457 | ||||
|
458 | #noise = dataOut.getNoise() | |||
|
459 | noise = dataOut.getNoise(ymin_index=-10) #Región superior donde solo debería de haber ruido | |||
|
460 | #print("Noise: ", noise) | |||
|
461 | #print("Noise_dB: ", 10*numpy.log10(noise/dataOut.normFactor)) | |||
|
462 | #print("Heights: ", dataOut.heightList) | |||
|
463 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.normFactor) | |||
|
464 | ################dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.nFFTPoints) #Before 12Jan2023 | |||
|
465 | #dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None])/(noise[:,None]) | |||
|
466 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently | |||
|
467 | dataOut.snl = numpy.log10(dataOut.data_snr) | |||
|
468 | #print("snl: ", dataOut.snl) | |||
|
469 | #exit(1) | |||
|
470 | #print(dataOut.heightList[-11]) | |||
|
471 | #print(numpy.shape(dataOut.heightList)) | |||
|
472 | #print(dataOut.data_snr) | |||
|
473 | #print(dataOut.data_snr[0,-11]) | |||
|
474 | #exit(1) | |||
|
475 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.5, numpy.nan, dataOut.data_snr) | |||
|
476 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.1, numpy.nan, dataOut.data_snr) | |||
|
477 | #dataOut.data_snr = numpy.where(10*numpy.log10(dataOut.data_snr)<.0, numpy.nan, dataOut.data_snr) | |||
|
478 | #dataOut.data_snr = numpy.where(dataOut.data_snr<.05, numpy.nan, dataOut.data_snr) | |||
|
479 | #dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) | |||
|
480 | dataOut.snl = numpy.where(dataOut.snl<-1, numpy.nan, dataOut.snl) | |||
|
481 | ''' | |||
|
482 | import matplotlib.pyplot as plt | |||
|
483 | #plt.plot(10*numpy.log10(dataOut.data_snr[0]),dataOut.heightList) | |||
|
484 | plt.plot(dataOut.data_snr[0],dataOut.heightList)#,marker='*') | |||
|
485 | plt.xlim(-1,10) | |||
|
486 | plt.axvline(1,color='k') | |||
|
487 | plt.axvline(.1,color='k',linestyle='--') | |||
|
488 | plt.grid() | |||
|
489 | plt.show() | |||
|
490 | ''' | |||
|
491 | #dataOut.data_snr = 10*numpy.log10(dataOut.data_snr) | |||
|
492 | #dataOut.data_snr = numpy.expand_dims(dataOut.data_snr,axis=0) | |||
|
493 | #print(dataOut.data_snr.shape) | |||
|
494 | #exit(1) | |||
|
495 | #print("Before: ", dataOut.data_snr[0]) | |||
|
496 | ||||
|
497 | ||||
|
498 | return dataOut | |||
|
499 | ||||
|
500 | class removeDC(Operation): | |||
|
501 | ||||
|
502 | def run(self, dataOut, mode=2): | |||
|
503 | self.dataOut = dataOut | |||
|
504 | jspectra = self.dataOut.data_spc | |||
|
505 | jcspectra = self.dataOut.data_cspc | |||
|
506 | ||||
|
507 | num_chan = jspectra.shape[0] | |||
|
508 | num_hei = jspectra.shape[2] | |||
|
509 | ||||
|
510 | if jcspectra is not None: | |||
|
511 | jcspectraExist = True | |||
|
512 | num_pairs = jcspectra.shape[0] | |||
|
513 | else: | |||
|
514 | jcspectraExist = False | |||
|
515 | ||||
|
516 | freq_dc = int(jspectra.shape[1] / 2) | |||
|
517 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |||
|
518 | ind_vel = ind_vel.astype(int) | |||
|
519 | ||||
|
520 | if ind_vel[0] < 0: | |||
|
521 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |||
|
522 | ||||
|
523 | if mode == 1: | |||
|
524 | jspectra[:, freq_dc, :] = ( | |||
|
525 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |||
|
526 | ||||
|
527 | if jcspectraExist: | |||
|
528 | jcspectra[:, freq_dc, :] = ( | |||
|
529 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |||
|
530 | ||||
|
531 | if mode == 2: | |||
|
532 | ||||
|
533 | vel = numpy.array([-2, -1, 1, 2]) | |||
|
534 | xx = numpy.zeros([4, 4]) | |||
|
535 | ||||
|
536 | for fil in range(4): | |||
|
537 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |||
|
538 | ||||
|
539 | xx_inv = numpy.linalg.inv(xx) | |||
|
540 | xx_aux = xx_inv[0, :] | |||
|
541 | ||||
|
542 | for ich in range(num_chan): | |||
|
543 | yy = jspectra[ich, ind_vel, :] | |||
|
544 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |||
|
545 | ||||
|
546 | junkid = jspectra[ich, freq_dc, :] <= 0 | |||
|
547 | cjunkid = sum(junkid) | |||
|
548 | ||||
|
549 | if cjunkid.any(): | |||
|
550 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |||
|
551 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |||
|
552 | ||||
|
553 | if jcspectraExist: | |||
|
554 | for ip in range(num_pairs): | |||
|
555 | yy = jcspectra[ip, ind_vel, :] | |||
|
556 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |||
|
557 | ||||
|
558 | self.dataOut.data_spc = jspectra | |||
|
559 | self.dataOut.data_cspc = jcspectra | |||
|
560 | ||||
|
561 | return self.dataOut | |||
|
562 | ||||
|
563 | class removeInterference(Operation): | |||
|
564 | ||||
|
565 | def removeInterference2(self): | |||
|
566 | ||||
|
567 | cspc = self.dataOut.data_cspc | |||
|
568 | spc = self.dataOut.data_spc | |||
|
569 | Heights = numpy.arange(cspc.shape[2]) | |||
|
570 | realCspc = numpy.abs(cspc) | |||
|
571 | ||||
|
572 | for i in range(cspc.shape[0]): | |||
|
573 | LinePower= numpy.sum(realCspc[i], axis=0) | |||
|
574 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |||
|
575 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |||
|
576 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |||
|
577 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |||
|
578 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |||
|
579 | ||||
|
580 | ||||
|
581 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |||
|
582 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |||
|
583 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |||
|
584 | cspc[i,InterferenceRange,:] = numpy.NaN | |||
|
585 | ||||
|
586 | self.dataOut.data_cspc = cspc | |||
|
587 | ||||
|
588 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |||
|
589 | ||||
|
590 | jspectra = self.dataOut.data_spc | |||
|
591 | jcspectra = self.dataOut.data_cspc | |||
|
592 | jnoise = self.dataOut.getNoise() | |||
|
593 | num_incoh = self.dataOut.nIncohInt | |||
|
594 | ||||
|
595 | num_channel = jspectra.shape[0] | |||
|
596 | num_prof = jspectra.shape[1] | |||
|
597 | num_hei = jspectra.shape[2] | |||
|
598 | ||||
|
599 | # hei_interf | |||
|
600 | if hei_interf is None: | |||
|
601 | count_hei = int(num_hei / 2) | |||
|
602 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |||
|
603 | hei_interf = numpy.asarray(hei_interf)[0] | |||
|
604 | # nhei_interf | |||
|
605 | if (nhei_interf == None): | |||
|
606 | nhei_interf = 5 | |||
|
607 | if (nhei_interf < 1): | |||
|
608 | nhei_interf = 1 | |||
|
609 | if (nhei_interf > count_hei): | |||
|
610 | nhei_interf = count_hei | |||
|
611 | if (offhei_interf == None): | |||
|
612 | offhei_interf = 0 | |||
|
613 | ||||
|
614 | ind_hei = list(range(num_hei)) | |||
|
615 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |||
|
616 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |||
|
617 | mask_prof = numpy.asarray(list(range(num_prof))) | |||
|
618 | num_mask_prof = mask_prof.size | |||
|
619 | comp_mask_prof = [0, num_prof / 2] | |||
|
620 | ||||
|
621 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |||
|
622 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |||
|
623 | jnoise = numpy.nan | |||
|
624 | noise_exist = jnoise[0] < numpy.Inf | |||
|
625 | ||||
|
626 | # Subrutina de Remocion de la Interferencia | |||
|
627 | for ich in range(num_channel): | |||
|
628 | # Se ordena los espectros segun su potencia (menor a mayor) | |||
|
629 | power = jspectra[ich, mask_prof, :] | |||
|
630 | power = power[:, hei_interf] | |||
|
631 | power = power.sum(axis=0) | |||
|
632 | psort = power.ravel().argsort() | |||
|
633 | ||||
|
634 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |||
|
635 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |||
|
636 | offhei_interf, nhei_interf + offhei_interf))]]] | |||
|
637 | ||||
|
638 | if noise_exist: | |||
|
639 | # tmp_noise = jnoise[ich] / num_prof | |||
|
640 | tmp_noise = jnoise[ich] | |||
|
641 | junkspc_interf = junkspc_interf - tmp_noise | |||
|
642 | #junkspc_interf[:,comp_mask_prof] = 0 | |||
|
643 | ||||
|
644 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |||
|
645 | jspc_interf = jspc_interf.transpose() | |||
|
646 | # Calculando el espectro de interferencia promedio | |||
|
647 | noiseid = numpy.where( | |||
|
648 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |||
|
649 | noiseid = noiseid[0] | |||
|
650 | cnoiseid = noiseid.size | |||
|
651 | interfid = numpy.where( | |||
|
652 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |||
|
653 | interfid = interfid[0] | |||
|
654 | cinterfid = interfid.size | |||
|
655 | ||||
|
656 | if (cnoiseid > 0): | |||
|
657 | jspc_interf[noiseid] = 0 | |||
|
658 | ||||
|
659 | # Expandiendo los perfiles a limpiar | |||
|
660 | if (cinterfid > 0): | |||
|
661 | new_interfid = ( | |||
|
662 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |||
|
663 | new_interfid = numpy.asarray(new_interfid) | |||
|
664 | new_interfid = {x for x in new_interfid} | |||
|
665 | new_interfid = numpy.array(list(new_interfid)) | |||
|
666 | new_cinterfid = new_interfid.size | |||
|
667 | else: | |||
|
668 | new_cinterfid = 0 | |||
|
669 | ||||
|
670 | for ip in range(new_cinterfid): | |||
|
671 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |||
|
672 | jspc_interf[new_interfid[ip] | |||
|
673 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |||
|
674 | ||||
|
675 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |||
|
676 | ind_hei] - jspc_interf # Corregir indices | |||
|
677 | ||||
|
678 | # Removiendo la interferencia del punto de mayor interferencia | |||
|
679 | ListAux = jspc_interf[mask_prof].tolist() | |||
|
680 | maxid = ListAux.index(max(ListAux)) | |||
|
681 | ||||
|
682 | if cinterfid > 0: | |||
|
683 | for ip in range(cinterfid * (interf == 2) - 1): | |||
|
684 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |||
|
685 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |||
|
686 | cind = len(ind) | |||
|
687 | ||||
|
688 | if (cind > 0): | |||
|
689 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |||
|
690 | (1 + (numpy.random.uniform(cind) - 0.5) / | |||
|
691 | numpy.sqrt(num_incoh)) | |||
|
692 | ||||
|
693 | ind = numpy.array([-2, -1, 1, 2]) | |||
|
694 | xx = numpy.zeros([4, 4]) | |||
|
695 | ||||
|
696 | for id1 in range(4): | |||
|
697 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |||
|
698 | ||||
|
699 | xx_inv = numpy.linalg.inv(xx) | |||
|
700 | xx = xx_inv[:, 0] | |||
|
701 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |||
|
702 | yy = jspectra[ich, mask_prof[ind], :] | |||
|
703 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |||
|
704 | yy.transpose(), xx) | |||
|
705 | ||||
|
706 | indAux = (jspectra[ich, :, :] < tmp_noise * | |||
|
707 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |||
|
708 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |||
|
709 | (1 - 1 / numpy.sqrt(num_incoh)) | |||
|
710 | ||||
|
711 | # Remocion de Interferencia en el Cross Spectra | |||
|
712 | if jcspectra is None: | |||
|
713 | return jspectra, jcspectra | |||
|
714 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |||
|
715 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |||
|
716 | ||||
|
717 | for ip in range(num_pairs): | |||
|
718 | ||||
|
719 | #------------------------------------------- | |||
|
720 | ||||
|
721 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |||
|
722 | cspower = cspower[:, hei_interf] | |||
|
723 | cspower = cspower.sum(axis=0) | |||
|
724 | ||||
|
725 | cspsort = cspower.ravel().argsort() | |||
|
726 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |||
|
727 | offhei_interf, nhei_interf + offhei_interf))]]] | |||
|
728 | junkcspc_interf = junkcspc_interf.transpose() | |||
|
729 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |||
|
730 | ||||
|
731 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |||
|
732 | ||||
|
733 | median_real = int(numpy.median(numpy.real( | |||
|
734 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |||
|
735 | median_imag = int(numpy.median(numpy.imag( | |||
|
736 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |||
|
737 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |||
|
738 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |||
|
739 | median_real, median_imag) | |||
|
740 | ||||
|
741 | for iprof in range(num_prof): | |||
|
742 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |||
|
743 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |||
|
744 | ||||
|
745 | # Removiendo la Interferencia | |||
|
746 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |||
|
747 | :, ind_hei] - jcspc_interf | |||
|
748 | ||||
|
749 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |||
|
750 | maxid = ListAux.index(max(ListAux)) | |||
|
751 | ||||
|
752 | ind = numpy.array([-2, -1, 1, 2]) | |||
|
753 | xx = numpy.zeros([4, 4]) | |||
|
754 | ||||
|
755 | for id1 in range(4): | |||
|
756 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |||
|
757 | ||||
|
758 | xx_inv = numpy.linalg.inv(xx) | |||
|
759 | xx = xx_inv[:, 0] | |||
|
760 | ||||
|
761 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |||
|
762 | yy = jcspectra[ip, mask_prof[ind], :] | |||
|
763 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |||
|
764 | ||||
|
765 | # Guardar Resultados | |||
|
766 | self.dataOut.data_spc = jspectra | |||
|
767 | self.dataOut.data_cspc = jcspectra | |||
|
768 | ||||
|
769 | return 1 | |||
|
770 | ||||
|
771 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |||
|
772 | ||||
|
773 | self.dataOut = dataOut | |||
|
774 | ||||
|
775 | if mode == 1: | |||
|
776 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |||
|
777 | elif mode == 2: | |||
|
778 | self.removeInterference2() | |||
|
779 | ||||
|
780 | return self.dataOut | |||
|
781 | ||||
|
782 | ||||
|
783 | class IncohInt(Operation): | |||
|
784 | ||||
|
785 | __profIndex = 0 | |||
|
786 | __withOverapping = False | |||
|
787 | ||||
|
788 | __byTime = False | |||
|
789 | __initime = None | |||
|
790 | __lastdatatime = None | |||
|
791 | __integrationtime = None | |||
|
792 | ||||
|
793 | __buffer_spc = None | |||
|
794 | __buffer_cspc = None | |||
|
795 | __buffer_dc = None | |||
|
796 | ||||
|
797 | __dataReady = False | |||
|
798 | ||||
|
799 | __timeInterval = None | |||
|
800 | ||||
|
801 | n = None | |||
|
802 | ||||
|
803 | def __init__(self): | |||
|
804 | ||||
|
805 | Operation.__init__(self) | |||
|
806 | ||||
|
807 | def setup(self, n=None, timeInterval=None, overlapping=False): | |||
|
808 | """ | |||
|
809 | Set the parameters of the integration class. | |||
|
810 | ||||
|
811 | Inputs: | |||
|
812 | ||||
|
813 | n : Number of coherent integrations | |||
|
814 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |||
|
815 | overlapping : | |||
|
816 | ||||
|
817 | """ | |||
|
818 | ||||
|
819 | self.__initime = None | |||
|
820 | self.__lastdatatime = 0 | |||
|
821 | ||||
|
822 | self.__buffer_spc = 0 | |||
|
823 | self.__buffer_cspc = 0 | |||
|
824 | self.__buffer_dc = 0 | |||
|
825 | ||||
|
826 | self.__profIndex = 0 | |||
|
827 | self.__dataReady = False | |||
|
828 | self.__byTime = False | |||
|
829 | ||||
|
830 | if n is None and timeInterval is None: | |||
|
831 | raise ValueError("n or timeInterval should be specified ...") | |||
|
832 | ||||
|
833 | if n is not None: | |||
|
834 | self.n = int(n) | |||
|
835 | else: | |||
|
836 | ||||
|
837 | self.__integrationtime = int(timeInterval) | |||
|
838 | self.n = None | |||
|
839 | self.__byTime = True | |||
|
840 | ||||
|
841 | def putData(self, data_spc, data_cspc, data_dc): | |||
|
842 | """ | |||
|
843 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |||
|
844 | ||||
|
845 | """ | |||
|
846 | ||||
|
847 | self.__buffer_spc += data_spc | |||
|
848 | ||||
|
849 | if data_cspc is None: | |||
|
850 | self.__buffer_cspc = None | |||
|
851 | else: | |||
|
852 | self.__buffer_cspc += data_cspc | |||
|
853 | ||||
|
854 | if data_dc is None: | |||
|
855 | self.__buffer_dc = None | |||
|
856 | else: | |||
|
857 | self.__buffer_dc += data_dc | |||
|
858 | ||||
|
859 | self.__profIndex += 1 | |||
|
860 | ||||
|
861 | return | |||
|
862 | ||||
|
863 | def pushData(self): | |||
|
864 | """ | |||
|
865 | Return the sum of the last profiles and the profiles used in the sum. | |||
|
866 | ||||
|
867 | Affected: | |||
|
868 | ||||
|
869 | self.__profileIndex | |||
|
870 | ||||
|
871 | """ | |||
|
872 | ||||
|
873 | data_spc = self.__buffer_spc | |||
|
874 | data_cspc = self.__buffer_cspc | |||
|
875 | data_dc = self.__buffer_dc | |||
|
876 | n = self.__profIndex | |||
|
877 | ||||
|
878 | self.__buffer_spc = 0 | |||
|
879 | self.__buffer_cspc = 0 | |||
|
880 | self.__buffer_dc = 0 | |||
|
881 | self.__profIndex = 0 | |||
|
882 | ||||
|
883 | return data_spc, data_cspc, data_dc, n | |||
|
884 | ||||
|
885 | def byProfiles(self, *args): | |||
|
886 | ||||
|
887 | self.__dataReady = False | |||
|
888 | avgdata_spc = None | |||
|
889 | avgdata_cspc = None | |||
|
890 | avgdata_dc = None | |||
|
891 | ||||
|
892 | self.putData(*args) | |||
|
893 | ||||
|
894 | if self.__profIndex == self.n: | |||
|
895 | ||||
|
896 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |||
|
897 | self.n = n | |||
|
898 | self.__dataReady = True | |||
|
899 | ||||
|
900 | return avgdata_spc, avgdata_cspc, avgdata_dc | |||
|
901 | ||||
|
902 | def byTime(self, datatime, *args): | |||
|
903 | ||||
|
904 | self.__dataReady = False | |||
|
905 | avgdata_spc = None | |||
|
906 | avgdata_cspc = None | |||
|
907 | avgdata_dc = None | |||
|
908 | ||||
|
909 | self.putData(*args) | |||
|
910 | ||||
|
911 | if (datatime - self.__initime) >= self.__integrationtime: | |||
|
912 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |||
|
913 | self.n = n | |||
|
914 | self.__dataReady = True | |||
|
915 | ||||
|
916 | return avgdata_spc, avgdata_cspc, avgdata_dc | |||
|
917 | ||||
|
918 | def integrate(self, datatime, *args): | |||
|
919 | ||||
|
920 | if self.__profIndex == 0: | |||
|
921 | self.__initime = datatime | |||
|
922 | ||||
|
923 | if self.__byTime: | |||
|
924 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |||
|
925 | datatime, *args) | |||
|
926 | else: | |||
|
927 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |||
|
928 | ||||
|
929 | if not self.__dataReady: | |||
|
930 | return None, None, None, None | |||
|
931 | ||||
|
932 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |||
|
933 | ||||
|
934 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |||
|
935 | if n == 1: | |||
|
936 | return dataOut | |||
|
937 | print("JERE") | |||
|
938 | dataOut.flagNoData = True | |||
|
939 | ||||
|
940 | if not self.isConfig: | |||
|
941 | self.setup(n, timeInterval, overlapping) | |||
|
942 | self.isConfig = True | |||
|
943 | ||||
|
944 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |||
|
945 | dataOut.data_spc, | |||
|
946 | dataOut.data_cspc, | |||
|
947 | dataOut.data_dc) | |||
|
948 | ||||
|
949 | if self.__dataReady: | |||
|
950 | ||||
|
951 | dataOut.data_spc = avgdata_spc | |||
|
952 | print(numpy.sum(dataOut.data_spc)) | |||
|
953 | exit(1) | |||
|
954 | dataOut.data_cspc = avgdata_cspc | |||
|
955 | dataOut.data_dc = avgdata_dc | |||
|
956 | dataOut.nIncohInt *= self.n | |||
|
957 | dataOut.utctime = avgdatatime | |||
|
958 | dataOut.flagNoData = False | |||
|
959 | ||||
|
960 | return dataOut | |||
|
961 | ||||
|
962 | class dopplerFlip(Operation): | |||
|
963 | ||||
|
964 | def run(self, dataOut, chann = None): | |||
|
965 | # arreglo 1: (num_chan, num_profiles, num_heights) | |||
|
966 | self.dataOut = dataOut | |||
|
967 | # JULIA-oblicua, indice 2 | |||
|
968 | # arreglo 2: (num_profiles, num_heights) | |||
|
969 | jspectra = self.dataOut.data_spc[chann] | |||
|
970 | jspectra_tmp = numpy.zeros(jspectra.shape) | |||
|
971 | num_profiles = jspectra.shape[0] | |||
|
972 | freq_dc = int(num_profiles / 2) | |||
|
973 | # Flip con for | |||
|
974 | for j in range(num_profiles): | |||
|
975 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |||
|
976 | # Intercambio perfil de DC con perfil inmediato anterior | |||
|
977 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |||
|
978 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |||
|
979 | # canal modificado es re-escrito en el arreglo de canales | |||
|
980 | self.dataOut.data_spc[chann] = jspectra_tmp | |||
|
981 | ||||
|
982 | return self.dataOut |
This diff has been collapsed as it changes many lines, (1644 lines changed) Show them Hide them | |||||
@@ -0,0 +1,1644 | |||||
|
1 | ||||
|
2 | import os | |||
|
3 | import sys | |||
|
4 | import numpy, math | |||
|
5 | from scipy import interpolate | |||
|
6 | from scipy.optimize import nnls | |||
|
7 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |||
|
8 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |||
|
9 | from schainpy.utils import log | |||
|
10 | from time import time, mktime, strptime, gmtime, ctime | |||
|
11 | from scipy.optimize import least_squares | |||
|
12 | import datetime | |||
|
13 | import collections.abc | |||
|
14 | ||||
|
15 | try: | |||
|
16 | from schainpy.model.proc import fitacf_guess | |||
|
17 | from schainpy.model.proc import fitacf_fit_short | |||
|
18 | from schainpy.model.proc import fitacf_acf2 | |||
|
19 | from schainpy.model.proc import full_profile_profile | |||
|
20 | except: | |||
|
21 | log.warning('Missing Faraday fortran libs') | |||
|
22 | ||||
|
23 | class VoltageProc(ProcessingUnit): | |||
|
24 | ||||
|
25 | def __init__(self): | |||
|
26 | ||||
|
27 | ProcessingUnit.__init__(self) | |||
|
28 | ||||
|
29 | self.dataOut = Voltage() | |||
|
30 | self.flip = 1 | |||
|
31 | self.setupReq = False | |||
|
32 | ||||
|
33 | def run(self, runNextUnit = 0): | |||
|
34 | ||||
|
35 | if self.dataIn.type == 'AMISR': | |||
|
36 | self.__updateObjFromAmisrInput() | |||
|
37 | ||||
|
38 | if self.dataIn.type == 'Voltage': | |||
|
39 | self.dataOut.copy(self.dataIn) | |||
|
40 | self.dataOut.runNextUnit = runNextUnit | |||
|
41 | ||||
|
42 | def __updateObjFromAmisrInput(self): | |||
|
43 | ||||
|
44 | self.dataOut.timeZone = self.dataIn.timeZone | |||
|
45 | self.dataOut.dstFlag = self.dataIn.dstFlag | |||
|
46 | self.dataOut.errorCount = self.dataIn.errorCount | |||
|
47 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |||
|
48 | ||||
|
49 | self.dataOut.flagNoData = self.dataIn.flagNoData | |||
|
50 | self.dataOut.data = self.dataIn.data | |||
|
51 | self.dataOut.utctime = self.dataIn.utctime | |||
|
52 | self.dataOut.channelList = self.dataIn.channelList | |||
|
53 | #self.dataOut.timeInterval = self.dataIn.timeInterval | |||
|
54 | self.dataOut.heightList = self.dataIn.heightList | |||
|
55 | self.dataOut.nProfiles = self.dataIn.nProfiles | |||
|
56 | ||||
|
57 | self.dataOut.nCohInt = self.dataIn.nCohInt | |||
|
58 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |||
|
59 | self.dataOut.frequency = self.dataIn.frequency | |||
|
60 | ||||
|
61 | self.dataOut.azimuth = self.dataIn.azimuth | |||
|
62 | self.dataOut.zenith = self.dataIn.zenith | |||
|
63 | ||||
|
64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |||
|
65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |||
|
66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |||
|
67 | ||||
|
68 | ||||
|
69 | class selectChannels(Operation): | |||
|
70 | ||||
|
71 | def run(self, dataOut, channelList): | |||
|
72 | ||||
|
73 | channelIndexList = [] | |||
|
74 | self.dataOut = dataOut | |||
|
75 | for channel in channelList: | |||
|
76 | if channel not in self.dataOut.channelList: | |||
|
77 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) | |||
|
78 | ||||
|
79 | index = self.dataOut.channelList.index(channel) | |||
|
80 | channelIndexList.append(index) | |||
|
81 | self.selectChannelsByIndex(channelIndexList) | |||
|
82 | return self.dataOut | |||
|
83 | ||||
|
84 | def selectChannelsByIndex(self, channelIndexList): | |||
|
85 | """ | |||
|
86 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |||
|
87 | ||||
|
88 | Input: | |||
|
89 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |||
|
90 | ||||
|
91 | Affected: | |||
|
92 | self.dataOut.data | |||
|
93 | self.dataOut.channelIndexList | |||
|
94 | self.dataOut.nChannels | |||
|
95 | self.dataOut.m_ProcessingHeader.totalSpectra | |||
|
96 | self.dataOut.systemHeaderObj.numChannels | |||
|
97 | self.dataOut.m_ProcessingHeader.blockSize | |||
|
98 | ||||
|
99 | Return: | |||
|
100 | None | |||
|
101 | """ | |||
|
102 | ||||
|
103 | for channelIndex in channelIndexList: | |||
|
104 | if channelIndex not in self.dataOut.channelIndexList: | |||
|
105 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) | |||
|
106 | ||||
|
107 | if self.dataOut.type == 'Voltage': | |||
|
108 | if self.dataOut.flagDataAsBlock: | |||
|
109 | """ | |||
|
110 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |||
|
111 | """ | |||
|
112 | data = self.dataOut.data[channelIndexList,:,:] | |||
|
113 | else: | |||
|
114 | data = self.dataOut.data[channelIndexList,:] | |||
|
115 | ||||
|
116 | self.dataOut.data = data | |||
|
117 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |||
|
118 | self.dataOut.channelList = range(len(channelIndexList)) | |||
|
119 | ||||
|
120 | elif self.dataOut.type == 'Spectra': | |||
|
121 | data_spc = self.dataOut.data_spc[channelIndexList, :] | |||
|
122 | data_dc = self.dataOut.data_dc[channelIndexList, :] | |||
|
123 | ||||
|
124 | self.dataOut.data_spc = data_spc | |||
|
125 | self.dataOut.data_dc = data_dc | |||
|
126 | ||||
|
127 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |||
|
128 | self.dataOut.channelList = range(len(channelIndexList)) | |||
|
129 | self.__selectPairsByChannel(channelIndexList) | |||
|
130 | ||||
|
131 | return 1 | |||
|
132 | ||||
|
133 | def __selectPairsByChannel(self, channelList=None): | |||
|
134 | ||||
|
135 | if channelList == None: | |||
|
136 | return | |||
|
137 | ||||
|
138 | pairsIndexListSelected = [] | |||
|
139 | for pairIndex in self.dataOut.pairsIndexList: | |||
|
140 | # First pair | |||
|
141 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |||
|
142 | continue | |||
|
143 | # Second pair | |||
|
144 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |||
|
145 | continue | |||
|
146 | ||||
|
147 | pairsIndexListSelected.append(pairIndex) | |||
|
148 | ||||
|
149 | if not pairsIndexListSelected: | |||
|
150 | self.dataOut.data_cspc = None | |||
|
151 | self.dataOut.pairsList = [] | |||
|
152 | return | |||
|
153 | ||||
|
154 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |||
|
155 | self.dataOut.pairsList = [self.dataOut.pairsList[i] | |||
|
156 | for i in pairsIndexListSelected] | |||
|
157 | ||||
|
158 | return | |||
|
159 | ||||
|
160 | class selectHeights(Operation): | |||
|
161 | ||||
|
162 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |||
|
163 | """ | |||
|
164 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |||
|
165 | minHei <= height <= maxHei | |||
|
166 | ||||
|
167 | Input: | |||
|
168 | minHei : valor minimo de altura a considerar | |||
|
169 | maxHei : valor maximo de altura a considerar | |||
|
170 | ||||
|
171 | Affected: | |||
|
172 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |||
|
173 | ||||
|
174 | Return: | |||
|
175 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |||
|
176 | """ | |||
|
177 | ||||
|
178 | self.dataOut = dataOut | |||
|
179 | ||||
|
180 | if minHei and maxHei: | |||
|
181 | ||||
|
182 | if (minHei < self.dataOut.heightList[0]): | |||
|
183 | minHei = self.dataOut.heightList[0] | |||
|
184 | ||||
|
185 | if (maxHei > self.dataOut.heightList[-1]): | |||
|
186 | maxHei = self.dataOut.heightList[-1] | |||
|
187 | ||||
|
188 | minIndex = 0 | |||
|
189 | maxIndex = 0 | |||
|
190 | heights = self.dataOut.heightList | |||
|
191 | ||||
|
192 | inda = numpy.where(heights >= minHei) | |||
|
193 | indb = numpy.where(heights <= maxHei) | |||
|
194 | ||||
|
195 | try: | |||
|
196 | minIndex = inda[0][0] | |||
|
197 | except: | |||
|
198 | minIndex = 0 | |||
|
199 | ||||
|
200 | try: | |||
|
201 | maxIndex = indb[0][-1] | |||
|
202 | except: | |||
|
203 | maxIndex = len(heights) | |||
|
204 | ||||
|
205 | self.selectHeightsByIndex(minIndex, maxIndex) | |||
|
206 | ||||
|
207 | return self.dataOut | |||
|
208 | ||||
|
209 | def selectHeightsByIndex(self, minIndex, maxIndex): | |||
|
210 | """ | |||
|
211 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |||
|
212 | minIndex <= index <= maxIndex | |||
|
213 | ||||
|
214 | Input: | |||
|
215 | minIndex : valor de indice minimo de altura a considerar | |||
|
216 | maxIndex : valor de indice maximo de altura a considerar | |||
|
217 | ||||
|
218 | Affected: | |||
|
219 | self.dataOut.data | |||
|
220 | self.dataOut.heightList | |||
|
221 | ||||
|
222 | Return: | |||
|
223 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |||
|
224 | """ | |||
|
225 | ||||
|
226 | if self.dataOut.type == 'Voltage': | |||
|
227 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
228 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |||
|
229 | ||||
|
230 | if (maxIndex >= self.dataOut.nHeights): | |||
|
231 | maxIndex = self.dataOut.nHeights | |||
|
232 | ||||
|
233 | #voltage | |||
|
234 | if self.dataOut.flagDataAsBlock: | |||
|
235 | """ | |||
|
236 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |||
|
237 | """ | |||
|
238 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |||
|
239 | else: | |||
|
240 | data = self.dataOut.data[:, minIndex:maxIndex] | |||
|
241 | ||||
|
242 | # firstHeight = self.dataOut.heightList[minIndex] | |||
|
243 | ||||
|
244 | self.dataOut.data = data | |||
|
245 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |||
|
246 | ||||
|
247 | if self.dataOut.nHeights <= 1: | |||
|
248 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) | |||
|
249 | elif self.dataOut.type == 'Spectra': | |||
|
250 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
251 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |||
|
252 | minIndex, maxIndex)) | |||
|
253 | ||||
|
254 | if (maxIndex >= self.dataOut.nHeights): | |||
|
255 | maxIndex = self.dataOut.nHeights - 1 | |||
|
256 | ||||
|
257 | # Spectra | |||
|
258 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |||
|
259 | ||||
|
260 | data_cspc = None | |||
|
261 | if self.dataOut.data_cspc is not None: | |||
|
262 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |||
|
263 | ||||
|
264 | data_dc = None | |||
|
265 | if self.dataOut.data_dc is not None: | |||
|
266 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |||
|
267 | ||||
|
268 | self.dataOut.data_spc = data_spc | |||
|
269 | self.dataOut.data_cspc = data_cspc | |||
|
270 | self.dataOut.data_dc = data_dc | |||
|
271 | ||||
|
272 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |||
|
273 | ||||
|
274 | return 1 | |||
|
275 | ||||
|
276 | ||||
|
277 | class filterByHeights(Operation): | |||
|
278 | ||||
|
279 | def run(self, dataOut, window): | |||
|
280 | ||||
|
281 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
282 | ||||
|
283 | if window == None: | |||
|
284 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |||
|
285 | ||||
|
286 | newdelta = deltaHeight * window | |||
|
287 | r = dataOut.nHeights % window | |||
|
288 | newheights = (dataOut.nHeights-r)/window | |||
|
289 | ||||
|
290 | if newheights <= 1: | |||
|
291 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |||
|
292 | ||||
|
293 | if dataOut.flagDataAsBlock: | |||
|
294 | """ | |||
|
295 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |||
|
296 | """ | |||
|
297 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] | |||
|
298 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) | |||
|
299 | buffer = numpy.sum(buffer,3) | |||
|
300 | ||||
|
301 | else: | |||
|
302 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] | |||
|
303 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) | |||
|
304 | buffer = numpy.sum(buffer,2) | |||
|
305 | ||||
|
306 | dataOut.data = buffer | |||
|
307 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |||
|
308 | dataOut.windowOfFilter = window | |||
|
309 | ||||
|
310 | return dataOut | |||
|
311 | ||||
|
312 | ||||
|
313 | class setH0(Operation): | |||
|
314 | ||||
|
315 | def run(self, dataOut, h0, deltaHeight = None): | |||
|
316 | ||||
|
317 | if not deltaHeight: | |||
|
318 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
319 | ||||
|
320 | nHeights = dataOut.nHeights | |||
|
321 | ||||
|
322 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |||
|
323 | ||||
|
324 | dataOut.heightList = newHeiRange | |||
|
325 | ||||
|
326 | return dataOut | |||
|
327 | ||||
|
328 | ||||
|
329 | class deFlip(Operation): | |||
|
330 | def __init__(self): | |||
|
331 | ||||
|
332 | self.flip = 1 | |||
|
333 | ||||
|
334 | def run(self, dataOut, channelList = []): | |||
|
335 | ||||
|
336 | data = dataOut.data.copy() | |||
|
337 | ||||
|
338 | if channelList==1: #PARCHE #Lista de un solo canal produce error | |||
|
339 | channelList=[1] | |||
|
340 | ||||
|
341 | dataOut.FlipChannels=channelList | |||
|
342 | if dataOut.flagDataAsBlock: | |||
|
343 | flip = self.flip | |||
|
344 | profileList = list(range(dataOut.nProfiles)) | |||
|
345 | ||||
|
346 | if not channelList: | |||
|
347 | for thisProfile in profileList: | |||
|
348 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |||
|
349 | flip *= -1.0 | |||
|
350 | else: | |||
|
351 | for thisChannel in channelList: | |||
|
352 | if thisChannel not in dataOut.channelList: | |||
|
353 | continue | |||
|
354 | ||||
|
355 | for thisProfile in profileList: | |||
|
356 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |||
|
357 | flip *= -1.0 | |||
|
358 | ||||
|
359 | self.flip = flip | |||
|
360 | ||||
|
361 | else: | |||
|
362 | if not channelList: | |||
|
363 | data[:,:] = data[:,:]*self.flip | |||
|
364 | else: | |||
|
365 | for thisChannel in channelList: | |||
|
366 | if thisChannel not in dataOut.channelList: | |||
|
367 | continue | |||
|
368 | ||||
|
369 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |||
|
370 | ||||
|
371 | self.flip *= -1. | |||
|
372 | ||||
|
373 | dataOut.data = data | |||
|
374 | ||||
|
375 | return dataOut | |||
|
376 | ||||
|
377 | ||||
|
378 | class setAttribute(Operation): | |||
|
379 | ''' | |||
|
380 | Set an arbitrary attribute(s) to dataOut | |||
|
381 | ''' | |||
|
382 | ||||
|
383 | def __init__(self): | |||
|
384 | ||||
|
385 | Operation.__init__(self) | |||
|
386 | self._ready = False | |||
|
387 | ||||
|
388 | def run(self, dataOut, **kwargs): | |||
|
389 | ||||
|
390 | for key, value in kwargs.items(): | |||
|
391 | setattr(dataOut, key, value) | |||
|
392 | ||||
|
393 | return dataOut | |||
|
394 | ||||
|
395 | ||||
|
396 | @MPDecorator | |||
|
397 | class printAttribute(Operation): | |||
|
398 | ''' | |||
|
399 | Print an arbitrary attribute of dataOut | |||
|
400 | ''' | |||
|
401 | ||||
|
402 | def __init__(self): | |||
|
403 | ||||
|
404 | Operation.__init__(self) | |||
|
405 | ||||
|
406 | def run(self, dataOut, attributes): | |||
|
407 | ||||
|
408 | if isinstance(attributes, str): | |||
|
409 | attributes = [attributes] | |||
|
410 | for attr in attributes: | |||
|
411 | if hasattr(dataOut, attr): | |||
|
412 | log.log(getattr(dataOut, attr), attr) | |||
|
413 | ||||
|
414 | ||||
|
415 | class interpolateHeights(Operation): | |||
|
416 | ||||
|
417 | def run(self, dataOut, topLim, botLim): | |||
|
418 | #69 al 72 para julia | |||
|
419 | #82-84 para meteoros | |||
|
420 | if len(numpy.shape(dataOut.data))==2: | |||
|
421 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 | |||
|
422 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |||
|
423 | #dataOut.data[:,botLim:limSup+1] = sampInterp | |||
|
424 | dataOut.data[:,botLim:topLim+1] = sampInterp | |||
|
425 | else: | |||
|
426 | nHeights = dataOut.data.shape[2] | |||
|
427 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |||
|
428 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] | |||
|
429 | f = interpolate.interp1d(x, y, axis = 2) | |||
|
430 | xnew = numpy.arange(botLim,topLim+1) | |||
|
431 | ynew = f(xnew) | |||
|
432 | dataOut.data[:,:,botLim:topLim+1] = ynew | |||
|
433 | ||||
|
434 | return dataOut | |||
|
435 | ||||
|
436 | ||||
|
437 | class CohInt(Operation): | |||
|
438 | ||||
|
439 | isConfig = False | |||
|
440 | __profIndex = 0 | |||
|
441 | __byTime = False | |||
|
442 | __initime = None | |||
|
443 | __lastdatatime = None | |||
|
444 | __integrationtime = None | |||
|
445 | __buffer = None | |||
|
446 | __bufferStride = [] | |||
|
447 | __dataReady = False | |||
|
448 | __profIndexStride = 0 | |||
|
449 | __dataToPutStride = False | |||
|
450 | n = None | |||
|
451 | ||||
|
452 | def __init__(self, **kwargs): | |||
|
453 | ||||
|
454 | Operation.__init__(self, **kwargs) | |||
|
455 | ||||
|
456 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |||
|
457 | """ | |||
|
458 | Set the parameters of the integration class. | |||
|
459 | ||||
|
460 | Inputs: | |||
|
461 | ||||
|
462 | n : Number of coherent integrations | |||
|
463 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |||
|
464 | overlapping : | |||
|
465 | """ | |||
|
466 | ||||
|
467 | self.__initime = None | |||
|
468 | self.__lastdatatime = 0 | |||
|
469 | self.__buffer = None | |||
|
470 | self.__dataReady = False | |||
|
471 | self.byblock = byblock | |||
|
472 | self.stride = stride | |||
|
473 | ||||
|
474 | if n == None and timeInterval == None: | |||
|
475 | raise ValueError("n or timeInterval should be specified ...") | |||
|
476 | ||||
|
477 | if n != None: | |||
|
478 | self.n = n | |||
|
479 | self.__byTime = False | |||
|
480 | else: | |||
|
481 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |||
|
482 | self.n = 9999 | |||
|
483 | self.__byTime = True | |||
|
484 | ||||
|
485 | if overlapping: | |||
|
486 | self.__withOverlapping = True | |||
|
487 | self.__buffer = None | |||
|
488 | else: | |||
|
489 | self.__withOverlapping = False | |||
|
490 | self.__buffer = 0 | |||
|
491 | ||||
|
492 | self.__profIndex = 0 | |||
|
493 | ||||
|
494 | def putData(self, data): | |||
|
495 | ||||
|
496 | """ | |||
|
497 | Add a profile to the __buffer and increase in one the __profileIndex | |||
|
498 | ||||
|
499 | """ | |||
|
500 | ||||
|
501 | if not self.__withOverlapping: | |||
|
502 | self.__buffer += data.copy() | |||
|
503 | self.__profIndex += 1 | |||
|
504 | return | |||
|
505 | ||||
|
506 | #Overlapping data | |||
|
507 | nChannels, nHeis = data.shape | |||
|
508 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |||
|
509 | ||||
|
510 | #If the buffer is empty then it takes the data value | |||
|
511 | if self.__buffer is None: | |||
|
512 | self.__buffer = data | |||
|
513 | self.__profIndex += 1 | |||
|
514 | return | |||
|
515 | ||||
|
516 | #If the buffer length is lower than n then stakcing the data value | |||
|
517 | if self.__profIndex < self.n: | |||
|
518 | self.__buffer = numpy.vstack((self.__buffer, data)) | |||
|
519 | self.__profIndex += 1 | |||
|
520 | return | |||
|
521 | ||||
|
522 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |||
|
523 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |||
|
524 | self.__buffer[self.n-1] = data | |||
|
525 | self.__profIndex = self.n | |||
|
526 | return | |||
|
527 | ||||
|
528 | ||||
|
529 | def pushData(self): | |||
|
530 | """ | |||
|
531 | Return the sum of the last profiles and the profiles used in the sum. | |||
|
532 | ||||
|
533 | Affected: | |||
|
534 | ||||
|
535 | self.__profileIndex | |||
|
536 | ||||
|
537 | """ | |||
|
538 | ||||
|
539 | if not self.__withOverlapping: | |||
|
540 | data = self.__buffer | |||
|
541 | n = self.__profIndex | |||
|
542 | ||||
|
543 | self.__buffer = 0 | |||
|
544 | self.__profIndex = 0 | |||
|
545 | ||||
|
546 | return data, n | |||
|
547 | ||||
|
548 | #Integration with Overlapping | |||
|
549 | data = numpy.sum(self.__buffer, axis=0) | |||
|
550 | # print data | |||
|
551 | # raise | |||
|
552 | n = self.__profIndex | |||
|
553 | ||||
|
554 | return data, n | |||
|
555 | ||||
|
556 | def byProfiles(self, data): | |||
|
557 | ||||
|
558 | self.__dataReady = False | |||
|
559 | avgdata = None | |||
|
560 | # n = None | |||
|
561 | # print data | |||
|
562 | # raise | |||
|
563 | self.putData(data) | |||
|
564 | ||||
|
565 | if self.__profIndex == self.n: | |||
|
566 | avgdata, n = self.pushData() | |||
|
567 | self.__dataReady = True | |||
|
568 | ||||
|
569 | return avgdata | |||
|
570 | ||||
|
571 | def byTime(self, data, datatime): | |||
|
572 | ||||
|
573 | self.__dataReady = False | |||
|
574 | avgdata = None | |||
|
575 | n = None | |||
|
576 | ||||
|
577 | self.putData(data) | |||
|
578 | ||||
|
579 | if (datatime - self.__initime) >= self.__integrationtime: | |||
|
580 | avgdata, n = self.pushData() | |||
|
581 | self.n = n | |||
|
582 | self.__dataReady = True | |||
|
583 | ||||
|
584 | return avgdata | |||
|
585 | ||||
|
586 | def integrateByStride(self, data, datatime): | |||
|
587 | # print data | |||
|
588 | if self.__profIndex == 0: | |||
|
589 | self.__buffer = [[data.copy(), datatime]] | |||
|
590 | else: | |||
|
591 | self.__buffer.append([data.copy(),datatime]) | |||
|
592 | self.__profIndex += 1 | |||
|
593 | self.__dataReady = False | |||
|
594 | ||||
|
595 | if self.__profIndex == self.n * self.stride : | |||
|
596 | self.__dataToPutStride = True | |||
|
597 | self.__profIndexStride = 0 | |||
|
598 | self.__profIndex = 0 | |||
|
599 | self.__bufferStride = [] | |||
|
600 | for i in range(self.stride): | |||
|
601 | current = self.__buffer[i::self.stride] | |||
|
602 | data = numpy.sum([t[0] for t in current], axis=0) | |||
|
603 | avgdatatime = numpy.average([t[1] for t in current]) | |||
|
604 | # print data | |||
|
605 | self.__bufferStride.append((data, avgdatatime)) | |||
|
606 | ||||
|
607 | if self.__dataToPutStride: | |||
|
608 | self.__dataReady = True | |||
|
609 | self.__profIndexStride += 1 | |||
|
610 | if self.__profIndexStride == self.stride: | |||
|
611 | self.__dataToPutStride = False | |||
|
612 | # print self.__bufferStride[self.__profIndexStride - 1] | |||
|
613 | # raise | |||
|
614 | return self.__bufferStride[self.__profIndexStride - 1] | |||
|
615 | ||||
|
616 | ||||
|
617 | return None, None | |||
|
618 | ||||
|
619 | def integrate(self, data, datatime=None): | |||
|
620 | ||||
|
621 | if self.__initime == None: | |||
|
622 | self.__initime = datatime | |||
|
623 | ||||
|
624 | if self.__byTime: | |||
|
625 | avgdata = self.byTime(data, datatime) | |||
|
626 | else: | |||
|
627 | avgdata = self.byProfiles(data) | |||
|
628 | ||||
|
629 | ||||
|
630 | self.__lastdatatime = datatime | |||
|
631 | ||||
|
632 | if avgdata is None: | |||
|
633 | return None, None | |||
|
634 | ||||
|
635 | avgdatatime = self.__initime | |||
|
636 | ||||
|
637 | deltatime = datatime - self.__lastdatatime | |||
|
638 | ||||
|
639 | if not self.__withOverlapping: | |||
|
640 | self.__initime = datatime | |||
|
641 | else: | |||
|
642 | self.__initime += deltatime | |||
|
643 | ||||
|
644 | return avgdata, avgdatatime | |||
|
645 | ||||
|
646 | def integrateByBlock(self, dataOut): | |||
|
647 | ||||
|
648 | times = int(dataOut.data.shape[1]/self.n) | |||
|
649 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |||
|
650 | ||||
|
651 | id_min = 0 | |||
|
652 | id_max = self.n | |||
|
653 | ||||
|
654 | for i in range(times): | |||
|
655 | junk = dataOut.data[:,id_min:id_max,:] | |||
|
656 | avgdata[:,i,:] = junk.sum(axis=1) | |||
|
657 | id_min += self.n | |||
|
658 | id_max += self.n | |||
|
659 | ||||
|
660 | timeInterval = dataOut.ippSeconds*self.n | |||
|
661 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |||
|
662 | self.__dataReady = True | |||
|
663 | return avgdata, avgdatatime | |||
|
664 | ||||
|
665 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |||
|
666 | ||||
|
667 | if not self.isConfig: | |||
|
668 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |||
|
669 | self.isConfig = True | |||
|
670 | if dataOut.flagDataAsBlock: | |||
|
671 | """ | |||
|
672 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |||
|
673 | """ | |||
|
674 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |||
|
675 | dataOut.nProfiles /= self.n | |||
|
676 | else: | |||
|
677 | if stride is None: | |||
|
678 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |||
|
679 | else: | |||
|
680 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |||
|
681 | ||||
|
682 | ||||
|
683 | # dataOut.timeInterval *= n | |||
|
684 | dataOut.flagNoData = True | |||
|
685 | ||||
|
686 | if self.__dataReady: | |||
|
687 | dataOut.data = avgdata | |||
|
688 | if not dataOut.flagCohInt: | |||
|
689 | dataOut.nCohInt *= self.n | |||
|
690 | dataOut.flagCohInt = True | |||
|
691 | dataOut.utctime = avgdatatime | |||
|
692 | # print avgdata, avgdatatime | |||
|
693 | # raise | |||
|
694 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |||
|
695 | dataOut.flagNoData = False | |||
|
696 | return dataOut | |||
|
697 | ||||
|
698 | class Decoder(Operation): | |||
|
699 | ||||
|
700 | isConfig = False | |||
|
701 | __profIndex = 0 | |||
|
702 | ||||
|
703 | code = None | |||
|
704 | ||||
|
705 | nCode = None | |||
|
706 | nBaud = None | |||
|
707 | ||||
|
708 | def __init__(self, **kwargs): | |||
|
709 | ||||
|
710 | Operation.__init__(self, **kwargs) | |||
|
711 | ||||
|
712 | self.times = None | |||
|
713 | self.osamp = None | |||
|
714 | # self.__setValues = False | |||
|
715 | self.isConfig = False | |||
|
716 | self.setupReq = False | |||
|
717 | def setup(self, code, osamp, dataOut): | |||
|
718 | ||||
|
719 | self.__profIndex = 0 | |||
|
720 | ||||
|
721 | self.code = code | |||
|
722 | ||||
|
723 | self.nCode = len(code) | |||
|
724 | self.nBaud = len(code[0]) | |||
|
725 | ||||
|
726 | if (osamp != None) and (osamp >1): | |||
|
727 | self.osamp = osamp | |||
|
728 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |||
|
729 | self.nBaud = self.nBaud*self.osamp | |||
|
730 | ||||
|
731 | self.__nChannels = dataOut.nChannels | |||
|
732 | self.__nProfiles = dataOut.nProfiles | |||
|
733 | self.__nHeis = dataOut.nHeights | |||
|
734 | ||||
|
735 | if self.__nHeis < self.nBaud: | |||
|
736 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) | |||
|
737 | ||||
|
738 | #Frequency | |||
|
739 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |||
|
740 | ||||
|
741 | __codeBuffer[:,0:self.nBaud] = self.code | |||
|
742 | ||||
|
743 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |||
|
744 | ||||
|
745 | if dataOut.flagDataAsBlock: | |||
|
746 | ||||
|
747 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |||
|
748 | ||||
|
749 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |||
|
750 | ||||
|
751 | else: | |||
|
752 | ||||
|
753 | #Time | |||
|
754 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |||
|
755 | ||||
|
756 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |||
|
757 | ||||
|
758 | def __convolutionInFreq(self, data): | |||
|
759 | ||||
|
760 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |||
|
761 | ||||
|
762 | fft_data = numpy.fft.fft(data, axis=1) | |||
|
763 | ||||
|
764 | conv = fft_data*fft_code | |||
|
765 | ||||
|
766 | data = numpy.fft.ifft(conv,axis=1) | |||
|
767 | ||||
|
768 | return data | |||
|
769 | ||||
|
770 | def __convolutionInFreqOpt(self, data): | |||
|
771 | ||||
|
772 | raise NotImplementedError | |||
|
773 | ||||
|
774 | def __convolutionInTime(self, data): | |||
|
775 | ||||
|
776 | code = self.code[self.__profIndex] | |||
|
777 | for i in range(self.__nChannels): | |||
|
778 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |||
|
779 | ||||
|
780 | return self.datadecTime | |||
|
781 | ||||
|
782 | def __convolutionByBlockInTime(self, data): | |||
|
783 | ||||
|
784 | repetitions = int(self.__nProfiles / self.nCode) | |||
|
785 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |||
|
786 | junk = junk.flatten() | |||
|
787 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |||
|
788 | profilesList = range(self.__nProfiles) | |||
|
789 | ||||
|
790 | for i in range(self.__nChannels): | |||
|
791 | for j in profilesList: | |||
|
792 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |||
|
793 | return self.datadecTime | |||
|
794 | ||||
|
795 | def __convolutionByBlockInFreq(self, data): | |||
|
796 | ||||
|
797 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |||
|
798 | ||||
|
799 | ||||
|
800 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |||
|
801 | ||||
|
802 | fft_data = numpy.fft.fft(data, axis=2) | |||
|
803 | ||||
|
804 | conv = fft_data*fft_code | |||
|
805 | ||||
|
806 | data = numpy.fft.ifft(conv,axis=2) | |||
|
807 | ||||
|
808 | return data | |||
|
809 | ||||
|
810 | ||||
|
811 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |||
|
812 | ||||
|
813 | if dataOut.flagDecodeData: | |||
|
814 | print("This data is already decoded, recoding again ...") | |||
|
815 | ||||
|
816 | if not self.isConfig: | |||
|
817 | ||||
|
818 | if code is None: | |||
|
819 | if dataOut.code is None: | |||
|
820 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) | |||
|
821 | ||||
|
822 | code = dataOut.code | |||
|
823 | else: | |||
|
824 | code = numpy.array(code).reshape(nCode,nBaud) | |||
|
825 | self.setup(code, osamp, dataOut) | |||
|
826 | ||||
|
827 | self.isConfig = True | |||
|
828 | ||||
|
829 | if mode == 3: | |||
|
830 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |||
|
831 | ||||
|
832 | if times != None: | |||
|
833 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |||
|
834 | ||||
|
835 | if self.code is None: | |||
|
836 | print("Fail decoding: Code is not defined.") | |||
|
837 | return | |||
|
838 | ||||
|
839 | self.__nProfiles = dataOut.nProfiles | |||
|
840 | datadec = None | |||
|
841 | ||||
|
842 | if mode == 3: | |||
|
843 | mode = 0 | |||
|
844 | ||||
|
845 | if dataOut.flagDataAsBlock: | |||
|
846 | """ | |||
|
847 | Decoding when data have been read as block, | |||
|
848 | """ | |||
|
849 | ||||
|
850 | if mode == 0: | |||
|
851 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |||
|
852 | if mode == 1: | |||
|
853 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |||
|
854 | else: | |||
|
855 | """ | |||
|
856 | Decoding when data have been read profile by profile | |||
|
857 | """ | |||
|
858 | if mode == 0: | |||
|
859 | datadec = self.__convolutionInTime(dataOut.data) | |||
|
860 | ||||
|
861 | if mode == 1: | |||
|
862 | datadec = self.__convolutionInFreq(dataOut.data) | |||
|
863 | ||||
|
864 | if mode == 2: | |||
|
865 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |||
|
866 | ||||
|
867 | if datadec is None: | |||
|
868 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) | |||
|
869 | ||||
|
870 | dataOut.code = self.code | |||
|
871 | dataOut.nCode = self.nCode | |||
|
872 | dataOut.nBaud = self.nBaud | |||
|
873 | ||||
|
874 | dataOut.data = datadec | |||
|
875 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |||
|
876 | ||||
|
877 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |||
|
878 | ||||
|
879 | if self.__profIndex == self.nCode-1: | |||
|
880 | self.__profIndex = 0 | |||
|
881 | return dataOut | |||
|
882 | ||||
|
883 | self.__profIndex += 1 | |||
|
884 | ||||
|
885 | return dataOut | |||
|
886 | ||||
|
887 | ||||
|
888 | class ProfileConcat(Operation): | |||
|
889 | ||||
|
890 | isConfig = False | |||
|
891 | buffer = None | |||
|
892 | ||||
|
893 | def __init__(self, **kwargs): | |||
|
894 | ||||
|
895 | Operation.__init__(self, **kwargs) | |||
|
896 | self.profileIndex = 0 | |||
|
897 | ||||
|
898 | def reset(self): | |||
|
899 | self.buffer = numpy.zeros_like(self.buffer) | |||
|
900 | self.start_index = 0 | |||
|
901 | self.times = 1 | |||
|
902 | ||||
|
903 | def setup(self, data, m, n=1): | |||
|
904 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |||
|
905 | self.nHeights = data.shape[1]#.nHeights | |||
|
906 | self.start_index = 0 | |||
|
907 | self.times = 1 | |||
|
908 | ||||
|
909 | def concat(self, data): | |||
|
910 | ||||
|
911 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |||
|
912 | self.start_index = self.start_index + self.nHeights | |||
|
913 | ||||
|
914 | def run(self, dataOut, m): | |||
|
915 | dataOut.flagNoData = True | |||
|
916 | ||||
|
917 | if not self.isConfig: | |||
|
918 | self.setup(dataOut.data, m, 1) | |||
|
919 | self.isConfig = True | |||
|
920 | ||||
|
921 | if dataOut.flagDataAsBlock: | |||
|
922 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |||
|
923 | ||||
|
924 | else: | |||
|
925 | self.concat(dataOut.data) | |||
|
926 | self.times += 1 | |||
|
927 | if self.times > m: | |||
|
928 | dataOut.data = self.buffer | |||
|
929 | self.reset() | |||
|
930 | dataOut.flagNoData = False | |||
|
931 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |||
|
932 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
933 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |||
|
934 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |||
|
935 | dataOut.ippSeconds *= m | |||
|
936 | return dataOut | |||
|
937 | ||||
|
938 | class ProfileSelector(Operation): | |||
|
939 | ||||
|
940 | profileIndex = None | |||
|
941 | # Tamanho total de los perfiles | |||
|
942 | nProfiles = None | |||
|
943 | ||||
|
944 | def __init__(self, **kwargs): | |||
|
945 | ||||
|
946 | Operation.__init__(self, **kwargs) | |||
|
947 | self.profileIndex = 0 | |||
|
948 | ||||
|
949 | def incProfileIndex(self): | |||
|
950 | ||||
|
951 | self.profileIndex += 1 | |||
|
952 | ||||
|
953 | if self.profileIndex >= self.nProfiles: | |||
|
954 | self.profileIndex = 0 | |||
|
955 | ||||
|
956 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |||
|
957 | ||||
|
958 | if profileIndex < minIndex: | |||
|
959 | return False | |||
|
960 | ||||
|
961 | if profileIndex > maxIndex: | |||
|
962 | return False | |||
|
963 | ||||
|
964 | return True | |||
|
965 | ||||
|
966 | def isThisProfileInList(self, profileIndex, profileList): | |||
|
967 | ||||
|
968 | if profileIndex not in profileList: | |||
|
969 | return False | |||
|
970 | ||||
|
971 | return True | |||
|
972 | ||||
|
973 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |||
|
974 | ||||
|
975 | """ | |||
|
976 | ProfileSelector: | |||
|
977 | ||||
|
978 | Inputs: | |||
|
979 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |||
|
980 | ||||
|
981 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |||
|
982 | ||||
|
983 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |||
|
984 | ||||
|
985 | """ | |||
|
986 | ||||
|
987 | if rangeList is not None: | |||
|
988 | if type(rangeList[0]) not in (tuple, list): | |||
|
989 | rangeList = [rangeList] | |||
|
990 | ||||
|
991 | dataOut.flagNoData = True | |||
|
992 | ||||
|
993 | if dataOut.flagDataAsBlock: | |||
|
994 | """ | |||
|
995 | data dimension = [nChannels, nProfiles, nHeis] | |||
|
996 | """ | |||
|
997 | if profileList != None: | |||
|
998 | dataOut.data = dataOut.data[:,profileList,:] | |||
|
999 | ||||
|
1000 | if profileRangeList != None: | |||
|
1001 | minIndex = profileRangeList[0] | |||
|
1002 | maxIndex = profileRangeList[1] | |||
|
1003 | profileList = list(range(minIndex, maxIndex+1)) | |||
|
1004 | ||||
|
1005 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |||
|
1006 | ||||
|
1007 | if rangeList != None: | |||
|
1008 | ||||
|
1009 | profileList = [] | |||
|
1010 | ||||
|
1011 | for thisRange in rangeList: | |||
|
1012 | minIndex = thisRange[0] | |||
|
1013 | maxIndex = thisRange[1] | |||
|
1014 | ||||
|
1015 | profileList.extend(list(range(minIndex, maxIndex+1))) | |||
|
1016 | ||||
|
1017 | dataOut.data = dataOut.data[:,profileList,:] | |||
|
1018 | ||||
|
1019 | dataOut.nProfiles = len(profileList) | |||
|
1020 | dataOut.profileIndex = dataOut.nProfiles - 1 | |||
|
1021 | dataOut.flagNoData = False | |||
|
1022 | ||||
|
1023 | return dataOut | |||
|
1024 | ||||
|
1025 | """ | |||
|
1026 | data dimension = [nChannels, nHeis] | |||
|
1027 | """ | |||
|
1028 | ||||
|
1029 | if profileList != None: | |||
|
1030 | ||||
|
1031 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |||
|
1032 | ||||
|
1033 | self.nProfiles = len(profileList) | |||
|
1034 | dataOut.nProfiles = self.nProfiles | |||
|
1035 | dataOut.profileIndex = self.profileIndex | |||
|
1036 | dataOut.flagNoData = False | |||
|
1037 | ||||
|
1038 | self.incProfileIndex() | |||
|
1039 | return dataOut | |||
|
1040 | ||||
|
1041 | if profileRangeList != None: | |||
|
1042 | ||||
|
1043 | minIndex = profileRangeList[0] | |||
|
1044 | maxIndex = profileRangeList[1] | |||
|
1045 | ||||
|
1046 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |||
|
1047 | ||||
|
1048 | self.nProfiles = maxIndex - minIndex + 1 | |||
|
1049 | dataOut.nProfiles = self.nProfiles | |||
|
1050 | dataOut.profileIndex = self.profileIndex | |||
|
1051 | dataOut.flagNoData = False | |||
|
1052 | ||||
|
1053 | self.incProfileIndex() | |||
|
1054 | return dataOut | |||
|
1055 | ||||
|
1056 | if rangeList != None: | |||
|
1057 | ||||
|
1058 | nProfiles = 0 | |||
|
1059 | ||||
|
1060 | for thisRange in rangeList: | |||
|
1061 | minIndex = thisRange[0] | |||
|
1062 | maxIndex = thisRange[1] | |||
|
1063 | ||||
|
1064 | nProfiles += maxIndex - minIndex + 1 | |||
|
1065 | ||||
|
1066 | for thisRange in rangeList: | |||
|
1067 | ||||
|
1068 | minIndex = thisRange[0] | |||
|
1069 | maxIndex = thisRange[1] | |||
|
1070 | ||||
|
1071 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |||
|
1072 | ||||
|
1073 | self.nProfiles = nProfiles | |||
|
1074 | dataOut.nProfiles = self.nProfiles | |||
|
1075 | dataOut.profileIndex = self.profileIndex | |||
|
1076 | dataOut.flagNoData = False | |||
|
1077 | ||||
|
1078 | self.incProfileIndex() | |||
|
1079 | ||||
|
1080 | break | |||
|
1081 | ||||
|
1082 | return dataOut | |||
|
1083 | ||||
|
1084 | ||||
|
1085 | if beam != None: #beam is only for AMISR data | |||
|
1086 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |||
|
1087 | dataOut.flagNoData = False | |||
|
1088 | dataOut.profileIndex = self.profileIndex | |||
|
1089 | ||||
|
1090 | self.incProfileIndex() | |||
|
1091 | ||||
|
1092 | return dataOut | |||
|
1093 | ||||
|
1094 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |||
|
1095 | ||||
|
1096 | #return False | |||
|
1097 | return dataOut | |||
|
1098 | ||||
|
1099 | class Reshaper(Operation): | |||
|
1100 | ||||
|
1101 | def __init__(self, **kwargs): | |||
|
1102 | ||||
|
1103 | Operation.__init__(self, **kwargs) | |||
|
1104 | ||||
|
1105 | self.__buffer = None | |||
|
1106 | self.__nitems = 0 | |||
|
1107 | ||||
|
1108 | def __appendProfile(self, dataOut, nTxs): | |||
|
1109 | ||||
|
1110 | if self.__buffer is None: | |||
|
1111 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |||
|
1112 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |||
|
1113 | ||||
|
1114 | ini = dataOut.nHeights * self.__nitems | |||
|
1115 | end = ini + dataOut.nHeights | |||
|
1116 | ||||
|
1117 | self.__buffer[:, ini:end] = dataOut.data | |||
|
1118 | ||||
|
1119 | self.__nitems += 1 | |||
|
1120 | ||||
|
1121 | return int(self.__nitems*nTxs) | |||
|
1122 | ||||
|
1123 | def __getBuffer(self): | |||
|
1124 | ||||
|
1125 | if self.__nitems == int(1./self.__nTxs): | |||
|
1126 | ||||
|
1127 | self.__nitems = 0 | |||
|
1128 | ||||
|
1129 | return self.__buffer.copy() | |||
|
1130 | ||||
|
1131 | return None | |||
|
1132 | ||||
|
1133 | def __checkInputs(self, dataOut, shape, nTxs): | |||
|
1134 | ||||
|
1135 | if shape is None and nTxs is None: | |||
|
1136 | raise ValueError("Reshaper: shape of factor should be defined") | |||
|
1137 | ||||
|
1138 | if nTxs: | |||
|
1139 | if nTxs < 0: | |||
|
1140 | raise ValueError("nTxs should be greater than 0") | |||
|
1141 | ||||
|
1142 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |||
|
1143 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) | |||
|
1144 | ||||
|
1145 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |||
|
1146 | ||||
|
1147 | return shape, nTxs | |||
|
1148 | ||||
|
1149 | if len(shape) != 2 and len(shape) != 3: | |||
|
1150 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |||
|
1151 | ||||
|
1152 | if len(shape) == 2: | |||
|
1153 | shape_tuple = [dataOut.nChannels] | |||
|
1154 | shape_tuple.extend(shape) | |||
|
1155 | else: | |||
|
1156 | shape_tuple = list(shape) | |||
|
1157 | ||||
|
1158 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |||
|
1159 | ||||
|
1160 | return shape_tuple, nTxs | |||
|
1161 | ||||
|
1162 | def run(self, dataOut, shape=None, nTxs=None): | |||
|
1163 | ||||
|
1164 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |||
|
1165 | ||||
|
1166 | dataOut.flagNoData = True | |||
|
1167 | profileIndex = None | |||
|
1168 | ||||
|
1169 | if dataOut.flagDataAsBlock: | |||
|
1170 | ||||
|
1171 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |||
|
1172 | dataOut.flagNoData = False | |||
|
1173 | ||||
|
1174 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |||
|
1175 | ||||
|
1176 | else: | |||
|
1177 | ||||
|
1178 | if self.__nTxs < 1: | |||
|
1179 | ||||
|
1180 | self.__appendProfile(dataOut, self.__nTxs) | |||
|
1181 | new_data = self.__getBuffer() | |||
|
1182 | ||||
|
1183 | if new_data is not None: | |||
|
1184 | dataOut.data = new_data | |||
|
1185 | dataOut.flagNoData = False | |||
|
1186 | ||||
|
1187 | profileIndex = dataOut.profileIndex*nTxs | |||
|
1188 | ||||
|
1189 | else: | |||
|
1190 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |||
|
1191 | ||||
|
1192 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
1193 | ||||
|
1194 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |||
|
1195 | ||||
|
1196 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |||
|
1197 | ||||
|
1198 | dataOut.profileIndex = profileIndex | |||
|
1199 | ||||
|
1200 | dataOut.ippSeconds /= self.__nTxs | |||
|
1201 | ||||
|
1202 | return dataOut | |||
|
1203 | ||||
|
1204 | class SplitProfiles(Operation): | |||
|
1205 | ||||
|
1206 | def __init__(self, **kwargs): | |||
|
1207 | ||||
|
1208 | Operation.__init__(self, **kwargs) | |||
|
1209 | ||||
|
1210 | def run(self, dataOut, n): | |||
|
1211 | ||||
|
1212 | dataOut.flagNoData = True | |||
|
1213 | profileIndex = None | |||
|
1214 | ||||
|
1215 | if dataOut.flagDataAsBlock: | |||
|
1216 | ||||
|
1217 | #nchannels, nprofiles, nsamples | |||
|
1218 | shape = dataOut.data.shape | |||
|
1219 | ||||
|
1220 | if shape[2] % n != 0: | |||
|
1221 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) | |||
|
1222 | ||||
|
1223 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |||
|
1224 | ||||
|
1225 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |||
|
1226 | dataOut.flagNoData = False | |||
|
1227 | ||||
|
1228 | profileIndex = int(dataOut.nProfiles/n) - 1 | |||
|
1229 | ||||
|
1230 | else: | |||
|
1231 | ||||
|
1232 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |||
|
1233 | ||||
|
1234 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
1235 | ||||
|
1236 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |||
|
1237 | ||||
|
1238 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |||
|
1239 | ||||
|
1240 | dataOut.profileIndex = profileIndex | |||
|
1241 | ||||
|
1242 | dataOut.ippSeconds /= n | |||
|
1243 | ||||
|
1244 | return dataOut | |||
|
1245 | ||||
|
1246 | class CombineProfiles(Operation): | |||
|
1247 | def __init__(self, **kwargs): | |||
|
1248 | ||||
|
1249 | Operation.__init__(self, **kwargs) | |||
|
1250 | ||||
|
1251 | self.__remData = None | |||
|
1252 | self.__profileIndex = 0 | |||
|
1253 | ||||
|
1254 | def run(self, dataOut, n): | |||
|
1255 | ||||
|
1256 | dataOut.flagNoData = True | |||
|
1257 | profileIndex = None | |||
|
1258 | ||||
|
1259 | if dataOut.flagDataAsBlock: | |||
|
1260 | ||||
|
1261 | #nchannels, nprofiles, nsamples | |||
|
1262 | shape = dataOut.data.shape | |||
|
1263 | new_shape = shape[0], shape[1]/n, shape[2]*n | |||
|
1264 | ||||
|
1265 | if shape[1] % n != 0: | |||
|
1266 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) | |||
|
1267 | ||||
|
1268 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |||
|
1269 | dataOut.flagNoData = False | |||
|
1270 | ||||
|
1271 | profileIndex = int(dataOut.nProfiles*n) - 1 | |||
|
1272 | ||||
|
1273 | else: | |||
|
1274 | ||||
|
1275 | #nchannels, nsamples | |||
|
1276 | if self.__remData is None: | |||
|
1277 | newData = dataOut.data | |||
|
1278 | else: | |||
|
1279 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |||
|
1280 | ||||
|
1281 | self.__profileIndex += 1 | |||
|
1282 | ||||
|
1283 | if self.__profileIndex < n: | |||
|
1284 | self.__remData = newData | |||
|
1285 | #continue | |||
|
1286 | return | |||
|
1287 | ||||
|
1288 | self.__profileIndex = 0 | |||
|
1289 | self.__remData = None | |||
|
1290 | ||||
|
1291 | dataOut.data = newData | |||
|
1292 | dataOut.flagNoData = False | |||
|
1293 | ||||
|
1294 | profileIndex = dataOut.profileIndex/n | |||
|
1295 | ||||
|
1296 | ||||
|
1297 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
1298 | ||||
|
1299 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |||
|
1300 | ||||
|
1301 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |||
|
1302 | ||||
|
1303 | dataOut.profileIndex = profileIndex | |||
|
1304 | ||||
|
1305 | dataOut.ippSeconds *= n | |||
|
1306 | ||||
|
1307 | return dataOut | |||
|
1308 | ||||
|
1309 | class PulsePairVoltage(Operation): | |||
|
1310 | ''' | |||
|
1311 | Function PulsePair(Signal Power, Velocity) | |||
|
1312 | The real component of Lag[0] provides Intensity Information | |||
|
1313 | The imag component of Lag[1] Phase provides Velocity Information | |||
|
1314 | ||||
|
1315 | Configuration Parameters: | |||
|
1316 | nPRF = Number of Several PRF | |||
|
1317 | theta = Degree Azimuth angel Boundaries | |||
|
1318 | ||||
|
1319 | Input: | |||
|
1320 | self.dataOut | |||
|
1321 | lag[N] | |||
|
1322 | Affected: | |||
|
1323 | self.dataOut.spc | |||
|
1324 | ''' | |||
|
1325 | isConfig = False | |||
|
1326 | __profIndex = 0 | |||
|
1327 | __initime = None | |||
|
1328 | __lastdatatime = None | |||
|
1329 | __buffer = None | |||
|
1330 | noise = None | |||
|
1331 | __dataReady = False | |||
|
1332 | n = None | |||
|
1333 | __nch = 0 | |||
|
1334 | __nHeis = 0 | |||
|
1335 | removeDC = False | |||
|
1336 | ipp = None | |||
|
1337 | lambda_ = 0 | |||
|
1338 | ||||
|
1339 | def __init__(self,**kwargs): | |||
|
1340 | Operation.__init__(self,**kwargs) | |||
|
1341 | ||||
|
1342 | def setup(self, dataOut, n = None, removeDC=False): | |||
|
1343 | ''' | |||
|
1344 | n= Numero de PRF's de entrada | |||
|
1345 | ''' | |||
|
1346 | self.__initime = None | |||
|
1347 | self.__lastdatatime = 0 | |||
|
1348 | self.__dataReady = False | |||
|
1349 | self.__buffer = 0 | |||
|
1350 | self.__profIndex = 0 | |||
|
1351 | self.noise = None | |||
|
1352 | self.__nch = dataOut.nChannels | |||
|
1353 | self.__nHeis = dataOut.nHeights | |||
|
1354 | self.removeDC = removeDC | |||
|
1355 | self.lambda_ = 3.0e8/(9345.0e6) | |||
|
1356 | self.ippSec = dataOut.ippSeconds | |||
|
1357 | self.nCohInt = dataOut.nCohInt | |||
|
1358 | print("IPPseconds",dataOut.ippSeconds) | |||
|
1359 | ||||
|
1360 | print("ELVALOR DE n es:", n) | |||
|
1361 | if n == None: | |||
|
1362 | raise ValueError("n should be specified.") | |||
|
1363 | ||||
|
1364 | if n != None: | |||
|
1365 | if n<2: | |||
|
1366 | raise ValueError("n should be greater than 2") | |||
|
1367 | ||||
|
1368 | self.n = n | |||
|
1369 | self.__nProf = n | |||
|
1370 | ||||
|
1371 | self.__buffer = numpy.zeros((dataOut.nChannels, | |||
|
1372 | n, | |||
|
1373 | dataOut.nHeights), | |||
|
1374 | dtype='complex') | |||
|
1375 | ||||
|
1376 | def putData(self,data): | |||
|
1377 | ''' | |||
|
1378 | Add a profile to he __buffer and increase in one the __profiel Index | |||
|
1379 | ''' | |||
|
1380 | self.__buffer[:,self.__profIndex,:]= data | |||
|
1381 | self.__profIndex += 1 | |||
|
1382 | return | |||
|
1383 | ||||
|
1384 | def pushData(self,dataOut): | |||
|
1385 | ''' | |||
|
1386 | Return the PULSEPAIR and the profiles used in the operation | |||
|
1387 | Affected : self.__profileIndex | |||
|
1388 | ''' | |||
|
1389 | #----------------- Remove DC----------------------------------- | |||
|
1390 | if self.removeDC==True: | |||
|
1391 | mean = numpy.mean(self.__buffer,1) | |||
|
1392 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |||
|
1393 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |||
|
1394 | self.__buffer = self.__buffer - dc | |||
|
1395 | #------------------Calculo de Potencia ------------------------ | |||
|
1396 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |||
|
1397 | pair0 = pair0.real | |||
|
1398 | lag_0 = numpy.sum(pair0,1) | |||
|
1399 | #------------------Calculo de Ruido x canal-------------------- | |||
|
1400 | self.noise = numpy.zeros(self.__nch) | |||
|
1401 | for i in range(self.__nch): | |||
|
1402 | daux = numpy.sort(pair0[i,:,:],axis= None) | |||
|
1403 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |||
|
1404 | ||||
|
1405 | self.noise = self.noise.reshape(self.__nch,1) | |||
|
1406 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |||
|
1407 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |||
|
1408 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |||
|
1409 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |||
|
1410 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |||
|
1411 | #-------------------- Power -------------------------------------------------- | |||
|
1412 | data_power = lag_0/(self.n*self.nCohInt) | |||
|
1413 | #------------------ Senal --------------------------------------------------- | |||
|
1414 | data_intensity = pair0 - noise_buffer | |||
|
1415 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |||
|
1416 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |||
|
1417 | for i in range(self.__nch): | |||
|
1418 | for j in range(self.__nHeis): | |||
|
1419 | if data_intensity[i][j] < 0: | |||
|
1420 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |||
|
1421 | ||||
|
1422 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |||
|
1423 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |||
|
1424 | lag_1 = numpy.sum(pair1,1) | |||
|
1425 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |||
|
1426 | data_velocity = (self.lambda_/2.0)*data_freq | |||
|
1427 | ||||
|
1428 | #---------------- Potencia promedio estimada de la Senal----------- | |||
|
1429 | lag_0 = lag_0/self.n | |||
|
1430 | S = lag_0-self.noise | |||
|
1431 | ||||
|
1432 | #---------------- Frecuencia Doppler promedio --------------------- | |||
|
1433 | lag_1 = lag_1/(self.n-1) | |||
|
1434 | R1 = numpy.abs(lag_1) | |||
|
1435 | ||||
|
1436 | #---------------- Calculo del SNR---------------------------------- | |||
|
1437 | data_snrPP = S/self.noise | |||
|
1438 | for i in range(self.__nch): | |||
|
1439 | for j in range(self.__nHeis): | |||
|
1440 | if data_snrPP[i][j] < 1.e-20: | |||
|
1441 | data_snrPP[i][j] = 1.e-20 | |||
|
1442 | ||||
|
1443 | #----------------- Calculo del ancho espectral ---------------------- | |||
|
1444 | L = S/R1 | |||
|
1445 | L = numpy.where(L<0,1,L) | |||
|
1446 | L = numpy.log(L) | |||
|
1447 | tmp = numpy.sqrt(numpy.absolute(L)) | |||
|
1448 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |||
|
1449 | n = self.__profIndex | |||
|
1450 | ||||
|
1451 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |||
|
1452 | self.__profIndex = 0 | |||
|
1453 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n | |||
|
1454 | ||||
|
1455 | ||||
|
1456 | def pulsePairbyProfiles(self,dataOut): | |||
|
1457 | ||||
|
1458 | self.__dataReady = False | |||
|
1459 | data_power = None | |||
|
1460 | data_intensity = None | |||
|
1461 | data_velocity = None | |||
|
1462 | data_specwidth = None | |||
|
1463 | data_snrPP = None | |||
|
1464 | self.putData(data=dataOut.data) | |||
|
1465 | if self.__profIndex == self.n: | |||
|
1466 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |||
|
1467 | self.__dataReady = True | |||
|
1468 | ||||
|
1469 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |||
|
1470 | ||||
|
1471 | ||||
|
1472 | def pulsePairOp(self, dataOut, datatime= None): | |||
|
1473 | ||||
|
1474 | if self.__initime == None: | |||
|
1475 | self.__initime = datatime | |||
|
1476 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |||
|
1477 | self.__lastdatatime = datatime | |||
|
1478 | ||||
|
1479 | if data_power is None: | |||
|
1480 | return None, None, None,None,None,None | |||
|
1481 | ||||
|
1482 | avgdatatime = self.__initime | |||
|
1483 | deltatime = datatime - self.__lastdatatime | |||
|
1484 | self.__initime = datatime | |||
|
1485 | ||||
|
1486 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |||
|
1487 | ||||
|
1488 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |||
|
1489 | ||||
|
1490 | if not self.isConfig: | |||
|
1491 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |||
|
1492 | self.isConfig = True | |||
|
1493 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |||
|
1494 | dataOut.flagNoData = True | |||
|
1495 | ||||
|
1496 | if self.__dataReady: | |||
|
1497 | dataOut.nCohInt *= self.n | |||
|
1498 | dataOut.dataPP_POW = data_intensity # S | |||
|
1499 | dataOut.dataPP_POWER = data_power # P | |||
|
1500 | dataOut.dataPP_DOP = data_velocity | |||
|
1501 | dataOut.dataPP_SNR = data_snrPP | |||
|
1502 | dataOut.dataPP_WIDTH = data_specwidth | |||
|
1503 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |||
|
1504 | dataOut.utctime = avgdatatime | |||
|
1505 | dataOut.flagNoData = False | |||
|
1506 | return dataOut | |||
|
1507 | ||||
|
1508 | ||||
|
1509 | ||||
|
1510 | # import collections | |||
|
1511 | # from scipy.stats import mode | |||
|
1512 | # | |||
|
1513 | # class Synchronize(Operation): | |||
|
1514 | # | |||
|
1515 | # isConfig = False | |||
|
1516 | # __profIndex = 0 | |||
|
1517 | # | |||
|
1518 | # def __init__(self, **kwargs): | |||
|
1519 | # | |||
|
1520 | # Operation.__init__(self, **kwargs) | |||
|
1521 | # # self.isConfig = False | |||
|
1522 | # self.__powBuffer = None | |||
|
1523 | # self.__startIndex = 0 | |||
|
1524 | # self.__pulseFound = False | |||
|
1525 | # | |||
|
1526 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |||
|
1527 | # | |||
|
1528 | # #Read data | |||
|
1529 | # | |||
|
1530 | # powerdB = dataOut.getPower(channel = channel) | |||
|
1531 | # noisedB = dataOut.getNoise(channel = channel)[0] | |||
|
1532 | # | |||
|
1533 | # self.__powBuffer.extend(powerdB.flatten()) | |||
|
1534 | # | |||
|
1535 | # dataArray = numpy.array(self.__powBuffer) | |||
|
1536 | # | |||
|
1537 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |||
|
1538 | # | |||
|
1539 | # maxValue = numpy.nanmax(filteredPower) | |||
|
1540 | # | |||
|
1541 | # if maxValue < noisedB + 10: | |||
|
1542 | # #No se encuentra ningun pulso de transmision | |||
|
1543 | # return None | |||
|
1544 | # | |||
|
1545 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |||
|
1546 | # | |||
|
1547 | # if len(maxValuesIndex) < 2: | |||
|
1548 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |||
|
1549 | # return None | |||
|
1550 | # | |||
|
1551 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |||
|
1552 | # | |||
|
1553 | # #Seleccionar solo valores con un espaciamiento de nSamples | |||
|
1554 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |||
|
1555 | # | |||
|
1556 | # if len(pulseIndex) < 2: | |||
|
1557 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |||
|
1558 | # return None | |||
|
1559 | # | |||
|
1560 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |||
|
1561 | # | |||
|
1562 | # #remover senales que se distancien menos de 10 unidades o muestras | |||
|
1563 | # #(No deberian existir IPP menor a 10 unidades) | |||
|
1564 | # | |||
|
1565 | # realIndex = numpy.where(spacing > 10 )[0] | |||
|
1566 | # | |||
|
1567 | # if len(realIndex) < 2: | |||
|
1568 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |||
|
1569 | # return None | |||
|
1570 | # | |||
|
1571 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |||
|
1572 | # realPulseIndex = pulseIndex[realIndex] | |||
|
1573 | # | |||
|
1574 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |||
|
1575 | # | |||
|
1576 | # print "IPP = %d samples" %period | |||
|
1577 | # | |||
|
1578 | # self.__newNSamples = dataOut.nHeights #int(period) | |||
|
1579 | # self.__startIndex = int(realPulseIndex[0]) | |||
|
1580 | # | |||
|
1581 | # return 1 | |||
|
1582 | # | |||
|
1583 | # | |||
|
1584 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |||
|
1585 | # | |||
|
1586 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |||
|
1587 | # maxlen = buffer_size*nSamples) | |||
|
1588 | # | |||
|
1589 | # bufferList = [] | |||
|
1590 | # | |||
|
1591 | # for i in range(nChannels): | |||
|
1592 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |||
|
1593 | # maxlen = buffer_size*nSamples) | |||
|
1594 | # | |||
|
1595 | # bufferList.append(bufferByChannel) | |||
|
1596 | # | |||
|
1597 | # self.__nSamples = nSamples | |||
|
1598 | # self.__nChannels = nChannels | |||
|
1599 | # self.__bufferList = bufferList | |||
|
1600 | # | |||
|
1601 | # def run(self, dataOut, channel = 0): | |||
|
1602 | # | |||
|
1603 | # if not self.isConfig: | |||
|
1604 | # nSamples = dataOut.nHeights | |||
|
1605 | # nChannels = dataOut.nChannels | |||
|
1606 | # self.setup(nSamples, nChannels) | |||
|
1607 | # self.isConfig = True | |||
|
1608 | # | |||
|
1609 | # #Append new data to internal buffer | |||
|
1610 | # for thisChannel in range(self.__nChannels): | |||
|
1611 | # bufferByChannel = self.__bufferList[thisChannel] | |||
|
1612 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |||
|
1613 | # | |||
|
1614 | # if self.__pulseFound: | |||
|
1615 | # self.__startIndex -= self.__nSamples | |||
|
1616 | # | |||
|
1617 | # #Finding Tx Pulse | |||
|
1618 | # if not self.__pulseFound: | |||
|
1619 | # indexFound = self.__findTxPulse(dataOut, channel) | |||
|
1620 | # | |||
|
1621 | # if indexFound == None: | |||
|
1622 | # dataOut.flagNoData = True | |||
|
1623 | # return | |||
|
1624 | # | |||
|
1625 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |||
|
1626 | # self.__pulseFound = True | |||
|
1627 | # self.__startIndex = indexFound | |||
|
1628 | # | |||
|
1629 | # #If pulse was found ... | |||
|
1630 | # for thisChannel in range(self.__nChannels): | |||
|
1631 | # bufferByChannel = self.__bufferList[thisChannel] | |||
|
1632 | # #print self.__startIndex | |||
|
1633 | # x = numpy.array(bufferByChannel) | |||
|
1634 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |||
|
1635 | # | |||
|
1636 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |||
|
1637 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |||
|
1638 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |||
|
1639 | # | |||
|
1640 | # dataOut.data = self.__arrayBuffer | |||
|
1641 | # | |||
|
1642 | # self.__startIndex += self.__newNSamples | |||
|
1643 | # | |||
|
1644 | # return No newline at end of file |
This diff has been collapsed as it changes many lines, (833 lines changed) Show them Hide them | |||||
@@ -0,0 +1,833 | |||||
|
1 | class SpectralFitting(Operation): | |||
|
2 | ''' | |||
|
3 | Function GetMoments() | |||
|
4 | ||||
|
5 | Input: | |||
|
6 | Output: | |||
|
7 | Variables modified: | |||
|
8 | ''' | |||
|
9 | isConfig = False | |||
|
10 | __dataReady = False | |||
|
11 | bloques = None | |||
|
12 | bloque0 = None | |||
|
13 | index = 0 | |||
|
14 | fint = 0 | |||
|
15 | buffer = 0 | |||
|
16 | buffer2 = 0 | |||
|
17 | buffer3 = 0 | |||
|
18 | ||||
|
19 | def __init__(self): | |||
|
20 | Operation.__init__(self) | |||
|
21 | self.i=0 | |||
|
22 | self.isConfig = False | |||
|
23 | ||||
|
24 | ||||
|
25 | def setup(self,nChan,nProf,nHei,nBlocks): | |||
|
26 | self.__dataReady = False | |||
|
27 | self.bloques = numpy.zeros([2, nProf, nHei,nBlocks], dtype= complex) | |||
|
28 | self.bloque0 = numpy.zeros([nChan, nProf, nHei, nBlocks]) | |||
|
29 | ||||
|
30 | def __calculateMoments(self,oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |||
|
31 | ||||
|
32 | if (nicoh is None): nicoh = 1 | |||
|
33 | if (graph is None): graph = 0 | |||
|
34 | if (smooth is None): smooth = 0 | |||
|
35 | elif (self.smooth < 3): smooth = 0 | |||
|
36 | ||||
|
37 | if (type1 is None): type1 = 0 | |||
|
38 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |||
|
39 | if (snrth is None): snrth = -3 | |||
|
40 | if (dc is None): dc = 0 | |||
|
41 | if (aliasing is None): aliasing = 0 | |||
|
42 | if (oldfd is None): oldfd = 0 | |||
|
43 | if (wwauto is None): wwauto = 0 | |||
|
44 | ||||
|
45 | if (n0 < 1.e-20): n0 = 1.e-20 | |||
|
46 | ||||
|
47 | freq = oldfreq | |||
|
48 | vec_power = numpy.zeros(oldspec.shape[1]) | |||
|
49 | vec_fd = numpy.zeros(oldspec.shape[1]) | |||
|
50 | vec_w = numpy.zeros(oldspec.shape[1]) | |||
|
51 | vec_snr = numpy.zeros(oldspec.shape[1]) | |||
|
52 | ||||
|
53 | oldspec = numpy.ma.masked_invalid(oldspec) | |||
|
54 | ||||
|
55 | for ind in range(oldspec.shape[1]): | |||
|
56 | ||||
|
57 | spec = oldspec[:,ind] | |||
|
58 | aux = spec*fwindow | |||
|
59 | max_spec = aux.max() | |||
|
60 | m = list(aux).index(max_spec) | |||
|
61 | ||||
|
62 | #Smooth | |||
|
63 | if (smooth == 0): spec2 = spec | |||
|
64 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |||
|
65 | ||||
|
66 | # Calculo de Momentos | |||
|
67 | bb = spec2[list(range(m,spec2.size))] | |||
|
68 | bb = (bb<n0).nonzero() | |||
|
69 | bb = bb[0] | |||
|
70 | ||||
|
71 | ss = spec2[list(range(0,m + 1))] | |||
|
72 | ss = (ss<n0).nonzero() | |||
|
73 | ss = ss[0] | |||
|
74 | ||||
|
75 | if (bb.size == 0): | |||
|
76 | bb0 = spec.size - 1 - m | |||
|
77 | else: | |||
|
78 | bb0 = bb[0] - 1 | |||
|
79 | if (bb0 < 0): | |||
|
80 | bb0 = 0 | |||
|
81 | ||||
|
82 | if (ss.size == 0): ss1 = 1 | |||
|
83 | else: ss1 = max(ss) + 1 | |||
|
84 | ||||
|
85 | if (ss1 > m): ss1 = m | |||
|
86 | ||||
|
87 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 | |||
|
88 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |||
|
89 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |||
|
90 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |||
|
91 | snr = (spec2.mean()-n0)/n0 | |||
|
92 | ||||
|
93 | if (snr < 1.e-20) : | |||
|
94 | snr = 1.e-20 | |||
|
95 | ||||
|
96 | vec_power[ind] = power | |||
|
97 | vec_fd[ind] = fd | |||
|
98 | vec_w[ind] = w | |||
|
99 | vec_snr[ind] = snr | |||
|
100 | ||||
|
101 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |||
|
102 | return moments | |||
|
103 | ||||
|
104 | def __DiffCoherent(self, spectra, cspectra, dataOut, noise, snrth, coh_th, hei_th): | |||
|
105 | ||||
|
106 | nProf = dataOut.nProfiles | |||
|
107 | heights = dataOut.heightList | |||
|
108 | nHei = len(heights) | |||
|
109 | channels = dataOut.channelList | |||
|
110 | nChan = len(channels) | |||
|
111 | crosspairs = dataOut.groupList | |||
|
112 | nPairs = len(crosspairs) | |||
|
113 | #Separar espectros incoherentes de coherentes snr > 20 dB' | |||
|
114 | snr_th = 10**(snrth/10.0) | |||
|
115 | my_incoh_spectra = numpy.zeros([nChan, nProf,nHei], dtype='float') | |||
|
116 | my_incoh_cspectra = numpy.zeros([nPairs,nProf, nHei], dtype='complex') | |||
|
117 | my_incoh_aver = numpy.zeros([nChan, nHei]) | |||
|
118 | my_coh_aver = numpy.zeros([nChan, nHei]) | |||
|
119 | ||||
|
120 | coh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |||
|
121 | coh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |||
|
122 | coh_aver = numpy.zeros([nChan, nHei]) | |||
|
123 | ||||
|
124 | incoh_spectra = numpy.zeros([nChan, nProf, nHei], dtype='float') | |||
|
125 | incoh_cspectra = numpy.zeros([nPairs, nProf, nHei], dtype='complex') | |||
|
126 | incoh_aver = numpy.zeros([nChan, nHei]) | |||
|
127 | power = numpy.sum(spectra, axis=1) | |||
|
128 | ||||
|
129 | if coh_th == None : coh_th = numpy.array([0.75,0.65,0.15]) # 0.65 | |||
|
130 | if hei_th == None : hei_th = numpy.array([60,300,650]) | |||
|
131 | for ic in range(nPairs): | |||
|
132 | pair = crosspairs[ic] | |||
|
133 | #si el SNR es mayor que el SNR threshold los datos se toman coherentes | |||
|
134 | s_n0 = power[pair[0],:]/noise[pair[0]] | |||
|
135 | s_n1 = power[pair[1],:]/noise[pair[1]] | |||
|
136 | valid1 =(s_n0>=snr_th).nonzero() | |||
|
137 | valid2 = (s_n1>=snr_th).nonzero() | |||
|
138 | valid1 = numpy.array(valid1[0]) | |||
|
139 | valid2 = numpy.array(valid2[0]) | |||
|
140 | valid = valid1 | |||
|
141 | for iv in range(len(valid2)): | |||
|
142 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
143 | if len(indv[0]) == 0 : | |||
|
144 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |||
|
145 | if len(valid)>0: | |||
|
146 | my_coh_aver[pair[0],valid]=1 | |||
|
147 | my_coh_aver[pair[1],valid]=1 | |||
|
148 | # si la coherencia es mayor a la coherencia threshold los datos se toman | |||
|
149 | coh = numpy.squeeze(numpy.nansum(cspectra[ic,:,:], axis=0)/numpy.sqrt(numpy.nansum(spectra[pair[0],:,:], axis=0)*numpy.nansum(spectra[pair[1],:,:], axis=0))) | |||
|
150 | for ih in range(len(hei_th)): | |||
|
151 | hvalid = (heights>hei_th[ih]).nonzero() | |||
|
152 | hvalid = hvalid[0] | |||
|
153 | if len(hvalid)>0: | |||
|
154 | valid = (numpy.absolute(coh[hvalid])>coh_th[ih]).nonzero() | |||
|
155 | valid = valid[0] | |||
|
156 | if len(valid)>0: | |||
|
157 | my_coh_aver[pair[0],hvalid[valid]] =1 | |||
|
158 | my_coh_aver[pair[1],hvalid[valid]] =1 | |||
|
159 | ||||
|
160 | coh_echoes = (my_coh_aver[pair[0],:] == 1).nonzero() | |||
|
161 | incoh_echoes = (my_coh_aver[pair[0],:] != 1).nonzero() | |||
|
162 | incoh_echoes = incoh_echoes[0] | |||
|
163 | if len(incoh_echoes) > 0: | |||
|
164 | my_incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |||
|
165 | my_incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |||
|
166 | my_incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |||
|
167 | my_incoh_aver[pair[0],incoh_echoes] = 1 | |||
|
168 | my_incoh_aver[pair[1],incoh_echoes] = 1 | |||
|
169 | ||||
|
170 | ||||
|
171 | for ic in range(nPairs): | |||
|
172 | pair = crosspairs[ic] | |||
|
173 | ||||
|
174 | valid1 =(my_coh_aver[pair[0],:]==1 ).nonzero() | |||
|
175 | valid2 = (my_coh_aver[pair[1],:]==1).nonzero() | |||
|
176 | valid1 = numpy.array(valid1[0]) | |||
|
177 | valid2 = numpy.array(valid2[0]) | |||
|
178 | valid = valid1 | |||
|
179 | ||||
|
180 | for iv in range(len(valid2)): | |||
|
181 | ||||
|
182 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
183 | if len(indv[0]) == 0 : | |||
|
184 | valid = numpy.concatenate((valid,valid2[iv]), axis=None) | |||
|
185 | valid1 =(my_coh_aver[pair[0],:] !=1 ).nonzero() | |||
|
186 | valid2 = (my_coh_aver[pair[1],:] !=1).nonzero() | |||
|
187 | valid1 = numpy.array(valid1[0]) | |||
|
188 | valid2 = numpy.array(valid2[0]) | |||
|
189 | incoh_echoes = valid1 | |||
|
190 | for iv in range(len(valid2)): | |||
|
191 | ||||
|
192 | indv = numpy.array((valid1 == valid2[iv]).nonzero()) | |||
|
193 | if len(indv[0]) == 0 : | |||
|
194 | incoh_echoes = numpy.concatenate(( incoh_echoes,valid2[iv]), axis=None) | |||
|
195 | ||||
|
196 | if len(valid)>0: | |||
|
197 | coh_spectra[pair[0],:,valid] = spectra[pair[0],:,valid] | |||
|
198 | coh_spectra[pair[1],:,valid] = spectra[pair[1],:,valid] | |||
|
199 | coh_cspectra[ic,:,valid] = cspectra[ic,:,valid] | |||
|
200 | coh_aver[pair[0],valid]=1 | |||
|
201 | coh_aver[pair[1],valid]=1 | |||
|
202 | if len(incoh_echoes)>0: | |||
|
203 | incoh_spectra[pair[0],:,incoh_echoes] = spectra[pair[0],:,incoh_echoes] | |||
|
204 | incoh_spectra[pair[1],:,incoh_echoes] = spectra[pair[1],:,incoh_echoes] | |||
|
205 | incoh_cspectra[ic,:,incoh_echoes] = cspectra[ic,:,incoh_echoes] | |||
|
206 | incoh_aver[pair[0],incoh_echoes]=1 | |||
|
207 | incoh_aver[pair[1],incoh_echoes]=1 | |||
|
208 | return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver | |||
|
209 | ||||
|
210 | ||||
|
211 | def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index): | |||
|
212 | ||||
|
213 | nProf = dataOut.nProfiles | |||
|
214 | heights = dataOut.heightList | |||
|
215 | nHei = len(heights) | |||
|
216 | channels = dataOut.channelList | |||
|
217 | nChan = len(channels) | |||
|
218 | crosspairs = dataOut.groupList | |||
|
219 | nPairs = len(crosspairs) | |||
|
220 | ||||
|
221 | absc = dataOut.abscissaList[:-1] | |||
|
222 | data_param = numpy.zeros((nChan, 4, spectra.shape[2])) | |||
|
223 | clean_coh_spectra = spectra.copy() | |||
|
224 | clean_coh_cspectra = cspectra.copy() | |||
|
225 | clean_coh_aver = coh_aver.copy() | |||
|
226 | ||||
|
227 | spwd_th=[10,6] #spwd_th[0] --> For satellites ; spwd_th[1] --> For special events like SUN. | |||
|
228 | coh_th = 0.75 | |||
|
229 | ||||
|
230 | rtime0 = [6,18] # periodo sin ESF | |||
|
231 | rtime1 = [10.5,13.5] # periodo con alta coherencia y alto ancho espectral (esperado): SOL. | |||
|
232 | ||||
|
233 | time = index*5./60 # en base a 5 min de proceso | |||
|
234 | if clean_coh_echoes == 1 : | |||
|
235 | for ind in range(nChan): | |||
|
236 | data_param[ind,:,:] = self.__calculateMoments( spectra[ind,:,:] , absc , noise[ind] ) | |||
|
237 | spwd = data_param[:,3] | |||
|
238 | # SPECB_JULIA,header=anal_header,jspectra=spectra,vel=velocities,hei=heights, num_aver=1, mode_fit=0,smoothing=smoothing,jvelr=velr,jspwd=spwd,jsnr=snr,jnoise=noise,jstdvnoise=stdvnoise | |||
|
239 | # para obtener spwd | |||
|
240 | for ic in range(nPairs): | |||
|
241 | pair = crosspairs[ic] | |||
|
242 | coh = numpy.squeeze(numpy.sum(cspectra[ic,:,:], axis=1)/numpy.sqrt(numpy.sum(spectra[pair[0],:,:], axis=1)*numpy.sum(spectra[pair[1],:,:], axis=1))) | |||
|
243 | for ih in range(nHei) : | |||
|
244 | # Considering heights higher than 200km in order to avoid removing phenomena like EEJ. | |||
|
245 | if heights[ih] >= 200 and coh_aver[pair[0],ih] == 1 and coh_aver[pair[1],ih] == 1 : | |||
|
246 | # Checking coherence | |||
|
247 | if (numpy.abs(coh[ih]) <= coh_th) or (time >= rtime0[0] and time <= rtime0[1]) : | |||
|
248 | # Checking spectral widths | |||
|
249 | if (spwd[pair[0],ih] > spwd_th[0]) or (spwd[pair[1],ih] > spwd_th[0]) : | |||
|
250 | # satelite | |||
|
251 | clean_coh_spectra[pair,ih,:] = 0.0 | |||
|
252 | clean_coh_cspectra[ic,ih,:] = 0.0 | |||
|
253 | clean_coh_aver[pair,ih] = 0 | |||
|
254 | else : | |||
|
255 | if ((spwd[pair[0],ih] < spwd_th[1]) or (spwd[pair[1],ih] < spwd_th[1])) : | |||
|
256 | # Especial event like sun. | |||
|
257 | clean_coh_spectra[pair,ih,:] = 0.0 | |||
|
258 | clean_coh_cspectra[ic,ih,:] = 0.0 | |||
|
259 | clean_coh_aver[pair,ih] = 0 | |||
|
260 | ||||
|
261 | return clean_coh_spectra, clean_coh_cspectra, clean_coh_aver | |||
|
262 | ||||
|
263 | def CleanRayleigh(self,dataOut,spectra,cspectra,save_drifts): | |||
|
264 | ||||
|
265 | rfunc = cspectra.copy() | |||
|
266 | n_funct = len(rfunc[0,:,0,0]) | |||
|
267 | val_spc = spectra*0.0 | |||
|
268 | val_cspc = cspectra*0.0 | |||
|
269 | in_sat_spectra = spectra.copy() | |||
|
270 | in_sat_cspectra = cspectra.copy() | |||
|
271 | ||||
|
272 | min_hei = 200 | |||
|
273 | nProf = dataOut.nProfiles | |||
|
274 | heights = dataOut.heightList | |||
|
275 | nHei = len(heights) | |||
|
276 | channels = dataOut.channelList | |||
|
277 | nChan = len(channels) | |||
|
278 | crosspairs = dataOut.groupList | |||
|
279 | nPairs = len(crosspairs) | |||
|
280 | hval=(heights >= min_hei).nonzero() | |||
|
281 | ih=hval[0] | |||
|
282 | for ih in range(hval[0][0],nHei): | |||
|
283 | for ifreq in range(nProf): | |||
|
284 | for ii in range(n_funct): | |||
|
285 | ||||
|
286 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) | |||
|
287 | val = (numpy.isfinite(func2clean)==True).nonzero() | |||
|
288 | if len(val)>0: | |||
|
289 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |||
|
290 | if min_val <= -40 : min_val = -40 | |||
|
291 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |||
|
292 | if max_val >= 200 : max_val = 200 | |||
|
293 | step = 1 | |||
|
294 | #Getting bins and the histogram | |||
|
295 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |||
|
296 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |||
|
297 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |||
|
298 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |||
|
299 | parg = [numpy.amax(y_dist),mean,sigma] | |||
|
300 | try : | |||
|
301 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |||
|
302 | mode = gauss_fit[1] | |||
|
303 | stdv = gauss_fit[2] | |||
|
304 | except: | |||
|
305 | mode = mean | |||
|
306 | stdv = sigma | |||
|
307 | ||||
|
308 | #Removing echoes greater than mode + 3*stdv | |||
|
309 | factor_stdv = 2.5 | |||
|
310 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |||
|
311 | ||||
|
312 | if len(noval[0]) > 0: | |||
|
313 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |||
|
314 | cross_pairs = crosspairs[ii] | |||
|
315 | #Getting coherent echoes which are removed. | |||
|
316 | if len(novall[0]) > 0: | |||
|
317 | val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |||
|
318 | val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |||
|
319 | val_cspc[novall[0],ii,ifreq,ih] = 1 | |||
|
320 | #Removing coherent from ISR data | |||
|
321 | spectra[noval,cross_pairs[0],ifreq,ih] = numpy.nan | |||
|
322 | spectra[noval,cross_pairs[1],ifreq,ih] = numpy.nan | |||
|
323 | cspectra[noval,ii,ifreq,ih] = numpy.nan | |||
|
324 | ||||
|
325 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |||
|
326 | out_spectra = numpy.zeros([nChan,nProf,nHei], dtype=float) #+numpy.nan | |||
|
327 | out_cspectra = numpy.zeros([nPairs,nProf,nHei], dtype=complex) #+numpy.nan | |||
|
328 | for ih in range(nHei): | |||
|
329 | for ifreq in range(nProf): | |||
|
330 | for ich in range(nChan): | |||
|
331 | tmp = spectra[:,ich,ifreq,ih] | |||
|
332 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |||
|
333 | if len(valid[0]) >0 : | |||
|
334 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
335 | for icr in range(nPairs): | |||
|
336 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |||
|
337 | valid = (numpy.isfinite(tmp)==True).nonzero() | |||
|
338 | if len(valid[0]) > 0: | |||
|
339 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
340 | #Removing fake coherent echoes (at least 4 points around the point) | |||
|
341 | val_spectra = numpy.sum(val_spc,0) | |||
|
342 | val_cspectra = numpy.sum(val_cspc,0) | |||
|
343 | ||||
|
344 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) | |||
|
345 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) | |||
|
346 | ||||
|
347 | for i in range(nChan): | |||
|
348 | for j in range(nProf): | |||
|
349 | for k in range(nHei): | |||
|
350 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : | |||
|
351 | val_spc[:,i,j,k] = 0.0 | |||
|
352 | for i in range(nPairs): | |||
|
353 | for j in range(nProf): | |||
|
354 | for k in range(nHei): | |||
|
355 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : | |||
|
356 | val_cspc[:,i,j,k] = 0.0 | |||
|
357 | ||||
|
358 | tmp_sat_spectra = spectra.copy() | |||
|
359 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan | |||
|
360 | tmp_sat_cspectra = cspectra.copy() | |||
|
361 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan | |||
|
362 | val = (val_spc > 0).nonzero() | |||
|
363 | if len(val[0]) > 0: | |||
|
364 | tmp_sat_spectra[val] = in_sat_spectra[val] | |||
|
365 | ||||
|
366 | val = (val_cspc > 0).nonzero() | |||
|
367 | if len(val[0]) > 0: | |||
|
368 | tmp_sat_cspectra[val] = in_sat_cspectra[val] | |||
|
369 | ||||
|
370 | #Getting average of the spectra and cross-spectra from incoherent echoes. | |||
|
371 | sat_spectra = numpy.zeros((nChan,nProf,nHei), dtype=float) | |||
|
372 | sat_cspectra = numpy.zeros((nPairs,nProf,nHei), dtype=complex) | |||
|
373 | for ih in range(nHei): | |||
|
374 | for ifreq in range(nProf): | |||
|
375 | for ich in range(nChan): | |||
|
376 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) | |||
|
377 | valid = (numpy.isfinite(tmp)).nonzero() | |||
|
378 | if len(valid[0]) > 0: | |||
|
379 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
380 | ||||
|
381 | for icr in range(nPairs): | |||
|
382 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) | |||
|
383 | valid = (numpy.isfinite(tmp)).nonzero() | |||
|
384 | if len(valid[0]) > 0: | |||
|
385 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |||
|
386 | return out_spectra, out_cspectra,sat_spectra,sat_cspectra | |||
|
387 | def REM_ISOLATED_POINTS(self,array,rth): | |||
|
388 | if rth == None : rth = 4 | |||
|
389 | num_prof = len(array[0,:,0]) | |||
|
390 | num_hei = len(array[0,0,:]) | |||
|
391 | n2d = len(array[:,0,0]) | |||
|
392 | ||||
|
393 | for ii in range(n2d) : | |||
|
394 | tmp = array[ii,:,:] | |||
|
395 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |||
|
396 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |||
|
397 | indxs2 = (tmp > 0).nonzero() | |||
|
398 | indxs1 = (indxs1[0]) | |||
|
399 | indxs2 = indxs2[0] | |||
|
400 | indxs = None | |||
|
401 | for iv in range(len(indxs2)): | |||
|
402 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |||
|
403 | if len(indv[0]) > 0 : | |||
|
404 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |||
|
405 | indxs = indxs[1:] | |||
|
406 | if len(indxs) < 4 : | |||
|
407 | array[ii,:,:] = 0. | |||
|
408 | return | |||
|
409 | ||||
|
410 | xpos = numpy.mod(indxs ,num_hei) | |||
|
411 | ypos = (indxs / num_hei) | |||
|
412 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |||
|
413 | xpos = xpos[sx] | |||
|
414 | ypos = ypos[sx] | |||
|
415 | # *********************************** Cleaning isolated points ********************************** | |||
|
416 | ic = 0 | |||
|
417 | while True : | |||
|
418 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |||
|
419 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |||
|
420 | no_coh2 = (r <= rth).nonzero() | |||
|
421 | no_coh1 = numpy.array(no_coh1[0]) | |||
|
422 | no_coh2 = numpy.array(no_coh2[0]) | |||
|
423 | no_coh = None | |||
|
424 | for iv in range(len(no_coh2)): | |||
|
425 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |||
|
426 | if len(indv[0]) > 0 : | |||
|
427 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |||
|
428 | no_coh = no_coh[1:] | |||
|
429 | if len(no_coh) < 4 : | |||
|
430 | xpos[ic] = numpy.nan | |||
|
431 | ypos[ic] = numpy.nan | |||
|
432 | ||||
|
433 | ic = ic + 1 | |||
|
434 | if (ic == len(indxs)) : | |||
|
435 | break | |||
|
436 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |||
|
437 | if len(indxs[0]) < 4 : | |||
|
438 | array[ii,:,:] = 0. | |||
|
439 | return | |||
|
440 | ||||
|
441 | xpos = xpos[indxs[0]] | |||
|
442 | ypos = ypos[indxs[0]] | |||
|
443 | for i in range(0,len(ypos)): | |||
|
444 | ypos[i]=int(ypos[i]) | |||
|
445 | junk = tmp | |||
|
446 | tmp = junk*0.0 | |||
|
447 | ||||
|
448 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |||
|
449 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |||
|
450 | return array | |||
|
451 | ||||
|
452 | def moments(self,doppler,yarray,npoints): | |||
|
453 | ytemp = yarray | |||
|
454 | val = (ytemp > 0).nonzero() | |||
|
455 | val = val[0] | |||
|
456 | if len(val) == 0 : val = range(npoints-1) | |||
|
457 | ||||
|
458 | ynew = 0.5*(ytemp[val[0]]+ytemp[val[len(val)-1]]) | |||
|
459 | ytemp[len(ytemp):] = [ynew] | |||
|
460 | ||||
|
461 | index = 0 | |||
|
462 | index = numpy.argmax(ytemp) | |||
|
463 | ytemp = numpy.roll(ytemp,int(npoints/2)-1-index) | |||
|
464 | ytemp = ytemp[0:npoints-1] | |||
|
465 | ||||
|
466 | fmom = numpy.sum(doppler*ytemp)/numpy.sum(ytemp)+(index-(npoints/2-1))*numpy.abs(doppler[1]-doppler[0]) | |||
|
467 | smom = numpy.sum(doppler*doppler*ytemp)/numpy.sum(ytemp) | |||
|
468 | return [fmom,numpy.sqrt(smom)] | |||
|
469 | ||||
|
470 | ||||
|
471 | ||||
|
472 | ||||
|
473 | ||||
|
474 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None, filec=None,coh_th=None, hei_th=None,taver=None,proc=None,nhei=None,nprofs=None,ipp=None,channelList=None): | |||
|
475 | if not numpy.any(proc): | |||
|
476 | nChannels = dataOut.nChannels | |||
|
477 | nHeights= dataOut.heightList.size | |||
|
478 | nProf = dataOut.nProfiles | |||
|
479 | if numpy.any(taver): taver=int(taver) | |||
|
480 | else : taver = 5 | |||
|
481 | tini=time.localtime(dataOut.utctime) | |||
|
482 | if (tini.tm_min % taver) == 0 and (tini.tm_sec < 5 and self.fint==0): | |||
|
483 | self.index = 0 | |||
|
484 | jspc = self.buffer | |||
|
485 | jcspc = self.buffer2 | |||
|
486 | jnoise = self.buffer3 | |||
|
487 | self.buffer = dataOut.data_spc | |||
|
488 | self.buffer2 = dataOut.data_cspc | |||
|
489 | self.buffer3 = dataOut.noise | |||
|
490 | self.fint = 1 | |||
|
491 | if numpy.any(jspc) : | |||
|
492 | jspc= numpy.reshape(jspc,(int(len(jspc)/nChannels),nChannels,nProf,nHeights)) | |||
|
493 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/int(nChannels/2)),int(nChannels/2),nProf,nHeights)) | |||
|
494 | jnoise= numpy.reshape(jnoise,(int(len(jnoise)/nChannels),nChannels)) | |||
|
495 | else: | |||
|
496 | dataOut.flagNoData = True | |||
|
497 | return dataOut | |||
|
498 | else : | |||
|
499 | if (tini.tm_min % taver) == 0 : self.fint = 1 | |||
|
500 | else : self.fint = 0 | |||
|
501 | self.index += 1 | |||
|
502 | if numpy.any(self.buffer): | |||
|
503 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |||
|
504 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |||
|
505 | self.buffer3 = numpy.concatenate((self.buffer3,dataOut.noise), axis=0) | |||
|
506 | else: | |||
|
507 | self.buffer = dataOut.data_spc | |||
|
508 | self.buffer2 = dataOut.data_cspc | |||
|
509 | self.buffer3 = dataOut.noise | |||
|
510 | dataOut.flagNoData = True | |||
|
511 | return dataOut | |||
|
512 | if path != None: | |||
|
513 | sys.path.append(path) | |||
|
514 | self.library = importlib.import_module(file) | |||
|
515 | if filec != None: | |||
|
516 | self.weightf = importlib.import_module(filec) | |||
|
517 | ||||
|
518 | #To be inserted as a parameter | |||
|
519 | groupArray = numpy.array(groupList) | |||
|
520 | #groupArray = numpy.array([[0,1],[2,3]]) | |||
|
521 | dataOut.groupList = groupArray | |||
|
522 | nGroups = groupArray.shape[0] | |||
|
523 | nChannels = dataOut.nChannels | |||
|
524 | nHeights = dataOut.heightList.size | |||
|
525 | ||||
|
526 | #Parameters Array | |||
|
527 | dataOut.data_param = None | |||
|
528 | dataOut.data_paramC = None | |||
|
529 | dataOut.clean_num_aver = None | |||
|
530 | dataOut.coh_num_aver = None | |||
|
531 | dataOut.tmp_spectra_i = None | |||
|
532 | dataOut.tmp_cspectra_i = None | |||
|
533 | dataOut.tmp_spectra_c = None | |||
|
534 | dataOut.tmp_cspectra_c = None | |||
|
535 | dataOut.index = None | |||
|
536 | ||||
|
537 | #Set constants | |||
|
538 | constants = self.library.setConstants(dataOut) | |||
|
539 | dataOut.constants = constants | |||
|
540 | M = dataOut.normFactor | |||
|
541 | N = dataOut.nFFTPoints | |||
|
542 | ippSeconds = dataOut.ippSeconds | |||
|
543 | K = dataOut.nIncohInt | |||
|
544 | pairsArray = numpy.array(dataOut.pairsList) | |||
|
545 | snrth= 20 | |||
|
546 | spectra = dataOut.data_spc | |||
|
547 | cspectra = dataOut.data_cspc | |||
|
548 | nProf = dataOut.nProfiles | |||
|
549 | heights = dataOut.heightList | |||
|
550 | nHei = len(heights) | |||
|
551 | channels = dataOut.channelList | |||
|
552 | nChan = len(channels) | |||
|
553 | nIncohInt = dataOut.nIncohInt | |||
|
554 | crosspairs = dataOut.groupList | |||
|
555 | noise = dataOut.noise | |||
|
556 | jnoise = jnoise/N | |||
|
557 | noise = numpy.nansum(jnoise,axis=0)#/len(jnoise) | |||
|
558 | power = numpy.sum(spectra, axis=1) | |||
|
559 | nPairs = len(crosspairs) | |||
|
560 | absc = dataOut.abscissaList[:-1] | |||
|
561 | ||||
|
562 | if not self.isConfig: | |||
|
563 | self.isConfig = True | |||
|
564 | ||||
|
565 | index = tini.tm_hour*12+tini.tm_min/taver | |||
|
566 | dataOut.index= index | |||
|
567 | jspc = jspc/N/N | |||
|
568 | jcspc = jcspc/N/N | |||
|
569 | tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.CleanRayleigh(dataOut,jspc,jcspc,2) | |||
|
570 | jspectra = tmp_spectra*len(jspc[:,0,0,0]) | |||
|
571 | jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) | |||
|
572 | my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver = self.__DiffCoherent(jspectra, jcspectra, dataOut, noise, snrth,coh_th, hei_th) | |||
|
573 | clean_coh_spectra, clean_coh_cspectra, clean_coh_aver = self.__CleanCoherent(snrth, coh_spectra, coh_cspectra, coh_aver, dataOut, noise,1,index) | |||
|
574 | dataOut.data_spc = incoh_spectra | |||
|
575 | dataOut.data_cspc = incoh_cspectra | |||
|
576 | clean_num_aver = incoh_aver*len(jspc[:,0,0,0]) | |||
|
577 | coh_num_aver = clean_coh_aver*len(jspc[:,0,0,0]) | |||
|
578 | dataOut.clean_num_aver = clean_num_aver | |||
|
579 | dataOut.coh_num_aver = coh_num_aver | |||
|
580 | dataOut.tmp_spectra_i = incoh_spectra | |||
|
581 | dataOut.tmp_cspectra_i = incoh_cspectra | |||
|
582 | dataOut.tmp_spectra_c = clean_coh_spectra | |||
|
583 | dataOut.tmp_cspectra_c = clean_coh_cspectra | |||
|
584 | #List of possible combinations | |||
|
585 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |||
|
586 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |||
|
587 | if getSNR: | |||
|
588 | listChannels = groupArray.reshape((groupArray.size)) | |||
|
589 | listChannels.sort() | |||
|
590 | dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels]) | |||
|
591 | else: | |||
|
592 | clean_num_aver = dataOut.clean_num_aver | |||
|
593 | coh_num_aver = dataOut.coh_num_aver | |||
|
594 | dataOut.data_spc = dataOut.tmp_spectra_i | |||
|
595 | dataOut.data_cspc = dataOut.tmp_cspectra_i | |||
|
596 | clean_coh_spectra = dataOut.tmp_spectra_c | |||
|
597 | clean_coh_cspectra = dataOut.tmp_cspectra_c | |||
|
598 | jspectra = dataOut.data_spc+clean_coh_spectra | |||
|
599 | nHeights = len(dataOut.heightList) # nhei | |||
|
600 | nProf = int(dataOut.nProfiles) | |||
|
601 | dataOut.nProfiles = nProf | |||
|
602 | dataOut.data_param = None | |||
|
603 | dataOut.data_paramC = None | |||
|
604 | dataOut.code = numpy.array([[-1.,-1.,1.],[1.,1.,-1.]]) | |||
|
605 | #M=600 | |||
|
606 | #N=200 | |||
|
607 | dataOut.flagDecodeData=True | |||
|
608 | M = int(dataOut.normFactor) | |||
|
609 | N = int(dataOut.nFFTPoints) | |||
|
610 | dataOut.nFFTPoints = N | |||
|
611 | dataOut.nIncohInt= int(dataOut.nIncohInt) | |||
|
612 | dataOut.nProfiles = int(dataOut.nProfiles) | |||
|
613 | dataOut.nCohInt = int(dataOut.nCohInt) | |||
|
614 | print('sale',dataOut.nProfiles,dataOut.nHeights) | |||
|
615 | #dataOut.nFFTPoints=nprofs | |||
|
616 | #dataOut.normFactor = nprofs | |||
|
617 | dataOut.channelList = channelList | |||
|
618 | #dataOut.ippFactor=1 | |||
|
619 | #ipp = ipp/150*1.e-3 | |||
|
620 | vmax = (300000000/49920000.0/2) / (dataOut.ippSeconds) | |||
|
621 | #dataOut.ippSeconds=ipp | |||
|
622 | absc = vmax*( numpy.arange(nProf,dtype='float')-nProf/2.)/nProf | |||
|
623 | print('sale 2',dataOut.ippSeconds,M,N) | |||
|
624 | print('Empieza procesamiento offline') | |||
|
625 | if path != None: | |||
|
626 | sys.path.append(path) | |||
|
627 | self.library = importlib.import_module(file) | |||
|
628 | constants = self.library.setConstants(dataOut) | |||
|
629 | constants['M'] = M | |||
|
630 | dataOut.constants = constants | |||
|
631 | ||||
|
632 | groupArray = numpy.array(groupList) | |||
|
633 | dataOut.groupList = groupArray | |||
|
634 | nGroups = groupArray.shape[0] | |||
|
635 | #List of possible combinations | |||
|
636 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |||
|
637 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |||
|
638 | if dataOut.data_paramC is None: | |||
|
639 | dataOut.data_paramC = numpy.zeros((nGroups*4, nHeights,2))*numpy.nan | |||
|
640 | for i in range(nGroups): | |||
|
641 | coord = groupArray[i,:] | |||
|
642 | #Input data array | |||
|
643 | data = dataOut.data_spc[coord,:,:]/(M*N) | |||
|
644 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |||
|
645 | ||||
|
646 | #Cross Spectra data array for Covariance Matrixes | |||
|
647 | ind = 0 | |||
|
648 | for pairs in listComb: | |||
|
649 | pairsSel = numpy.array([coord[x],coord[y]]) | |||
|
650 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |||
|
651 | ind += 1 | |||
|
652 | dataCross = dataOut.data_cspc[indCross,:,:]/(M*N) | |||
|
653 | dataCross = dataCross**2 | |||
|
654 | nhei = nHeights | |||
|
655 | poweri = numpy.sum(dataOut.data_spc[:,1:nProf-0,:],axis=1)/clean_num_aver[:,:] | |||
|
656 | if i == 0 : my_noises = numpy.zeros(4,dtype=float) | |||
|
657 | n0i = numpy.nanmin(poweri[0+i*2,0:nhei-0])/(nProf-1) | |||
|
658 | n1i = numpy.nanmin(poweri[1+i*2,0:nhei-0])/(nProf-1) | |||
|
659 | n0 = n0i | |||
|
660 | n1= n1i | |||
|
661 | my_noises[2*i+0] = n0 | |||
|
662 | my_noises[2*i+1] = n1 | |||
|
663 | snrth = -15.0 # -4 -16 -25 | |||
|
664 | snrth = 10**(snrth/10.0) | |||
|
665 | jvelr = numpy.zeros(nHeights, dtype = 'float') | |||
|
666 | hvalid = [0] | |||
|
667 | coh2 = abs(dataOut.data_cspc[i,1:nProf,:])**2/(dataOut.data_spc[0+i*2,1:nProf-0,:]*dataOut.data_spc[1+i*2,1:nProf-0,:]) | |||
|
668 | for h in range(nHeights): | |||
|
669 | smooth = clean_num_aver[i+1,h] | |||
|
670 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth | |||
|
671 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth | |||
|
672 | signal0 = signalpn0-n0 | |||
|
673 | signal1 = signalpn1-n1 | |||
|
674 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
675 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
676 | gamma = coh2[:,h] | |||
|
677 | indxs = (numpy.isfinite(list(gamma))==True).nonzero() | |||
|
678 | if len(indxs) >0: | |||
|
679 | if numpy.nanmean(gamma) > 0.07: | |||
|
680 | maxp0 = numpy.argmax(signal0*gamma) | |||
|
681 | maxp1 = numpy.argmax(signal1*gamma) | |||
|
682 | #print('usa gamma',numpy.nanmean(gamma)) | |||
|
683 | else: | |||
|
684 | maxp0 = numpy.argmax(signal0) | |||
|
685 | maxp1 = numpy.argmax(signal1) | |||
|
686 | jvelr[h] = (absc[maxp0]+absc[maxp1])/2. | |||
|
687 | else: jvelr[h] = absc[0] | |||
|
688 | if snr0 > 0.1 and snr1 > 0.1: hvalid = numpy.concatenate((hvalid,h), axis=None) | |||
|
689 | #print(maxp0,absc[maxp0],snr0,jvelr[h]) | |||
|
690 | ||||
|
691 | if len(hvalid)> 1: fd0 = numpy.median(jvelr[hvalid[1:]])*-1 | |||
|
692 | else: fd0 = numpy.nan | |||
|
693 | for h in range(nHeights): | |||
|
694 | d = data[:,h] | |||
|
695 | smooth = clean_num_aver[i+1,h] #dataOut.data_spc[:,1:nProf-0,:] | |||
|
696 | signalpn0 = (dataOut.data_spc[i*2,1:(nProf-0),h])/smooth | |||
|
697 | signalpn1 = (dataOut.data_spc[i*2+1,1:(nProf-0),h])/smooth | |||
|
698 | signal0 = signalpn0-n0 | |||
|
699 | signal1 = signalpn1-n1 | |||
|
700 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
701 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
702 | if snr0 > snrth and snr1 > snrth and clean_num_aver[i+1,h] > 0 : | |||
|
703 | #Covariance Matrix | |||
|
704 | D = numpy.diag(d**2) | |||
|
705 | ind = 0 | |||
|
706 | for pairs in listComb: | |||
|
707 | #Coordinates in Covariance Matrix | |||
|
708 | x = pairs[0] | |||
|
709 | y = pairs[1] | |||
|
710 | #Channel Index | |||
|
711 | S12 = dataCross[ind,:,h] | |||
|
712 | D12 = numpy.diag(S12) | |||
|
713 | #Completing Covariance Matrix with Cross Spectras | |||
|
714 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |||
|
715 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |||
|
716 | ind += 1 | |||
|
717 | diagD = numpy.zeros(256) | |||
|
718 | ||||
|
719 | try: | |||
|
720 | Dinv=numpy.linalg.inv(D) | |||
|
721 | L=numpy.linalg.cholesky(Dinv) | |||
|
722 | except: | |||
|
723 | Dinv = D*numpy.nan | |||
|
724 | L= D*numpy.nan | |||
|
725 | LT=L.T | |||
|
726 | ||||
|
727 | dp = numpy.dot(LT,d) | |||
|
728 | #Initial values | |||
|
729 | data_spc = dataOut.data_spc[coord,:,h] | |||
|
730 | w = data_spc/data_spc | |||
|
731 | if filec != None: | |||
|
732 | w = self.weightf.weightfit(w,tini.tm_year,tini.tm_yday,index,h,i) | |||
|
733 | if (h>6)and(error1[3]<25): | |||
|
734 | p0 = dataOut.data_param[i,:,h-1] | |||
|
735 | else: | |||
|
736 | p0 = numpy.array(self.library.initialValuesFunction(data_spc*w, constants))# sin el i(data_spc, constants, i) | |||
|
737 | p0[3] = fd0 | |||
|
738 | if filec != None: | |||
|
739 | p0 = self.weightf.Vrfit(p0,tini.tm_year,tini.tm_yday,index,h,i) | |||
|
740 | try: | |||
|
741 | #Least Squares | |||
|
742 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |||
|
743 | #minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |||
|
744 | #Chi square error | |||
|
745 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |||
|
746 | #Error with Jacobian | |||
|
747 | error1 = self.library.errorFunction(minp,constants,LT) | |||
|
748 | ||||
|
749 | except: | |||
|
750 | minp = p0*numpy.nan | |||
|
751 | error0 = numpy.nan | |||
|
752 | error1 = p0*numpy.nan | |||
|
753 | else : | |||
|
754 | data_spc = dataOut.data_spc[coord,:,h] | |||
|
755 | p0 = numpy.array(self.library.initialValuesFunction(data_spc, constants)) | |||
|
756 | minp = p0*numpy.nan | |||
|
757 | error0 = numpy.nan | |||
|
758 | error1 = p0*numpy.nan | |||
|
759 | if dataOut.data_param is None: | |||
|
760 | dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |||
|
761 | dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |||
|
762 | ||||
|
763 | dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |||
|
764 | dataOut.data_param[i,:,h] = minp | |||
|
765 | for ht in range(nHeights-1) : | |||
|
766 | smooth = coh_num_aver[i+1,ht] #datc[0,ht,0,beam] | |||
|
767 | dataOut.data_paramC[4*i,ht,1] = smooth | |||
|
768 | signalpn0 = (clean_coh_spectra[i*2 ,1:(nProf-0),ht])/smooth #coh_spectra | |||
|
769 | signalpn1 = (clean_coh_spectra[i*2+1,1:(nProf-0),ht])/smooth | |||
|
770 | val0 = (signalpn0 > 0).nonzero() | |||
|
771 | val0 = val0[0] | |||
|
772 | if len(val0) == 0 : val0_npoints = nProf | |||
|
773 | else : val0_npoints = len(val0) | |||
|
774 | ||||
|
775 | val1 = (signalpn1 > 0).nonzero() | |||
|
776 | val1 = val1[0] | |||
|
777 | if len(val1) == 0 : val1_npoints = nProf | |||
|
778 | else : val1_npoints = len(val1) | |||
|
779 | ||||
|
780 | dataOut.data_paramC[0+4*i,ht,0] = numpy.sum((signalpn0/val0_npoints))/n0 | |||
|
781 | dataOut.data_paramC[1+4*i,ht,0] = numpy.sum((signalpn1/val1_npoints))/n1 | |||
|
782 | ||||
|
783 | signal0 = (signalpn0-n0) | |||
|
784 | vali = (signal0 < 0).nonzero() | |||
|
785 | vali = vali[0] | |||
|
786 | if len(vali) > 0 : signal0[vali] = 0 | |||
|
787 | signal1 = (signalpn1-n1) | |||
|
788 | vali = (signal1 < 0).nonzero() | |||
|
789 | vali = vali[0] | |||
|
790 | if len(vali) > 0 : signal1[vali] = 0 | |||
|
791 | snr0 = numpy.sum(signal0/n0)/(nProf-1) | |||
|
792 | snr1 = numpy.sum(signal1/n1)/(nProf-1) | |||
|
793 | doppler = absc[1:] | |||
|
794 | if snr0 >= snrth and snr1 >= snrth and smooth : | |||
|
795 | signalpn0_n0 = signalpn0 | |||
|
796 | signalpn0_n0[val0] = signalpn0[val0] - n0 | |||
|
797 | mom0 = self.moments(doppler,signalpn0-n0,nProf) | |||
|
798 | signalpn1_n1 = signalpn1 | |||
|
799 | signalpn1_n1[val1] = signalpn1[val1] - n1 | |||
|
800 | mom1 = self.moments(doppler,signalpn1_n1,nProf) | |||
|
801 | dataOut.data_paramC[2+4*i,ht,0] = (mom0[0]+mom1[0])/2. | |||
|
802 | dataOut.data_paramC[3+4*i,ht,0] = (mom0[1]+mom1[1])/2. | |||
|
803 | ||||
|
804 | dataOut.data_spc = jspectra | |||
|
805 | dataOut.spc_noise = my_noises*nProf*M | |||
|
806 | if numpy.any(proc): dataOut.spc_noise = my_noises*nProf*M | |||
|
807 | if getSNR: | |||
|
808 | listChannels = groupArray.reshape((groupArray.size)) | |||
|
809 | listChannels.sort() | |||
|
810 | ||||
|
811 | dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], my_noises[listChannels]) | |||
|
812 | return dataOut | |||
|
813 | ||||
|
814 | def __residFunction(self, p, dp, LT, constants): | |||
|
815 | ||||
|
816 | fm = self.library.modelFunction(p, constants) | |||
|
817 | fmp=numpy.dot(LT,fm) | |||
|
818 | return dp-fmp | |||
|
819 | ||||
|
820 | def __getSNR(self, z, noise): | |||
|
821 | ||||
|
822 | avg = numpy.average(z, axis=1) | |||
|
823 | SNR = (avg.T-noise)/noise | |||
|
824 | SNR = SNR.T | |||
|
825 | return SNR | |||
|
826 | ||||
|
827 | def __chisq(self, p, chindex, hindex): | |||
|
828 | #similar to Resid but calculates CHI**2 | |||
|
829 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |||
|
830 | dp=numpy.dot(LT,d) | |||
|
831 | fmp=numpy.dot(LT,fm) | |||
|
832 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |||
|
833 | return chisq |
@@ -945,12 +945,12 class IncohInt(Operation): | |||||
945 |
|
945 | |||
946 | class dopplerFlip(Operation): |
|
946 | class dopplerFlip(Operation): | |
947 |
|
947 | |||
948 | def run(self, dataOut): |
|
948 | def run(self, dataOut, chann = None): | |
949 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
949 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
950 | self.dataOut = dataOut |
|
950 | self.dataOut = dataOut | |
951 | # JULIA-oblicua, indice 2 |
|
951 | # JULIA-oblicua, indice 2 | |
952 | # arreglo 2: (num_profiles, num_heights) |
|
952 | # arreglo 2: (num_profiles, num_heights) | |
953 |
jspectra = self.dataOut.data_spc[ |
|
953 | jspectra = self.dataOut.data_spc[chann] | |
954 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
954 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
955 | num_profiles = jspectra.shape[0] |
|
955 | num_profiles = jspectra.shape[0] | |
956 | freq_dc = int(num_profiles / 2) |
|
956 | freq_dc = int(num_profiles / 2) | |
@@ -961,6 +961,6 class dopplerFlip(Operation): | |||||
961 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
961 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
962 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
962 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
963 | # canal modificado es re-escrito en el arreglo de canales |
|
963 | # canal modificado es re-escrito en el arreglo de canales | |
964 |
self.dataOut.data_spc[ |
|
964 | self.dataOut.data_spc[chann] = jspectra_tmp | |
965 |
|
965 | |||
966 | return self.dataOut No newline at end of file |
|
966 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now