The requested changes are too big and content was truncated. Show full diff
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
@@ -1,702 +1,703 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc_moments' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 |
|
24 | |||
25 | def setup(self): |
|
25 | def setup(self): | |
26 | self.nplots = len(self.data.channels) |
|
26 | self.nplots = len(self.data.channels) | |
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
29 | self.height = 2.6 * self.nrows |
|
29 | self.height = 2.6 * self.nrows | |
30 | self.cb_label = 'dB' |
|
30 | self.cb_label = 'dB' | |
31 | if self.showprofile: |
|
31 | if self.showprofile: | |
32 | self.width = 4 * self.ncols |
|
32 | self.width = 4 * self.ncols | |
33 | else: |
|
33 | else: | |
34 | self.width = 3.5 * self.ncols |
|
34 | self.width = 3.5 * self.ncols | |
35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
36 | self.ylabel = 'Range [km]' |
|
36 | self.ylabel = 'Range [km]' | |
37 |
|
37 | |||
38 | def update(self, dataOut): |
|
38 | def update(self, dataOut): | |
39 |
|
39 | |||
40 | data = {} |
|
40 | data = {} | |
41 | meta = {} |
|
41 | meta = {} | |
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
42 | spc = 10 * numpy.log10(dataOut.data_spc / dataOut.normFactor) | |
43 | data['spc'] = spc |
|
43 | data['spc'] = spc | |
44 | data['rti'] = dataOut.getPower() |
|
44 | data['rti'] = dataOut.getPower() | |
45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
45 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor) | |
46 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
46 | meta['xrange'] = (dataOut.getFreqRange(1) / 1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
47 | if self.CODE == 'spc_moments': |
|
47 | if self.CODE == 'spc_moments': | |
48 | data['moments'] = dataOut.moments |
|
48 | data['moments'] = dataOut.moments | |
49 |
|
49 | |||
50 | return data, meta |
|
50 | return data, meta | |
51 |
|
51 | |||
52 | def plot(self): |
|
52 | def plot(self): | |
53 | if self.xaxis == "frequency": |
|
53 | if self.xaxis == "frequency": | |
54 | x = self.data.xrange[0] |
|
54 | x = self.data.xrange[0] | |
55 | self.xlabel = "Frequency (kHz)" |
|
55 | self.xlabel = "Frequency (kHz)" | |
56 | elif self.xaxis == "time": |
|
56 | elif self.xaxis == "time": | |
57 | x = self.data.xrange[1] |
|
57 | x = self.data.xrange[1] | |
58 | self.xlabel = "Time (ms)" |
|
58 | self.xlabel = "Time (ms)" | |
59 | else: |
|
59 | else: | |
60 | x = self.data.xrange[2] |
|
60 | x = self.data.xrange[2] | |
61 | self.xlabel = "Velocity (m/s)" |
|
61 | self.xlabel = "Velocity (m/s)" | |
62 |
|
62 | |||
63 | if self.CODE == 'spc_moments': |
|
63 | if self.CODE == 'spc_moments': | |
64 | x = self.data.xrange[2] |
|
64 | x = self.data.xrange[2] | |
65 | self.xlabel = "Velocity (m/s)" |
|
65 | self.xlabel = "Velocity (m/s)" | |
66 |
|
66 | |||
67 | self.titles = [] |
|
67 | self.titles = [] | |
68 |
|
68 | |||
69 | y = self.data.yrange |
|
69 | y = self.data.yrange | |
70 | self.y = y |
|
70 | self.y = y | |
71 |
|
71 | |||
72 | data = self.data[-1] |
|
72 | data = self.data[-1] | |
73 | z = data['spc'] |
|
73 | z = data['spc'] | |
74 |
|
74 | #self.CODE = 'spc_moments' | ||
75 | for n, ax in enumerate(self.axes): |
|
75 | for n, ax in enumerate(self.axes): | |
76 | noise = data['noise'][n] |
|
76 | noise = data['noise'][n] | |
|
77 | print(n,self.CODE) | |||
77 | if self.CODE == 'spc_moments': |
|
78 | if self.CODE == 'spc_moments': | |
78 |
mean = data['moments'][n, |
|
79 | mean = data['moments'][n,1] | |
79 | if ax.firsttime: |
|
80 | if ax.firsttime: | |
80 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
81 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
81 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
82 | self.xmin = self.xmin if self.xmin else -self.xmax | |
82 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
83 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
83 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
84 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
84 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
85 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
85 | vmin=self.zmin, |
|
86 | vmin=self.zmin, | |
86 | vmax=self.zmax, |
|
87 | vmax=self.zmax, | |
87 | cmap=plt.get_cmap(self.colormap) |
|
88 | cmap=plt.get_cmap(self.colormap) | |
88 | ) |
|
89 | ) | |
89 |
|
90 | |||
90 | if self.showprofile: |
|
91 | if self.showprofile: | |
91 | ax.plt_profile = self.pf_axes[n].plot( |
|
92 | ax.plt_profile = self.pf_axes[n].plot( | |
92 | data['rti'][n], y)[0] |
|
93 | data['rti'][n], y)[0] | |
93 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
94 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
94 | color="k", linestyle="dashed", lw=1)[0] |
|
95 | color="k", linestyle="dashed", lw=1)[0] | |
95 | if self.CODE == 'spc_moments': |
|
96 | if self.CODE == 'spc_moments': | |
96 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
97 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
97 | else: |
|
98 | else: | |
98 | ax.plt.set_array(z[n].T.ravel()) |
|
99 | ax.plt.set_array(z[n].T.ravel()) | |
99 | if self.showprofile: |
|
100 | if self.showprofile: | |
100 | ax.plt_profile.set_data(data['rti'][n], y) |
|
101 | ax.plt_profile.set_data(data['rti'][n], y) | |
101 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
102 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
102 | if self.CODE == 'spc_moments': |
|
103 | if self.CODE == 'spc_moments': | |
103 | ax.plt_mean.set_data(mean, y) |
|
104 | ax.plt_mean.set_data(mean, y) | |
104 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
105 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
105 |
|
106 | |||
106 |
|
107 | |||
107 | class CrossSpectraPlot(Plot): |
|
108 | class CrossSpectraPlot(Plot): | |
108 |
|
109 | |||
109 | CODE = 'cspc' |
|
110 | CODE = 'cspc' | |
110 | colormap = 'jet' |
|
111 | colormap = 'jet' | |
111 | plot_type = 'pcolor' |
|
112 | plot_type = 'pcolor' | |
112 | zmin_coh = None |
|
113 | zmin_coh = None | |
113 | zmax_coh = None |
|
114 | zmax_coh = None | |
114 | zmin_phase = None |
|
115 | zmin_phase = None | |
115 | zmax_phase = None |
|
116 | zmax_phase = None | |
116 |
|
117 | |||
117 | def setup(self): |
|
118 | def setup(self): | |
118 |
|
119 | |||
119 | self.ncols = 4 |
|
120 | self.ncols = 4 | |
120 | self.nplots = len(self.data.pairs) * 2 |
|
121 | self.nplots = len(self.data.pairs) * 2 | |
121 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
122 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
122 | self.width = 3.1 * self.ncols |
|
123 | self.width = 3.1 * self.ncols | |
123 | self.height = 2.6 * self.nrows |
|
124 | self.height = 2.6 * self.nrows | |
124 | self.ylabel = 'Range [km]' |
|
125 | self.ylabel = 'Range [km]' | |
125 | self.showprofile = False |
|
126 | self.showprofile = False | |
126 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
127 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
127 |
|
128 | |||
128 | def update(self, dataOut): |
|
129 | def update(self, dataOut): | |
129 |
|
130 | |||
130 | data = {} |
|
131 | data = {} | |
131 | meta = {} |
|
132 | meta = {} | |
132 |
|
133 | |||
133 | spc = dataOut.data_spc |
|
134 | spc = dataOut.data_spc | |
134 | cspc = dataOut.data_cspc |
|
135 | cspc = dataOut.data_cspc | |
135 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
136 | meta['xrange'] = (dataOut.getFreqRange(1) / 1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
136 | meta['pairs'] = dataOut.pairsList |
|
137 | meta['pairs'] = dataOut.pairsList | |
137 |
|
138 | |||
138 | tmp = [] |
|
139 | tmp = [] | |
139 |
|
140 | |||
140 | for n, pair in enumerate(meta['pairs']): |
|
141 | for n, pair in enumerate(meta['pairs']): | |
141 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
142 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
142 | coh = numpy.abs(out) |
|
143 | coh = numpy.abs(out) | |
143 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
144 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
144 | tmp.append(coh) |
|
145 | tmp.append(coh) | |
145 | tmp.append(phase) |
|
146 | tmp.append(phase) | |
146 |
|
147 | |||
147 | data['cspc'] = numpy.array(tmp) |
|
148 | data['cspc'] = numpy.array(tmp) | |
148 |
|
149 | |||
149 | return data, meta |
|
150 | return data, meta | |
150 |
|
151 | |||
151 | def plot(self): |
|
152 | def plot(self): | |
152 |
|
153 | |||
153 | if self.xaxis == "frequency": |
|
154 | if self.xaxis == "frequency": | |
154 | x = self.data.xrange[0] |
|
155 | x = self.data.xrange[0] | |
155 | self.xlabel = "Frequency (kHz)" |
|
156 | self.xlabel = "Frequency (kHz)" | |
156 | elif self.xaxis == "time": |
|
157 | elif self.xaxis == "time": | |
157 | x = self.data.xrange[1] |
|
158 | x = self.data.xrange[1] | |
158 | self.xlabel = "Time (ms)" |
|
159 | self.xlabel = "Time (ms)" | |
159 | else: |
|
160 | else: | |
160 | x = self.data.xrange[2] |
|
161 | x = self.data.xrange[2] | |
161 | self.xlabel = "Velocity (m/s)" |
|
162 | self.xlabel = "Velocity (m/s)" | |
162 |
|
163 | |||
163 | self.titles = [] |
|
164 | self.titles = [] | |
164 |
|
165 | |||
165 | y = self.data.yrange |
|
166 | y = self.data.yrange | |
166 | self.y = y |
|
167 | self.y = y | |
167 |
|
168 | |||
168 | data = self.data[-1] |
|
169 | data = self.data[-1] | |
169 | cspc = data['cspc'] |
|
170 | cspc = data['cspc'] | |
170 |
|
171 | |||
171 | for n in range(len(self.data.pairs)): |
|
172 | for n in range(len(self.data.pairs)): | |
172 | pair = self.data.pairs[n] |
|
173 | pair = self.data.pairs[n] | |
173 | coh = cspc[n*2] |
|
174 | coh = cspc[n * 2] | |
174 | phase = cspc[n*2+1] |
|
175 | phase = cspc[n * 2 + 1] | |
175 | ax = self.axes[2 * n] |
|
176 | ax = self.axes[2 * n] | |
176 | if ax.firsttime: |
|
177 | if ax.firsttime: | |
177 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
178 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
178 | vmin=0, |
|
179 | vmin=0, | |
179 | vmax=1, |
|
180 | vmax=1, | |
180 | cmap=plt.get_cmap(self.colormap_coh) |
|
181 | cmap=plt.get_cmap(self.colormap_coh) | |
181 | ) |
|
182 | ) | |
182 | else: |
|
183 | else: | |
183 | ax.plt.set_array(coh.T.ravel()) |
|
184 | ax.plt.set_array(coh.T.ravel()) | |
184 | self.titles.append( |
|
185 | self.titles.append( | |
185 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
186 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
186 |
|
187 | |||
187 | ax = self.axes[2 * n + 1] |
|
188 | ax = self.axes[2 * n + 1] | |
188 | if ax.firsttime: |
|
189 | if ax.firsttime: | |
189 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
190 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
190 | vmin=-180, |
|
191 | vmin=-180, | |
191 | vmax=180, |
|
192 | vmax=180, | |
192 | cmap=plt.get_cmap(self.colormap_phase) |
|
193 | cmap=plt.get_cmap(self.colormap_phase) | |
193 | ) |
|
194 | ) | |
194 | else: |
|
195 | else: | |
195 | ax.plt.set_array(phase.T.ravel()) |
|
196 | ax.plt.set_array(phase.T.ravel()) | |
196 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
197 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
197 |
|
198 | |||
198 |
|
199 | |||
199 | class RTIPlot(Plot): |
|
200 | class RTIPlot(Plot): | |
200 | ''' |
|
201 | ''' | |
201 | Plot for RTI data |
|
202 | Plot for RTI data | |
202 | ''' |
|
203 | ''' | |
203 |
|
204 | |||
204 | CODE = 'rti' |
|
205 | CODE = 'rti' | |
205 | colormap = 'jet' |
|
206 | colormap = 'jet' | |
206 | plot_type = 'pcolorbuffer' |
|
207 | plot_type = 'pcolorbuffer' | |
207 |
|
208 | |||
208 | def setup(self): |
|
209 | def setup(self): | |
209 | self.xaxis = 'time' |
|
210 | self.xaxis = 'time' | |
210 | self.ncols = 1 |
|
211 | self.ncols = 1 | |
211 | self.nrows = len(self.data.channels) |
|
212 | self.nrows = len(self.data.channels) | |
212 | self.nplots = len(self.data.channels) |
|
213 | self.nplots = len(self.data.channels) | |
213 | self.ylabel = 'Range [km]' |
|
214 | self.ylabel = 'Range [km]' | |
214 | self.xlabel = 'Time' |
|
215 | self.xlabel = 'Time' | |
215 | self.cb_label = 'dB' |
|
216 | self.cb_label = 'dB' | |
216 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
217 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) | |
217 | self.titles = ['{} Channel {}'.format( |
|
218 | self.titles = ['{} Channel {}'.format( | |
218 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
219 | self.CODE.upper(), x) for x in range(self.nrows)] | |
219 |
|
220 | |||
220 | def update(self, dataOut): |
|
221 | def update(self, dataOut): | |
221 |
|
222 | |||
222 | data = {} |
|
223 | data = {} | |
223 | meta = {} |
|
224 | meta = {} | |
224 | data['rti'] = dataOut.getPower() |
|
225 | data['rti'] = dataOut.getPower() | |
225 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
226 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor) | |
226 |
|
227 | |||
227 | return data, meta |
|
228 | return data, meta | |
228 |
|
229 | |||
229 | def plot(self): |
|
230 | def plot(self): | |
230 | self.x = self.data.times |
|
231 | self.x = self.data.times | |
231 | self.y = self.data.yrange |
|
232 | self.y = self.data.yrange | |
232 | self.z = self.data[self.CODE] |
|
233 | self.z = self.data[self.CODE] | |
233 | self.z = numpy.ma.masked_invalid(self.z) |
|
234 | self.z = numpy.ma.masked_invalid(self.z) | |
234 |
|
235 | |||
235 | if self.decimation is None: |
|
236 | if self.decimation is None: | |
236 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
237 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
237 | else: |
|
238 | else: | |
238 | x, y, z = self.fill_gaps(*self.decimate()) |
|
239 | x, y, z = self.fill_gaps(*self.decimate()) | |
239 |
|
240 | |||
240 | for n, ax in enumerate(self.axes): |
|
241 | for n, ax in enumerate(self.axes): | |
241 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
242 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
242 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
243 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
243 | data = self.data[-1] |
|
244 | data = self.data[-1] | |
244 | if ax.firsttime: |
|
245 | if ax.firsttime: | |
245 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
246 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
246 | vmin=self.zmin, |
|
247 | vmin=self.zmin, | |
247 | vmax=self.zmax, |
|
248 | vmax=self.zmax, | |
248 | cmap=plt.get_cmap(self.colormap) |
|
249 | cmap=plt.get_cmap(self.colormap) | |
249 | ) |
|
250 | ) | |
250 | if self.showprofile: |
|
251 | if self.showprofile: | |
251 | ax.plot_profile = self.pf_axes[n].plot( |
|
252 | ax.plot_profile = self.pf_axes[n].plot( | |
252 | data['rti'][n], self.y)[0] |
|
253 | data['rti'][n], self.y)[0] | |
253 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
254 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
254 | color="k", linestyle="dashed", lw=1)[0] |
|
255 | color="k", linestyle="dashed", lw=1)[0] | |
255 | else: |
|
256 | else: | |
256 | ax.collections.remove(ax.collections[0]) |
|
257 | ax.collections.remove(ax.collections[0]) | |
257 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
258 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
258 | vmin=self.zmin, |
|
259 | vmin=self.zmin, | |
259 | vmax=self.zmax, |
|
260 | vmax=self.zmax, | |
260 | cmap=plt.get_cmap(self.colormap) |
|
261 | cmap=plt.get_cmap(self.colormap) | |
261 | ) |
|
262 | ) | |
262 | if self.showprofile: |
|
263 | if self.showprofile: | |
263 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
264 | ax.plot_profile.set_data(data['rti'][n], self.y) | |
264 | ax.plot_noise.set_data(numpy.repeat( |
|
265 | ax.plot_noise.set_data(numpy.repeat( | |
265 | data['noise'][n], len(self.y)), self.y) |
|
266 | data['noise'][n], len(self.y)), self.y) | |
266 |
|
267 | |||
267 |
|
268 | |||
268 | class CoherencePlot(RTIPlot): |
|
269 | class CoherencePlot(RTIPlot): | |
269 | ''' |
|
270 | ''' | |
270 | Plot for Coherence data |
|
271 | Plot for Coherence data | |
271 | ''' |
|
272 | ''' | |
272 |
|
273 | |||
273 | CODE = 'coh' |
|
274 | CODE = 'coh' | |
274 |
|
275 | |||
275 | def setup(self): |
|
276 | def setup(self): | |
276 | self.xaxis = 'time' |
|
277 | self.xaxis = 'time' | |
277 | self.ncols = 1 |
|
278 | self.ncols = 1 | |
278 | self.nrows = len(self.data.pairs) |
|
279 | self.nrows = len(self.data.pairs) | |
279 | self.nplots = len(self.data.pairs) |
|
280 | self.nplots = len(self.data.pairs) | |
280 | self.ylabel = 'Range [km]' |
|
281 | self.ylabel = 'Range [km]' | |
281 | self.xlabel = 'Time' |
|
282 | self.xlabel = 'Time' | |
282 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
283 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
283 | if self.CODE == 'coh': |
|
284 | if self.CODE == 'coh': | |
284 | self.cb_label = '' |
|
285 | self.cb_label = '' | |
285 | self.titles = [ |
|
286 | self.titles = [ | |
286 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
287 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
287 | else: |
|
288 | else: | |
288 | self.cb_label = 'Degrees' |
|
289 | self.cb_label = 'Degrees' | |
289 | self.titles = [ |
|
290 | self.titles = [ | |
290 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
291 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
291 |
|
292 | |||
292 | def update(self, dataOut): |
|
293 | def update(self, dataOut): | |
293 |
|
294 | |||
294 | data = {} |
|
295 | data = {} | |
295 | meta = {} |
|
296 | meta = {} | |
296 | data['coh'] = dataOut.getCoherence() |
|
297 | data['coh'] = dataOut.getCoherence() | |
297 | meta['pairs'] = dataOut.pairsList |
|
298 | meta['pairs'] = dataOut.pairsList | |
298 |
|
299 | |||
299 | return data, meta |
|
300 | return data, meta | |
300 |
|
301 | |||
301 | class PhasePlot(CoherencePlot): |
|
302 | class PhasePlot(CoherencePlot): | |
302 | ''' |
|
303 | ''' | |
303 | Plot for Phase map data |
|
304 | Plot for Phase map data | |
304 | ''' |
|
305 | ''' | |
305 |
|
306 | |||
306 | CODE = 'phase' |
|
307 | CODE = 'phase' | |
307 | colormap = 'seismic' |
|
308 | colormap = 'seismic' | |
308 |
|
309 | |||
309 | def update(self, dataOut): |
|
310 | def update(self, dataOut): | |
310 |
|
311 | |||
311 | data = {} |
|
312 | data = {} | |
312 | meta = {} |
|
313 | meta = {} | |
313 | data['phase'] = dataOut.getCoherence(phase=True) |
|
314 | data['phase'] = dataOut.getCoherence(phase=True) | |
314 | meta['pairs'] = dataOut.pairsList |
|
315 | meta['pairs'] = dataOut.pairsList | |
315 |
|
316 | |||
316 | return data, meta |
|
317 | return data, meta | |
317 |
|
318 | |||
318 | class NoisePlot(Plot): |
|
319 | class NoisePlot(Plot): | |
319 | ''' |
|
320 | ''' | |
320 | Plot for noise |
|
321 | Plot for noise | |
321 | ''' |
|
322 | ''' | |
322 |
|
323 | |||
323 | CODE = 'noise' |
|
324 | CODE = 'noise' | |
324 | plot_type = 'scatterbuffer' |
|
325 | plot_type = 'scatterbuffer' | |
325 |
|
326 | |||
326 | def setup(self): |
|
327 | def setup(self): | |
327 | self.xaxis = 'time' |
|
328 | self.xaxis = 'time' | |
328 | self.ncols = 1 |
|
329 | self.ncols = 1 | |
329 | self.nrows = 1 |
|
330 | self.nrows = 1 | |
330 | self.nplots = 1 |
|
331 | self.nplots = 1 | |
331 | self.ylabel = 'Intensity [dB]' |
|
332 | self.ylabel = 'Intensity [dB]' | |
332 | self.xlabel = 'Time' |
|
333 | self.xlabel = 'Time' | |
333 | self.titles = ['Noise'] |
|
334 | self.titles = ['Noise'] | |
334 | self.colorbar = False |
|
335 | self.colorbar = False | |
335 | self.plots_adjust.update({'right': 0.85 }) |
|
336 | self.plots_adjust.update({'right': 0.85 }) | |
336 |
|
337 | |||
337 | def update(self, dataOut): |
|
338 | def update(self, dataOut): | |
338 |
|
339 | |||
339 | data = {} |
|
340 | data = {} | |
340 | meta = {} |
|
341 | meta = {} | |
341 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
342 | data['noise'] = 10 * numpy.log10(dataOut.getNoise() / dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
342 | meta['yrange'] = numpy.array([]) |
|
343 | meta['yrange'] = numpy.array([]) | |
343 |
|
344 | |||
344 | return data, meta |
|
345 | return data, meta | |
345 |
|
346 | |||
346 | def plot(self): |
|
347 | def plot(self): | |
347 |
|
348 | |||
348 | x = self.data.times |
|
349 | x = self.data.times | |
349 | xmin = self.data.min_time |
|
350 | xmin = self.data.min_time | |
350 | xmax = xmin + self.xrange * 60 * 60 |
|
351 | xmax = xmin + self.xrange * 60 * 60 | |
351 | Y = self.data['noise'] |
|
352 | Y = self.data['noise'] | |
352 |
|
353 | |||
353 | if self.axes[0].firsttime: |
|
354 | if self.axes[0].firsttime: | |
354 | self.ymin = numpy.nanmin(Y) - 5 |
|
355 | self.ymin = numpy.nanmin(Y) - 5 | |
355 | self.ymax = numpy.nanmax(Y) + 5 |
|
356 | self.ymax = numpy.nanmax(Y) + 5 | |
356 | for ch in self.data.channels: |
|
357 | for ch in self.data.channels: | |
357 | y = Y[ch] |
|
358 | y = Y[ch] | |
358 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
359 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
359 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
360 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
360 | else: |
|
361 | else: | |
361 | for ch in self.data.channels: |
|
362 | for ch in self.data.channels: | |
362 | y = Y[ch] |
|
363 | y = Y[ch] | |
363 | self.axes[0].lines[ch].set_data(x, y) |
|
364 | self.axes[0].lines[ch].set_data(x, y) | |
364 |
|
365 | |||
365 |
|
366 | |||
366 | class PowerProfilePlot(Plot): |
|
367 | class PowerProfilePlot(Plot): | |
367 |
|
368 | |||
368 | CODE = 'pow_profile' |
|
369 | CODE = 'pow_profile' | |
369 | plot_type = 'scatter' |
|
370 | plot_type = 'scatter' | |
370 |
|
371 | |||
371 | def setup(self): |
|
372 | def setup(self): | |
372 |
|
373 | |||
373 | self.ncols = 1 |
|
374 | self.ncols = 1 | |
374 | self.nrows = 1 |
|
375 | self.nrows = 1 | |
375 | self.nplots = 1 |
|
376 | self.nplots = 1 | |
376 | self.height = 4 |
|
377 | self.height = 4 | |
377 | self.width = 3 |
|
378 | self.width = 3 | |
378 | self.ylabel = 'Range [km]' |
|
379 | self.ylabel = 'Range [km]' | |
379 | self.xlabel = 'Intensity [dB]' |
|
380 | self.xlabel = 'Intensity [dB]' | |
380 | self.titles = ['Power Profile'] |
|
381 | self.titles = ['Power Profile'] | |
381 | self.colorbar = False |
|
382 | self.colorbar = False | |
382 |
|
383 | |||
383 | def update(self, dataOut): |
|
384 | def update(self, dataOut): | |
384 |
|
385 | |||
385 | data = {} |
|
386 | data = {} | |
386 | meta = {} |
|
387 | meta = {} | |
387 | data[self.CODE] = dataOut.getPower() |
|
388 | data[self.CODE] = dataOut.getPower() | |
388 |
|
389 | |||
389 | return data, meta |
|
390 | return data, meta | |
390 |
|
391 | |||
391 | def plot(self): |
|
392 | def plot(self): | |
392 |
|
393 | |||
393 | y = self.data.yrange |
|
394 | y = self.data.yrange | |
394 | self.y = y |
|
395 | self.y = y | |
395 |
|
396 | |||
396 | x = self.data[-1][self.CODE] |
|
397 | x = self.data[-1][self.CODE] | |
397 |
|
398 | |||
398 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
399 | if self.xmin is None: self.xmin = numpy.nanmin(x) * 0.9 | |
399 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
400 | if self.xmax is None: self.xmax = numpy.nanmax(x) * 1.1 | |
400 |
|
401 | |||
401 | if self.axes[0].firsttime: |
|
402 | if self.axes[0].firsttime: | |
402 | for ch in self.data.channels: |
|
403 | for ch in self.data.channels: | |
403 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
404 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
404 | plt.legend() |
|
405 | plt.legend() | |
405 | else: |
|
406 | else: | |
406 | for ch in self.data.channels: |
|
407 | for ch in self.data.channels: | |
407 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
408 | self.axes[0].lines[ch].set_data(x[ch], y) | |
408 |
|
409 | |||
409 |
|
410 | |||
410 | class SpectraCutPlot(Plot): |
|
411 | class SpectraCutPlot(Plot): | |
411 |
|
412 | |||
412 | CODE = 'spc_cut' |
|
413 | CODE = 'spc_cut' | |
413 | plot_type = 'scatter' |
|
414 | plot_type = 'scatter' | |
414 | buffering = False |
|
415 | buffering = False | |
415 |
|
416 | |||
416 | def setup(self): |
|
417 | def setup(self): | |
417 |
|
418 | |||
418 | self.nplots = len(self.data.channels) |
|
419 | self.nplots = len(self.data.channels) | |
419 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
420 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
420 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
421 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
421 | self.width = 3.4 * self.ncols + 1.5 |
|
422 | self.width = 3.4 * self.ncols + 1.5 | |
422 | self.height = 3 * self.nrows |
|
423 | self.height = 3 * self.nrows | |
423 | self.ylabel = 'Power [dB]' |
|
424 | self.ylabel = 'Power [dB]' | |
424 | self.colorbar = False |
|
425 | self.colorbar = False | |
425 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
426 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
426 |
|
427 | |||
427 | def update(self, dataOut): |
|
428 | def update(self, dataOut): | |
428 |
|
429 | |||
429 | data = {} |
|
430 | data = {} | |
430 | meta = {} |
|
431 | meta = {} | |
431 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
432 | spc = 10 * numpy.log10(dataOut.data_spc / dataOut.normFactor) | |
432 | data['spc'] = spc |
|
433 | data['spc'] = spc | |
433 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
434 | meta['xrange'] = (dataOut.getFreqRange(1) / 1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
434 |
|
435 | |||
435 | return data, meta |
|
436 | return data, meta | |
436 |
|
437 | |||
437 | def plot(self): |
|
438 | def plot(self): | |
438 | if self.xaxis == "frequency": |
|
439 | if self.xaxis == "frequency": | |
439 | x = self.data.xrange[0][1:] |
|
440 | x = self.data.xrange[0][1:] | |
440 | self.xlabel = "Frequency (kHz)" |
|
441 | self.xlabel = "Frequency (kHz)" | |
441 | elif self.xaxis == "time": |
|
442 | elif self.xaxis == "time": | |
442 | x = self.data.xrange[1] |
|
443 | x = self.data.xrange[1] | |
443 | self.xlabel = "Time (ms)" |
|
444 | self.xlabel = "Time (ms)" | |
444 | else: |
|
445 | else: | |
445 | x = self.data.xrange[2] |
|
446 | x = self.data.xrange[2] | |
446 | self.xlabel = "Velocity (m/s)" |
|
447 | self.xlabel = "Velocity (m/s)" | |
447 |
|
448 | |||
448 | self.titles = [] |
|
449 | self.titles = [] | |
449 |
|
450 | |||
450 | y = self.data.yrange |
|
451 | y = self.data.yrange | |
451 | z = self.data[-1]['spc'] |
|
452 | z = self.data[-1]['spc'] | |
452 |
|
453 | |||
453 | if self.height_index: |
|
454 | if self.height_index: | |
454 | index = numpy.array(self.height_index) |
|
455 | index = numpy.array(self.height_index) | |
455 | else: |
|
456 | else: | |
456 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
457 | index = numpy.arange(0, len(y), int((len(y)) / 9)) | |
457 |
|
458 | |||
458 | for n, ax in enumerate(self.axes): |
|
459 | for n, ax in enumerate(self.axes): | |
459 | if ax.firsttime: |
|
460 | if ax.firsttime: | |
460 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
461 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
461 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
462 | self.xmin = self.xmin if self.xmin else -self.xmax | |
462 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
463 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
463 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
464 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
464 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
465 | ax.plt = ax.plot(x, z[n, :, index].T) | |
465 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
466 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
466 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
467 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
467 | else: |
|
468 | else: | |
468 | for i, line in enumerate(ax.plt): |
|
469 | for i, line in enumerate(ax.plt): | |
469 | line.set_data(x, z[n, :, index[i]]) |
|
470 | line.set_data(x, z[n, :, index[i]]) | |
470 | self.titles.append('CH {}'.format(n)) |
|
471 | self.titles.append('CH {}'.format(n)) | |
471 |
|
472 | |||
472 |
|
473 | |||
473 | class BeaconPhase(Plot): |
|
474 | class BeaconPhase(Plot): | |
474 |
|
475 | |||
475 | __isConfig = None |
|
476 | __isConfig = None | |
476 | __nsubplots = None |
|
477 | __nsubplots = None | |
477 |
|
478 | |||
478 | PREFIX = 'beacon_phase' |
|
479 | PREFIX = 'beacon_phase' | |
479 |
|
480 | |||
480 | def __init__(self): |
|
481 | def __init__(self): | |
481 | Plot.__init__(self) |
|
482 | Plot.__init__(self) | |
482 | self.timerange = 24*60*60 |
|
483 | self.timerange = 24 * 60 * 60 | |
483 | self.isConfig = False |
|
484 | self.isConfig = False | |
484 | self.__nsubplots = 1 |
|
485 | self.__nsubplots = 1 | |
485 | self.counter_imagwr = 0 |
|
486 | self.counter_imagwr = 0 | |
486 | self.WIDTH = 800 |
|
487 | self.WIDTH = 800 | |
487 | self.HEIGHT = 400 |
|
488 | self.HEIGHT = 400 | |
488 | self.WIDTHPROF = 120 |
|
489 | self.WIDTHPROF = 120 | |
489 | self.HEIGHTPROF = 0 |
|
490 | self.HEIGHTPROF = 0 | |
490 | self.xdata = None |
|
491 | self.xdata = None | |
491 | self.ydata = None |
|
492 | self.ydata = None | |
492 |
|
493 | |||
493 | self.PLOT_CODE = BEACON_CODE |
|
494 | self.PLOT_CODE = BEACON_CODE | |
494 |
|
495 | |||
495 | self.FTP_WEI = None |
|
496 | self.FTP_WEI = None | |
496 | self.EXP_CODE = None |
|
497 | self.EXP_CODE = None | |
497 | self.SUB_EXP_CODE = None |
|
498 | self.SUB_EXP_CODE = None | |
498 | self.PLOT_POS = None |
|
499 | self.PLOT_POS = None | |
499 |
|
500 | |||
500 | self.filename_phase = None |
|
501 | self.filename_phase = None | |
501 |
|
502 | |||
502 | self.figfile = None |
|
503 | self.figfile = None | |
503 |
|
504 | |||
504 | self.xmin = None |
|
505 | self.xmin = None | |
505 | self.xmax = None |
|
506 | self.xmax = None | |
506 |
|
507 | |||
507 | def getSubplots(self): |
|
508 | def getSubplots(self): | |
508 |
|
509 | |||
509 | ncol = 1 |
|
510 | ncol = 1 | |
510 | nrow = 1 |
|
511 | nrow = 1 | |
511 |
|
512 | |||
512 | return nrow, ncol |
|
513 | return nrow, ncol | |
513 |
|
514 | |||
514 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
515 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
515 |
|
516 | |||
516 | self.__showprofile = showprofile |
|
517 | self.__showprofile = showprofile | |
517 | self.nplots = nplots |
|
518 | self.nplots = nplots | |
518 |
|
519 | |||
519 | ncolspan = 7 |
|
520 | ncolspan = 7 | |
520 | colspan = 6 |
|
521 | colspan = 6 | |
521 | self.__nsubplots = 2 |
|
522 | self.__nsubplots = 2 | |
522 |
|
523 | |||
523 |
self.createFigure(id |
|
524 | self.createFigure(id=id, | |
524 |
wintitle |
|
525 | wintitle=wintitle, | |
525 |
widthplot |
|
526 | widthplot=self.WIDTH + self.WIDTHPROF, | |
526 |
heightplot |
|
527 | heightplot=self.HEIGHT + self.HEIGHTPROF, | |
527 | show=show) |
|
528 | show=show) | |
528 |
|
529 | |||
529 | nrow, ncol = self.getSubplots() |
|
530 | nrow, ncol = self.getSubplots() | |
530 |
|
531 | |||
531 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
532 | self.addAxes(nrow, ncol * ncolspan, 0, 0, colspan, 1) | |
532 |
|
533 | |||
533 | def save_phase(self, filename_phase): |
|
534 | def save_phase(self, filename_phase): | |
534 | f = open(filename_phase,'w+') |
|
535 | f = open(filename_phase, 'w+') | |
535 | f.write('\n\n') |
|
536 | f.write('\n\n') | |
536 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
537 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
537 |
f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' |
|
538 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n') | |
538 | f.close() |
|
539 | f.close() | |
539 |
|
540 | |||
540 | def save_data(self, filename_phase, data, data_datetime): |
|
541 | def save_data(self, filename_phase, data, data_datetime): | |
541 | f=open(filename_phase,'a') |
|
542 | f = open(filename_phase, 'a') | |
542 | timetuple_data = data_datetime.timetuple() |
|
543 | timetuple_data = data_datetime.timetuple() | |
543 | day = str(timetuple_data.tm_mday) |
|
544 | day = str(timetuple_data.tm_mday) | |
544 | month = str(timetuple_data.tm_mon) |
|
545 | month = str(timetuple_data.tm_mon) | |
545 | year = str(timetuple_data.tm_year) |
|
546 | year = str(timetuple_data.tm_year) | |
546 | hour = str(timetuple_data.tm_hour) |
|
547 | hour = str(timetuple_data.tm_hour) | |
547 | minute = str(timetuple_data.tm_min) |
|
548 | minute = str(timetuple_data.tm_min) | |
548 | second = str(timetuple_data.tm_sec) |
|
549 | second = str(timetuple_data.tm_sec) | |
549 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
550 | f.write(day + ' ' + month + ' ' + year + ' ' + hour + ' ' + minute + ' ' + second + ' ' + str(data[0]) + ' ' + str(data[1]) + ' ' + str(data[2]) + ' ' + str(data[3]) + '\n') | |
550 | f.close() |
|
551 | f.close() | |
551 |
|
552 | |||
552 | def plot(self): |
|
553 | def plot(self): | |
553 | log.warning('TODO: Not yet implemented...') |
|
554 | log.warning('TODO: Not yet implemented...') | |
554 |
|
555 | |||
555 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
556 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
556 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
557 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
557 | timerange=None, |
|
558 | timerange=None, | |
558 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
559 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
559 | server=None, folder=None, username=None, password=None, |
|
560 | server=None, folder=None, username=None, password=None, | |
560 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
561 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
561 |
|
562 | |||
562 | if dataOut.flagNoData: |
|
563 | if dataOut.flagNoData: | |
563 | return dataOut |
|
564 | return dataOut | |
564 |
|
565 | |||
565 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
566 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
566 | return |
|
567 | return | |
567 |
|
568 | |||
568 | if pairsList == None: |
|
569 | if pairsList == None: | |
569 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
570 | pairsIndexList = dataOut.pairsIndexList[:10] | |
570 | else: |
|
571 | else: | |
571 | pairsIndexList = [] |
|
572 | pairsIndexList = [] | |
572 | for pair in pairsList: |
|
573 | for pair in pairsList: | |
573 | if pair not in dataOut.pairsList: |
|
574 | if pair not in dataOut.pairsList: | |
574 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
575 | raise ValueError("Pair %s is not in dataOut.pairsList" % (pair)) | |
575 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
576 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
576 |
|
577 | |||
577 | if pairsIndexList == []: |
|
578 | if pairsIndexList == []: | |
578 | return |
|
579 | return | |
579 |
|
580 | |||
580 | # if len(pairsIndexList) > 4: |
|
581 | # if len(pairsIndexList) > 4: | |
581 | # pairsIndexList = pairsIndexList[0:4] |
|
582 | # pairsIndexList = pairsIndexList[0:4] | |
582 |
|
583 | |||
583 | hmin_index = None |
|
584 | hmin_index = None | |
584 | hmax_index = None |
|
585 | hmax_index = None | |
585 |
|
586 | |||
586 | if hmin != None and hmax != None: |
|
587 | if hmin != None and hmax != None: | |
587 | indexes = numpy.arange(dataOut.nHeights) |
|
588 | indexes = numpy.arange(dataOut.nHeights) | |
588 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
589 | hmin_list = indexes[dataOut.heightList >= hmin] | |
589 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
590 | hmax_list = indexes[dataOut.heightList <= hmax] | |
590 |
|
591 | |||
591 | if hmin_list.any(): |
|
592 | if hmin_list.any(): | |
592 | hmin_index = hmin_list[0] |
|
593 | hmin_index = hmin_list[0] | |
593 |
|
594 | |||
594 | if hmax_list.any(): |
|
595 | if hmax_list.any(): | |
595 | hmax_index = hmax_list[-1]+1 |
|
596 | hmax_index = hmax_list[-1] + 1 | |
596 |
|
597 | |||
597 | x = dataOut.getTimeRange() |
|
598 | x = dataOut.getTimeRange() | |
598 |
|
599 | |||
599 | thisDatetime = dataOut.datatime |
|
600 | thisDatetime = dataOut.datatime | |
600 |
|
601 | |||
601 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
602 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
602 | xlabel = "Local Time" |
|
603 | xlabel = "Local Time" | |
603 | ylabel = "Phase (degrees)" |
|
604 | ylabel = "Phase (degrees)" | |
604 |
|
605 | |||
605 | update_figfile = False |
|
606 | update_figfile = False | |
606 |
|
607 | |||
607 | nplots = len(pairsIndexList) |
|
608 | nplots = len(pairsIndexList) | |
608 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
609 | # phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
609 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
610 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
610 | for i in range(nplots): |
|
611 | for i in range(nplots): | |
611 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
612 | pair = dataOut.pairsList[pairsIndexList[i]] | |
612 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
613 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
613 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
614 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
614 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
615 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
615 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
616 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
616 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
617 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real) * 180 / numpy.pi | |
617 |
|
618 | |||
618 | if dataOut.beacon_heiIndexList: |
|
619 | if dataOut.beacon_heiIndexList: | |
619 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
620 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
620 | else: |
|
621 | else: | |
621 | phase_beacon[i] = numpy.average(phase) |
|
622 | phase_beacon[i] = numpy.average(phase) | |
622 |
|
623 | |||
623 | if not self.isConfig: |
|
624 | if not self.isConfig: | |
624 |
|
625 | |||
625 | nplots = len(pairsIndexList) |
|
626 | nplots = len(pairsIndexList) | |
626 |
|
627 | |||
627 | self.setup(id=id, |
|
628 | self.setup(id=id, | |
628 | nplots=nplots, |
|
629 | nplots=nplots, | |
629 | wintitle=wintitle, |
|
630 | wintitle=wintitle, | |
630 | showprofile=showprofile, |
|
631 | showprofile=showprofile, | |
631 | show=show) |
|
632 | show=show) | |
632 |
|
633 | |||
633 | if timerange != None: |
|
634 | if timerange != None: | |
634 | self.timerange = timerange |
|
635 | self.timerange = timerange | |
635 |
|
636 | |||
636 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
637 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
637 |
|
638 | |||
638 | if ymin == None: ymin = 0 |
|
639 | if ymin == None: ymin = 0 | |
639 | if ymax == None: ymax = 360 |
|
640 | if ymax == None: ymax = 360 | |
640 |
|
641 | |||
641 | self.FTP_WEI = ftp_wei |
|
642 | self.FTP_WEI = ftp_wei | |
642 | self.EXP_CODE = exp_code |
|
643 | self.EXP_CODE = exp_code | |
643 | self.SUB_EXP_CODE = sub_exp_code |
|
644 | self.SUB_EXP_CODE = sub_exp_code | |
644 | self.PLOT_POS = plot_pos |
|
645 | self.PLOT_POS = plot_pos | |
645 |
|
646 | |||
646 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
647 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
647 | self.isConfig = True |
|
648 | self.isConfig = True | |
648 | self.figfile = figfile |
|
649 | self.figfile = figfile | |
649 | self.xdata = numpy.array([]) |
|
650 | self.xdata = numpy.array([]) | |
650 | self.ydata = numpy.array([]) |
|
651 | self.ydata = numpy.array([]) | |
651 |
|
652 | |||
652 | update_figfile = True |
|
653 | update_figfile = True | |
653 |
|
654 | |||
654 | #open file beacon phase |
|
655 | # open file beacon phase | |
655 | path = '%s%03d' %(self.PREFIX, self.id) |
|
656 | path = '%s%03d' % (self.PREFIX, self.id) | |
656 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
657 | beacon_file = os.path.join(path, '%s.txt' % self.name) | |
657 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
658 | self.filename_phase = os.path.join(figpath, beacon_file) | |
658 | #self.save_phase(self.filename_phase) |
|
659 | # self.save_phase(self.filename_phase) | |
659 |
|
660 | |||
660 |
|
661 | |||
661 | #store data beacon phase |
|
662 | # store data beacon phase | |
662 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
663 | # self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
663 |
|
664 | |||
664 | self.setWinTitle(title) |
|
665 | self.setWinTitle(title) | |
665 |
|
666 | |||
666 |
|
667 | |||
667 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
668 | title = "Phase Plot %s" % (thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
668 |
|
669 | |||
669 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
670 | legendlabels = ["Pair (%d,%d)" % (pair[0], pair[1]) for pair in dataOut.pairsList] | |
670 |
|
671 | |||
671 | axes = self.axesList[0] |
|
672 | axes = self.axesList[0] | |
672 |
|
673 | |||
673 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
674 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
674 |
|
675 | |||
675 | if len(self.ydata)==0: |
|
676 | if len(self.ydata) == 0: | |
676 | self.ydata = phase_beacon.reshape(-1,1) |
|
677 | self.ydata = phase_beacon.reshape(-1, 1) | |
677 | else: |
|
678 | else: | |
678 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
679 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1, 1))) | |
679 |
|
680 | |||
680 |
|
681 | |||
681 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
682 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
682 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
683 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
683 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
684 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
684 | XAxisAsTime=True, grid='both' |
|
685 | XAxisAsTime=True, grid='both' | |
685 | ) |
|
686 | ) | |
686 |
|
687 | |||
687 | self.draw() |
|
688 | self.draw() | |
688 |
|
689 | |||
689 | if dataOut.ltctime >= self.xmax: |
|
690 | if dataOut.ltctime >= self.xmax: | |
690 | self.counter_imagwr = wr_period |
|
691 | self.counter_imagwr = wr_period | |
691 | self.isConfig = False |
|
692 | self.isConfig = False | |
692 | update_figfile = True |
|
693 | update_figfile = True | |
693 |
|
694 | |||
694 | self.save(figpath=figpath, |
|
695 | self.save(figpath=figpath, | |
695 | figfile=figfile, |
|
696 | figfile=figfile, | |
696 | save=save, |
|
697 | save=save, | |
697 | ftp=ftp, |
|
698 | ftp=ftp, | |
698 | wr_period=wr_period, |
|
699 | wr_period=wr_period, | |
699 | thisDatetime=thisDatetime, |
|
700 | thisDatetime=thisDatetime, | |
700 | update_figfile=update_figfile) |
|
701 | update_figfile=update_figfile) | |
701 |
|
702 | |||
702 | return dataOut |
|
703 | return dataOut |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
@@ -1,1625 +1,1631 | |||||
1 | import sys |
|
1 | import sys | |
2 | import numpy,math |
|
2 | import numpy, math | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
5 | from schainpy.model.data.jrodata import Voltage, hildebrand_sekhon | |
6 | from schainpy.utils import log |
|
6 | from schainpy.utils import log | |
7 | from time import time |
|
7 | from time import time | |
8 |
|
8 | |||
9 |
|
9 | |||
10 |
|
10 | |||
11 | class VoltageProc(ProcessingUnit): |
|
11 | class VoltageProc(ProcessingUnit): | |
12 |
|
12 | |||
13 | def __init__(self): |
|
13 | def __init__(self): | |
14 |
|
14 | |||
15 | ProcessingUnit.__init__(self) |
|
15 | ProcessingUnit.__init__(self) | |
16 |
|
16 | |||
17 | self.dataOut = Voltage() |
|
17 | self.dataOut = Voltage() | |
18 | self.flip = 1 |
|
18 | self.flip = 1 | |
19 | self.setupReq = False |
|
19 | self.setupReq = False | |
20 |
|
20 | |||
21 | def run(self): |
|
21 | def run(self): | |
22 |
|
22 | |||
23 | if self.dataIn.type == 'AMISR': |
|
23 | if self.dataIn.type == 'AMISR': | |
24 | self.__updateObjFromAmisrInput() |
|
24 | self.__updateObjFromAmisrInput() | |
25 |
|
25 | |||
26 | if self.dataIn.type == 'Voltage': |
|
26 | if self.dataIn.type == 'Voltage': | |
27 | self.dataOut.copy(self.dataIn) |
|
27 | self.dataOut.copy(self.dataIn) | |
28 |
|
28 | |||
29 | def __updateObjFromAmisrInput(self): |
|
29 | def __updateObjFromAmisrInput(self): | |
30 |
|
30 | |||
31 | self.dataOut.timeZone = self.dataIn.timeZone |
|
31 | self.dataOut.timeZone = self.dataIn.timeZone | |
32 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
32 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
33 | self.dataOut.errorCount = self.dataIn.errorCount |
|
33 | self.dataOut.errorCount = self.dataIn.errorCount | |
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
35 |
|
35 | |||
36 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
36 | self.dataOut.flagNoData = self.dataIn.flagNoData | |
37 | self.dataOut.data = self.dataIn.data |
|
37 | self.dataOut.data = self.dataIn.data | |
38 | self.dataOut.utctime = self.dataIn.utctime |
|
38 | self.dataOut.utctime = self.dataIn.utctime | |
39 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | self.dataOut.channelList = self.dataIn.channelList | |
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
40 | # self.dataOut.timeInterval = self.dataIn.timeInterval | |
41 | self.dataOut.heightList = self.dataIn.heightList |
|
41 | self.dataOut.heightList = self.dataIn.heightList | |
42 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
42 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
43 |
|
43 | |||
44 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
44 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
46 | self.dataOut.frequency = self.dataIn.frequency |
|
46 | self.dataOut.frequency = self.dataIn.frequency | |
47 |
|
47 | |||
48 | self.dataOut.azimuth = self.dataIn.azimuth |
|
48 | self.dataOut.azimuth = self.dataIn.azimuth | |
49 | self.dataOut.zenith = self.dataIn.zenith |
|
49 | self.dataOut.zenith = self.dataIn.zenith | |
50 |
|
50 | |||
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | class selectChannels(Operation): |
|
56 | class selectChannels(Operation): | |
57 |
|
57 | |||
58 | def run(self, dataOut, channelList): |
|
58 | def run(self, dataOut, channelList): | |
59 |
|
59 | |||
60 | channelIndexList = [] |
|
60 | channelIndexList = [] | |
61 | self.dataOut = dataOut |
|
61 | self.dataOut = dataOut | |
62 | for channel in channelList: |
|
62 | for channel in channelList: | |
63 | if channel not in self.dataOut.channelList: |
|
63 | if channel not in self.dataOut.channelList: | |
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
64 | raise ValueError("Channel %d is not in %s" % (channel, str(self.dataOut.channelList))) | |
65 |
|
65 | |||
66 | index = self.dataOut.channelList.index(channel) |
|
66 | index = self.dataOut.channelList.index(channel) | |
67 | channelIndexList.append(index) |
|
67 | channelIndexList.append(index) | |
68 | self.selectChannelsByIndex(channelIndexList) |
|
68 | self.selectChannelsByIndex(channelIndexList) | |
69 | return self.dataOut |
|
69 | return self.dataOut | |
70 |
|
70 | |||
71 | def selectChannelsByIndex(self, channelIndexList): |
|
71 | def selectChannelsByIndex(self, channelIndexList): | |
72 | """ |
|
72 | """ | |
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
74 |
|
74 | |||
75 | Input: |
|
75 | Input: | |
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
77 |
|
77 | |||
78 | Affected: |
|
78 | Affected: | |
79 | self.dataOut.data |
|
79 | self.dataOut.data | |
80 | self.dataOut.channelIndexList |
|
80 | self.dataOut.channelIndexList | |
81 | self.dataOut.nChannels |
|
81 | self.dataOut.nChannels | |
82 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
82 | self.dataOut.m_ProcessingHeader.totalSpectra | |
83 | self.dataOut.systemHeaderObj.numChannels |
|
83 | self.dataOut.systemHeaderObj.numChannels | |
84 | self.dataOut.m_ProcessingHeader.blockSize |
|
84 | self.dataOut.m_ProcessingHeader.blockSize | |
85 |
|
85 | |||
86 | Return: |
|
86 | Return: | |
87 | None |
|
87 | None | |
88 | """ |
|
88 | """ | |
89 |
|
89 | |||
90 | for channelIndex in channelIndexList: |
|
90 | for channelIndex in channelIndexList: | |
91 | if channelIndex not in self.dataOut.channelIndexList: |
|
91 | if channelIndex not in self.dataOut.channelIndexList: | |
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
92 | raise ValueError("The value %d in channelIndexList is not valid" % channelIndex) | |
93 |
|
93 | |||
94 | if self.dataOut.type == 'Voltage': |
|
94 | if self.dataOut.type == 'Voltage': | |
95 | if self.dataOut.flagDataAsBlock: |
|
95 | if self.dataOut.flagDataAsBlock: | |
96 | """ |
|
96 | """ | |
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
98 | """ |
|
98 | """ | |
99 | data = self.dataOut.data[channelIndexList,:,:] |
|
99 | data = self.dataOut.data[channelIndexList, :, :] | |
100 | else: |
|
100 | else: | |
101 | data = self.dataOut.data[channelIndexList,:] |
|
101 | data = self.dataOut.data[channelIndexList, :] | |
102 |
|
102 | |||
103 | self.dataOut.data = data |
|
103 | self.dataOut.data = data | |
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
105 | self.dataOut.channelList = range(len(channelIndexList)) |
|
105 | self.dataOut.channelList = range(len(channelIndexList)) | |
106 |
|
106 | |||
107 | elif self.dataOut.type == 'Spectra': |
|
107 | elif self.dataOut.type == 'Spectra': | |
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] | |
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] | |
110 |
|
110 | |||
111 | self.dataOut.data_spc = data_spc |
|
111 | self.dataOut.data_spc = data_spc | |
112 | self.dataOut.data_dc = data_dc |
|
112 | self.dataOut.data_dc = data_dc | |
113 |
|
113 | |||
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
115 | self.dataOut.channelList = range(len(channelIndexList)) |
|
115 | self.dataOut.channelList = range(len(channelIndexList)) | |
116 | self.__selectPairsByChannel(channelIndexList) |
|
116 | self.__selectPairsByChannel(channelIndexList) | |
117 |
|
117 | |||
118 | return 1 |
|
118 | return 1 | |
119 |
|
119 | |||
120 | def __selectPairsByChannel(self, channelList=None): |
|
120 | def __selectPairsByChannel(self, channelList=None): | |
121 |
|
121 | |||
122 | if channelList == None: |
|
122 | if channelList == None: | |
123 | return |
|
123 | return | |
124 |
|
124 | |||
125 | pairsIndexListSelected = [] |
|
125 | pairsIndexListSelected = [] | |
126 | for pairIndex in self.dataOut.pairsIndexList: |
|
126 | for pairIndex in self.dataOut.pairsIndexList: | |
127 | # First pair |
|
127 | # First pair | |
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
129 | continue |
|
129 | continue | |
130 | # Second pair |
|
130 | # Second pair | |
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
132 | continue |
|
132 | continue | |
133 |
|
133 | |||
134 | pairsIndexListSelected.append(pairIndex) |
|
134 | pairsIndexListSelected.append(pairIndex) | |
135 |
|
135 | |||
136 | if not pairsIndexListSelected: |
|
136 | if not pairsIndexListSelected: | |
137 | self.dataOut.data_cspc = None |
|
137 | self.dataOut.data_cspc = None | |
138 | self.dataOut.pairsList = [] |
|
138 | self.dataOut.pairsList = [] | |
139 | return |
|
139 | return | |
140 |
|
140 | |||
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] | |
143 | for i in pairsIndexListSelected] |
|
143 | for i in pairsIndexListSelected] | |
144 |
|
144 | |||
145 | return |
|
145 | return | |
146 |
|
146 | |||
147 | class selectHeights(Operation): |
|
147 | class selectHeights(Operation): | |
148 |
|
148 | |||
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |
150 | """ |
|
150 | """ | |
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
152 | minHei <= height <= maxHei |
|
152 | minHei <= height <= maxHei | |
153 |
|
153 | |||
154 | Input: |
|
154 | Input: | |
155 | minHei : valor minimo de altura a considerar |
|
155 | minHei : valor minimo de altura a considerar | |
156 | maxHei : valor maximo de altura a considerar |
|
156 | maxHei : valor maximo de altura a considerar | |
157 |
|
157 | |||
158 | Affected: |
|
158 | Affected: | |
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
160 |
|
160 | |||
161 | Return: |
|
161 | Return: | |
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
163 | """ |
|
163 | """ | |
164 |
|
164 | |||
165 | self.dataOut = dataOut |
|
165 | self.dataOut = dataOut | |
166 |
|
166 | |||
167 | if minHei and maxHei: |
|
167 | #if minHei and maxHei: | |
|
168 | if 1: | |||
|
169 | if minHei == None: | |||
|
170 | minHei = self.dataOut.heightList[0] | |||
|
171 | ||||
|
172 | if maxHei == None: | |||
|
173 | maxHei = self.dataOut.heightList[-1] | |||
168 |
|
174 | |||
169 | if (minHei < self.dataOut.heightList[0]): |
|
175 | if (minHei < self.dataOut.heightList[0]): | |
170 | minHei = self.dataOut.heightList[0] |
|
176 | minHei = self.dataOut.heightList[0] | |
171 |
|
177 | |||
172 | if (maxHei > self.dataOut.heightList[-1]): |
|
178 | if (maxHei > self.dataOut.heightList[-1]): | |
173 | maxHei = self.dataOut.heightList[-1] |
|
179 | maxHei = self.dataOut.heightList[-1] | |
174 |
|
180 | |||
175 | minIndex = 0 |
|
181 | minIndex = 0 | |
176 | maxIndex = 0 |
|
182 | maxIndex = 0 | |
177 | heights = self.dataOut.heightList |
|
183 | heights = self.dataOut.heightList | |
178 |
|
184 | |||
179 | inda = numpy.where(heights >= minHei) |
|
185 | inda = numpy.where(heights >= minHei) | |
180 | indb = numpy.where(heights <= maxHei) |
|
186 | indb = numpy.where(heights <= maxHei) | |
181 |
|
187 | |||
182 | try: |
|
188 | try: | |
183 | minIndex = inda[0][0] |
|
189 | minIndex = inda[0][0] | |
184 | except: |
|
190 | except: | |
185 | minIndex = 0 |
|
191 | minIndex = 0 | |
186 |
|
192 | |||
187 | try: |
|
193 | try: | |
188 | maxIndex = indb[0][-1] |
|
194 | maxIndex = indb[0][-1] | |
189 | except: |
|
195 | except: | |
190 | maxIndex = len(heights) |
|
196 | maxIndex = len(heights) | |
191 |
|
197 | |||
192 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
198 | self.selectHeightsByIndex(minIndex, maxIndex) | |
193 |
|
199 | |||
194 | return self.dataOut |
|
200 | return self.dataOut | |
195 |
|
201 | |||
196 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
202 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
197 | """ |
|
203 | """ | |
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
204 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
199 | minIndex <= index <= maxIndex |
|
205 | minIndex <= index <= maxIndex | |
200 |
|
206 | |||
201 | Input: |
|
207 | Input: | |
202 | minIndex : valor de indice minimo de altura a considerar |
|
208 | minIndex : valor de indice minimo de altura a considerar | |
203 | maxIndex : valor de indice maximo de altura a considerar |
|
209 | maxIndex : valor de indice maximo de altura a considerar | |
204 |
|
210 | |||
205 | Affected: |
|
211 | Affected: | |
206 | self.dataOut.data |
|
212 | self.dataOut.data | |
207 | self.dataOut.heightList |
|
213 | self.dataOut.heightList | |
208 |
|
214 | |||
209 | Return: |
|
215 | Return: | |
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
216 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
211 | """ |
|
217 | """ | |
212 |
|
218 | |||
213 | if self.dataOut.type == 'Voltage': |
|
219 | if self.dataOut.type == 'Voltage': | |
214 | if (minIndex < 0) or (minIndex > maxIndex): |
|
220 | if (minIndex < 0) or (minIndex > maxIndex): | |
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
221 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
216 |
|
222 | |||
217 | if (maxIndex >= self.dataOut.nHeights): |
|
223 | if (maxIndex >= self.dataOut.nHeights): | |
218 | maxIndex = self.dataOut.nHeights |
|
224 | maxIndex = self.dataOut.nHeights | |
219 |
|
225 | |||
220 | #voltage |
|
226 | # voltage | |
221 | if self.dataOut.flagDataAsBlock: |
|
227 | if self.dataOut.flagDataAsBlock: | |
222 | """ |
|
228 | """ | |
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
229 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
224 | """ |
|
230 | """ | |
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
231 | data = self.dataOut.data[:, :, minIndex:maxIndex] | |
226 | else: |
|
232 | else: | |
227 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
233 | data = self.dataOut.data[:, minIndex:maxIndex] | |
228 |
|
234 | |||
229 | # firstHeight = self.dataOut.heightList[minIndex] |
|
235 | # firstHeight = self.dataOut.heightList[minIndex] | |
230 |
|
236 | |||
231 | self.dataOut.data = data |
|
237 | self.dataOut.data = data | |
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
238 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |
233 |
|
239 | |||
234 | if self.dataOut.nHeights <= 1: |
|
240 | if self.dataOut.nHeights <= 1: | |
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
241 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" % (self.dataOut.nHeights)) | |
236 | elif self.dataOut.type == 'Spectra': |
|
242 | elif self.dataOut.type == 'Spectra': | |
237 | if (minIndex < 0) or (minIndex > maxIndex): |
|
243 | if (minIndex < 0) or (minIndex > maxIndex): | |
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
244 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |
239 | minIndex, maxIndex)) |
|
245 | minIndex, maxIndex)) | |
240 |
|
246 | |||
241 | if (maxIndex >= self.dataOut.nHeights): |
|
247 | if (maxIndex >= self.dataOut.nHeights): | |
242 | maxIndex = self.dataOut.nHeights - 1 |
|
248 | maxIndex = self.dataOut.nHeights - 1 | |
243 |
|
249 | |||
244 | # Spectra |
|
250 | # Spectra | |
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
251 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
246 |
|
252 | |||
247 | data_cspc = None |
|
253 | data_cspc = None | |
248 | if self.dataOut.data_cspc is not None: |
|
254 | if self.dataOut.data_cspc is not None: | |
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
255 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
250 |
|
256 | |||
251 | data_dc = None |
|
257 | data_dc = None | |
252 | if self.dataOut.data_dc is not None: |
|
258 | if self.dataOut.data_dc is not None: | |
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
259 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
254 |
|
260 | |||
255 | self.dataOut.data_spc = data_spc |
|
261 | self.dataOut.data_spc = data_spc | |
256 | self.dataOut.data_cspc = data_cspc |
|
262 | self.dataOut.data_cspc = data_cspc | |
257 | self.dataOut.data_dc = data_dc |
|
263 | self.dataOut.data_dc = data_dc | |
258 |
|
264 | |||
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
265 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
260 |
|
266 | |||
261 | return 1 |
|
267 | return 1 | |
262 |
|
268 | |||
263 |
|
269 | |||
264 | class filterByHeights(Operation): |
|
270 | class filterByHeights(Operation): | |
265 |
|
271 | |||
266 | def run(self, dataOut, window): |
|
272 | def run(self, dataOut, window): | |
267 |
|
273 | |||
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
274 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
269 |
|
275 | |||
270 | if window == None: |
|
276 | if window == None: | |
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
277 | window = (dataOut.radarControllerHeaderObj.txA / dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
272 |
|
278 | |||
273 | newdelta = deltaHeight * window |
|
279 | newdelta = deltaHeight * window | |
274 | r = dataOut.nHeights % window |
|
280 | r = dataOut.nHeights % window | |
275 | newheights = (dataOut.nHeights-r)/window |
|
281 | newheights = (dataOut.nHeights - r) / window | |
276 |
|
282 | |||
277 | if newheights <= 1: |
|
283 | if newheights <= 1: | |
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
284 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" % (dataOut.nHeights, window)) | |
279 |
|
285 | |||
280 | if dataOut.flagDataAsBlock: |
|
286 | if dataOut.flagDataAsBlock: | |
281 | """ |
|
287 | """ | |
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
288 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
283 | """ |
|
289 | """ | |
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
290 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights - r)] | |
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
291 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights / window), window) | |
286 | buffer = numpy.sum(buffer,3) |
|
292 | buffer = numpy.sum(buffer, 3) | |
287 |
|
293 | |||
288 | else: |
|
294 | else: | |
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
295 | buffer = dataOut.data[:, 0:int(dataOut.nHeights - r)] | |
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
296 | buffer = buffer.reshape(dataOut.nChannels, int(dataOut.nHeights / window), int(window)) | |
291 | buffer = numpy.sum(buffer,2) |
|
297 | buffer = numpy.sum(buffer, 2) | |
292 |
|
298 | |||
293 | dataOut.data = buffer |
|
299 | dataOut.data = buffer | |
294 |
dataOut.heightList = dataOut.heightList[0] + numpy.arange( |
|
300 | dataOut.heightList = dataOut.heightList[0] + numpy.arange(newheights) * newdelta | |
295 | dataOut.windowOfFilter = window |
|
301 | dataOut.windowOfFilter = window | |
296 |
|
302 | |||
297 | return dataOut |
|
303 | return dataOut | |
298 |
|
304 | |||
299 |
|
305 | |||
300 | class setH0(Operation): |
|
306 | class setH0(Operation): | |
301 |
|
307 | |||
302 |
def run(self, dataOut, h0, deltaHeight |
|
308 | def run(self, dataOut, h0, deltaHeight=None): | |
303 |
|
309 | |||
304 | if not deltaHeight: |
|
310 | if not deltaHeight: | |
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
311 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
306 |
|
312 | |||
307 | nHeights = dataOut.nHeights |
|
313 | nHeights = dataOut.nHeights | |
308 |
|
314 | |||
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
315 | newHeiRange = h0 + numpy.arange(nHeights) * deltaHeight | |
310 |
|
316 | |||
311 | dataOut.heightList = newHeiRange |
|
317 | dataOut.heightList = newHeiRange | |
312 |
|
318 | |||
313 | return dataOut |
|
319 | return dataOut | |
314 |
|
320 | |||
315 |
|
321 | |||
316 | class deFlip(Operation): |
|
322 | class deFlip(Operation): | |
317 |
|
323 | |||
318 |
def run(self, dataOut, channelList |
|
324 | def run(self, dataOut, channelList=[]): | |
319 |
|
325 | |||
320 | data = dataOut.data.copy() |
|
326 | data = dataOut.data.copy() | |
321 |
|
327 | |||
322 | if dataOut.flagDataAsBlock: |
|
328 | if dataOut.flagDataAsBlock: | |
323 | flip = self.flip |
|
329 | flip = self.flip | |
324 | profileList = list(range(dataOut.nProfiles)) |
|
330 | profileList = list(range(dataOut.nProfiles)) | |
325 |
|
331 | |||
326 | if not channelList: |
|
332 | if not channelList: | |
327 | for thisProfile in profileList: |
|
333 | for thisProfile in profileList: | |
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
334 | data[:, thisProfile, :] = data[:, thisProfile, :] * flip | |
329 | flip *= -1.0 |
|
335 | flip *= -1.0 | |
330 | else: |
|
336 | else: | |
331 | for thisChannel in channelList: |
|
337 | for thisChannel in channelList: | |
332 | if thisChannel not in dataOut.channelList: |
|
338 | if thisChannel not in dataOut.channelList: | |
333 | continue |
|
339 | continue | |
334 |
|
340 | |||
335 | for thisProfile in profileList: |
|
341 | for thisProfile in profileList: | |
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
342 | data[thisChannel, thisProfile, :] = data[thisChannel, thisProfile, :] * flip | |
337 | flip *= -1.0 |
|
343 | flip *= -1.0 | |
338 |
|
344 | |||
339 | self.flip = flip |
|
345 | self.flip = flip | |
340 |
|
346 | |||
341 | else: |
|
347 | else: | |
342 | if not channelList: |
|
348 | if not channelList: | |
343 | data[:,:] = data[:,:]*self.flip |
|
349 | data[:, :] = data[:, :] * self.flip | |
344 | else: |
|
350 | else: | |
345 | for thisChannel in channelList: |
|
351 | for thisChannel in channelList: | |
346 | if thisChannel not in dataOut.channelList: |
|
352 | if thisChannel not in dataOut.channelList: | |
347 | continue |
|
353 | continue | |
348 |
|
354 | |||
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
355 | data[thisChannel, :] = data[thisChannel, :] * self.flip | |
350 |
|
356 | |||
351 | self.flip *= -1. |
|
357 | self.flip *= -1. | |
352 |
|
358 | |||
353 | dataOut.data = data |
|
359 | dataOut.data = data | |
354 |
|
360 | |||
355 | return dataOut |
|
361 | return dataOut | |
356 |
|
362 | |||
357 |
|
363 | |||
358 | class setAttribute(Operation): |
|
364 | class setAttribute(Operation): | |
359 | ''' |
|
365 | ''' | |
360 | Set an arbitrary attribute(s) to dataOut |
|
366 | Set an arbitrary attribute(s) to dataOut | |
361 | ''' |
|
367 | ''' | |
362 |
|
368 | |||
363 | def __init__(self): |
|
369 | def __init__(self): | |
364 |
|
370 | |||
365 | Operation.__init__(self) |
|
371 | Operation.__init__(self) | |
366 | self._ready = False |
|
372 | self._ready = False | |
367 |
|
373 | |||
368 | def run(self, dataOut, **kwargs): |
|
374 | def run(self, dataOut, **kwargs): | |
369 |
|
375 | |||
370 | for key, value in kwargs.items(): |
|
376 | for key, value in kwargs.items(): | |
371 | setattr(dataOut, key, value) |
|
377 | setattr(dataOut, key, value) | |
372 |
|
378 | |||
373 | return dataOut |
|
379 | return dataOut | |
374 |
|
380 | |||
375 |
|
381 | |||
376 | @MPDecorator |
|
382 | @MPDecorator | |
377 | class printAttribute(Operation): |
|
383 | class printAttribute(Operation): | |
378 | ''' |
|
384 | ''' | |
379 | Print an arbitrary attribute of dataOut |
|
385 | Print an arbitrary attribute of dataOut | |
380 | ''' |
|
386 | ''' | |
381 |
|
387 | |||
382 | def __init__(self): |
|
388 | def __init__(self): | |
383 |
|
389 | |||
384 | Operation.__init__(self) |
|
390 | Operation.__init__(self) | |
385 |
|
391 | |||
386 | def run(self, dataOut, attributes): |
|
392 | def run(self, dataOut, attributes): | |
387 |
|
393 | |||
388 | if isinstance(attributes, str): |
|
394 | if isinstance(attributes, str): | |
389 | attributes = [attributes] |
|
395 | attributes = [attributes] | |
390 | for attr in attributes: |
|
396 | for attr in attributes: | |
391 | if hasattr(dataOut, attr): |
|
397 | if hasattr(dataOut, attr): | |
392 | log.log(getattr(dataOut, attr), attr) |
|
398 | log.log(getattr(dataOut, attr), attr) | |
393 |
|
399 | |||
394 |
|
400 | |||
395 | class interpolateHeights(Operation): |
|
401 | class interpolateHeights(Operation): | |
396 |
|
402 | |||
397 | def run(self, dataOut, topLim, botLim): |
|
403 | def run(self, dataOut, topLim, botLim): | |
398 | #69 al 72 para julia |
|
404 | # 69 al 72 para julia | |
399 | #82-84 para meteoros |
|
405 | # 82-84 para meteoros | |
400 | if len(numpy.shape(dataOut.data))==2: |
|
406 | if len(numpy.shape(dataOut.data)) == 2: | |
401 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
407 | sampInterp = (dataOut.data[:, botLim - 1] + dataOut.data[:, topLim + 1]) / 2 | |
402 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
408 | sampInterp = numpy.transpose(numpy.tile(sampInterp, (topLim - botLim + 1, 1))) | |
403 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
409 | # dataOut.data[:,botLim:limSup+1] = sampInterp | |
404 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
410 | dataOut.data[:, botLim:topLim + 1] = sampInterp | |
405 | else: |
|
411 | else: | |
406 | nHeights = dataOut.data.shape[2] |
|
412 | nHeights = dataOut.data.shape[2] | |
407 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
413 | x = numpy.hstack((numpy.arange(botLim), numpy.arange(topLim + 1, nHeights))) | |
408 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
414 | y = dataOut.data[:, :, list(range(botLim)) + list(range(topLim + 1, nHeights))] | |
409 |
f = interpolate.interp1d(x, y, axis |
|
415 | f = interpolate.interp1d(x, y, axis=2) | |
410 | xnew = numpy.arange(botLim,topLim+1) |
|
416 | xnew = numpy.arange(botLim, topLim + 1) | |
411 | ynew = f(xnew) |
|
417 | ynew = f(xnew) | |
412 |
dataOut.data[:,:,botLim:topLim+1] |
|
418 | dataOut.data[:, :, botLim:topLim + 1] = ynew | |
413 |
|
419 | |||
414 | return dataOut |
|
420 | return dataOut | |
415 |
|
421 | |||
416 |
|
422 | |||
417 | class CohInt(Operation): |
|
423 | class CohInt(Operation): | |
418 |
|
424 | |||
419 | isConfig = False |
|
425 | isConfig = False | |
420 | __profIndex = 0 |
|
426 | __profIndex = 0 | |
421 | __byTime = False |
|
427 | __byTime = False | |
422 | __initime = None |
|
428 | __initime = None | |
423 | __lastdatatime = None |
|
429 | __lastdatatime = None | |
424 | __integrationtime = None |
|
430 | __integrationtime = None | |
425 | __buffer = None |
|
431 | __buffer = None | |
426 | __bufferStride = [] |
|
432 | __bufferStride = [] | |
427 | __dataReady = False |
|
433 | __dataReady = False | |
428 | __profIndexStride = 0 |
|
434 | __profIndexStride = 0 | |
429 | __dataToPutStride = False |
|
435 | __dataToPutStride = False | |
430 | n = None |
|
436 | n = None | |
431 |
|
437 | |||
432 | def __init__(self, **kwargs): |
|
438 | def __init__(self, **kwargs): | |
433 |
|
439 | |||
434 | Operation.__init__(self, **kwargs) |
|
440 | Operation.__init__(self, **kwargs) | |
435 |
|
441 | |||
436 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
442 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |
437 | """ |
|
443 | """ | |
438 | Set the parameters of the integration class. |
|
444 | Set the parameters of the integration class. | |
439 |
|
445 | |||
440 | Inputs: |
|
446 | Inputs: | |
441 |
|
447 | |||
442 | n : Number of coherent integrations |
|
448 | n : Number of coherent integrations | |
443 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
449 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
444 | overlapping : |
|
450 | overlapping : | |
445 | """ |
|
451 | """ | |
446 |
|
452 | |||
447 | self.__initime = None |
|
453 | self.__initime = None | |
448 | self.__lastdatatime = 0 |
|
454 | self.__lastdatatime = 0 | |
449 | self.__buffer = None |
|
455 | self.__buffer = None | |
450 | self.__dataReady = False |
|
456 | self.__dataReady = False | |
451 | self.byblock = byblock |
|
457 | self.byblock = byblock | |
452 | self.stride = stride |
|
458 | self.stride = stride | |
453 |
|
459 | |||
454 | if n == None and timeInterval == None: |
|
460 | if n == None and timeInterval == None: | |
455 | raise ValueError("n or timeInterval should be specified ...") |
|
461 | raise ValueError("n or timeInterval should be specified ...") | |
456 |
|
462 | |||
457 | if n != None: |
|
463 | if n != None: | |
458 | self.n = n |
|
464 | self.n = n | |
459 | self.__byTime = False |
|
465 | self.__byTime = False | |
460 | else: |
|
466 | else: | |
461 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
467 | self.__integrationtime = timeInterval # * 60. #if (type(timeInterval)!=integer) -> change this line | |
462 | self.n = 9999 |
|
468 | self.n = 9999 | |
463 | self.__byTime = True |
|
469 | self.__byTime = True | |
464 |
|
470 | |||
465 | if overlapping: |
|
471 | if overlapping: | |
466 | self.__withOverlapping = True |
|
472 | self.__withOverlapping = True | |
467 | self.__buffer = None |
|
473 | self.__buffer = None | |
468 | else: |
|
474 | else: | |
469 | self.__withOverlapping = False |
|
475 | self.__withOverlapping = False | |
470 | self.__buffer = 0 |
|
476 | self.__buffer = 0 | |
471 |
|
477 | |||
472 | self.__profIndex = 0 |
|
478 | self.__profIndex = 0 | |
473 |
|
479 | |||
474 | def putData(self, data): |
|
480 | def putData(self, data): | |
475 |
|
481 | |||
476 | """ |
|
482 | """ | |
477 | Add a profile to the __buffer and increase in one the __profileIndex |
|
483 | Add a profile to the __buffer and increase in one the __profileIndex | |
478 |
|
484 | |||
479 | """ |
|
485 | """ | |
480 |
|
486 | |||
481 | if not self.__withOverlapping: |
|
487 | if not self.__withOverlapping: | |
482 | self.__buffer += data.copy() |
|
488 | self.__buffer += data.copy() | |
483 | self.__profIndex += 1 |
|
489 | self.__profIndex += 1 | |
484 | return |
|
490 | return | |
485 |
|
491 | |||
486 | #Overlapping data |
|
492 | # Overlapping data | |
487 | nChannels, nHeis = data.shape |
|
493 | nChannels, nHeis = data.shape | |
488 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
494 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
489 |
|
495 | |||
490 | #If the buffer is empty then it takes the data value |
|
496 | # If the buffer is empty then it takes the data value | |
491 | if self.__buffer is None: |
|
497 | if self.__buffer is None: | |
492 | self.__buffer = data |
|
498 | self.__buffer = data | |
493 | self.__profIndex += 1 |
|
499 | self.__profIndex += 1 | |
494 | return |
|
500 | return | |
495 |
|
501 | |||
496 | #If the buffer length is lower than n then stakcing the data value |
|
502 | # If the buffer length is lower than n then stakcing the data value | |
497 | if self.__profIndex < self.n: |
|
503 | if self.__profIndex < self.n: | |
498 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
504 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
499 | self.__profIndex += 1 |
|
505 | self.__profIndex += 1 | |
500 | return |
|
506 | return | |
501 |
|
507 | |||
502 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
508 | # If the buffer length is equal to n then replacing the last buffer value with the data value | |
503 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
509 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
504 | self.__buffer[self.n-1] = data |
|
510 | self.__buffer[self.n - 1] = data | |
505 | self.__profIndex = self.n |
|
511 | self.__profIndex = self.n | |
506 | return |
|
512 | return | |
507 |
|
513 | |||
508 |
|
514 | |||
509 | def pushData(self): |
|
515 | def pushData(self): | |
510 | """ |
|
516 | """ | |
511 | Return the sum of the last profiles and the profiles used in the sum. |
|
517 | Return the sum of the last profiles and the profiles used in the sum. | |
512 |
|
518 | |||
513 | Affected: |
|
519 | Affected: | |
514 |
|
520 | |||
515 | self.__profileIndex |
|
521 | self.__profileIndex | |
516 |
|
522 | |||
517 | """ |
|
523 | """ | |
518 |
|
524 | |||
519 | if not self.__withOverlapping: |
|
525 | if not self.__withOverlapping: | |
520 | data = self.__buffer |
|
526 | data = self.__buffer | |
521 | n = self.__profIndex |
|
527 | n = self.__profIndex | |
522 |
|
528 | |||
523 | self.__buffer = 0 |
|
529 | self.__buffer = 0 | |
524 | self.__profIndex = 0 |
|
530 | self.__profIndex = 0 | |
525 |
|
531 | |||
526 | return data, n |
|
532 | return data, n | |
527 |
|
533 | |||
528 | #Integration with Overlapping |
|
534 | # Integration with Overlapping | |
529 | data = numpy.sum(self.__buffer, axis=0) |
|
535 | data = numpy.sum(self.__buffer, axis=0) | |
530 | # print data |
|
536 | # print data | |
531 | # raise |
|
537 | # raise | |
532 | n = self.__profIndex |
|
538 | n = self.__profIndex | |
533 |
|
539 | |||
534 | return data, n |
|
540 | return data, n | |
535 |
|
541 | |||
536 | def byProfiles(self, data): |
|
542 | def byProfiles(self, data): | |
537 |
|
543 | |||
538 | self.__dataReady = False |
|
544 | self.__dataReady = False | |
539 | avgdata = None |
|
545 | avgdata = None | |
540 | # n = None |
|
546 | # n = None | |
541 | # print data |
|
547 | # print data | |
542 | # raise |
|
548 | # raise | |
543 | self.putData(data) |
|
549 | self.putData(data) | |
544 |
|
550 | |||
545 | if self.__profIndex == self.n: |
|
551 | if self.__profIndex == self.n: | |
546 | avgdata, n = self.pushData() |
|
552 | avgdata, n = self.pushData() | |
547 | self.__dataReady = True |
|
553 | self.__dataReady = True | |
548 |
|
554 | |||
549 | return avgdata |
|
555 | return avgdata | |
550 |
|
556 | |||
551 | def byTime(self, data, datatime): |
|
557 | def byTime(self, data, datatime): | |
552 |
|
558 | |||
553 | self.__dataReady = False |
|
559 | self.__dataReady = False | |
554 | avgdata = None |
|
560 | avgdata = None | |
555 | n = None |
|
561 | n = None | |
556 |
|
562 | |||
557 | self.putData(data) |
|
563 | self.putData(data) | |
558 |
|
564 | |||
559 | if (datatime - self.__initime) >= self.__integrationtime: |
|
565 | if (datatime - self.__initime) >= self.__integrationtime: | |
560 | avgdata, n = self.pushData() |
|
566 | avgdata, n = self.pushData() | |
561 | self.n = n |
|
567 | self.n = n | |
562 | self.__dataReady = True |
|
568 | self.__dataReady = True | |
563 |
|
569 | |||
564 | return avgdata |
|
570 | return avgdata | |
565 |
|
571 | |||
566 | def integrateByStride(self, data, datatime): |
|
572 | def integrateByStride(self, data, datatime): | |
567 | # print data |
|
573 | # print data | |
568 | if self.__profIndex == 0: |
|
574 | if self.__profIndex == 0: | |
569 | self.__buffer = [[data.copy(), datatime]] |
|
575 | self.__buffer = [[data.copy(), datatime]] | |
570 | else: |
|
576 | else: | |
571 | self.__buffer.append([data.copy(),datatime]) |
|
577 | self.__buffer.append([data.copy(), datatime]) | |
572 | self.__profIndex += 1 |
|
578 | self.__profIndex += 1 | |
573 | self.__dataReady = False |
|
579 | self.__dataReady = False | |
574 |
|
580 | |||
575 | if self.__profIndex == self.n * self.stride : |
|
581 | if self.__profIndex == self.n * self.stride : | |
576 | self.__dataToPutStride = True |
|
582 | self.__dataToPutStride = True | |
577 | self.__profIndexStride = 0 |
|
583 | self.__profIndexStride = 0 | |
578 | self.__profIndex = 0 |
|
584 | self.__profIndex = 0 | |
579 | self.__bufferStride = [] |
|
585 | self.__bufferStride = [] | |
580 | for i in range(self.stride): |
|
586 | for i in range(self.stride): | |
581 | current = self.__buffer[i::self.stride] |
|
587 | current = self.__buffer[i::self.stride] | |
582 | data = numpy.sum([t[0] for t in current], axis=0) |
|
588 | data = numpy.sum([t[0] for t in current], axis=0) | |
583 | avgdatatime = numpy.average([t[1] for t in current]) |
|
589 | avgdatatime = numpy.average([t[1] for t in current]) | |
584 | # print data |
|
590 | # print data | |
585 | self.__bufferStride.append((data, avgdatatime)) |
|
591 | self.__bufferStride.append((data, avgdatatime)) | |
586 |
|
592 | |||
587 | if self.__dataToPutStride: |
|
593 | if self.__dataToPutStride: | |
588 | self.__dataReady = True |
|
594 | self.__dataReady = True | |
589 | self.__profIndexStride += 1 |
|
595 | self.__profIndexStride += 1 | |
590 | if self.__profIndexStride == self.stride: |
|
596 | if self.__profIndexStride == self.stride: | |
591 | self.__dataToPutStride = False |
|
597 | self.__dataToPutStride = False | |
592 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
598 | # print self.__bufferStride[self.__profIndexStride - 1] | |
593 | # raise |
|
599 | # raise | |
594 | return self.__bufferStride[self.__profIndexStride - 1] |
|
600 | return self.__bufferStride[self.__profIndexStride - 1] | |
595 |
|
601 | |||
596 |
|
602 | |||
597 | return None, None |
|
603 | return None, None | |
598 |
|
604 | |||
599 | def integrate(self, data, datatime=None): |
|
605 | def integrate(self, data, datatime=None): | |
600 |
|
606 | |||
601 | if self.__initime == None: |
|
607 | if self.__initime == None: | |
602 | self.__initime = datatime |
|
608 | self.__initime = datatime | |
603 |
|
609 | |||
604 | if self.__byTime: |
|
610 | if self.__byTime: | |
605 | avgdata = self.byTime(data, datatime) |
|
611 | avgdata = self.byTime(data, datatime) | |
606 | else: |
|
612 | else: | |
607 | avgdata = self.byProfiles(data) |
|
613 | avgdata = self.byProfiles(data) | |
608 |
|
614 | |||
609 |
|
615 | |||
610 | self.__lastdatatime = datatime |
|
616 | self.__lastdatatime = datatime | |
611 |
|
617 | |||
612 | if avgdata is None: |
|
618 | if avgdata is None: | |
613 | return None, None |
|
619 | return None, None | |
614 |
|
620 | |||
615 | avgdatatime = self.__initime |
|
621 | avgdatatime = self.__initime | |
616 |
|
622 | |||
617 | deltatime = datatime - self.__lastdatatime |
|
623 | deltatime = datatime - self.__lastdatatime | |
618 |
|
624 | |||
619 | if not self.__withOverlapping: |
|
625 | if not self.__withOverlapping: | |
620 | self.__initime = datatime |
|
626 | self.__initime = datatime | |
621 | else: |
|
627 | else: | |
622 | self.__initime += deltatime |
|
628 | self.__initime += deltatime | |
623 |
|
629 | |||
624 | return avgdata, avgdatatime |
|
630 | return avgdata, avgdatatime | |
625 |
|
631 | |||
626 | def integrateByBlock(self, dataOut): |
|
632 | def integrateByBlock(self, dataOut): | |
627 |
|
633 | |||
628 | times = int(dataOut.data.shape[1]/self.n) |
|
634 | times = int(dataOut.data.shape[1] / self.n) | |
629 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
635 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |
630 |
|
636 | |||
631 | id_min = 0 |
|
637 | id_min = 0 | |
632 | id_max = self.n |
|
638 | id_max = self.n | |
633 |
|
639 | |||
634 | for i in range(times): |
|
640 | for i in range(times): | |
635 | junk = dataOut.data[:,id_min:id_max,:] |
|
641 | junk = dataOut.data[:, id_min:id_max, :] | |
636 | avgdata[:,i,:] = junk.sum(axis=1) |
|
642 | avgdata[:, i, :] = junk.sum(axis=1) | |
637 | id_min += self.n |
|
643 | id_min += self.n | |
638 | id_max += self.n |
|
644 | id_max += self.n | |
639 |
|
645 | |||
640 | timeInterval = dataOut.ippSeconds*self.n |
|
646 | timeInterval = dataOut.ippSeconds * self.n | |
641 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
647 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |
642 | self.__dataReady = True |
|
648 | self.__dataReady = True | |
643 | return avgdata, avgdatatime |
|
649 | return avgdata, avgdatatime | |
644 |
|
650 | |||
645 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
651 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |
646 |
|
652 | |||
647 | if not self.isConfig: |
|
653 | if not self.isConfig: | |
648 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
654 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |
649 | self.isConfig = True |
|
655 | self.isConfig = True | |
650 |
|
656 | |||
651 | if dataOut.flagDataAsBlock: |
|
657 | if dataOut.flagDataAsBlock: | |
652 | """ |
|
658 | """ | |
653 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
659 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
654 | """ |
|
660 | """ | |
655 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
661 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |
656 | dataOut.nProfiles /= self.n |
|
662 | dataOut.nProfiles /= self.n | |
657 | else: |
|
663 | else: | |
658 | if stride is None: |
|
664 | if stride is None: | |
659 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
665 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
660 | else: |
|
666 | else: | |
661 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
667 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |
662 |
|
668 | |||
663 |
|
669 | |||
664 | # dataOut.timeInterval *= n |
|
670 | # dataOut.timeInterval *= n | |
665 | dataOut.flagNoData = True |
|
671 | dataOut.flagNoData = True | |
666 |
|
672 | |||
667 | if self.__dataReady: |
|
673 | if self.__dataReady: | |
668 | dataOut.data = avgdata |
|
674 | dataOut.data = avgdata | |
669 | if not dataOut.flagCohInt: |
|
675 | if not dataOut.flagCohInt: | |
670 | dataOut.nCohInt *= self.n |
|
676 | dataOut.nCohInt *= self.n | |
671 | dataOut.flagCohInt = True |
|
677 | dataOut.flagCohInt = True | |
672 | dataOut.utctime = avgdatatime |
|
678 | dataOut.utctime = avgdatatime | |
673 | # print avgdata, avgdatatime |
|
679 | # print avgdata, avgdatatime | |
674 | # raise |
|
680 | # raise | |
675 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
681 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
676 | dataOut.flagNoData = False |
|
682 | dataOut.flagNoData = False | |
677 | return dataOut |
|
683 | return dataOut | |
678 |
|
684 | |||
679 | class Decoder(Operation): |
|
685 | class Decoder(Operation): | |
680 |
|
686 | |||
681 | isConfig = False |
|
687 | isConfig = False | |
682 | __profIndex = 0 |
|
688 | __profIndex = 0 | |
683 |
|
689 | |||
684 | code = None |
|
690 | code = None | |
685 |
|
691 | |||
686 | nCode = None |
|
692 | nCode = None | |
687 | nBaud = None |
|
693 | nBaud = None | |
688 |
|
694 | |||
689 | def __init__(self, **kwargs): |
|
695 | def __init__(self, **kwargs): | |
690 |
|
696 | |||
691 | Operation.__init__(self, **kwargs) |
|
697 | Operation.__init__(self, **kwargs) | |
692 |
|
698 | |||
693 | self.times = None |
|
699 | self.times = None | |
694 | self.osamp = None |
|
700 | self.osamp = None | |
695 | # self.__setValues = False |
|
701 | # self.__setValues = False | |
696 | self.isConfig = False |
|
702 | self.isConfig = False | |
697 | self.setupReq = False |
|
703 | self.setupReq = False | |
698 | def setup(self, code, osamp, dataOut): |
|
704 | def setup(self, code, osamp, dataOut): | |
699 |
|
705 | |||
700 | self.__profIndex = 0 |
|
706 | self.__profIndex = 0 | |
701 |
|
707 | |||
702 | self.code = code |
|
708 | self.code = code | |
703 |
|
709 | |||
704 | self.nCode = len(code) |
|
710 | self.nCode = len(code) | |
705 | self.nBaud = len(code[0]) |
|
711 | self.nBaud = len(code[0]) | |
706 |
|
712 | |||
707 | if (osamp != None) and (osamp >1): |
|
713 | if (osamp != None) and (osamp > 1): | |
708 | self.osamp = osamp |
|
714 | self.osamp = osamp | |
709 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
715 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
710 | self.nBaud = self.nBaud*self.osamp |
|
716 | self.nBaud = self.nBaud * self.osamp | |
711 |
|
717 | |||
712 | self.__nChannels = dataOut.nChannels |
|
718 | self.__nChannels = dataOut.nChannels | |
713 | self.__nProfiles = dataOut.nProfiles |
|
719 | self.__nProfiles = dataOut.nProfiles | |
714 | self.__nHeis = dataOut.nHeights |
|
720 | self.__nHeis = dataOut.nHeights | |
715 |
|
721 | |||
716 | if self.__nHeis < self.nBaud: |
|
722 | if self.__nHeis < self.nBaud: | |
717 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
723 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' % (self.__nHeis, self.nBaud)) | |
718 |
|
724 | |||
719 | #Frequency |
|
725 | # Frequency | |
720 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
726 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
721 |
|
727 | |||
722 | __codeBuffer[:,0:self.nBaud] = self.code |
|
728 | __codeBuffer[:, 0:self.nBaud] = self.code | |
723 |
|
729 | |||
724 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
730 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
725 |
|
731 | |||
726 | if dataOut.flagDataAsBlock: |
|
732 | if dataOut.flagDataAsBlock: | |
727 |
|
733 | |||
728 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
734 | self.ndatadec = self.__nHeis # - self.nBaud + 1 | |
729 |
|
735 | |||
730 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
736 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
731 |
|
737 | |||
732 | else: |
|
738 | else: | |
733 |
|
739 | |||
734 | #Time |
|
740 | # Time | |
735 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
741 | self.ndatadec = self.__nHeis # - self.nBaud + 1 | |
736 |
|
742 | |||
737 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
743 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
738 |
|
744 | |||
739 | def __convolutionInFreq(self, data): |
|
745 | def __convolutionInFreq(self, data): | |
740 |
|
746 | |||
741 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
747 | fft_code = self.fft_code[self.__profIndex].reshape(1, -1) | |
742 |
|
748 | |||
743 | fft_data = numpy.fft.fft(data, axis=1) |
|
749 | fft_data = numpy.fft.fft(data, axis=1) | |
744 |
|
750 | |||
745 | conv = fft_data*fft_code |
|
751 | conv = fft_data * fft_code | |
746 |
|
752 | |||
747 | data = numpy.fft.ifft(conv,axis=1) |
|
753 | data = numpy.fft.ifft(conv, axis=1) | |
748 |
|
754 | |||
749 | return data |
|
755 | return data | |
750 |
|
756 | |||
751 | def __convolutionInFreqOpt(self, data): |
|
757 | def __convolutionInFreqOpt(self, data): | |
752 |
|
758 | |||
753 | raise NotImplementedError |
|
759 | raise NotImplementedError | |
754 |
|
760 | |||
755 | def __convolutionInTime(self, data): |
|
761 | def __convolutionInTime(self, data): | |
756 |
|
762 | |||
757 | code = self.code[self.__profIndex] |
|
763 | code = self.code[self.__profIndex] | |
758 | for i in range(self.__nChannels): |
|
764 | for i in range(self.__nChannels): | |
759 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
765 | self.datadecTime[i, :] = numpy.correlate(data[i, :], code, mode='full')[self.nBaud - 1:] | |
760 |
|
766 | |||
761 | return self.datadecTime |
|
767 | return self.datadecTime | |
762 |
|
768 | |||
763 | def __convolutionByBlockInTime(self, data): |
|
769 | def __convolutionByBlockInTime(self, data): | |
764 |
|
770 | |||
765 | repetitions = int(self.__nProfiles / self.nCode) |
|
771 | repetitions = int(self.__nProfiles / self.nCode) | |
766 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
772 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
767 | junk = junk.flatten() |
|
773 | junk = junk.flatten() | |
768 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
774 | code_block = numpy.reshape(junk, (self.nCode * repetitions, self.nBaud)) | |
769 | profilesList = range(self.__nProfiles) |
|
775 | profilesList = range(self.__nProfiles) | |
770 |
|
776 | |||
771 | for i in range(self.__nChannels): |
|
777 | for i in range(self.__nChannels): | |
772 | for j in profilesList: |
|
778 | for j in profilesList: | |
773 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
779 | self.datadecTime[i, j, :] = numpy.correlate(data[i, j, :], code_block[j, :], mode='full')[self.nBaud - 1:] | |
774 | return self.datadecTime |
|
780 | return self.datadecTime | |
775 |
|
781 | |||
776 | def __convolutionByBlockInFreq(self, data): |
|
782 | def __convolutionByBlockInFreq(self, data): | |
777 |
|
783 | |||
778 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
784 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |
779 |
|
785 | |||
780 |
|
786 | |||
781 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
787 | fft_code = self.fft_code[self.__profIndex].reshape(1, -1) | |
782 |
|
788 | |||
783 | fft_data = numpy.fft.fft(data, axis=2) |
|
789 | fft_data = numpy.fft.fft(data, axis=2) | |
784 |
|
790 | |||
785 | conv = fft_data*fft_code |
|
791 | conv = fft_data * fft_code | |
786 |
|
792 | |||
787 | data = numpy.fft.ifft(conv,axis=2) |
|
793 | data = numpy.fft.ifft(conv, axis=2) | |
788 |
|
794 | |||
789 | return data |
|
795 | return data | |
790 |
|
796 | |||
791 |
|
797 | |||
792 |
def run(self, dataOut, code=None, nCode=None, nBaud=None, mode |
|
798 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode=0, osamp=None, times=None): | |
793 |
|
799 | |||
794 | if dataOut.flagDecodeData: |
|
800 | if dataOut.flagDecodeData: | |
795 | print("This data is already decoded, recoding again ...") |
|
801 | print("This data is already decoded, recoding again ...") | |
796 |
|
802 | |||
797 | if not self.isConfig: |
|
803 | if not self.isConfig: | |
798 |
|
804 | |||
799 | if code is None: |
|
805 | if code is None: | |
800 | if dataOut.code is None: |
|
806 | if dataOut.code is None: | |
801 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
807 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" % dataOut.type) | |
802 |
|
808 | |||
803 | code = dataOut.code |
|
809 | code = dataOut.code | |
804 | else: |
|
810 | else: | |
805 | code = numpy.array(code).reshape(nCode,nBaud) |
|
811 | code = numpy.array(code).reshape(nCode, nBaud) | |
806 | self.setup(code, osamp, dataOut) |
|
812 | self.setup(code, osamp, dataOut) | |
807 |
|
813 | |||
808 | self.isConfig = True |
|
814 | self.isConfig = True | |
809 |
|
815 | |||
810 | if mode == 3: |
|
816 | if mode == 3: | |
811 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
817 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" % mode) | |
812 |
|
818 | |||
813 | if times != None: |
|
819 | if times != None: | |
814 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
820 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |
815 |
|
821 | |||
816 | if self.code is None: |
|
822 | if self.code is None: | |
817 | print("Fail decoding: Code is not defined.") |
|
823 | print("Fail decoding: Code is not defined.") | |
818 | return |
|
824 | return | |
819 |
|
825 | |||
820 | self.__nProfiles = dataOut.nProfiles |
|
826 | self.__nProfiles = dataOut.nProfiles | |
821 | datadec = None |
|
827 | datadec = None | |
822 |
|
828 | |||
823 | if mode == 3: |
|
829 | if mode == 3: | |
824 | mode = 0 |
|
830 | mode = 0 | |
825 |
|
831 | |||
826 | if dataOut.flagDataAsBlock: |
|
832 | if dataOut.flagDataAsBlock: | |
827 | """ |
|
833 | """ | |
828 | Decoding when data have been read as block, |
|
834 | Decoding when data have been read as block, | |
829 | """ |
|
835 | """ | |
830 |
|
836 | |||
831 | if mode == 0: |
|
837 | if mode == 0: | |
832 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
838 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |
833 | if mode == 1: |
|
839 | if mode == 1: | |
834 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
840 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |
835 | else: |
|
841 | else: | |
836 | """ |
|
842 | """ | |
837 | Decoding when data have been read profile by profile |
|
843 | Decoding when data have been read profile by profile | |
838 | """ |
|
844 | """ | |
839 | if mode == 0: |
|
845 | if mode == 0: | |
840 | datadec = self.__convolutionInTime(dataOut.data) |
|
846 | datadec = self.__convolutionInTime(dataOut.data) | |
841 |
|
847 | |||
842 | if mode == 1: |
|
848 | if mode == 1: | |
843 | datadec = self.__convolutionInFreq(dataOut.data) |
|
849 | datadec = self.__convolutionInFreq(dataOut.data) | |
844 |
|
850 | |||
845 | if mode == 2: |
|
851 | if mode == 2: | |
846 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
852 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |
847 |
|
853 | |||
848 | if datadec is None: |
|
854 | if datadec is None: | |
849 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
855 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" % mode) | |
850 |
|
856 | |||
851 | dataOut.code = self.code |
|
857 | dataOut.code = self.code | |
852 | dataOut.nCode = self.nCode |
|
858 | dataOut.nCode = self.nCode | |
853 | dataOut.nBaud = self.nBaud |
|
859 | dataOut.nBaud = self.nBaud | |
854 |
|
860 | |||
855 | dataOut.data = datadec |
|
861 | dataOut.data = datadec | |
856 |
|
862 | |||
857 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
863 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |
858 |
|
864 | |||
859 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
865 | dataOut.flagDecodeData = True # asumo q la data esta decodificada | |
860 |
|
866 | |||
861 | if self.__profIndex == self.nCode-1: |
|
867 | if self.__profIndex == self.nCode - 1: | |
862 | self.__profIndex = 0 |
|
868 | self.__profIndex = 0 | |
863 | return dataOut |
|
869 | return dataOut | |
864 |
|
870 | |||
865 | self.__profIndex += 1 |
|
871 | self.__profIndex += 1 | |
866 |
|
872 | |||
867 | return dataOut |
|
873 | return dataOut | |
868 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
874 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
869 |
|
875 | |||
870 |
|
876 | |||
871 | class ProfileConcat(Operation): |
|
877 | class ProfileConcat(Operation): | |
872 |
|
878 | |||
873 | isConfig = False |
|
879 | isConfig = False | |
874 | buffer = None |
|
880 | buffer = None | |
875 |
|
881 | |||
876 | def __init__(self, **kwargs): |
|
882 | def __init__(self, **kwargs): | |
877 |
|
883 | |||
878 | Operation.__init__(self, **kwargs) |
|
884 | Operation.__init__(self, **kwargs) | |
879 | self.profileIndex = 0 |
|
885 | self.profileIndex = 0 | |
880 |
|
886 | |||
881 | def reset(self): |
|
887 | def reset(self): | |
882 | self.buffer = numpy.zeros_like(self.buffer) |
|
888 | self.buffer = numpy.zeros_like(self.buffer) | |
883 | self.start_index = 0 |
|
889 | self.start_index = 0 | |
884 | self.times = 1 |
|
890 | self.times = 1 | |
885 |
|
891 | |||
886 | def setup(self, data, m, n=1): |
|
892 | def setup(self, data, m, n=1): | |
887 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
893 | self.buffer = numpy.zeros((data.shape[0], data.shape[1] * m), dtype=type(data[0, 0])) | |
888 | self.nHeights = data.shape[1]#.nHeights |
|
894 | self.nHeights = data.shape[1] # .nHeights | |
889 | self.start_index = 0 |
|
895 | self.start_index = 0 | |
890 | self.times = 1 |
|
896 | self.times = 1 | |
891 |
|
897 | |||
892 | def concat(self, data): |
|
898 | def concat(self, data): | |
893 |
|
899 | |||
894 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
900 | self.buffer[:, self.start_index:self.nHeights * self.times] = data.copy() | |
895 | self.start_index = self.start_index + self.nHeights |
|
901 | self.start_index = self.start_index + self.nHeights | |
896 |
|
902 | |||
897 | def run(self, dataOut, m): |
|
903 | def run(self, dataOut, m): | |
898 | dataOut.flagNoData = True |
|
904 | dataOut.flagNoData = True | |
899 |
|
905 | |||
900 | if not self.isConfig: |
|
906 | if not self.isConfig: | |
901 | self.setup(dataOut.data, m, 1) |
|
907 | self.setup(dataOut.data, m, 1) | |
902 | self.isConfig = True |
|
908 | self.isConfig = True | |
903 |
|
909 | |||
904 | if dataOut.flagDataAsBlock: |
|
910 | if dataOut.flagDataAsBlock: | |
905 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
911 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
906 |
|
912 | |||
907 | else: |
|
913 | else: | |
908 | self.concat(dataOut.data) |
|
914 | self.concat(dataOut.data) | |
909 | self.times += 1 |
|
915 | self.times += 1 | |
910 | if self.times > m: |
|
916 | if self.times > m: | |
911 | dataOut.data = self.buffer |
|
917 | dataOut.data = self.buffer | |
912 | self.reset() |
|
918 | self.reset() | |
913 | dataOut.flagNoData = False |
|
919 | dataOut.flagNoData = False | |
914 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
920 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
915 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
921 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
916 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
922 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |
917 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
923 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
918 | dataOut.ippSeconds *= m |
|
924 | dataOut.ippSeconds *= m | |
919 | return dataOut |
|
925 | return dataOut | |
920 |
|
926 | |||
921 | class ProfileSelector(Operation): |
|
927 | class ProfileSelector(Operation): | |
922 |
|
928 | |||
923 | profileIndex = None |
|
929 | profileIndex = None | |
924 | # Tamanho total de los perfiles |
|
930 | # Tamanho total de los perfiles | |
925 | nProfiles = None |
|
931 | nProfiles = None | |
926 |
|
932 | |||
927 | def __init__(self, **kwargs): |
|
933 | def __init__(self, **kwargs): | |
928 |
|
934 | |||
929 | Operation.__init__(self, **kwargs) |
|
935 | Operation.__init__(self, **kwargs) | |
930 | self.profileIndex = 0 |
|
936 | self.profileIndex = 0 | |
931 |
|
937 | |||
932 | def incProfileIndex(self): |
|
938 | def incProfileIndex(self): | |
933 |
|
939 | |||
934 | self.profileIndex += 1 |
|
940 | self.profileIndex += 1 | |
935 |
|
941 | |||
936 | if self.profileIndex >= self.nProfiles: |
|
942 | if self.profileIndex >= self.nProfiles: | |
937 | self.profileIndex = 0 |
|
943 | self.profileIndex = 0 | |
938 |
|
944 | |||
939 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
945 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |
940 |
|
946 | |||
941 | if profileIndex < minIndex: |
|
947 | if profileIndex < minIndex: | |
942 | return False |
|
948 | return False | |
943 |
|
949 | |||
944 | if profileIndex > maxIndex: |
|
950 | if profileIndex > maxIndex: | |
945 | return False |
|
951 | return False | |
946 |
|
952 | |||
947 | return True |
|
953 | return True | |
948 |
|
954 | |||
949 | def isThisProfileInList(self, profileIndex, profileList): |
|
955 | def isThisProfileInList(self, profileIndex, profileList): | |
950 |
|
956 | |||
951 | if profileIndex not in profileList: |
|
957 | if profileIndex not in profileList: | |
952 | return False |
|
958 | return False | |
953 |
|
959 | |||
954 | return True |
|
960 | return True | |
955 |
|
961 | |||
956 |
def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList |
|
962 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList=None, nProfiles=None): | |
957 |
|
963 | |||
958 | """ |
|
964 | """ | |
959 | ProfileSelector: |
|
965 | ProfileSelector: | |
960 |
|
966 | |||
961 | Inputs: |
|
967 | Inputs: | |
962 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
968 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |
963 |
|
969 | |||
964 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
970 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |
965 |
|
971 | |||
966 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
972 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |
967 |
|
973 | |||
968 | """ |
|
974 | """ | |
969 |
|
975 | |||
970 | if rangeList is not None: |
|
976 | if rangeList is not None: | |
971 | if type(rangeList[0]) not in (tuple, list): |
|
977 | if type(rangeList[0]) not in (tuple, list): | |
972 | rangeList = [rangeList] |
|
978 | rangeList = [rangeList] | |
973 |
|
979 | |||
974 | dataOut.flagNoData = True |
|
980 | dataOut.flagNoData = True | |
975 |
|
981 | |||
976 | if dataOut.flagDataAsBlock: |
|
982 | if dataOut.flagDataAsBlock: | |
977 | """ |
|
983 | """ | |
978 | data dimension = [nChannels, nProfiles, nHeis] |
|
984 | data dimension = [nChannels, nProfiles, nHeis] | |
979 | """ |
|
985 | """ | |
980 | if profileList != None: |
|
986 | if profileList != None: | |
981 | dataOut.data = dataOut.data[:,profileList,:] |
|
987 | dataOut.data = dataOut.data[:, profileList, :] | |
982 |
|
988 | |||
983 | if profileRangeList != None: |
|
989 | if profileRangeList != None: | |
984 | minIndex = profileRangeList[0] |
|
990 | minIndex = profileRangeList[0] | |
985 | maxIndex = profileRangeList[1] |
|
991 | maxIndex = profileRangeList[1] | |
986 | profileList = list(range(minIndex, maxIndex+1)) |
|
992 | profileList = list(range(minIndex, maxIndex + 1)) | |
987 |
|
993 | |||
988 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
994 | dataOut.data = dataOut.data[:, minIndex:maxIndex + 1, :] | |
989 |
|
995 | |||
990 | if rangeList != None: |
|
996 | if rangeList != None: | |
991 |
|
997 | |||
992 | profileList = [] |
|
998 | profileList = [] | |
993 |
|
999 | |||
994 | for thisRange in rangeList: |
|
1000 | for thisRange in rangeList: | |
995 | minIndex = thisRange[0] |
|
1001 | minIndex = thisRange[0] | |
996 | maxIndex = thisRange[1] |
|
1002 | maxIndex = thisRange[1] | |
997 |
|
1003 | |||
998 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
1004 | profileList.extend(list(range(minIndex, maxIndex + 1))) | |
999 |
|
1005 | |||
1000 | dataOut.data = dataOut.data[:,profileList,:] |
|
1006 | dataOut.data = dataOut.data[:, profileList, :] | |
1001 |
|
1007 | |||
1002 | dataOut.nProfiles = len(profileList) |
|
1008 | dataOut.nProfiles = len(profileList) | |
1003 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1009 | dataOut.profileIndex = dataOut.nProfiles - 1 | |
1004 | dataOut.flagNoData = False |
|
1010 | dataOut.flagNoData = False | |
1005 |
|
1011 | |||
1006 | return dataOut |
|
1012 | return dataOut | |
1007 |
|
1013 | |||
1008 | """ |
|
1014 | """ | |
1009 | data dimension = [nChannels, nHeis] |
|
1015 | data dimension = [nChannels, nHeis] | |
1010 | """ |
|
1016 | """ | |
1011 |
|
1017 | |||
1012 | if profileList != None: |
|
1018 | if profileList != None: | |
1013 |
|
1019 | |||
1014 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1020 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |
1015 |
|
1021 | |||
1016 | self.nProfiles = len(profileList) |
|
1022 | self.nProfiles = len(profileList) | |
1017 | dataOut.nProfiles = self.nProfiles |
|
1023 | dataOut.nProfiles = self.nProfiles | |
1018 | dataOut.profileIndex = self.profileIndex |
|
1024 | dataOut.profileIndex = self.profileIndex | |
1019 | dataOut.flagNoData = False |
|
1025 | dataOut.flagNoData = False | |
1020 |
|
1026 | |||
1021 | self.incProfileIndex() |
|
1027 | self.incProfileIndex() | |
1022 | return dataOut |
|
1028 | return dataOut | |
1023 |
|
1029 | |||
1024 | if profileRangeList != None: |
|
1030 | if profileRangeList != None: | |
1025 |
|
1031 | |||
1026 | minIndex = profileRangeList[0] |
|
1032 | minIndex = profileRangeList[0] | |
1027 | maxIndex = profileRangeList[1] |
|
1033 | maxIndex = profileRangeList[1] | |
1028 |
|
1034 | |||
1029 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1035 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1030 |
|
1036 | |||
1031 | self.nProfiles = maxIndex - minIndex + 1 |
|
1037 | self.nProfiles = maxIndex - minIndex + 1 | |
1032 | dataOut.nProfiles = self.nProfiles |
|
1038 | dataOut.nProfiles = self.nProfiles | |
1033 | dataOut.profileIndex = self.profileIndex |
|
1039 | dataOut.profileIndex = self.profileIndex | |
1034 | dataOut.flagNoData = False |
|
1040 | dataOut.flagNoData = False | |
1035 |
|
1041 | |||
1036 | self.incProfileIndex() |
|
1042 | self.incProfileIndex() | |
1037 | return dataOut |
|
1043 | return dataOut | |
1038 |
|
1044 | |||
1039 | if rangeList != None: |
|
1045 | if rangeList != None: | |
1040 |
|
1046 | |||
1041 | nProfiles = 0 |
|
1047 | nProfiles = 0 | |
1042 |
|
1048 | |||
1043 | for thisRange in rangeList: |
|
1049 | for thisRange in rangeList: | |
1044 | minIndex = thisRange[0] |
|
1050 | minIndex = thisRange[0] | |
1045 | maxIndex = thisRange[1] |
|
1051 | maxIndex = thisRange[1] | |
1046 |
|
1052 | |||
1047 | nProfiles += maxIndex - minIndex + 1 |
|
1053 | nProfiles += maxIndex - minIndex + 1 | |
1048 |
|
1054 | |||
1049 | for thisRange in rangeList: |
|
1055 | for thisRange in rangeList: | |
1050 |
|
1056 | |||
1051 | minIndex = thisRange[0] |
|
1057 | minIndex = thisRange[0] | |
1052 | maxIndex = thisRange[1] |
|
1058 | maxIndex = thisRange[1] | |
1053 |
|
1059 | |||
1054 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1060 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1055 |
|
1061 | |||
1056 | self.nProfiles = nProfiles |
|
1062 | self.nProfiles = nProfiles | |
1057 | dataOut.nProfiles = self.nProfiles |
|
1063 | dataOut.nProfiles = self.nProfiles | |
1058 | dataOut.profileIndex = self.profileIndex |
|
1064 | dataOut.profileIndex = self.profileIndex | |
1059 | dataOut.flagNoData = False |
|
1065 | dataOut.flagNoData = False | |
1060 |
|
1066 | |||
1061 | self.incProfileIndex() |
|
1067 | self.incProfileIndex() | |
1062 |
|
1068 | |||
1063 | break |
|
1069 | break | |
1064 |
|
1070 | |||
1065 | return dataOut |
|
1071 | return dataOut | |
1066 |
|
1072 | |||
1067 |
|
1073 | |||
1068 | if beam != None: #beam is only for AMISR data |
|
1074 | if beam != None: # beam is only for AMISR data | |
1069 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1075 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |
1070 | dataOut.flagNoData = False |
|
1076 | dataOut.flagNoData = False | |
1071 | dataOut.profileIndex = self.profileIndex |
|
1077 | dataOut.profileIndex = self.profileIndex | |
1072 |
|
1078 | |||
1073 | self.incProfileIndex() |
|
1079 | self.incProfileIndex() | |
1074 |
|
1080 | |||
1075 | return dataOut |
|
1081 | return dataOut | |
1076 |
|
1082 | |||
1077 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1083 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |
1078 |
|
1084 | |||
1079 |
|
1085 | |||
1080 | class Reshaper(Operation): |
|
1086 | class Reshaper(Operation): | |
1081 |
|
1087 | |||
1082 | def __init__(self, **kwargs): |
|
1088 | def __init__(self, **kwargs): | |
1083 |
|
1089 | |||
1084 | Operation.__init__(self, **kwargs) |
|
1090 | Operation.__init__(self, **kwargs) | |
1085 |
|
1091 | |||
1086 | self.__buffer = None |
|
1092 | self.__buffer = None | |
1087 | self.__nitems = 0 |
|
1093 | self.__nitems = 0 | |
1088 |
|
1094 | |||
1089 | def __appendProfile(self, dataOut, nTxs): |
|
1095 | def __appendProfile(self, dataOut, nTxs): | |
1090 |
|
1096 | |||
1091 | if self.__buffer is None: |
|
1097 | if self.__buffer is None: | |
1092 |
shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) |
|
1098 | shape = (dataOut.nChannels, int(dataOut.nHeights / nTxs)) | |
1093 |
self.__buffer = numpy.empty(shape, dtype |
|
1099 | self.__buffer = numpy.empty(shape, dtype=dataOut.data.dtype) | |
1094 |
|
1100 | |||
1095 | ini = dataOut.nHeights * self.__nitems |
|
1101 | ini = dataOut.nHeights * self.__nitems | |
1096 | end = ini + dataOut.nHeights |
|
1102 | end = ini + dataOut.nHeights | |
1097 |
|
1103 | |||
1098 | self.__buffer[:, ini:end] = dataOut.data |
|
1104 | self.__buffer[:, ini:end] = dataOut.data | |
1099 |
|
1105 | |||
1100 | self.__nitems += 1 |
|
1106 | self.__nitems += 1 | |
1101 |
|
1107 | |||
1102 | return int(self.__nitems*nTxs) |
|
1108 | return int(self.__nitems * nTxs) | |
1103 |
|
1109 | |||
1104 | def __getBuffer(self): |
|
1110 | def __getBuffer(self): | |
1105 |
|
1111 | |||
1106 | if self.__nitems == int(1./self.__nTxs): |
|
1112 | if self.__nitems == int(1. / self.__nTxs): | |
1107 |
|
1113 | |||
1108 | self.__nitems = 0 |
|
1114 | self.__nitems = 0 | |
1109 |
|
1115 | |||
1110 | return self.__buffer.copy() |
|
1116 | return self.__buffer.copy() | |
1111 |
|
1117 | |||
1112 | return None |
|
1118 | return None | |
1113 |
|
1119 | |||
1114 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1120 | def __checkInputs(self, dataOut, shape, nTxs): | |
1115 |
|
1121 | |||
1116 | if shape is None and nTxs is None: |
|
1122 | if shape is None and nTxs is None: | |
1117 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1123 | raise ValueError("Reshaper: shape of factor should be defined") | |
1118 |
|
1124 | |||
1119 | if nTxs: |
|
1125 | if nTxs: | |
1120 | if nTxs < 0: |
|
1126 | if nTxs < 0: | |
1121 | raise ValueError("nTxs should be greater than 0") |
|
1127 | raise ValueError("nTxs should be greater than 0") | |
1122 |
|
1128 | |||
1123 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1129 | if nTxs < 1 and dataOut.nProfiles % (1. / nTxs) != 0: | |
1124 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1130 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" % (dataOut.nProfiles, (1. / nTxs))) | |
1125 |
|
1131 | |||
1126 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1132 | shape = [dataOut.nChannels, dataOut.nProfiles * nTxs, dataOut.nHeights / nTxs] | |
1127 |
|
1133 | |||
1128 | return shape, nTxs |
|
1134 | return shape, nTxs | |
1129 |
|
1135 | |||
1130 |
if len(shape) != 2 and len(shape) != |
|
1136 | if len(shape) != 2 and len(shape) != 3: | |
1131 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1137 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" % (dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |
1132 |
|
1138 | |||
1133 | if len(shape) == 2: |
|
1139 | if len(shape) == 2: | |
1134 | shape_tuple = [dataOut.nChannels] |
|
1140 | shape_tuple = [dataOut.nChannels] | |
1135 | shape_tuple.extend(shape) |
|
1141 | shape_tuple.extend(shape) | |
1136 | else: |
|
1142 | else: | |
1137 | shape_tuple = list(shape) |
|
1143 | shape_tuple = list(shape) | |
1138 |
|
1144 | |||
1139 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1145 | nTxs = 1.0 * shape_tuple[1] / dataOut.nProfiles | |
1140 |
|
1146 | |||
1141 | return shape_tuple, nTxs |
|
1147 | return shape_tuple, nTxs | |
1142 |
|
1148 | |||
1143 | def run(self, dataOut, shape=None, nTxs=None): |
|
1149 | def run(self, dataOut, shape=None, nTxs=None): | |
1144 |
|
1150 | |||
1145 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1151 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |
1146 |
|
1152 | |||
1147 | dataOut.flagNoData = True |
|
1153 | dataOut.flagNoData = True | |
1148 | profileIndex = None |
|
1154 | profileIndex = None | |
1149 |
|
1155 | |||
1150 | if dataOut.flagDataAsBlock: |
|
1156 | if dataOut.flagDataAsBlock: | |
1151 |
|
1157 | |||
1152 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1158 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |
1153 | dataOut.flagNoData = False |
|
1159 | dataOut.flagNoData = False | |
1154 |
|
1160 | |||
1155 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1161 | profileIndex = int(dataOut.nProfiles * self.__nTxs) - 1 | |
1156 |
|
1162 | |||
1157 | else: |
|
1163 | else: | |
1158 |
|
1164 | |||
1159 | if self.__nTxs < 1: |
|
1165 | if self.__nTxs < 1: | |
1160 |
|
1166 | |||
1161 | self.__appendProfile(dataOut, self.__nTxs) |
|
1167 | self.__appendProfile(dataOut, self.__nTxs) | |
1162 | new_data = self.__getBuffer() |
|
1168 | new_data = self.__getBuffer() | |
1163 |
|
1169 | |||
1164 | if new_data is not None: |
|
1170 | if new_data is not None: | |
1165 | dataOut.data = new_data |
|
1171 | dataOut.data = new_data | |
1166 | dataOut.flagNoData = False |
|
1172 | dataOut.flagNoData = False | |
1167 |
|
1173 | |||
1168 | profileIndex = dataOut.profileIndex*nTxs |
|
1174 | profileIndex = dataOut.profileIndex * nTxs | |
1169 |
|
1175 | |||
1170 | else: |
|
1176 | else: | |
1171 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1177 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |
1172 |
|
1178 | |||
1173 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1179 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1174 |
|
1180 | |||
1175 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1181 | dataOut.heightList = numpy.arange(dataOut.nHeights / self.__nTxs) * deltaHeight + dataOut.heightList[0] | |
1176 |
|
1182 | |||
1177 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1183 | dataOut.nProfiles = int(dataOut.nProfiles * self.__nTxs) | |
1178 |
|
1184 | |||
1179 | dataOut.profileIndex = profileIndex |
|
1185 | dataOut.profileIndex = profileIndex | |
1180 |
|
1186 | |||
1181 | dataOut.ippSeconds /= self.__nTxs |
|
1187 | dataOut.ippSeconds /= self.__nTxs | |
1182 |
|
1188 | |||
1183 | return dataOut |
|
1189 | return dataOut | |
1184 |
|
1190 | |||
1185 | class SplitProfiles(Operation): |
|
1191 | class SplitProfiles(Operation): | |
1186 |
|
1192 | |||
1187 | def __init__(self, **kwargs): |
|
1193 | def __init__(self, **kwargs): | |
1188 |
|
1194 | |||
1189 | Operation.__init__(self, **kwargs) |
|
1195 | Operation.__init__(self, **kwargs) | |
1190 |
|
1196 | |||
1191 | def run(self, dataOut, n): |
|
1197 | def run(self, dataOut, n): | |
1192 |
|
1198 | |||
1193 | dataOut.flagNoData = True |
|
1199 | dataOut.flagNoData = True | |
1194 | profileIndex = None |
|
1200 | profileIndex = None | |
1195 |
|
1201 | |||
1196 | if dataOut.flagDataAsBlock: |
|
1202 | if dataOut.flagDataAsBlock: | |
1197 |
|
1203 | |||
1198 | #nchannels, nprofiles, nsamples |
|
1204 | # nchannels, nprofiles, nsamples | |
1199 | shape = dataOut.data.shape |
|
1205 | shape = dataOut.data.shape | |
1200 |
|
1206 | |||
1201 | if shape[2] % n != 0: |
|
1207 | if shape[2] % n != 0: | |
1202 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1208 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" % (n, shape[2])) | |
1203 |
|
1209 | |||
1204 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1210 | new_shape = shape[0], shape[1] * n, int(shape[2] / n) | |
1205 |
|
1211 | |||
1206 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1212 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1207 | dataOut.flagNoData = False |
|
1213 | dataOut.flagNoData = False | |
1208 |
|
1214 | |||
1209 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1215 | profileIndex = int(dataOut.nProfiles / n) - 1 | |
1210 |
|
1216 | |||
1211 | else: |
|
1217 | else: | |
1212 |
|
1218 | |||
1213 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1219 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |
1214 |
|
1220 | |||
1215 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1221 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1216 |
|
1222 | |||
1217 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1223 | dataOut.heightList = numpy.arange(dataOut.nHeights / n) * deltaHeight + dataOut.heightList[0] | |
1218 |
|
1224 | |||
1219 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1225 | dataOut.nProfiles = int(dataOut.nProfiles * n) | |
1220 |
|
1226 | |||
1221 | dataOut.profileIndex = profileIndex |
|
1227 | dataOut.profileIndex = profileIndex | |
1222 |
|
1228 | |||
1223 | dataOut.ippSeconds /= n |
|
1229 | dataOut.ippSeconds /= n | |
1224 |
|
1230 | |||
1225 | return dataOut |
|
1231 | return dataOut | |
1226 |
|
1232 | |||
1227 | class CombineProfiles(Operation): |
|
1233 | class CombineProfiles(Operation): | |
1228 | def __init__(self, **kwargs): |
|
1234 | def __init__(self, **kwargs): | |
1229 |
|
1235 | |||
1230 | Operation.__init__(self, **kwargs) |
|
1236 | Operation.__init__(self, **kwargs) | |
1231 |
|
1237 | |||
1232 | self.__remData = None |
|
1238 | self.__remData = None | |
1233 | self.__profileIndex = 0 |
|
1239 | self.__profileIndex = 0 | |
1234 |
|
1240 | |||
1235 | def run(self, dataOut, n): |
|
1241 | def run(self, dataOut, n): | |
1236 |
|
1242 | |||
1237 | dataOut.flagNoData = True |
|
1243 | dataOut.flagNoData = True | |
1238 | profileIndex = None |
|
1244 | profileIndex = None | |
1239 |
|
1245 | |||
1240 | if dataOut.flagDataAsBlock: |
|
1246 | if dataOut.flagDataAsBlock: | |
1241 |
|
1247 | |||
1242 | #nchannels, nprofiles, nsamples |
|
1248 | # nchannels, nprofiles, nsamples | |
1243 | shape = dataOut.data.shape |
|
1249 | shape = dataOut.data.shape | |
1244 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1250 | new_shape = shape[0], shape[1] / n, shape[2] * n | |
1245 |
|
1251 | |||
1246 | if shape[1] % n != 0: |
|
1252 | if shape[1] % n != 0: | |
1247 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1253 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" % (n, shape[1])) | |
1248 |
|
1254 | |||
1249 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1255 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1250 | dataOut.flagNoData = False |
|
1256 | dataOut.flagNoData = False | |
1251 |
|
1257 | |||
1252 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1258 | profileIndex = int(dataOut.nProfiles * n) - 1 | |
1253 |
|
1259 | |||
1254 | else: |
|
1260 | else: | |
1255 |
|
1261 | |||
1256 | #nchannels, nsamples |
|
1262 | # nchannels, nsamples | |
1257 | if self.__remData is None: |
|
1263 | if self.__remData is None: | |
1258 | newData = dataOut.data |
|
1264 | newData = dataOut.data | |
1259 | else: |
|
1265 | else: | |
1260 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1266 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |
1261 |
|
1267 | |||
1262 | self.__profileIndex += 1 |
|
1268 | self.__profileIndex += 1 | |
1263 |
|
1269 | |||
1264 | if self.__profileIndex < n: |
|
1270 | if self.__profileIndex < n: | |
1265 | self.__remData = newData |
|
1271 | self.__remData = newData | |
1266 | #continue |
|
1272 | # continue | |
1267 | return |
|
1273 | return | |
1268 |
|
1274 | |||
1269 | self.__profileIndex = 0 |
|
1275 | self.__profileIndex = 0 | |
1270 | self.__remData = None |
|
1276 | self.__remData = None | |
1271 |
|
1277 | |||
1272 | dataOut.data = newData |
|
1278 | dataOut.data = newData | |
1273 | dataOut.flagNoData = False |
|
1279 | dataOut.flagNoData = False | |
1274 |
|
1280 | |||
1275 | profileIndex = dataOut.profileIndex/n |
|
1281 | profileIndex = dataOut.profileIndex / n | |
1276 |
|
1282 | |||
1277 |
|
1283 | |||
1278 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1284 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1279 |
|
1285 | |||
1280 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1286 | dataOut.heightList = numpy.arange(dataOut.nHeights * n) * deltaHeight + dataOut.heightList[0] | |
1281 |
|
1287 | |||
1282 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1288 | dataOut.nProfiles = int(dataOut.nProfiles / n) | |
1283 |
|
1289 | |||
1284 | dataOut.profileIndex = profileIndex |
|
1290 | dataOut.profileIndex = profileIndex | |
1285 |
|
1291 | |||
1286 | dataOut.ippSeconds *= n |
|
1292 | dataOut.ippSeconds *= n | |
1287 |
|
1293 | |||
1288 | return dataOut |
|
1294 | return dataOut | |
1289 |
|
1295 | |||
1290 | class PulsePairVoltage(Operation): |
|
1296 | class PulsePairVoltage(Operation): | |
1291 | ''' |
|
1297 | ''' | |
1292 | Function PulsePair(Signal Power, Velocity) |
|
1298 | Function PulsePair(Signal Power, Velocity) | |
1293 | The real component of Lag[0] provides Intensity Information |
|
1299 | The real component of Lag[0] provides Intensity Information | |
1294 | The imag component of Lag[1] Phase provides Velocity Information |
|
1300 | The imag component of Lag[1] Phase provides Velocity Information | |
1295 |
|
1301 | |||
1296 | Configuration Parameters: |
|
1302 | Configuration Parameters: | |
1297 | nPRF = Number of Several PRF |
|
1303 | nPRF = Number of Several PRF | |
1298 | theta = Degree Azimuth angel Boundaries |
|
1304 | theta = Degree Azimuth angel Boundaries | |
1299 |
|
1305 | |||
1300 | Input: |
|
1306 | Input: | |
1301 | self.dataOut |
|
1307 | self.dataOut | |
1302 | lag[N] |
|
1308 | lag[N] | |
1303 | Affected: |
|
1309 | Affected: | |
1304 | self.dataOut.spc |
|
1310 | self.dataOut.spc | |
1305 | ''' |
|
1311 | ''' | |
1306 |
isConfig |
|
1312 | isConfig = False | |
1307 |
__profIndex |
|
1313 | __profIndex = 0 | |
1308 |
__initime |
|
1314 | __initime = None | |
1309 | __lastdatatime = None |
|
1315 | __lastdatatime = None | |
1310 |
__buffer |
|
1316 | __buffer = None | |
1311 |
noise |
|
1317 | noise = None | |
1312 |
__dataReady |
|
1318 | __dataReady = False | |
1313 |
n |
|
1319 | n = None | |
1314 |
__nch |
|
1320 | __nch = 0 | |
1315 |
__nHeis |
|
1321 | __nHeis = 0 | |
1316 |
removeDC |
|
1322 | removeDC = False | |
1317 |
ipp |
|
1323 | ipp = None | |
1318 |
lambda_ |
|
1324 | lambda_ = 0 | |
1319 |
|
1325 | |||
1320 | def __init__(self,**kwargs): |
|
1326 | def __init__(self, **kwargs): | |
1321 | Operation.__init__(self,**kwargs) |
|
1327 | Operation.__init__(self, **kwargs) | |
1322 |
|
1328 | |||
1323 |
def setup(self, dataOut, n |
|
1329 | def setup(self, dataOut, n=None, removeDC=False): | |
1324 | ''' |
|
1330 | ''' | |
1325 | n= Numero de PRF's de entrada |
|
1331 | n= Numero de PRF's de entrada | |
1326 | ''' |
|
1332 | ''' | |
1327 |
self.__initime |
|
1333 | self.__initime = None | |
1328 |
self.__lastdatatime |
|
1334 | self.__lastdatatime = 0 | |
1329 |
self.__dataReady |
|
1335 | self.__dataReady = False | |
1330 |
self.__buffer |
|
1336 | self.__buffer = 0 | |
1331 |
self.__profIndex |
|
1337 | self.__profIndex = 0 | |
1332 |
self.noise |
|
1338 | self.noise = None | |
1333 |
self.__nch |
|
1339 | self.__nch = dataOut.nChannels | |
1334 |
self.__nHeis |
|
1340 | self.__nHeis = dataOut.nHeights | |
1335 |
self.removeDC |
|
1341 | self.removeDC = removeDC | |
1336 |
self.lambda_ |
|
1342 | self.lambda_ = 3.0e8 / (9345.0e6) | |
1337 |
self.ippSec |
|
1343 | self.ippSec = dataOut.ippSeconds | |
1338 |
self.nCohInt |
|
1344 | self.nCohInt = dataOut.nCohInt | |
1339 | print("IPPseconds",dataOut.ippSeconds) |
|
1345 | print("IPPseconds", dataOut.ippSeconds) | |
1340 |
|
1346 | |||
1341 | print("ELVALOR DE n es:", n) |
|
1347 | print("ELVALOR DE n es:", n) | |
1342 | if n == None: |
|
1348 | if n == None: | |
1343 | raise ValueError("n should be specified.") |
|
1349 | raise ValueError("n should be specified.") | |
1344 |
|
1350 | |||
1345 | if n != None: |
|
1351 | if n != None: | |
1346 | if n<2: |
|
1352 | if n < 2: | |
1347 | raise ValueError("n should be greater than 2") |
|
1353 | raise ValueError("n should be greater than 2") | |
1348 |
|
1354 | |||
1349 |
self.n |
|
1355 | self.n = n | |
1350 | self.__nProf = n |
|
1356 | self.__nProf = n | |
1351 |
|
1357 | |||
1352 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1358 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
1353 | n, |
|
1359 | n, | |
1354 | dataOut.nHeights), |
|
1360 | dataOut.nHeights), | |
1355 | dtype='complex') |
|
1361 | dtype='complex') | |
1356 |
|
1362 | |||
1357 | def putData(self,data): |
|
1363 | def putData(self, data): | |
1358 | ''' |
|
1364 | ''' | |
1359 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1365 | Add a profile to he __buffer and increase in one the __profiel Index | |
1360 | ''' |
|
1366 | ''' | |
1361 | self.__buffer[:,self.__profIndex,:]= data |
|
1367 | self.__buffer[:, self.__profIndex, :] = data | |
1362 |
self.__profIndex |
|
1368 | self.__profIndex += 1 | |
1363 | return |
|
1369 | return | |
1364 |
|
1370 | |||
1365 | def pushData(self,dataOut): |
|
1371 | def pushData(self, dataOut): | |
1366 | ''' |
|
1372 | ''' | |
1367 | Return the PULSEPAIR and the profiles used in the operation |
|
1373 | Return the PULSEPAIR and the profiles used in the operation | |
1368 | Affected : self.__profileIndex |
|
1374 | Affected : self.__profileIndex | |
1369 | ''' |
|
1375 | ''' | |
1370 | #----------------- Remove DC----------------------------------- |
|
1376 | #----------------- Remove DC----------------------------------- | |
1371 | if self.removeDC==True: |
|
1377 | if self.removeDC == True: | |
1372 |
mean |
|
1378 | mean = numpy.mean(self.__buffer, 1) | |
1373 |
tmp |
|
1379 | tmp = mean.reshape(self.__nch, 1, self.__nHeis) | |
1374 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1380 | dc = numpy.tile(tmp, [1, self.__nProf, 1]) | |
1375 |
self.__buffer = self.__buffer - |
|
1381 | self.__buffer = self.__buffer - dc | |
1376 | #------------------Calculo de Potencia ------------------------ |
|
1382 | #------------------Calculo de Potencia ------------------------ | |
1377 |
pair0 |
|
1383 | pair0 = self.__buffer * numpy.conj(self.__buffer) | |
1378 |
pair0 |
|
1384 | pair0 = pair0.real | |
1379 |
lag_0 |
|
1385 | lag_0 = numpy.sum(pair0, 1) | |
1380 | #------------------Calculo de Ruido x canal-------------------- |
|
1386 | #------------------Calculo de Ruido x canal-------------------- | |
1381 |
self.noise |
|
1387 | self.noise = numpy.zeros(self.__nch) | |
1382 | for i in range(self.__nch): |
|
1388 | for i in range(self.__nch): | |
1383 |
daux |
|
1389 | daux = numpy.sort(pair0[i, :, :], axis=None) | |
1384 |
self.noise[i]=hildebrand_sekhon( |
|
1390 | self.noise[i] = hildebrand_sekhon(daux , self.nCohInt) | |
1385 |
|
1391 | |||
1386 |
self.noise |
|
1392 | self.noise = self.noise.reshape(self.__nch, 1) | |
1387 |
self.noise |
|
1393 | self.noise = numpy.tile(self.noise, [1, self.__nHeis]) | |
1388 |
noise_buffer |
|
1394 | noise_buffer = self.noise.reshape(self.__nch, 1, self.__nHeis) | |
1389 |
noise_buffer |
|
1395 | noise_buffer = numpy.tile(noise_buffer, [1, self.__nProf, 1]) | |
1390 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1396 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |
1391 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1397 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |
1392 | #-------------------- Power -------------------------------------------------- |
|
1398 | #-------------------- Power -------------------------------------------------- | |
1393 |
data_power |
|
1399 | data_power = lag_0 / (self.n * self.nCohInt) | |
1394 | #------------------ Senal --------------------------------------------------- |
|
1400 | #------------------ Senal --------------------------------------------------- | |
1395 |
data_intensity |
|
1401 | data_intensity = pair0 - noise_buffer | |
1396 |
data_intensity |
|
1402 | data_intensity = numpy.sum(data_intensity, axis=1) * (self.n * self.nCohInt) # *self.nCohInt) | |
1397 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1403 | # data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |
1398 | for i in range(self.__nch): |
|
1404 | for i in range(self.__nch): | |
1399 | for j in range(self.__nHeis): |
|
1405 | for j in range(self.__nHeis): | |
1400 |
if data_intensity[i][j] |
|
1406 | if data_intensity[i][j] < 0: | |
1401 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1407 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |
1402 |
|
1408 | |||
1403 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1409 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |
1404 |
pair1 |
|
1410 | pair1 = self.__buffer[:, :-1, :] * numpy.conjugate(self.__buffer[:, 1:, :]) | |
1405 |
lag_1 |
|
1411 | lag_1 = numpy.sum(pair1, 1) | |
1406 |
data_freq |
|
1412 | data_freq = (-1 / (2.0 * math.pi * self.ippSec * self.nCohInt)) * numpy.angle(lag_1) | |
1407 |
data_velocity |
|
1413 | data_velocity = (self.lambda_ / 2.0) * data_freq | |
1408 |
|
1414 | |||
1409 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1415 | #---------------- Potencia promedio estimada de la Senal----------- | |
1410 |
lag_0 |
|
1416 | lag_0 = lag_0 / self.n | |
1411 |
S |
|
1417 | S = lag_0 - self.noise | |
1412 |
|
1418 | |||
1413 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1419 | #---------------- Frecuencia Doppler promedio --------------------- | |
1414 |
lag_1 |
|
1420 | lag_1 = lag_1 / (self.n - 1) | |
1415 |
R1 |
|
1421 | R1 = numpy.abs(lag_1) | |
1416 |
|
1422 | |||
1417 | #---------------- Calculo del SNR---------------------------------- |
|
1423 | #---------------- Calculo del SNR---------------------------------- | |
1418 |
data_snrPP |
|
1424 | data_snrPP = S / self.noise | |
1419 | for i in range(self.__nch): |
|
1425 | for i in range(self.__nch): | |
1420 | for j in range(self.__nHeis): |
|
1426 | for j in range(self.__nHeis): | |
1421 |
if data_snrPP[i][j] |
|
1427 | if data_snrPP[i][j] < 1.e-20: | |
1422 | data_snrPP[i][j] = 1.e-20 |
|
1428 | data_snrPP[i][j] = 1.e-20 | |
1423 |
|
1429 | |||
1424 | #----------------- Calculo del ancho espectral ---------------------- |
|
1430 | #----------------- Calculo del ancho espectral ---------------------- | |
1425 |
L |
|
1431 | L = S / R1 | |
1426 |
L |
|
1432 | L = numpy.where(L < 0, 1, L) | |
1427 |
L |
|
1433 | L = numpy.log(L) | |
1428 |
tmp |
|
1434 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1429 |
data_specwidth |
|
1435 | data_specwidth = (self.lambda_ / (2 * math.sqrt(2) * math.pi * self.ippSec * self.nCohInt)) * tmp * numpy.sign(L) | |
1430 |
n |
|
1436 | n = self.__profIndex | |
1431 |
|
1437 | |||
1432 |
self.__buffer |
|
1438 | self.__buffer = numpy.zeros((self.__nch, self.__nProf, self.__nHeis), dtype='complex') | |
1433 | self.__profIndex = 0 |
|
1439 | self.__profIndex = 0 | |
1434 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1440 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, n | |
1435 |
|
1441 | |||
1436 |
|
1442 | |||
1437 | def pulsePairbyProfiles(self,dataOut): |
|
1443 | def pulsePairbyProfiles(self, dataOut): | |
1438 |
|
1444 | |||
1439 |
self.__dataReady |
|
1445 | self.__dataReady = False | |
1440 |
data_power |
|
1446 | data_power = None | |
1441 |
data_intensity |
|
1447 | data_intensity = None | |
1442 |
data_velocity |
|
1448 | data_velocity = None | |
1443 |
data_specwidth |
|
1449 | data_specwidth = None | |
1444 |
data_snrPP |
|
1450 | data_snrPP = None | |
1445 | self.putData(data=dataOut.data) |
|
1451 | self.putData(data=dataOut.data) | |
1446 |
if self.__profIndex |
|
1452 | if self.__profIndex == self.n: | |
1447 |
data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n |
|
1453 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, n = self.pushData(dataOut=dataOut) | |
1448 |
self.__dataReady |
|
1454 | self.__dataReady = True | |
1449 |
|
1455 | |||
1450 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth |
|
1456 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |
1451 |
|
1457 | |||
1452 |
|
1458 | |||
1453 |
def pulsePairOp(self, dataOut, datatime= |
|
1459 | def pulsePairOp(self, dataOut, datatime=None): | |
1454 |
|
1460 | |||
1455 | if self.__initime == None: |
|
1461 | if self.__initime == None: | |
1456 | self.__initime = datatime |
|
1462 | self.__initime = datatime | |
1457 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
1463 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |
1458 |
self.__lastdatatime |
|
1464 | self.__lastdatatime = datatime | |
1459 |
|
1465 | |||
1460 | if data_power is None: |
|
1466 | if data_power is None: | |
1461 | return None, None, None,None,None,None |
|
1467 | return None, None, None, None, None, None | |
1462 |
|
1468 | |||
1463 |
avgdatatime |
|
1469 | avgdatatime = self.__initime | |
1464 |
deltatime |
|
1470 | deltatime = datatime - self.__lastdatatime | |
1465 | self.__initime = datatime |
|
1471 | self.__initime = datatime | |
1466 |
|
1472 | |||
1467 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime |
|
1473 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |
1468 |
|
1474 | |||
1469 |
def run(self, dataOut,n |
|
1475 | def run(self, dataOut, n=None, removeDC=False, overlapping=False, **kwargs): | |
1470 |
|
1476 | |||
1471 | if not self.isConfig: |
|
1477 | if not self.isConfig: | |
1472 |
self.setup(dataOut |
|
1478 | self.setup(dataOut=dataOut, n=n , removeDC=removeDC , **kwargs) | |
1473 |
self.isConfig |
|
1479 | self.isConfig = True | |
1474 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1480 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
1475 |
dataOut.flagNoData |
|
1481 | dataOut.flagNoData = True | |
1476 |
|
1482 | |||
1477 | if self.__dataReady: |
|
1483 | if self.__dataReady: | |
1478 |
dataOut.nCohInt |
|
1484 | dataOut.nCohInt *= self.n | |
1479 |
dataOut.dataPP_POW |
|
1485 | dataOut.dataPP_POW = data_intensity # S | |
1480 |
dataOut.dataPP_POWER |
|
1486 | dataOut.dataPP_POWER = data_power # P | |
1481 |
dataOut.dataPP_DOP |
|
1487 | dataOut.dataPP_DOP = data_velocity | |
1482 |
dataOut.dataPP_SNR |
|
1488 | dataOut.dataPP_SNR = data_snrPP | |
1483 |
dataOut.dataPP_WIDTH |
|
1489 | dataOut.dataPP_WIDTH = data_specwidth | |
1484 |
dataOut.PRFbyAngle |
|
1490 | dataOut.PRFbyAngle = self.n # numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1485 |
dataOut.utctime |
|
1491 | dataOut.utctime = avgdatatime | |
1486 |
dataOut.flagNoData |
|
1492 | dataOut.flagNoData = False | |
1487 | return dataOut |
|
1493 | return dataOut | |
1488 |
|
1494 | |||
1489 |
|
1495 | |||
1490 |
|
1496 | |||
1491 | # import collections |
|
1497 | # import collections | |
1492 | # from scipy.stats import mode |
|
1498 | # from scipy.stats import mode | |
1493 | # |
|
1499 | # | |
1494 | # class Synchronize(Operation): |
|
1500 | # class Synchronize(Operation): | |
1495 | # |
|
1501 | # | |
1496 | # isConfig = False |
|
1502 | # isConfig = False | |
1497 | # __profIndex = 0 |
|
1503 | # __profIndex = 0 | |
1498 | # |
|
1504 | # | |
1499 | # def __init__(self, **kwargs): |
|
1505 | # def __init__(self, **kwargs): | |
1500 | # |
|
1506 | # | |
1501 | # Operation.__init__(self, **kwargs) |
|
1507 | # Operation.__init__(self, **kwargs) | |
1502 | # # self.isConfig = False |
|
1508 | # # self.isConfig = False | |
1503 | # self.__powBuffer = None |
|
1509 | # self.__powBuffer = None | |
1504 | # self.__startIndex = 0 |
|
1510 | # self.__startIndex = 0 | |
1505 | # self.__pulseFound = False |
|
1511 | # self.__pulseFound = False | |
1506 | # |
|
1512 | # | |
1507 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1513 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
1508 | # |
|
1514 | # | |
1509 | # #Read data |
|
1515 | # #Read data | |
1510 | # |
|
1516 | # | |
1511 | # powerdB = dataOut.getPower(channel = channel) |
|
1517 | # powerdB = dataOut.getPower(channel = channel) | |
1512 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1518 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
1513 | # |
|
1519 | # | |
1514 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1520 | # self.__powBuffer.extend(powerdB.flatten()) | |
1515 | # |
|
1521 | # | |
1516 | # dataArray = numpy.array(self.__powBuffer) |
|
1522 | # dataArray = numpy.array(self.__powBuffer) | |
1517 | # |
|
1523 | # | |
1518 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1524 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
1519 | # |
|
1525 | # | |
1520 | # maxValue = numpy.nanmax(filteredPower) |
|
1526 | # maxValue = numpy.nanmax(filteredPower) | |
1521 | # |
|
1527 | # | |
1522 | # if maxValue < noisedB + 10: |
|
1528 | # if maxValue < noisedB + 10: | |
1523 | # #No se encuentra ningun pulso de transmision |
|
1529 | # #No se encuentra ningun pulso de transmision | |
1524 | # return None |
|
1530 | # return None | |
1525 | # |
|
1531 | # | |
1526 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1532 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
1527 | # |
|
1533 | # | |
1528 | # if len(maxValuesIndex) < 2: |
|
1534 | # if len(maxValuesIndex) < 2: | |
1529 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1535 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
1530 | # return None |
|
1536 | # return None | |
1531 | # |
|
1537 | # | |
1532 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1538 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
1533 | # |
|
1539 | # | |
1534 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1540 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
1535 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1541 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
1536 | # |
|
1542 | # | |
1537 | # if len(pulseIndex) < 2: |
|
1543 | # if len(pulseIndex) < 2: | |
1538 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1544 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1539 | # return None |
|
1545 | # return None | |
1540 | # |
|
1546 | # | |
1541 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1547 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
1542 | # |
|
1548 | # | |
1543 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1549 | # #remover senales que se distancien menos de 10 unidades o muestras | |
1544 | # #(No deberian existir IPP menor a 10 unidades) |
|
1550 | # #(No deberian existir IPP menor a 10 unidades) | |
1545 | # |
|
1551 | # | |
1546 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1552 | # realIndex = numpy.where(spacing > 10 )[0] | |
1547 | # |
|
1553 | # | |
1548 | # if len(realIndex) < 2: |
|
1554 | # if len(realIndex) < 2: | |
1549 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1555 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1550 | # return None |
|
1556 | # return None | |
1551 | # |
|
1557 | # | |
1552 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1558 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
1553 | # realPulseIndex = pulseIndex[realIndex] |
|
1559 | # realPulseIndex = pulseIndex[realIndex] | |
1554 | # |
|
1560 | # | |
1555 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1561 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
1556 | # |
|
1562 | # | |
1557 | # print "IPP = %d samples" %period |
|
1563 | # print "IPP = %d samples" %period | |
1558 | # |
|
1564 | # | |
1559 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1565 | # self.__newNSamples = dataOut.nHeights #int(period) | |
1560 | # self.__startIndex = int(realPulseIndex[0]) |
|
1566 | # self.__startIndex = int(realPulseIndex[0]) | |
1561 | # |
|
1567 | # | |
1562 | # return 1 |
|
1568 | # return 1 | |
1563 | # |
|
1569 | # | |
1564 | # |
|
1570 | # | |
1565 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1571 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
1566 | # |
|
1572 | # | |
1567 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1573 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
1568 | # maxlen = buffer_size*nSamples) |
|
1574 | # maxlen = buffer_size*nSamples) | |
1569 | # |
|
1575 | # | |
1570 | # bufferList = [] |
|
1576 | # bufferList = [] | |
1571 | # |
|
1577 | # | |
1572 | # for i in range(nChannels): |
|
1578 | # for i in range(nChannels): | |
1573 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1579 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
1574 | # maxlen = buffer_size*nSamples) |
|
1580 | # maxlen = buffer_size*nSamples) | |
1575 | # |
|
1581 | # | |
1576 | # bufferList.append(bufferByChannel) |
|
1582 | # bufferList.append(bufferByChannel) | |
1577 | # |
|
1583 | # | |
1578 | # self.__nSamples = nSamples |
|
1584 | # self.__nSamples = nSamples | |
1579 | # self.__nChannels = nChannels |
|
1585 | # self.__nChannels = nChannels | |
1580 | # self.__bufferList = bufferList |
|
1586 | # self.__bufferList = bufferList | |
1581 | # |
|
1587 | # | |
1582 | # def run(self, dataOut, channel = 0): |
|
1588 | # def run(self, dataOut, channel = 0): | |
1583 | # |
|
1589 | # | |
1584 | # if not self.isConfig: |
|
1590 | # if not self.isConfig: | |
1585 | # nSamples = dataOut.nHeights |
|
1591 | # nSamples = dataOut.nHeights | |
1586 | # nChannels = dataOut.nChannels |
|
1592 | # nChannels = dataOut.nChannels | |
1587 | # self.setup(nSamples, nChannels) |
|
1593 | # self.setup(nSamples, nChannels) | |
1588 | # self.isConfig = True |
|
1594 | # self.isConfig = True | |
1589 | # |
|
1595 | # | |
1590 | # #Append new data to internal buffer |
|
1596 | # #Append new data to internal buffer | |
1591 | # for thisChannel in range(self.__nChannels): |
|
1597 | # for thisChannel in range(self.__nChannels): | |
1592 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1598 | # bufferByChannel = self.__bufferList[thisChannel] | |
1593 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1599 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
1594 | # |
|
1600 | # | |
1595 | # if self.__pulseFound: |
|
1601 | # if self.__pulseFound: | |
1596 | # self.__startIndex -= self.__nSamples |
|
1602 | # self.__startIndex -= self.__nSamples | |
1597 | # |
|
1603 | # | |
1598 | # #Finding Tx Pulse |
|
1604 | # #Finding Tx Pulse | |
1599 | # if not self.__pulseFound: |
|
1605 | # if not self.__pulseFound: | |
1600 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1606 | # indexFound = self.__findTxPulse(dataOut, channel) | |
1601 | # |
|
1607 | # | |
1602 | # if indexFound == None: |
|
1608 | # if indexFound == None: | |
1603 | # dataOut.flagNoData = True |
|
1609 | # dataOut.flagNoData = True | |
1604 | # return |
|
1610 | # return | |
1605 | # |
|
1611 | # | |
1606 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1612 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
1607 | # self.__pulseFound = True |
|
1613 | # self.__pulseFound = True | |
1608 | # self.__startIndex = indexFound |
|
1614 | # self.__startIndex = indexFound | |
1609 | # |
|
1615 | # | |
1610 | # #If pulse was found ... |
|
1616 | # #If pulse was found ... | |
1611 | # for thisChannel in range(self.__nChannels): |
|
1617 | # for thisChannel in range(self.__nChannels): | |
1612 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1618 | # bufferByChannel = self.__bufferList[thisChannel] | |
1613 | # #print self.__startIndex |
|
1619 | # #print self.__startIndex | |
1614 | # x = numpy.array(bufferByChannel) |
|
1620 | # x = numpy.array(bufferByChannel) | |
1615 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1621 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
1616 | # |
|
1622 | # | |
1617 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1623 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1618 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1624 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
1619 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1625 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
1620 | # |
|
1626 | # | |
1621 | # dataOut.data = self.__arrayBuffer |
|
1627 | # dataOut.data = self.__arrayBuffer | |
1622 | # |
|
1628 | # | |
1623 | # self.__startIndex += self.__newNSamples |
|
1629 | # self.__startIndex += self.__newNSamples | |
1624 | # |
|
1630 | # | |
1625 | # return |
|
1631 | # return |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
General Comments 0
You need to be logged in to leave comments.
Login now