@@ -1,725 +1,636 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: murco $ |
|
3 | $Author: murco $ | |
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import os, sys |
|
7 | import os, sys | |
8 | import copy |
|
8 | import copy | |
9 | import numpy |
|
9 | import numpy | |
10 | import datetime |
|
10 | import datetime | |
11 |
|
11 | |||
12 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | from jroheaderIO import SystemHeader, RadarControllerHeader | |
13 |
|
13 | |||
14 | def hildebrand_sekhon(data, navg): |
|
|||
15 | """ |
|
|||
16 | This method is for the objective determination of de noise level in Doppler spectra. This |
|
|||
17 | implementation technique is based on the fact that the standard deviation of the spectral |
|
|||
18 | densities is equal to the mean spectral density for white Gaussian noise |
|
|||
19 |
|
||||
20 | Inputs: |
|
|||
21 | Data : heights |
|
|||
22 | navg : numbers of averages |
|
|||
23 |
|
||||
24 | Return: |
|
|||
25 | -1 : any error |
|
|||
26 | anoise : noise's level |
|
|||
27 | """ |
|
|||
28 |
|
||||
29 | dataflat = data.copy().reshape(-1) |
|
|||
30 | dataflat.sort() |
|
|||
31 | npts = dataflat.size #numbers of points of the data |
|
|||
32 | npts_noise = 0.2*npts |
|
|||
33 |
|
||||
34 | if npts < 32: |
|
|||
35 | print "error in noise - requires at least 32 points" |
|
|||
36 | return -1.0 |
|
|||
37 |
|
||||
38 | dataflat2 = numpy.power(dataflat,2) |
|
|||
39 |
|
||||
40 | cs = numpy.cumsum(dataflat) |
|
|||
41 | cs2 = numpy.cumsum(dataflat2) |
|
|||
42 |
|
||||
43 | # data sorted in ascending order |
|
|||
44 | nmin = int((npts + 7.)/8) |
|
|||
45 |
|
||||
46 | for i in range(nmin, npts): |
|
|||
47 | s = cs[i] |
|
|||
48 | s2 = cs2[i] |
|
|||
49 | p = s / float(i); |
|
|||
50 | p2 = p**2; |
|
|||
51 | q = s2 / float(i) - p2; |
|
|||
52 | leftc = p2; |
|
|||
53 | rightc = q * float(navg); |
|
|||
54 | R2 = leftc/rightc |
|
|||
55 |
|
||||
56 | # Signal detect: R2 < 1 (R2 = leftc/rightc) |
|
|||
57 | if R2 < 1: |
|
|||
58 | npts_noise = i |
|
|||
59 | break |
|
|||
60 |
|
||||
61 |
|
||||
62 | anoise = numpy.average(dataflat[0:npts_noise]) |
|
|||
63 |
|
||||
64 | return anoise; |
|
|||
65 |
|
14 | |||
66 |
def |
|
15 | def hildebrand_sekhon(data, navg): | |
67 |
|
16 | |||
68 | data = data.copy() |
|
17 | data = data.copy() | |
69 |
|
18 | |||
70 | sortdata = numpy.sort(data) |
|
19 | sortdata = numpy.sort(data,axis=None) | |
71 | lenOfData = len(data) |
|
20 | lenOfData = len(sortdata) | |
72 | nums_min = lenOfData/10 |
|
21 | nums_min = lenOfData/10 | |
73 |
|
22 | |||
74 |
if (lenOfData/10) > |
|
23 | if (lenOfData/10) > 2: | |
75 | nums_min = lenOfData/10 |
|
24 | nums_min = lenOfData/10 | |
76 | else: |
|
25 | else: | |
77 |
nums_min = |
|
26 | nums_min = 2 | |
78 |
|
27 | |||
79 | rtest = 1.0 + 1.0/navg |
|
|||
80 |
|
||||
81 | sump = 0. |
|
28 | sump = 0. | |
82 |
|
29 | |||
83 | sumq = 0. |
|
30 | sumq = 0. | |
84 |
|
31 | |||
85 | j = 0 |
|
32 | j = 0 | |
86 |
|
33 | |||
87 | cont = 1 |
|
34 | cont = 1 | |
88 |
|
35 | |||
89 | while((cont==1)and(j<lenOfData)): |
|
36 | while((cont==1)and(j<lenOfData)): | |
90 |
|
37 | |||
91 | sump += sortdata[j] |
|
38 | sump += sortdata[j] | |
92 |
|
39 | |||
93 | sumq += sortdata[j]**2 |
|
40 | sumq += sortdata[j]**2 | |
94 |
|
41 | |||
95 | j += 1 |
|
42 | j += 1 | |
96 |
|
43 | |||
97 | if j > nums_min: |
|
44 | if j > nums_min: | |
98 | if ((sumq*j) <= (rtest*sump**2)): |
|
45 | rtest = float(j)/(j-1) + 1.0/navg | |
99 | lnoise = sump / j |
|
46 | if ((sumq*j) > (rtest*sump**2)): | |
100 | else: |
|
|||
101 | j = j - 1 |
|
47 | j = j - 1 | |
102 | sump = sump - sortdata[j] |
|
48 | sump = sump - sortdata[j] | |
103 | sumq = sumq - sortdata[j]**2 |
|
49 | sumq = sumq - sortdata[j]**2 | |
104 | cont = 0 |
|
50 | cont = 0 | |
105 |
|
51 | |||
106 | if j == nums_min: |
|
52 | lnoise = sump /j | |
107 | lnoise = sump /j |
|
53 | stdv = numpy.sqrt((sumq - lnoise**2)/(j - 1)) | |
108 |
|
||||
109 | return lnoise |
|
54 | return lnoise | |
110 |
|
55 | |||
111 | class JROData: |
|
56 | class JROData: | |
112 |
|
57 | |||
113 | # m_BasicHeader = BasicHeader() |
|
58 | # m_BasicHeader = BasicHeader() | |
114 | # m_ProcessingHeader = ProcessingHeader() |
|
59 | # m_ProcessingHeader = ProcessingHeader() | |
115 |
|
60 | |||
116 | systemHeaderObj = SystemHeader() |
|
61 | systemHeaderObj = SystemHeader() | |
117 |
|
62 | |||
118 | radarControllerHeaderObj = RadarControllerHeader() |
|
63 | radarControllerHeaderObj = RadarControllerHeader() | |
119 |
|
64 | |||
120 | # data = None |
|
65 | # data = None | |
121 |
|
66 | |||
122 | type = None |
|
67 | type = None | |
123 |
|
68 | |||
124 | dtype = None |
|
69 | dtype = None | |
125 |
|
70 | |||
126 | # nChannels = None |
|
71 | # nChannels = None | |
127 |
|
72 | |||
128 | # nHeights = None |
|
73 | # nHeights = None | |
129 |
|
74 | |||
130 | nProfiles = None |
|
75 | nProfiles = None | |
131 |
|
76 | |||
132 | heightList = None |
|
77 | heightList = None | |
133 |
|
78 | |||
134 | channelList = None |
|
79 | channelList = None | |
135 |
|
80 | |||
136 | flagNoData = True |
|
81 | flagNoData = True | |
137 |
|
82 | |||
138 | flagTimeBlock = False |
|
83 | flagTimeBlock = False | |
139 |
|
84 | |||
140 | useLocalTime = False |
|
85 | useLocalTime = False | |
141 |
|
86 | |||
142 | utctime = None |
|
87 | utctime = None | |
143 |
|
88 | |||
144 | timeZone = None |
|
89 | timeZone = None | |
145 |
|
90 | |||
146 | dstFlag = None |
|
91 | dstFlag = None | |
147 |
|
92 | |||
148 | errorCount = None |
|
93 | errorCount = None | |
149 |
|
94 | |||
150 | blocksize = None |
|
95 | blocksize = None | |
151 |
|
96 | |||
152 | nCode = None |
|
97 | nCode = None | |
153 |
|
98 | |||
154 | nBaud = None |
|
99 | nBaud = None | |
155 |
|
100 | |||
156 | code = None |
|
101 | code = None | |
157 |
|
102 | |||
158 | flagDecodeData = False #asumo q la data no esta decodificada |
|
103 | flagDecodeData = False #asumo q la data no esta decodificada | |
159 |
|
104 | |||
160 | flagDeflipData = False #asumo q la data no esta sin flip |
|
105 | flagDeflipData = False #asumo q la data no esta sin flip | |
161 |
|
106 | |||
162 | flagShiftFFT = False |
|
107 | flagShiftFFT = False | |
163 |
|
108 | |||
164 | ippSeconds = None |
|
109 | ippSeconds = None | |
165 |
|
110 | |||
166 | timeInterval = None |
|
111 | timeInterval = None | |
167 |
|
112 | |||
168 | nCohInt = None |
|
113 | nCohInt = None | |
169 |
|
114 | |||
170 | noise = None |
|
115 | noise = None | |
171 |
|
116 | |||
172 | windowOfFilter = 1 |
|
117 | windowOfFilter = 1 | |
173 |
|
118 | |||
174 | #Speed of ligth |
|
119 | #Speed of ligth | |
175 | C = 3e8 |
|
120 | C = 3e8 | |
176 |
|
121 | |||
177 | frequency = 49.92e6 |
|
122 | frequency = 49.92e6 | |
178 |
|
123 | |||
179 | realtime = False |
|
124 | realtime = False | |
180 |
|
125 | |||
181 | def __init__(self): |
|
126 | def __init__(self): | |
182 |
|
127 | |||
183 | raise ValueError, "This class has not been implemented" |
|
128 | raise ValueError, "This class has not been implemented" | |
184 |
|
129 | |||
185 | def copy(self, inputObj=None): |
|
130 | def copy(self, inputObj=None): | |
186 |
|
131 | |||
187 | if inputObj == None: |
|
132 | if inputObj == None: | |
188 | return copy.deepcopy(self) |
|
133 | return copy.deepcopy(self) | |
189 |
|
134 | |||
190 | for key in inputObj.__dict__.keys(): |
|
135 | for key in inputObj.__dict__.keys(): | |
191 | self.__dict__[key] = inputObj.__dict__[key] |
|
136 | self.__dict__[key] = inputObj.__dict__[key] | |
192 |
|
137 | |||
193 | def deepcopy(self): |
|
138 | def deepcopy(self): | |
194 |
|
139 | |||
195 | return copy.deepcopy(self) |
|
140 | return copy.deepcopy(self) | |
196 |
|
141 | |||
197 | def isEmpty(self): |
|
142 | def isEmpty(self): | |
198 |
|
143 | |||
199 | return self.flagNoData |
|
144 | return self.flagNoData | |
200 |
|
145 | |||
201 | def getNoise(self): |
|
146 | def getNoise(self): | |
202 |
|
147 | |||
203 | raise ValueError, "Not implemented" |
|
148 | raise ValueError, "Not implemented" | |
204 |
|
149 | |||
205 | def getNChannels(self): |
|
150 | def getNChannels(self): | |
206 |
|
151 | |||
207 | return len(self.channelList) |
|
152 | return len(self.channelList) | |
208 |
|
153 | |||
209 | def getChannelIndexList(self): |
|
154 | def getChannelIndexList(self): | |
210 |
|
155 | |||
211 | return range(self.nChannels) |
|
156 | return range(self.nChannels) | |
212 |
|
157 | |||
213 | def getNHeights(self): |
|
158 | def getNHeights(self): | |
214 |
|
159 | |||
215 | return len(self.heightList) |
|
160 | return len(self.heightList) | |
216 |
|
161 | |||
217 | def getHeiRange(self, extrapoints=0): |
|
162 | def getHeiRange(self, extrapoints=0): | |
218 |
|
163 | |||
219 | heis = self.heightList |
|
164 | heis = self.heightList | |
220 | # deltah = self.heightList[1] - self.heightList[0] |
|
165 | # deltah = self.heightList[1] - self.heightList[0] | |
221 | # |
|
166 | # | |
222 | # heis.append(self.heightList[-1]) |
|
167 | # heis.append(self.heightList[-1]) | |
223 |
|
168 | |||
224 | return heis |
|
169 | return heis | |
225 |
|
170 | |||
226 | def getltctime(self): |
|
171 | def getltctime(self): | |
227 |
|
172 | |||
228 | if self.useLocalTime: |
|
173 | if self.useLocalTime: | |
229 | return self.utctime - self.timeZone*60 |
|
174 | return self.utctime - self.timeZone*60 | |
230 |
|
175 | |||
231 | return self.utctime |
|
176 | return self.utctime | |
232 |
|
177 | |||
233 | def getDatatime(self): |
|
178 | def getDatatime(self): | |
234 |
|
179 | |||
235 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
180 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) | |
236 | return datatime |
|
181 | return datatime | |
237 |
|
182 | |||
238 | def getTimeRange(self): |
|
183 | def getTimeRange(self): | |
239 |
|
184 | |||
240 | datatime = [] |
|
185 | datatime = [] | |
241 |
|
186 | |||
242 | datatime.append(self.ltctime) |
|
187 | datatime.append(self.ltctime) | |
243 | datatime.append(self.ltctime + self.timeInterval) |
|
188 | datatime.append(self.ltctime + self.timeInterval) | |
244 |
|
189 | |||
245 | datatime = numpy.array(datatime) |
|
190 | datatime = numpy.array(datatime) | |
246 |
|
191 | |||
247 | return datatime |
|
192 | return datatime | |
248 |
|
193 | |||
249 | def getFmax(self): |
|
194 | def getFmax(self): | |
250 |
|
195 | |||
251 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
196 | PRF = 1./(self.ippSeconds * self.nCohInt) | |
252 |
|
197 | |||
253 | fmax = PRF/2. |
|
198 | fmax = PRF/2. | |
254 |
|
199 | |||
255 | return fmax |
|
200 | return fmax | |
256 |
|
201 | |||
257 | def getVmax(self): |
|
202 | def getVmax(self): | |
258 |
|
203 | |||
259 | _lambda = self.C/self.frequency |
|
204 | _lambda = self.C/self.frequency | |
260 |
|
205 | |||
261 | vmax = self.getFmax() * _lambda |
|
206 | vmax = self.getFmax() * _lambda | |
262 |
|
207 | |||
263 | return vmax |
|
208 | return vmax | |
264 |
|
209 | |||
265 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
210 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
266 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
211 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
267 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
212 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
268 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
213 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
269 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
214 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
270 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
215 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
271 |
|
216 | |||
272 | class Voltage(JROData): |
|
217 | class Voltage(JROData): | |
273 |
|
218 | |||
274 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
219 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
275 | data = None |
|
220 | data = None | |
276 |
|
221 | |||
277 | def __init__(self): |
|
222 | def __init__(self): | |
278 | ''' |
|
223 | ''' | |
279 | Constructor |
|
224 | Constructor | |
280 | ''' |
|
225 | ''' | |
281 |
|
226 | |||
282 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
227 | self.radarControllerHeaderObj = RadarControllerHeader() | |
283 |
|
228 | |||
284 | self.systemHeaderObj = SystemHeader() |
|
229 | self.systemHeaderObj = SystemHeader() | |
285 |
|
230 | |||
286 | self.type = "Voltage" |
|
231 | self.type = "Voltage" | |
287 |
|
232 | |||
288 | self.data = None |
|
233 | self.data = None | |
289 |
|
234 | |||
290 | self.dtype = None |
|
235 | self.dtype = None | |
291 |
|
236 | |||
292 | # self.nChannels = 0 |
|
237 | # self.nChannels = 0 | |
293 |
|
238 | |||
294 | # self.nHeights = 0 |
|
239 | # self.nHeights = 0 | |
295 |
|
240 | |||
296 | self.nProfiles = None |
|
241 | self.nProfiles = None | |
297 |
|
242 | |||
298 | self.heightList = None |
|
243 | self.heightList = None | |
299 |
|
244 | |||
300 | self.channelList = None |
|
245 | self.channelList = None | |
301 |
|
246 | |||
302 | # self.channelIndexList = None |
|
247 | # self.channelIndexList = None | |
303 |
|
248 | |||
304 | self.flagNoData = True |
|
249 | self.flagNoData = True | |
305 |
|
250 | |||
306 | self.flagTimeBlock = False |
|
251 | self.flagTimeBlock = False | |
307 |
|
252 | |||
308 | self.utctime = None |
|
253 | self.utctime = None | |
309 |
|
254 | |||
310 | self.timeZone = None |
|
255 | self.timeZone = None | |
311 |
|
256 | |||
312 | self.dstFlag = None |
|
257 | self.dstFlag = None | |
313 |
|
258 | |||
314 | self.errorCount = None |
|
259 | self.errorCount = None | |
315 |
|
260 | |||
316 | self.nCohInt = None |
|
261 | self.nCohInt = None | |
317 |
|
262 | |||
318 | self.blocksize = None |
|
263 | self.blocksize = None | |
319 |
|
264 | |||
320 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
265 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
321 |
|
266 | |||
322 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
267 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
323 |
|
268 | |||
324 | self.flagShiftFFT = False |
|
269 | self.flagShiftFFT = False | |
325 |
|
270 | |||
326 |
|
271 | |||
327 | def getNoisebyHildebrand(self): |
|
272 | def getNoisebyHildebrand(self): | |
328 | """ |
|
273 | """ | |
329 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
274 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
330 |
|
275 | |||
331 | Return: |
|
276 | Return: | |
332 | noiselevel |
|
277 | noiselevel | |
333 | """ |
|
278 | """ | |
334 |
|
279 | |||
335 | for channel in range(self.nChannels): |
|
280 | for channel in range(self.nChannels): | |
336 | daux = self.data_spc[channel,:,:] |
|
281 | daux = self.data_spc[channel,:,:] | |
337 | self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt) |
|
282 | self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt) | |
338 |
|
283 | |||
339 | return self.noise |
|
284 | return self.noise | |
340 |
|
285 | |||
341 | def getNoise(self, type = 1): |
|
286 | def getNoise(self, type = 1): | |
342 |
|
287 | |||
343 | self.noise = numpy.zeros(self.nChannels) |
|
288 | self.noise = numpy.zeros(self.nChannels) | |
344 |
|
289 | |||
345 | if type == 1: |
|
290 | if type == 1: | |
346 | noise = self.getNoisebyHildebrand() |
|
291 | noise = self.getNoisebyHildebrand() | |
347 |
|
292 | |||
348 | return 10*numpy.log10(noise) |
|
293 | return 10*numpy.log10(noise) | |
349 |
|
294 | |||
350 | class Spectra(JROData): |
|
295 | class Spectra(JROData): | |
351 |
|
296 | |||
352 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
297 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
353 | data_spc = None |
|
298 | data_spc = None | |
354 |
|
299 | |||
355 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
300 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) | |
356 | data_cspc = None |
|
301 | data_cspc = None | |
357 |
|
302 | |||
358 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
303 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
359 | data_dc = None |
|
304 | data_dc = None | |
360 |
|
305 | |||
361 | nFFTPoints = None |
|
306 | nFFTPoints = None | |
362 |
|
307 | |||
363 | nPairs = None |
|
308 | nPairs = None | |
364 |
|
309 | |||
365 | pairsList = None |
|
310 | pairsList = None | |
366 |
|
311 | |||
367 | nIncohInt = None |
|
312 | nIncohInt = None | |
368 |
|
313 | |||
369 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
314 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia | |
370 |
|
315 | |||
371 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
316 | nCohInt = None #se requiere para determinar el valor de timeInterval | |
372 |
|
317 | |||
373 | ippFactor = None |
|
318 | ippFactor = None | |
374 |
|
319 | |||
375 | def __init__(self): |
|
320 | def __init__(self): | |
376 | ''' |
|
321 | ''' | |
377 | Constructor |
|
322 | Constructor | |
378 | ''' |
|
323 | ''' | |
379 |
|
324 | |||
380 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
325 | self.radarControllerHeaderObj = RadarControllerHeader() | |
381 |
|
326 | |||
382 | self.systemHeaderObj = SystemHeader() |
|
327 | self.systemHeaderObj = SystemHeader() | |
383 |
|
328 | |||
384 | self.type = "Spectra" |
|
329 | self.type = "Spectra" | |
385 |
|
330 | |||
386 | # self.data = None |
|
331 | # self.data = None | |
387 |
|
332 | |||
388 | self.dtype = None |
|
333 | self.dtype = None | |
389 |
|
334 | |||
390 | # self.nChannels = 0 |
|
335 | # self.nChannels = 0 | |
391 |
|
336 | |||
392 | # self.nHeights = 0 |
|
337 | # self.nHeights = 0 | |
393 |
|
338 | |||
394 | self.nProfiles = None |
|
339 | self.nProfiles = None | |
395 |
|
340 | |||
396 | self.heightList = None |
|
341 | self.heightList = None | |
397 |
|
342 | |||
398 | self.channelList = None |
|
343 | self.channelList = None | |
399 |
|
344 | |||
400 | # self.channelIndexList = None |
|
345 | # self.channelIndexList = None | |
401 |
|
346 | |||
402 | self.flagNoData = True |
|
347 | self.flagNoData = True | |
403 |
|
348 | |||
404 | self.flagTimeBlock = False |
|
349 | self.flagTimeBlock = False | |
405 |
|
350 | |||
406 | self.utctime = None |
|
351 | self.utctime = None | |
407 |
|
352 | |||
408 | self.nCohInt = None |
|
353 | self.nCohInt = None | |
409 |
|
354 | |||
410 | self.nIncohInt = None |
|
355 | self.nIncohInt = None | |
411 |
|
356 | |||
412 | self.blocksize = None |
|
357 | self.blocksize = None | |
413 |
|
358 | |||
414 | self.nFFTPoints = None |
|
359 | self.nFFTPoints = None | |
415 |
|
360 | |||
416 | self.wavelength = None |
|
361 | self.wavelength = None | |
417 |
|
362 | |||
418 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
363 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
419 |
|
364 | |||
420 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
365 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
421 |
|
366 | |||
422 | self.flagShiftFFT = False |
|
367 | self.flagShiftFFT = False | |
423 |
|
368 | |||
424 | self.ippFactor = 1 |
|
369 | self.ippFactor = 1 | |
|
370 | ||||
|
371 | self.noise = None | |||
425 |
|
372 | |||
426 | def getNoisebyHildebrand(self): |
|
373 | def getNoisebyHildebrand(self): | |
427 | """ |
|
374 | """ | |
428 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
375 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
429 |
|
376 | |||
430 | Return: |
|
377 | Return: | |
431 | noiselevel |
|
378 | noiselevel | |
432 | """ |
|
379 | """ | |
433 |
|
380 | |||
434 | for channel in range(self.nChannels): |
|
381 | for channel in range(self.nChannels): | |
435 | daux = self.data_spc[channel,:,:] |
|
382 | daux = self.data_spc[channel,:,:] | |
436 | self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
383 | self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
437 |
|
384 | |||
438 | return self.noise |
|
385 | return self.noise | |
439 |
|
||||
440 | def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1): |
|
|||
441 | """ |
|
|||
442 | Determina el ruido del canal utilizando la ventana indicada con las coordenadas: |
|
|||
443 | (heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx) |
|
|||
444 |
|
||||
445 | Inputs: |
|
|||
446 | heiIndexMin: Limite inferior del eje de alturas |
|
|||
447 | heiIndexMax: Limite superior del eje de alturas |
|
|||
448 | freqIndexMin: Limite inferior del eje de frecuencia |
|
|||
449 | freqIndexMax: Limite supoerior del eje de frecuencia |
|
|||
450 | """ |
|
|||
451 |
|
||||
452 | data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax] |
|
|||
453 |
|
386 | |||
454 | for channel in range(self.nChannels): |
|
|||
455 | daux = data[channel,:,:] |
|
|||
456 | self.noise[channel] = numpy.average(daux) |
|
|||
457 |
|
||||
458 | return self.noise |
|
|||
459 |
|
||||
460 | def getNoisebySort(self): |
|
|||
461 |
|
||||
462 | for channel in range(self.nChannels): |
|
|||
463 | daux = self.data_spc[channel,:,:] |
|
|||
464 | self.noise[channel] = sorting_bruce(daux, self.nIncohInt) |
|
|||
465 |
|
||||
466 | return self.noise |
|
|||
467 |
|
||||
468 | def getNoise(self, type = 1): |
|
387 | def getNoise(self, type = 1): | |
469 | if self.noise == None: |
|
388 | if self.noise == None: | |
470 | self.noise = numpy.zeros(self.nChannels) |
|
389 | self.noise = numpy.zeros(self.nChannels) | |
471 |
|
390 | self.noise = self.getNoisebyHildebrand() | ||
472 | if type == 1: |
|
391 | ||
473 | self.noise = self.getNoisebyHildebrand() |
|
|||
474 |
|
||||
475 | if type == 2: |
|
|||
476 | self.noise = self.getNoisebySort() |
|
|||
477 |
|
||||
478 | if type == 3: |
|
|||
479 | self.noise = self.getNoisebyWindow() |
|
|||
480 |
|
||||
481 | return self.noise |
|
392 | return self.noise | |
482 |
|
393 | |||
483 |
|
394 | |||
484 | def getFreqRange(self, extrapoints=0): |
|
395 | def getFreqRange(self, extrapoints=0): | |
485 |
|
396 | |||
486 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
397 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) | |
487 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
398 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
488 |
|
399 | |||
489 | return freqrange |
|
400 | return freqrange | |
490 |
|
401 | |||
491 | def getVelRange(self, extrapoints=0): |
|
402 | def getVelRange(self, extrapoints=0): | |
492 |
|
403 | |||
493 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
404 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) | |
494 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 |
|
405 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 | |
495 |
|
406 | |||
496 | return velrange |
|
407 | return velrange | |
497 |
|
408 | |||
498 | def getNPairs(self): |
|
409 | def getNPairs(self): | |
499 |
|
410 | |||
500 | return len(self.pairsList) |
|
411 | return len(self.pairsList) | |
501 |
|
412 | |||
502 | def getPairsIndexList(self): |
|
413 | def getPairsIndexList(self): | |
503 |
|
414 | |||
504 | return range(self.nPairs) |
|
415 | return range(self.nPairs) | |
505 |
|
416 | |||
506 | def getNormFactor(self): |
|
417 | def getNormFactor(self): | |
507 | pwcode = 1 |
|
418 | pwcode = 1 | |
508 | if self.flagDecodeData: |
|
419 | if self.flagDecodeData: | |
509 | pwcode = numpy.sum(self.code[0]**2) |
|
420 | pwcode = numpy.sum(self.code[0]**2) | |
510 | normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode |
|
421 | normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode | |
511 |
|
422 | |||
512 | return normFactor |
|
423 | return normFactor | |
513 |
|
424 | |||
514 | def getFlagCspc(self): |
|
425 | def getFlagCspc(self): | |
515 |
|
426 | |||
516 | if self.data_cspc == None: |
|
427 | if self.data_cspc == None: | |
517 | return True |
|
428 | return True | |
518 |
|
429 | |||
519 | return False |
|
430 | return False | |
520 |
|
431 | |||
521 | def getFlagDc(self): |
|
432 | def getFlagDc(self): | |
522 |
|
433 | |||
523 | if self.data_dc == None: |
|
434 | if self.data_dc == None: | |
524 | return True |
|
435 | return True | |
525 |
|
436 | |||
526 | return False |
|
437 | return False | |
527 |
|
438 | |||
528 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") |
|
439 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") | |
529 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") |
|
440 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") | |
530 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
441 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") | |
531 | flag_cspc = property(getFlagCspc) |
|
442 | flag_cspc = property(getFlagCspc) | |
532 | flag_dc = property(getFlagDc) |
|
443 | flag_dc = property(getFlagDc) | |
533 |
|
444 | |||
534 | class SpectraHeis(JROData): |
|
445 | class SpectraHeis(JROData): | |
535 |
|
446 | |||
536 | data_spc = None |
|
447 | data_spc = None | |
537 |
|
448 | |||
538 | data_cspc = None |
|
449 | data_cspc = None | |
539 |
|
450 | |||
540 | data_dc = None |
|
451 | data_dc = None | |
541 |
|
452 | |||
542 | nFFTPoints = None |
|
453 | nFFTPoints = None | |
543 |
|
454 | |||
544 | nPairs = None |
|
455 | nPairs = None | |
545 |
|
456 | |||
546 | pairsList = None |
|
457 | pairsList = None | |
547 |
|
458 | |||
548 | nIncohInt = None |
|
459 | nIncohInt = None | |
549 |
|
460 | |||
550 | def __init__(self): |
|
461 | def __init__(self): | |
551 |
|
462 | |||
552 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
463 | self.radarControllerHeaderObj = RadarControllerHeader() | |
553 |
|
464 | |||
554 | self.systemHeaderObj = SystemHeader() |
|
465 | self.systemHeaderObj = SystemHeader() | |
555 |
|
466 | |||
556 | self.type = "SpectraHeis" |
|
467 | self.type = "SpectraHeis" | |
557 |
|
468 | |||
558 | self.dtype = None |
|
469 | self.dtype = None | |
559 |
|
470 | |||
560 | # self.nChannels = 0 |
|
471 | # self.nChannels = 0 | |
561 |
|
472 | |||
562 | # self.nHeights = 0 |
|
473 | # self.nHeights = 0 | |
563 |
|
474 | |||
564 | self.nProfiles = None |
|
475 | self.nProfiles = None | |
565 |
|
476 | |||
566 | self.heightList = None |
|
477 | self.heightList = None | |
567 |
|
478 | |||
568 | self.channelList = None |
|
479 | self.channelList = None | |
569 |
|
480 | |||
570 | # self.channelIndexList = None |
|
481 | # self.channelIndexList = None | |
571 |
|
482 | |||
572 | self.flagNoData = True |
|
483 | self.flagNoData = True | |
573 |
|
484 | |||
574 | self.flagTimeBlock = False |
|
485 | self.flagTimeBlock = False | |
575 |
|
486 | |||
576 | self.nPairs = 0 |
|
487 | self.nPairs = 0 | |
577 |
|
488 | |||
578 | self.utctime = None |
|
489 | self.utctime = None | |
579 |
|
490 | |||
580 | self.blocksize = None |
|
491 | self.blocksize = None | |
581 |
|
492 | |||
582 | class Fits: |
|
493 | class Fits: | |
583 |
|
494 | |||
584 | heightList = None |
|
495 | heightList = None | |
585 |
|
496 | |||
586 | channelList = None |
|
497 | channelList = None | |
587 |
|
498 | |||
588 | flagNoData = True |
|
499 | flagNoData = True | |
589 |
|
500 | |||
590 | flagTimeBlock = False |
|
501 | flagTimeBlock = False | |
591 |
|
502 | |||
592 | useLocalTime = False |
|
503 | useLocalTime = False | |
593 |
|
504 | |||
594 | utctime = None |
|
505 | utctime = None | |
595 |
|
506 | |||
596 | timeZone = None |
|
507 | timeZone = None | |
597 |
|
508 | |||
598 | ippSeconds = None |
|
509 | ippSeconds = None | |
599 |
|
510 | |||
600 | timeInterval = None |
|
511 | timeInterval = None | |
601 |
|
512 | |||
602 | nCohInt = None |
|
513 | nCohInt = None | |
603 |
|
514 | |||
604 | nIncohInt = None |
|
515 | nIncohInt = None | |
605 |
|
516 | |||
606 | noise = None |
|
517 | noise = None | |
607 |
|
518 | |||
608 | windowOfFilter = 1 |
|
519 | windowOfFilter = 1 | |
609 |
|
520 | |||
610 | #Speed of ligth |
|
521 | #Speed of ligth | |
611 | C = 3e8 |
|
522 | C = 3e8 | |
612 |
|
523 | |||
613 | frequency = 49.92e6 |
|
524 | frequency = 49.92e6 | |
614 |
|
525 | |||
615 | realtime = False |
|
526 | realtime = False | |
616 |
|
527 | |||
617 |
|
528 | |||
618 | def __init__(self): |
|
529 | def __init__(self): | |
619 |
|
530 | |||
620 | self.type = "Fits" |
|
531 | self.type = "Fits" | |
621 |
|
532 | |||
622 | self.nProfiles = None |
|
533 | self.nProfiles = None | |
623 |
|
534 | |||
624 | self.heightList = None |
|
535 | self.heightList = None | |
625 |
|
536 | |||
626 | self.channelList = None |
|
537 | self.channelList = None | |
627 |
|
538 | |||
628 | # self.channelIndexList = None |
|
539 | # self.channelIndexList = None | |
629 |
|
540 | |||
630 | self.flagNoData = True |
|
541 | self.flagNoData = True | |
631 |
|
542 | |||
632 | self.utctime = None |
|
543 | self.utctime = None | |
633 |
|
544 | |||
634 | self.nCohInt = None |
|
545 | self.nCohInt = None | |
635 |
|
546 | |||
636 | self.nIncohInt = None |
|
547 | self.nIncohInt = None | |
637 |
|
548 | |||
638 | self.useLocalTime = True |
|
549 | self.useLocalTime = True | |
639 |
|
550 | |||
640 | # self.utctime = None |
|
551 | # self.utctime = None | |
641 | # self.timeZone = None |
|
552 | # self.timeZone = None | |
642 | # self.ltctime = None |
|
553 | # self.ltctime = None | |
643 | # self.timeInterval = None |
|
554 | # self.timeInterval = None | |
644 | # self.header = None |
|
555 | # self.header = None | |
645 | # self.data_header = None |
|
556 | # self.data_header = None | |
646 | # self.data = None |
|
557 | # self.data = None | |
647 | # self.datatime = None |
|
558 | # self.datatime = None | |
648 | # self.flagNoData = False |
|
559 | # self.flagNoData = False | |
649 | # self.expName = '' |
|
560 | # self.expName = '' | |
650 | # self.nChannels = None |
|
561 | # self.nChannels = None | |
651 | # self.nSamples = None |
|
562 | # self.nSamples = None | |
652 | # self.dataBlocksPerFile = None |
|
563 | # self.dataBlocksPerFile = None | |
653 | # self.comments = '' |
|
564 | # self.comments = '' | |
654 | # |
|
565 | # | |
655 |
|
566 | |||
656 |
|
567 | |||
657 | def getltctime(self): |
|
568 | def getltctime(self): | |
658 |
|
569 | |||
659 | if self.useLocalTime: |
|
570 | if self.useLocalTime: | |
660 | return self.utctime - self.timeZone*60 |
|
571 | return self.utctime - self.timeZone*60 | |
661 |
|
572 | |||
662 | return self.utctime |
|
573 | return self.utctime | |
663 |
|
574 | |||
664 | def getDatatime(self): |
|
575 | def getDatatime(self): | |
665 |
|
576 | |||
666 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
577 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) | |
667 | return datatime |
|
578 | return datatime | |
668 |
|
579 | |||
669 | def getTimeRange(self): |
|
580 | def getTimeRange(self): | |
670 |
|
581 | |||
671 | datatime = [] |
|
582 | datatime = [] | |
672 |
|
583 | |||
673 | datatime.append(self.ltctime) |
|
584 | datatime.append(self.ltctime) | |
674 | datatime.append(self.ltctime + self.timeInterval) |
|
585 | datatime.append(self.ltctime + self.timeInterval) | |
675 |
|
586 | |||
676 | datatime = numpy.array(datatime) |
|
587 | datatime = numpy.array(datatime) | |
677 |
|
588 | |||
678 | return datatime |
|
589 | return datatime | |
679 |
|
590 | |||
680 | def getHeiRange(self): |
|
591 | def getHeiRange(self): | |
681 |
|
592 | |||
682 | heis = self.heightList |
|
593 | heis = self.heightList | |
683 |
|
594 | |||
684 | return heis |
|
595 | return heis | |
685 |
|
596 | |||
686 | def isEmpty(self): |
|
597 | def isEmpty(self): | |
687 |
|
598 | |||
688 | return self.flagNoData |
|
599 | return self.flagNoData | |
689 |
|
600 | |||
690 | def getNHeights(self): |
|
601 | def getNHeights(self): | |
691 |
|
602 | |||
692 | return len(self.heightList) |
|
603 | return len(self.heightList) | |
693 |
|
604 | |||
694 | def getNChannels(self): |
|
605 | def getNChannels(self): | |
695 |
|
606 | |||
696 | return len(self.channelList) |
|
607 | return len(self.channelList) | |
697 |
|
608 | |||
698 | def getChannelIndexList(self): |
|
609 | def getChannelIndexList(self): | |
699 |
|
610 | |||
700 | return range(self.nChannels) |
|
611 | return range(self.nChannels) | |
701 |
|
612 | |||
702 | def getNoise(self, type = 1): |
|
613 | def getNoise(self, type = 1): | |
703 |
|
614 | |||
704 | self.noise = numpy.zeros(self.nChannels) |
|
615 | self.noise = numpy.zeros(self.nChannels) | |
705 |
|
616 | |||
706 | if type == 1: |
|
617 | if type == 1: | |
707 | noise = self.getNoisebyHildebrand() |
|
618 | noise = self.getNoisebyHildebrand() | |
708 |
|
619 | |||
709 | if type == 2: |
|
620 | if type == 2: | |
710 | noise = self.getNoisebySort() |
|
621 | noise = self.getNoisebySort() | |
711 |
|
622 | |||
712 | if type == 3: |
|
623 | if type == 3: | |
713 | noise = self.getNoisebyWindow() |
|
624 | noise = self.getNoisebyWindow() | |
714 |
|
625 | |||
715 | return noise |
|
626 | return noise | |
716 |
|
627 | |||
717 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
628 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
718 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
629 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
719 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
630 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
720 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
631 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
721 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
632 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
722 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
633 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
723 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
634 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
724 |
|
635 | |||
725 | ltctime = property(getltctime, "I'm the 'ltctime' property") No newline at end of file |
|
636 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
@@ -1,1960 +1,2004 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: dsuarez $ |
|
3 | $Author: dsuarez $ | |
4 | $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $ |
|
4 | $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $ | |
5 | ''' |
|
5 | ''' | |
6 | import os |
|
6 | import os | |
7 | import numpy |
|
7 | import numpy | |
8 | import datetime |
|
8 | import datetime | |
9 | import time |
|
9 | import time | |
10 | import math |
|
10 | import math | |
11 | from jrodata import * |
|
11 | from jrodata import * | |
12 | from jrodataIO import * |
|
12 | from jrodataIO import * | |
13 | from jroplot import * |
|
13 | from jroplot import * | |
14 |
|
14 | |||
15 | try: |
|
15 | try: | |
16 | import cfunctions |
|
16 | import cfunctions | |
17 | except: |
|
17 | except: | |
18 | pass |
|
18 | pass | |
19 |
|
19 | |||
20 | class ProcessingUnit: |
|
20 | class ProcessingUnit: | |
21 |
|
21 | |||
22 | """ |
|
22 | """ | |
23 | Esta es la clase base para el procesamiento de datos. |
|
23 | Esta es la clase base para el procesamiento de datos. | |
24 |
|
24 | |||
25 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: |
|
25 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: | |
26 | - Metodos internos (callMethod) |
|
26 | - Metodos internos (callMethod) | |
27 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos |
|
27 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos | |
28 | tienen que ser agreagados con el metodo "add". |
|
28 | tienen que ser agreagados con el metodo "add". | |
29 |
|
29 | |||
30 | """ |
|
30 | """ | |
31 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
31 | # objeto de datos de entrada (Voltage, Spectra o Correlation) | |
32 | dataIn = None |
|
32 | dataIn = None | |
33 |
|
33 | |||
34 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
34 | # objeto de datos de entrada (Voltage, Spectra o Correlation) | |
35 | dataOut = None |
|
35 | dataOut = None | |
36 |
|
36 | |||
37 |
|
37 | |||
38 | objectDict = None |
|
38 | objectDict = None | |
39 |
|
39 | |||
40 | def __init__(self): |
|
40 | def __init__(self): | |
41 |
|
41 | |||
42 | self.objectDict = {} |
|
42 | self.objectDict = {} | |
43 |
|
43 | |||
44 | def init(self): |
|
44 | def init(self): | |
45 |
|
45 | |||
46 | raise ValueError, "Not implemented" |
|
46 | raise ValueError, "Not implemented" | |
47 |
|
47 | |||
48 | def addOperation(self, object, objId): |
|
48 | def addOperation(self, object, objId): | |
49 |
|
49 | |||
50 | """ |
|
50 | """ | |
51 | Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el |
|
51 | Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el | |
52 | identificador asociado a este objeto. |
|
52 | identificador asociado a este objeto. | |
53 |
|
53 | |||
54 | Input: |
|
54 | Input: | |
55 |
|
55 | |||
56 | object : objeto de la clase "Operation" |
|
56 | object : objeto de la clase "Operation" | |
57 |
|
57 | |||
58 | Return: |
|
58 | Return: | |
59 |
|
59 | |||
60 | objId : identificador del objeto, necesario para ejecutar la operacion |
|
60 | objId : identificador del objeto, necesario para ejecutar la operacion | |
61 | """ |
|
61 | """ | |
62 |
|
62 | |||
63 | self.objectDict[objId] = object |
|
63 | self.objectDict[objId] = object | |
64 |
|
64 | |||
65 | return objId |
|
65 | return objId | |
66 |
|
66 | |||
67 | def operation(self, **kwargs): |
|
67 | def operation(self, **kwargs): | |
68 |
|
68 | |||
69 | """ |
|
69 | """ | |
70 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los |
|
70 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los | |
71 | atributos del objeto dataOut |
|
71 | atributos del objeto dataOut | |
72 |
|
72 | |||
73 | Input: |
|
73 | Input: | |
74 |
|
74 | |||
75 | **kwargs : Diccionario de argumentos de la funcion a ejecutar |
|
75 | **kwargs : Diccionario de argumentos de la funcion a ejecutar | |
76 | """ |
|
76 | """ | |
77 |
|
77 | |||
78 | raise ValueError, "ImplementedError" |
|
78 | raise ValueError, "ImplementedError" | |
79 |
|
79 | |||
80 | def callMethod(self, name, **kwargs): |
|
80 | def callMethod(self, name, **kwargs): | |
81 |
|
81 | |||
82 | """ |
|
82 | """ | |
83 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. |
|
83 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. | |
84 |
|
84 | |||
85 | Input: |
|
85 | Input: | |
86 | name : nombre del metodo a ejecutar |
|
86 | name : nombre del metodo a ejecutar | |
87 |
|
87 | |||
88 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
88 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. | |
89 |
|
89 | |||
90 | """ |
|
90 | """ | |
91 | if name != 'run': |
|
91 | if name != 'run': | |
92 |
|
92 | |||
93 | if name == 'init' and self.dataIn.isEmpty(): |
|
93 | if name == 'init' and self.dataIn.isEmpty(): | |
94 | self.dataOut.flagNoData = True |
|
94 | self.dataOut.flagNoData = True | |
95 | return False |
|
95 | return False | |
96 |
|
96 | |||
97 | if name != 'init' and self.dataOut.isEmpty(): |
|
97 | if name != 'init' and self.dataOut.isEmpty(): | |
98 | return False |
|
98 | return False | |
99 |
|
99 | |||
100 | methodToCall = getattr(self, name) |
|
100 | methodToCall = getattr(self, name) | |
101 |
|
101 | |||
102 | methodToCall(**kwargs) |
|
102 | methodToCall(**kwargs) | |
103 |
|
103 | |||
104 | if name != 'run': |
|
104 | if name != 'run': | |
105 | return True |
|
105 | return True | |
106 |
|
106 | |||
107 | if self.dataOut.isEmpty(): |
|
107 | if self.dataOut.isEmpty(): | |
108 | return False |
|
108 | return False | |
109 |
|
109 | |||
110 | return True |
|
110 | return True | |
111 |
|
111 | |||
112 | def callObject(self, objId, **kwargs): |
|
112 | def callObject(self, objId, **kwargs): | |
113 |
|
113 | |||
114 | """ |
|
114 | """ | |
115 | Ejecuta la operacion asociada al identificador del objeto "objId" |
|
115 | Ejecuta la operacion asociada al identificador del objeto "objId" | |
116 |
|
116 | |||
117 | Input: |
|
117 | Input: | |
118 |
|
118 | |||
119 | objId : identificador del objeto a ejecutar |
|
119 | objId : identificador del objeto a ejecutar | |
120 |
|
120 | |||
121 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
121 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. | |
122 |
|
122 | |||
123 | Return: |
|
123 | Return: | |
124 |
|
124 | |||
125 | None |
|
125 | None | |
126 | """ |
|
126 | """ | |
127 |
|
127 | |||
128 | if self.dataOut.isEmpty(): |
|
128 | if self.dataOut.isEmpty(): | |
129 | return False |
|
129 | return False | |
130 |
|
130 | |||
131 | object = self.objectDict[objId] |
|
131 | object = self.objectDict[objId] | |
132 |
|
132 | |||
133 | object.run(self.dataOut, **kwargs) |
|
133 | object.run(self.dataOut, **kwargs) | |
134 |
|
134 | |||
135 | return True |
|
135 | return True | |
136 |
|
136 | |||
137 | def call(self, operationConf, **kwargs): |
|
137 | def call(self, operationConf, **kwargs): | |
138 |
|
138 | |||
139 | """ |
|
139 | """ | |
140 | Return True si ejecuta la operacion "operationConf.name" con los |
|
140 | Return True si ejecuta la operacion "operationConf.name" con los | |
141 | argumentos "**kwargs". False si la operacion no se ha ejecutado. |
|
141 | argumentos "**kwargs". False si la operacion no se ha ejecutado. | |
142 | La operacion puede ser de dos tipos: |
|
142 | La operacion puede ser de dos tipos: | |
143 |
|
143 | |||
144 | 1. Un metodo propio de esta clase: |
|
144 | 1. Un metodo propio de esta clase: | |
145 |
|
145 | |||
146 | operation.type = "self" |
|
146 | operation.type = "self" | |
147 |
|
147 | |||
148 | 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella: |
|
148 | 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella: | |
149 | operation.type = "other". |
|
149 | operation.type = "other". | |
150 |
|
150 | |||
151 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: |
|
151 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: | |
152 | "addOperation" e identificado con el operation.id |
|
152 | "addOperation" e identificado con el operation.id | |
153 |
|
153 | |||
154 |
|
154 | |||
155 | con el id de la operacion. |
|
155 | con el id de la operacion. | |
156 |
|
156 | |||
157 | Input: |
|
157 | Input: | |
158 |
|
158 | |||
159 | Operation : Objeto del tipo operacion con los atributos: name, type y id. |
|
159 | Operation : Objeto del tipo operacion con los atributos: name, type y id. | |
160 |
|
160 | |||
161 | """ |
|
161 | """ | |
162 |
|
162 | |||
163 | if operationConf.type == 'self': |
|
163 | if operationConf.type == 'self': | |
164 | sts = self.callMethod(operationConf.name, **kwargs) |
|
164 | sts = self.callMethod(operationConf.name, **kwargs) | |
165 |
|
165 | |||
166 | if operationConf.type == 'other': |
|
166 | if operationConf.type == 'other': | |
167 | sts = self.callObject(operationConf.id, **kwargs) |
|
167 | sts = self.callObject(operationConf.id, **kwargs) | |
168 |
|
168 | |||
169 | return sts |
|
169 | return sts | |
170 |
|
170 | |||
171 | def setInput(self, dataIn): |
|
171 | def setInput(self, dataIn): | |
172 |
|
172 | |||
173 | self.dataIn = dataIn |
|
173 | self.dataIn = dataIn | |
174 |
|
174 | |||
175 | def getOutput(self): |
|
175 | def getOutput(self): | |
176 |
|
176 | |||
177 | return self.dataOut |
|
177 | return self.dataOut | |
178 |
|
178 | |||
179 | class Operation(): |
|
179 | class Operation(): | |
180 |
|
180 | |||
181 | """ |
|
181 | """ | |
182 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit |
|
182 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit | |
183 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de |
|
183 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de | |
184 | acumulacion dentro de esta clase |
|
184 | acumulacion dentro de esta clase | |
185 |
|
185 | |||
186 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) |
|
186 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) | |
187 |
|
187 | |||
188 | """ |
|
188 | """ | |
189 |
|
189 | |||
190 | __buffer = None |
|
190 | __buffer = None | |
191 | __isConfig = False |
|
191 | __isConfig = False | |
192 |
|
192 | |||
193 | def __init__(self): |
|
193 | def __init__(self): | |
194 |
|
194 | |||
195 | pass |
|
195 | pass | |
196 |
|
196 | |||
197 | def run(self, dataIn, **kwargs): |
|
197 | def run(self, dataIn, **kwargs): | |
198 |
|
198 | |||
199 | """ |
|
199 | """ | |
200 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn. |
|
200 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn. | |
201 |
|
201 | |||
202 | Input: |
|
202 | Input: | |
203 |
|
203 | |||
204 | dataIn : objeto del tipo JROData |
|
204 | dataIn : objeto del tipo JROData | |
205 |
|
205 | |||
206 | Return: |
|
206 | Return: | |
207 |
|
207 | |||
208 | None |
|
208 | None | |
209 |
|
209 | |||
210 | Affected: |
|
210 | Affected: | |
211 | __buffer : buffer de recepcion de datos. |
|
211 | __buffer : buffer de recepcion de datos. | |
212 |
|
212 | |||
213 | """ |
|
213 | """ | |
214 |
|
214 | |||
215 | raise ValueError, "ImplementedError" |
|
215 | raise ValueError, "ImplementedError" | |
216 |
|
216 | |||
217 | class VoltageProc(ProcessingUnit): |
|
217 | class VoltageProc(ProcessingUnit): | |
218 |
|
218 | |||
219 |
|
219 | |||
220 | def __init__(self): |
|
220 | def __init__(self): | |
221 |
|
221 | |||
222 | self.objectDict = {} |
|
222 | self.objectDict = {} | |
223 | self.dataOut = Voltage() |
|
223 | self.dataOut = Voltage() | |
224 | self.flip = 1 |
|
224 | self.flip = 1 | |
225 |
|
225 | |||
226 | def init(self): |
|
226 | def init(self): | |
227 |
|
227 | |||
228 | self.dataOut.copy(self.dataIn) |
|
228 | self.dataOut.copy(self.dataIn) | |
229 | # No necesita copiar en cada init() los atributos de dataIn |
|
229 | # No necesita copiar en cada init() los atributos de dataIn | |
230 | # la copia deberia hacerse por cada nuevo bloque de datos |
|
230 | # la copia deberia hacerse por cada nuevo bloque de datos | |
231 |
|
231 | |||
232 | def selectChannels(self, channelList): |
|
232 | def selectChannels(self, channelList): | |
233 |
|
233 | |||
234 | channelIndexList = [] |
|
234 | channelIndexList = [] | |
235 |
|
235 | |||
236 | for channel in channelList: |
|
236 | for channel in channelList: | |
237 | index = self.dataOut.channelList.index(channel) |
|
237 | index = self.dataOut.channelList.index(channel) | |
238 | channelIndexList.append(index) |
|
238 | channelIndexList.append(index) | |
239 |
|
239 | |||
240 | self.selectChannelsByIndex(channelIndexList) |
|
240 | self.selectChannelsByIndex(channelIndexList) | |
241 |
|
241 | |||
242 | def selectChannelsByIndex(self, channelIndexList): |
|
242 | def selectChannelsByIndex(self, channelIndexList): | |
243 | """ |
|
243 | """ | |
244 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
244 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
245 |
|
245 | |||
246 | Input: |
|
246 | Input: | |
247 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
247 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
248 |
|
248 | |||
249 | Affected: |
|
249 | Affected: | |
250 | self.dataOut.data |
|
250 | self.dataOut.data | |
251 | self.dataOut.channelIndexList |
|
251 | self.dataOut.channelIndexList | |
252 | self.dataOut.nChannels |
|
252 | self.dataOut.nChannels | |
253 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
253 | self.dataOut.m_ProcessingHeader.totalSpectra | |
254 | self.dataOut.systemHeaderObj.numChannels |
|
254 | self.dataOut.systemHeaderObj.numChannels | |
255 | self.dataOut.m_ProcessingHeader.blockSize |
|
255 | self.dataOut.m_ProcessingHeader.blockSize | |
256 |
|
256 | |||
257 | Return: |
|
257 | Return: | |
258 | None |
|
258 | None | |
259 | """ |
|
259 | """ | |
260 |
|
260 | |||
261 | for channelIndex in channelIndexList: |
|
261 | for channelIndex in channelIndexList: | |
262 | if channelIndex not in self.dataOut.channelIndexList: |
|
262 | if channelIndex not in self.dataOut.channelIndexList: | |
263 | print channelIndexList |
|
263 | print channelIndexList | |
264 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
264 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | |
265 |
|
265 | |||
266 | nChannels = len(channelIndexList) |
|
266 | nChannels = len(channelIndexList) | |
267 |
|
267 | |||
268 | data = self.dataOut.data[channelIndexList,:] |
|
268 | data = self.dataOut.data[channelIndexList,:] | |
269 |
|
269 | |||
270 | self.dataOut.data = data |
|
270 | self.dataOut.data = data | |
271 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
271 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
272 | # self.dataOut.nChannels = nChannels |
|
272 | # self.dataOut.nChannels = nChannels | |
273 |
|
273 | |||
274 | return 1 |
|
274 | return 1 | |
275 |
|
275 | |||
276 | def selectHeights(self, minHei=None, maxHei=None): |
|
276 | def selectHeights(self, minHei=None, maxHei=None): | |
277 | """ |
|
277 | """ | |
278 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
278 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
279 | minHei <= height <= maxHei |
|
279 | minHei <= height <= maxHei | |
280 |
|
280 | |||
281 | Input: |
|
281 | Input: | |
282 | minHei : valor minimo de altura a considerar |
|
282 | minHei : valor minimo de altura a considerar | |
283 | maxHei : valor maximo de altura a considerar |
|
283 | maxHei : valor maximo de altura a considerar | |
284 |
|
284 | |||
285 | Affected: |
|
285 | Affected: | |
286 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
286 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
287 |
|
287 | |||
288 | Return: |
|
288 | Return: | |
289 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
289 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
290 | """ |
|
290 | """ | |
291 |
|
291 | |||
292 | if minHei == None: |
|
292 | if minHei == None: | |
293 | minHei = self.dataOut.heightList[0] |
|
293 | minHei = self.dataOut.heightList[0] | |
294 |
|
294 | |||
295 | if maxHei == None: |
|
295 | if maxHei == None: | |
296 | maxHei = self.dataOut.heightList[-1] |
|
296 | maxHei = self.dataOut.heightList[-1] | |
297 |
|
297 | |||
298 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
298 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
299 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
299 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
300 |
|
300 | |||
301 |
|
301 | |||
302 | if (maxHei > self.dataOut.heightList[-1]): |
|
302 | if (maxHei > self.dataOut.heightList[-1]): | |
303 | maxHei = self.dataOut.heightList[-1] |
|
303 | maxHei = self.dataOut.heightList[-1] | |
304 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
304 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
305 |
|
305 | |||
306 | minIndex = 0 |
|
306 | minIndex = 0 | |
307 | maxIndex = 0 |
|
307 | maxIndex = 0 | |
308 | heights = self.dataOut.heightList |
|
308 | heights = self.dataOut.heightList | |
309 |
|
309 | |||
310 | inda = numpy.where(heights >= minHei) |
|
310 | inda = numpy.where(heights >= minHei) | |
311 | indb = numpy.where(heights <= maxHei) |
|
311 | indb = numpy.where(heights <= maxHei) | |
312 |
|
312 | |||
313 | try: |
|
313 | try: | |
314 | minIndex = inda[0][0] |
|
314 | minIndex = inda[0][0] | |
315 | except: |
|
315 | except: | |
316 | minIndex = 0 |
|
316 | minIndex = 0 | |
317 |
|
317 | |||
318 | try: |
|
318 | try: | |
319 | maxIndex = indb[0][-1] |
|
319 | maxIndex = indb[0][-1] | |
320 | except: |
|
320 | except: | |
321 | maxIndex = len(heights) |
|
321 | maxIndex = len(heights) | |
322 |
|
322 | |||
323 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
323 | self.selectHeightsByIndex(minIndex, maxIndex) | |
324 |
|
324 | |||
325 | return 1 |
|
325 | return 1 | |
326 |
|
326 | |||
327 |
|
327 | |||
328 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
328 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
329 | """ |
|
329 | """ | |
330 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
330 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
331 | minIndex <= index <= maxIndex |
|
331 | minIndex <= index <= maxIndex | |
332 |
|
332 | |||
333 | Input: |
|
333 | Input: | |
334 | minIndex : valor de indice minimo de altura a considerar |
|
334 | minIndex : valor de indice minimo de altura a considerar | |
335 | maxIndex : valor de indice maximo de altura a considerar |
|
335 | maxIndex : valor de indice maximo de altura a considerar | |
336 |
|
336 | |||
337 | Affected: |
|
337 | Affected: | |
338 | self.dataOut.data |
|
338 | self.dataOut.data | |
339 | self.dataOut.heightList |
|
339 | self.dataOut.heightList | |
340 |
|
340 | |||
341 | Return: |
|
341 | Return: | |
342 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
342 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
343 | """ |
|
343 | """ | |
344 |
|
344 | |||
345 | if (minIndex < 0) or (minIndex > maxIndex): |
|
345 | if (minIndex < 0) or (minIndex > maxIndex): | |
346 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
346 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
347 |
|
347 | |||
348 | if (maxIndex >= self.dataOut.nHeights): |
|
348 | if (maxIndex >= self.dataOut.nHeights): | |
349 | maxIndex = self.dataOut.nHeights-1 |
|
349 | maxIndex = self.dataOut.nHeights-1 | |
350 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
350 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
351 |
|
351 | |||
352 | nHeights = maxIndex - minIndex + 1 |
|
352 | nHeights = maxIndex - minIndex + 1 | |
353 |
|
353 | |||
354 | #voltage |
|
354 | #voltage | |
355 | data = self.dataOut.data[:,minIndex:maxIndex+1] |
|
355 | data = self.dataOut.data[:,minIndex:maxIndex+1] | |
356 |
|
356 | |||
357 | firstHeight = self.dataOut.heightList[minIndex] |
|
357 | firstHeight = self.dataOut.heightList[minIndex] | |
358 |
|
358 | |||
359 | self.dataOut.data = data |
|
359 | self.dataOut.data = data | |
360 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
360 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
361 |
|
361 | |||
362 | return 1 |
|
362 | return 1 | |
363 |
|
363 | |||
364 |
|
364 | |||
365 | def filterByHeights(self, window): |
|
365 | def filterByHeights(self, window): | |
366 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
366 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] | |
367 |
|
367 | |||
368 | if window == None: |
|
368 | if window == None: | |
369 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
369 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
370 |
|
370 | |||
371 | newdelta = deltaHeight * window |
|
371 | newdelta = deltaHeight * window | |
372 | r = self.dataOut.data.shape[1] % window |
|
372 | r = self.dataOut.data.shape[1] % window | |
373 | buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r] |
|
373 | buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r] | |
374 | buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window) |
|
374 | buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window) | |
375 | buffer = numpy.sum(buffer,2) |
|
375 | buffer = numpy.sum(buffer,2) | |
376 | self.dataOut.data = buffer |
|
376 | self.dataOut.data = buffer | |
377 | self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta) |
|
377 | self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta) | |
378 | self.dataOut.windowOfFilter = window |
|
378 | self.dataOut.windowOfFilter = window | |
379 |
|
379 | |||
380 | def deFlip(self): |
|
380 | def deFlip(self): | |
381 | self.dataOut.data *= self.flip |
|
381 | self.dataOut.data *= self.flip | |
382 | self.flip *= -1. |
|
382 | self.flip *= -1. | |
383 |
|
383 | |||
384 | def setRadarFrequency(self, frequency=None): |
|
384 | def setRadarFrequency(self, frequency=None): | |
385 | if frequency != None: |
|
385 | if frequency != None: | |
386 | self.dataOut.frequency = frequency |
|
386 | self.dataOut.frequency = frequency | |
387 |
|
387 | |||
388 | return 1 |
|
388 | return 1 | |
389 |
|
389 | |||
390 | class CohInt(Operation): |
|
390 | class CohInt(Operation): | |
391 |
|
391 | |||
392 | __isConfig = False |
|
392 | __isConfig = False | |
393 |
|
393 | |||
394 | __profIndex = 0 |
|
394 | __profIndex = 0 | |
395 | __withOverapping = False |
|
395 | __withOverapping = False | |
396 |
|
396 | |||
397 | __byTime = False |
|
397 | __byTime = False | |
398 | __initime = None |
|
398 | __initime = None | |
399 | __lastdatatime = None |
|
399 | __lastdatatime = None | |
400 | __integrationtime = None |
|
400 | __integrationtime = None | |
401 |
|
401 | |||
402 | __buffer = None |
|
402 | __buffer = None | |
403 |
|
403 | |||
404 | __dataReady = False |
|
404 | __dataReady = False | |
405 |
|
405 | |||
406 | n = None |
|
406 | n = None | |
407 |
|
407 | |||
408 |
|
408 | |||
409 | def __init__(self): |
|
409 | def __init__(self): | |
410 |
|
410 | |||
411 | self.__isConfig = False |
|
411 | self.__isConfig = False | |
412 |
|
412 | |||
413 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
413 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
414 | """ |
|
414 | """ | |
415 | Set the parameters of the integration class. |
|
415 | Set the parameters of the integration class. | |
416 |
|
416 | |||
417 | Inputs: |
|
417 | Inputs: | |
418 |
|
418 | |||
419 | n : Number of coherent integrations |
|
419 | n : Number of coherent integrations | |
420 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
420 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
421 | overlapping : |
|
421 | overlapping : | |
422 |
|
422 | |||
423 | """ |
|
423 | """ | |
424 |
|
424 | |||
425 | self.__initime = None |
|
425 | self.__initime = None | |
426 | self.__lastdatatime = 0 |
|
426 | self.__lastdatatime = 0 | |
427 | self.__buffer = None |
|
427 | self.__buffer = None | |
428 | self.__dataReady = False |
|
428 | self.__dataReady = False | |
429 |
|
429 | |||
430 |
|
430 | |||
431 | if n == None and timeInterval == None: |
|
431 | if n == None and timeInterval == None: | |
432 | raise ValueError, "n or timeInterval should be specified ..." |
|
432 | raise ValueError, "n or timeInterval should be specified ..." | |
433 |
|
433 | |||
434 | if n != None: |
|
434 | if n != None: | |
435 | self.n = n |
|
435 | self.n = n | |
436 | self.__byTime = False |
|
436 | self.__byTime = False | |
437 | else: |
|
437 | else: | |
438 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
438 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line | |
439 | self.n = 9999 |
|
439 | self.n = 9999 | |
440 | self.__byTime = True |
|
440 | self.__byTime = True | |
441 |
|
441 | |||
442 | if overlapping: |
|
442 | if overlapping: | |
443 | self.__withOverapping = True |
|
443 | self.__withOverapping = True | |
444 | self.__buffer = None |
|
444 | self.__buffer = None | |
445 | else: |
|
445 | else: | |
446 | self.__withOverapping = False |
|
446 | self.__withOverapping = False | |
447 | self.__buffer = 0 |
|
447 | self.__buffer = 0 | |
448 |
|
448 | |||
449 | self.__profIndex = 0 |
|
449 | self.__profIndex = 0 | |
450 |
|
450 | |||
451 | def putData(self, data): |
|
451 | def putData(self, data): | |
452 |
|
452 | |||
453 | """ |
|
453 | """ | |
454 | Add a profile to the __buffer and increase in one the __profileIndex |
|
454 | Add a profile to the __buffer and increase in one the __profileIndex | |
455 |
|
455 | |||
456 | """ |
|
456 | """ | |
457 |
|
457 | |||
458 | if not self.__withOverapping: |
|
458 | if not self.__withOverapping: | |
459 | self.__buffer += data.copy() |
|
459 | self.__buffer += data.copy() | |
460 | self.__profIndex += 1 |
|
460 | self.__profIndex += 1 | |
461 | return |
|
461 | return | |
462 |
|
462 | |||
463 | #Overlapping data |
|
463 | #Overlapping data | |
464 | nChannels, nHeis = data.shape |
|
464 | nChannels, nHeis = data.shape | |
465 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
465 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
466 |
|
466 | |||
467 | #If the buffer is empty then it takes the data value |
|
467 | #If the buffer is empty then it takes the data value | |
468 | if self.__buffer == None: |
|
468 | if self.__buffer == None: | |
469 | self.__buffer = data |
|
469 | self.__buffer = data | |
470 | self.__profIndex += 1 |
|
470 | self.__profIndex += 1 | |
471 | return |
|
471 | return | |
472 |
|
472 | |||
473 | #If the buffer length is lower than n then stakcing the data value |
|
473 | #If the buffer length is lower than n then stakcing the data value | |
474 | if self.__profIndex < self.n: |
|
474 | if self.__profIndex < self.n: | |
475 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
475 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
476 | self.__profIndex += 1 |
|
476 | self.__profIndex += 1 | |
477 | return |
|
477 | return | |
478 |
|
478 | |||
479 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
479 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
480 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
480 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
481 | self.__buffer[self.n-1] = data |
|
481 | self.__buffer[self.n-1] = data | |
482 | self.__profIndex = self.n |
|
482 | self.__profIndex = self.n | |
483 | return |
|
483 | return | |
484 |
|
484 | |||
485 |
|
485 | |||
486 | def pushData(self): |
|
486 | def pushData(self): | |
487 | """ |
|
487 | """ | |
488 | Return the sum of the last profiles and the profiles used in the sum. |
|
488 | Return the sum of the last profiles and the profiles used in the sum. | |
489 |
|
489 | |||
490 | Affected: |
|
490 | Affected: | |
491 |
|
491 | |||
492 | self.__profileIndex |
|
492 | self.__profileIndex | |
493 |
|
493 | |||
494 | """ |
|
494 | """ | |
495 |
|
495 | |||
496 | if not self.__withOverapping: |
|
496 | if not self.__withOverapping: | |
497 | data = self.__buffer |
|
497 | data = self.__buffer | |
498 | n = self.__profIndex |
|
498 | n = self.__profIndex | |
499 |
|
499 | |||
500 | self.__buffer = 0 |
|
500 | self.__buffer = 0 | |
501 | self.__profIndex = 0 |
|
501 | self.__profIndex = 0 | |
502 |
|
502 | |||
503 | return data, n |
|
503 | return data, n | |
504 |
|
504 | |||
505 | #Integration with Overlapping |
|
505 | #Integration with Overlapping | |
506 | data = numpy.sum(self.__buffer, axis=0) |
|
506 | data = numpy.sum(self.__buffer, axis=0) | |
507 | n = self.__profIndex |
|
507 | n = self.__profIndex | |
508 |
|
508 | |||
509 | return data, n |
|
509 | return data, n | |
510 |
|
510 | |||
511 | def byProfiles(self, data): |
|
511 | def byProfiles(self, data): | |
512 |
|
512 | |||
513 | self.__dataReady = False |
|
513 | self.__dataReady = False | |
514 | avgdata = None |
|
514 | avgdata = None | |
515 | n = None |
|
515 | n = None | |
516 |
|
516 | |||
517 | self.putData(data) |
|
517 | self.putData(data) | |
518 |
|
518 | |||
519 | if self.__profIndex == self.n: |
|
519 | if self.__profIndex == self.n: | |
520 |
|
520 | |||
521 | avgdata, n = self.pushData() |
|
521 | avgdata, n = self.pushData() | |
522 | self.__dataReady = True |
|
522 | self.__dataReady = True | |
523 |
|
523 | |||
524 | return avgdata |
|
524 | return avgdata | |
525 |
|
525 | |||
526 | def byTime(self, data, datatime): |
|
526 | def byTime(self, data, datatime): | |
527 |
|
527 | |||
528 | self.__dataReady = False |
|
528 | self.__dataReady = False | |
529 | avgdata = None |
|
529 | avgdata = None | |
530 | n = None |
|
530 | n = None | |
531 |
|
531 | |||
532 | self.putData(data) |
|
532 | self.putData(data) | |
533 |
|
533 | |||
534 | if (datatime - self.__initime) >= self.__integrationtime: |
|
534 | if (datatime - self.__initime) >= self.__integrationtime: | |
535 | avgdata, n = self.pushData() |
|
535 | avgdata, n = self.pushData() | |
536 | self.n = n |
|
536 | self.n = n | |
537 | self.__dataReady = True |
|
537 | self.__dataReady = True | |
538 |
|
538 | |||
539 | return avgdata |
|
539 | return avgdata | |
540 |
|
540 | |||
541 | def integrate(self, data, datatime=None): |
|
541 | def integrate(self, data, datatime=None): | |
542 |
|
542 | |||
543 | if self.__initime == None: |
|
543 | if self.__initime == None: | |
544 | self.__initime = datatime |
|
544 | self.__initime = datatime | |
545 |
|
545 | |||
546 | if self.__byTime: |
|
546 | if self.__byTime: | |
547 | avgdata = self.byTime(data, datatime) |
|
547 | avgdata = self.byTime(data, datatime) | |
548 | else: |
|
548 | else: | |
549 | avgdata = self.byProfiles(data) |
|
549 | avgdata = self.byProfiles(data) | |
550 |
|
550 | |||
551 |
|
551 | |||
552 | self.__lastdatatime = datatime |
|
552 | self.__lastdatatime = datatime | |
553 |
|
553 | |||
554 | if avgdata == None: |
|
554 | if avgdata == None: | |
555 | return None, None |
|
555 | return None, None | |
556 |
|
556 | |||
557 | avgdatatime = self.__initime |
|
557 | avgdatatime = self.__initime | |
558 |
|
558 | |||
559 | deltatime = datatime -self.__lastdatatime |
|
559 | deltatime = datatime -self.__lastdatatime | |
560 |
|
560 | |||
561 | if not self.__withOverapping: |
|
561 | if not self.__withOverapping: | |
562 | self.__initime = datatime |
|
562 | self.__initime = datatime | |
563 | else: |
|
563 | else: | |
564 | self.__initime += deltatime |
|
564 | self.__initime += deltatime | |
565 |
|
565 | |||
566 | return avgdata, avgdatatime |
|
566 | return avgdata, avgdatatime | |
567 |
|
567 | |||
568 | def run(self, dataOut, **kwargs): |
|
568 | def run(self, dataOut, **kwargs): | |
569 |
|
569 | |||
570 | if not self.__isConfig: |
|
570 | if not self.__isConfig: | |
571 | self.setup(**kwargs) |
|
571 | self.setup(**kwargs) | |
572 | self.__isConfig = True |
|
572 | self.__isConfig = True | |
573 |
|
573 | |||
574 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
574 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
575 |
|
575 | |||
576 | # dataOut.timeInterval *= n |
|
576 | # dataOut.timeInterval *= n | |
577 | dataOut.flagNoData = True |
|
577 | dataOut.flagNoData = True | |
578 |
|
578 | |||
579 | if self.__dataReady: |
|
579 | if self.__dataReady: | |
580 | dataOut.data = avgdata |
|
580 | dataOut.data = avgdata | |
581 | dataOut.nCohInt *= self.n |
|
581 | dataOut.nCohInt *= self.n | |
582 | dataOut.utctime = avgdatatime |
|
582 | dataOut.utctime = avgdatatime | |
583 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
583 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
584 | dataOut.flagNoData = False |
|
584 | dataOut.flagNoData = False | |
585 |
|
585 | |||
586 |
|
586 | |||
587 | class Decoder(Operation): |
|
587 | class Decoder(Operation): | |
588 |
|
588 | |||
589 | __isConfig = False |
|
589 | __isConfig = False | |
590 | __profIndex = 0 |
|
590 | __profIndex = 0 | |
591 |
|
591 | |||
592 | code = None |
|
592 | code = None | |
593 |
|
593 | |||
594 | nCode = None |
|
594 | nCode = None | |
595 | nBaud = None |
|
595 | nBaud = None | |
596 |
|
596 | |||
597 | def __init__(self): |
|
597 | def __init__(self): | |
598 |
|
598 | |||
599 | self.__isConfig = False |
|
599 | self.__isConfig = False | |
600 |
|
600 | |||
601 | def setup(self, code, shape): |
|
601 | def setup(self, code, shape): | |
602 |
|
602 | |||
603 | self.__profIndex = 0 |
|
603 | self.__profIndex = 0 | |
604 |
|
604 | |||
605 | self.code = code |
|
605 | self.code = code | |
606 |
|
606 | |||
607 | self.nCode = len(code) |
|
607 | self.nCode = len(code) | |
608 | self.nBaud = len(code[0]) |
|
608 | self.nBaud = len(code[0]) | |
609 |
|
609 | |||
610 | self.__nChannels, self.__nHeis = shape |
|
610 | self.__nChannels, self.__nHeis = shape | |
611 |
|
611 | |||
612 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
612 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
613 |
|
613 | |||
614 | __codeBuffer[:,0:self.nBaud] = self.code |
|
614 | __codeBuffer[:,0:self.nBaud] = self.code | |
615 |
|
615 | |||
616 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
616 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
617 |
|
617 | |||
618 | self.ndatadec = self.__nHeis - self.nBaud + 1 |
|
618 | self.ndatadec = self.__nHeis - self.nBaud + 1 | |
619 |
|
619 | |||
620 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
620 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
621 |
|
621 | |||
622 | def convolutionInFreq(self, data): |
|
622 | def convolutionInFreq(self, data): | |
623 |
|
623 | |||
624 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
624 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
625 |
|
625 | |||
626 | fft_data = numpy.fft.fft(data, axis=1) |
|
626 | fft_data = numpy.fft.fft(data, axis=1) | |
627 |
|
627 | |||
628 | conv = fft_data*fft_code |
|
628 | conv = fft_data*fft_code | |
629 |
|
629 | |||
630 | data = numpy.fft.ifft(conv,axis=1) |
|
630 | data = numpy.fft.ifft(conv,axis=1) | |
631 |
|
631 | |||
632 | datadec = data[:,:-self.nBaud+1] |
|
632 | datadec = data[:,:-self.nBaud+1] | |
633 |
|
633 | |||
634 | return datadec |
|
634 | return datadec | |
635 |
|
635 | |||
636 | def convolutionInFreqOpt(self, data): |
|
636 | def convolutionInFreqOpt(self, data): | |
637 |
|
637 | |||
638 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
638 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
639 |
|
639 | |||
640 | data = cfunctions.decoder(fft_code, data) |
|
640 | data = cfunctions.decoder(fft_code, data) | |
641 |
|
641 | |||
642 | datadec = data[:,:-self.nBaud+1] |
|
642 | datadec = data[:,:-self.nBaud+1] | |
643 |
|
643 | |||
644 | return datadec |
|
644 | return datadec | |
645 |
|
645 | |||
646 | def convolutionInTime(self, data): |
|
646 | def convolutionInTime(self, data): | |
647 |
|
647 | |||
648 | code = self.code[self.__profIndex] |
|
648 | code = self.code[self.__profIndex] | |
649 |
|
649 | |||
650 | for i in range(self.__nChannels): |
|
650 | for i in range(self.__nChannels): | |
651 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid') |
|
651 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid') | |
652 |
|
652 | |||
653 | return self.datadecTime |
|
653 | return self.datadecTime | |
654 |
|
654 | |||
655 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0): |
|
655 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0): | |
656 |
|
656 | |||
657 | if not self.__isConfig: |
|
657 | if not self.__isConfig: | |
658 |
|
658 | |||
659 | if code == None: |
|
659 | if code == None: | |
660 | code = dataOut.code |
|
660 | code = dataOut.code | |
661 | else: |
|
661 | else: | |
662 | code = numpy.array(code).reshape(nCode,nBaud) |
|
662 | code = numpy.array(code).reshape(nCode,nBaud) | |
663 | dataOut.code = code |
|
663 | dataOut.code = code | |
664 | dataOut.nCode = nCode |
|
664 | dataOut.nCode = nCode | |
665 | dataOut.nBaud = nBaud |
|
665 | dataOut.nBaud = nBaud | |
666 |
|
666 | |||
667 | if code == None: |
|
667 | if code == None: | |
668 | return 1 |
|
668 | return 1 | |
669 |
|
669 | |||
670 | self.setup(code, dataOut.data.shape) |
|
670 | self.setup(code, dataOut.data.shape) | |
671 | self.__isConfig = True |
|
671 | self.__isConfig = True | |
672 |
|
672 | |||
673 | if mode == 0: |
|
673 | if mode == 0: | |
674 | datadec = self.convolutionInTime(dataOut.data) |
|
674 | datadec = self.convolutionInTime(dataOut.data) | |
675 |
|
675 | |||
676 | if mode == 1: |
|
676 | if mode == 1: | |
677 | datadec = self.convolutionInFreq(dataOut.data) |
|
677 | datadec = self.convolutionInFreq(dataOut.data) | |
678 |
|
678 | |||
679 | if mode == 2: |
|
679 | if mode == 2: | |
680 | datadec = self.convolutionInFreqOpt(dataOut.data) |
|
680 | datadec = self.convolutionInFreqOpt(dataOut.data) | |
681 |
|
681 | |||
682 | dataOut.data = datadec |
|
682 | dataOut.data = datadec | |
683 |
|
683 | |||
684 | dataOut.heightList = dataOut.heightList[0:self.ndatadec] |
|
684 | dataOut.heightList = dataOut.heightList[0:self.ndatadec] | |
685 |
|
685 | |||
686 | dataOut.flagDecodeData = True #asumo q la data no esta decodificada |
|
686 | dataOut.flagDecodeData = True #asumo q la data no esta decodificada | |
687 |
|
687 | |||
688 | if self.__profIndex == self.nCode-1: |
|
688 | if self.__profIndex == self.nCode-1: | |
689 | self.__profIndex = 0 |
|
689 | self.__profIndex = 0 | |
690 | return 1 |
|
690 | return 1 | |
691 |
|
691 | |||
692 | self.__profIndex += 1 |
|
692 | self.__profIndex += 1 | |
693 |
|
693 | |||
694 | return 1 |
|
694 | return 1 | |
695 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
695 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
696 |
|
696 | |||
697 |
|
697 | |||
698 |
|
698 | |||
699 | class SpectraProc(ProcessingUnit): |
|
699 | class SpectraProc(ProcessingUnit): | |
700 |
|
700 | |||
701 | def __init__(self): |
|
701 | def __init__(self): | |
702 |
|
702 | |||
703 | self.objectDict = {} |
|
703 | self.objectDict = {} | |
704 | self.buffer = None |
|
704 | self.buffer = None | |
705 | self.firstdatatime = None |
|
705 | self.firstdatatime = None | |
706 | self.profIndex = 0 |
|
706 | self.profIndex = 0 | |
707 | self.dataOut = Spectra() |
|
707 | self.dataOut = Spectra() | |
708 |
|
708 | |||
709 | def __updateObjFromInput(self): |
|
709 | def __updateObjFromInput(self): | |
710 |
|
710 | |||
711 | self.dataOut.timeZone = self.dataIn.timeZone |
|
711 | self.dataOut.timeZone = self.dataIn.timeZone | |
712 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
712 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
713 | self.dataOut.errorCount = self.dataIn.errorCount |
|
713 | self.dataOut.errorCount = self.dataIn.errorCount | |
714 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
714 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
715 |
|
715 | |||
716 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
716 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
717 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
717 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
718 | self.dataOut.channelList = self.dataIn.channelList |
|
718 | self.dataOut.channelList = self.dataIn.channelList | |
719 | self.dataOut.heightList = self.dataIn.heightList |
|
719 | self.dataOut.heightList = self.dataIn.heightList | |
720 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
720 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
721 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
721 | # self.dataOut.nHeights = self.dataIn.nHeights | |
722 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
722 | # self.dataOut.nChannels = self.dataIn.nChannels | |
723 | self.dataOut.nBaud = self.dataIn.nBaud |
|
723 | self.dataOut.nBaud = self.dataIn.nBaud | |
724 | self.dataOut.nCode = self.dataIn.nCode |
|
724 | self.dataOut.nCode = self.dataIn.nCode | |
725 | self.dataOut.code = self.dataIn.code |
|
725 | self.dataOut.code = self.dataIn.code | |
726 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
726 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
727 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
727 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList | |
728 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock |
|
728 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock | |
729 | self.dataOut.utctime = self.firstdatatime |
|
729 | self.dataOut.utctime = self.firstdatatime | |
730 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
730 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
731 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
731 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
732 | # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT |
|
732 | # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT | |
733 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
733 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
734 | self.dataOut.nIncohInt = 1 |
|
734 | self.dataOut.nIncohInt = 1 | |
735 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
735 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
736 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
736 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
737 |
|
737 | |||
738 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt |
|
738 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt | |
739 | self.dataOut.frequency = self.dataIn.frequency |
|
739 | self.dataOut.frequency = self.dataIn.frequency | |
740 | self.dataOut.realtime = self.dataIn.realtime |
|
740 | self.dataOut.realtime = self.dataIn.realtime | |
741 |
|
741 | |||
742 | def __getFft(self): |
|
742 | def __getFft(self): | |
743 | """ |
|
743 | """ | |
744 | Convierte valores de Voltaje a Spectra |
|
744 | Convierte valores de Voltaje a Spectra | |
745 |
|
745 | |||
746 | Affected: |
|
746 | Affected: | |
747 | self.dataOut.data_spc |
|
747 | self.dataOut.data_spc | |
748 | self.dataOut.data_cspc |
|
748 | self.dataOut.data_cspc | |
749 | self.dataOut.data_dc |
|
749 | self.dataOut.data_dc | |
750 | self.dataOut.heightList |
|
750 | self.dataOut.heightList | |
751 | self.profIndex |
|
751 | self.profIndex | |
752 | self.buffer |
|
752 | self.buffer | |
753 | self.dataOut.flagNoData |
|
753 | self.dataOut.flagNoData | |
754 | """ |
|
754 | """ | |
755 | fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1) |
|
755 | fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1) | |
756 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
756 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
757 | dc = fft_volt[:,0,:] |
|
757 | dc = fft_volt[:,0,:] | |
758 |
|
758 | |||
759 | #calculo de self-spectra |
|
759 | #calculo de self-spectra | |
760 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
760 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) | |
761 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
761 | spc = fft_volt * numpy.conjugate(fft_volt) | |
762 | spc = spc.real |
|
762 | spc = spc.real | |
763 |
|
763 | |||
764 | blocksize = 0 |
|
764 | blocksize = 0 | |
765 | blocksize += dc.size |
|
765 | blocksize += dc.size | |
766 | blocksize += spc.size |
|
766 | blocksize += spc.size | |
767 |
|
767 | |||
768 | cspc = None |
|
768 | cspc = None | |
769 | pairIndex = 0 |
|
769 | pairIndex = 0 | |
770 | if self.dataOut.pairsList != None: |
|
770 | if self.dataOut.pairsList != None: | |
771 | #calculo de cross-spectra |
|
771 | #calculo de cross-spectra | |
772 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
772 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
773 | for pair in self.dataOut.pairsList: |
|
773 | for pair in self.dataOut.pairsList: | |
774 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) |
|
774 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) | |
775 | pairIndex += 1 |
|
775 | pairIndex += 1 | |
776 | blocksize += cspc.size |
|
776 | blocksize += cspc.size | |
777 |
|
777 | |||
778 | self.dataOut.data_spc = spc |
|
778 | self.dataOut.data_spc = spc | |
779 | self.dataOut.data_cspc = cspc |
|
779 | self.dataOut.data_cspc = cspc | |
780 | self.dataOut.data_dc = dc |
|
780 | self.dataOut.data_dc = dc | |
781 | self.dataOut.blockSize = blocksize |
|
781 | self.dataOut.blockSize = blocksize | |
782 | self.dataOut.flagShiftFFT = False |
|
782 | self.dataOut.flagShiftFFT = False | |
783 |
|
783 | |||
784 | def init(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None): |
|
784 | def init(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None): | |
785 |
|
785 | |||
786 | self.dataOut.flagNoData = True |
|
786 | self.dataOut.flagNoData = True | |
787 |
|
787 | |||
788 | if self.dataIn.type == "Spectra": |
|
788 | if self.dataIn.type == "Spectra": | |
789 | self.dataOut.copy(self.dataIn) |
|
789 | self.dataOut.copy(self.dataIn) | |
790 | return |
|
790 | return | |
791 |
|
791 | |||
792 | if self.dataIn.type == "Voltage": |
|
792 | if self.dataIn.type == "Voltage": | |
793 |
|
793 | |||
794 | if nFFTPoints == None: |
|
794 | if nFFTPoints == None: | |
795 | raise ValueError, "This SpectraProc.init() need nFFTPoints input variable" |
|
795 | raise ValueError, "This SpectraProc.init() need nFFTPoints input variable" | |
796 |
|
796 | |||
797 | if pairsList == None: |
|
797 | if pairsList == None: | |
798 | nPairs = 0 |
|
798 | nPairs = 0 | |
799 | else: |
|
799 | else: | |
800 | nPairs = len(pairsList) |
|
800 | nPairs = len(pairsList) | |
801 |
|
801 | |||
802 | if ippFactor == None: |
|
802 | if ippFactor == None: | |
803 | ippFactor = 1 |
|
803 | ippFactor = 1 | |
804 | self.dataOut.ippFactor = ippFactor |
|
804 | self.dataOut.ippFactor = ippFactor | |
805 |
|
805 | |||
806 | self.dataOut.nFFTPoints = nFFTPoints |
|
806 | self.dataOut.nFFTPoints = nFFTPoints | |
807 | self.dataOut.pairsList = pairsList |
|
807 | self.dataOut.pairsList = pairsList | |
808 | self.dataOut.nPairs = nPairs |
|
808 | self.dataOut.nPairs = nPairs | |
809 |
|
809 | |||
810 | if self.buffer == None: |
|
810 | if self.buffer == None: | |
811 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
811 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
812 | nProfiles, |
|
812 | nProfiles, | |
813 | self.dataIn.nHeights), |
|
813 | self.dataIn.nHeights), | |
814 | dtype='complex') |
|
814 | dtype='complex') | |
815 |
|
815 | |||
816 |
|
816 | |||
817 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
817 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() | |
818 | self.profIndex += 1 |
|
818 | self.profIndex += 1 | |
819 |
|
819 | |||
820 | if self.firstdatatime == None: |
|
820 | if self.firstdatatime == None: | |
821 | self.firstdatatime = self.dataIn.utctime |
|
821 | self.firstdatatime = self.dataIn.utctime | |
822 |
|
822 | |||
823 | if self.profIndex == nProfiles: |
|
823 | if self.profIndex == nProfiles: | |
824 | self.__updateObjFromInput() |
|
824 | self.__updateObjFromInput() | |
825 | self.__getFft() |
|
825 | self.__getFft() | |
826 |
|
826 | |||
827 | self.dataOut.flagNoData = False |
|
827 | self.dataOut.flagNoData = False | |
828 |
|
828 | |||
829 | self.buffer = None |
|
829 | self.buffer = None | |
830 | self.firstdatatime = None |
|
830 | self.firstdatatime = None | |
831 | self.profIndex = 0 |
|
831 | self.profIndex = 0 | |
832 |
|
832 | |||
833 | return |
|
833 | return | |
834 |
|
834 | |||
835 | raise ValueError, "The type object %s is not valid"%(self.dataIn.type) |
|
835 | raise ValueError, "The type object %s is not valid"%(self.dataIn.type) | |
836 |
|
836 | |||
837 | def selectChannels(self, channelList): |
|
837 | def selectChannels(self, channelList): | |
838 |
|
838 | |||
839 | channelIndexList = [] |
|
839 | channelIndexList = [] | |
840 |
|
840 | |||
841 | for channel in channelList: |
|
841 | for channel in channelList: | |
842 | index = self.dataOut.channelList.index(channel) |
|
842 | index = self.dataOut.channelList.index(channel) | |
843 | channelIndexList.append(index) |
|
843 | channelIndexList.append(index) | |
844 |
|
844 | |||
845 | self.selectChannelsByIndex(channelIndexList) |
|
845 | self.selectChannelsByIndex(channelIndexList) | |
846 |
|
846 | |||
847 | def selectChannelsByIndex(self, channelIndexList): |
|
847 | def selectChannelsByIndex(self, channelIndexList): | |
848 | """ |
|
848 | """ | |
849 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
849 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
850 |
|
850 | |||
851 | Input: |
|
851 | Input: | |
852 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
852 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
853 |
|
853 | |||
854 | Affected: |
|
854 | Affected: | |
855 | self.dataOut.data_spc |
|
855 | self.dataOut.data_spc | |
856 | self.dataOut.channelIndexList |
|
856 | self.dataOut.channelIndexList | |
857 | self.dataOut.nChannels |
|
857 | self.dataOut.nChannels | |
858 |
|
858 | |||
859 | Return: |
|
859 | Return: | |
860 | None |
|
860 | None | |
861 | """ |
|
861 | """ | |
862 |
|
862 | |||
863 | for channelIndex in channelIndexList: |
|
863 | for channelIndex in channelIndexList: | |
864 | if channelIndex not in self.dataOut.channelIndexList: |
|
864 | if channelIndex not in self.dataOut.channelIndexList: | |
865 | print channelIndexList |
|
865 | print channelIndexList | |
866 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
866 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | |
867 |
|
867 | |||
868 | nChannels = len(channelIndexList) |
|
868 | nChannels = len(channelIndexList) | |
869 |
|
869 | |||
870 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
870 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |
871 |
|
871 | |||
872 | self.dataOut.data_spc = data_spc |
|
872 | self.dataOut.data_spc = data_spc | |
873 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
873 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
874 | # self.dataOut.nChannels = nChannels |
|
874 | # self.dataOut.nChannels = nChannels | |
875 |
|
875 | |||
876 | return 1 |
|
876 | return 1 | |
877 |
|
877 | |||
878 | def selectHeights(self, minHei, maxHei): |
|
878 | def selectHeights(self, minHei, maxHei): | |
879 | """ |
|
879 | """ | |
880 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
880 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
881 | minHei <= height <= maxHei |
|
881 | minHei <= height <= maxHei | |
882 |
|
882 | |||
883 | Input: |
|
883 | Input: | |
884 | minHei : valor minimo de altura a considerar |
|
884 | minHei : valor minimo de altura a considerar | |
885 | maxHei : valor maximo de altura a considerar |
|
885 | maxHei : valor maximo de altura a considerar | |
886 |
|
886 | |||
887 | Affected: |
|
887 | Affected: | |
888 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
888 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
889 |
|
889 | |||
890 | Return: |
|
890 | Return: | |
891 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
891 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
892 | """ |
|
892 | """ | |
893 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
893 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
894 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
894 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
895 |
|
895 | |||
896 | if (maxHei > self.dataOut.heightList[-1]): |
|
896 | if (maxHei > self.dataOut.heightList[-1]): | |
897 | maxHei = self.dataOut.heightList[-1] |
|
897 | maxHei = self.dataOut.heightList[-1] | |
898 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
898 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
899 |
|
899 | |||
900 | minIndex = 0 |
|
900 | minIndex = 0 | |
901 | maxIndex = 0 |
|
901 | maxIndex = 0 | |
902 | heights = self.dataOut.heightList |
|
902 | heights = self.dataOut.heightList | |
903 |
|
903 | |||
904 | inda = numpy.where(heights >= minHei) |
|
904 | inda = numpy.where(heights >= minHei) | |
905 | indb = numpy.where(heights <= maxHei) |
|
905 | indb = numpy.where(heights <= maxHei) | |
906 |
|
906 | |||
907 | try: |
|
907 | try: | |
908 | minIndex = inda[0][0] |
|
908 | minIndex = inda[0][0] | |
909 | except: |
|
909 | except: | |
910 | minIndex = 0 |
|
910 | minIndex = 0 | |
911 |
|
911 | |||
912 | try: |
|
912 | try: | |
913 | maxIndex = indb[0][-1] |
|
913 | maxIndex = indb[0][-1] | |
914 | except: |
|
914 | except: | |
915 | maxIndex = len(heights) |
|
915 | maxIndex = len(heights) | |
916 |
|
916 | |||
917 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
917 | self.selectHeightsByIndex(minIndex, maxIndex) | |
918 |
|
918 | |||
919 | return 1 |
|
919 | return 1 | |
920 |
|
920 | |||
921 |
|
921 | |||
922 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
922 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
923 | """ |
|
923 | """ | |
924 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
924 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
925 | minIndex <= index <= maxIndex |
|
925 | minIndex <= index <= maxIndex | |
926 |
|
926 | |||
927 | Input: |
|
927 | Input: | |
928 | minIndex : valor de indice minimo de altura a considerar |
|
928 | minIndex : valor de indice minimo de altura a considerar | |
929 | maxIndex : valor de indice maximo de altura a considerar |
|
929 | maxIndex : valor de indice maximo de altura a considerar | |
930 |
|
930 | |||
931 | Affected: |
|
931 | Affected: | |
932 | self.dataOut.data_spc |
|
932 | self.dataOut.data_spc | |
933 | self.dataOut.data_cspc |
|
933 | self.dataOut.data_cspc | |
934 | self.dataOut.data_dc |
|
934 | self.dataOut.data_dc | |
935 | self.dataOut.heightList |
|
935 | self.dataOut.heightList | |
936 |
|
936 | |||
937 | Return: |
|
937 | Return: | |
938 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
938 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
939 | """ |
|
939 | """ | |
940 |
|
940 | |||
941 | if (minIndex < 0) or (minIndex > maxIndex): |
|
941 | if (minIndex < 0) or (minIndex > maxIndex): | |
942 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
942 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
943 |
|
943 | |||
944 | if (maxIndex >= self.dataOut.nHeights): |
|
944 | if (maxIndex >= self.dataOut.nHeights): | |
945 | maxIndex = self.dataOut.nHeights-1 |
|
945 | maxIndex = self.dataOut.nHeights-1 | |
946 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
946 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
947 |
|
947 | |||
948 | nHeights = maxIndex - minIndex + 1 |
|
948 | nHeights = maxIndex - minIndex + 1 | |
949 |
|
949 | |||
950 | #Spectra |
|
950 | #Spectra | |
951 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
951 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
952 |
|
952 | |||
953 | data_cspc = None |
|
953 | data_cspc = None | |
954 | if self.dataOut.data_cspc != None: |
|
954 | if self.dataOut.data_cspc != None: | |
955 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
955 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
956 |
|
956 | |||
957 | data_dc = None |
|
957 | data_dc = None | |
958 | if self.dataOut.data_dc != None: |
|
958 | if self.dataOut.data_dc != None: | |
959 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
959 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
960 |
|
960 | |||
961 | self.dataOut.data_spc = data_spc |
|
961 | self.dataOut.data_spc = data_spc | |
962 | self.dataOut.data_cspc = data_cspc |
|
962 | self.dataOut.data_cspc = data_cspc | |
963 | self.dataOut.data_dc = data_dc |
|
963 | self.dataOut.data_dc = data_dc | |
964 |
|
964 | |||
965 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
965 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
966 |
|
966 | |||
967 | return 1 |
|
967 | return 1 | |
968 |
|
968 | |||
969 | def removeDC(self, mode = 2): |
|
969 | def removeDC(self, mode = 2): | |
970 | jspectra = self.dataOut.data_spc |
|
970 | jspectra = self.dataOut.data_spc | |
971 | jcspectra = self.dataOut.data_cspc |
|
971 | jcspectra = self.dataOut.data_cspc | |
972 |
|
972 | |||
973 |
|
973 | |||
974 | num_chan = jspectra.shape[0] |
|
974 | num_chan = jspectra.shape[0] | |
975 | num_hei = jspectra.shape[2] |
|
975 | num_hei = jspectra.shape[2] | |
976 |
|
976 | |||
977 | if jcspectra != None: |
|
977 | if jcspectra != None: | |
978 | jcspectraExist = True |
|
978 | jcspectraExist = True | |
979 | num_pairs = jcspectra.shape[0] |
|
979 | num_pairs = jcspectra.shape[0] | |
980 | else: jcspectraExist = False |
|
980 | else: jcspectraExist = False | |
981 |
|
981 | |||
982 | freq_dc = jspectra.shape[1]/2 |
|
982 | freq_dc = jspectra.shape[1]/2 | |
983 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
983 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
984 |
|
984 | |||
985 | if ind_vel[0]<0: |
|
985 | if ind_vel[0]<0: | |
986 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
986 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |
987 |
|
987 | |||
988 | if mode == 1: |
|
988 | if mode == 1: | |
989 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
989 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |
990 |
|
990 | |||
991 | if jcspectraExist: |
|
991 | if jcspectraExist: | |
992 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 |
|
992 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 | |
993 |
|
993 | |||
994 | if mode == 2: |
|
994 | if mode == 2: | |
995 |
|
995 | |||
996 | vel = numpy.array([-2,-1,1,2]) |
|
996 | vel = numpy.array([-2,-1,1,2]) | |
997 | xx = numpy.zeros([4,4]) |
|
997 | xx = numpy.zeros([4,4]) | |
998 |
|
998 | |||
999 | for fil in range(4): |
|
999 | for fil in range(4): | |
1000 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1000 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |
1001 |
|
1001 | |||
1002 | xx_inv = numpy.linalg.inv(xx) |
|
1002 | xx_inv = numpy.linalg.inv(xx) | |
1003 | xx_aux = xx_inv[0,:] |
|
1003 | xx_aux = xx_inv[0,:] | |
1004 |
|
1004 | |||
1005 | for ich in range(num_chan): |
|
1005 | for ich in range(num_chan): | |
1006 | yy = jspectra[ich,ind_vel,:] |
|
1006 | yy = jspectra[ich,ind_vel,:] | |
1007 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1007 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |
1008 |
|
1008 | |||
1009 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1009 | junkid = jspectra[ich,freq_dc,:]<=0 | |
1010 | cjunkid = sum(junkid) |
|
1010 | cjunkid = sum(junkid) | |
1011 |
|
1011 | |||
1012 | if cjunkid.any(): |
|
1012 | if cjunkid.any(): | |
1013 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1013 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | |
1014 |
|
1014 | |||
1015 | if jcspectraExist: |
|
1015 | if jcspectraExist: | |
1016 | for ip in range(num_pairs): |
|
1016 | for ip in range(num_pairs): | |
1017 | yy = jcspectra[ip,ind_vel,:] |
|
1017 | yy = jcspectra[ip,ind_vel,:] | |
1018 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1018 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) | |
1019 |
|
1019 | |||
1020 |
|
1020 | |||
1021 | self.dataOut.data_spc = jspectra |
|
1021 | self.dataOut.data_spc = jspectra | |
1022 | self.dataOut.data_cspc = jcspectra |
|
1022 | self.dataOut.data_cspc = jcspectra | |
1023 |
|
1023 | |||
1024 | return 1 |
|
1024 | return 1 | |
1025 |
|
1025 | |||
1026 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1026 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | |
1027 |
|
1027 | |||
1028 | jspectra = self.dataOut.data_spc |
|
1028 | jspectra = self.dataOut.data_spc | |
1029 | jcspectra = self.dataOut.data_cspc |
|
1029 | jcspectra = self.dataOut.data_cspc | |
1030 | jnoise = self.dataOut.getNoise() |
|
1030 | jnoise = self.dataOut.getNoise() | |
1031 | num_incoh = self.dataOut.nIncohInt |
|
1031 | num_incoh = self.dataOut.nIncohInt | |
1032 |
|
1032 | |||
1033 | num_channel = jspectra.shape[0] |
|
1033 | num_channel = jspectra.shape[0] | |
1034 | num_prof = jspectra.shape[1] |
|
1034 | num_prof = jspectra.shape[1] | |
1035 | num_hei = jspectra.shape[2] |
|
1035 | num_hei = jspectra.shape[2] | |
1036 |
|
1036 | |||
1037 | #hei_interf |
|
1037 | #hei_interf | |
1038 | if hei_interf == None: |
|
1038 | if hei_interf == None: | |
1039 | count_hei = num_hei/2 #Como es entero no importa |
|
1039 | count_hei = num_hei/2 #Como es entero no importa | |
1040 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
1040 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei | |
1041 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1041 | hei_interf = numpy.asarray(hei_interf)[0] | |
1042 | #nhei_interf |
|
1042 | #nhei_interf | |
1043 | if (nhei_interf == None): |
|
1043 | if (nhei_interf == None): | |
1044 | nhei_interf = 5 |
|
1044 | nhei_interf = 5 | |
1045 | if (nhei_interf < 1): |
|
1045 | if (nhei_interf < 1): | |
1046 | nhei_interf = 1 |
|
1046 | nhei_interf = 1 | |
1047 | if (nhei_interf > count_hei): |
|
1047 | if (nhei_interf > count_hei): | |
1048 | nhei_interf = count_hei |
|
1048 | nhei_interf = count_hei | |
1049 | if (offhei_interf == None): |
|
1049 | if (offhei_interf == None): | |
1050 | offhei_interf = 0 |
|
1050 | offhei_interf = 0 | |
1051 |
|
1051 | |||
1052 | ind_hei = range(num_hei) |
|
1052 | ind_hei = range(num_hei) | |
1053 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1053 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
1054 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1054 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
1055 | mask_prof = numpy.asarray(range(num_prof)) |
|
1055 | mask_prof = numpy.asarray(range(num_prof)) | |
1056 | num_mask_prof = mask_prof.size |
|
1056 | num_mask_prof = mask_prof.size | |
1057 | comp_mask_prof = [0, num_prof/2] |
|
1057 | comp_mask_prof = [0, num_prof/2] | |
1058 |
|
1058 | |||
1059 |
|
1059 | |||
1060 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1060 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
1061 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1061 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
1062 | jnoise = numpy.nan |
|
1062 | jnoise = numpy.nan | |
1063 | noise_exist = jnoise[0] < numpy.Inf |
|
1063 | noise_exist = jnoise[0] < numpy.Inf | |
1064 |
|
1064 | |||
1065 | #Subrutina de Remocion de la Interferencia |
|
1065 | #Subrutina de Remocion de la Interferencia | |
1066 | for ich in range(num_channel): |
|
1066 | for ich in range(num_channel): | |
1067 | #Se ordena los espectros segun su potencia (menor a mayor) |
|
1067 | #Se ordena los espectros segun su potencia (menor a mayor) | |
1068 | power = jspectra[ich,mask_prof,:] |
|
1068 | power = jspectra[ich,mask_prof,:] | |
1069 | power = power[:,hei_interf] |
|
1069 | power = power[:,hei_interf] | |
1070 | power = power.sum(axis = 0) |
|
1070 | power = power.sum(axis = 0) | |
1071 | psort = power.ravel().argsort() |
|
1071 | psort = power.ravel().argsort() | |
1072 |
|
1072 | |||
1073 | #Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1073 | #Se estima la interferencia promedio en los Espectros de Potencia empleando | |
1074 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
1074 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
1075 |
|
1075 | |||
1076 | if noise_exist: |
|
1076 | if noise_exist: | |
1077 | # tmp_noise = jnoise[ich] / num_prof |
|
1077 | # tmp_noise = jnoise[ich] / num_prof | |
1078 | tmp_noise = jnoise[ich] |
|
1078 | tmp_noise = jnoise[ich] | |
1079 | junkspc_interf = junkspc_interf - tmp_noise |
|
1079 | junkspc_interf = junkspc_interf - tmp_noise | |
1080 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1080 | #junkspc_interf[:,comp_mask_prof] = 0 | |
1081 |
|
1081 | |||
1082 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf |
|
1082 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf | |
1083 | jspc_interf = jspc_interf.transpose() |
|
1083 | jspc_interf = jspc_interf.transpose() | |
1084 | #Calculando el espectro de interferencia promedio |
|
1084 | #Calculando el espectro de interferencia promedio | |
1085 | noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh)) |
|
1085 | noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh)) | |
1086 | noiseid = noiseid[0] |
|
1086 | noiseid = noiseid[0] | |
1087 | cnoiseid = noiseid.size |
|
1087 | cnoiseid = noiseid.size | |
1088 | interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh)) |
|
1088 | interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh)) | |
1089 | interfid = interfid[0] |
|
1089 | interfid = interfid[0] | |
1090 | cinterfid = interfid.size |
|
1090 | cinterfid = interfid.size | |
1091 |
|
1091 | |||
1092 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 |
|
1092 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 | |
1093 |
|
1093 | |||
1094 | #Expandiendo los perfiles a limpiar |
|
1094 | #Expandiendo los perfiles a limpiar | |
1095 | if (cinterfid > 0): |
|
1095 | if (cinterfid > 0): | |
1096 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof |
|
1096 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof | |
1097 | new_interfid = numpy.asarray(new_interfid) |
|
1097 | new_interfid = numpy.asarray(new_interfid) | |
1098 | new_interfid = {x for x in new_interfid} |
|
1098 | new_interfid = {x for x in new_interfid} | |
1099 | new_interfid = numpy.array(list(new_interfid)) |
|
1099 | new_interfid = numpy.array(list(new_interfid)) | |
1100 | new_cinterfid = new_interfid.size |
|
1100 | new_cinterfid = new_interfid.size | |
1101 | else: new_cinterfid = 0 |
|
1101 | else: new_cinterfid = 0 | |
1102 |
|
1102 | |||
1103 | for ip in range(new_cinterfid): |
|
1103 | for ip in range(new_cinterfid): | |
1104 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() |
|
1104 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() | |
1105 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] |
|
1105 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] | |
1106 |
|
1106 | |||
1107 |
|
1107 | |||
1108 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices |
|
1108 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices | |
1109 |
|
1109 | |||
1110 | #Removiendo la interferencia del punto de mayor interferencia |
|
1110 | #Removiendo la interferencia del punto de mayor interferencia | |
1111 | ListAux = jspc_interf[mask_prof].tolist() |
|
1111 | ListAux = jspc_interf[mask_prof].tolist() | |
1112 | maxid = ListAux.index(max(ListAux)) |
|
1112 | maxid = ListAux.index(max(ListAux)) | |
1113 |
|
1113 | |||
1114 |
|
1114 | |||
1115 | if cinterfid > 0: |
|
1115 | if cinterfid > 0: | |
1116 | for ip in range(cinterfid*(interf == 2) - 1): |
|
1116 | for ip in range(cinterfid*(interf == 2) - 1): | |
1117 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero() |
|
1117 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero() | |
1118 | cind = len(ind) |
|
1118 | cind = len(ind) | |
1119 |
|
1119 | |||
1120 | if (cind > 0): |
|
1120 | if (cind > 0): | |
1121 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh)) |
|
1121 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh)) | |
1122 |
|
1122 | |||
1123 | ind = numpy.array([-2,-1,1,2]) |
|
1123 | ind = numpy.array([-2,-1,1,2]) | |
1124 | xx = numpy.zeros([4,4]) |
|
1124 | xx = numpy.zeros([4,4]) | |
1125 |
|
1125 | |||
1126 | for id1 in range(4): |
|
1126 | for id1 in range(4): | |
1127 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
1127 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
1128 |
|
1128 | |||
1129 | xx_inv = numpy.linalg.inv(xx) |
|
1129 | xx_inv = numpy.linalg.inv(xx) | |
1130 | xx = xx_inv[:,0] |
|
1130 | xx = xx_inv[:,0] | |
1131 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
1131 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
1132 | yy = jspectra[ich,mask_prof[ind],:] |
|
1132 | yy = jspectra[ich,mask_prof[ind],:] | |
1133 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
1133 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
1134 |
|
1134 | |||
1135 |
|
1135 | |||
1136 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero() |
|
1136 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero() | |
1137 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh)) |
|
1137 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh)) | |
1138 |
|
1138 | |||
1139 | #Remocion de Interferencia en el Cross Spectra |
|
1139 | #Remocion de Interferencia en el Cross Spectra | |
1140 | if jcspectra == None: return jspectra, jcspectra |
|
1140 | if jcspectra == None: return jspectra, jcspectra | |
1141 | num_pairs = jcspectra.size/(num_prof*num_hei) |
|
1141 | num_pairs = jcspectra.size/(num_prof*num_hei) | |
1142 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1142 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
1143 |
|
1143 | |||
1144 | for ip in range(num_pairs): |
|
1144 | for ip in range(num_pairs): | |
1145 |
|
1145 | |||
1146 | #------------------------------------------- |
|
1146 | #------------------------------------------- | |
1147 |
|
1147 | |||
1148 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) |
|
1148 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) | |
1149 | cspower = cspower[:,hei_interf] |
|
1149 | cspower = cspower[:,hei_interf] | |
1150 | cspower = cspower.sum(axis = 0) |
|
1150 | cspower = cspower.sum(axis = 0) | |
1151 |
|
1151 | |||
1152 | cspsort = cspower.ravel().argsort() |
|
1152 | cspsort = cspower.ravel().argsort() | |
1153 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
1153 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
1154 | junkcspc_interf = junkcspc_interf.transpose() |
|
1154 | junkcspc_interf = junkcspc_interf.transpose() | |
1155 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf |
|
1155 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf | |
1156 |
|
1156 | |||
1157 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1157 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1158 |
|
1158 | |||
1159 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
1159 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
1160 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
1160 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
1161 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) |
|
1161 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) | |
1162 |
|
1162 | |||
1163 | for iprof in range(num_prof): |
|
1163 | for iprof in range(num_prof): | |
1164 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() |
|
1164 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() | |
1165 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] |
|
1165 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] | |
1166 |
|
1166 | |||
1167 | #Removiendo la Interferencia |
|
1167 | #Removiendo la Interferencia | |
1168 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf |
|
1168 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf | |
1169 |
|
1169 | |||
1170 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1170 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1171 | maxid = ListAux.index(max(ListAux)) |
|
1171 | maxid = ListAux.index(max(ListAux)) | |
1172 |
|
1172 | |||
1173 | ind = numpy.array([-2,-1,1,2]) |
|
1173 | ind = numpy.array([-2,-1,1,2]) | |
1174 | xx = numpy.zeros([4,4]) |
|
1174 | xx = numpy.zeros([4,4]) | |
1175 |
|
1175 | |||
1176 | for id1 in range(4): |
|
1176 | for id1 in range(4): | |
1177 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
1177 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
1178 |
|
1178 | |||
1179 | xx_inv = numpy.linalg.inv(xx) |
|
1179 | xx_inv = numpy.linalg.inv(xx) | |
1180 | xx = xx_inv[:,0] |
|
1180 | xx = xx_inv[:,0] | |
1181 |
|
1181 | |||
1182 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
1182 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
1183 | yy = jcspectra[ip,mask_prof[ind],:] |
|
1183 | yy = jcspectra[ip,mask_prof[ind],:] | |
1184 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
1184 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
1185 |
|
1185 | |||
1186 | #Guardar Resultados |
|
1186 | #Guardar Resultados | |
1187 | self.dataOut.data_spc = jspectra |
|
1187 | self.dataOut.data_spc = jspectra | |
1188 | self.dataOut.data_cspc = jcspectra |
|
1188 | self.dataOut.data_cspc = jcspectra | |
1189 |
|
1189 | |||
1190 | return 1 |
|
1190 | return 1 | |
1191 |
|
1191 | |||
1192 | def setRadarFrequency(self, frequency=None): |
|
1192 | def setRadarFrequency(self, frequency=None): | |
1193 | if frequency != None: |
|
1193 | if frequency != None: | |
1194 | self.dataOut.frequency = frequency |
|
1194 | self.dataOut.frequency = frequency | |
1195 |
|
1195 | |||
1196 | return 1 |
|
1196 | return 1 | |
1197 |
|
1197 | |||
1198 | def getNoise(self, minHei, maxHei): |
|
1198 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
|
1199 | #validacion de rango | |||
|
1200 | if minHei == None: | |||
|
1201 | minHei = self.dataOut.heightList[0] | |||
1199 |
|
1202 | |||
|
1203 | if maxHei == None: | |||
|
1204 | maxHei = self.dataOut.heightList[-1] | |||
|
1205 | ||||
1200 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1206 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
1201 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
1207 | print 'minHei: %.2f is out of the heights range'%(minHei) | |
|
1208 | print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) | |||
|
1209 | minHei = self.dataOut.heightList[0] | |||
1202 |
|
1210 | |||
1203 | if (maxHei > self.dataOut.heightList[-1]): |
|
1211 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
|
1212 | print 'maxHei: %.2f is out of the heights range'%(maxHei) | |||
|
1213 | print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) | |||
1204 | maxHei = self.dataOut.heightList[-1] |
|
1214 | maxHei = self.dataOut.heightList[-1] | |
1205 |
|
1215 | |||
|
1216 | # validacion de velocidades | |||
|
1217 | velrange = self.dataOut.getVelRange(1) | |||
|
1218 | ||||
|
1219 | if minVel == None: | |||
|
1220 | minVel = velrange[0] | |||
|
1221 | ||||
|
1222 | if maxVel == None: | |||
|
1223 | maxVel = velrange[-1] | |||
|
1224 | ||||
|
1225 | if (minVel < velrange[0]) or (minVel > maxVel): | |||
|
1226 | print 'minVel: %.2f is out of the velocity range'%(minVel) | |||
|
1227 | print 'minVel is setting to %.2f'%(velrange[0]) | |||
|
1228 | minVel = velrange[0] | |||
|
1229 | ||||
|
1230 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |||
|
1231 | print 'maxVel: %.2f is out of the velocity range'%(maxVel) | |||
|
1232 | print 'maxVel is setting to %.2f'%(velrange[-1]) | |||
|
1233 | maxVel = velrange[-1] | |||
|
1234 | ||||
|
1235 | # seleccion de indices para rango | |||
1206 | minIndex = 0 |
|
1236 | minIndex = 0 | |
1207 | maxIndex = 0 |
|
1237 | maxIndex = 0 | |
1208 | heights = self.dataOut.heightList |
|
1238 | heights = self.dataOut.heightList | |
1209 |
|
1239 | |||
1210 | inda = numpy.where(heights >= minHei) |
|
1240 | inda = numpy.where(heights >= minHei) | |
1211 | indb = numpy.where(heights <= maxHei) |
|
1241 | indb = numpy.where(heights <= maxHei) | |
1212 |
|
1242 | |||
1213 | try: |
|
1243 | try: | |
1214 | minIndex = inda[0][0] |
|
1244 | minIndex = inda[0][0] | |
1215 | except: |
|
1245 | except: | |
1216 | minIndex = 0 |
|
1246 | minIndex = 0 | |
1217 |
|
1247 | |||
1218 | try: |
|
1248 | try: | |
1219 | maxIndex = indb[0][-1] |
|
1249 | maxIndex = indb[0][-1] | |
1220 | except: |
|
1250 | except: | |
1221 | maxIndex = len(heights) |
|
1251 | maxIndex = len(heights) | |
1222 |
|
1252 | |||
1223 | if (minIndex < 0) or (minIndex > maxIndex): |
|
1253 | if (minIndex < 0) or (minIndex > maxIndex): | |
1224 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
1254 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
1225 |
|
1255 | |||
1226 | if (maxIndex >= self.dataOut.nHeights): |
|
1256 | if (maxIndex >= self.dataOut.nHeights): | |
1227 | maxIndex = self.dataOut.nHeights-1 |
|
1257 | maxIndex = self.dataOut.nHeights-1 | |
1228 |
|
1258 | |||
1229 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
1259 | # seleccion de indices para velocidades | |
|
1260 | indminvel = numpy.where(velrange >= minVel) | |||
|
1261 | indmaxvel = numpy.where(velrange <= maxVel) | |||
|
1262 | try: | |||
|
1263 | minIndexVel = indminvel[0][0] | |||
|
1264 | except: | |||
|
1265 | minIndexVel = 0 | |||
|
1266 | ||||
|
1267 | try: | |||
|
1268 | maxIndexVel = indmaxvel[0][-1] | |||
|
1269 | except: | |||
|
1270 | maxIndexVel = len(velrange) | |||
1230 |
|
1271 | |||
|
1272 | #seleccion del espectro | |||
|
1273 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] | |||
|
1274 | #estimacion de ruido | |||
1231 | noise = numpy.zeros(self.dataOut.nChannels) |
|
1275 | noise = numpy.zeros(self.dataOut.nChannels) | |
1232 |
|
1276 | |||
1233 | for channel in range(self.dataOut.nChannels): |
|
1277 | for channel in range(self.dataOut.nChannels): | |
1234 | daux = data_spc[channel,:,:] |
|
1278 | daux = data_spc[channel,:,:] | |
1235 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
1279 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) | |
1236 |
|
1280 | |||
1237 | self.dataOut.noise = noise.copy() |
|
1281 | self.dataOut.noise = noise.copy() | |
1238 |
|
1282 | |||
1239 | return 1 |
|
1283 | return 1 | |
1240 |
|
1284 | |||
1241 |
|
1285 | |||
1242 | class IncohInt(Operation): |
|
1286 | class IncohInt(Operation): | |
1243 |
|
1287 | |||
1244 |
|
1288 | |||
1245 | __profIndex = 0 |
|
1289 | __profIndex = 0 | |
1246 | __withOverapping = False |
|
1290 | __withOverapping = False | |
1247 |
|
1291 | |||
1248 | __byTime = False |
|
1292 | __byTime = False | |
1249 | __initime = None |
|
1293 | __initime = None | |
1250 | __lastdatatime = None |
|
1294 | __lastdatatime = None | |
1251 | __integrationtime = None |
|
1295 | __integrationtime = None | |
1252 |
|
1296 | |||
1253 | __buffer_spc = None |
|
1297 | __buffer_spc = None | |
1254 | __buffer_cspc = None |
|
1298 | __buffer_cspc = None | |
1255 | __buffer_dc = None |
|
1299 | __buffer_dc = None | |
1256 |
|
1300 | |||
1257 | __dataReady = False |
|
1301 | __dataReady = False | |
1258 |
|
1302 | |||
1259 | __timeInterval = None |
|
1303 | __timeInterval = None | |
1260 |
|
1304 | |||
1261 | n = None |
|
1305 | n = None | |
1262 |
|
1306 | |||
1263 |
|
1307 | |||
1264 |
|
1308 | |||
1265 | def __init__(self): |
|
1309 | def __init__(self): | |
1266 |
|
1310 | |||
1267 | self.__isConfig = False |
|
1311 | self.__isConfig = False | |
1268 |
|
1312 | |||
1269 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1313 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1270 | """ |
|
1314 | """ | |
1271 | Set the parameters of the integration class. |
|
1315 | Set the parameters of the integration class. | |
1272 |
|
1316 | |||
1273 | Inputs: |
|
1317 | Inputs: | |
1274 |
|
1318 | |||
1275 | n : Number of coherent integrations |
|
1319 | n : Number of coherent integrations | |
1276 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1320 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1277 | overlapping : |
|
1321 | overlapping : | |
1278 |
|
1322 | |||
1279 | """ |
|
1323 | """ | |
1280 |
|
1324 | |||
1281 | self.__initime = None |
|
1325 | self.__initime = None | |
1282 | self.__lastdatatime = 0 |
|
1326 | self.__lastdatatime = 0 | |
1283 | self.__buffer_spc = None |
|
1327 | self.__buffer_spc = None | |
1284 | self.__buffer_cspc = None |
|
1328 | self.__buffer_cspc = None | |
1285 | self.__buffer_dc = None |
|
1329 | self.__buffer_dc = None | |
1286 | self.__dataReady = False |
|
1330 | self.__dataReady = False | |
1287 |
|
1331 | |||
1288 |
|
1332 | |||
1289 | if n == None and timeInterval == None: |
|
1333 | if n == None and timeInterval == None: | |
1290 | raise ValueError, "n or timeInterval should be specified ..." |
|
1334 | raise ValueError, "n or timeInterval should be specified ..." | |
1291 |
|
1335 | |||
1292 | if n != None: |
|
1336 | if n != None: | |
1293 | self.n = n |
|
1337 | self.n = n | |
1294 | self.__byTime = False |
|
1338 | self.__byTime = False | |
1295 | else: |
|
1339 | else: | |
1296 | self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line |
|
1340 | self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line | |
1297 | self.n = 9999 |
|
1341 | self.n = 9999 | |
1298 | self.__byTime = True |
|
1342 | self.__byTime = True | |
1299 |
|
1343 | |||
1300 | if overlapping: |
|
1344 | if overlapping: | |
1301 | self.__withOverapping = True |
|
1345 | self.__withOverapping = True | |
1302 | else: |
|
1346 | else: | |
1303 | self.__withOverapping = False |
|
1347 | self.__withOverapping = False | |
1304 | self.__buffer_spc = 0 |
|
1348 | self.__buffer_spc = 0 | |
1305 | self.__buffer_cspc = 0 |
|
1349 | self.__buffer_cspc = 0 | |
1306 | self.__buffer_dc = 0 |
|
1350 | self.__buffer_dc = 0 | |
1307 |
|
1351 | |||
1308 | self.__profIndex = 0 |
|
1352 | self.__profIndex = 0 | |
1309 |
|
1353 | |||
1310 | def putData(self, data_spc, data_cspc, data_dc): |
|
1354 | def putData(self, data_spc, data_cspc, data_dc): | |
1311 |
|
1355 | |||
1312 | """ |
|
1356 | """ | |
1313 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1357 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1314 |
|
1358 | |||
1315 | """ |
|
1359 | """ | |
1316 |
|
1360 | |||
1317 | if not self.__withOverapping: |
|
1361 | if not self.__withOverapping: | |
1318 | self.__buffer_spc += data_spc |
|
1362 | self.__buffer_spc += data_spc | |
1319 |
|
1363 | |||
1320 | if data_cspc == None: |
|
1364 | if data_cspc == None: | |
1321 | self.__buffer_cspc = None |
|
1365 | self.__buffer_cspc = None | |
1322 | else: |
|
1366 | else: | |
1323 | self.__buffer_cspc += data_cspc |
|
1367 | self.__buffer_cspc += data_cspc | |
1324 |
|
1368 | |||
1325 | if data_dc == None: |
|
1369 | if data_dc == None: | |
1326 | self.__buffer_dc = None |
|
1370 | self.__buffer_dc = None | |
1327 | else: |
|
1371 | else: | |
1328 | self.__buffer_dc += data_dc |
|
1372 | self.__buffer_dc += data_dc | |
1329 |
|
1373 | |||
1330 | self.__profIndex += 1 |
|
1374 | self.__profIndex += 1 | |
1331 | return |
|
1375 | return | |
1332 |
|
1376 | |||
1333 | #Overlapping data |
|
1377 | #Overlapping data | |
1334 | nChannels, nFFTPoints, nHeis = data_spc.shape |
|
1378 | nChannels, nFFTPoints, nHeis = data_spc.shape | |
1335 | data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) |
|
1379 | data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) | |
1336 | if data_cspc != None: |
|
1380 | if data_cspc != None: | |
1337 | data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) |
|
1381 | data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) | |
1338 | if data_dc != None: |
|
1382 | if data_dc != None: | |
1339 | data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) |
|
1383 | data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) | |
1340 |
|
1384 | |||
1341 | #If the buffer is empty then it takes the data value |
|
1385 | #If the buffer is empty then it takes the data value | |
1342 | if self.__buffer_spc == None: |
|
1386 | if self.__buffer_spc == None: | |
1343 | self.__buffer_spc = data_spc |
|
1387 | self.__buffer_spc = data_spc | |
1344 |
|
1388 | |||
1345 | if data_cspc == None: |
|
1389 | if data_cspc == None: | |
1346 | self.__buffer_cspc = None |
|
1390 | self.__buffer_cspc = None | |
1347 | else: |
|
1391 | else: | |
1348 | self.__buffer_cspc += data_cspc |
|
1392 | self.__buffer_cspc += data_cspc | |
1349 |
|
1393 | |||
1350 | if data_dc == None: |
|
1394 | if data_dc == None: | |
1351 | self.__buffer_dc = None |
|
1395 | self.__buffer_dc = None | |
1352 | else: |
|
1396 | else: | |
1353 | self.__buffer_dc += data_dc |
|
1397 | self.__buffer_dc += data_dc | |
1354 |
|
1398 | |||
1355 | self.__profIndex += 1 |
|
1399 | self.__profIndex += 1 | |
1356 | return |
|
1400 | return | |
1357 |
|
1401 | |||
1358 | #If the buffer length is lower than n then stakcing the data value |
|
1402 | #If the buffer length is lower than n then stakcing the data value | |
1359 | if self.__profIndex < self.n: |
|
1403 | if self.__profIndex < self.n: | |
1360 | self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) |
|
1404 | self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) | |
1361 |
|
1405 | |||
1362 | if data_cspc != None: |
|
1406 | if data_cspc != None: | |
1363 | self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) |
|
1407 | self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) | |
1364 |
|
1408 | |||
1365 | if data_dc != None: |
|
1409 | if data_dc != None: | |
1366 | self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) |
|
1410 | self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) | |
1367 |
|
1411 | |||
1368 | self.__profIndex += 1 |
|
1412 | self.__profIndex += 1 | |
1369 | return |
|
1413 | return | |
1370 |
|
1414 | |||
1371 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
1415 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
1372 | self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) |
|
1416 | self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) | |
1373 | self.__buffer_spc[self.n-1] = data_spc |
|
1417 | self.__buffer_spc[self.n-1] = data_spc | |
1374 |
|
1418 | |||
1375 | if data_cspc != None: |
|
1419 | if data_cspc != None: | |
1376 | self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) |
|
1420 | self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) | |
1377 | self.__buffer_cspc[self.n-1] = data_cspc |
|
1421 | self.__buffer_cspc[self.n-1] = data_cspc | |
1378 |
|
1422 | |||
1379 | if data_dc != None: |
|
1423 | if data_dc != None: | |
1380 | self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) |
|
1424 | self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) | |
1381 | self.__buffer_dc[self.n-1] = data_dc |
|
1425 | self.__buffer_dc[self.n-1] = data_dc | |
1382 |
|
1426 | |||
1383 | self.__profIndex = self.n |
|
1427 | self.__profIndex = self.n | |
1384 | return |
|
1428 | return | |
1385 |
|
1429 | |||
1386 |
|
1430 | |||
1387 | def pushData(self): |
|
1431 | def pushData(self): | |
1388 | """ |
|
1432 | """ | |
1389 | Return the sum of the last profiles and the profiles used in the sum. |
|
1433 | Return the sum of the last profiles and the profiles used in the sum. | |
1390 |
|
1434 | |||
1391 | Affected: |
|
1435 | Affected: | |
1392 |
|
1436 | |||
1393 | self.__profileIndex |
|
1437 | self.__profileIndex | |
1394 |
|
1438 | |||
1395 | """ |
|
1439 | """ | |
1396 | data_spc = None |
|
1440 | data_spc = None | |
1397 | data_cspc = None |
|
1441 | data_cspc = None | |
1398 | data_dc = None |
|
1442 | data_dc = None | |
1399 |
|
1443 | |||
1400 | if not self.__withOverapping: |
|
1444 | if not self.__withOverapping: | |
1401 | data_spc = self.__buffer_spc |
|
1445 | data_spc = self.__buffer_spc | |
1402 | data_cspc = self.__buffer_cspc |
|
1446 | data_cspc = self.__buffer_cspc | |
1403 | data_dc = self.__buffer_dc |
|
1447 | data_dc = self.__buffer_dc | |
1404 |
|
1448 | |||
1405 | n = self.__profIndex |
|
1449 | n = self.__profIndex | |
1406 |
|
1450 | |||
1407 | self.__buffer_spc = 0 |
|
1451 | self.__buffer_spc = 0 | |
1408 | self.__buffer_cspc = 0 |
|
1452 | self.__buffer_cspc = 0 | |
1409 | self.__buffer_dc = 0 |
|
1453 | self.__buffer_dc = 0 | |
1410 | self.__profIndex = 0 |
|
1454 | self.__profIndex = 0 | |
1411 |
|
1455 | |||
1412 | return data_spc, data_cspc, data_dc, n |
|
1456 | return data_spc, data_cspc, data_dc, n | |
1413 |
|
1457 | |||
1414 | #Integration with Overlapping |
|
1458 | #Integration with Overlapping | |
1415 | data_spc = numpy.sum(self.__buffer_spc, axis=0) |
|
1459 | data_spc = numpy.sum(self.__buffer_spc, axis=0) | |
1416 |
|
1460 | |||
1417 | if self.__buffer_cspc != None: |
|
1461 | if self.__buffer_cspc != None: | |
1418 | data_cspc = numpy.sum(self.__buffer_cspc, axis=0) |
|
1462 | data_cspc = numpy.sum(self.__buffer_cspc, axis=0) | |
1419 |
|
1463 | |||
1420 | if self.__buffer_dc != None: |
|
1464 | if self.__buffer_dc != None: | |
1421 | data_dc = numpy.sum(self.__buffer_dc, axis=0) |
|
1465 | data_dc = numpy.sum(self.__buffer_dc, axis=0) | |
1422 |
|
1466 | |||
1423 | n = self.__profIndex |
|
1467 | n = self.__profIndex | |
1424 |
|
1468 | |||
1425 | return data_spc, data_cspc, data_dc, n |
|
1469 | return data_spc, data_cspc, data_dc, n | |
1426 |
|
1470 | |||
1427 | def byProfiles(self, *args): |
|
1471 | def byProfiles(self, *args): | |
1428 |
|
1472 | |||
1429 | self.__dataReady = False |
|
1473 | self.__dataReady = False | |
1430 | avgdata_spc = None |
|
1474 | avgdata_spc = None | |
1431 | avgdata_cspc = None |
|
1475 | avgdata_cspc = None | |
1432 | avgdata_dc = None |
|
1476 | avgdata_dc = None | |
1433 | n = None |
|
1477 | n = None | |
1434 |
|
1478 | |||
1435 | self.putData(*args) |
|
1479 | self.putData(*args) | |
1436 |
|
1480 | |||
1437 | if self.__profIndex == self.n: |
|
1481 | if self.__profIndex == self.n: | |
1438 |
|
1482 | |||
1439 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1483 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1440 | self.__dataReady = True |
|
1484 | self.__dataReady = True | |
1441 |
|
1485 | |||
1442 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1486 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1443 |
|
1487 | |||
1444 | def byTime(self, datatime, *args): |
|
1488 | def byTime(self, datatime, *args): | |
1445 |
|
1489 | |||
1446 | self.__dataReady = False |
|
1490 | self.__dataReady = False | |
1447 | avgdata_spc = None |
|
1491 | avgdata_spc = None | |
1448 | avgdata_cspc = None |
|
1492 | avgdata_cspc = None | |
1449 | avgdata_dc = None |
|
1493 | avgdata_dc = None | |
1450 | n = None |
|
1494 | n = None | |
1451 |
|
1495 | |||
1452 | self.putData(*args) |
|
1496 | self.putData(*args) | |
1453 |
|
1497 | |||
1454 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1498 | if (datatime - self.__initime) >= self.__integrationtime: | |
1455 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1499 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1456 | self.n = n |
|
1500 | self.n = n | |
1457 | self.__dataReady = True |
|
1501 | self.__dataReady = True | |
1458 |
|
1502 | |||
1459 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1503 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1460 |
|
1504 | |||
1461 | def integrate(self, datatime, *args): |
|
1505 | def integrate(self, datatime, *args): | |
1462 |
|
1506 | |||
1463 | if self.__initime == None: |
|
1507 | if self.__initime == None: | |
1464 | self.__initime = datatime |
|
1508 | self.__initime = datatime | |
1465 |
|
1509 | |||
1466 | if self.__byTime: |
|
1510 | if self.__byTime: | |
1467 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) |
|
1511 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) | |
1468 | else: |
|
1512 | else: | |
1469 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1513 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1470 |
|
1514 | |||
1471 | self.__lastdatatime = datatime |
|
1515 | self.__lastdatatime = datatime | |
1472 |
|
1516 | |||
1473 | if avgdata_spc == None: |
|
1517 | if avgdata_spc == None: | |
1474 | return None, None, None, None |
|
1518 | return None, None, None, None | |
1475 |
|
1519 | |||
1476 | avgdatatime = self.__initime |
|
1520 | avgdatatime = self.__initime | |
1477 | try: |
|
1521 | try: | |
1478 | self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1) |
|
1522 | self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1) | |
1479 | except: |
|
1523 | except: | |
1480 | self.__timeInterval = self.__lastdatatime - self.__initime |
|
1524 | self.__timeInterval = self.__lastdatatime - self.__initime | |
1481 |
|
1525 | |||
1482 | deltatime = datatime -self.__lastdatatime |
|
1526 | deltatime = datatime -self.__lastdatatime | |
1483 |
|
1527 | |||
1484 | if not self.__withOverapping: |
|
1528 | if not self.__withOverapping: | |
1485 | self.__initime = datatime |
|
1529 | self.__initime = datatime | |
1486 | else: |
|
1530 | else: | |
1487 | self.__initime += deltatime |
|
1531 | self.__initime += deltatime | |
1488 |
|
1532 | |||
1489 | return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1533 | return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1490 |
|
1534 | |||
1491 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1535 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1492 |
|
1536 | |||
1493 | if n==1: |
|
1537 | if n==1: | |
1494 | dataOut.flagNoData = False |
|
1538 | dataOut.flagNoData = False | |
1495 | return |
|
1539 | return | |
1496 |
|
1540 | |||
1497 | if not self.__isConfig: |
|
1541 | if not self.__isConfig: | |
1498 | self.setup(n, timeInterval, overlapping) |
|
1542 | self.setup(n, timeInterval, overlapping) | |
1499 | self.__isConfig = True |
|
1543 | self.__isConfig = True | |
1500 |
|
1544 | |||
1501 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1545 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1502 | dataOut.data_spc, |
|
1546 | dataOut.data_spc, | |
1503 | dataOut.data_cspc, |
|
1547 | dataOut.data_cspc, | |
1504 | dataOut.data_dc) |
|
1548 | dataOut.data_dc) | |
1505 |
|
1549 | |||
1506 | # dataOut.timeInterval *= n |
|
1550 | # dataOut.timeInterval *= n | |
1507 | dataOut.flagNoData = True |
|
1551 | dataOut.flagNoData = True | |
1508 |
|
1552 | |||
1509 | if self.__dataReady: |
|
1553 | if self.__dataReady: | |
1510 |
|
1554 | |||
1511 | dataOut.data_spc = avgdata_spc |
|
1555 | dataOut.data_spc = avgdata_spc | |
1512 | dataOut.data_cspc = avgdata_cspc |
|
1556 | dataOut.data_cspc = avgdata_cspc | |
1513 | dataOut.data_dc = avgdata_dc |
|
1557 | dataOut.data_dc = avgdata_dc | |
1514 |
|
1558 | |||
1515 | dataOut.nIncohInt *= self.n |
|
1559 | dataOut.nIncohInt *= self.n | |
1516 | dataOut.utctime = avgdatatime |
|
1560 | dataOut.utctime = avgdatatime | |
1517 | #dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints |
|
1561 | #dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints | |
1518 | dataOut.timeInterval = self.__timeInterval*self.n |
|
1562 | dataOut.timeInterval = self.__timeInterval*self.n | |
1519 | dataOut.flagNoData = False |
|
1563 | dataOut.flagNoData = False | |
1520 |
|
1564 | |||
1521 | class ProfileConcat(Operation): |
|
1565 | class ProfileConcat(Operation): | |
1522 |
|
1566 | |||
1523 | __isConfig = False |
|
1567 | __isConfig = False | |
1524 | buffer = None |
|
1568 | buffer = None | |
1525 |
|
1569 | |||
1526 | def __init__(self): |
|
1570 | def __init__(self): | |
1527 |
|
1571 | |||
1528 | self.profileIndex = 0 |
|
1572 | self.profileIndex = 0 | |
1529 |
|
1573 | |||
1530 | def reset(self): |
|
1574 | def reset(self): | |
1531 | self.buffer = numpy.zeros_like(self.buffer) |
|
1575 | self.buffer = numpy.zeros_like(self.buffer) | |
1532 | self.start_index = 0 |
|
1576 | self.start_index = 0 | |
1533 | self.times = 1 |
|
1577 | self.times = 1 | |
1534 |
|
1578 | |||
1535 | def setup(self, data, m, n=1): |
|
1579 | def setup(self, data, m, n=1): | |
1536 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
1580 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |
1537 | self.profiles = data.shape[1] |
|
1581 | self.profiles = data.shape[1] | |
1538 | self.start_index = 0 |
|
1582 | self.start_index = 0 | |
1539 | self.times = 1 |
|
1583 | self.times = 1 | |
1540 |
|
1584 | |||
1541 | def concat(self, data): |
|
1585 | def concat(self, data): | |
1542 |
|
1586 | |||
1543 | self.buffer[:,self.start_index:self.profiles*self.times] = data.copy() |
|
1587 | self.buffer[:,self.start_index:self.profiles*self.times] = data.copy() | |
1544 | self.start_index = self.start_index + self.profiles |
|
1588 | self.start_index = self.start_index + self.profiles | |
1545 |
|
1589 | |||
1546 | def run(self, dataOut, m): |
|
1590 | def run(self, dataOut, m): | |
1547 |
|
1591 | |||
1548 | dataOut.flagNoData = True |
|
1592 | dataOut.flagNoData = True | |
1549 |
|
1593 | |||
1550 | if not self.__isConfig: |
|
1594 | if not self.__isConfig: | |
1551 | self.setup(dataOut.data, m, 1) |
|
1595 | self.setup(dataOut.data, m, 1) | |
1552 | self.__isConfig = True |
|
1596 | self.__isConfig = True | |
1553 |
|
1597 | |||
1554 | self.concat(dataOut.data) |
|
1598 | self.concat(dataOut.data) | |
1555 | self.times += 1 |
|
1599 | self.times += 1 | |
1556 | if self.times > m: |
|
1600 | if self.times > m: | |
1557 | dataOut.data = self.buffer |
|
1601 | dataOut.data = self.buffer | |
1558 | self.reset() |
|
1602 | self.reset() | |
1559 | dataOut.flagNoData = False |
|
1603 | dataOut.flagNoData = False | |
1560 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
1604 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
1561 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1605 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1562 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * 5 |
|
1606 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * 5 | |
1563 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
1607 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
1564 |
|
1608 | |||
1565 |
|
1609 | |||
1566 |
|
1610 | |||
1567 | class ProfileSelector(Operation): |
|
1611 | class ProfileSelector(Operation): | |
1568 |
|
1612 | |||
1569 | profileIndex = None |
|
1613 | profileIndex = None | |
1570 | # Tamanho total de los perfiles |
|
1614 | # Tamanho total de los perfiles | |
1571 | nProfiles = None |
|
1615 | nProfiles = None | |
1572 |
|
1616 | |||
1573 | def __init__(self): |
|
1617 | def __init__(self): | |
1574 |
|
1618 | |||
1575 | self.profileIndex = 0 |
|
1619 | self.profileIndex = 0 | |
1576 |
|
1620 | |||
1577 | def incIndex(self): |
|
1621 | def incIndex(self): | |
1578 | self.profileIndex += 1 |
|
1622 | self.profileIndex += 1 | |
1579 |
|
1623 | |||
1580 | if self.profileIndex >= self.nProfiles: |
|
1624 | if self.profileIndex >= self.nProfiles: | |
1581 | self.profileIndex = 0 |
|
1625 | self.profileIndex = 0 | |
1582 |
|
1626 | |||
1583 | def isProfileInRange(self, minIndex, maxIndex): |
|
1627 | def isProfileInRange(self, minIndex, maxIndex): | |
1584 |
|
1628 | |||
1585 | if self.profileIndex < minIndex: |
|
1629 | if self.profileIndex < minIndex: | |
1586 | return False |
|
1630 | return False | |
1587 |
|
1631 | |||
1588 | if self.profileIndex > maxIndex: |
|
1632 | if self.profileIndex > maxIndex: | |
1589 | return False |
|
1633 | return False | |
1590 |
|
1634 | |||
1591 | return True |
|
1635 | return True | |
1592 |
|
1636 | |||
1593 | def isProfileInList(self, profileList): |
|
1637 | def isProfileInList(self, profileList): | |
1594 |
|
1638 | |||
1595 | if self.profileIndex not in profileList: |
|
1639 | if self.profileIndex not in profileList: | |
1596 | return False |
|
1640 | return False | |
1597 |
|
1641 | |||
1598 | return True |
|
1642 | return True | |
1599 |
|
1643 | |||
1600 | def run(self, dataOut, profileList=None, profileRangeList=None): |
|
1644 | def run(self, dataOut, profileList=None, profileRangeList=None): | |
1601 |
|
1645 | |||
1602 | dataOut.flagNoData = True |
|
1646 | dataOut.flagNoData = True | |
1603 | self.nProfiles = dataOut.nProfiles |
|
1647 | self.nProfiles = dataOut.nProfiles | |
1604 |
|
1648 | |||
1605 | if profileList != None: |
|
1649 | if profileList != None: | |
1606 | if self.isProfileInList(profileList): |
|
1650 | if self.isProfileInList(profileList): | |
1607 | dataOut.flagNoData = False |
|
1651 | dataOut.flagNoData = False | |
1608 |
|
1652 | |||
1609 | self.incIndex() |
|
1653 | self.incIndex() | |
1610 | return 1 |
|
1654 | return 1 | |
1611 |
|
1655 | |||
1612 |
|
1656 | |||
1613 | elif profileRangeList != None: |
|
1657 | elif profileRangeList != None: | |
1614 | minIndex = profileRangeList[0] |
|
1658 | minIndex = profileRangeList[0] | |
1615 | maxIndex = profileRangeList[1] |
|
1659 | maxIndex = profileRangeList[1] | |
1616 | if self.isProfileInRange(minIndex, maxIndex): |
|
1660 | if self.isProfileInRange(minIndex, maxIndex): | |
1617 | dataOut.flagNoData = False |
|
1661 | dataOut.flagNoData = False | |
1618 |
|
1662 | |||
1619 | self.incIndex() |
|
1663 | self.incIndex() | |
1620 | return 1 |
|
1664 | return 1 | |
1621 |
|
1665 | |||
1622 | else: |
|
1666 | else: | |
1623 | raise ValueError, "ProfileSelector needs profileList or profileRangeList" |
|
1667 | raise ValueError, "ProfileSelector needs profileList or profileRangeList" | |
1624 |
|
1668 | |||
1625 | return 0 |
|
1669 | return 0 | |
1626 |
|
1670 | |||
1627 | class SpectraHeisProc(ProcessingUnit): |
|
1671 | class SpectraHeisProc(ProcessingUnit): | |
1628 | def __init__(self): |
|
1672 | def __init__(self): | |
1629 | self.objectDict = {} |
|
1673 | self.objectDict = {} | |
1630 | # self.buffer = None |
|
1674 | # self.buffer = None | |
1631 | # self.firstdatatime = None |
|
1675 | # self.firstdatatime = None | |
1632 | # self.profIndex = 0 |
|
1676 | # self.profIndex = 0 | |
1633 | self.dataOut = SpectraHeis() |
|
1677 | self.dataOut = SpectraHeis() | |
1634 |
|
1678 | |||
1635 | def __updateObjFromInput(self): |
|
1679 | def __updateObjFromInput(self): | |
1636 | self.dataOut.timeZone = self.dataIn.timeZone |
|
1680 | self.dataOut.timeZone = self.dataIn.timeZone | |
1637 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
1681 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
1638 | self.dataOut.errorCount = self.dataIn.errorCount |
|
1682 | self.dataOut.errorCount = self.dataIn.errorCount | |
1639 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
1683 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
1640 |
|
1684 | |||
1641 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()# |
|
1685 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()# | |
1642 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()# |
|
1686 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()# | |
1643 | self.dataOut.channelList = self.dataIn.channelList |
|
1687 | self.dataOut.channelList = self.dataIn.channelList | |
1644 | self.dataOut.heightList = self.dataIn.heightList |
|
1688 | self.dataOut.heightList = self.dataIn.heightList | |
1645 | # self.dataOut.dtype = self.dataIn.dtype |
|
1689 | # self.dataOut.dtype = self.dataIn.dtype | |
1646 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
1690 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
1647 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
1691 | # self.dataOut.nHeights = self.dataIn.nHeights | |
1648 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
1692 | # self.dataOut.nChannels = self.dataIn.nChannels | |
1649 | self.dataOut.nBaud = self.dataIn.nBaud |
|
1693 | self.dataOut.nBaud = self.dataIn.nBaud | |
1650 | self.dataOut.nCode = self.dataIn.nCode |
|
1694 | self.dataOut.nCode = self.dataIn.nCode | |
1651 | self.dataOut.code = self.dataIn.code |
|
1695 | self.dataOut.code = self.dataIn.code | |
1652 | # self.dataOut.nProfiles = 1 |
|
1696 | # self.dataOut.nProfiles = 1 | |
1653 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
1697 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
1654 | self.dataOut.nFFTPoints = self.dataIn.nHeights |
|
1698 | self.dataOut.nFFTPoints = self.dataIn.nHeights | |
1655 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
1699 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList | |
1656 | # self.dataOut.flagNoData = self.dataIn.flagNoData |
|
1700 | # self.dataOut.flagNoData = self.dataIn.flagNoData | |
1657 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock |
|
1701 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock | |
1658 | self.dataOut.utctime = self.dataIn.utctime |
|
1702 | self.dataOut.utctime = self.dataIn.utctime | |
1659 | # self.dataOut.utctime = self.firstdatatime |
|
1703 | # self.dataOut.utctime = self.firstdatatime | |
1660 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
1704 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
1661 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
1705 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
1662 | # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT |
|
1706 | # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT | |
1663 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
1707 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
1664 | self.dataOut.nIncohInt = 1 |
|
1708 | self.dataOut.nIncohInt = 1 | |
1665 | self.dataOut.ippSeconds= self.dataIn.ippSeconds |
|
1709 | self.dataOut.ippSeconds= self.dataIn.ippSeconds | |
1666 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
1710 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
1667 |
|
1711 | |||
1668 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt |
|
1712 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt | |
1669 | # self.dataOut.set=self.dataIn.set |
|
1713 | # self.dataOut.set=self.dataIn.set | |
1670 | # self.dataOut.deltaHeight=self.dataIn.deltaHeight |
|
1714 | # self.dataOut.deltaHeight=self.dataIn.deltaHeight | |
1671 |
|
1715 | |||
1672 |
|
1716 | |||
1673 | def __updateObjFromFits(self): |
|
1717 | def __updateObjFromFits(self): | |
1674 | self.dataOut.utctime = self.dataIn.utctime |
|
1718 | self.dataOut.utctime = self.dataIn.utctime | |
1675 | self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
1719 | self.dataOut.channelIndexList = self.dataIn.channelIndexList | |
1676 |
|
1720 | |||
1677 | self.dataOut.channelList = self.dataIn.channelList |
|
1721 | self.dataOut.channelList = self.dataIn.channelList | |
1678 | self.dataOut.heightList = self.dataIn.heightList |
|
1722 | self.dataOut.heightList = self.dataIn.heightList | |
1679 | self.dataOut.data_spc = self.dataIn.data |
|
1723 | self.dataOut.data_spc = self.dataIn.data | |
1680 | self.dataOut.timeInterval = self.dataIn.timeInterval |
|
1724 | self.dataOut.timeInterval = self.dataIn.timeInterval | |
1681 | self.dataOut.timeZone = self.dataIn.timeZone |
|
1725 | self.dataOut.timeZone = self.dataIn.timeZone | |
1682 | self.dataOut.useLocalTime = True |
|
1726 | self.dataOut.useLocalTime = True | |
1683 | # self.dataOut. |
|
1727 | # self.dataOut. | |
1684 | # self.dataOut. |
|
1728 | # self.dataOut. | |
1685 |
|
1729 | |||
1686 | def __getFft(self): |
|
1730 | def __getFft(self): | |
1687 |
|
1731 | |||
1688 | fft_volt = numpy.fft.fft(self.dataIn.data, axis=1) |
|
1732 | fft_volt = numpy.fft.fft(self.dataIn.data, axis=1) | |
1689 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
1733 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) | |
1690 | spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints) |
|
1734 | spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints) | |
1691 | self.dataOut.data_spc = spc |
|
1735 | self.dataOut.data_spc = spc | |
1692 |
|
1736 | |||
1693 | def init(self): |
|
1737 | def init(self): | |
1694 |
|
1738 | |||
1695 | self.dataOut.flagNoData = True |
|
1739 | self.dataOut.flagNoData = True | |
1696 |
|
1740 | |||
1697 | if self.dataIn.type == "Fits": |
|
1741 | if self.dataIn.type == "Fits": | |
1698 | self.__updateObjFromFits() |
|
1742 | self.__updateObjFromFits() | |
1699 | self.dataOut.flagNoData = False |
|
1743 | self.dataOut.flagNoData = False | |
1700 | return |
|
1744 | return | |
1701 |
|
1745 | |||
1702 | if self.dataIn.type == "SpectraHeis": |
|
1746 | if self.dataIn.type == "SpectraHeis": | |
1703 | self.dataOut.copy(self.dataIn) |
|
1747 | self.dataOut.copy(self.dataIn) | |
1704 | return |
|
1748 | return | |
1705 |
|
1749 | |||
1706 | if self.dataIn.type == "Voltage": |
|
1750 | if self.dataIn.type == "Voltage": | |
1707 | self.__updateObjFromInput() |
|
1751 | self.__updateObjFromInput() | |
1708 | self.__getFft() |
|
1752 | self.__getFft() | |
1709 | self.dataOut.flagNoData = False |
|
1753 | self.dataOut.flagNoData = False | |
1710 |
|
1754 | |||
1711 | return |
|
1755 | return | |
1712 |
|
1756 | |||
1713 | raise ValueError, "The type object %s is not valid"%(self.dataIn.type) |
|
1757 | raise ValueError, "The type object %s is not valid"%(self.dataIn.type) | |
1714 |
|
1758 | |||
1715 |
|
1759 | |||
1716 | def selectChannels(self, channelList): |
|
1760 | def selectChannels(self, channelList): | |
1717 |
|
1761 | |||
1718 | channelIndexList = [] |
|
1762 | channelIndexList = [] | |
1719 |
|
1763 | |||
1720 | for channel in channelList: |
|
1764 | for channel in channelList: | |
1721 | index = self.dataOut.channelList.index(channel) |
|
1765 | index = self.dataOut.channelList.index(channel) | |
1722 | channelIndexList.append(index) |
|
1766 | channelIndexList.append(index) | |
1723 |
|
1767 | |||
1724 | self.selectChannelsByIndex(channelIndexList) |
|
1768 | self.selectChannelsByIndex(channelIndexList) | |
1725 |
|
1769 | |||
1726 | def selectChannelsByIndex(self, channelIndexList): |
|
1770 | def selectChannelsByIndex(self, channelIndexList): | |
1727 | """ |
|
1771 | """ | |
1728 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
1772 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
1729 |
|
1773 | |||
1730 | Input: |
|
1774 | Input: | |
1731 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
1775 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
1732 |
|
1776 | |||
1733 | Affected: |
|
1777 | Affected: | |
1734 | self.dataOut.data |
|
1778 | self.dataOut.data | |
1735 | self.dataOut.channelIndexList |
|
1779 | self.dataOut.channelIndexList | |
1736 | self.dataOut.nChannels |
|
1780 | self.dataOut.nChannels | |
1737 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
1781 | self.dataOut.m_ProcessingHeader.totalSpectra | |
1738 | self.dataOut.systemHeaderObj.numChannels |
|
1782 | self.dataOut.systemHeaderObj.numChannels | |
1739 | self.dataOut.m_ProcessingHeader.blockSize |
|
1783 | self.dataOut.m_ProcessingHeader.blockSize | |
1740 |
|
1784 | |||
1741 | Return: |
|
1785 | Return: | |
1742 | None |
|
1786 | None | |
1743 | """ |
|
1787 | """ | |
1744 |
|
1788 | |||
1745 | for channelIndex in channelIndexList: |
|
1789 | for channelIndex in channelIndexList: | |
1746 | if channelIndex not in self.dataOut.channelIndexList: |
|
1790 | if channelIndex not in self.dataOut.channelIndexList: | |
1747 | print channelIndexList |
|
1791 | print channelIndexList | |
1748 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
1792 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | |
1749 |
|
1793 | |||
1750 | nChannels = len(channelIndexList) |
|
1794 | nChannels = len(channelIndexList) | |
1751 |
|
1795 | |||
1752 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
1796 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |
1753 |
|
1797 | |||
1754 | self.dataOut.data_spc = data_spc |
|
1798 | self.dataOut.data_spc = data_spc | |
1755 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
1799 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
1756 |
|
1800 | |||
1757 | return 1 |
|
1801 | return 1 | |
1758 |
|
1802 | |||
1759 | class IncohInt4SpectraHeis(Operation): |
|
1803 | class IncohInt4SpectraHeis(Operation): | |
1760 |
|
1804 | |||
1761 | __isConfig = False |
|
1805 | __isConfig = False | |
1762 |
|
1806 | |||
1763 | __profIndex = 0 |
|
1807 | __profIndex = 0 | |
1764 | __withOverapping = False |
|
1808 | __withOverapping = False | |
1765 |
|
1809 | |||
1766 | __byTime = False |
|
1810 | __byTime = False | |
1767 | __initime = None |
|
1811 | __initime = None | |
1768 | __lastdatatime = None |
|
1812 | __lastdatatime = None | |
1769 | __integrationtime = None |
|
1813 | __integrationtime = None | |
1770 |
|
1814 | |||
1771 | __buffer = None |
|
1815 | __buffer = None | |
1772 |
|
1816 | |||
1773 | __dataReady = False |
|
1817 | __dataReady = False | |
1774 |
|
1818 | |||
1775 | n = None |
|
1819 | n = None | |
1776 |
|
1820 | |||
1777 |
|
1821 | |||
1778 | def __init__(self): |
|
1822 | def __init__(self): | |
1779 |
|
1823 | |||
1780 | self.__isConfig = False |
|
1824 | self.__isConfig = False | |
1781 |
|
1825 | |||
1782 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1826 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1783 | """ |
|
1827 | """ | |
1784 | Set the parameters of the integration class. |
|
1828 | Set the parameters of the integration class. | |
1785 |
|
1829 | |||
1786 | Inputs: |
|
1830 | Inputs: | |
1787 |
|
1831 | |||
1788 | n : Number of coherent integrations |
|
1832 | n : Number of coherent integrations | |
1789 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1833 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1790 | overlapping : |
|
1834 | overlapping : | |
1791 |
|
1835 | |||
1792 | """ |
|
1836 | """ | |
1793 |
|
1837 | |||
1794 | self.__initime = None |
|
1838 | self.__initime = None | |
1795 | self.__lastdatatime = 0 |
|
1839 | self.__lastdatatime = 0 | |
1796 | self.__buffer = None |
|
1840 | self.__buffer = None | |
1797 | self.__dataReady = False |
|
1841 | self.__dataReady = False | |
1798 |
|
1842 | |||
1799 |
|
1843 | |||
1800 | if n == None and timeInterval == None: |
|
1844 | if n == None and timeInterval == None: | |
1801 | raise ValueError, "n or timeInterval should be specified ..." |
|
1845 | raise ValueError, "n or timeInterval should be specified ..." | |
1802 |
|
1846 | |||
1803 | if n != None: |
|
1847 | if n != None: | |
1804 | self.n = n |
|
1848 | self.n = n | |
1805 | self.__byTime = False |
|
1849 | self.__byTime = False | |
1806 | else: |
|
1850 | else: | |
1807 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
1851 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
1808 | self.n = 9999 |
|
1852 | self.n = 9999 | |
1809 | self.__byTime = True |
|
1853 | self.__byTime = True | |
1810 |
|
1854 | |||
1811 | if overlapping: |
|
1855 | if overlapping: | |
1812 | self.__withOverapping = True |
|
1856 | self.__withOverapping = True | |
1813 | self.__buffer = None |
|
1857 | self.__buffer = None | |
1814 | else: |
|
1858 | else: | |
1815 | self.__withOverapping = False |
|
1859 | self.__withOverapping = False | |
1816 | self.__buffer = 0 |
|
1860 | self.__buffer = 0 | |
1817 |
|
1861 | |||
1818 | self.__profIndex = 0 |
|
1862 | self.__profIndex = 0 | |
1819 |
|
1863 | |||
1820 | def putData(self, data): |
|
1864 | def putData(self, data): | |
1821 |
|
1865 | |||
1822 | """ |
|
1866 | """ | |
1823 | Add a profile to the __buffer and increase in one the __profileIndex |
|
1867 | Add a profile to the __buffer and increase in one the __profileIndex | |
1824 |
|
1868 | |||
1825 | """ |
|
1869 | """ | |
1826 |
|
1870 | |||
1827 | if not self.__withOverapping: |
|
1871 | if not self.__withOverapping: | |
1828 | self.__buffer += data.copy() |
|
1872 | self.__buffer += data.copy() | |
1829 | self.__profIndex += 1 |
|
1873 | self.__profIndex += 1 | |
1830 | return |
|
1874 | return | |
1831 |
|
1875 | |||
1832 | #Overlapping data |
|
1876 | #Overlapping data | |
1833 | nChannels, nHeis = data.shape |
|
1877 | nChannels, nHeis = data.shape | |
1834 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
1878 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
1835 |
|
1879 | |||
1836 | #If the buffer is empty then it takes the data value |
|
1880 | #If the buffer is empty then it takes the data value | |
1837 | if self.__buffer == None: |
|
1881 | if self.__buffer == None: | |
1838 | self.__buffer = data |
|
1882 | self.__buffer = data | |
1839 | self.__profIndex += 1 |
|
1883 | self.__profIndex += 1 | |
1840 | return |
|
1884 | return | |
1841 |
|
1885 | |||
1842 | #If the buffer length is lower than n then stakcing the data value |
|
1886 | #If the buffer length is lower than n then stakcing the data value | |
1843 | if self.__profIndex < self.n: |
|
1887 | if self.__profIndex < self.n: | |
1844 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
1888 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
1845 | self.__profIndex += 1 |
|
1889 | self.__profIndex += 1 | |
1846 | return |
|
1890 | return | |
1847 |
|
1891 | |||
1848 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
1892 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
1849 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
1893 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
1850 | self.__buffer[self.n-1] = data |
|
1894 | self.__buffer[self.n-1] = data | |
1851 | self.__profIndex = self.n |
|
1895 | self.__profIndex = self.n | |
1852 | return |
|
1896 | return | |
1853 |
|
1897 | |||
1854 |
|
1898 | |||
1855 | def pushData(self): |
|
1899 | def pushData(self): | |
1856 | """ |
|
1900 | """ | |
1857 | Return the sum of the last profiles and the profiles used in the sum. |
|
1901 | Return the sum of the last profiles and the profiles used in the sum. | |
1858 |
|
1902 | |||
1859 | Affected: |
|
1903 | Affected: | |
1860 |
|
1904 | |||
1861 | self.__profileIndex |
|
1905 | self.__profileIndex | |
1862 |
|
1906 | |||
1863 | """ |
|
1907 | """ | |
1864 |
|
1908 | |||
1865 | if not self.__withOverapping: |
|
1909 | if not self.__withOverapping: | |
1866 | data = self.__buffer |
|
1910 | data = self.__buffer | |
1867 | n = self.__profIndex |
|
1911 | n = self.__profIndex | |
1868 |
|
1912 | |||
1869 | self.__buffer = 0 |
|
1913 | self.__buffer = 0 | |
1870 | self.__profIndex = 0 |
|
1914 | self.__profIndex = 0 | |
1871 |
|
1915 | |||
1872 | return data, n |
|
1916 | return data, n | |
1873 |
|
1917 | |||
1874 | #Integration with Overlapping |
|
1918 | #Integration with Overlapping | |
1875 | data = numpy.sum(self.__buffer, axis=0) |
|
1919 | data = numpy.sum(self.__buffer, axis=0) | |
1876 | n = self.__profIndex |
|
1920 | n = self.__profIndex | |
1877 |
|
1921 | |||
1878 | return data, n |
|
1922 | return data, n | |
1879 |
|
1923 | |||
1880 | def byProfiles(self, data): |
|
1924 | def byProfiles(self, data): | |
1881 |
|
1925 | |||
1882 | self.__dataReady = False |
|
1926 | self.__dataReady = False | |
1883 | avgdata = None |
|
1927 | avgdata = None | |
1884 | n = None |
|
1928 | n = None | |
1885 |
|
1929 | |||
1886 | self.putData(data) |
|
1930 | self.putData(data) | |
1887 |
|
1931 | |||
1888 | if self.__profIndex == self.n: |
|
1932 | if self.__profIndex == self.n: | |
1889 |
|
1933 | |||
1890 | avgdata, n = self.pushData() |
|
1934 | avgdata, n = self.pushData() | |
1891 | self.__dataReady = True |
|
1935 | self.__dataReady = True | |
1892 |
|
1936 | |||
1893 | return avgdata |
|
1937 | return avgdata | |
1894 |
|
1938 | |||
1895 | def byTime(self, data, datatime): |
|
1939 | def byTime(self, data, datatime): | |
1896 |
|
1940 | |||
1897 | self.__dataReady = False |
|
1941 | self.__dataReady = False | |
1898 | avgdata = None |
|
1942 | avgdata = None | |
1899 | n = None |
|
1943 | n = None | |
1900 |
|
1944 | |||
1901 | self.putData(data) |
|
1945 | self.putData(data) | |
1902 |
|
1946 | |||
1903 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1947 | if (datatime - self.__initime) >= self.__integrationtime: | |
1904 | avgdata, n = self.pushData() |
|
1948 | avgdata, n = self.pushData() | |
1905 | self.n = n |
|
1949 | self.n = n | |
1906 | self.__dataReady = True |
|
1950 | self.__dataReady = True | |
1907 |
|
1951 | |||
1908 | return avgdata |
|
1952 | return avgdata | |
1909 |
|
1953 | |||
1910 | def integrate(self, data, datatime=None): |
|
1954 | def integrate(self, data, datatime=None): | |
1911 |
|
1955 | |||
1912 | if self.__initime == None: |
|
1956 | if self.__initime == None: | |
1913 | self.__initime = datatime |
|
1957 | self.__initime = datatime | |
1914 |
|
1958 | |||
1915 | if self.__byTime: |
|
1959 | if self.__byTime: | |
1916 | avgdata = self.byTime(data, datatime) |
|
1960 | avgdata = self.byTime(data, datatime) | |
1917 | else: |
|
1961 | else: | |
1918 | avgdata = self.byProfiles(data) |
|
1962 | avgdata = self.byProfiles(data) | |
1919 |
|
1963 | |||
1920 |
|
1964 | |||
1921 | self.__lastdatatime = datatime |
|
1965 | self.__lastdatatime = datatime | |
1922 |
|
1966 | |||
1923 | if avgdata == None: |
|
1967 | if avgdata == None: | |
1924 | return None, None |
|
1968 | return None, None | |
1925 |
|
1969 | |||
1926 | avgdatatime = self.__initime |
|
1970 | avgdatatime = self.__initime | |
1927 |
|
1971 | |||
1928 | deltatime = datatime -self.__lastdatatime |
|
1972 | deltatime = datatime -self.__lastdatatime | |
1929 |
|
1973 | |||
1930 | if not self.__withOverapping: |
|
1974 | if not self.__withOverapping: | |
1931 | self.__initime = datatime |
|
1975 | self.__initime = datatime | |
1932 | else: |
|
1976 | else: | |
1933 | self.__initime += deltatime |
|
1977 | self.__initime += deltatime | |
1934 |
|
1978 | |||
1935 | return avgdata, avgdatatime |
|
1979 | return avgdata, avgdatatime | |
1936 |
|
1980 | |||
1937 | def run(self, dataOut, **kwargs): |
|
1981 | def run(self, dataOut, **kwargs): | |
1938 |
|
1982 | |||
1939 | if not self.__isConfig: |
|
1983 | if not self.__isConfig: | |
1940 | self.setup(**kwargs) |
|
1984 | self.setup(**kwargs) | |
1941 | self.__isConfig = True |
|
1985 | self.__isConfig = True | |
1942 |
|
1986 | |||
1943 | avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime) |
|
1987 | avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime) | |
1944 |
|
1988 | |||
1945 | # dataOut.timeInterval *= n |
|
1989 | # dataOut.timeInterval *= n | |
1946 | dataOut.flagNoData = True |
|
1990 | dataOut.flagNoData = True | |
1947 |
|
1991 | |||
1948 | if self.__dataReady: |
|
1992 | if self.__dataReady: | |
1949 | dataOut.data_spc = avgdata |
|
1993 | dataOut.data_spc = avgdata | |
1950 | dataOut.nIncohInt *= self.n |
|
1994 | dataOut.nIncohInt *= self.n | |
1951 | # dataOut.nCohInt *= self.n |
|
1995 | # dataOut.nCohInt *= self.n | |
1952 | dataOut.utctime = avgdatatime |
|
1996 | dataOut.utctime = avgdatatime | |
1953 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt |
|
1997 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt | |
1954 | # dataOut.timeInterval = self.__timeInterval*self.n |
|
1998 | # dataOut.timeInterval = self.__timeInterval*self.n | |
1955 | dataOut.flagNoData = False |
|
1999 | dataOut.flagNoData = False | |
1956 |
|
2000 | |||
1957 |
|
2001 | |||
1958 |
|
2002 | |||
1959 |
|
2003 | |||
1960 | No newline at end of file |
|
2004 |
General Comments 0
You need to be logged in to leave comments.
Login now