The requested changes are too big and content was truncated. Show full diff
@@ -1,1254 +1,1229 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 |
|
24 | |||
25 | def setup(self): |
|
25 | def setup(self): | |
26 |
|
26 | |||
27 | self.nplots = len(self.data.channels) |
|
27 | self.nplots = len(self.data.channels) | |
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
30 | self.height = 2.6 * self.nrows |
|
30 | self.height = 2.6 * self.nrows | |
31 | self.cb_label = 'dB' |
|
31 | self.cb_label = 'dB' | |
32 | if self.showprofile: |
|
32 | if self.showprofile: | |
33 | self.width = 4 * self.ncols |
|
33 | self.width = 4 * self.ncols | |
34 | else: |
|
34 | else: | |
35 | self.width = 3.5 * self.ncols |
|
35 | self.width = 3.5 * self.ncols | |
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
37 | self.ylabel = 'Range [km]' |
|
37 | self.ylabel = 'Range [km]' | |
38 |
|
38 | |||
39 | def update(self, dataOut): |
|
39 | def update(self, dataOut): | |
40 |
|
40 | |||
41 | data = {} |
|
41 | data = {} | |
42 | meta = {} |
|
42 | meta = {} | |
43 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
43 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
44 | data['spc'] = spc |
|
44 | data['spc'] = spc | |
45 | data['rti'] = dataOut.getPower() |
|
45 | data['rti'] = dataOut.getPower() | |
46 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
46 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
47 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
47 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
48 |
|
48 | |||
49 | if self.CODE == 'spc_moments': |
|
49 | if self.CODE == 'spc_moments': | |
50 | data['moments'] = dataOut.moments |
|
50 | data['moments'] = dataOut.moments | |
51 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
|||
52 | if self.CODE == 'gaussian_fit': |
|
51 | if self.CODE == 'gaussian_fit': | |
53 | # data['moments'] = dataOut.moments |
|
|||
54 | data['gaussfit'] = dataOut.DGauFitParams |
|
52 | data['gaussfit'] = dataOut.DGauFitParams | |
55 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
|||
56 |
|
53 | |||
57 | return data, meta |
|
54 | return data, meta | |
58 |
|
55 | |||
59 | def plot(self): |
|
56 | def plot(self): | |
60 |
|
57 | |||
61 | #print(self.xaxis) |
|
|||
62 | #exit(1) |
|
|||
63 | if self.xaxis == "frequency": |
|
58 | if self.xaxis == "frequency": | |
64 | x = self.data.xrange[0] |
|
59 | x = self.data.xrange[0] | |
65 | self.xlabel = "Frequency (kHz)" |
|
60 | self.xlabel = "Frequency (kHz)" | |
66 | elif self.xaxis == "time": |
|
61 | elif self.xaxis == "time": | |
67 | x = self.data.xrange[1] |
|
62 | x = self.data.xrange[1] | |
68 | self.xlabel = "Time (ms)" |
|
63 | self.xlabel = "Time (ms)" | |
69 | else: |
|
64 | else: | |
70 | x = self.data.xrange[2] |
|
65 | x = self.data.xrange[2] | |
71 | self.xlabel = "Velocity (m/s)" |
|
66 | self.xlabel = "Velocity (m/s)" | |
72 |
|
67 | |||
73 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
68 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
74 | x = self.data.xrange[2] |
|
69 | x = self.data.xrange[2] | |
75 | self.xlabel = "Velocity (m/s)" |
|
70 | self.xlabel = "Velocity (m/s)" | |
76 |
|
71 | |||
77 | self.titles = [] |
|
72 | self.titles = [] | |
78 |
|
73 | |||
79 | y = self.data.yrange |
|
74 | y = self.data.yrange | |
80 | self.y = y |
|
75 | self.y = y | |
81 |
|
76 | |||
82 | data = self.data[-1] |
|
77 | data = self.data[-1] | |
83 | z = data['spc'] |
|
78 | z = data['spc'] | |
84 |
|
79 | |||
85 | self.CODE2 = 'spc_oblique' |
|
80 | self.CODE2 = 'spc_oblique' | |
86 |
|
81 | |||
87 |
|
82 | |||
88 | for n, ax in enumerate(self.axes): |
|
83 | for n, ax in enumerate(self.axes): | |
89 | noise = data['noise'][n] |
|
84 | noise = data['noise'][n] | |
90 | if self.CODE == 'spc_moments': |
|
85 | if self.CODE == 'spc_moments': | |
91 | mean = data['moments'][n, 1] |
|
86 | mean = data['moments'][n, 1] | |
92 | if self.CODE == 'gaussian_fit': |
|
87 | if self.CODE == 'gaussian_fit': | |
93 | # mean = data['moments'][n, 1] |
|
|||
94 | gau0 = data['gaussfit'][n][2,:,0] |
|
88 | gau0 = data['gaussfit'][n][2,:,0] | |
95 | gau1 = data['gaussfit'][n][2,:,1] |
|
89 | gau1 = data['gaussfit'][n][2,:,1] | |
96 | if ax.firsttime: |
|
90 | if ax.firsttime: | |
97 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
91 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
98 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
92 | self.xmin = self.xmin if self.xmin else -self.xmax | |
99 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
93 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
100 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
94 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
101 | #print(numpy.shape(x)) |
|
|||
102 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
95 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
103 | vmin=self.zmin, |
|
96 | vmin=self.zmin, | |
104 | vmax=self.zmax, |
|
97 | vmax=self.zmax, | |
105 | cmap=plt.get_cmap(self.colormap) |
|
98 | cmap=plt.get_cmap(self.colormap) | |
106 | ) |
|
99 | ) | |
107 |
|
100 | |||
108 | if self.showprofile: |
|
101 | if self.showprofile: | |
109 | ax.plt_profile = self.pf_axes[n].plot( |
|
102 | ax.plt_profile = self.pf_axes[n].plot( | |
110 | data['rti'][n], y)[0] |
|
103 | data['rti'][n], y)[0] | |
111 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
104 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
112 | color="k", linestyle="dashed", lw=1)[0] |
|
105 | color="k", linestyle="dashed", lw=1)[0] | |
113 | if self.CODE == 'spc_moments': |
|
106 | if self.CODE == 'spc_moments': | |
114 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
107 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
115 | if self.CODE == 'gaussian_fit': |
|
108 | if self.CODE == 'gaussian_fit': | |
116 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
109 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
117 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
110 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
118 | else: |
|
111 | else: | |
119 | ax.plt.set_array(z[n].T.ravel()) |
|
112 | ax.plt.set_array(z[n].T.ravel()) | |
120 | if self.showprofile: |
|
113 | if self.showprofile: | |
121 | ax.plt_profile.set_data(data['rti'][n], y) |
|
114 | ax.plt_profile.set_data(data['rti'][n], y) | |
122 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
115 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
123 | if self.CODE == 'spc_moments': |
|
116 | if self.CODE == 'spc_moments': | |
124 | ax.plt_mean.set_data(mean, y) |
|
117 | ax.plt_mean.set_data(mean, y) | |
125 | if self.CODE == 'gaussian_fit': |
|
118 | if self.CODE == 'gaussian_fit': | |
126 | ax.plt_gau0.set_data(gau0, y) |
|
119 | ax.plt_gau0.set_data(gau0, y) | |
127 | ax.plt_gau1.set_data(gau1, y) |
|
120 | ax.plt_gau1.set_data(gau1, y) | |
128 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
121 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
129 |
|
122 | |||
130 | class SpectraObliquePlot(Plot): |
|
123 | class SpectraObliquePlot(Plot): | |
131 | ''' |
|
124 | ''' | |
132 | Plot for Spectra data |
|
125 | Plot for Spectra data | |
133 | ''' |
|
126 | ''' | |
134 |
|
127 | |||
135 | CODE = 'spc' |
|
128 | CODE = 'spc_oblique' | |
136 | colormap = 'jet' |
|
129 | colormap = 'jet' | |
137 | plot_type = 'pcolor' |
|
130 | plot_type = 'pcolor' | |
138 |
|
131 | |||
139 | def setup(self): |
|
132 | def setup(self): | |
140 | self.xaxis = "oblique" |
|
133 | self.xaxis = "oblique" | |
141 | self.nplots = len(self.data.channels) |
|
134 | self.nplots = len(self.data.channels) | |
142 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
135 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
143 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
136 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
144 | self.height = 2.6 * self.nrows |
|
137 | self.height = 2.6 * self.nrows | |
145 | self.cb_label = 'dB' |
|
138 | self.cb_label = 'dB' | |
146 | if self.showprofile: |
|
139 | if self.showprofile: | |
147 | self.width = 4 * self.ncols |
|
140 | self.width = 4 * self.ncols | |
148 | else: |
|
141 | else: | |
149 | self.width = 3.5 * self.ncols |
|
142 | self.width = 3.5 * self.ncols | |
150 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
143 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
151 | self.ylabel = 'Range [km]' |
|
144 | self.ylabel = 'Range [km]' | |
152 |
|
145 | |||
|
146 | def update(self, dataOut): | |||
|
147 | ||||
|
148 | data = {} | |||
|
149 | meta = {} | |||
|
150 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |||
|
151 | data['spc'] = spc | |||
|
152 | data['rti'] = dataOut.getPower() | |||
|
153 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |||
|
154 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |||
|
155 | ||||
|
156 | data['shift1'] = dataOut.Oblique_params[0][1] | |||
|
157 | data['shift2'] = dataOut.Oblique_params[0][4] | |||
|
158 | data['shift1_error'] = dataOut.Oblique_param_errors[0][1] | |||
|
159 | data['shift2_error'] = dataOut.Oblique_param_errors[0][4] | |||
|
160 | ||||
|
161 | return data, meta | |||
|
162 | ||||
153 | def plot(self): |
|
163 | def plot(self): | |
154 |
|
164 | |||
155 | #print(self.xaxis) |
|
|||
156 | #exit(1) |
|
|||
157 | if self.xaxis == "frequency": |
|
165 | if self.xaxis == "frequency": | |
158 | x = self.data.xrange[0] |
|
166 | x = self.data.xrange[0] | |
159 | self.xlabel = "Frequency (kHz)" |
|
167 | self.xlabel = "Frequency (kHz)" | |
160 | elif self.xaxis == "time": |
|
168 | elif self.xaxis == "time": | |
161 | x = self.data.xrange[1] |
|
169 | x = self.data.xrange[1] | |
162 | self.xlabel = "Time (ms)" |
|
170 | self.xlabel = "Time (ms)" | |
163 | else: |
|
171 | else: | |
164 | x = self.data.xrange[2] |
|
172 | x = self.data.xrange[2] | |
165 | self.xlabel = "Velocity (m/s)" |
|
173 | self.xlabel = "Velocity (m/s)" | |
166 |
|
174 | |||
167 | if self.CODE == 'spc_moments': |
|
|||
168 | x = self.data.xrange[2] |
|
|||
169 | self.xlabel = "Velocity (m/s)" |
|
|||
170 |
|
||||
171 | self.titles = [] |
|
175 | self.titles = [] | |
172 | #self.xlabel = "Velocidad (m/s)" |
|
|||
173 | #self.ylabel = 'Rango (km)' |
|
|||
174 |
|
||||
175 |
|
176 | |||
176 |
y = self.data. |
|
177 | y = self.data.yrange | |
177 | self.y = y |
|
178 | self.y = y | |
178 | z = self.data['spc'] |
|
179 | z = self.data['spc'] | |
179 |
|
180 | |||
180 | self.CODE2 = 'spc_oblique' |
|
|||
181 |
|
||||
182 |
|
||||
183 | for n, ax in enumerate(self.axes): |
|
181 | for n, ax in enumerate(self.axes): | |
184 | noise = self.data['noise'][n][-1] |
|
182 | noise = self.data['noise'][n][-1] | |
185 | if self.CODE == 'spc_moments': |
|
183 | shift1 = self.data['shift1'] | |
186 | mean = self.data['moments'][n, :, 1, :][-1] |
|
184 | shift2 = self.data['shift2'] | |
187 | if self.CODE2 == 'spc_oblique': |
|
185 | err1 = self.data['shift1_error'] | |
188 |
|
|
186 | err2 = self.data['shift2_error'] | |
189 | shift2 = self.data.shift2 |
|
|||
190 | if ax.firsttime: |
|
187 | if ax.firsttime: | |
191 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
188 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
192 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
189 | self.xmin = self.xmin if self.xmin else -self.xmax | |
193 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
190 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
194 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
191 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
195 | #print(numpy.shape(x)) |
|
|||
196 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
192 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
197 | vmin=self.zmin, |
|
193 | vmin=self.zmin, | |
198 | vmax=self.zmax, |
|
194 | vmax=self.zmax, | |
199 | cmap=plt.get_cmap(self.colormap) |
|
195 | cmap=plt.get_cmap(self.colormap) | |
200 | ) |
|
196 | ) | |
201 |
|
197 | |||
202 | if self.showprofile: |
|
198 | if self.showprofile: | |
203 | ax.plt_profile = self.pf_axes[n].plot( |
|
199 | ax.plt_profile = self.pf_axes[n].plot( | |
204 | self.data['rti'][n][-1], y)[0] |
|
200 | self.data['rti'][n][-1], y)[0] | |
205 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
201 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
206 | color="k", linestyle="dashed", lw=1)[0] |
|
202 | color="k", linestyle="dashed", lw=1)[0] | |
207 | if self.CODE == 'spc_moments': |
|
203 | ||
208 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
204 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=0.2, marker='x', linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |
209 |
|
205 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | ||
210 | if self.CODE2 == 'spc_oblique': |
|
|||
211 | #ax.plt_shift1 = ax.plot(shift1, y, color='k', marker='x', linestyle='None', markersize=0.5)[0] |
|
|||
212 | #ax.plt_shift2 = ax.plot(shift2, y, color='m', marker='x', linestyle='None', markersize=0.5)[0] |
|
|||
213 | self.ploterr1 = ax.errorbar(shift1, y, xerr=self.data.shift1_error,fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
|||
214 | self.ploterr2 = ax.errorbar(shift2, y, xerr=self.data.shift2_error,fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
|||
215 |
|
||||
216 | else: |
|
206 | else: | |
217 | self.ploterr1.remove() |
|
207 | self.ploterr1.remove() | |
218 | self.ploterr2.remove() |
|
208 | self.ploterr2.remove() | |
219 | ax.plt.set_array(z[n].T.ravel()) |
|
209 | ax.plt.set_array(z[n].T.ravel()) | |
220 | if self.showprofile: |
|
210 | if self.showprofile: | |
221 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
211 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
222 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
212 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
223 | if self.CODE == 'spc_moments': |
|
213 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |
224 | ax.plt_mean.set_data(mean, y) |
|
214 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |
225 | if self.CODE2 == 'spc_oblique': |
|
|||
226 | #ax.plt_shift1.set_data(shift1, y) |
|
|||
227 | #ax.plt_shift2.set_data(shift2, y) |
|
|||
228 | #ax.clf() |
|
|||
229 | self.ploterr1 = ax.errorbar(shift1, y, xerr=self.data.shift1_error,fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
|||
230 | self.ploterr2 = ax.errorbar(shift2, y, xerr=self.data.shift2_error,fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
|||
231 |
|
215 | |||
232 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
216 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
233 | #self.titles.append('{}'.format('Velocidad Doppler')) |
|
217 | ||
234 |
|
218 | |||
235 | class CrossSpectraPlot(Plot): |
|
219 | class CrossSpectraPlot(Plot): | |
236 |
|
220 | |||
237 | CODE = 'cspc' |
|
221 | CODE = 'cspc' | |
238 | colormap = 'jet' |
|
222 | colormap = 'jet' | |
239 | plot_type = 'pcolor' |
|
223 | plot_type = 'pcolor' | |
240 | zmin_coh = None |
|
224 | zmin_coh = None | |
241 | zmax_coh = None |
|
225 | zmax_coh = None | |
242 | zmin_phase = None |
|
226 | zmin_phase = None | |
243 | zmax_phase = None |
|
227 | zmax_phase = None | |
244 |
|
228 | |||
245 | def setup(self): |
|
229 | def setup(self): | |
246 |
|
230 | |||
247 | self.ncols = 4 |
|
231 | self.ncols = 4 | |
248 | self.nplots = len(self.data.pairs) * 2 |
|
232 | self.nplots = len(self.data.pairs) * 2 | |
249 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
233 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
250 | self.width = 3.1 * self.ncols |
|
234 | self.width = 3.1 * self.ncols | |
251 | self.height = 5 * self.nrows |
|
235 | self.height = 5 * self.nrows | |
252 | self.ylabel = 'Range [km]' |
|
236 | self.ylabel = 'Range [km]' | |
253 | self.showprofile = False |
|
237 | self.showprofile = False | |
254 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
238 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
255 |
|
239 | |||
256 | def update(self, dataOut): |
|
240 | def update(self, dataOut): | |
257 |
|
241 | |||
258 | data = {} |
|
242 | data = {} | |
259 | meta = {} |
|
243 | meta = {} | |
260 |
|
244 | |||
261 | spc = dataOut.data_spc |
|
245 | spc = dataOut.data_spc | |
262 | cspc = dataOut.data_cspc |
|
246 | cspc = dataOut.data_cspc | |
263 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
247 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
264 | meta['pairs'] = dataOut.pairsList |
|
248 | meta['pairs'] = dataOut.pairsList | |
265 |
|
249 | |||
266 | tmp = [] |
|
250 | tmp = [] | |
267 |
|
251 | |||
268 | for n, pair in enumerate(meta['pairs']): |
|
252 | for n, pair in enumerate(meta['pairs']): | |
269 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
253 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
270 | coh = numpy.abs(out) |
|
254 | coh = numpy.abs(out) | |
271 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
255 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
272 | tmp.append(coh) |
|
256 | tmp.append(coh) | |
273 | tmp.append(phase) |
|
257 | tmp.append(phase) | |
274 |
|
258 | |||
275 | data['cspc'] = numpy.array(tmp) |
|
259 | data['cspc'] = numpy.array(tmp) | |
276 |
|
260 | |||
277 | return data, meta |
|
261 | return data, meta | |
278 |
|
262 | |||
279 | def plot(self): |
|
263 | def plot(self): | |
280 |
|
264 | |||
281 | if self.xaxis == "frequency": |
|
265 | if self.xaxis == "frequency": | |
282 | x = self.data.xrange[0] |
|
266 | x = self.data.xrange[0] | |
283 | self.xlabel = "Frequency (kHz)" |
|
267 | self.xlabel = "Frequency (kHz)" | |
284 | elif self.xaxis == "time": |
|
268 | elif self.xaxis == "time": | |
285 | x = self.data.xrange[1] |
|
269 | x = self.data.xrange[1] | |
286 | self.xlabel = "Time (ms)" |
|
270 | self.xlabel = "Time (ms)" | |
287 | else: |
|
271 | else: | |
288 | x = self.data.xrange[2] |
|
272 | x = self.data.xrange[2] | |
289 | self.xlabel = "Velocity (m/s)" |
|
273 | self.xlabel = "Velocity (m/s)" | |
290 |
|
274 | |||
291 | self.titles = [] |
|
275 | self.titles = [] | |
292 |
|
276 | |||
293 | y = self.data.yrange |
|
277 | y = self.data.yrange | |
294 | self.y = y |
|
278 | self.y = y | |
295 |
|
279 | |||
296 | data = self.data[-1] |
|
280 | data = self.data[-1] | |
297 | cspc = data['cspc'] |
|
281 | cspc = data['cspc'] | |
298 |
|
282 | |||
299 | for n in range(len(self.data.pairs)): |
|
283 | for n in range(len(self.data.pairs)): | |
300 | pair = self.data.pairs[n] |
|
284 | pair = self.data.pairs[n] | |
301 | coh = cspc[n*2] |
|
285 | coh = cspc[n*2] | |
302 | phase = cspc[n*2+1] |
|
286 | phase = cspc[n*2+1] | |
303 | ax = self.axes[2 * n] |
|
287 | ax = self.axes[2 * n] | |
304 | if ax.firsttime: |
|
288 | if ax.firsttime: | |
305 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
289 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
306 | vmin=0, |
|
290 | vmin=0, | |
307 | vmax=1, |
|
291 | vmax=1, | |
308 | cmap=plt.get_cmap(self.colormap_coh) |
|
292 | cmap=plt.get_cmap(self.colormap_coh) | |
309 | ) |
|
293 | ) | |
310 | else: |
|
294 | else: | |
311 | ax.plt.set_array(coh.T.ravel()) |
|
295 | ax.plt.set_array(coh.T.ravel()) | |
312 | self.titles.append( |
|
296 | self.titles.append( | |
313 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
297 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
314 |
|
298 | |||
315 | ax = self.axes[2 * n + 1] |
|
299 | ax = self.axes[2 * n + 1] | |
316 | if ax.firsttime: |
|
300 | if ax.firsttime: | |
317 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
301 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
318 | vmin=-180, |
|
302 | vmin=-180, | |
319 | vmax=180, |
|
303 | vmax=180, | |
320 | cmap=plt.get_cmap(self.colormap_phase) |
|
304 | cmap=plt.get_cmap(self.colormap_phase) | |
321 | ) |
|
305 | ) | |
322 | else: |
|
306 | else: | |
323 | ax.plt.set_array(phase.T.ravel()) |
|
307 | ax.plt.set_array(phase.T.ravel()) | |
324 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
308 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
325 |
|
309 | |||
326 |
|
310 | |||
327 | class CrossSpectra4Plot(Plot): |
|
311 | class CrossSpectra4Plot(Plot): | |
328 |
|
312 | |||
329 | CODE = 'cspc' |
|
313 | CODE = 'cspc' | |
330 | colormap = 'jet' |
|
314 | colormap = 'jet' | |
331 | plot_type = 'pcolor' |
|
315 | plot_type = 'pcolor' | |
332 | zmin_coh = None |
|
316 | zmin_coh = None | |
333 | zmax_coh = None |
|
317 | zmax_coh = None | |
334 | zmin_phase = None |
|
318 | zmin_phase = None | |
335 | zmax_phase = None |
|
319 | zmax_phase = None | |
336 |
|
320 | |||
337 | def setup(self): |
|
321 | def setup(self): | |
338 |
|
322 | |||
339 | self.ncols = 4 |
|
323 | self.ncols = 4 | |
340 | self.nrows = len(self.data.pairs) |
|
324 | self.nrows = len(self.data.pairs) | |
341 | self.nplots = self.nrows * 4 |
|
325 | self.nplots = self.nrows * 4 | |
342 | self.width = 3.1 * self.ncols |
|
326 | self.width = 3.1 * self.ncols | |
343 | self.height = 5 * self.nrows |
|
327 | self.height = 5 * self.nrows | |
344 | self.ylabel = 'Range [km]' |
|
328 | self.ylabel = 'Range [km]' | |
345 | self.showprofile = False |
|
329 | self.showprofile = False | |
346 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
330 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
347 |
|
331 | |||
348 | def plot(self): |
|
332 | def plot(self): | |
349 |
|
333 | |||
350 | if self.xaxis == "frequency": |
|
334 | if self.xaxis == "frequency": | |
351 | x = self.data.xrange[0] |
|
335 | x = self.data.xrange[0] | |
352 | self.xlabel = "Frequency (kHz)" |
|
336 | self.xlabel = "Frequency (kHz)" | |
353 | elif self.xaxis == "time": |
|
337 | elif self.xaxis == "time": | |
354 | x = self.data.xrange[1] |
|
338 | x = self.data.xrange[1] | |
355 | self.xlabel = "Time (ms)" |
|
339 | self.xlabel = "Time (ms)" | |
356 | else: |
|
340 | else: | |
357 | x = self.data.xrange[2] |
|
341 | x = self.data.xrange[2] | |
358 | self.xlabel = "Velocity (m/s)" |
|
342 | self.xlabel = "Velocity (m/s)" | |
359 |
|
343 | |||
360 | self.titles = [] |
|
344 | self.titles = [] | |
361 |
|
345 | |||
362 |
|
346 | |||
363 | y = self.data.heights |
|
347 | y = self.data.heights | |
364 | self.y = y |
|
348 | self.y = y | |
365 | nspc = self.data['spc'] |
|
349 | nspc = self.data['spc'] | |
366 | #print(numpy.shape(self.data['spc'])) |
|
350 | #print(numpy.shape(self.data['spc'])) | |
367 | spc = self.data['cspc'][0] |
|
351 | spc = self.data['cspc'][0] | |
368 | #print(numpy.shape(nspc)) |
|
352 | #print(numpy.shape(nspc)) | |
369 | #exit() |
|
353 | #exit() | |
370 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
354 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) | |
371 | #print(numpy.shape(spc)) |
|
355 | #print(numpy.shape(spc)) | |
372 | #exit() |
|
356 | #exit() | |
373 | cspc = self.data['cspc'][1] |
|
357 | cspc = self.data['cspc'][1] | |
374 |
|
358 | |||
375 | #xflip=numpy.flip(x) |
|
359 | #xflip=numpy.flip(x) | |
376 | #print(numpy.shape(cspc)) |
|
360 | #print(numpy.shape(cspc)) | |
377 | #exit() |
|
361 | #exit() | |
378 |
|
362 | |||
379 | for n in range(self.nrows): |
|
363 | for n in range(self.nrows): | |
380 | noise = self.data['noise'][:,-1] |
|
364 | noise = self.data['noise'][:,-1] | |
381 | pair = self.data.pairs[n] |
|
365 | pair = self.data.pairs[n] | |
382 | #print(pair) |
|
366 | #print(pair) | |
383 | #exit() |
|
367 | #exit() | |
384 | ax = self.axes[4 * n] |
|
368 | ax = self.axes[4 * n] | |
385 | if ax.firsttime: |
|
369 | if ax.firsttime: | |
386 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
370 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
387 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
371 | self.xmin = self.xmin if self.xmin else -self.xmax | |
388 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
372 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |
389 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
373 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |
390 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
374 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |
391 | vmin=self.zmin, |
|
375 | vmin=self.zmin, | |
392 | vmax=self.zmax, |
|
376 | vmax=self.zmax, | |
393 | cmap=plt.get_cmap(self.colormap) |
|
377 | cmap=plt.get_cmap(self.colormap) | |
394 | ) |
|
378 | ) | |
395 | else: |
|
379 | else: | |
396 | #print(numpy.shape(nspc[pair[0]].T)) |
|
380 | #print(numpy.shape(nspc[pair[0]].T)) | |
397 | #exit() |
|
381 | #exit() | |
398 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
382 | ax.plt.set_array(nspc[pair[0]].T.ravel()) | |
399 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
383 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) | |
400 |
|
384 | |||
401 | ax = self.axes[4 * n + 1] |
|
385 | ax = self.axes[4 * n + 1] | |
402 |
|
386 | |||
403 | if ax.firsttime: |
|
387 | if ax.firsttime: | |
404 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
388 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, | |
405 | vmin=self.zmin, |
|
389 | vmin=self.zmin, | |
406 | vmax=self.zmax, |
|
390 | vmax=self.zmax, | |
407 | cmap=plt.get_cmap(self.colormap) |
|
391 | cmap=plt.get_cmap(self.colormap) | |
408 | ) |
|
392 | ) | |
409 | else: |
|
393 | else: | |
410 |
|
394 | |||
411 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
395 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) | |
412 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
396 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) | |
413 |
|
397 | |||
414 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
398 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
415 | coh = numpy.abs(out) |
|
399 | coh = numpy.abs(out) | |
416 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
400 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
417 |
|
401 | |||
418 | ax = self.axes[4 * n + 2] |
|
402 | ax = self.axes[4 * n + 2] | |
419 | if ax.firsttime: |
|
403 | if ax.firsttime: | |
420 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
404 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, | |
421 | vmin=0, |
|
405 | vmin=0, | |
422 | vmax=1, |
|
406 | vmax=1, | |
423 | cmap=plt.get_cmap(self.colormap_coh) |
|
407 | cmap=plt.get_cmap(self.colormap_coh) | |
424 | ) |
|
408 | ) | |
425 | else: |
|
409 | else: | |
426 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
410 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) | |
427 | self.titles.append( |
|
411 | self.titles.append( | |
428 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
412 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
429 |
|
413 | |||
430 | ax = self.axes[4 * n + 3] |
|
414 | ax = self.axes[4 * n + 3] | |
431 | if ax.firsttime: |
|
415 | if ax.firsttime: | |
432 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
416 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, | |
433 | vmin=-180, |
|
417 | vmin=-180, | |
434 | vmax=180, |
|
418 | vmax=180, | |
435 | cmap=plt.get_cmap(self.colormap_phase) |
|
419 | cmap=plt.get_cmap(self.colormap_phase) | |
436 | ) |
|
420 | ) | |
437 | else: |
|
421 | else: | |
438 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
422 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) | |
439 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
423 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
440 |
|
424 | |||
441 |
|
425 | |||
442 | class CrossSpectra2Plot(Plot): |
|
426 | class CrossSpectra2Plot(Plot): | |
443 |
|
427 | |||
444 | CODE = 'cspc' |
|
428 | CODE = 'cspc' | |
445 | colormap = 'jet' |
|
429 | colormap = 'jet' | |
446 | plot_type = 'pcolor' |
|
430 | plot_type = 'pcolor' | |
447 | zmin_coh = None |
|
431 | zmin_coh = None | |
448 | zmax_coh = None |
|
432 | zmax_coh = None | |
449 | zmin_phase = None |
|
433 | zmin_phase = None | |
450 | zmax_phase = None |
|
434 | zmax_phase = None | |
451 |
|
435 | |||
452 | def setup(self): |
|
436 | def setup(self): | |
453 |
|
437 | |||
454 | self.ncols = 1 |
|
438 | self.ncols = 1 | |
455 | self.nrows = len(self.data.pairs) |
|
439 | self.nrows = len(self.data.pairs) | |
456 | self.nplots = self.nrows * 1 |
|
440 | self.nplots = self.nrows * 1 | |
457 | self.width = 3.1 * self.ncols |
|
441 | self.width = 3.1 * self.ncols | |
458 | self.height = 5 * self.nrows |
|
442 | self.height = 5 * self.nrows | |
459 | self.ylabel = 'Range [km]' |
|
443 | self.ylabel = 'Range [km]' | |
460 | self.showprofile = False |
|
444 | self.showprofile = False | |
461 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
445 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
462 |
|
446 | |||
463 | def plot(self): |
|
447 | def plot(self): | |
464 |
|
448 | |||
465 | if self.xaxis == "frequency": |
|
449 | if self.xaxis == "frequency": | |
466 | x = self.data.xrange[0] |
|
450 | x = self.data.xrange[0] | |
467 | self.xlabel = "Frequency (kHz)" |
|
451 | self.xlabel = "Frequency (kHz)" | |
468 | elif self.xaxis == "time": |
|
452 | elif self.xaxis == "time": | |
469 | x = self.data.xrange[1] |
|
453 | x = self.data.xrange[1] | |
470 | self.xlabel = "Time (ms)" |
|
454 | self.xlabel = "Time (ms)" | |
471 | else: |
|
455 | else: | |
472 | x = self.data.xrange[2] |
|
456 | x = self.data.xrange[2] | |
473 | self.xlabel = "Velocity (m/s)" |
|
457 | self.xlabel = "Velocity (m/s)" | |
474 |
|
458 | |||
475 | self.titles = [] |
|
459 | self.titles = [] | |
476 |
|
460 | |||
477 |
|
461 | |||
478 | y = self.data.heights |
|
462 | y = self.data.heights | |
479 | self.y = y |
|
463 | self.y = y | |
480 | #nspc = self.data['spc'] |
|
464 | #nspc = self.data['spc'] | |
481 | #print(numpy.shape(self.data['spc'])) |
|
465 | #print(numpy.shape(self.data['spc'])) | |
482 | #spc = self.data['cspc'][0] |
|
466 | #spc = self.data['cspc'][0] | |
483 | #print(numpy.shape(spc)) |
|
467 | #print(numpy.shape(spc)) | |
484 | #exit() |
|
468 | #exit() | |
485 | cspc = self.data['cspc'][1] |
|
469 | cspc = self.data['cspc'][1] | |
486 | #print(numpy.shape(cspc)) |
|
470 | #print(numpy.shape(cspc)) | |
487 | #exit() |
|
471 | #exit() | |
488 |
|
472 | |||
489 | for n in range(self.nrows): |
|
473 | for n in range(self.nrows): | |
490 | noise = self.data['noise'][:,-1] |
|
474 | noise = self.data['noise'][:,-1] | |
491 | pair = self.data.pairs[n] |
|
475 | pair = self.data.pairs[n] | |
492 | #print(pair) #exit() |
|
476 | #print(pair) #exit() | |
493 |
|
477 | |||
494 |
|
478 | |||
495 |
|
479 | |||
496 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
480 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
497 |
|
481 | |||
498 | #print(out[:,53]) |
|
482 | #print(out[:,53]) | |
499 | #exit() |
|
483 | #exit() | |
500 | cross = numpy.abs(out) |
|
484 | cross = numpy.abs(out) | |
501 | z = cross/self.data.nFactor |
|
485 | z = cross/self.data.nFactor | |
502 | #print("here") |
|
486 | #print("here") | |
503 | #print(dataOut.data_spc[0,0,0]) |
|
487 | #print(dataOut.data_spc[0,0,0]) | |
504 | #exit() |
|
488 | #exit() | |
505 |
|
489 | |||
506 | cross = 10*numpy.log10(z) |
|
490 | cross = 10*numpy.log10(z) | |
507 | #print(numpy.shape(cross)) |
|
491 | #print(numpy.shape(cross)) | |
508 | #print(cross[0,:]) |
|
492 | #print(cross[0,:]) | |
509 | #print(self.data.nFactor) |
|
493 | #print(self.data.nFactor) | |
510 | #exit() |
|
494 | #exit() | |
511 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
495 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
512 |
|
496 | |||
513 | ax = self.axes[1 * n] |
|
497 | ax = self.axes[1 * n] | |
514 | if ax.firsttime: |
|
498 | if ax.firsttime: | |
515 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
499 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
516 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
500 | self.xmin = self.xmin if self.xmin else -self.xmax | |
517 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
501 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
518 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
502 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
519 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
503 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
520 | vmin=self.zmin, |
|
504 | vmin=self.zmin, | |
521 | vmax=self.zmax, |
|
505 | vmax=self.zmax, | |
522 | cmap=plt.get_cmap(self.colormap) |
|
506 | cmap=plt.get_cmap(self.colormap) | |
523 | ) |
|
507 | ) | |
524 | else: |
|
508 | else: | |
525 | ax.plt.set_array(cross.T.ravel()) |
|
509 | ax.plt.set_array(cross.T.ravel()) | |
526 | self.titles.append( |
|
510 | self.titles.append( | |
527 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
511 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
528 |
|
512 | |||
529 |
|
513 | |||
530 | class CrossSpectra3Plot(Plot): |
|
514 | class CrossSpectra3Plot(Plot): | |
531 |
|
515 | |||
532 | CODE = 'cspc' |
|
516 | CODE = 'cspc' | |
533 | colormap = 'jet' |
|
517 | colormap = 'jet' | |
534 | plot_type = 'pcolor' |
|
518 | plot_type = 'pcolor' | |
535 | zmin_coh = None |
|
519 | zmin_coh = None | |
536 | zmax_coh = None |
|
520 | zmax_coh = None | |
537 | zmin_phase = None |
|
521 | zmin_phase = None | |
538 | zmax_phase = None |
|
522 | zmax_phase = None | |
539 |
|
523 | |||
540 | def setup(self): |
|
524 | def setup(self): | |
541 |
|
525 | |||
542 | self.ncols = 3 |
|
526 | self.ncols = 3 | |
543 | self.nrows = len(self.data.pairs) |
|
527 | self.nrows = len(self.data.pairs) | |
544 | self.nplots = self.nrows * 3 |
|
528 | self.nplots = self.nrows * 3 | |
545 | self.width = 3.1 * self.ncols |
|
529 | self.width = 3.1 * self.ncols | |
546 | self.height = 5 * self.nrows |
|
530 | self.height = 5 * self.nrows | |
547 | self.ylabel = 'Range [km]' |
|
531 | self.ylabel = 'Range [km]' | |
548 | self.showprofile = False |
|
532 | self.showprofile = False | |
549 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
533 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
550 |
|
534 | |||
551 | def plot(self): |
|
535 | def plot(self): | |
552 |
|
536 | |||
553 | if self.xaxis == "frequency": |
|
537 | if self.xaxis == "frequency": | |
554 | x = self.data.xrange[0] |
|
538 | x = self.data.xrange[0] | |
555 | self.xlabel = "Frequency (kHz)" |
|
539 | self.xlabel = "Frequency (kHz)" | |
556 | elif self.xaxis == "time": |
|
540 | elif self.xaxis == "time": | |
557 | x = self.data.xrange[1] |
|
541 | x = self.data.xrange[1] | |
558 | self.xlabel = "Time (ms)" |
|
542 | self.xlabel = "Time (ms)" | |
559 | else: |
|
543 | else: | |
560 | x = self.data.xrange[2] |
|
544 | x = self.data.xrange[2] | |
561 | self.xlabel = "Velocity (m/s)" |
|
545 | self.xlabel = "Velocity (m/s)" | |
562 |
|
546 | |||
563 | self.titles = [] |
|
547 | self.titles = [] | |
564 |
|
548 | |||
565 |
|
549 | |||
566 | y = self.data.heights |
|
550 | y = self.data.heights | |
567 | self.y = y |
|
551 | self.y = y | |
568 | #nspc = self.data['spc'] |
|
552 | #nspc = self.data['spc'] | |
569 | #print(numpy.shape(self.data['spc'])) |
|
553 | #print(numpy.shape(self.data['spc'])) | |
570 | #spc = self.data['cspc'][0] |
|
554 | #spc = self.data['cspc'][0] | |
571 | #print(numpy.shape(spc)) |
|
555 | #print(numpy.shape(spc)) | |
572 | #exit() |
|
556 | #exit() | |
573 | cspc = self.data['cspc'][1] |
|
557 | cspc = self.data['cspc'][1] | |
574 | #print(numpy.shape(cspc)) |
|
558 | #print(numpy.shape(cspc)) | |
575 | #exit() |
|
559 | #exit() | |
576 |
|
560 | |||
577 | for n in range(self.nrows): |
|
561 | for n in range(self.nrows): | |
578 | noise = self.data['noise'][:,-1] |
|
562 | noise = self.data['noise'][:,-1] | |
579 | pair = self.data.pairs[n] |
|
563 | pair = self.data.pairs[n] | |
580 | #print(pair) #exit() |
|
564 | #print(pair) #exit() | |
581 |
|
565 | |||
582 |
|
566 | |||
583 |
|
567 | |||
584 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
568 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
585 |
|
569 | |||
586 | #print(out[:,53]) |
|
570 | #print(out[:,53]) | |
587 | #exit() |
|
571 | #exit() | |
588 | cross = numpy.abs(out) |
|
572 | cross = numpy.abs(out) | |
589 | z = cross/self.data.nFactor |
|
573 | z = cross/self.data.nFactor | |
590 | cross = 10*numpy.log10(z) |
|
574 | cross = 10*numpy.log10(z) | |
591 |
|
575 | |||
592 | out_r= out.real/self.data.nFactor |
|
576 | out_r= out.real/self.data.nFactor | |
593 | #out_r = 10*numpy.log10(out_r) |
|
577 | #out_r = 10*numpy.log10(out_r) | |
594 |
|
578 | |||
595 | out_i= out.imag/self.data.nFactor |
|
579 | out_i= out.imag/self.data.nFactor | |
596 | #out_i = 10*numpy.log10(out_i) |
|
580 | #out_i = 10*numpy.log10(out_i) | |
597 | #print(numpy.shape(cross)) |
|
581 | #print(numpy.shape(cross)) | |
598 | #print(cross[0,:]) |
|
582 | #print(cross[0,:]) | |
599 | #print(self.data.nFactor) |
|
583 | #print(self.data.nFactor) | |
600 | #exit() |
|
584 | #exit() | |
601 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
585 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
602 |
|
586 | |||
603 | ax = self.axes[3 * n] |
|
587 | ax = self.axes[3 * n] | |
604 | if ax.firsttime: |
|
588 | if ax.firsttime: | |
605 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
589 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
606 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
590 | self.xmin = self.xmin if self.xmin else -self.xmax | |
607 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
591 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
608 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
592 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
609 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
593 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
610 | vmin=self.zmin, |
|
594 | vmin=self.zmin, | |
611 | vmax=self.zmax, |
|
595 | vmax=self.zmax, | |
612 | cmap=plt.get_cmap(self.colormap) |
|
596 | cmap=plt.get_cmap(self.colormap) | |
613 | ) |
|
597 | ) | |
614 | else: |
|
598 | else: | |
615 | ax.plt.set_array(cross.T.ravel()) |
|
599 | ax.plt.set_array(cross.T.ravel()) | |
616 | self.titles.append( |
|
600 | self.titles.append( | |
617 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
601 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
618 |
|
602 | |||
619 | ax = self.axes[3 * n + 1] |
|
603 | ax = self.axes[3 * n + 1] | |
620 | if ax.firsttime: |
|
604 | if ax.firsttime: | |
621 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
605 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
622 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
606 | self.xmin = self.xmin if self.xmin else -self.xmax | |
623 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
607 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
624 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
608 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
625 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
609 | ax.plt = ax.pcolormesh(x, y, out_r.T, | |
626 | vmin=-1.e6, |
|
610 | vmin=-1.e6, | |
627 | vmax=0, |
|
611 | vmax=0, | |
628 | cmap=plt.get_cmap(self.colormap) |
|
612 | cmap=plt.get_cmap(self.colormap) | |
629 | ) |
|
613 | ) | |
630 | else: |
|
614 | else: | |
631 | ax.plt.set_array(out_r.T.ravel()) |
|
615 | ax.plt.set_array(out_r.T.ravel()) | |
632 | self.titles.append( |
|
616 | self.titles.append( | |
633 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
617 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) | |
634 |
|
618 | |||
635 | ax = self.axes[3 * n + 2] |
|
619 | ax = self.axes[3 * n + 2] | |
636 |
|
620 | |||
637 |
|
621 | |||
638 | if ax.firsttime: |
|
622 | if ax.firsttime: | |
639 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
623 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
640 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
624 | self.xmin = self.xmin if self.xmin else -self.xmax | |
641 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
625 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
642 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
626 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
643 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
627 | ax.plt = ax.pcolormesh(x, y, out_i.T, | |
644 | vmin=-1.e6, |
|
628 | vmin=-1.e6, | |
645 | vmax=1.e6, |
|
629 | vmax=1.e6, | |
646 | cmap=plt.get_cmap(self.colormap) |
|
630 | cmap=plt.get_cmap(self.colormap) | |
647 | ) |
|
631 | ) | |
648 | else: |
|
632 | else: | |
649 | ax.plt.set_array(out_i.T.ravel()) |
|
633 | ax.plt.set_array(out_i.T.ravel()) | |
650 | self.titles.append( |
|
634 | self.titles.append( | |
651 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
635 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) | |
652 |
|
636 | |||
653 | class RTIPlot(Plot): |
|
637 | class RTIPlot(Plot): | |
654 | ''' |
|
638 | ''' | |
655 | Plot for RTI data |
|
639 | Plot for RTI data | |
656 | ''' |
|
640 | ''' | |
657 |
|
641 | |||
658 | CODE = 'rti' |
|
642 | CODE = 'rti' | |
659 | colormap = 'jet' |
|
643 | colormap = 'jet' | |
660 | plot_type = 'pcolorbuffer' |
|
644 | plot_type = 'pcolorbuffer' | |
661 |
|
645 | |||
662 | def setup(self): |
|
646 | def setup(self): | |
663 | self.xaxis = 'time' |
|
647 | self.xaxis = 'time' | |
664 | self.ncols = 1 |
|
648 | self.ncols = 1 | |
665 | self.nrows = len(self.data.channels) |
|
649 | self.nrows = len(self.data.channels) | |
666 | self.nplots = len(self.data.channels) |
|
650 | self.nplots = len(self.data.channels) | |
667 | self.ylabel = 'Range [km]' |
|
651 | self.ylabel = 'Range [km]' | |
668 | self.xlabel = 'Time' |
|
652 | self.xlabel = 'Time' | |
669 | self.cb_label = 'dB' |
|
653 | self.cb_label = 'dB' | |
670 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
654 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
671 | self.titles = ['{} Channel {}'.format( |
|
655 | self.titles = ['{} Channel {}'.format( | |
672 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
656 | self.CODE.upper(), x) for x in range(self.nrows)] | |
673 |
|
657 | |||
674 | def update(self, dataOut): |
|
658 | def update(self, dataOut): | |
675 |
|
659 | |||
676 | data = {} |
|
660 | data = {} | |
677 | meta = {} |
|
661 | meta = {} | |
678 | data['rti'] = dataOut.getPower() |
|
662 | data['rti'] = dataOut.getPower() | |
679 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
663 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
680 |
|
664 | |||
681 | return data, meta |
|
665 | return data, meta | |
682 |
|
666 | |||
683 | def plot(self): |
|
667 | def plot(self): | |
684 | self.x = self.data.times |
|
668 | self.x = self.data.times | |
685 | self.y = self.data.yrange |
|
669 | self.y = self.data.yrange | |
686 | self.z = self.data[self.CODE] |
|
670 | self.z = self.data[self.CODE] | |
687 |
|
671 | |||
688 | self.z = numpy.ma.masked_invalid(self.z) |
|
672 | self.z = numpy.ma.masked_invalid(self.z) | |
689 |
|
673 | |||
690 | if self.decimation is None: |
|
674 | if self.decimation is None: | |
691 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
675 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
692 | else: |
|
676 | else: | |
693 | x, y, z = self.fill_gaps(*self.decimate()) |
|
677 | x, y, z = self.fill_gaps(*self.decimate()) | |
694 |
|
678 | |||
695 | for n, ax in enumerate(self.axes): |
|
679 | for n, ax in enumerate(self.axes): | |
696 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
680 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
697 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
681 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
698 | if ax.firsttime: |
|
682 | if ax.firsttime: | |
699 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
683 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
700 | vmin=self.zmin, |
|
684 | vmin=self.zmin, | |
701 | vmax=self.zmax, |
|
685 | vmax=self.zmax, | |
702 | cmap=plt.get_cmap(self.colormap) |
|
686 | cmap=plt.get_cmap(self.colormap) | |
703 | ) |
|
687 | ) | |
704 | if self.showprofile: |
|
688 | if self.showprofile: | |
705 | ax.plot_profile = self.pf_axes[n].plot( |
|
689 | ax.plot_profile = self.pf_axes[n].plot( | |
706 | self.data['rti'][n][-1], self.y)[0] |
|
690 | self.data['rti'][n][-1], self.y)[0] | |
707 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
691 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
708 | color="k", linestyle="dashed", lw=1)[0] |
|
692 | color="k", linestyle="dashed", lw=1)[0] | |
709 | else: |
|
693 | else: | |
710 | ax.collections.remove(ax.collections[0]) |
|
694 | ax.collections.remove(ax.collections[0]) | |
711 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
695 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
712 | vmin=self.zmin, |
|
696 | vmin=self.zmin, | |
713 | vmax=self.zmax, |
|
697 | vmax=self.zmax, | |
714 | cmap=plt.get_cmap(self.colormap) |
|
698 | cmap=plt.get_cmap(self.colormap) | |
715 | ) |
|
699 | ) | |
716 | if self.showprofile: |
|
700 | if self.showprofile: | |
717 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
701 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
718 | ax.plot_noise.set_data(numpy.repeat( |
|
702 | ax.plot_noise.set_data(numpy.repeat( | |
719 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
703 | self.data['noise'][n][-1], len(self.y)), self.y) | |
720 |
|
704 | |||
721 |
|
705 | |||
722 | class SpectrogramPlot(Plot): |
|
706 | class SpectrogramPlot(Plot): | |
723 | ''' |
|
707 | ''' | |
724 | Plot for Spectrogram data |
|
708 | Plot for Spectrogram data | |
725 | ''' |
|
709 | ''' | |
726 |
|
710 | |||
727 | CODE = 'spectrogram' |
|
711 | CODE = 'spectrogram' | |
728 | colormap = 'binary' |
|
712 | colormap = 'binary' | |
729 | plot_type = 'pcolorbuffer' |
|
713 | plot_type = 'pcolorbuffer' | |
730 |
|
714 | |||
731 | def setup(self): |
|
715 | def setup(self): | |
732 | self.xaxis = 'time' |
|
716 | self.xaxis = 'time' | |
733 | self.ncols = 1 |
|
717 | self.ncols = 1 | |
734 | self.nrows = len(self.data.channels) |
|
718 | self.nrows = len(self.data.channels) | |
735 | self.nplots = len(self.data.channels) |
|
719 | self.nplots = len(self.data.channels) | |
736 | #print(self.dataOut.heightList) |
|
|||
737 | #self.ylabel = 'Range [km]' |
|
|||
738 | self.xlabel = 'Time' |
|
720 | self.xlabel = 'Time' | |
739 | self.cb_label = 'dB' |
|
721 | self.cb_label = 'dB' | |
740 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
722 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) | |
741 | self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
723 | self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( | |
742 | self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
724 | self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] | |
743 |
|
725 | |||
744 | def plot(self): |
|
726 | def plot(self): | |
|
727 | ||||
745 | self.x = self.data.times |
|
728 | self.x = self.data.times | |
746 | #self.y = self.data.heights |
|
|||
747 | self.z = self.data[self.CODE] |
|
729 | self.z = self.data[self.CODE] | |
748 | self.y = self.data.xrange[0] |
|
730 | self.y = self.data.xrange[0] | |
749 | #import time |
|
731 | ||
750 | #print(time.ctime(self.x)) |
|
|||
751 |
|
||||
752 | ''' |
|
|||
753 | print(numpy.shape(self.x)) |
|
|||
754 | print(numpy.shape(self.y)) |
|
|||
755 | print(numpy.shape(self.z)) |
|
|||
756 | ''' |
|
|||
757 | self.ylabel = "Frequency (kHz)" |
|
732 | self.ylabel = "Frequency (kHz)" | |
758 |
|
733 | |||
759 | self.z = numpy.ma.masked_invalid(self.z) |
|
734 | self.z = numpy.ma.masked_invalid(self.z) | |
760 |
|
735 | |||
761 | if self.decimation is None: |
|
736 | if self.decimation is None: | |
762 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
737 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
763 | else: |
|
738 | else: | |
764 | x, y, z = self.fill_gaps(*self.decimate()) |
|
739 | x, y, z = self.fill_gaps(*self.decimate()) | |
765 |
|
740 | |||
766 | for n, ax in enumerate(self.axes): |
|
741 | for n, ax in enumerate(self.axes): | |
767 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
742 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
768 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
743 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
769 | data = self.data[-1] |
|
744 | data = self.data[-1] | |
770 | if ax.firsttime: |
|
745 | if ax.firsttime: | |
771 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
746 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
772 | vmin=self.zmin, |
|
747 | vmin=self.zmin, | |
773 | vmax=self.zmax, |
|
748 | vmax=self.zmax, | |
774 | cmap=plt.get_cmap(self.colormap) |
|
749 | cmap=plt.get_cmap(self.colormap) | |
775 | ) |
|
750 | ) | |
776 | if self.showprofile: |
|
751 | if self.showprofile: | |
777 | ax.plot_profile = self.pf_axes[n].plot( |
|
752 | ax.plot_profile = self.pf_axes[n].plot( | |
778 | data['rti'][n], self.y)[0] |
|
753 | data['rti'][n], self.y)[0] | |
779 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
754 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
780 | color="k", linestyle="dashed", lw=1)[0] |
|
755 | color="k", linestyle="dashed", lw=1)[0] | |
781 | else: |
|
756 | else: | |
782 | ax.collections.remove(ax.collections[0]) |
|
757 | ax.collections.remove(ax.collections[0]) | |
783 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
758 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
784 | vmin=self.zmin, |
|
759 | vmin=self.zmin, | |
785 | vmax=self.zmax, |
|
760 | vmax=self.zmax, | |
786 | cmap=plt.get_cmap(self.colormap) |
|
761 | cmap=plt.get_cmap(self.colormap) | |
787 | ) |
|
762 | ) | |
788 | if self.showprofile: |
|
763 | if self.showprofile: | |
789 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
764 | ax.plot_profile.set_data(data['rti'][n], self.y) | |
790 | ax.plot_noise.set_data(numpy.repeat( |
|
765 | ax.plot_noise.set_data(numpy.repeat( | |
791 | data['noise'][n], len(self.y)), self.y) |
|
766 | data['noise'][n], len(self.y)), self.y) | |
792 |
|
767 | |||
793 |
|
768 | |||
794 | class CoherencePlot(RTIPlot): |
|
769 | class CoherencePlot(RTIPlot): | |
795 | ''' |
|
770 | ''' | |
796 | Plot for Coherence data |
|
771 | Plot for Coherence data | |
797 | ''' |
|
772 | ''' | |
798 |
|
773 | |||
799 | CODE = 'coh' |
|
774 | CODE = 'coh' | |
800 |
|
775 | |||
801 | def setup(self): |
|
776 | def setup(self): | |
802 | self.xaxis = 'time' |
|
777 | self.xaxis = 'time' | |
803 | self.ncols = 1 |
|
778 | self.ncols = 1 | |
804 | self.nrows = len(self.data.pairs) |
|
779 | self.nrows = len(self.data.pairs) | |
805 | self.nplots = len(self.data.pairs) |
|
780 | self.nplots = len(self.data.pairs) | |
806 | self.ylabel = 'Range [km]' |
|
781 | self.ylabel = 'Range [km]' | |
807 | self.xlabel = 'Time' |
|
782 | self.xlabel = 'Time' | |
808 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
783 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
809 | if self.CODE == 'coh': |
|
784 | if self.CODE == 'coh': | |
810 | self.cb_label = '' |
|
785 | self.cb_label = '' | |
811 | self.titles = [ |
|
786 | self.titles = [ | |
812 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
787 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
813 | else: |
|
788 | else: | |
814 | self.cb_label = 'Degrees' |
|
789 | self.cb_label = 'Degrees' | |
815 | self.titles = [ |
|
790 | self.titles = [ | |
816 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
791 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
817 |
|
792 | |||
818 | def update(self, dataOut): |
|
793 | def update(self, dataOut): | |
819 |
|
794 | |||
820 | data = {} |
|
795 | data = {} | |
821 | meta = {} |
|
796 | meta = {} | |
822 | data['coh'] = dataOut.getCoherence() |
|
797 | data['coh'] = dataOut.getCoherence() | |
823 | meta['pairs'] = dataOut.pairsList |
|
798 | meta['pairs'] = dataOut.pairsList | |
824 |
|
799 | |||
825 | return data, meta |
|
800 | return data, meta | |
826 |
|
801 | |||
827 | class PhasePlot(CoherencePlot): |
|
802 | class PhasePlot(CoherencePlot): | |
828 | ''' |
|
803 | ''' | |
829 | Plot for Phase map data |
|
804 | Plot for Phase map data | |
830 | ''' |
|
805 | ''' | |
831 |
|
806 | |||
832 | CODE = 'phase' |
|
807 | CODE = 'phase' | |
833 | colormap = 'seismic' |
|
808 | colormap = 'seismic' | |
834 |
|
809 | |||
835 | def update(self, dataOut): |
|
810 | def update(self, dataOut): | |
836 |
|
811 | |||
837 | data = {} |
|
812 | data = {} | |
838 | meta = {} |
|
813 | meta = {} | |
839 | data['phase'] = dataOut.getCoherence(phase=True) |
|
814 | data['phase'] = dataOut.getCoherence(phase=True) | |
840 | meta['pairs'] = dataOut.pairsList |
|
815 | meta['pairs'] = dataOut.pairsList | |
841 |
|
816 | |||
842 | return data, meta |
|
817 | return data, meta | |
843 |
|
818 | |||
844 | class NoisePlot(Plot): |
|
819 | class NoisePlot(Plot): | |
845 | ''' |
|
820 | ''' | |
846 | Plot for noise |
|
821 | Plot for noise | |
847 | ''' |
|
822 | ''' | |
848 |
|
823 | |||
849 | CODE = 'noise' |
|
824 | CODE = 'noise' | |
850 | plot_type = 'scatterbuffer' |
|
825 | plot_type = 'scatterbuffer' | |
851 |
|
826 | |||
852 | def setup(self): |
|
827 | def setup(self): | |
853 | self.xaxis = 'time' |
|
828 | self.xaxis = 'time' | |
854 | self.ncols = 1 |
|
829 | self.ncols = 1 | |
855 | self.nrows = 1 |
|
830 | self.nrows = 1 | |
856 | self.nplots = 1 |
|
831 | self.nplots = 1 | |
857 | self.ylabel = 'Intensity [dB]' |
|
832 | self.ylabel = 'Intensity [dB]' | |
858 | self.xlabel = 'Time' |
|
833 | self.xlabel = 'Time' | |
859 | self.titles = ['Noise'] |
|
834 | self.titles = ['Noise'] | |
860 | self.colorbar = False |
|
835 | self.colorbar = False | |
861 | self.plots_adjust.update({'right': 0.85 }) |
|
836 | self.plots_adjust.update({'right': 0.85 }) | |
862 |
|
837 | |||
863 | def update(self, dataOut): |
|
838 | def update(self, dataOut): | |
864 |
|
839 | |||
865 | data = {} |
|
840 | data = {} | |
866 | meta = {} |
|
841 | meta = {} | |
867 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
842 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
868 | meta['yrange'] = numpy.array([]) |
|
843 | meta['yrange'] = numpy.array([]) | |
869 |
|
844 | |||
870 | return data, meta |
|
845 | return data, meta | |
871 |
|
846 | |||
872 | def plot(self): |
|
847 | def plot(self): | |
873 |
|
848 | |||
874 | x = self.data.times |
|
849 | x = self.data.times | |
875 | xmin = self.data.min_time |
|
850 | xmin = self.data.min_time | |
876 | xmax = xmin + self.xrange * 60 * 60 |
|
851 | xmax = xmin + self.xrange * 60 * 60 | |
877 | Y = self.data['noise'] |
|
852 | Y = self.data['noise'] | |
878 |
|
853 | |||
879 | if self.axes[0].firsttime: |
|
854 | if self.axes[0].firsttime: | |
880 | self.ymin = numpy.nanmin(Y) - 5 |
|
855 | self.ymin = numpy.nanmin(Y) - 5 | |
881 | self.ymax = numpy.nanmax(Y) + 5 |
|
856 | self.ymax = numpy.nanmax(Y) + 5 | |
882 | for ch in self.data.channels: |
|
857 | for ch in self.data.channels: | |
883 | y = Y[ch] |
|
858 | y = Y[ch] | |
884 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
859 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
885 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
860 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
886 | else: |
|
861 | else: | |
887 | for ch in self.data.channels: |
|
862 | for ch in self.data.channels: | |
888 | y = Y[ch] |
|
863 | y = Y[ch] | |
889 | self.axes[0].lines[ch].set_data(x, y) |
|
864 | self.axes[0].lines[ch].set_data(x, y) | |
890 |
|
865 | |||
891 | self.ymin = numpy.nanmin(Y) - 5 |
|
866 | self.ymin = numpy.nanmin(Y) - 5 | |
892 | self.ymax = numpy.nanmax(Y) + 10 |
|
867 | self.ymax = numpy.nanmax(Y) + 10 | |
893 |
|
868 | |||
894 |
|
869 | |||
895 | class PowerProfilePlot(Plot): |
|
870 | class PowerProfilePlot(Plot): | |
896 |
|
871 | |||
897 | CODE = 'pow_profile' |
|
872 | CODE = 'pow_profile' | |
898 | plot_type = 'scatter' |
|
873 | plot_type = 'scatter' | |
899 |
|
874 | |||
900 | def setup(self): |
|
875 | def setup(self): | |
901 |
|
876 | |||
902 | self.ncols = 1 |
|
877 | self.ncols = 1 | |
903 | self.nrows = 1 |
|
878 | self.nrows = 1 | |
904 | self.nplots = 1 |
|
879 | self.nplots = 1 | |
905 | self.height = 4 |
|
880 | self.height = 4 | |
906 | self.width = 3 |
|
881 | self.width = 3 | |
907 | self.ylabel = 'Range [km]' |
|
882 | self.ylabel = 'Range [km]' | |
908 | self.xlabel = 'Intensity [dB]' |
|
883 | self.xlabel = 'Intensity [dB]' | |
909 | self.titles = ['Power Profile'] |
|
884 | self.titles = ['Power Profile'] | |
910 | self.colorbar = False |
|
885 | self.colorbar = False | |
911 |
|
886 | |||
912 | def update(self, dataOut): |
|
887 | def update(self, dataOut): | |
913 |
|
888 | |||
914 | data = {} |
|
889 | data = {} | |
915 | meta = {} |
|
890 | meta = {} | |
916 | data[self.CODE] = dataOut.getPower() |
|
891 | data[self.CODE] = dataOut.getPower() | |
917 |
|
892 | |||
918 | return data, meta |
|
893 | return data, meta | |
919 |
|
894 | |||
920 | def plot(self): |
|
895 | def plot(self): | |
921 |
|
896 | |||
922 | y = self.data.yrange |
|
897 | y = self.data.yrange | |
923 | self.y = y |
|
898 | self.y = y | |
924 |
|
899 | |||
925 | x = self.data[-1][self.CODE] |
|
900 | x = self.data[-1][self.CODE] | |
926 |
|
901 | |||
927 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
902 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
928 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
903 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
929 |
|
904 | |||
930 | if self.axes[0].firsttime: |
|
905 | if self.axes[0].firsttime: | |
931 | for ch in self.data.channels: |
|
906 | for ch in self.data.channels: | |
932 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
907 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
933 | plt.legend() |
|
908 | plt.legend() | |
934 | else: |
|
909 | else: | |
935 | for ch in self.data.channels: |
|
910 | for ch in self.data.channels: | |
936 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
911 | self.axes[0].lines[ch].set_data(x[ch], y) | |
937 |
|
912 | |||
938 |
|
913 | |||
939 | class SpectraCutPlot(Plot): |
|
914 | class SpectraCutPlot(Plot): | |
940 |
|
915 | |||
941 | CODE = 'spc_cut' |
|
916 | CODE = 'spc_cut' | |
942 | plot_type = 'scatter' |
|
917 | plot_type = 'scatter' | |
943 | buffering = False |
|
918 | buffering = False | |
944 |
|
919 | |||
945 | def setup(self): |
|
920 | def setup(self): | |
946 |
|
921 | |||
947 | self.nplots = len(self.data.channels) |
|
922 | self.nplots = len(self.data.channels) | |
948 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
923 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
949 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
924 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
950 | self.width = 3.4 * self.ncols + 1.5 |
|
925 | self.width = 3.4 * self.ncols + 1.5 | |
951 | self.height = 3 * self.nrows |
|
926 | self.height = 3 * self.nrows | |
952 | self.ylabel = 'Power [dB]' |
|
927 | self.ylabel = 'Power [dB]' | |
953 | self.colorbar = False |
|
928 | self.colorbar = False | |
954 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
929 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
955 |
|
930 | |||
956 | def update(self, dataOut): |
|
931 | def update(self, dataOut): | |
957 |
|
932 | |||
958 | data = {} |
|
933 | data = {} | |
959 | meta = {} |
|
934 | meta = {} | |
960 | spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
935 | spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
961 | data['spc'] = spc |
|
936 | data['spc'] = spc | |
962 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
937 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
963 | if self.CODE == 'cut_gaussian_fit': |
|
938 | if self.CODE == 'cut_gaussian_fit': | |
964 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
939 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) | |
965 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
940 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) | |
966 | return data, meta |
|
941 | return data, meta | |
967 |
|
942 | |||
968 | def plot(self): |
|
943 | def plot(self): | |
969 | if self.xaxis == "frequency": |
|
944 | if self.xaxis == "frequency": | |
970 | x = self.data.xrange[0][1:] |
|
945 | x = self.data.xrange[0][1:] | |
971 | self.xlabel = "Frequency (kHz)" |
|
946 | self.xlabel = "Frequency (kHz)" | |
972 | elif self.xaxis == "time": |
|
947 | elif self.xaxis == "time": | |
973 | x = self.data.xrange[1] |
|
948 | x = self.data.xrange[1] | |
974 | self.xlabel = "Time (ms)" |
|
949 | self.xlabel = "Time (ms)" | |
975 | else: |
|
950 | else: | |
976 | x = self.data.xrange[2][:-1] |
|
951 | x = self.data.xrange[2][:-1] | |
977 | self.xlabel = "Velocity (m/s)" |
|
952 | self.xlabel = "Velocity (m/s)" | |
978 |
|
953 | |||
979 | if self.CODE == 'cut_gaussian_fit': |
|
954 | if self.CODE == 'cut_gaussian_fit': | |
980 | x = self.data.xrange[2][:-1] |
|
955 | x = self.data.xrange[2][:-1] | |
981 | self.xlabel = "Velocity (m/s)" |
|
956 | self.xlabel = "Velocity (m/s)" | |
982 |
|
957 | |||
983 | self.titles = [] |
|
958 | self.titles = [] | |
984 |
|
959 | |||
985 | y = self.data.yrange |
|
960 | y = self.data.yrange | |
986 | data = self.data[-1] |
|
961 | data = self.data[-1] | |
987 | z = data['spc'] |
|
962 | z = data['spc'] | |
988 |
|
963 | |||
989 | if self.height_index: |
|
964 | if self.height_index: | |
990 | index = numpy.array(self.height_index) |
|
965 | index = numpy.array(self.height_index) | |
991 | else: |
|
966 | else: | |
992 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
967 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
993 |
|
968 | |||
994 | for n, ax in enumerate(self.axes): |
|
969 | for n, ax in enumerate(self.axes): | |
995 | if self.CODE == 'cut_gaussian_fit': |
|
970 | if self.CODE == 'cut_gaussian_fit': | |
996 | gau0 = data['gauss_fit0'] |
|
971 | gau0 = data['gauss_fit0'] | |
997 | gau1 = data['gauss_fit1'] |
|
972 | gau1 = data['gauss_fit1'] | |
998 | if ax.firsttime: |
|
973 | if ax.firsttime: | |
999 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
974 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1000 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
975 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1001 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
976 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
1002 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
977 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
1003 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
978 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
1004 | if self.CODE == 'cut_gaussian_fit': |
|
979 | if self.CODE == 'cut_gaussian_fit': | |
1005 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
980 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
1006 | for i, line in enumerate(ax.plt_gau0): |
|
981 | for i, line in enumerate(ax.plt_gau0): | |
1007 | line.set_color(ax.plt[i].get_color()) |
|
982 | line.set_color(ax.plt[i].get_color()) | |
1008 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
983 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
1009 | for i, line in enumerate(ax.plt_gau1): |
|
984 | for i, line in enumerate(ax.plt_gau1): | |
1010 | line.set_color(ax.plt[i].get_color()) |
|
985 | line.set_color(ax.plt[i].get_color()) | |
1011 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
986 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
1012 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
987 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
1013 | else: |
|
988 | else: | |
1014 | for i, line in enumerate(ax.plt): |
|
989 | for i, line in enumerate(ax.plt): | |
1015 | line.set_data(x, z[n, :, index[i]].T) |
|
990 | line.set_data(x, z[n, :, index[i]].T) | |
1016 | for i, line in enumerate(ax.plt_gau0): |
|
991 | for i, line in enumerate(ax.plt_gau0): | |
1017 | line.set_data(x, gau0[n, :, index[i]].T) |
|
992 | line.set_data(x, gau0[n, :, index[i]].T) | |
1018 | line.set_color(ax.plt[i].get_color()) |
|
993 | line.set_color(ax.plt[i].get_color()) | |
1019 | for i, line in enumerate(ax.plt_gau1): |
|
994 | for i, line in enumerate(ax.plt_gau1): | |
1020 | line.set_data(x, gau1[n, :, index[i]].T) |
|
995 | line.set_data(x, gau1[n, :, index[i]].T) | |
1021 | line.set_color(ax.plt[i].get_color()) |
|
996 | line.set_color(ax.plt[i].get_color()) | |
1022 | self.titles.append('CH {}'.format(n)) |
|
997 | self.titles.append('CH {}'.format(n)) | |
1023 |
|
998 | |||
1024 |
|
999 | |||
1025 | class BeaconPhase(Plot): |
|
1000 | class BeaconPhase(Plot): | |
1026 |
|
1001 | |||
1027 | __isConfig = None |
|
1002 | __isConfig = None | |
1028 | __nsubplots = None |
|
1003 | __nsubplots = None | |
1029 |
|
1004 | |||
1030 | PREFIX = 'beacon_phase' |
|
1005 | PREFIX = 'beacon_phase' | |
1031 |
|
1006 | |||
1032 | def __init__(self): |
|
1007 | def __init__(self): | |
1033 | Plot.__init__(self) |
|
1008 | Plot.__init__(self) | |
1034 | self.timerange = 24*60*60 |
|
1009 | self.timerange = 24*60*60 | |
1035 | self.isConfig = False |
|
1010 | self.isConfig = False | |
1036 | self.__nsubplots = 1 |
|
1011 | self.__nsubplots = 1 | |
1037 | self.counter_imagwr = 0 |
|
1012 | self.counter_imagwr = 0 | |
1038 | self.WIDTH = 800 |
|
1013 | self.WIDTH = 800 | |
1039 | self.HEIGHT = 400 |
|
1014 | self.HEIGHT = 400 | |
1040 | self.WIDTHPROF = 120 |
|
1015 | self.WIDTHPROF = 120 | |
1041 | self.HEIGHTPROF = 0 |
|
1016 | self.HEIGHTPROF = 0 | |
1042 | self.xdata = None |
|
1017 | self.xdata = None | |
1043 | self.ydata = None |
|
1018 | self.ydata = None | |
1044 |
|
1019 | |||
1045 | self.PLOT_CODE = BEACON_CODE |
|
1020 | self.PLOT_CODE = BEACON_CODE | |
1046 |
|
1021 | |||
1047 | self.FTP_WEI = None |
|
1022 | self.FTP_WEI = None | |
1048 | self.EXP_CODE = None |
|
1023 | self.EXP_CODE = None | |
1049 | self.SUB_EXP_CODE = None |
|
1024 | self.SUB_EXP_CODE = None | |
1050 | self.PLOT_POS = None |
|
1025 | self.PLOT_POS = None | |
1051 |
|
1026 | |||
1052 | self.filename_phase = None |
|
1027 | self.filename_phase = None | |
1053 |
|
1028 | |||
1054 | self.figfile = None |
|
1029 | self.figfile = None | |
1055 |
|
1030 | |||
1056 | self.xmin = None |
|
1031 | self.xmin = None | |
1057 | self.xmax = None |
|
1032 | self.xmax = None | |
1058 |
|
1033 | |||
1059 | def getSubplots(self): |
|
1034 | def getSubplots(self): | |
1060 |
|
1035 | |||
1061 | ncol = 1 |
|
1036 | ncol = 1 | |
1062 | nrow = 1 |
|
1037 | nrow = 1 | |
1063 |
|
1038 | |||
1064 | return nrow, ncol |
|
1039 | return nrow, ncol | |
1065 |
|
1040 | |||
1066 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1041 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1067 |
|
1042 | |||
1068 | self.__showprofile = showprofile |
|
1043 | self.__showprofile = showprofile | |
1069 | self.nplots = nplots |
|
1044 | self.nplots = nplots | |
1070 |
|
1045 | |||
1071 | ncolspan = 7 |
|
1046 | ncolspan = 7 | |
1072 | colspan = 6 |
|
1047 | colspan = 6 | |
1073 | self.__nsubplots = 2 |
|
1048 | self.__nsubplots = 2 | |
1074 |
|
1049 | |||
1075 | self.createFigure(id = id, |
|
1050 | self.createFigure(id = id, | |
1076 | wintitle = wintitle, |
|
1051 | wintitle = wintitle, | |
1077 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1052 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1078 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1053 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1079 | show=show) |
|
1054 | show=show) | |
1080 |
|
1055 | |||
1081 | nrow, ncol = self.getSubplots() |
|
1056 | nrow, ncol = self.getSubplots() | |
1082 |
|
1057 | |||
1083 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1058 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1084 |
|
1059 | |||
1085 | def save_phase(self, filename_phase): |
|
1060 | def save_phase(self, filename_phase): | |
1086 | f = open(filename_phase,'w+') |
|
1061 | f = open(filename_phase,'w+') | |
1087 | f.write('\n\n') |
|
1062 | f.write('\n\n') | |
1088 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1063 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1089 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1064 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1090 | f.close() |
|
1065 | f.close() | |
1091 |
|
1066 | |||
1092 | def save_data(self, filename_phase, data, data_datetime): |
|
1067 | def save_data(self, filename_phase, data, data_datetime): | |
1093 | f=open(filename_phase,'a') |
|
1068 | f=open(filename_phase,'a') | |
1094 | timetuple_data = data_datetime.timetuple() |
|
1069 | timetuple_data = data_datetime.timetuple() | |
1095 | day = str(timetuple_data.tm_mday) |
|
1070 | day = str(timetuple_data.tm_mday) | |
1096 | month = str(timetuple_data.tm_mon) |
|
1071 | month = str(timetuple_data.tm_mon) | |
1097 | year = str(timetuple_data.tm_year) |
|
1072 | year = str(timetuple_data.tm_year) | |
1098 | hour = str(timetuple_data.tm_hour) |
|
1073 | hour = str(timetuple_data.tm_hour) | |
1099 | minute = str(timetuple_data.tm_min) |
|
1074 | minute = str(timetuple_data.tm_min) | |
1100 | second = str(timetuple_data.tm_sec) |
|
1075 | second = str(timetuple_data.tm_sec) | |
1101 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1076 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1102 | f.close() |
|
1077 | f.close() | |
1103 |
|
1078 | |||
1104 | def plot(self): |
|
1079 | def plot(self): | |
1105 | log.warning('TODO: Not yet implemented...') |
|
1080 | log.warning('TODO: Not yet implemented...') | |
1106 |
|
1081 | |||
1107 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1082 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1108 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1083 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1109 | timerange=None, |
|
1084 | timerange=None, | |
1110 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1085 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1111 | server=None, folder=None, username=None, password=None, |
|
1086 | server=None, folder=None, username=None, password=None, | |
1112 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1087 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1113 |
|
1088 | |||
1114 | if dataOut.flagNoData: |
|
1089 | if dataOut.flagNoData: | |
1115 | return dataOut |
|
1090 | return dataOut | |
1116 |
|
1091 | |||
1117 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1092 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1118 | return |
|
1093 | return | |
1119 |
|
1094 | |||
1120 | if pairsList == None: |
|
1095 | if pairsList == None: | |
1121 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1096 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1122 | else: |
|
1097 | else: | |
1123 | pairsIndexList = [] |
|
1098 | pairsIndexList = [] | |
1124 | for pair in pairsList: |
|
1099 | for pair in pairsList: | |
1125 | if pair not in dataOut.pairsList: |
|
1100 | if pair not in dataOut.pairsList: | |
1126 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1101 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
1127 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1102 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1128 |
|
1103 | |||
1129 | if pairsIndexList == []: |
|
1104 | if pairsIndexList == []: | |
1130 | return |
|
1105 | return | |
1131 |
|
1106 | |||
1132 | # if len(pairsIndexList) > 4: |
|
1107 | # if len(pairsIndexList) > 4: | |
1133 | # pairsIndexList = pairsIndexList[0:4] |
|
1108 | # pairsIndexList = pairsIndexList[0:4] | |
1134 |
|
1109 | |||
1135 | hmin_index = None |
|
1110 | hmin_index = None | |
1136 | hmax_index = None |
|
1111 | hmax_index = None | |
1137 |
|
1112 | |||
1138 | if hmin != None and hmax != None: |
|
1113 | if hmin != None and hmax != None: | |
1139 | indexes = numpy.arange(dataOut.nHeights) |
|
1114 | indexes = numpy.arange(dataOut.nHeights) | |
1140 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1115 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1141 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1116 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1142 |
|
1117 | |||
1143 | if hmin_list.any(): |
|
1118 | if hmin_list.any(): | |
1144 | hmin_index = hmin_list[0] |
|
1119 | hmin_index = hmin_list[0] | |
1145 |
|
1120 | |||
1146 | if hmax_list.any(): |
|
1121 | if hmax_list.any(): | |
1147 | hmax_index = hmax_list[-1]+1 |
|
1122 | hmax_index = hmax_list[-1]+1 | |
1148 |
|
1123 | |||
1149 | x = dataOut.getTimeRange() |
|
1124 | x = dataOut.getTimeRange() | |
1150 |
|
1125 | |||
1151 | thisDatetime = dataOut.datatime |
|
1126 | thisDatetime = dataOut.datatime | |
1152 |
|
1127 | |||
1153 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1128 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1154 | xlabel = "Local Time" |
|
1129 | xlabel = "Local Time" | |
1155 | ylabel = "Phase (degrees)" |
|
1130 | ylabel = "Phase (degrees)" | |
1156 |
|
1131 | |||
1157 | update_figfile = False |
|
1132 | update_figfile = False | |
1158 |
|
1133 | |||
1159 | nplots = len(pairsIndexList) |
|
1134 | nplots = len(pairsIndexList) | |
1160 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1135 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1161 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1136 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1162 | for i in range(nplots): |
|
1137 | for i in range(nplots): | |
1163 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1138 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1164 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1139 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1165 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1140 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1166 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1141 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1167 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1142 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1168 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1143 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1169 |
|
1144 | |||
1170 | if dataOut.beacon_heiIndexList: |
|
1145 | if dataOut.beacon_heiIndexList: | |
1171 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1146 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1172 | else: |
|
1147 | else: | |
1173 | phase_beacon[i] = numpy.average(phase) |
|
1148 | phase_beacon[i] = numpy.average(phase) | |
1174 |
|
1149 | |||
1175 | if not self.isConfig: |
|
1150 | if not self.isConfig: | |
1176 |
|
1151 | |||
1177 | nplots = len(pairsIndexList) |
|
1152 | nplots = len(pairsIndexList) | |
1178 |
|
1153 | |||
1179 | self.setup(id=id, |
|
1154 | self.setup(id=id, | |
1180 | nplots=nplots, |
|
1155 | nplots=nplots, | |
1181 | wintitle=wintitle, |
|
1156 | wintitle=wintitle, | |
1182 | showprofile=showprofile, |
|
1157 | showprofile=showprofile, | |
1183 | show=show) |
|
1158 | show=show) | |
1184 |
|
1159 | |||
1185 | if timerange != None: |
|
1160 | if timerange != None: | |
1186 | self.timerange = timerange |
|
1161 | self.timerange = timerange | |
1187 |
|
1162 | |||
1188 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1163 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1189 |
|
1164 | |||
1190 | if ymin == None: ymin = 0 |
|
1165 | if ymin == None: ymin = 0 | |
1191 | if ymax == None: ymax = 360 |
|
1166 | if ymax == None: ymax = 360 | |
1192 |
|
1167 | |||
1193 | self.FTP_WEI = ftp_wei |
|
1168 | self.FTP_WEI = ftp_wei | |
1194 | self.EXP_CODE = exp_code |
|
1169 | self.EXP_CODE = exp_code | |
1195 | self.SUB_EXP_CODE = sub_exp_code |
|
1170 | self.SUB_EXP_CODE = sub_exp_code | |
1196 | self.PLOT_POS = plot_pos |
|
1171 | self.PLOT_POS = plot_pos | |
1197 |
|
1172 | |||
1198 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1173 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1199 | self.isConfig = True |
|
1174 | self.isConfig = True | |
1200 | self.figfile = figfile |
|
1175 | self.figfile = figfile | |
1201 | self.xdata = numpy.array([]) |
|
1176 | self.xdata = numpy.array([]) | |
1202 | self.ydata = numpy.array([]) |
|
1177 | self.ydata = numpy.array([]) | |
1203 |
|
1178 | |||
1204 | update_figfile = True |
|
1179 | update_figfile = True | |
1205 |
|
1180 | |||
1206 | #open file beacon phase |
|
1181 | #open file beacon phase | |
1207 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1182 | path = '%s%03d' %(self.PREFIX, self.id) | |
1208 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1183 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1209 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1184 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1210 | #self.save_phase(self.filename_phase) |
|
1185 | #self.save_phase(self.filename_phase) | |
1211 |
|
1186 | |||
1212 |
|
1187 | |||
1213 | #store data beacon phase |
|
1188 | #store data beacon phase | |
1214 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1189 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1215 |
|
1190 | |||
1216 | self.setWinTitle(title) |
|
1191 | self.setWinTitle(title) | |
1217 |
|
1192 | |||
1218 |
|
1193 | |||
1219 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1194 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1220 |
|
1195 | |||
1221 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1196 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1222 |
|
1197 | |||
1223 | axes = self.axesList[0] |
|
1198 | axes = self.axesList[0] | |
1224 |
|
1199 | |||
1225 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1200 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1226 |
|
1201 | |||
1227 | if len(self.ydata)==0: |
|
1202 | if len(self.ydata)==0: | |
1228 | self.ydata = phase_beacon.reshape(-1,1) |
|
1203 | self.ydata = phase_beacon.reshape(-1,1) | |
1229 | else: |
|
1204 | else: | |
1230 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1205 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1231 |
|
1206 | |||
1232 |
|
1207 | |||
1233 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1208 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1234 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1209 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1235 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1210 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1236 | XAxisAsTime=True, grid='both' |
|
1211 | XAxisAsTime=True, grid='both' | |
1237 | ) |
|
1212 | ) | |
1238 |
|
1213 | |||
1239 | self.draw() |
|
1214 | self.draw() | |
1240 |
|
1215 | |||
1241 | if dataOut.ltctime >= self.xmax: |
|
1216 | if dataOut.ltctime >= self.xmax: | |
1242 | self.counter_imagwr = wr_period |
|
1217 | self.counter_imagwr = wr_period | |
1243 | self.isConfig = False |
|
1218 | self.isConfig = False | |
1244 | update_figfile = True |
|
1219 | update_figfile = True | |
1245 |
|
1220 | |||
1246 | self.save(figpath=figpath, |
|
1221 | self.save(figpath=figpath, | |
1247 | figfile=figfile, |
|
1222 | figfile=figfile, | |
1248 | save=save, |
|
1223 | save=save, | |
1249 | ftp=ftp, |
|
1224 | ftp=ftp, | |
1250 | wr_period=wr_period, |
|
1225 | wr_period=wr_period, | |
1251 | thisDatetime=thisDatetime, |
|
1226 | thisDatetime=thisDatetime, | |
1252 | update_figfile=update_figfile) |
|
1227 | update_figfile=update_figfile) | |
1253 |
|
1228 | |||
1254 | return dataOut |
|
1229 | return dataOut |
@@ -1,1156 +1,1126 | |||||
1 |
|
1 | |||
2 | import os |
|
2 | import os | |
|
3 | import time | |||
|
4 | import math | |||
3 | import datetime |
|
5 | import datetime | |
4 | import numpy |
|
6 | import numpy | |
5 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG |
|
7 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG | |
6 |
|
8 | |||
7 | from .jroplot_spectra import RTIPlot, NoisePlot |
|
9 | from .jroplot_spectra import RTIPlot, NoisePlot | |
8 |
|
10 | |||
9 | from schainpy.utils import log |
|
11 | from schainpy.utils import log | |
10 | from .plotting_codes import * |
|
12 | from .plotting_codes import * | |
11 |
|
13 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
14 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
13 |
|
15 | |||
14 | import matplotlib.pyplot as plt |
|
16 | import matplotlib.pyplot as plt | |
15 | import matplotlib.colors as colors |
|
17 | import matplotlib.colors as colors | |
16 |
|
||||
17 | import time |
|
|||
18 | import math |
|
|||
19 |
|
||||
20 |
|
||||
21 | from matplotlib.ticker import MultipleLocator |
|
18 | from matplotlib.ticker import MultipleLocator | |
22 |
|
19 | |||
23 |
|
20 | |||
24 |
|
||||
25 | class RTIDPPlot(RTIPlot): |
|
21 | class RTIDPPlot(RTIPlot): | |
26 |
|
22 | |||
27 | ''' |
|
23 | '''Plot for RTI Double Pulse Experiment | |
28 | Plot for RTI Double Pulse Experiment |
|
|||
29 | ''' |
|
24 | ''' | |
30 |
|
25 | |||
31 | CODE = 'RTIDP' |
|
26 | CODE = 'RTIDP' | |
32 | colormap = 'jro' |
|
27 | colormap = 'jro' | |
33 | plot_name = 'RTI' |
|
28 | plot_name = 'RTI' | |
34 |
|
29 | |||
35 | #cb_label = 'Ne Electron Density (1/cm3)' |
|
|||
36 |
|
||||
37 | def setup(self): |
|
30 | def setup(self): | |
38 | self.xaxis = 'time' |
|
31 | self.xaxis = 'time' | |
39 | self.ncols = 1 |
|
32 | self.ncols = 1 | |
40 | self.nrows = 3 |
|
33 | self.nrows = 3 | |
41 | self.nplots = self.nrows |
|
34 | self.nplots = self.nrows | |
42 | #self.height=10 |
|
35 | #self.height=10 | |
43 | if self.showSNR: |
|
36 | if self.showSNR: | |
44 | self.nrows += 1 |
|
37 | self.nrows += 1 | |
45 | self.nplots += 1 |
|
38 | self.nplots += 1 | |
46 |
|
39 | |||
47 | self.ylabel = 'Height [km]' |
|
40 | self.ylabel = 'Height [km]' | |
48 | self.xlabel = 'Time (LT)' |
|
41 | self.xlabel = 'Time (LT)' | |
49 |
|
42 | |||
50 | self.cb_label = 'Intensity (dB)' |
|
43 | self.cb_label = 'Intensity (dB)' | |
51 |
|
44 | |||
52 |
|
||||
53 | #self.cb_label = cb_label |
|
|||
54 |
|
||||
55 | self.titles = ['{} Channel {}'.format( |
|
45 | self.titles = ['{} Channel {}'.format( | |
56 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( |
|
46 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( | |
57 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
47 | self.plot_name.upper(), '0'),'{} Channel {}'.format( | |
58 | self.plot_name.upper(), '1')] |
|
48 | self.plot_name.upper(), '1')] | |
59 |
|
49 | |||
|
50 | def update(self, dataOut): | |||
60 |
|
51 | |||
61 | def plot(self): |
|
52 | data = {} | |
62 |
|
53 | meta = {} | ||
63 | self.data.normalize_heights() |
|
54 | data[self.CODE] = dataOut.data_for_RTI_DP | |
64 | self.x = self.data.times |
|
55 | data['NRANGE'] = dataOut.NDP | |
65 | self.y = self.data.heights[0:self.data.NDP] |
|
|||
66 |
|
56 | |||
67 | if self.showSNR: |
|
57 | return data, meta | |
68 | self.z = numpy.concatenate( |
|
|||
69 | (self.data[self.CODE], self.data['snr']) |
|
|||
70 | ) |
|
|||
71 | else: |
|
|||
72 |
|
58 | |||
73 | self.z = self.data[self.CODE] |
|
59 | def plot(self): | |
74 | #print(numpy.max(self.z[0,0:])) |
|
|||
75 |
|
60 | |||
|
61 | self.x = self.data.times | |||
|
62 | self.y = self.data.yrange[0: self.data['NRANGE']] | |||
|
63 | self.z = self.data[self.CODE] | |||
76 | self.z = numpy.ma.masked_invalid(self.z) |
|
64 | self.z = numpy.ma.masked_invalid(self.z) | |
77 |
|
65 | |||
78 | if self.decimation is None: |
|
66 | if self.decimation is None: | |
79 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
67 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
80 | else: |
|
68 | else: | |
81 | x, y, z = self.fill_gaps(*self.decimate()) |
|
69 | x, y, z = self.fill_gaps(*self.decimate()) | |
82 |
|
70 | |||
83 | for n, ax in enumerate(self.axes): |
|
71 | for n, ax in enumerate(self.axes): | |
84 |
|
72 | |||
85 |
|
||||
86 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
73 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
87 | self.z[1][0,12:40]) |
|
74 | self.z[1][0,12:40]) | |
88 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
75 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
89 | self.z[1][0,12:40]) |
|
76 | self.z[1][0,12:40]) | |
90 |
|
77 | |||
91 |
|
||||
92 |
|
||||
93 | if ax.firsttime: |
|
78 | if ax.firsttime: | |
94 |
|
79 | |||
95 | if self.zlimits is not None: |
|
80 | if self.zlimits is not None: | |
96 | self.zmin, self.zmax = self.zlimits[n] |
|
81 | self.zmin, self.zmax = self.zlimits[n] | |
97 |
|
82 | |||
98 |
|
||||
99 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
83 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
100 | vmin=self.zmin, |
|
84 | vmin=self.zmin, | |
101 | vmax=self.zmax, |
|
85 | vmax=self.zmax, | |
102 | cmap=self.cmaps[n] |
|
86 | cmap=self.cmaps[n] | |
103 | ) |
|
87 | ) | |
104 | #plt.tight_layout() |
|
|||
105 | else: |
|
88 | else: | |
106 | if self.zlimits is not None: |
|
89 | if self.zlimits is not None: | |
107 | self.zmin, self.zmax = self.zlimits[n] |
|
90 | self.zmin, self.zmax = self.zlimits[n] | |
108 | ax.collections.remove(ax.collections[0]) |
|
91 | ax.collections.remove(ax.collections[0]) | |
109 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
92 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
110 | vmin=self.zmin, |
|
93 | vmin=self.zmin, | |
111 | vmax=self.zmax, |
|
94 | vmax=self.zmax, | |
112 | cmap=self.cmaps[n] |
|
95 | cmap=self.cmaps[n] | |
113 | ) |
|
96 | ) | |
114 | #plt.tight_layout() |
|
|||
115 |
|
97 | |||
116 |
|
98 | |||
117 | class RTILPPlot(RTIPlot): |
|
99 | class RTILPPlot(RTIPlot): | |
118 |
|
100 | |||
119 | ''' |
|
101 | ''' | |
120 | Plot for RTI Long Pulse |
|
102 | Plot for RTI Long Pulse | |
121 | ''' |
|
103 | ''' | |
122 |
|
104 | |||
123 | CODE = 'RTILP' |
|
105 | CODE = 'RTILP' | |
124 | colormap = 'jro' |
|
106 | colormap = 'jro' | |
125 | plot_name = 'RTI LP' |
|
107 | plot_name = 'RTI LP' | |
126 |
|
108 | |||
127 | #cb_label = 'Ne Electron Density (1/cm3)' |
|
|||
128 |
|
||||
129 | def setup(self): |
|
109 | def setup(self): | |
130 | self.xaxis = 'time' |
|
110 | self.xaxis = 'time' | |
131 | self.ncols = 1 |
|
111 | self.ncols = 1 | |
132 | self.nrows = 4 |
|
112 | self.nrows = 4 | |
133 | self.nplots = self.nrows |
|
113 | self.nplots = self.nrows | |
134 | if self.showSNR: |
|
114 | if self.showSNR: | |
135 | self.nrows += 1 |
|
115 | self.nrows += 1 | |
136 | self.nplots += 1 |
|
116 | self.nplots += 1 | |
137 |
|
117 | |||
138 | self.ylabel = 'Height [km]' |
|
118 | self.ylabel = 'Height [km]' | |
139 | self.xlabel = 'Time (LT)' |
|
119 | self.xlabel = 'Time (LT)' | |
140 |
|
120 | |||
141 | self.cb_label = 'Intensity (dB)' |
|
121 | self.cb_label = 'Intensity (dB)' | |
142 |
|
122 | |||
143 |
|
||||
144 |
|
||||
145 | #self.cb_label = cb_label |
|
|||
146 |
|
||||
147 | self.titles = ['{} Channel {}'.format( |
|
123 | self.titles = ['{} Channel {}'.format( | |
148 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
124 | self.plot_name.upper(), '0'),'{} Channel {}'.format( | |
149 | self.plot_name.upper(), '1'),'{} Channel {}'.format( |
|
125 | self.plot_name.upper(), '1'),'{} Channel {}'.format( | |
150 | self.plot_name.upper(), '2'),'{} Channel {}'.format( |
|
126 | self.plot_name.upper(), '2'),'{} Channel {}'.format( | |
151 | self.plot_name.upper(), '3')] |
|
127 | self.plot_name.upper(), '3')] | |
152 |
|
128 | |||
153 |
|
129 | |||
154 | def plot(self): |
|
130 | def plot(self): | |
155 |
|
131 | |||
156 | self.data.normalize_heights() |
|
132 | self.data.normalize_heights() | |
157 | self.x = self.data.times |
|
133 | self.x = self.data.times | |
158 | self.y = self.data.heights[0:self.data.NRANGE] |
|
134 | self.y = self.data.heights[0:self.data.NRANGE] | |
159 |
|
135 | |||
160 | if self.showSNR: |
|
136 | if self.showSNR: | |
161 | self.z = numpy.concatenate( |
|
137 | self.z = numpy.concatenate( | |
162 | (self.data[self.CODE], self.data['snr']) |
|
138 | (self.data[self.CODE], self.data['snr']) | |
163 | ) |
|
139 | ) | |
164 | else: |
|
140 | else: | |
165 |
|
141 | |||
166 | self.z = self.data[self.CODE] |
|
142 | self.z = self.data[self.CODE] | |
167 | #print(numpy.max(self.z[0,0:])) |
|
143 | #print(numpy.max(self.z[0,0:])) | |
168 |
|
144 | |||
169 | self.z = numpy.ma.masked_invalid(self.z) |
|
145 | self.z = numpy.ma.masked_invalid(self.z) | |
170 |
|
146 | |||
171 | if self.decimation is None: |
|
147 | if self.decimation is None: | |
172 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
148 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
173 | else: |
|
149 | else: | |
174 | x, y, z = self.fill_gaps(*self.decimate()) |
|
150 | x, y, z = self.fill_gaps(*self.decimate()) | |
175 |
|
151 | |||
176 | for n, ax in enumerate(self.axes): |
|
152 | for n, ax in enumerate(self.axes): | |
177 |
|
153 | |||
178 |
|
||||
179 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
154 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
180 | self.z[1][0,12:40]) |
|
155 | self.z[1][0,12:40]) | |
181 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
156 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
182 | self.z[1][0,12:40]) |
|
157 | self.z[1][0,12:40]) | |
183 |
|
158 | |||
184 | if ax.firsttime: |
|
159 | if ax.firsttime: | |
185 |
|
160 | |||
186 | if self.zlimits is not None: |
|
161 | if self.zlimits is not None: | |
187 | self.zmin, self.zmax = self.zlimits[n] |
|
162 | self.zmin, self.zmax = self.zlimits[n] | |
188 |
|
163 | |||
189 |
|
164 | |||
190 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
165 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
191 | vmin=self.zmin, |
|
166 | vmin=self.zmin, | |
192 | vmax=self.zmax, |
|
167 | vmax=self.zmax, | |
193 | cmap=self.cmaps[n] |
|
168 | cmap=self.cmaps[n] | |
194 | ) |
|
169 | ) | |
195 | #plt.tight_layout() |
|
170 | #plt.tight_layout() | |
196 | else: |
|
171 | else: | |
197 | if self.zlimits is not None: |
|
172 | if self.zlimits is not None: | |
198 | self.zmin, self.zmax = self.zlimits[n] |
|
173 | self.zmin, self.zmax = self.zlimits[n] | |
199 | ax.collections.remove(ax.collections[0]) |
|
174 | ax.collections.remove(ax.collections[0]) | |
200 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
175 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
201 | vmin=self.zmin, |
|
176 | vmin=self.zmin, | |
202 | vmax=self.zmax, |
|
177 | vmax=self.zmax, | |
203 | cmap=self.cmaps[n] |
|
178 | cmap=self.cmaps[n] | |
204 | ) |
|
179 | ) | |
205 | #plt.tight_layout() |
|
180 | #plt.tight_layout() | |
206 |
|
181 | |||
207 |
|
182 | |||
208 | class DenRTIPlot(RTIPlot): |
|
183 | class DenRTIPlot(RTIPlot): | |
209 |
|
184 | |||
210 | ''' |
|
185 | ''' | |
211 | Plot for Den |
|
186 | Plot for Den | |
212 | ''' |
|
187 | ''' | |
213 |
|
188 | |||
214 | CODE = 'denrti' |
|
189 | CODE = 'denrti' | |
215 | colormap = 'jro' |
|
190 | colormap = 'jro' | |
216 | plot_name = 'Electron Density' |
|
191 | plot_name = 'Electron Density' | |
217 |
|
192 | |||
218 | #cb_label = 'Ne Electron Density (1/cm3)' |
|
193 | #cb_label = 'Ne Electron Density (1/cm3)' | |
219 |
|
194 | |||
220 | def setup(self): |
|
195 | def setup(self): | |
221 | self.xaxis = 'time' |
|
196 | self.xaxis = 'time' | |
222 | self.ncols = 1 |
|
197 | self.ncols = 1 | |
223 | self.nrows = self.data.shape(self.CODE)[0] |
|
198 | self.nrows = self.data.shape(self.CODE)[0] | |
224 | self.nplots = self.nrows |
|
199 | self.nplots = self.nrows | |
225 | if self.showSNR: |
|
200 | if self.showSNR: | |
226 | self.nrows += 1 |
|
201 | self.nrows += 1 | |
227 | self.nplots += 1 |
|
202 | self.nplots += 1 | |
228 |
|
203 | |||
229 | self.ylabel = 'Height [km]' |
|
204 | self.ylabel = 'Height [km]' | |
230 | self.xlabel = 'Time (LT)' |
|
205 | self.xlabel = 'Time (LT)' | |
231 |
|
206 | |||
232 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
207 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
233 |
|
208 | |||
234 | if self.CODE == 'denrti' or self.CODE=='denrtiLP': |
|
209 | if self.CODE == 'denrti' or self.CODE=='denrtiLP': | |
235 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
210 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' | |
236 |
|
211 | |||
237 | #self.cb_label = cb_label |
|
212 | #self.cb_label = cb_label | |
238 | if not self.titles: |
|
213 | if not self.titles: | |
239 | self.titles = self.data.parameters \ |
|
214 | self.titles = self.data.parameters \ | |
240 | if self.data.parameters else ['{}'.format(self.plot_name)] |
|
215 | if self.data.parameters else ['{}'.format(self.plot_name)] | |
241 | if self.showSNR: |
|
216 | if self.showSNR: | |
242 | self.titles.append('SNR') |
|
217 | self.titles.append('SNR') | |
243 |
|
218 | |||
244 | def plot(self): |
|
219 | def plot(self): | |
245 |
|
220 | |||
246 | self.data.normalize_heights() |
|
221 | self.data.normalize_heights() | |
247 | self.x = self.data.times |
|
222 | self.x = self.data.times | |
248 | self.y = self.data.heights |
|
223 | self.y = self.data.heights | |
249 |
|
224 | |||
250 |
|
225 | |||
251 |
|
226 | |||
252 | if self.showSNR: |
|
227 | if self.showSNR: | |
253 | self.z = numpy.concatenate( |
|
228 | self.z = numpy.concatenate( | |
254 | (self.data[self.CODE], self.data['snr']) |
|
229 | (self.data[self.CODE], self.data['snr']) | |
255 | ) |
|
230 | ) | |
256 | else: |
|
231 | else: | |
257 | self.z = self.data[self.CODE] |
|
232 | self.z = self.data[self.CODE] | |
258 |
|
233 | |||
259 | self.z = numpy.ma.masked_invalid(self.z) |
|
234 | self.z = numpy.ma.masked_invalid(self.z) | |
260 |
|
235 | |||
261 | if self.decimation is None: |
|
236 | if self.decimation is None: | |
262 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
237 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
263 | else: |
|
238 | else: | |
264 | x, y, z = self.fill_gaps(*self.decimate()) |
|
239 | x, y, z = self.fill_gaps(*self.decimate()) | |
265 |
|
240 | |||
266 | for n, ax in enumerate(self.axes): |
|
241 | for n, ax in enumerate(self.axes): | |
267 |
|
242 | |||
268 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
243 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
269 | self.z[n]) |
|
244 | self.z[n]) | |
270 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
245 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
271 | self.z[n]) |
|
246 | self.z[n]) | |
272 |
|
247 | |||
273 | if ax.firsttime: |
|
248 | if ax.firsttime: | |
274 |
|
249 | |||
275 | if self.zlimits is not None: |
|
250 | if self.zlimits is not None: | |
276 | self.zmin, self.zmax = self.zlimits[n] |
|
251 | self.zmin, self.zmax = self.zlimits[n] | |
277 | if numpy.log10(self.zmin)<0: |
|
252 | if numpy.log10(self.zmin)<0: | |
278 | self.zmin=1 |
|
253 | self.zmin=1 | |
279 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
254 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
280 | vmin=self.zmin, |
|
255 | vmin=self.zmin, | |
281 | vmax=self.zmax, |
|
256 | vmax=self.zmax, | |
282 | cmap=self.cmaps[n], |
|
257 | cmap=self.cmaps[n], | |
283 | norm=colors.LogNorm() |
|
258 | norm=colors.LogNorm() | |
284 | ) |
|
259 | ) | |
285 | #plt.tight_layout() |
|
260 | #plt.tight_layout() | |
286 |
|
261 | |||
287 | else: |
|
262 | else: | |
288 | if self.zlimits is not None: |
|
263 | if self.zlimits is not None: | |
289 | self.zmin, self.zmax = self.zlimits[n] |
|
264 | self.zmin, self.zmax = self.zlimits[n] | |
290 | ax.collections.remove(ax.collections[0]) |
|
265 | ax.collections.remove(ax.collections[0]) | |
291 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
266 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
292 | vmin=self.zmin, |
|
267 | vmin=self.zmin, | |
293 | vmax=self.zmax, |
|
268 | vmax=self.zmax, | |
294 | cmap=self.cmaps[n], |
|
269 | cmap=self.cmaps[n], | |
295 | norm=colors.LogNorm() |
|
270 | norm=colors.LogNorm() | |
296 | ) |
|
271 | ) | |
297 | #plt.tight_layout() |
|
272 | #plt.tight_layout() | |
298 |
|
273 | |||
299 |
|
274 | |||
300 |
|
275 | |||
301 | class DenRTILPPlot(DenRTIPlot): |
|
276 | class DenRTILPPlot(DenRTIPlot): | |
302 |
|
277 | |||
303 | ''' |
|
278 | ''' | |
304 | Plot for Electron Temperature |
|
279 | Plot for Electron Temperature | |
305 | ''' |
|
280 | ''' | |
306 |
|
281 | |||
307 | CODE = 'denrtiLP' |
|
282 | CODE = 'denrtiLP' | |
308 | colormap = 'jro' |
|
283 | colormap = 'jro' | |
309 | plot_name = 'Electron Density' |
|
284 | plot_name = 'Electron Density' | |
310 |
|
285 | |||
311 |
|
286 | |||
312 | class ETempRTIPlot(RTIPlot): |
|
287 | class ETempRTIPlot(RTIPlot): | |
313 |
|
288 | |||
314 | ''' |
|
289 | ''' | |
315 | Plot for Electron Temperature |
|
290 | Plot for Electron Temperature | |
316 | ''' |
|
291 | ''' | |
317 |
|
292 | |||
318 | CODE = 'ETemp' |
|
293 | CODE = 'ETemp' | |
319 | colormap = 'jet' |
|
294 | colormap = 'jet' | |
320 | plot_name = 'Electron Temperature' |
|
295 | plot_name = 'Electron Temperature' | |
321 |
|
296 | |||
322 | #cb_label = 'Ne Electron Density (1/cm3)' |
|
297 | #cb_label = 'Ne Electron Density (1/cm3)' | |
323 |
|
298 | |||
324 | def setup(self): |
|
299 | def setup(self): | |
325 | self.xaxis = 'time' |
|
300 | self.xaxis = 'time' | |
326 | self.ncols = 1 |
|
301 | self.ncols = 1 | |
327 | self.nrows = self.data.shape(self.CODE)[0] |
|
302 | self.nrows = self.data.shape(self.CODE)[0] | |
328 | self.nplots = self.nrows |
|
303 | self.nplots = self.nrows | |
329 | if self.showSNR: |
|
304 | if self.showSNR: | |
330 | self.nrows += 1 |
|
305 | self.nrows += 1 | |
331 | self.nplots += 1 |
|
306 | self.nplots += 1 | |
332 |
|
307 | |||
333 | self.ylabel = 'Height [km]' |
|
308 | self.ylabel = 'Height [km]' | |
334 | self.xlabel = 'Time (LT)' |
|
309 | self.xlabel = 'Time (LT)' | |
335 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
310 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
336 | if self.CODE == 'ETemp' or self.CODE == 'ETempLP': |
|
311 | if self.CODE == 'ETemp' or self.CODE == 'ETempLP': | |
337 | self.cb_label = 'Electron Temperature (K)' |
|
312 | self.cb_label = 'Electron Temperature (K)' | |
338 | if self.CODE == 'ITemp' or self.CODE == 'ITempLP': |
|
313 | if self.CODE == 'ITemp' or self.CODE == 'ITempLP': | |
339 | self.cb_label = 'Ion Temperature (K)' |
|
314 | self.cb_label = 'Ion Temperature (K)' | |
340 |
|
315 | |||
341 |
|
316 | |||
342 | if not self.titles: |
|
317 | if not self.titles: | |
343 | self.titles = self.data.parameters \ |
|
318 | self.titles = self.data.parameters \ | |
344 | if self.data.parameters else ['{}'.format(self.plot_name)] |
|
319 | if self.data.parameters else ['{}'.format(self.plot_name)] | |
345 | if self.showSNR: |
|
320 | if self.showSNR: | |
346 | self.titles.append('SNR') |
|
321 | self.titles.append('SNR') | |
347 |
|
322 | |||
348 | def plot(self): |
|
323 | def plot(self): | |
349 |
|
324 | |||
350 | self.data.normalize_heights() |
|
325 | self.data.normalize_heights() | |
351 | self.x = self.data.times |
|
326 | self.x = self.data.times | |
352 | self.y = self.data.heights |
|
327 | self.y = self.data.heights | |
353 |
|
328 | |||
354 | if self.showSNR: |
|
329 | if self.showSNR: | |
355 | self.z = numpy.concatenate( |
|
330 | self.z = numpy.concatenate( | |
356 | (self.data[self.CODE], self.data['snr']) |
|
331 | (self.data[self.CODE], self.data['snr']) | |
357 | ) |
|
332 | ) | |
358 | else: |
|
333 | else: | |
359 | self.z = self.data[self.CODE] |
|
334 | self.z = self.data[self.CODE] | |
360 |
|
335 | |||
361 | self.z = numpy.ma.masked_invalid(self.z) |
|
336 | self.z = numpy.ma.masked_invalid(self.z) | |
362 |
|
337 | |||
363 | if self.decimation is None: |
|
338 | if self.decimation is None: | |
364 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
339 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
365 | else: |
|
340 | else: | |
366 | x, y, z = self.fill_gaps(*self.decimate()) |
|
341 | x, y, z = self.fill_gaps(*self.decimate()) | |
367 |
|
342 | |||
368 | for n, ax in enumerate(self.axes): |
|
343 | for n, ax in enumerate(self.axes): | |
369 |
|
344 | |||
370 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
345 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
371 | self.z[n]) |
|
346 | self.z[n]) | |
372 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
347 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
373 | self.z[n]) |
|
348 | self.z[n]) | |
374 |
|
349 | |||
375 | if ax.firsttime: |
|
350 | if ax.firsttime: | |
376 |
|
351 | |||
377 | if self.zlimits is not None: |
|
352 | if self.zlimits is not None: | |
378 | self.zmin, self.zmax = self.zlimits[n] |
|
353 | self.zmin, self.zmax = self.zlimits[n] | |
379 |
|
354 | |||
380 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
355 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
381 | vmin=self.zmin, |
|
356 | vmin=self.zmin, | |
382 | vmax=self.zmax, |
|
357 | vmax=self.zmax, | |
383 | cmap=self.cmaps[n] |
|
358 | cmap=self.cmaps[n] | |
384 | ) |
|
359 | ) | |
385 | #plt.tight_layout() |
|
360 | #plt.tight_layout() | |
386 |
|
361 | |||
387 | else: |
|
362 | else: | |
388 | if self.zlimits is not None: |
|
363 | if self.zlimits is not None: | |
389 | self.zmin, self.zmax = self.zlimits[n] |
|
364 | self.zmin, self.zmax = self.zlimits[n] | |
390 | ax.collections.remove(ax.collections[0]) |
|
365 | ax.collections.remove(ax.collections[0]) | |
391 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
366 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
392 | vmin=self.zmin, |
|
367 | vmin=self.zmin, | |
393 | vmax=self.zmax, |
|
368 | vmax=self.zmax, | |
394 | cmap=self.cmaps[n] |
|
369 | cmap=self.cmaps[n] | |
395 | ) |
|
370 | ) | |
396 | #plt.tight_layout() |
|
371 | #plt.tight_layout() | |
397 |
|
372 | |||
398 |
|
373 | |||
399 |
|
374 | |||
400 | class ITempRTIPlot(ETempRTIPlot): |
|
375 | class ITempRTIPlot(ETempRTIPlot): | |
401 |
|
376 | |||
402 | ''' |
|
377 | ''' | |
403 | Plot for Ion Temperature |
|
378 | Plot for Ion Temperature | |
404 | ''' |
|
379 | ''' | |
405 |
|
380 | |||
406 | CODE = 'ITemp' |
|
381 | CODE = 'ITemp' | |
407 | colormap = 'jet' |
|
382 | colormap = 'jet' | |
408 | plot_name = 'Ion Temperature' |
|
383 | plot_name = 'Ion Temperature' | |
409 |
|
384 | |||
410 |
|
385 | |||
411 | class ElectronTempLPPlot(ETempRTIPlot): |
|
386 | class ElectronTempLPPlot(ETempRTIPlot): | |
412 |
|
387 | |||
413 | ''' |
|
388 | ''' | |
414 | Plot for Electron Temperature LP |
|
389 | Plot for Electron Temperature LP | |
415 | ''' |
|
390 | ''' | |
416 |
|
391 | |||
417 | CODE = 'ETempLP' |
|
392 | CODE = 'ETempLP' | |
418 | colormap = 'jet' |
|
393 | colormap = 'jet' | |
419 | plot_name = 'Electron Temperature' |
|
394 | plot_name = 'Electron Temperature' | |
420 |
|
395 | |||
421 |
|
396 | |||
422 | class IonTempLPPlot(ETempRTIPlot): |
|
397 | class IonTempLPPlot(ETempRTIPlot): | |
423 |
|
398 | |||
424 | ''' |
|
399 | ''' | |
425 | Plot for Ion Temperature LP |
|
400 | Plot for Ion Temperature LP | |
426 | ''' |
|
401 | ''' | |
427 |
|
402 | |||
428 | CODE = 'ITempLP' |
|
403 | CODE = 'ITempLP' | |
429 | colormap = 'jet' |
|
404 | colormap = 'jet' | |
430 | plot_name = 'Ion Temperature' |
|
405 | plot_name = 'Ion Temperature' | |
431 |
|
406 | |||
432 |
|
407 | |||
433 | class HFracRTIPlot(ETempRTIPlot): |
|
408 | class HFracRTIPlot(ETempRTIPlot): | |
434 |
|
409 | |||
435 | ''' |
|
410 | ''' | |
436 | Plot for H+ LP |
|
411 | Plot for H+ LP | |
437 | ''' |
|
412 | ''' | |
438 |
|
413 | |||
439 | CODE = 'HFracLP' |
|
414 | CODE = 'HFracLP' | |
440 | colormap = 'jet' |
|
415 | colormap = 'jet' | |
441 | plot_name = 'H+ Frac' |
|
416 | plot_name = 'H+ Frac' | |
442 |
|
417 | |||
443 |
|
418 | |||
444 | class HeFracRTIPlot(ETempRTIPlot): |
|
419 | class HeFracRTIPlot(ETempRTIPlot): | |
445 |
|
420 | |||
446 | ''' |
|
421 | ''' | |
447 | Plot for He+ LP |
|
422 | Plot for He+ LP | |
448 | ''' |
|
423 | ''' | |
449 |
|
424 | |||
450 | CODE = 'HeFracLP' |
|
425 | CODE = 'HeFracLP' | |
451 | colormap = 'jet' |
|
426 | colormap = 'jet' | |
452 | plot_name = 'He+ Frac' |
|
427 | plot_name = 'He+ Frac' | |
453 |
|
428 | |||
454 |
|
429 | |||
455 | class TempsDPPlot(Plot): |
|
430 | class TempsDPPlot(Plot): | |
456 | ''' |
|
431 | ''' | |
457 | Plot for Electron - Ion Temperatures |
|
432 | Plot for Electron - Ion Temperatures | |
458 | ''' |
|
433 | ''' | |
459 |
|
434 | |||
460 | CODE = 'tempsDP' |
|
435 | CODE = 'tempsDP' | |
461 | plot_name = 'Temperatures' |
|
436 | plot_name = 'Temperatures' | |
462 | plot_type = 'scatterbuffer' |
|
437 | plot_type = 'scatterbuffer' | |
463 |
|
438 | |||
464 |
|
439 | |||
465 | def setup(self): |
|
440 | def setup(self): | |
466 |
|
441 | |||
467 | self.ncols = 1 |
|
442 | self.ncols = 1 | |
468 | self.nrows = 1 |
|
443 | self.nrows = 1 | |
469 | self.nplots = 1 |
|
444 | self.nplots = 1 | |
470 | self.ylabel = 'Range [km]' |
|
445 | self.ylabel = 'Range [km]' | |
471 | self.xlabel = 'Temperature (K)' |
|
446 | self.xlabel = 'Temperature (K)' | |
472 | self.width = 3.5 |
|
447 | self.width = 3.5 | |
473 | self.height = 5.5 |
|
448 | self.height = 5.5 | |
474 | self.colorbar = False |
|
449 | self.colorbar = False | |
475 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
450 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
476 | if not self.titles: |
|
451 | if not self.titles: | |
477 | self.titles = self.data.parameters \ |
|
452 | self.titles = self.data.parameters \ | |
478 | if self.data.parameters else ['{}'.format(self.CODE.upper())] |
|
453 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |
479 |
|
454 | |||
480 | def plot(self): |
|
455 | def plot(self): | |
481 |
|
456 | |||
482 | self.x = self.data['tempsDP'][:,-1] |
|
457 | self.x = self.data['tempsDP'][:,-1] | |
483 | self.y = self.data.heights[0:self.data.NSHTS] |
|
458 | self.y = self.data.heights[0:self.data.NSHTS] | |
484 |
|
459 | |||
485 | self.xmin = -100 |
|
460 | self.xmin = -100 | |
486 | self.xmax = 5000 |
|
461 | self.xmax = 5000 | |
487 | ax = self.axes[0] |
|
462 | ax = self.axes[0] | |
488 |
|
463 | |||
489 | if ax.firsttime: |
|
464 | if ax.firsttime: | |
490 |
|
465 | |||
491 | ax.errorbar(self.x, self.y, xerr=self.data.ete2, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
466 | ax.errorbar(self.x, self.y, xerr=self.data.ete2, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |
492 | ax.errorbar(self.data.ti2, self.y, fmt='k^', xerr=self.data.eti2,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
467 | ax.errorbar(self.data.ti2, self.y, fmt='k^', xerr=self.data.eti2,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |
493 | plt.legend(loc='lower right') |
|
468 | plt.legend(loc='lower right') | |
494 | self.ystep_given = 50 |
|
469 | self.ystep_given = 50 | |
495 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
470 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
496 | ax.grid(which='minor') |
|
471 | ax.grid(which='minor') | |
497 | #plt.tight_layout() |
|
472 | #plt.tight_layout() | |
498 |
|
473 | |||
499 |
|
474 | |||
500 | else: |
|
475 | else: | |
501 | self.clear_figures() |
|
476 | self.clear_figures() | |
502 | ax.errorbar(self.x, self.y, xerr=self.data.ete2, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
477 | ax.errorbar(self.x, self.y, xerr=self.data.ete2, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |
503 | ax.errorbar(self.data.ti2, self.y, fmt='k^', xerr=self.data.eti2,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
478 | ax.errorbar(self.data.ti2, self.y, fmt='k^', xerr=self.data.eti2,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |
504 | plt.legend(loc='lower right') |
|
479 | plt.legend(loc='lower right') | |
505 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
480 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
506 | #plt.tight_layout() |
|
481 | #plt.tight_layout() | |
507 |
|
482 | |||
508 |
|
483 | |||
509 | class TempsHPPlot(Plot): |
|
484 | class TempsHPPlot(Plot): | |
510 | ''' |
|
485 | ''' | |
511 | Plot for Temperatures Hybrid Experiment |
|
486 | Plot for Temperatures Hybrid Experiment | |
512 | ''' |
|
487 | ''' | |
513 |
|
488 | |||
514 | CODE = 'temps_LP' |
|
489 | CODE = 'temps_LP' | |
515 | plot_name = 'Temperatures' |
|
490 | plot_name = 'Temperatures' | |
516 | plot_type = 'scatterbuffer' |
|
491 | plot_type = 'scatterbuffer' | |
517 |
|
492 | |||
518 |
|
493 | |||
519 | def setup(self): |
|
494 | def setup(self): | |
520 |
|
495 | |||
521 | self.ncols = 1 |
|
496 | self.ncols = 1 | |
522 | self.nrows = 1 |
|
497 | self.nrows = 1 | |
523 | self.nplots = 1 |
|
498 | self.nplots = 1 | |
524 | self.ylabel = 'Range [km]' |
|
499 | self.ylabel = 'Range [km]' | |
525 | self.xlabel = 'Temperature (K)' |
|
500 | self.xlabel = 'Temperature (K)' | |
526 | self.width = 3.5 |
|
501 | self.width = 3.5 | |
527 | self.height = 6.5 |
|
502 | self.height = 6.5 | |
528 | self.colorbar = False |
|
503 | self.colorbar = False | |
529 | if not self.titles: |
|
504 | if not self.titles: | |
530 | self.titles = self.data.parameters \ |
|
505 | self.titles = self.data.parameters \ | |
531 | if self.data.parameters else ['{}'.format(self.CODE.upper())] |
|
506 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |
532 |
|
507 | |||
533 | def plot(self): |
|
508 | def plot(self): | |
534 |
|
509 | |||
535 | self.x = self.data['temps_LP'][:,-1] |
|
510 | self.x = self.data['temps_LP'][:,-1] | |
536 | self.y = self.data.heights[0:self.data.NACF] |
|
511 | self.y = self.data.heights[0:self.data.NACF] | |
537 | self.xmin = -100 |
|
512 | self.xmin = -100 | |
538 | self.xmax = 4500 |
|
513 | self.xmax = 4500 | |
539 | ax = self.axes[0] |
|
514 | ax = self.axes[0] | |
540 |
|
515 | |||
541 | if ax.firsttime: |
|
516 | if ax.firsttime: | |
542 |
|
517 | |||
543 | ax.errorbar(self.x, self.y, xerr=self.data.ete, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
518 | ax.errorbar(self.x, self.y, xerr=self.data.ete, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |
544 | ax.errorbar(self.data.ti, self.y, fmt='k^', xerr=self.data.eti,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
519 | ax.errorbar(self.data.ti, self.y, fmt='k^', xerr=self.data.eti,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |
545 | plt.legend(loc='lower right') |
|
520 | plt.legend(loc='lower right') | |
546 | self.ystep_given = 200 |
|
521 | self.ystep_given = 200 | |
547 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
522 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
548 | ax.grid(which='minor') |
|
523 | ax.grid(which='minor') | |
549 | #plt.tight_layout() |
|
524 | #plt.tight_layout() | |
550 |
|
525 | |||
551 |
|
526 | |||
552 | else: |
|
527 | else: | |
553 | self.clear_figures() |
|
528 | self.clear_figures() | |
554 | ax.errorbar(self.x, self.y, xerr=self.data.ete, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
529 | ax.errorbar(self.x, self.y, xerr=self.data.ete, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |
555 | ax.errorbar(self.data.ti, self.y, fmt='k^', xerr=self.data.eti,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
530 | ax.errorbar(self.data.ti, self.y, fmt='k^', xerr=self.data.eti,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |
556 | plt.legend(loc='lower right') |
|
531 | plt.legend(loc='lower right') | |
557 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
532 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
558 | #plt.tight_layout() |
|
533 | #plt.tight_layout() | |
559 |
|
534 | |||
560 |
|
535 | |||
561 | class FracsHPPlot(Plot): |
|
536 | class FracsHPPlot(Plot): | |
562 | ''' |
|
537 | ''' | |
563 | Plot for Composition LP |
|
538 | Plot for Composition LP | |
564 | ''' |
|
539 | ''' | |
565 |
|
540 | |||
566 | CODE = 'fracs_LP' |
|
541 | CODE = 'fracs_LP' | |
567 | plot_name = 'Composition' |
|
542 | plot_name = 'Composition' | |
568 | plot_type = 'scatterbuffer' |
|
543 | plot_type = 'scatterbuffer' | |
569 |
|
544 | |||
570 |
|
545 | |||
571 | def setup(self): |
|
546 | def setup(self): | |
572 |
|
547 | |||
573 | self.ncols = 1 |
|
548 | self.ncols = 1 | |
574 | self.nrows = 1 |
|
549 | self.nrows = 1 | |
575 | self.nplots = 1 |
|
550 | self.nplots = 1 | |
576 | self.ylabel = 'Range [km]' |
|
551 | self.ylabel = 'Range [km]' | |
577 | self.xlabel = 'Frac' |
|
552 | self.xlabel = 'Frac' | |
578 | self.width = 3.5 |
|
553 | self.width = 3.5 | |
579 | self.height = 6.5 |
|
554 | self.height = 6.5 | |
580 | self.colorbar = False |
|
555 | self.colorbar = False | |
581 | if not self.titles: |
|
556 | if not self.titles: | |
582 | self.titles = self.data.parameters \ |
|
557 | self.titles = self.data.parameters \ | |
583 | if self.data.parameters else ['{}'.format(self.CODE.upper())] |
|
558 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |
584 |
|
559 | |||
585 | def plot(self): |
|
560 | def plot(self): | |
586 |
|
561 | |||
587 | self.x = self.data['fracs_LP'][:,-1] |
|
562 | self.x = self.data['fracs_LP'][:,-1] | |
588 | self.y = self.data.heights[0:self.data.NACF] |
|
563 | self.y = self.data.heights[0:self.data.NACF] | |
589 |
|
564 | |||
590 | self.xmin = 0 |
|
565 | self.xmin = 0 | |
591 | self.xmax = 1 |
|
566 | self.xmax = 1 | |
592 | ax = self.axes[0] |
|
567 | ax = self.axes[0] | |
593 |
|
568 | |||
594 | if ax.firsttime: |
|
569 | if ax.firsttime: | |
595 |
|
570 | |||
596 | ax.errorbar(self.x, self.y[self.data.cut:], xerr=self.data.eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') |
|
571 | ax.errorbar(self.x, self.y[self.data.cut:], xerr=self.data.eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') | |
597 | ax.errorbar(self.data.phe, self.y[self.data.cut:], fmt='k^', xerr=self.data.ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') |
|
572 | ax.errorbar(self.data.phe, self.y[self.data.cut:], fmt='k^', xerr=self.data.ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') | |
598 | plt.legend(loc='lower right') |
|
573 | plt.legend(loc='lower right') | |
599 | self.xstep_given = 0.2 |
|
574 | self.xstep_given = 0.2 | |
600 | self.ystep_given = 200 |
|
575 | self.ystep_given = 200 | |
601 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
576 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
602 | ax.grid(which='minor') |
|
577 | ax.grid(which='minor') | |
603 | #plt.tight_layout() |
|
578 | #plt.tight_layout() | |
604 |
|
579 | |||
605 |
|
580 | |||
606 | else: |
|
581 | else: | |
607 | self.clear_figures() |
|
582 | self.clear_figures() | |
608 | ax.errorbar(self.x, self.y[self.data.cut:], xerr=self.data.eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') |
|
583 | ax.errorbar(self.x, self.y[self.data.cut:], xerr=self.data.eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') | |
609 | ax.errorbar(self.data.phe, self.y[self.data.cut:], fmt='k^', xerr=self.data.ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') |
|
584 | ax.errorbar(self.data.phe, self.y[self.data.cut:], fmt='k^', xerr=self.data.ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') | |
610 | plt.legend(loc='lower right') |
|
585 | plt.legend(loc='lower right') | |
611 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
586 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
612 | #plt.tight_layout() |
|
587 | #plt.tight_layout() | |
613 |
|
588 | |||
614 |
|
589 | |||
615 |
|
590 | |||
616 | class EDensityPlot(Plot): |
|
591 | class EDensityPlot(Plot): | |
617 | ''' |
|
592 | ''' | |
618 | Plot for electron density |
|
593 | Plot for electron density | |
619 | ''' |
|
594 | ''' | |
620 |
|
595 | |||
621 | CODE = 'den' |
|
596 | CODE = 'den' | |
622 | plot_name = 'Electron Density' |
|
597 | plot_name = 'Electron Density' | |
623 | plot_type = 'scatterbuffer' |
|
598 | plot_type = 'scatterbuffer' | |
624 |
|
599 | |||
625 |
|
600 | |||
626 | def setup(self): |
|
601 | def setup(self): | |
627 |
|
602 | |||
628 | self.ncols = 1 |
|
603 | self.ncols = 1 | |
629 | self.nrows = 1 |
|
604 | self.nrows = 1 | |
630 | self.nplots = 1 |
|
605 | self.nplots = 1 | |
631 | self.ylabel = 'Range [km]' |
|
606 | self.ylabel = 'Range [km]' | |
632 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
607 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' | |
633 | self.width = 4 |
|
608 | self.width = 4 | |
634 | self.height = 6.5 |
|
609 | self.height = 6.5 | |
635 | self.colorbar = False |
|
610 | self.colorbar = False | |
636 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
611 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
637 | if not self.titles: |
|
612 | if not self.titles: | |
638 | self.titles = self.data.parameters \ |
|
613 | self.titles = self.data.parameters \ | |
639 | if self.data.parameters else ['{}'.format(self.CODE.upper())] |
|
614 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |
640 |
|
615 | |||
641 | def plot(self): |
|
616 | def plot(self): | |
642 |
|
617 | |||
643 |
|
618 | |||
644 | self.x = self.data[self.CODE] |
|
619 | self.x = self.data[self.CODE] | |
645 | self.y = self.data.heights |
|
620 | self.y = self.data.heights | |
646 | self.xmin = 1000 |
|
621 | self.xmin = 1000 | |
647 | self.xmax = 10000000 |
|
622 | self.xmax = 10000000 | |
648 | ax = self.axes[0] |
|
623 | ax = self.axes[0] | |
649 |
|
624 | |||
650 | if ax.firsttime: |
|
625 | if ax.firsttime: | |
651 | self.autoxticks=False |
|
626 | self.autoxticks=False | |
652 | #if self.CODE=='den': |
|
627 | #if self.CODE=='den': | |
653 | ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
628 | ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
654 | #ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=self.data.sdn1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
629 | #ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=self.data.sdn1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
655 |
|
630 | |||
656 | ax.errorbar(self.x[:,-1], self.y[:self.data.NSHTS], fmt='k^-', xerr=self.data.sdp2,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
631 | ax.errorbar(self.x[:,-1], self.y[:self.data.NSHTS], fmt='k^-', xerr=self.data.sdp2,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |
657 | #else: |
|
632 | #else: | |
658 | #ax.errorbar(self.data.dphi[:self.data.cut], self.y[:self.data.cut], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
633 | #ax.errorbar(self.data.dphi[:self.data.cut], self.y[:self.data.cut], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
659 | #ax.errorbar(self.x[:self.data.cut,-1], self.y[:self.data.cut], fmt='k^-', xerr=self.data.sdp2[:self.data.cut],elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
634 | #ax.errorbar(self.x[:self.data.cut,-1], self.y[:self.data.cut], fmt='k^-', xerr=self.data.sdp2[:self.data.cut],elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |
660 |
|
635 | |||
661 | if self.CODE=='denLP': |
|
636 | if self.CODE=='denLP': | |
662 | ax.errorbar(self.data.ne[self.data.cut:], self.y[self.data.cut:], xerr=self.data.ene[self.data.cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
637 | ax.errorbar(self.data.ne[self.data.cut:], self.y[self.data.cut:], xerr=self.data.ene[self.data.cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) | |
663 |
|
638 | |||
664 | plt.legend(loc='upper right') |
|
639 | plt.legend(loc='upper right') | |
665 | ax.set_xscale("log", nonposx='clip') |
|
640 | ax.set_xscale("log", nonposx='clip') | |
666 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
641 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |
667 | self.ystep_given=100 |
|
642 | self.ystep_given=100 | |
668 | if self.CODE=='denLP': |
|
643 | if self.CODE=='denLP': | |
669 | self.ystep_given=200 |
|
644 | self.ystep_given=200 | |
670 | ax.set_yticks(grid_y_ticks,minor=True) |
|
645 | ax.set_yticks(grid_y_ticks,minor=True) | |
671 | ax.grid(which='minor') |
|
646 | ax.grid(which='minor') | |
672 | #plt.tight_layout() |
|
647 | #plt.tight_layout() | |
673 |
|
648 | |||
674 |
|
649 | |||
675 |
|
650 | |||
676 | else: |
|
651 | else: | |
677 |
|
652 | |||
678 | self.clear_figures() |
|
653 | self.clear_figures() | |
679 | #if self.CODE=='den': |
|
654 | #if self.CODE=='den': | |
680 | ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
655 | ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
681 | #ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=self.data.sdn1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
656 | #ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=self.data.sdn1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
682 |
|
657 | |||
683 | ax.errorbar(self.x[:,-1], self.y[:self.data.NSHTS], fmt='k^-', xerr=self.data.sdp2,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
658 | ax.errorbar(self.x[:,-1], self.y[:self.data.NSHTS], fmt='k^-', xerr=self.data.sdp2,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |
684 | ax.errorbar(self.x[:,-2], self.y[:self.data.NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
659 | ax.errorbar(self.x[:,-2], self.y[:self.data.NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") | |
685 | #else: |
|
660 | #else: | |
686 | #ax.errorbar(self.data.dphi[:self.data.cut], self.y[:self.data.cut], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
661 | #ax.errorbar(self.data.dphi[:self.data.cut], self.y[:self.data.cut], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
687 | #ax.errorbar(self.x[:self.data.cut,-1], self.y[:self.data.cut], fmt='k^-', xerr=self.data.sdp2[:self.data.cut],elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
662 | #ax.errorbar(self.x[:self.data.cut,-1], self.y[:self.data.cut], fmt='k^-', xerr=self.data.sdp2[:self.data.cut],elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |
688 | #ax.errorbar(self.x[:self.data.cut,-2], self.y[:self.data.cut], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
663 | #ax.errorbar(self.x[:self.data.cut,-2], self.y[:self.data.cut], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") | |
689 |
|
664 | |||
690 | if self.CODE=='denLP': |
|
665 | if self.CODE=='denLP': | |
691 | ax.errorbar(self.data.ne[self.data.cut:], self.y[self.data.cut:], fmt='r^-', xerr=self.data.ene[self.data.cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
666 | ax.errorbar(self.data.ne[self.data.cut:], self.y[self.data.cut:], fmt='r^-', xerr=self.data.ene[self.data.cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) | |
692 |
|
667 | |||
693 | ax.set_xscale("log", nonposx='clip') |
|
668 | ax.set_xscale("log", nonposx='clip') | |
694 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
669 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |
695 | ax.set_yticks(grid_y_ticks,minor=True) |
|
670 | ax.set_yticks(grid_y_ticks,minor=True) | |
696 | ax.grid(which='minor') |
|
671 | ax.grid(which='minor') | |
697 | plt.legend(loc='upper right') |
|
672 | plt.legend(loc='upper right') | |
698 | #plt.tight_layout() |
|
673 | #plt.tight_layout() | |
699 |
|
674 | |||
700 | class FaradayAnglePlot(Plot): |
|
675 | class FaradayAnglePlot(Plot): | |
701 | ''' |
|
676 | ''' | |
702 | Plot for electron density |
|
677 | Plot for electron density | |
703 | ''' |
|
678 | ''' | |
704 |
|
679 | |||
705 | CODE = 'FaradayAngle' |
|
680 | CODE = 'FaradayAngle' | |
706 | plot_name = 'Faraday Angle' |
|
681 | plot_name = 'Faraday Angle' | |
707 | plot_type = 'scatterbuffer' |
|
682 | plot_type = 'scatterbuffer' | |
708 |
|
683 | |||
709 |
|
684 | |||
710 | def setup(self): |
|
685 | def setup(self): | |
711 |
|
686 | |||
712 | self.ncols = 1 |
|
687 | self.ncols = 1 | |
713 | self.nrows = 1 |
|
688 | self.nrows = 1 | |
714 | self.nplots = 1 |
|
689 | self.nplots = 1 | |
715 | self.ylabel = 'Range [km]' |
|
690 | self.ylabel = 'Range [km]' | |
716 | self.xlabel = 'Faraday Angle (º)' |
|
691 | self.xlabel = 'Faraday Angle (º)' | |
717 | self.width = 4 |
|
692 | self.width = 4 | |
718 | self.height = 6.5 |
|
693 | self.height = 6.5 | |
719 | self.colorbar = False |
|
694 | self.colorbar = False | |
720 | if not self.titles: |
|
695 | if not self.titles: | |
721 | self.titles = self.data.parameters \ |
|
696 | self.titles = self.data.parameters \ | |
722 | if self.data.parameters else ['{}'.format(self.CODE.upper())] |
|
697 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |
723 |
|
698 | |||
724 | def plot(self): |
|
699 | def plot(self): | |
725 |
|
700 | |||
726 |
|
701 | |||
727 | self.x = self.data[self.CODE] |
|
702 | self.x = self.data[self.CODE] | |
728 | self.y = self.data.heights |
|
703 | self.y = self.data.heights | |
729 | self.xmin = -180 |
|
704 | self.xmin = -180 | |
730 | self.xmax = 180 |
|
705 | self.xmax = 180 | |
731 | ax = self.axes[0] |
|
706 | ax = self.axes[0] | |
732 |
|
707 | |||
733 | if ax.firsttime: |
|
708 | if ax.firsttime: | |
734 | self.autoxticks=False |
|
709 | self.autoxticks=False | |
735 | #if self.CODE=='den': |
|
710 | #if self.CODE=='den': | |
736 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) |
|
711 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) | |
737 |
|
712 | |||
738 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
713 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |
739 | self.ystep_given=100 |
|
714 | self.ystep_given=100 | |
740 | if self.CODE=='denLP': |
|
715 | if self.CODE=='denLP': | |
741 | self.ystep_given=200 |
|
716 | self.ystep_given=200 | |
742 | ax.set_yticks(grid_y_ticks,minor=True) |
|
717 | ax.set_yticks(grid_y_ticks,minor=True) | |
743 | ax.grid(which='minor') |
|
718 | ax.grid(which='minor') | |
744 | #plt.tight_layout() |
|
719 | #plt.tight_layout() | |
745 | else: |
|
720 | else: | |
746 |
|
721 | |||
747 | self.clear_figures() |
|
722 | self.clear_figures() | |
748 | #if self.CODE=='den': |
|
723 | #if self.CODE=='den': | |
749 | #print(numpy.shape(self.x)) |
|
724 | #print(numpy.shape(self.x)) | |
750 | ax.plot(self.x[:,-1], self.y, marker='o',color='g',linewidth=1.0, markersize=2) |
|
725 | ax.plot(self.x[:,-1], self.y, marker='o',color='g',linewidth=1.0, markersize=2) | |
751 |
|
726 | |||
752 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
727 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |
753 | ax.set_yticks(grid_y_ticks,minor=True) |
|
728 | ax.set_yticks(grid_y_ticks,minor=True) | |
754 | ax.grid(which='minor') |
|
729 | ax.grid(which='minor') | |
755 |
|
730 | |||
756 | class EDensityHPPlot(EDensityPlot): |
|
731 | class EDensityHPPlot(EDensityPlot): | |
757 |
|
732 | |||
758 | ''' |
|
733 | ''' | |
759 | Plot for Electron Density Hybrid Experiment |
|
734 | Plot for Electron Density Hybrid Experiment | |
760 | ''' |
|
735 | ''' | |
761 |
|
736 | |||
762 | CODE = 'denLP' |
|
737 | CODE = 'denLP' | |
763 | plot_name = 'Electron Density' |
|
738 | plot_name = 'Electron Density' | |
764 | plot_type = 'scatterbuffer' |
|
739 | plot_type = 'scatterbuffer' | |
765 |
|
740 | |||
766 |
|
741 | |||
767 | class ACFsPlot(Plot): |
|
742 | class ACFsPlot(Plot): | |
768 | ''' |
|
743 | ''' | |
769 | Plot for ACFs Double Pulse Experiment |
|
744 | Plot for ACFs Double Pulse Experiment | |
770 | ''' |
|
745 | ''' | |
771 |
|
746 | |||
772 | CODE = 'acfs' |
|
747 | CODE = 'acfs' | |
773 | plot_name = 'ACF' |
|
748 | plot_name = 'ACF' | |
774 | plot_type = 'scatterbuffer' |
|
749 | plot_type = 'scatterbuffer' | |
775 |
|
750 | |||
776 |
|
751 | |||
777 | def setup(self): |
|
752 | def setup(self): | |
778 | #self.xaxis = 'time' |
|
753 | #self.xaxis = 'time' | |
779 | self.ncols = 1 |
|
754 | self.ncols = 1 | |
780 | self.nrows = 1 |
|
755 | self.nrows = 1 | |
781 | self.nplots = 1 |
|
756 | self.nplots = 1 | |
782 | self.ylabel = 'Range [km]' |
|
757 | self.ylabel = 'Range [km]' | |
783 | self.xlabel = 'lags (ms)' |
|
758 | self.xlabel = 'lags (ms)' | |
784 | self.width = 3.5 |
|
759 | self.width = 3.5 | |
785 | self.height = 6 |
|
760 | self.height = 6 | |
786 | self.colorbar = False |
|
761 | self.colorbar = False | |
787 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
762 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
788 | if not self.titles: |
|
763 | if not self.titles: | |
789 | self.titles = self.data.parameters \ |
|
764 | self.titles = self.data.parameters \ | |
790 | if self.data.parameters else ['{}'.format(self.CODE.upper())] |
|
765 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |
791 |
|
766 | |||
792 | def plot(self): |
|
767 | def plot(self): | |
793 |
|
768 | |||
794 | self.x = self.data.lags_to_plot |
|
769 | self.x = self.data.lags_to_plot | |
795 | self.y = self.data['acfs'][:,-1] |
|
770 | self.y = self.data['acfs'][:,-1] | |
796 |
|
771 | |||
797 |
|
772 | |||
798 | self.xmin = 0.0 |
|
773 | self.xmin = 0.0 | |
799 | self.xmax = 2.0 |
|
774 | self.xmax = 2.0 | |
800 |
|
775 | |||
801 | ax = self.axes[0] |
|
776 | ax = self.axes[0] | |
802 |
|
777 | |||
803 | if ax.firsttime: |
|
778 | if ax.firsttime: | |
804 |
|
779 | |||
805 | for i in range(self.data.NSHTS): |
|
780 | for i in range(self.data.NSHTS): | |
806 | x_aux = numpy.isfinite(self.x[i,:]) |
|
781 | x_aux = numpy.isfinite(self.x[i,:]) | |
807 | y_aux = numpy.isfinite(self.y[i,:]) |
|
782 | y_aux = numpy.isfinite(self.y[i,:]) | |
808 | yerr_aux = numpy.isfinite(self.data.acfs_error_to_plot[i,:]) |
|
783 | yerr_aux = numpy.isfinite(self.data.acfs_error_to_plot[i,:]) | |
809 | x_igcej_aux = numpy.isfinite(self.data.x_igcej_to_plot[i,:]) |
|
784 | x_igcej_aux = numpy.isfinite(self.data.x_igcej_to_plot[i,:]) | |
810 | y_igcej_aux = numpy.isfinite(self.data.y_igcej_to_plot[i,:]) |
|
785 | y_igcej_aux = numpy.isfinite(self.data.y_igcej_to_plot[i,:]) | |
811 | x_ibad_aux = numpy.isfinite(self.data.x_ibad_to_plot[i,:]) |
|
786 | x_ibad_aux = numpy.isfinite(self.data.x_ibad_to_plot[i,:]) | |
812 | y_ibad_aux = numpy.isfinite(self.data.y_ibad_to_plot[i,:]) |
|
787 | y_ibad_aux = numpy.isfinite(self.data.y_ibad_to_plot[i,:]) | |
813 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: |
|
788 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: | |
814 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.acfs_error_to_plot[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) |
|
789 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.acfs_error_to_plot[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) | |
815 | ax.plot(self.data.x_igcej_to_plot[i,x_igcej_aux],self.data.y_igcej_to_plot[i,y_igcej_aux],'x',color='red',markersize=2) |
|
790 | ax.plot(self.data.x_igcej_to_plot[i,x_igcej_aux],self.data.y_igcej_to_plot[i,y_igcej_aux],'x',color='red',markersize=2) | |
816 | ax.plot(self.data.x_ibad_to_plot[i,x_ibad_aux],self.data.y_ibad_to_plot[i,y_ibad_aux],'X',color='red',markersize=2) |
|
791 | ax.plot(self.data.x_ibad_to_plot[i,x_ibad_aux],self.data.y_ibad_to_plot[i,y_ibad_aux],'X',color='red',markersize=2) | |
817 |
|
792 | |||
818 | self.xstep_given = (self.xmax-self.xmin)/(self.data.DPL-1) |
|
793 | self.xstep_given = (self.xmax-self.xmin)/(self.data.DPL-1) | |
819 | self.ystep_given = 50 |
|
794 | self.ystep_given = 50 | |
820 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
795 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
821 | ax.grid(which='minor') |
|
796 | ax.grid(which='minor') | |
822 |
|
797 | |||
823 |
|
798 | |||
824 |
|
799 | |||
825 | else: |
|
800 | else: | |
826 | self.clear_figures() |
|
801 | self.clear_figures() | |
827 |
|
802 | |||
828 | for i in range(self.data.NSHTS): |
|
803 | for i in range(self.data.NSHTS): | |
829 | x_aux = numpy.isfinite(self.x[i,:]) |
|
804 | x_aux = numpy.isfinite(self.x[i,:]) | |
830 | y_aux = numpy.isfinite(self.y[i,:]) |
|
805 | y_aux = numpy.isfinite(self.y[i,:]) | |
831 | yerr_aux = numpy.isfinite(self.data.acfs_error_to_plot[i,:]) |
|
806 | yerr_aux = numpy.isfinite(self.data.acfs_error_to_plot[i,:]) | |
832 | x_igcej_aux = numpy.isfinite(self.data.x_igcej_to_plot[i,:]) |
|
807 | x_igcej_aux = numpy.isfinite(self.data.x_igcej_to_plot[i,:]) | |
833 | y_igcej_aux = numpy.isfinite(self.data.y_igcej_to_plot[i,:]) |
|
808 | y_igcej_aux = numpy.isfinite(self.data.y_igcej_to_plot[i,:]) | |
834 | x_ibad_aux = numpy.isfinite(self.data.x_ibad_to_plot[i,:]) |
|
809 | x_ibad_aux = numpy.isfinite(self.data.x_ibad_to_plot[i,:]) | |
835 | y_ibad_aux = numpy.isfinite(self.data.y_ibad_to_plot[i,:]) |
|
810 | y_ibad_aux = numpy.isfinite(self.data.y_ibad_to_plot[i,:]) | |
836 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: |
|
811 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: | |
837 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.acfs_error_to_plot[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') |
|
812 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.acfs_error_to_plot[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') | |
838 | ax.plot(self.data.x_igcej_to_plot[i,x_igcej_aux],self.data.y_igcej_to_plot[i,y_igcej_aux],'x',color='red',markersize=2) |
|
813 | ax.plot(self.data.x_igcej_to_plot[i,x_igcej_aux],self.data.y_igcej_to_plot[i,y_igcej_aux],'x',color='red',markersize=2) | |
839 | ax.plot(self.data.x_ibad_to_plot[i,x_ibad_aux],self.data.y_ibad_to_plot[i,y_ibad_aux],'X',color='red',markersize=2) |
|
814 | ax.plot(self.data.x_ibad_to_plot[i,x_ibad_aux],self.data.y_ibad_to_plot[i,y_ibad_aux],'X',color='red',markersize=2) | |
840 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
815 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
841 |
|
816 | |||
842 |
|
817 | |||
843 |
|
818 | |||
844 |
|
819 | |||
845 | class ACFsLPPlot(Plot): |
|
820 | class ACFsLPPlot(Plot): | |
846 | ''' |
|
821 | ''' | |
847 | Plot for ACFs Double Pulse Experiment |
|
822 | Plot for ACFs Double Pulse Experiment | |
848 | ''' |
|
823 | ''' | |
849 |
|
824 | |||
850 | CODE = 'acfs_LP' |
|
825 | CODE = 'acfs_LP' | |
851 | plot_name = 'ACF' |
|
826 | plot_name = 'ACF' | |
852 | plot_type = 'scatterbuffer' |
|
827 | plot_type = 'scatterbuffer' | |
853 |
|
828 | |||
854 |
|
829 | |||
855 | def setup(self): |
|
830 | def setup(self): | |
856 | #self.xaxis = 'time' |
|
831 | #self.xaxis = 'time' | |
857 | self.ncols = 1 |
|
832 | self.ncols = 1 | |
858 | self.nrows = 1 |
|
833 | self.nrows = 1 | |
859 | self.nplots = 1 |
|
834 | self.nplots = 1 | |
860 | self.ylabel = 'Range [km]' |
|
835 | self.ylabel = 'Range [km]' | |
861 | self.xlabel = 'lags (ms)' |
|
836 | self.xlabel = 'lags (ms)' | |
862 | self.width = 3.5 |
|
837 | self.width = 3.5 | |
863 | self.height = 7 |
|
838 | self.height = 7 | |
864 | self.colorbar = False |
|
839 | self.colorbar = False | |
865 | if not self.titles: |
|
840 | if not self.titles: | |
866 | self.titles = self.data.parameters \ |
|
841 | self.titles = self.data.parameters \ | |
867 | if self.data.parameters else ['{}'.format(self.CODE.upper())] |
|
842 | if self.data.parameters else ['{}'.format(self.CODE.upper())] | |
868 |
|
843 | |||
869 |
|
844 | |||
870 |
|
845 | |||
871 | def plot(self): |
|
846 | def plot(self): | |
872 |
|
847 | |||
873 | self.x = self.data.lags_LP_to_plot |
|
848 | self.x = self.data.lags_LP_to_plot | |
874 | self.y = self.data['acfs_LP'][:,-1] |
|
849 | self.y = self.data['acfs_LP'][:,-1] | |
875 |
|
850 | |||
876 | self.xmin = 0.0 |
|
851 | self.xmin = 0.0 | |
877 | self.xmax = 1.5 |
|
852 | self.xmax = 1.5 | |
878 |
|
853 | |||
879 | ax = self.axes[0] |
|
854 | ax = self.axes[0] | |
880 |
|
855 | |||
881 | if ax.firsttime: |
|
856 | if ax.firsttime: | |
882 |
|
857 | |||
883 | for i in range(self.data.NACF): |
|
858 | for i in range(self.data.NACF): | |
884 | x_aux = numpy.isfinite(self.x[i,:]) |
|
859 | x_aux = numpy.isfinite(self.x[i,:]) | |
885 | y_aux = numpy.isfinite(self.y[i,:]) |
|
860 | y_aux = numpy.isfinite(self.y[i,:]) | |
886 | yerr_aux = numpy.isfinite(self.data.errors[i,:]) |
|
861 | yerr_aux = numpy.isfinite(self.data.errors[i,:]) | |
887 |
|
862 | |||
888 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: |
|
863 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: | |
889 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.errors[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
864 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.errors[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') | |
890 |
|
865 | |||
891 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) |
|
866 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) | |
892 | self.xstep_given=0.3 |
|
867 | self.xstep_given=0.3 | |
893 | self.ystep_given = 200 |
|
868 | self.ystep_given = 200 | |
894 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
869 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
895 | ax.grid(which='minor') |
|
870 | ax.grid(which='minor') | |
896 |
|
871 | |||
897 | else: |
|
872 | else: | |
898 | self.clear_figures() |
|
873 | self.clear_figures() | |
899 |
|
874 | |||
900 | for i in range(self.data.NACF): |
|
875 | for i in range(self.data.NACF): | |
901 | x_aux = numpy.isfinite(self.x[i,:]) |
|
876 | x_aux = numpy.isfinite(self.x[i,:]) | |
902 | y_aux = numpy.isfinite(self.y[i,:]) |
|
877 | y_aux = numpy.isfinite(self.y[i,:]) | |
903 | yerr_aux = numpy.isfinite(self.data.errors[i,:]) |
|
878 | yerr_aux = numpy.isfinite(self.data.errors[i,:]) | |
904 |
|
879 | |||
905 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: |
|
880 | if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2: | |
906 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.errors[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
881 | ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.errors[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') | |
907 |
|
882 | |||
908 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
883 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
909 |
|
884 | |||
910 |
|
885 | |||
911 | class CrossProductsPlot(Plot): |
|
886 | class CrossProductsPlot(Plot): | |
912 | ''' |
|
887 | ''' | |
913 | Plot for cross products |
|
888 | Plot for cross products | |
914 | ''' |
|
889 | ''' | |
915 |
|
890 | |||
916 | CODE = 'crossprod' |
|
891 | CODE = 'crossprod' | |
917 | plot_name = 'Cross Products' |
|
892 | plot_name = 'Cross Products' | |
918 | plot_type = 'scatterbuffer' |
|
893 | plot_type = 'scatterbuffer' | |
919 |
|
894 | |||
920 |
|
||||
921 | def setup(self): |
|
895 | def setup(self): | |
922 |
|
896 | |||
923 | self.ncols = 3 |
|
897 | self.ncols = 3 | |
924 | self.nrows = 1 |
|
898 | self.nrows = 1 | |
925 | self.nplots = 3 |
|
899 | self.nplots = 3 | |
926 | self.ylabel = 'Range [km]' |
|
900 | self.ylabel = 'Range [km]' | |
927 |
|
||||
928 | self.width = 3.5*self.nplots |
|
901 | self.width = 3.5*self.nplots | |
929 | self.height = 5.5 |
|
902 | self.height = 5.5 | |
930 | self.colorbar = False |
|
903 | self.colorbar = False | |
931 | self.titles = [] |
|
904 | self.titles = [] | |
932 |
|
905 | |||
933 |
def |
|
906 | def update(self, dataOut): | |
934 |
|
||||
935 | self.x = self.data['crossprod'][:,-1,:,:,:,:] |
|
|||
936 |
|
||||
937 |
|
907 | |||
|
908 | data = {} | |||
|
909 | meta = {} | |||
938 |
|
910 | |||
|
911 | data['crossprod'] = dataOut.crossprods | |||
|
912 | data['NDP'] = dataOut.NDP | |||
939 |
|
913 | |||
940 | self.y = self.data.heights[0:self.data.NDP] |
|
914 | return data, meta | |
941 |
|
915 | |||
|
916 | def plot(self): | |||
942 |
|
917 | |||
|
918 | self.x = self.data['crossprod'][:,-1,:,:,:,:] | |||
|
919 | self.y = self.data.heights[0:self.data['NDP']] | |||
943 |
|
920 | |||
944 | for n, ax in enumerate(self.axes): |
|
921 | for n, ax in enumerate(self.axes): | |
945 |
|
922 | |||
946 | self.xmin=numpy.min(numpy.concatenate((self.x[n][0,20:30,0,0],self.x[n][1,20:30,0,0],self.x[n][2,20:30,0,0],self.x[n][3,20:30,0,0]))) |
|
923 | self.xmin=numpy.min(numpy.concatenate((self.x[n][0,20:30,0,0],self.x[n][1,20:30,0,0],self.x[n][2,20:30,0,0],self.x[n][3,20:30,0,0]))) | |
947 | self.xmax=numpy.max(numpy.concatenate((self.x[n][0,20:30,0,0],self.x[n][1,20:30,0,0],self.x[n][2,20:30,0,0],self.x[n][3,20:30,0,0]))) |
|
924 | self.xmax=numpy.max(numpy.concatenate((self.x[n][0,20:30,0,0],self.x[n][1,20:30,0,0],self.x[n][2,20:30,0,0],self.x[n][3,20:30,0,0]))) | |
948 |
|
925 | |||
949 |
|
||||
950 | if ax.firsttime: |
|
926 | if ax.firsttime: | |
951 |
|
927 | |||
952 | self.autoxticks=False |
|
928 | self.autoxticks=False | |
953 | if n==0: |
|
929 | if n==0: | |
954 | label1='kax' |
|
930 | label1='kax' | |
955 | label2='kay' |
|
931 | label2='kay' | |
956 | label3='kbx' |
|
932 | label3='kbx' | |
957 | label4='kby' |
|
933 | label4='kby' | |
958 | self.xlimits=[(self.xmin,self.xmax)] |
|
934 | self.xlimits=[(self.xmin,self.xmax)] | |
959 | elif n==1: |
|
935 | elif n==1: | |
960 | label1='kax2' |
|
936 | label1='kax2' | |
961 | label2='kay2' |
|
937 | label2='kay2' | |
962 | label3='kbx2' |
|
938 | label3='kbx2' | |
963 | label4='kby2' |
|
939 | label4='kby2' | |
964 | self.xlimits.append((self.xmin,self.xmax)) |
|
940 | self.xlimits.append((self.xmin,self.xmax)) | |
965 | elif n==2: |
|
941 | elif n==2: | |
966 | label1='kaxay' |
|
942 | label1='kaxay' | |
967 | label2='kbxby' |
|
943 | label2='kbxby' | |
968 | label3='kaxbx' |
|
944 | label3='kaxbx' | |
969 | label4='kaxby' |
|
945 | label4='kaxby' | |
970 | self.xlimits.append((self.xmin,self.xmax)) |
|
946 | self.xlimits.append((self.xmin,self.xmax)) | |
971 |
|
947 | |||
972 |
|
||||
973 | ax.plotline1 = ax.plot(self.x[n][0,:,0,0], self.y, color='r',linewidth=2.0, label=label1) |
|
948 | ax.plotline1 = ax.plot(self.x[n][0,:,0,0], self.y, color='r',linewidth=2.0, label=label1) | |
974 | ax.plotline2 = ax.plot(self.x[n][1,:,0,0], self.y, color='k',linewidth=2.0, label=label2) |
|
949 | ax.plotline2 = ax.plot(self.x[n][1,:,0,0], self.y, color='k',linewidth=2.0, label=label2) | |
975 | ax.plotline3 = ax.plot(self.x[n][2,:,0,0], self.y, color='b',linewidth=2.0, label=label3) |
|
950 | ax.plotline3 = ax.plot(self.x[n][2,:,0,0], self.y, color='b',linewidth=2.0, label=label3) | |
976 | ax.plotline4 = ax.plot(self.x[n][3,:,0,0], self.y, color='m',linewidth=2.0, label=label4) |
|
951 | ax.plotline4 = ax.plot(self.x[n][3,:,0,0], self.y, color='m',linewidth=2.0, label=label4) | |
977 | ax.legend(loc='upper right') |
|
952 | ax.legend(loc='upper right') | |
978 | ax.set_xlim(self.xmin, self.xmax) |
|
953 | ax.set_xlim(self.xmin, self.xmax) | |
979 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
954 | self.titles.append('{}'.format(self.plot_name.upper())) | |
980 | #plt.tight_layout() |
|
|||
981 |
|
||||
982 |
|
955 | |||
983 | else: |
|
956 | else: | |
984 |
|
957 | |||
985 | if n==0: |
|
958 | if n==0: | |
986 | self.xlimits=[(self.xmin,self.xmax)] |
|
959 | self.xlimits=[(self.xmin,self.xmax)] | |
987 | else: |
|
960 | else: | |
988 | self.xlimits.append((self.xmin,self.xmax)) |
|
961 | self.xlimits.append((self.xmin,self.xmax)) | |
989 |
|
962 | |||
990 | ax.set_xlim(self.xmin, self.xmax) |
|
963 | ax.set_xlim(self.xmin, self.xmax) | |
991 |
|
964 | |||
992 |
|
||||
993 | ax.plotline1[0].set_data(self.x[n][0,:,0,0],self.y) |
|
965 | ax.plotline1[0].set_data(self.x[n][0,:,0,0],self.y) | |
994 | ax.plotline2[0].set_data(self.x[n][1,:,0,0],self.y) |
|
966 | ax.plotline2[0].set_data(self.x[n][1,:,0,0],self.y) | |
995 | ax.plotline3[0].set_data(self.x[n][2,:,0,0],self.y) |
|
967 | ax.plotline3[0].set_data(self.x[n][2,:,0,0],self.y) | |
996 | ax.plotline4[0].set_data(self.x[n][3,:,0,0],self.y) |
|
968 | ax.plotline4[0].set_data(self.x[n][3,:,0,0],self.y) | |
997 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
969 | self.titles.append('{}'.format(self.plot_name.upper())) | |
998 | #plt.tight_layout() |
|
|||
999 |
|
||||
1000 |
|
970 | |||
1001 |
|
971 | |||
1002 | class CrossProductsLPPlot(Plot): |
|
972 | class CrossProductsLPPlot(Plot): | |
1003 | ''' |
|
973 | ''' | |
1004 | Plot for cross products LP |
|
974 | Plot for cross products LP | |
1005 | ''' |
|
975 | ''' | |
1006 |
|
976 | |||
1007 | CODE = 'crossprodlp' |
|
977 | CODE = 'crossprodlp' | |
1008 | plot_name = 'Cross Products LP' |
|
978 | plot_name = 'Cross Products LP' | |
1009 | plot_type = 'scatterbuffer' |
|
979 | plot_type = 'scatterbuffer' | |
1010 |
|
980 | |||
1011 |
|
981 | |||
1012 | def setup(self): |
|
982 | def setup(self): | |
1013 |
|
983 | |||
1014 | self.ncols = 2 |
|
984 | self.ncols = 2 | |
1015 | self.nrows = 1 |
|
985 | self.nrows = 1 | |
1016 | self.nplots = 2 |
|
986 | self.nplots = 2 | |
1017 | self.ylabel = 'Range [km]' |
|
987 | self.ylabel = 'Range [km]' | |
1018 | self.xlabel = 'dB' |
|
988 | self.xlabel = 'dB' | |
1019 | self.width = 3.5*self.nplots |
|
989 | self.width = 3.5*self.nplots | |
1020 | self.height = 5.5 |
|
990 | self.height = 5.5 | |
1021 | self.colorbar = False |
|
991 | self.colorbar = False | |
1022 | self.titles = [] |
|
992 | self.titles = [] | |
1023 | self.plotline_array=numpy.zeros((2,self.data.NLAG),dtype=object) |
|
993 | self.plotline_array=numpy.zeros((2,self.data.NLAG),dtype=object) | |
1024 | def plot(self): |
|
994 | def plot(self): | |
1025 |
|
995 | |||
1026 |
|
996 | |||
1027 | self.x = self.data[self.CODE][:,-1,:,:] |
|
997 | self.x = self.data[self.CODE][:,-1,:,:] | |
1028 |
|
998 | |||
1029 |
|
999 | |||
1030 | self.y = self.data.heights[0:self.data.NRANGE] |
|
1000 | self.y = self.data.heights[0:self.data.NRANGE] | |
1031 |
|
1001 | |||
1032 |
|
1002 | |||
1033 | label_array=numpy.array(['lag '+ str(x) for x in range(self.data.NLAG)]) |
|
1003 | label_array=numpy.array(['lag '+ str(x) for x in range(self.data.NLAG)]) | |
1034 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] |
|
1004 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] | |
1035 |
|
1005 | |||
1036 |
|
1006 | |||
1037 | for n, ax in enumerate(self.axes): |
|
1007 | for n, ax in enumerate(self.axes): | |
1038 |
|
1008 | |||
1039 | self.xmin=30 |
|
1009 | self.xmin=30 | |
1040 | self.xmax=70 |
|
1010 | self.xmax=70 | |
1041 | #print(self.x[0,12:15,n]) |
|
1011 | #print(self.x[0,12:15,n]) | |
1042 | #input() |
|
1012 | #input() | |
1043 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1013 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) | |
1044 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1014 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) | |
1045 |
|
1015 | |||
1046 | #print("before",self.plotline_array) |
|
1016 | #print("before",self.plotline_array) | |
1047 |
|
1017 | |||
1048 | if ax.firsttime: |
|
1018 | if ax.firsttime: | |
1049 |
|
1019 | |||
1050 | self.autoxticks=False |
|
1020 | self.autoxticks=False | |
1051 |
|
1021 | |||
1052 |
|
1022 | |||
1053 | for i in range(self.data.NLAG): |
|
1023 | for i in range(self.data.NLAG): | |
1054 | #print(i) |
|
1024 | #print(i) | |
1055 | #print(numpy.shape(self.x)) |
|
1025 | #print(numpy.shape(self.x)) | |
1056 | self.plotline_array[n,i], = ax.plot(self.x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) |
|
1026 | self.plotline_array[n,i], = ax.plot(self.x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) | |
1057 | #ax.plotline1 = ax.plot(self.x[0,:,n], self.y, color='r',linewidth=2.0, label=label_array[0]) |
|
1027 | #ax.plotline1 = ax.plot(self.x[0,:,n], self.y, color='r',linewidth=2.0, label=label_array[0]) | |
1058 | #ax.plotline2 = ax.plot(self.x[n][1,:,0,0], self.y, color='k',linewidth=2.0, label=label2) |
|
1028 | #ax.plotline2 = ax.plot(self.x[n][1,:,0,0], self.y, color='k',linewidth=2.0, label=label2) | |
1059 | #ax.plotline3 = ax.plot(self.x[n][2,:,0,0], self.y, color='b',linewidth=2.0, label=label3) |
|
1029 | #ax.plotline3 = ax.plot(self.x[n][2,:,0,0], self.y, color='b',linewidth=2.0, label=label3) | |
1060 | #ax.plotline4 = ax.plot(self.x[n][3,:,0,0], self.y, color='m',linewidth=2.0, label=label4) |
|
1030 | #ax.plotline4 = ax.plot(self.x[n][3,:,0,0], self.y, color='m',linewidth=2.0, label=label4) | |
1061 |
|
1031 | |||
1062 |
|
1032 | |||
1063 | #print(self.plotline_array) |
|
1033 | #print(self.plotline_array) | |
1064 |
|
1034 | |||
1065 |
|
1035 | |||
1066 |
|
1036 | |||
1067 | ax.legend(loc='upper right') |
|
1037 | ax.legend(loc='upper right') | |
1068 | ax.set_xlim(self.xmin, self.xmax) |
|
1038 | ax.set_xlim(self.xmin, self.xmax) | |
1069 | if n==0: |
|
1039 | if n==0: | |
1070 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1040 | self.titles.append('{} CH0'.format(self.plot_name.upper())) | |
1071 | if n==1: |
|
1041 | if n==1: | |
1072 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1042 | self.titles.append('{} CH1'.format(self.plot_name.upper())) | |
1073 |
|
1043 | |||
1074 | #plt.tight_layout() |
|
1044 | #plt.tight_layout() | |
1075 |
|
1045 | |||
1076 | else: |
|
1046 | else: | |
1077 | #print(self.plotline_array) |
|
1047 | #print(self.plotline_array) | |
1078 | for i in range(self.data.NLAG): |
|
1048 | for i in range(self.data.NLAG): | |
1079 |
|
1049 | |||
1080 | self.plotline_array[n,i].set_data(self.x[i,:,n],self.y) |
|
1050 | self.plotline_array[n,i].set_data(self.x[i,:,n],self.y) | |
1081 |
|
1051 | |||
1082 |
|
1052 | |||
1083 |
|
1053 | |||
1084 | #ax.plotline1[0].set_data(self.x[n][0,:,0,0],self.y) |
|
1054 | #ax.plotline1[0].set_data(self.x[n][0,:,0,0],self.y) | |
1085 | #ax.plotline2[0].set_data(self.x[n][1,:,0,0],self.y) |
|
1055 | #ax.plotline2[0].set_data(self.x[n][1,:,0,0],self.y) | |
1086 | #ax.plotline3[0].set_data(self.x[n][2,:,0,0],self.y) |
|
1056 | #ax.plotline3[0].set_data(self.x[n][2,:,0,0],self.y) | |
1087 | #ax.plotline4[0].set_data(self.x[n][3,:,0,0],self.y) |
|
1057 | #ax.plotline4[0].set_data(self.x[n][3,:,0,0],self.y) | |
1088 |
|
1058 | |||
1089 | if n==0: |
|
1059 | if n==0: | |
1090 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1060 | self.titles.append('{} CH0'.format(self.plot_name.upper())) | |
1091 | if n==1: |
|
1061 | if n==1: | |
1092 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1062 | self.titles.append('{} CH1'.format(self.plot_name.upper())) | |
1093 |
|
1063 | |||
1094 | #plt.tight_layout() |
|
1064 | #plt.tight_layout() | |
1095 |
|
1065 | |||
1096 |
|
1066 | |||
1097 | class NoiseDPPlot(NoisePlot): |
|
1067 | class NoiseDPPlot(NoisePlot): | |
1098 | ''' |
|
1068 | ''' | |
1099 | Plot for noise Double Pulse |
|
1069 | Plot for noise Double Pulse | |
1100 | ''' |
|
1070 | ''' | |
1101 |
|
1071 | |||
1102 | CODE = 'noisedp' |
|
1072 | CODE = 'noisedp' | |
1103 | plot_name = 'Noise' |
|
1073 | plot_name = 'Noise' | |
1104 | plot_type = 'scatterbuffer' |
|
1074 | plot_type = 'scatterbuffer' | |
1105 |
|
1075 | |||
1106 |
|
1076 | |||
1107 | class XmitWaveformPlot(Plot): |
|
1077 | class XmitWaveformPlot(Plot): | |
1108 | ''' |
|
1078 | ''' | |
1109 | Plot for xmit waveform |
|
1079 | Plot for xmit waveform | |
1110 | ''' |
|
1080 | ''' | |
1111 |
|
1081 | |||
1112 | CODE = 'xmit' |
|
1082 | CODE = 'xmit' | |
1113 | plot_name = 'Xmit Waveform' |
|
1083 | plot_name = 'Xmit Waveform' | |
1114 | plot_type = 'scatterbuffer' |
|
1084 | plot_type = 'scatterbuffer' | |
1115 |
|
1085 | |||
1116 |
|
1086 | |||
1117 | def setup(self): |
|
1087 | def setup(self): | |
1118 |
|
1088 | |||
1119 | self.ncols = 1 |
|
1089 | self.ncols = 1 | |
1120 | self.nrows = 1 |
|
1090 | self.nrows = 1 | |
1121 | self.nplots = 1 |
|
1091 | self.nplots = 1 | |
1122 | self.ylabel = '' |
|
1092 | self.ylabel = '' | |
1123 | self.xlabel = 'Number of Lag' |
|
1093 | self.xlabel = 'Number of Lag' | |
1124 | self.width = 5.5 |
|
1094 | self.width = 5.5 | |
1125 | self.height = 3.5 |
|
1095 | self.height = 3.5 | |
1126 | self.colorbar = False |
|
1096 | self.colorbar = False | |
1127 | if not self.titles: |
|
1097 | if not self.titles: | |
1128 | self.titles = self.data.parameters \ |
|
1098 | self.titles = self.data.parameters \ | |
1129 | if self.data.parameters else ['{}'.format(self.plot_name.upper())] |
|
1099 | if self.data.parameters else ['{}'.format(self.plot_name.upper())] | |
1130 |
|
1100 | |||
1131 | def plot(self): |
|
1101 | def plot(self): | |
1132 |
|
1102 | |||
1133 | self.x = numpy.arange(0,self.data.NLAG,1,'float32') |
|
1103 | self.x = numpy.arange(0,self.data.NLAG,1,'float32') | |
1134 | self.y = self.data['xmit'][:,-1,:] |
|
1104 | self.y = self.data['xmit'][:,-1,:] | |
1135 |
|
1105 | |||
1136 | self.xmin = 0 |
|
1106 | self.xmin = 0 | |
1137 | self.xmax = self.data.NLAG-1 |
|
1107 | self.xmax = self.data.NLAG-1 | |
1138 | self.ymin = -1.0 |
|
1108 | self.ymin = -1.0 | |
1139 | self.ymax = 1.0 |
|
1109 | self.ymax = 1.0 | |
1140 | ax = self.axes[0] |
|
1110 | ax = self.axes[0] | |
1141 |
|
1111 | |||
1142 | if ax.firsttime: |
|
1112 | if ax.firsttime: | |
1143 | ax.plotline0=ax.plot(self.x,self.y[0,:],color='blue') |
|
1113 | ax.plotline0=ax.plot(self.x,self.y[0,:],color='blue') | |
1144 | ax.plotline1=ax.plot(self.x,self.y[1,:],color='red') |
|
1114 | ax.plotline1=ax.plot(self.x,self.y[1,:],color='red') | |
1145 | secax=ax.secondary_xaxis(location=0.5) |
|
1115 | secax=ax.secondary_xaxis(location=0.5) | |
1146 | secax.xaxis.tick_bottom() |
|
1116 | secax.xaxis.tick_bottom() | |
1147 | secax.tick_params( labelleft=False, labeltop=False, |
|
1117 | secax.tick_params( labelleft=False, labeltop=False, | |
1148 | labelright=False, labelbottom=False) |
|
1118 | labelright=False, labelbottom=False) | |
1149 |
|
1119 | |||
1150 | self.xstep_given = 3 |
|
1120 | self.xstep_given = 3 | |
1151 | self.ystep_given = .25 |
|
1121 | self.ystep_given = .25 | |
1152 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 |
|
1122 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 | |
1153 |
|
1123 | |||
1154 | else: |
|
1124 | else: | |
1155 | ax.plotline0[0].set_data(self.x,self.y[0,:]) |
|
1125 | ax.plotline0[0].set_data(self.x,self.y[0,:]) | |
1156 | ax.plotline1[0].set_data(self.x,self.y[1,:]) |
|
1126 | ax.plotline1[0].set_data(self.x,self.y[1,:]) |
@@ -1,22 +1,22 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: murco $ |
|
3 | $Author: murco $ | |
4 | $Id: Processor.py 1 2012-11-12 18:56:07Z murco $ |
|
4 | $Id: Processor.py 1 2012-11-12 18:56:07Z murco $ | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | from .jroproc_voltage import * |
|
7 | from .jroproc_voltage import * | |
8 | from .jroproc_spectra import * |
|
8 | from .jroproc_spectra import * | |
9 | from .jroproc_heispectra import * |
|
9 | from .jroproc_heispectra import * | |
10 | from .jroproc_amisr import * |
|
10 | from .jroproc_amisr import * | |
11 | from .jroproc_correlation import * |
|
11 | from .jroproc_correlation import * | |
12 | from .jroproc_parameters import * |
|
12 | from .jroproc_parameters import * | |
13 | from .jroproc_spectra_lags import * |
|
13 | from .jroproc_spectra_lags import * | |
14 | from .jroproc_spectra_acf import * |
|
14 | from .jroproc_spectra_acf import * | |
15 | from .bltrproc_parameters import * |
|
15 | from .bltrproc_parameters import * | |
16 | from .pxproc_parameters import * |
|
16 | from .pxproc_parameters import * | |
17 |
|
17 | |||
18 |
|
18 | |||
19 | ###########DP########### |
|
19 | ###########DP########### | |
20 | from .jroproc_voltage_lags import * |
|
20 | from .jroproc_voltage_lags import * | |
21 | ###########DP########### |
|
21 | ###########DP########### | |
22 | from .jroproc_spectra_lags_faraday import * |
|
22 | # from .jroproc_spectra_lags_faraday import * |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now