##// END OF EJS Templates
regresa a escribir con dtype(f8)
Daniel Valdez -
r275:382a29cd86bf
parent child
Show More
@@ -1,2579 +1,2579
1 1 '''
2 2
3 3 $Author: murco $
4 4 $Id: JRODataIO.py 169 2012-11-19 21:57:03Z murco $
5 5 '''
6 6
7 7 import os, sys
8 8 import glob
9 9 import time
10 10 import numpy
11 11 import fnmatch
12 12 import time, datetime
13 13
14 14 from jrodata import *
15 15 from jroheaderIO import *
16 16 from jroprocessing import *
17 17
18 18 LOCALTIME = -18000
19 19
20 20 def isNumber(str):
21 21 """
22 22 Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
23 23
24 24 Excepciones:
25 25 Si un determinado string no puede ser convertido a numero
26 26 Input:
27 27 str, string al cual se le analiza para determinar si convertible a un numero o no
28 28
29 29 Return:
30 30 True : si el string es uno numerico
31 31 False : no es un string numerico
32 32 """
33 33 try:
34 34 float( str )
35 35 return True
36 36 except:
37 37 return False
38 38
39 39 def isThisFileinRange(filename, startUTSeconds, endUTSeconds):
40 40 """
41 41 Esta funcion determina si un archivo de datos se encuentra o no dentro del rango de fecha especificado.
42 42
43 43 Inputs:
44 44 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
45 45
46 46 startUTSeconds : fecha inicial del rango seleccionado. La fecha esta dada en
47 47 segundos contados desde 01/01/1970.
48 48 endUTSeconds : fecha final del rango seleccionado. La fecha esta dada en
49 49 segundos contados desde 01/01/1970.
50 50
51 51 Return:
52 52 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
53 53 fecha especificado, de lo contrario retorna False.
54 54
55 55 Excepciones:
56 56 Si el archivo no existe o no puede ser abierto
57 57 Si la cabecera no puede ser leida.
58 58
59 59 """
60 60 basicHeaderObj = BasicHeader(LOCALTIME)
61 61
62 62 try:
63 63 fp = open(filename,'rb')
64 64 except:
65 65 raise IOError, "The file %s can't be opened" %(filename)
66 66
67 67 sts = basicHeaderObj.read(fp)
68 68 fp.close()
69 69
70 70 if not(sts):
71 71 print "Skipping the file %s because it has not a valid header" %(filename)
72 72 return 0
73 73
74 74 if not ((startUTSeconds <= basicHeaderObj.utc) and (endUTSeconds > basicHeaderObj.utc)):
75 75 return 0
76 76
77 77 return 1
78 78
79 79 def isFileinThisTime(filename, startTime, endTime):
80 80 """
81 81 Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado.
82 82
83 83 Inputs:
84 84 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
85 85
86 86 startTime : tiempo inicial del rango seleccionado en formato datetime.time
87 87
88 88 endTime : tiempo final del rango seleccionado en formato datetime.time
89 89
90 90 Return:
91 91 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
92 92 fecha especificado, de lo contrario retorna False.
93 93
94 94 Excepciones:
95 95 Si el archivo no existe o no puede ser abierto
96 96 Si la cabecera no puede ser leida.
97 97
98 98 """
99 99
100 100
101 101 try:
102 102 fp = open(filename,'rb')
103 103 except:
104 104 raise IOError, "The file %s can't be opened" %(filename)
105 105
106 106 basicHeaderObj = BasicHeader(LOCALTIME)
107 107 sts = basicHeaderObj.read(fp)
108 108 fp.close()
109 109
110 110 thisTime = basicHeaderObj.datatime.time()
111 111
112 112 if not(sts):
113 113 print "Skipping the file %s because it has not a valid header" %(filename)
114 114 return 0
115 115
116 116 if not ((startTime <= thisTime) and (endTime > thisTime)):
117 117 return 0
118 118
119 119 return 1
120 120
121 121 def getlastFileFromPath(path, ext):
122 122 """
123 123 Depura el fileList dejando solo los que cumplan el formato de "PYYYYDDDSSS.ext"
124 124 al final de la depuracion devuelve el ultimo file de la lista que quedo.
125 125
126 126 Input:
127 127 fileList : lista conteniendo todos los files (sin path) que componen una determinada carpeta
128 128 ext : extension de los files contenidos en una carpeta
129 129
130 130 Return:
131 131 El ultimo file de una determinada carpeta, no se considera el path.
132 132 """
133 133 validFilelist = []
134 134 fileList = os.listdir(path)
135 135
136 136 # 0 1234 567 89A BCDE
137 137 # H YYYY DDD SSS .ext
138 138
139 139 for file in fileList:
140 140 try:
141 141 year = int(file[1:5])
142 142 doy = int(file[5:8])
143 143
144 144
145 145 except:
146 146 continue
147 147
148 148 if (os.path.splitext(file)[-1].lower() != ext.lower()):
149 149 continue
150 150
151 151 validFilelist.append(file)
152 152
153 153 if validFilelist:
154 154 validFilelist = sorted( validFilelist, key=str.lower )
155 155 return validFilelist[-1]
156 156
157 157 return None
158 158
159 159 def checkForRealPath(path, year, doy, set, ext):
160 160 """
161 161 Por ser Linux Case Sensitive entonces checkForRealPath encuentra el nombre correcto de un path,
162 162 Prueba por varias combinaciones de nombres entre mayusculas y minusculas para determinar
163 163 el path exacto de un determinado file.
164 164
165 165 Example :
166 166 nombre correcto del file es .../.../D2009307/P2009307367.ext
167 167
168 168 Entonces la funcion prueba con las siguientes combinaciones
169 169 .../.../y2009307367.ext
170 170 .../.../Y2009307367.ext
171 171 .../.../x2009307/y2009307367.ext
172 172 .../.../x2009307/Y2009307367.ext
173 173 .../.../X2009307/y2009307367.ext
174 174 .../.../X2009307/Y2009307367.ext
175 175 siendo para este caso, la ultima combinacion de letras, identica al file buscado
176 176
177 177 Return:
178 178 Si encuentra la cobinacion adecuada devuelve el path completo y el nombre del file
179 179 caso contrario devuelve None como path y el la ultima combinacion de nombre en mayusculas
180 180 para el filename
181 181 """
182 182 fullfilename = None
183 183 find_flag = False
184 184 filename = None
185 185
186 186 prefixDirList = [None,'d','D']
187 187 if ext.lower() == ".r": #voltage
188 188 prefixFileList = ['d','D']
189 189 elif ext.lower() == ".pdata": #spectra
190 190 prefixFileList = ['p','P']
191 191 else:
192 192 return None, filename
193 193
194 194 #barrido por las combinaciones posibles
195 195 for prefixDir in prefixDirList:
196 196 thispath = path
197 197 if prefixDir != None:
198 198 #formo el nombre del directorio xYYYYDDD (x=d o x=D)
199 199 thispath = os.path.join(path, "%s%04d%03d" % ( prefixDir, year, doy ))
200 200
201 201 for prefixFile in prefixFileList: #barrido por las dos combinaciones posibles de "D"
202 202 filename = "%s%04d%03d%03d%s" % ( prefixFile, year, doy, set, ext ) #formo el nombre del file xYYYYDDDSSS.ext
203 203 fullfilename = os.path.join( thispath, filename ) #formo el path completo
204 204
205 205 if os.path.exists( fullfilename ): #verifico que exista
206 206 find_flag = True
207 207 break
208 208 if find_flag:
209 209 break
210 210
211 211 if not(find_flag):
212 212 return None, filename
213 213
214 214 return fullfilename, filename
215 215
216 216 class JRODataIO:
217 217
218 218 c = 3E8
219 219
220 220 isConfig = False
221 221
222 222 basicHeaderObj = BasicHeader(LOCALTIME)
223 223
224 224 systemHeaderObj = SystemHeader()
225 225
226 226 radarControllerHeaderObj = RadarControllerHeader()
227 227
228 228 processingHeaderObj = ProcessingHeader()
229 229
230 230 online = 0
231 231
232 232 dtype = None
233 233
234 234 pathList = []
235 235
236 236 filenameList = []
237 237
238 238 filename = None
239 239
240 240 ext = None
241 241
242 242 flagIsNewFile = 1
243 243
244 244 flagTimeBlock = 0
245 245
246 246 flagIsNewBlock = 0
247 247
248 248 fp = None
249 249
250 250 firstHeaderSize = 0
251 251
252 252 basicHeaderSize = 24
253 253
254 254 versionFile = 1103
255 255
256 256 fileSize = None
257 257
258 258 ippSeconds = None
259 259
260 260 fileSizeByHeader = None
261 261
262 262 fileIndex = None
263 263
264 264 profileIndex = None
265 265
266 266 blockIndex = None
267 267
268 268 nTotalBlocks = None
269 269
270 270 maxTimeStep = 30
271 271
272 272 lastUTTime = None
273 273
274 274 datablock = None
275 275
276 276 dataOut = None
277 277
278 278 blocksize = None
279 279
280 280 def __init__(self):
281 281
282 282 raise ValueError, "Not implemented"
283 283
284 284 def run(self):
285 285
286 286 raise ValueError, "Not implemented"
287 287
288 288 def getOutput(self):
289 289
290 290 return self.dataOut
291 291
292 292 class JRODataReader(JRODataIO, ProcessingUnit):
293 293
294 294 nReadBlocks = 0
295 295
296 296 delay = 10 #number of seconds waiting a new file
297 297
298 298 nTries = 3 #quantity tries
299 299
300 300 nFiles = 3 #number of files for searching
301 301
302 302 flagNoMoreFiles = 0
303 303
304 304 def __init__(self):
305 305
306 306 """
307 307
308 308 """
309 309
310 310 raise ValueError, "This method has not been implemented"
311 311
312 312
313 313 def createObjByDefault(self):
314 314 """
315 315
316 316 """
317 317 raise ValueError, "This method has not been implemented"
318 318
319 319 def getBlockDimension(self):
320 320
321 321 raise ValueError, "No implemented"
322 322
323 323 def __searchFilesOffLine(self,
324 324 path,
325 325 startDate,
326 326 endDate,
327 327 startTime=datetime.time(0,0,0),
328 328 endTime=datetime.time(23,59,59),
329 329 set=None,
330 330 expLabel='',
331 331 ext='.r',
332 332 walk=True):
333 333
334 334 pathList = []
335 335
336 336 if not walk:
337 337 pathList.append(path)
338 338
339 339 else:
340 340 dirList = []
341 341 for thisPath in os.listdir(path):
342 342 if os.path.isdir(os.path.join(path,thisPath)):
343 343 dirList.append(thisPath)
344 344
345 345 if not(dirList):
346 346 return None, None
347 347
348 348 thisDate = startDate
349 349
350 350 while(thisDate <= endDate):
351 351 year = thisDate.timetuple().tm_year
352 352 doy = thisDate.timetuple().tm_yday
353 353
354 354 match = fnmatch.filter(dirList, '?' + '%4.4d%3.3d' % (year,doy))
355 355 if len(match) == 0:
356 356 thisDate += datetime.timedelta(1)
357 357 continue
358 358
359 359 pathList.append(os.path.join(path,match[0],expLabel))
360 360 thisDate += datetime.timedelta(1)
361 361
362 362 if pathList == []:
363 363 print "Any folder was found for the date range: %s-%s" %(startDate, endDate)
364 364 return None, None
365 365
366 366 print "%d folder(s) was(were) found for the date range: %s-%s" %(len(pathList), startDate, endDate)
367 367
368 368 filenameList = []
369 369 for thisPath in pathList:
370 370
371 371 fileList = glob.glob1(thisPath, "*%s" %ext)
372 372 fileList.sort()
373 373
374 374 for file in fileList:
375 375
376 376 filename = os.path.join(thisPath,file)
377 377
378 378 if isFileinThisTime(filename, startTime, endTime):
379 379 filenameList.append(filename)
380 380
381 381 if not(filenameList):
382 382 print "Any file was found for the time range %s - %s" %(startTime, endTime)
383 383 return None, None
384 384
385 385 print "%d file(s) was(were) found for the time range: %s - %s" %(len(filenameList), startTime, endTime)
386 386
387 387 self.filenameList = filenameList
388 388
389 389 return pathList, filenameList
390 390
391 391 def __searchFilesOnLine(self, path, expLabel = "", ext = None, walk=True):
392 392
393 393 """
394 394 Busca el ultimo archivo de la ultima carpeta (determinada o no por startDateTime) y
395 395 devuelve el archivo encontrado ademas de otros datos.
396 396
397 397 Input:
398 398 path : carpeta donde estan contenidos los files que contiene data
399 399
400 400 expLabel : Nombre del subexperimento (subfolder)
401 401
402 402 ext : extension de los files
403 403
404 404 walk : Si es habilitado no realiza busquedas dentro de los ubdirectorios (doypath)
405 405
406 406 Return:
407 407 directory : eL directorio donde esta el file encontrado
408 408 filename : el ultimo file de una determinada carpeta
409 409 year : el anho
410 410 doy : el numero de dia del anho
411 411 set : el set del archivo
412 412
413 413
414 414 """
415 415 dirList = []
416 416
417 417 if walk:
418 418
419 419 #Filtra solo los directorios
420 420 for thisPath in os.listdir(path):
421 421 if os.path.isdir(os.path.join(path, thisPath)):
422 422 dirList.append(thisPath)
423 423
424 424 if not(dirList):
425 425 return None, None, None, None, None
426 426
427 427 dirList = sorted( dirList, key=str.lower )
428 428
429 429 doypath = dirList[-1]
430 430 fullpath = os.path.join(path, doypath, expLabel)
431 431
432 432 else:
433 433 fullpath = path
434 434
435 435 filename = getlastFileFromPath(fullpath, ext)
436 436
437 437 if not(filename):
438 438 return None, None, None, None, None
439 439
440 440 if not(self.__verifyFile(os.path.join(fullpath, filename))):
441 441 return None, None, None, None, None
442 442
443 443 year = int( filename[1:5] )
444 444 doy = int( filename[5:8] )
445 445 set = int( filename[8:11] )
446 446
447 447 return fullpath, filename, year, doy, set
448 448
449 449
450 450
451 451 def __setNextFileOffline(self):
452 452
453 453 idFile = self.fileIndex
454 454
455 455 while (True):
456 456 idFile += 1
457 457 if not(idFile < len(self.filenameList)):
458 458 self.flagNoMoreFiles = 1
459 459 print "No more Files"
460 460 return 0
461 461
462 462 filename = self.filenameList[idFile]
463 463
464 464 if not(self.__verifyFile(filename)):
465 465 continue
466 466
467 467 fileSize = os.path.getsize(filename)
468 468 fp = open(filename,'rb')
469 469 break
470 470
471 471 self.flagIsNewFile = 1
472 472 self.fileIndex = idFile
473 473 self.filename = filename
474 474 self.fileSize = fileSize
475 475 self.fp = fp
476 476
477 477 print "Setting the file: %s"%self.filename
478 478
479 479 return 1
480 480
481 481 def __setNextFileOnline(self):
482 482 """
483 483 Busca el siguiente file que tenga suficiente data para ser leida, dentro de un folder especifico, si
484 484 no encuentra un file valido espera un tiempo determinado y luego busca en los posibles n files
485 485 siguientes.
486 486
487 487 Affected:
488 488 self.flagIsNewFile
489 489 self.filename
490 490 self.fileSize
491 491 self.fp
492 492 self.set
493 493 self.flagNoMoreFiles
494 494
495 495 Return:
496 496 0 : si luego de una busqueda del siguiente file valido este no pudo ser encontrado
497 497 1 : si el file fue abierto con exito y esta listo a ser leido
498 498
499 499 Excepciones:
500 500 Si un determinado file no puede ser abierto
501 501 """
502 502 nFiles = 0
503 503 fileOk_flag = False
504 504 firstTime_flag = True
505 505
506 506 self.set += 1
507 507
508 508 #busca el 1er file disponible
509 509 fullfilename, filename = checkForRealPath( self.path, self.year, self.doy, self.set, self.ext )
510 510 if fullfilename:
511 511 if self.__verifyFile(fullfilename, False):
512 512 fileOk_flag = True
513 513
514 514 #si no encuentra un file entonces espera y vuelve a buscar
515 515 if not(fileOk_flag):
516 516 for nFiles in range(self.nFiles+1): #busco en los siguientes self.nFiles+1 files posibles
517 517
518 518 if firstTime_flag: #si es la 1era vez entonces hace el for self.nTries veces
519 519 tries = self.nTries
520 520 else:
521 521 tries = 1 #si no es la 1era vez entonces solo lo hace una vez
522 522
523 523 for nTries in range( tries ):
524 524 if firstTime_flag:
525 525 print "\tWaiting %0.2f sec for the file \"%s\" , try %03d ..." % ( self.delay, filename, nTries+1 )
526 526 time.sleep( self.delay )
527 527 else:
528 528 print "\tSearching next \"%s%04d%03d%03d%s\" file ..." % (self.optchar, self.year, self.doy, self.set, self.ext)
529 529
530 530 fullfilename, filename = checkForRealPath( self.path, self.year, self.doy, self.set, self.ext )
531 531 if fullfilename:
532 532 if self.__verifyFile(fullfilename):
533 533 fileOk_flag = True
534 534 break
535 535
536 536 if fileOk_flag:
537 537 break
538 538
539 539 firstTime_flag = False
540 540
541 541 print "\tSkipping the file \"%s\" due to this file doesn't exist" % filename
542 542 self.set += 1
543 543
544 544 if nFiles == (self.nFiles-1): #si no encuentro el file buscado cambio de carpeta y busco en la siguiente carpeta
545 545 self.set = 0
546 546 self.doy += 1
547 547
548 548 if fileOk_flag:
549 549 self.fileSize = os.path.getsize( fullfilename )
550 550 self.filename = fullfilename
551 551 self.flagIsNewFile = 1
552 552 if self.fp != None: self.fp.close()
553 553 self.fp = open(fullfilename, 'rb')
554 554 self.flagNoMoreFiles = 0
555 555 print 'Setting the file: %s' % fullfilename
556 556 else:
557 557 self.fileSize = 0
558 558 self.filename = None
559 559 self.flagIsNewFile = 0
560 560 self.fp = None
561 561 self.flagNoMoreFiles = 1
562 562 print 'No more Files'
563 563
564 564 return fileOk_flag
565 565
566 566
567 567 def setNextFile(self):
568 568 if self.fp != None:
569 569 self.fp.close()
570 570
571 571 if self.online:
572 572 newFile = self.__setNextFileOnline()
573 573 else:
574 574 newFile = self.__setNextFileOffline()
575 575
576 576 if not(newFile):
577 577 return 0
578 578
579 579 self.__readFirstHeader()
580 580 self.nReadBlocks = 0
581 581 return 1
582 582
583 583 def __waitNewBlock(self):
584 584 """
585 585 Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma.
586 586
587 587 Si el modo de lectura es OffLine siempre retorn 0
588 588 """
589 589 if not self.online:
590 590 return 0
591 591
592 592 if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile):
593 593 return 0
594 594
595 595 currentPointer = self.fp.tell()
596 596
597 597 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
598 598
599 599 for nTries in range( self.nTries ):
600 600
601 601 self.fp.close()
602 602 self.fp = open( self.filename, 'rb' )
603 603 self.fp.seek( currentPointer )
604 604
605 605 self.fileSize = os.path.getsize( self.filename )
606 606 currentSize = self.fileSize - currentPointer
607 607
608 608 if ( currentSize >= neededSize ):
609 609 self.__rdBasicHeader()
610 610 return 1
611 611
612 612 print "\tWaiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries+1)
613 613 time.sleep( self.delay )
614 614
615 615
616 616 return 0
617 617
618 618 def __setNewBlock(self):
619 619
620 620 if self.fp == None:
621 621 return 0
622 622
623 623 if self.flagIsNewFile:
624 624 return 1
625 625
626 626 self.lastUTTime = self.basicHeaderObj.utc
627 627 currentSize = self.fileSize - self.fp.tell()
628 628 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
629 629
630 630 if (currentSize >= neededSize):
631 631 self.__rdBasicHeader()
632 632 return 1
633 633
634 634 if self.__waitNewBlock():
635 635 return 1
636 636
637 637 if not(self.setNextFile()):
638 638 return 0
639 639
640 640 deltaTime = self.basicHeaderObj.utc - self.lastUTTime #
641 641
642 642 self.flagTimeBlock = 0
643 643
644 644 if deltaTime > self.maxTimeStep:
645 645 self.flagTimeBlock = 1
646 646
647 647 return 1
648 648
649 649
650 650 def readNextBlock(self):
651 651 if not(self.__setNewBlock()):
652 652 return 0
653 653
654 654 if not(self.readBlock()):
655 655 return 0
656 656
657 657 return 1
658 658
659 659 def __rdProcessingHeader(self, fp=None):
660 660 if fp == None:
661 661 fp = self.fp
662 662
663 663 self.processingHeaderObj.read(fp)
664 664
665 665 def __rdRadarControllerHeader(self, fp=None):
666 666 if fp == None:
667 667 fp = self.fp
668 668
669 669 self.radarControllerHeaderObj.read(fp)
670 670
671 671 def __rdSystemHeader(self, fp=None):
672 672 if fp == None:
673 673 fp = self.fp
674 674
675 675 self.systemHeaderObj.read(fp)
676 676
677 677 def __rdBasicHeader(self, fp=None):
678 678 if fp == None:
679 679 fp = self.fp
680 680
681 681 self.basicHeaderObj.read(fp)
682 682
683 683
684 684 def __readFirstHeader(self):
685 685 self.__rdBasicHeader()
686 686 self.__rdSystemHeader()
687 687 self.__rdRadarControllerHeader()
688 688 self.__rdProcessingHeader()
689 689
690 690 self.firstHeaderSize = self.basicHeaderObj.size
691 691
692 692 datatype = int(numpy.log2((self.processingHeaderObj.processFlags & PROCFLAG.DATATYPE_MASK))-numpy.log2(PROCFLAG.DATATYPE_CHAR))
693 693 if datatype == 0:
694 694 datatype_str = numpy.dtype([('real','<i1'),('imag','<i1')])
695 695 elif datatype == 1:
696 696 datatype_str = numpy.dtype([('real','<i2'),('imag','<i2')])
697 697 elif datatype == 2:
698 698 datatype_str = numpy.dtype([('real','<i4'),('imag','<i4')])
699 699 elif datatype == 3:
700 700 datatype_str = numpy.dtype([('real','<i8'),('imag','<i8')])
701 701 elif datatype == 4:
702 702 datatype_str = numpy.dtype([('real','<f4'),('imag','<f4')])
703 703 elif datatype == 5:
704 704 datatype_str = numpy.dtype([('real','<f8'),('imag','<f8')])
705 705 else:
706 706 raise ValueError, 'Data type was not defined'
707 707
708 708 self.dtype = datatype_str
709 709 self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c
710 710 self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + self.firstHeaderSize + self.basicHeaderSize*(self.processingHeaderObj.dataBlocksPerFile - 1)
711 711 # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels)
712 712 # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels)
713 713 self.getBlockDimension()
714 714
715 715
716 716 def __verifyFile(self, filename, msgFlag=True):
717 717 msg = None
718 718 try:
719 719 fp = open(filename, 'rb')
720 720 currentPosition = fp.tell()
721 721 except:
722 722 if msgFlag:
723 723 print "The file %s can't be opened" % (filename)
724 724 return False
725 725
726 726 neededSize = self.processingHeaderObj.blockSize + self.firstHeaderSize
727 727
728 728 if neededSize == 0:
729 729 basicHeaderObj = BasicHeader(LOCALTIME)
730 730 systemHeaderObj = SystemHeader()
731 731 radarControllerHeaderObj = RadarControllerHeader()
732 732 processingHeaderObj = ProcessingHeader()
733 733
734 734 try:
735 735 if not( basicHeaderObj.read(fp) ): raise IOError
736 736 if not( systemHeaderObj.read(fp) ): raise IOError
737 737 if not( radarControllerHeaderObj.read(fp) ): raise IOError
738 738 if not( processingHeaderObj.read(fp) ): raise IOError
739 739 data_type = int(numpy.log2((processingHeaderObj.processFlags & PROCFLAG.DATATYPE_MASK))-numpy.log2(PROCFLAG.DATATYPE_CHAR))
740 740
741 741 neededSize = processingHeaderObj.blockSize + basicHeaderObj.size
742 742
743 743 except:
744 744 if msgFlag:
745 745 print "\tThe file %s is empty or it hasn't enough data" % filename
746 746
747 747 fp.close()
748 748 return False
749 749 else:
750 750 msg = "\tSkipping the file %s due to it hasn't enough data" %filename
751 751
752 752 fp.close()
753 753 fileSize = os.path.getsize(filename)
754 754 currentSize = fileSize - currentPosition
755 755 if currentSize < neededSize:
756 756 if msgFlag and (msg != None):
757 757 print msg #print"\tSkipping the file %s due to it hasn't enough data" %filename
758 758 return False
759 759
760 760 return True
761 761
762 762 def setup(self,
763 763 path=None,
764 764 startDate=None,
765 765 endDate=None,
766 766 startTime=datetime.time(0,0,0),
767 767 endTime=datetime.time(23,59,59),
768 768 set=0,
769 769 expLabel = "",
770 770 ext = None,
771 771 online = False,
772 772 delay = 60,
773 773 walk = True):
774 774
775 775 if path == None:
776 776 raise ValueError, "The path is not valid"
777 777
778 778 if ext == None:
779 779 ext = self.ext
780 780
781 781 if online:
782 782 print "Searching files in online mode..."
783 783
784 784 for nTries in range( self.nTries ):
785 785 fullpath, file, year, doy, set = self.__searchFilesOnLine(path=path, expLabel=expLabel, ext=ext, walk=walk)
786 786
787 787 if fullpath:
788 788 break
789 789
790 790 print '\tWaiting %0.2f sec for an valid file in %s: try %02d ...' % (self.delay, path, nTries+1)
791 791 time.sleep( self.delay )
792 792
793 793 if not(fullpath):
794 794 print "There 'isn't valied files in %s" % path
795 795 return None
796 796
797 797 self.year = year
798 798 self.doy = doy
799 799 self.set = set - 1
800 800 self.path = path
801 801
802 802 else:
803 803 print "Searching files in offline mode ..."
804 804 pathList, filenameList = self.__searchFilesOffLine(path, startDate=startDate, endDate=endDate,
805 805 startTime=startTime, endTime=endTime,
806 806 set=set, expLabel=expLabel, ext=ext,
807 807 walk=walk)
808 808
809 809 if not(pathList):
810 810 print "No *%s files into the folder %s \nfor the range: %s - %s"%(ext, path,
811 811 datetime.datetime.combine(startDate,startTime).ctime(),
812 812 datetime.datetime.combine(endDate,endTime).ctime())
813 813
814 814 sys.exit(-1)
815 815
816 816
817 817 self.fileIndex = -1
818 818 self.pathList = pathList
819 819 self.filenameList = filenameList
820 820
821 821 self.online = online
822 822 self.delay = delay
823 823 ext = ext.lower()
824 824 self.ext = ext
825 825
826 826 if not(self.setNextFile()):
827 827 if (startDate!=None) and (endDate!=None):
828 828 print "No files in range: %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime())
829 829 elif startDate != None:
830 830 print "No files in range: %s" %(datetime.datetime.combine(startDate,startTime).ctime())
831 831 else:
832 832 print "No files"
833 833
834 834 sys.exit(-1)
835 835
836 836 # self.updateDataHeader()
837 837
838 838 return self.dataOut
839 839
840 840 def getData():
841 841
842 842 raise ValueError, "This method has not been implemented"
843 843
844 844 def hasNotDataInBuffer():
845 845
846 846 raise ValueError, "This method has not been implemented"
847 847
848 848 def readBlock():
849 849
850 850 raise ValueError, "This method has not been implemented"
851 851
852 852 def isEndProcess(self):
853 853
854 854 return self.flagNoMoreFiles
855 855
856 856 def printReadBlocks(self):
857 857
858 858 print "Number of read blocks per file %04d" %self.nReadBlocks
859 859
860 860 def printTotalBlocks(self):
861 861
862 862 print "Number of read blocks %04d" %self.nTotalBlocks
863 863
864 864 def printNumberOfBlock(self):
865 865
866 866 if self.flagIsNewBlock:
867 867 print "Block No. %04d, Total blocks %04d" %(self.basicHeaderObj.dataBlock, self.nTotalBlocks)
868 868
869 869 def printInfo(self):
870 870
871 871 print self.basicHeaderObj.printInfo()
872 872 print self.systemHeaderObj.printInfo()
873 873 print self.radarControllerHeaderObj.printInfo()
874 874 print self.processingHeaderObj.printInfo()
875 875
876 876
877 877 def run(self, **kwargs):
878 878
879 879 if not(self.isConfig):
880 880
881 881 # self.dataOut = dataOut
882 882 self.setup(**kwargs)
883 883 self.isConfig = True
884 884
885 885 self.getData()
886 886
887 887 class JRODataWriter(JRODataIO, Operation):
888 888
889 889 """
890 890 Esta clase permite escribir datos a archivos procesados (.r o ,pdata). La escritura
891 891 de los datos siempre se realiza por bloques.
892 892 """
893 893
894 894 blockIndex = 0
895 895
896 896 path = None
897 897
898 898 setFile = None
899 899
900 900 profilesPerBlock = None
901 901
902 902 blocksPerFile = None
903 903
904 904 nWriteBlocks = 0
905 905
906 906 def __init__(self, dataOut=None):
907 907 raise ValueError, "Not implemented"
908 908
909 909
910 910 def hasAllDataInBuffer(self):
911 911 raise ValueError, "Not implemented"
912 912
913 913
914 914 def setBlockDimension(self):
915 915 raise ValueError, "Not implemented"
916 916
917 917
918 918 def writeBlock(self):
919 919 raise ValueError, "No implemented"
920 920
921 921
922 922 def putData(self):
923 923 raise ValueError, "No implemented"
924 924
925 925 def getDataHeader(self):
926 926 """
927 927 Obtiene una copia del First Header
928 928
929 929 Affected:
930 930
931 931 self.basicHeaderObj
932 932 self.systemHeaderObj
933 933 self.radarControllerHeaderObj
934 934 self.processingHeaderObj self.
935 935
936 936 Return:
937 937 None
938 938 """
939 939
940 940 raise ValueError, "No implemented"
941 941
942 942 def getBasicHeader(self):
943 943
944 944 self.basicHeaderObj.size = self.basicHeaderSize #bytes
945 945 self.basicHeaderObj.version = self.versionFile
946 946 self.basicHeaderObj.dataBlock = self.nTotalBlocks
947 947
948 948 utc = numpy.floor(self.dataOut.utctime)
949 949 milisecond = (self.dataOut.utctime - utc)* 1000.0
950 950
951 951 self.basicHeaderObj.utc = utc
952 952 self.basicHeaderObj.miliSecond = milisecond
953 953 self.basicHeaderObj.timeZone = 0
954 954 self.basicHeaderObj.dstFlag = 0
955 955 self.basicHeaderObj.errorCount = 0
956 956
957 957 def __writeFirstHeader(self):
958 958 """
959 959 Escribe el primer header del file es decir el Basic header y el Long header (SystemHeader, RadarControllerHeader, ProcessingHeader)
960 960
961 961 Affected:
962 962 __dataType
963 963
964 964 Return:
965 965 None
966 966 """
967 967
968 968 # CALCULAR PARAMETROS
969 969
970 970 sizeLongHeader = self.systemHeaderObj.size + self.radarControllerHeaderObj.size + self.processingHeaderObj.size
971 971 self.basicHeaderObj.size = self.basicHeaderSize + sizeLongHeader
972 972
973 973 self.basicHeaderObj.write(self.fp)
974 974 self.systemHeaderObj.write(self.fp)
975 975 self.radarControllerHeaderObj.write(self.fp)
976 976 self.processingHeaderObj.write(self.fp)
977 977
978 978 self.dtype = self.dataOut.dtype
979 979
980 980 def __setNewBlock(self):
981 981 """
982 982 Si es un nuevo file escribe el First Header caso contrario escribe solo el Basic Header
983 983
984 984 Return:
985 985 0 : si no pudo escribir nada
986 986 1 : Si escribio el Basic el First Header
987 987 """
988 988 if self.fp == None:
989 989 self.setNextFile()
990 990
991 991 if self.flagIsNewFile:
992 992 return 1
993 993
994 994 if self.blockIndex < self.processingHeaderObj.dataBlocksPerFile:
995 995 self.basicHeaderObj.write(self.fp)
996 996 return 1
997 997
998 998 if not( self.setNextFile() ):
999 999 return 0
1000 1000
1001 1001 return 1
1002 1002
1003 1003
1004 1004 def writeNextBlock(self):
1005 1005 """
1006 1006 Selecciona el bloque siguiente de datos y los escribe en un file
1007 1007
1008 1008 Return:
1009 1009 0 : Si no hizo pudo escribir el bloque de datos
1010 1010 1 : Si no pudo escribir el bloque de datos
1011 1011 """
1012 1012 if not( self.__setNewBlock() ):
1013 1013 return 0
1014 1014
1015 1015 self.writeBlock()
1016 1016
1017 1017 return 1
1018 1018
1019 1019 def setNextFile(self):
1020 1020 """
1021 1021 Determina el siguiente file que sera escrito
1022 1022
1023 1023 Affected:
1024 1024 self.filename
1025 1025 self.subfolder
1026 1026 self.fp
1027 1027 self.setFile
1028 1028 self.flagIsNewFile
1029 1029
1030 1030 Return:
1031 1031 0 : Si el archivo no puede ser escrito
1032 1032 1 : Si el archivo esta listo para ser escrito
1033 1033 """
1034 1034 ext = self.ext
1035 1035 path = self.path
1036 1036
1037 1037 if self.fp != None:
1038 1038 self.fp.close()
1039 1039
1040 1040 timeTuple = time.localtime( self.dataOut.utctime)
1041 1041 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
1042 1042
1043 1043 fullpath = os.path.join( path, subfolder )
1044 1044 if not( os.path.exists(fullpath) ):
1045 1045 os.mkdir(fullpath)
1046 1046 self.setFile = -1 #inicializo mi contador de seteo
1047 1047 else:
1048 1048 filesList = os.listdir( fullpath )
1049 1049 if len( filesList ) > 0:
1050 1050 filesList = sorted( filesList, key=str.lower )
1051 1051 filen = filesList[-1]
1052 1052 # el filename debera tener el siguiente formato
1053 1053 # 0 1234 567 89A BCDE (hex)
1054 1054 # x YYYY DDD SSS .ext
1055 1055 if isNumber( filen[8:11] ):
1056 1056 self.setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file
1057 1057 else:
1058 1058 self.setFile = -1
1059 1059 else:
1060 1060 self.setFile = -1 #inicializo mi contador de seteo
1061 1061
1062 1062 setFile = self.setFile
1063 1063 setFile += 1
1064 1064
1065 1065 file = '%s%4.4d%3.3d%3.3d%s' % (self.optchar,
1066 1066 timeTuple.tm_year,
1067 1067 timeTuple.tm_yday,
1068 1068 setFile,
1069 1069 ext )
1070 1070
1071 1071 filename = os.path.join( path, subfolder, file )
1072 1072
1073 1073 fp = open( filename,'wb' )
1074 1074
1075 1075 self.blockIndex = 0
1076 1076
1077 1077 #guardando atributos
1078 1078 self.filename = filename
1079 1079 self.subfolder = subfolder
1080 1080 self.fp = fp
1081 1081 self.setFile = setFile
1082 1082 self.flagIsNewFile = 1
1083 1083
1084 1084 self.getDataHeader()
1085 1085
1086 1086 print 'Writing the file: %s'%self.filename
1087 1087
1088 1088 self.__writeFirstHeader()
1089 1089
1090 1090 return 1
1091 1091
1092 1092 def setup(self, dataOut, path, blocksPerFile, profilesPerBlock=None, set=0, ext=None):
1093 1093 """
1094 1094 Setea el tipo de formato en la cual sera guardada la data y escribe el First Header
1095 1095
1096 1096 Inputs:
1097 1097 path : el path destino en el cual se escribiran los files a crear
1098 1098 format : formato en el cual sera salvado un file
1099 1099 set : el setebo del file
1100 1100
1101 1101 Return:
1102 1102 0 : Si no realizo un buen seteo
1103 1103 1 : Si realizo un buen seteo
1104 1104 """
1105 1105
1106 1106 if ext == None:
1107 1107 ext = self.ext
1108 1108
1109 1109 ext = ext.lower()
1110 1110
1111 1111 self.ext = ext
1112 1112
1113 1113 self.path = path
1114 1114
1115 1115 self.setFile = set - 1
1116 1116
1117 1117 self.blocksPerFile = blocksPerFile
1118 1118
1119 1119 self.profilesPerBlock = profilesPerBlock
1120 1120
1121 1121 self.dataOut = dataOut
1122 1122
1123 1123 if not(self.setNextFile()):
1124 1124 print "There isn't a next file"
1125 1125 return 0
1126 1126
1127 1127 self.setBlockDimension()
1128 1128
1129 1129 return 1
1130 1130
1131 1131 def run(self, dataOut, **kwargs):
1132 1132
1133 1133 if not(self.isConfig):
1134 1134
1135 1135 self.setup(dataOut, **kwargs)
1136 1136 self.isConfig = True
1137 1137
1138 1138 self.putData()
1139 1139
1140 1140 class VoltageReader(JRODataReader):
1141 1141 """
1142 1142 Esta clase permite leer datos de voltage desde archivos en formato rawdata (.r). La lectura
1143 1143 de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones:
1144 1144 perfiles*alturas*canales) son almacenados en la variable "buffer".
1145 1145
1146 1146 perfiles * alturas * canales
1147 1147
1148 1148 Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
1149 1149 RadarControllerHeader y Voltage. Los tres primeros se usan para almacenar informacion de la
1150 1150 cabecera de datos (metadata), y el cuarto (Voltage) para obtener y almacenar un perfil de
1151 1151 datos desde el "buffer" cada vez que se ejecute el metodo "getData".
1152 1152
1153 1153 Example:
1154 1154
1155 1155 dpath = "/home/myuser/data"
1156 1156
1157 1157 startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0)
1158 1158
1159 1159 endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0)
1160 1160
1161 1161 readerObj = VoltageReader()
1162 1162
1163 1163 readerObj.setup(dpath, startTime, endTime)
1164 1164
1165 1165 while(True):
1166 1166
1167 1167 #to get one profile
1168 1168 profile = readerObj.getData()
1169 1169
1170 1170 #print the profile
1171 1171 print profile
1172 1172
1173 1173 #If you want to see all datablock
1174 1174 print readerObj.datablock
1175 1175
1176 1176 if readerObj.flagNoMoreFiles:
1177 1177 break
1178 1178
1179 1179 """
1180 1180
1181 1181 ext = ".r"
1182 1182
1183 1183 optchar = "D"
1184 1184 dataOut = None
1185 1185
1186 1186
1187 1187 def __init__(self):
1188 1188 """
1189 1189 Inicializador de la clase VoltageReader para la lectura de datos de voltage.
1190 1190
1191 1191 Input:
1192 1192 dataOut : Objeto de la clase Voltage. Este objeto sera utilizado para
1193 1193 almacenar un perfil de datos cada vez que se haga un requerimiento
1194 1194 (getData). El perfil sera obtenido a partir del buffer de datos,
1195 1195 si el buffer esta vacio se hara un nuevo proceso de lectura de un
1196 1196 bloque de datos.
1197 1197 Si este parametro no es pasado se creara uno internamente.
1198 1198
1199 1199 Variables afectadas:
1200 1200 self.dataOut
1201 1201
1202 1202 Return:
1203 1203 None
1204 1204 """
1205 1205
1206 1206 self.isConfig = False
1207 1207
1208 1208 self.datablock = None
1209 1209
1210 1210 self.utc = 0
1211 1211
1212 1212 self.ext = ".r"
1213 1213
1214 1214 self.optchar = "D"
1215 1215
1216 1216 self.basicHeaderObj = BasicHeader(LOCALTIME)
1217 1217
1218 1218 self.systemHeaderObj = SystemHeader()
1219 1219
1220 1220 self.radarControllerHeaderObj = RadarControllerHeader()
1221 1221
1222 1222 self.processingHeaderObj = ProcessingHeader()
1223 1223
1224 1224 self.online = 0
1225 1225
1226 1226 self.fp = None
1227 1227
1228 1228 self.idFile = None
1229 1229
1230 1230 self.dtype = None
1231 1231
1232 1232 self.fileSizeByHeader = None
1233 1233
1234 1234 self.filenameList = []
1235 1235
1236 1236 self.filename = None
1237 1237
1238 1238 self.fileSize = None
1239 1239
1240 1240 self.firstHeaderSize = 0
1241 1241
1242 1242 self.basicHeaderSize = 24
1243 1243
1244 1244 self.pathList = []
1245 1245
1246 1246 self.filenameList = []
1247 1247
1248 1248 self.lastUTTime = 0
1249 1249
1250 1250 self.maxTimeStep = 30
1251 1251
1252 1252 self.flagNoMoreFiles = 0
1253 1253
1254 1254 self.set = 0
1255 1255
1256 1256 self.path = None
1257 1257
1258 1258 self.profileIndex = 9999
1259 1259
1260 1260 self.delay = 3 #seconds
1261 1261
1262 1262 self.nTries = 3 #quantity tries
1263 1263
1264 1264 self.nFiles = 3 #number of files for searching
1265 1265
1266 1266 self.nReadBlocks = 0
1267 1267
1268 1268 self.flagIsNewFile = 1
1269 1269
1270 1270 self.ippSeconds = 0
1271 1271
1272 1272 self.flagTimeBlock = 0
1273 1273
1274 1274 self.flagIsNewBlock = 0
1275 1275
1276 1276 self.nTotalBlocks = 0
1277 1277
1278 1278 self.blocksize = 0
1279 1279
1280 1280 self.dataOut = self.createObjByDefault()
1281 1281
1282 1282 def createObjByDefault(self):
1283 1283
1284 1284 dataObj = Voltage()
1285 1285
1286 1286 return dataObj
1287 1287
1288 1288 def __hasNotDataInBuffer(self):
1289 1289 if self.profileIndex >= self.processingHeaderObj.profilesPerBlock:
1290 1290 return 1
1291 1291 return 0
1292 1292
1293 1293
1294 1294 def getBlockDimension(self):
1295 1295 """
1296 1296 Obtiene la cantidad de puntos a leer por cada bloque de datos
1297 1297
1298 1298 Affected:
1299 1299 self.blocksize
1300 1300
1301 1301 Return:
1302 1302 None
1303 1303 """
1304 1304 pts2read = self.processingHeaderObj.profilesPerBlock * self.processingHeaderObj.nHeights * self.systemHeaderObj.nChannels
1305 1305 self.blocksize = pts2read
1306 1306
1307 1307
1308 1308 def readBlock(self):
1309 1309 """
1310 1310 readBlock lee el bloque de datos desde la posicion actual del puntero del archivo
1311 1311 (self.fp) y actualiza todos los parametros relacionados al bloque de datos
1312 1312 (metadata + data). La data leida es almacenada en el buffer y el contador del buffer
1313 1313 es seteado a 0
1314 1314
1315 1315 Inputs:
1316 1316 None
1317 1317
1318 1318 Return:
1319 1319 None
1320 1320
1321 1321 Affected:
1322 1322 self.profileIndex
1323 1323 self.datablock
1324 1324 self.flagIsNewFile
1325 1325 self.flagIsNewBlock
1326 1326 self.nTotalBlocks
1327 1327
1328 1328 Exceptions:
1329 1329 Si un bloque leido no es un bloque valido
1330 1330 """
1331 1331
1332 1332 junk = numpy.fromfile( self.fp, self.dtype, self.blocksize )
1333 1333
1334 1334 try:
1335 1335 junk = junk.reshape( (self.processingHeaderObj.profilesPerBlock, self.processingHeaderObj.nHeights, self.systemHeaderObj.nChannels) )
1336 1336 except:
1337 1337 print "The read block (%3d) has not enough data" %self.nReadBlocks
1338 1338 return 0
1339 1339
1340 1340 junk = numpy.transpose(junk, (2,0,1))
1341 1341 self.datablock = junk['real'] + junk['imag']*1j
1342 1342
1343 1343 self.profileIndex = 0
1344 1344
1345 1345 self.flagIsNewFile = 0
1346 1346 self.flagIsNewBlock = 1
1347 1347
1348 1348 self.nTotalBlocks += 1
1349 1349 self.nReadBlocks += 1
1350 1350
1351 1351 return 1
1352 1352
1353 1353
1354 1354 def getData(self):
1355 1355 """
1356 1356 getData obtiene una unidad de datos del buffer de lectura y la copia a la clase "Voltage"
1357 1357 con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de
1358 1358 lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock"
1359 1359
1360 1360 Ademas incrementa el contador del buffer en 1.
1361 1361
1362 1362 Return:
1363 1363 data : retorna un perfil de voltages (alturas * canales) copiados desde el
1364 1364 buffer. Si no hay mas archivos a leer retorna None.
1365 1365
1366 1366 Variables afectadas:
1367 1367 self.dataOut
1368 1368 self.profileIndex
1369 1369
1370 1370 Affected:
1371 1371 self.dataOut
1372 1372 self.profileIndex
1373 1373 self.flagTimeBlock
1374 1374 self.flagIsNewBlock
1375 1375 """
1376 1376
1377 1377 if self.flagNoMoreFiles:
1378 1378 self.dataOut.flagNoData = True
1379 1379 print 'Process finished'
1380 1380 return 0
1381 1381
1382 1382 self.flagTimeBlock = 0
1383 1383 self.flagIsNewBlock = 0
1384 1384
1385 1385 if self.__hasNotDataInBuffer():
1386 1386
1387 1387 if not( self.readNextBlock() ):
1388 1388 return 0
1389 1389
1390 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) #self.dtype
1390 self.dataOut.dtype = numpy.dtype([('real','<f8'),('imag','<f8')]) #self.dtype
1391 1391
1392 1392 self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock
1393 1393
1394 1394 xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight
1395 1395
1396 1396 self.dataOut.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight)
1397 1397
1398 1398 self.dataOut.channelList = range(self.systemHeaderObj.nChannels)
1399 1399
1400 1400 self.dataOut.flagTimeBlock = self.flagTimeBlock
1401 1401
1402 1402 self.dataOut.ippSeconds = self.ippSeconds
1403 1403
1404 1404 self.dataOut.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt
1405 1405
1406 1406 self.dataOut.nCohInt = self.processingHeaderObj.nCohInt
1407 1407
1408 1408 self.dataOut.flagShiftFFT = False
1409 1409
1410 1410 if self.radarControllerHeaderObj.code != None:
1411 1411
1412 1412 self.dataOut.nCode = self.radarControllerHeaderObj.nCode
1413 1413
1414 1414 self.dataOut.nBaud = self.radarControllerHeaderObj.nBaud
1415 1415
1416 1416 self.dataOut.code = self.radarControllerHeaderObj.code
1417 1417
1418 1418 self.dataOut.systemHeaderObj = self.systemHeaderObj.copy()
1419 1419
1420 1420 self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
1421 1421
1422 1422 self.dataOut.flagDecodeData = False #asumo q la data no esta decodificada
1423 1423
1424 1424 self.dataOut.flagDeflipData = False #asumo q la data no esta sin flip
1425 1425
1426 1426 self.dataOut.flagShiftFFT = False
1427 1427
1428 1428
1429 1429 # self.updateDataHeader()
1430 1430
1431 1431 #data es un numpy array de 3 dmensiones (perfiles, alturas y canales)
1432 1432
1433 1433 if self.datablock == None:
1434 1434 self.dataOut.flagNoData = True
1435 1435 return 0
1436 1436
1437 1437 self.dataOut.data = self.datablock[:,self.profileIndex,:]
1438 1438
1439 1439 self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/1000. + self.profileIndex * self.ippSeconds
1440 1440
1441 1441 self.profileIndex += 1
1442 1442
1443 1443 self.dataOut.flagNoData = False
1444 1444
1445 1445 # print self.profileIndex, self.dataOut.utctime
1446 1446 # if self.profileIndex == 800:
1447 1447 # a=1
1448 1448
1449 1449
1450 1450 return self.dataOut.data
1451 1451
1452 1452
1453 1453 class VoltageWriter(JRODataWriter):
1454 1454 """
1455 1455 Esta clase permite escribir datos de voltajes a archivos procesados (.r). La escritura
1456 1456 de los datos siempre se realiza por bloques.
1457 1457 """
1458 1458
1459 1459 ext = ".r"
1460 1460
1461 1461 optchar = "D"
1462 1462
1463 1463 shapeBuffer = None
1464 1464
1465 1465
1466 1466 def __init__(self):
1467 1467 """
1468 1468 Inicializador de la clase VoltageWriter para la escritura de datos de espectros.
1469 1469
1470 1470 Affected:
1471 1471 self.dataOut
1472 1472
1473 1473 Return: None
1474 1474 """
1475 1475
1476 1476 self.nTotalBlocks = 0
1477 1477
1478 1478 self.profileIndex = 0
1479 1479
1480 1480 self.isConfig = False
1481 1481
1482 1482 self.fp = None
1483 1483
1484 1484 self.flagIsNewFile = 1
1485 1485
1486 1486 self.nTotalBlocks = 0
1487 1487
1488 1488 self.flagIsNewBlock = 0
1489 1489
1490 1490 self.setFile = None
1491 1491
1492 1492 self.dtype = None
1493 1493
1494 1494 self.path = None
1495 1495
1496 1496 self.filename = None
1497 1497
1498 1498 self.basicHeaderObj = BasicHeader(LOCALTIME)
1499 1499
1500 1500 self.systemHeaderObj = SystemHeader()
1501 1501
1502 1502 self.radarControllerHeaderObj = RadarControllerHeader()
1503 1503
1504 1504 self.processingHeaderObj = ProcessingHeader()
1505 1505
1506 1506 def hasAllDataInBuffer(self):
1507 1507 if self.profileIndex >= self.processingHeaderObj.profilesPerBlock:
1508 1508 return 1
1509 1509 return 0
1510 1510
1511 1511
1512 1512 def setBlockDimension(self):
1513 1513 """
1514 1514 Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
1515 1515
1516 1516 Affected:
1517 1517 self.shape_spc_Buffer
1518 1518 self.shape_cspc_Buffer
1519 1519 self.shape_dc_Buffer
1520 1520
1521 1521 Return: None
1522 1522 """
1523 1523 self.shapeBuffer = (self.processingHeaderObj.profilesPerBlock,
1524 1524 self.processingHeaderObj.nHeights,
1525 1525 self.systemHeaderObj.nChannels)
1526 1526
1527 1527 self.datablock = numpy.zeros((self.systemHeaderObj.nChannels,
1528 1528 self.processingHeaderObj.profilesPerBlock,
1529 1529 self.processingHeaderObj.nHeights),
1530 1530 dtype=numpy.dtype('complex'))
1531 1531
1532 1532
1533 1533 def writeBlock(self):
1534 1534 """
1535 1535 Escribe el buffer en el file designado
1536 1536
1537 1537 Affected:
1538 1538 self.profileIndex
1539 1539 self.flagIsNewFile
1540 1540 self.flagIsNewBlock
1541 1541 self.nTotalBlocks
1542 1542 self.blockIndex
1543 1543
1544 1544 Return: None
1545 1545 """
1546 1546 data = numpy.zeros( self.shapeBuffer, self.dtype )
1547 1547
1548 1548 junk = numpy.transpose(self.datablock, (1,2,0))
1549 1549
1550 1550 data['real'] = junk.real
1551 1551 data['imag'] = junk.imag
1552 1552
1553 1553 data = data.reshape( (-1) )
1554 1554
1555 1555 data.tofile( self.fp )
1556 1556
1557 1557 self.datablock.fill(0)
1558 1558
1559 1559 self.profileIndex = 0
1560 1560 self.flagIsNewFile = 0
1561 1561 self.flagIsNewBlock = 1
1562 1562
1563 1563 self.blockIndex += 1
1564 1564 self.nTotalBlocks += 1
1565 1565
1566 1566 def putData(self):
1567 1567 """
1568 1568 Setea un bloque de datos y luego los escribe en un file
1569 1569
1570 1570 Affected:
1571 1571 self.flagIsNewBlock
1572 1572 self.profileIndex
1573 1573
1574 1574 Return:
1575 1575 0 : Si no hay data o no hay mas files que puedan escribirse
1576 1576 1 : Si se escribio la data de un bloque en un file
1577 1577 """
1578 1578 if self.dataOut.flagNoData:
1579 1579 return 0
1580 1580
1581 1581 self.flagIsNewBlock = 0
1582 1582
1583 1583 if self.dataOut.flagTimeBlock:
1584 1584
1585 1585 self.datablock.fill(0)
1586 1586 self.profileIndex = 0
1587 1587 self.setNextFile()
1588 1588
1589 1589 if self.profileIndex == 0:
1590 1590 self.getBasicHeader()
1591 1591
1592 1592 self.datablock[:,self.profileIndex,:] = self.dataOut.data
1593 1593
1594 1594 self.profileIndex += 1
1595 1595
1596 1596 if self.hasAllDataInBuffer():
1597 1597 #if self.flagIsNewFile:
1598 1598 self.writeNextBlock()
1599 1599 # self.getDataHeader()
1600 1600
1601 1601 return 1
1602 1602
1603 1603 def __getProcessFlags(self):
1604 1604
1605 1605 processFlags = 0
1606 1606
1607 1607 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
1608 1608 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
1609 1609 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
1610 1610 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
1611 1611 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
1612 1612 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
1613 1613
1614 1614 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
1615 1615
1616 1616
1617 1617
1618 1618 datatypeValueList = [PROCFLAG.DATATYPE_CHAR,
1619 1619 PROCFLAG.DATATYPE_SHORT,
1620 1620 PROCFLAG.DATATYPE_LONG,
1621 1621 PROCFLAG.DATATYPE_INT64,
1622 1622 PROCFLAG.DATATYPE_FLOAT,
1623 1623 PROCFLAG.DATATYPE_DOUBLE]
1624 1624
1625 1625
1626 1626 for index in range(len(dtypeList)):
1627 1627 if self.dataOut.dtype == dtypeList[index]:
1628 1628 dtypeValue = datatypeValueList[index]
1629 1629 break
1630 1630
1631 1631 processFlags += dtypeValue
1632 1632
1633 1633 if self.dataOut.flagDecodeData:
1634 1634 processFlags += PROCFLAG.DECODE_DATA
1635 1635
1636 1636 if self.dataOut.flagDeflipData:
1637 1637 processFlags += PROCFLAG.DEFLIP_DATA
1638 1638
1639 1639 if self.dataOut.code != None:
1640 1640 processFlags += PROCFLAG.DEFINE_PROCESS_CODE
1641 1641
1642 1642 if self.dataOut.nCohInt > 1:
1643 1643 processFlags += PROCFLAG.COHERENT_INTEGRATION
1644 1644
1645 1645 return processFlags
1646 1646
1647 1647
1648 1648 def __getBlockSize(self):
1649 1649 '''
1650 1650 Este metodos determina el cantidad de bytes para un bloque de datos de tipo Voltage
1651 1651 '''
1652 1652
1653 1653 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
1654 1654 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
1655 1655 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
1656 1656 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
1657 1657 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
1658 1658 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
1659 1659
1660 1660 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
1661 1661 datatypeValueList = [1,2,4,8,4,8]
1662 1662 for index in range(len(dtypeList)):
1663 1663 if self.dataOut.dtype == dtypeList[index]:
1664 1664 datatypeValue = datatypeValueList[index]
1665 1665 break
1666 1666
1667 1667 blocksize = int(self.dataOut.nHeights * self.dataOut.nChannels * self.dataOut.nProfiles * datatypeValue * 2)
1668 1668
1669 1669 return blocksize
1670 1670
1671 1671 def getDataHeader(self):
1672 1672
1673 1673 """
1674 1674 Obtiene una copia del First Header
1675 1675
1676 1676 Affected:
1677 1677 self.systemHeaderObj
1678 1678 self.radarControllerHeaderObj
1679 1679 self.dtype
1680 1680
1681 1681 Return:
1682 1682 None
1683 1683 """
1684 1684
1685 1685 self.systemHeaderObj = self.dataOut.systemHeaderObj.copy()
1686 1686 self.systemHeaderObj.nChannels = self.dataOut.nChannels
1687 1687 self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy()
1688 1688
1689 1689 self.getBasicHeader()
1690 1690
1691 1691 processingHeaderSize = 40 # bytes
1692 1692 self.processingHeaderObj.dtype = 0 # Voltage
1693 1693 self.processingHeaderObj.blockSize = self.__getBlockSize()
1694 1694 self.processingHeaderObj.profilesPerBlock = self.profilesPerBlock
1695 1695 self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile
1696 1696 self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOut.processingHeaderObj.nWindows
1697 1697 self.processingHeaderObj.processFlags = self.__getProcessFlags()
1698 1698 self.processingHeaderObj.nCohInt = self.dataOut.nCohInt
1699 1699 self.processingHeaderObj.nIncohInt = 1 # Cuando la data de origen es de tipo Voltage
1700 1700 self.processingHeaderObj.totalSpectra = 0 # Cuando la data de origen es de tipo Voltage
1701 1701
1702 1702 if self.dataOut.code != None:
1703 1703 self.processingHeaderObj.code = self.dataOut.code
1704 1704 self.processingHeaderObj.nCode = self.dataOut.nCode
1705 1705 self.processingHeaderObj.nBaud = self.dataOut.nBaud
1706 1706 codesize = int(8 + 4 * self.dataOut.nCode * self.dataOut.nBaud)
1707 1707 processingHeaderSize += codesize
1708 1708
1709 1709 if self.processingHeaderObj.nWindows != 0:
1710 1710 self.processingHeaderObj.firstHeight = self.dataOut.heightList[0]
1711 1711 self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
1712 1712 self.processingHeaderObj.nHeights = self.dataOut.nHeights
1713 1713 self.processingHeaderObj.samplesWin = self.dataOut.nHeights
1714 1714 processingHeaderSize += 12
1715 1715
1716 1716 self.processingHeaderObj.size = processingHeaderSize
1717 1717
1718 1718 class SpectraReader(JRODataReader):
1719 1719 """
1720 1720 Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura
1721 1721 de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones)
1722 1722 son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel.
1723 1723
1724 1724 paresCanalesIguales * alturas * perfiles (Self Spectra)
1725 1725 paresCanalesDiferentes * alturas * perfiles (Cross Spectra)
1726 1726 canales * alturas (DC Channels)
1727 1727
1728 1728 Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
1729 1729 RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la
1730 1730 cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de
1731 1731 datos desde el "buffer" cada vez que se ejecute el metodo "getData".
1732 1732
1733 1733 Example:
1734 1734 dpath = "/home/myuser/data"
1735 1735
1736 1736 startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0)
1737 1737
1738 1738 endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0)
1739 1739
1740 1740 readerObj = SpectraReader()
1741 1741
1742 1742 readerObj.setup(dpath, startTime, endTime)
1743 1743
1744 1744 while(True):
1745 1745
1746 1746 readerObj.getData()
1747 1747
1748 1748 print readerObj.data_spc
1749 1749
1750 1750 print readerObj.data_cspc
1751 1751
1752 1752 print readerObj.data_dc
1753 1753
1754 1754 if readerObj.flagNoMoreFiles:
1755 1755 break
1756 1756
1757 1757 """
1758 1758
1759 1759 pts2read_SelfSpectra = 0
1760 1760
1761 1761 pts2read_CrossSpectra = 0
1762 1762
1763 1763 pts2read_DCchannels = 0
1764 1764
1765 1765 ext = ".pdata"
1766 1766
1767 1767 optchar = "P"
1768 1768
1769 1769 dataOut = None
1770 1770
1771 1771 nRdChannels = None
1772 1772
1773 1773 nRdPairs = None
1774 1774
1775 1775 rdPairList = []
1776 1776
1777 1777
1778 1778 def __init__(self):
1779 1779 """
1780 1780 Inicializador de la clase SpectraReader para la lectura de datos de espectros.
1781 1781
1782 1782 Inputs:
1783 1783 dataOut : Objeto de la clase Spectra. Este objeto sera utilizado para
1784 1784 almacenar un perfil de datos cada vez que se haga un requerimiento
1785 1785 (getData). El perfil sera obtenido a partir del buffer de datos,
1786 1786 si el buffer esta vacio se hara un nuevo proceso de lectura de un
1787 1787 bloque de datos.
1788 1788 Si este parametro no es pasado se creara uno internamente.
1789 1789
1790 1790 Affected:
1791 1791 self.dataOut
1792 1792
1793 1793 Return : None
1794 1794 """
1795 1795
1796 1796 self.isConfig = False
1797 1797
1798 1798 self.pts2read_SelfSpectra = 0
1799 1799
1800 1800 self.pts2read_CrossSpectra = 0
1801 1801
1802 1802 self.pts2read_DCchannels = 0
1803 1803
1804 1804 self.datablock = None
1805 1805
1806 1806 self.utc = None
1807 1807
1808 1808 self.ext = ".pdata"
1809 1809
1810 1810 self.optchar = "P"
1811 1811
1812 1812 self.basicHeaderObj = BasicHeader(LOCALTIME)
1813 1813
1814 1814 self.systemHeaderObj = SystemHeader()
1815 1815
1816 1816 self.radarControllerHeaderObj = RadarControllerHeader()
1817 1817
1818 1818 self.processingHeaderObj = ProcessingHeader()
1819 1819
1820 1820 self.online = 0
1821 1821
1822 1822 self.fp = None
1823 1823
1824 1824 self.idFile = None
1825 1825
1826 1826 self.dtype = None
1827 1827
1828 1828 self.fileSizeByHeader = None
1829 1829
1830 1830 self.filenameList = []
1831 1831
1832 1832 self.filename = None
1833 1833
1834 1834 self.fileSize = None
1835 1835
1836 1836 self.firstHeaderSize = 0
1837 1837
1838 1838 self.basicHeaderSize = 24
1839 1839
1840 1840 self.pathList = []
1841 1841
1842 1842 self.lastUTTime = 0
1843 1843
1844 1844 self.maxTimeStep = 30
1845 1845
1846 1846 self.flagNoMoreFiles = 0
1847 1847
1848 1848 self.set = 0
1849 1849
1850 1850 self.path = None
1851 1851
1852 1852 self.delay = 3 #seconds
1853 1853
1854 1854 self.nTries = 3 #quantity tries
1855 1855
1856 1856 self.nFiles = 3 #number of files for searching
1857 1857
1858 1858 self.nReadBlocks = 0
1859 1859
1860 1860 self.flagIsNewFile = 1
1861 1861
1862 1862 self.ippSeconds = 0
1863 1863
1864 1864 self.flagTimeBlock = 0
1865 1865
1866 1866 self.flagIsNewBlock = 0
1867 1867
1868 1868 self.nTotalBlocks = 0
1869 1869
1870 1870 self.blocksize = 0
1871 1871
1872 1872 self.dataOut = self.createObjByDefault()
1873 1873
1874 1874
1875 1875 def createObjByDefault(self):
1876 1876
1877 1877 dataObj = Spectra()
1878 1878
1879 1879 return dataObj
1880 1880
1881 1881 def __hasNotDataInBuffer(self):
1882 1882 return 1
1883 1883
1884 1884
1885 1885 def getBlockDimension(self):
1886 1886 """
1887 1887 Obtiene la cantidad de puntos a leer por cada bloque de datos
1888 1888
1889 1889 Affected:
1890 1890 self.nRdChannels
1891 1891 self.nRdPairs
1892 1892 self.pts2read_SelfSpectra
1893 1893 self.pts2read_CrossSpectra
1894 1894 self.pts2read_DCchannels
1895 1895 self.blocksize
1896 1896 self.dataOut.nChannels
1897 1897 self.dataOut.nPairs
1898 1898
1899 1899 Return:
1900 1900 None
1901 1901 """
1902 1902 self.nRdChannels = 0
1903 1903 self.nRdPairs = 0
1904 1904 self.rdPairList = []
1905 1905
1906 1906 for i in range(0, self.processingHeaderObj.totalSpectra*2, 2):
1907 1907 if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]:
1908 1908 self.nRdChannels = self.nRdChannels + 1 #par de canales iguales
1909 1909 else:
1910 1910 self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes
1911 1911 self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1]))
1912 1912
1913 1913 pts2read = self.processingHeaderObj.nHeights * self.processingHeaderObj.profilesPerBlock
1914 1914
1915 1915 self.pts2read_SelfSpectra = int(self.nRdChannels * pts2read)
1916 1916 self.blocksize = self.pts2read_SelfSpectra
1917 1917
1918 1918 if self.processingHeaderObj.flag_cspc:
1919 1919 self.pts2read_CrossSpectra = int(self.nRdPairs * pts2read)
1920 1920 self.blocksize += self.pts2read_CrossSpectra
1921 1921
1922 1922 if self.processingHeaderObj.flag_dc:
1923 1923 self.pts2read_DCchannels = int(self.systemHeaderObj.nChannels * self.processingHeaderObj.nHeights)
1924 1924 self.blocksize += self.pts2read_DCchannels
1925 1925
1926 1926 # self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels
1927 1927
1928 1928
1929 1929 def readBlock(self):
1930 1930 """
1931 1931 Lee el bloque de datos desde la posicion actual del puntero del archivo
1932 1932 (self.fp) y actualiza todos los parametros relacionados al bloque de datos
1933 1933 (metadata + data). La data leida es almacenada en el buffer y el contador del buffer
1934 1934 es seteado a 0
1935 1935
1936 1936 Return: None
1937 1937
1938 1938 Variables afectadas:
1939 1939
1940 1940 self.flagIsNewFile
1941 1941 self.flagIsNewBlock
1942 1942 self.nTotalBlocks
1943 1943 self.data_spc
1944 1944 self.data_cspc
1945 1945 self.data_dc
1946 1946
1947 1947 Exceptions:
1948 1948 Si un bloque leido no es un bloque valido
1949 1949 """
1950 1950 blockOk_flag = False
1951 1951 fpointer = self.fp.tell()
1952 1952
1953 1953 spc = numpy.fromfile( self.fp, self.dtype[0], self.pts2read_SelfSpectra )
1954 1954 spc = spc.reshape( (self.nRdChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
1955 1955
1956 1956 if self.processingHeaderObj.flag_cspc:
1957 1957 cspc = numpy.fromfile( self.fp, self.dtype, self.pts2read_CrossSpectra )
1958 1958 cspc = cspc.reshape( (self.nRdPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
1959 1959
1960 1960 if self.processingHeaderObj.flag_dc:
1961 1961 dc = numpy.fromfile( self.fp, self.dtype, self.pts2read_DCchannels ) #int(self.processingHeaderObj.nHeights*self.systemHeaderObj.nChannels) )
1962 1962 dc = dc.reshape( (self.systemHeaderObj.nChannels, self.processingHeaderObj.nHeights) ) #transforma a un arreglo 2D
1963 1963
1964 1964
1965 1965 if not(self.processingHeaderObj.shif_fft):
1966 1966 #desplaza a la derecha en el eje 2 determinadas posiciones
1967 1967 shift = int(self.processingHeaderObj.profilesPerBlock/2)
1968 1968 spc = numpy.roll( spc, shift , axis=2 )
1969 1969
1970 1970 if self.processingHeaderObj.flag_cspc:
1971 1971 #desplaza a la derecha en el eje 2 determinadas posiciones
1972 1972 cspc = numpy.roll( cspc, shift, axis=2 )
1973 1973
1974 1974 # self.processingHeaderObj.shif_fft = True
1975 1975
1976 1976 spc = numpy.transpose( spc, (0,2,1) )
1977 1977 self.data_spc = spc
1978 1978
1979 1979 if self.processingHeaderObj.flag_cspc:
1980 1980 cspc = numpy.transpose( cspc, (0,2,1) )
1981 1981 self.data_cspc = cspc['real'] + cspc['imag']*1j
1982 1982 else:
1983 1983 self.data_cspc = None
1984 1984
1985 1985 if self.processingHeaderObj.flag_dc:
1986 1986 self.data_dc = dc['real'] + dc['imag']*1j
1987 1987 else:
1988 1988 self.data_dc = None
1989 1989
1990 1990 self.flagIsNewFile = 0
1991 1991 self.flagIsNewBlock = 1
1992 1992
1993 1993 self.nTotalBlocks += 1
1994 1994 self.nReadBlocks += 1
1995 1995
1996 1996 return 1
1997 1997
1998 1998
1999 1999 def getData(self):
2000 2000 """
2001 2001 Copia el buffer de lectura a la clase "Spectra",
2002 2002 con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de
2003 2003 lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock"
2004 2004
2005 2005 Return:
2006 2006 0 : Si no hay mas archivos disponibles
2007 2007 1 : Si hizo una buena copia del buffer
2008 2008
2009 2009 Affected:
2010 2010 self.dataOut
2011 2011
2012 2012 self.flagTimeBlock
2013 2013 self.flagIsNewBlock
2014 2014 """
2015 2015
2016 2016 if self.flagNoMoreFiles:
2017 2017 self.dataOut.flagNoData = True
2018 2018 print 'Process finished'
2019 2019 return 0
2020 2020
2021 2021 self.flagTimeBlock = 0
2022 2022 self.flagIsNewBlock = 0
2023 2023
2024 2024 if self.__hasNotDataInBuffer():
2025 2025
2026 2026 if not( self.readNextBlock() ):
2027 2027 self.dataOut.flagNoData = True
2028 2028 return 0
2029 2029
2030 2030 # self.updateDataHeader()
2031 2031
2032 2032 #data es un numpy array de 3 dmensiones (perfiles, alturas y canales)
2033 2033
2034 2034 if self.data_dc == None:
2035 2035 self.dataOut.flagNoData = True
2036 2036 return 0
2037 2037
2038 2038 self.dataOut.data_spc = self.data_spc
2039 2039
2040 2040 self.dataOut.data_cspc = self.data_cspc
2041 2041
2042 2042 self.dataOut.data_dc = self.data_dc
2043 2043
2044 2044 self.dataOut.flagTimeBlock = self.flagTimeBlock
2045 2045
2046 2046 self.dataOut.flagNoData = False
2047 2047
2048 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])#self.dtype
2048 self.dataOut.dtype = numpy.dtype([('real','<f8'),('imag','<f8')])#self.dtype
2049 2049
2050 2050 # self.dataOut.nChannels = self.nRdChannels
2051 2051
2052 2052 self.dataOut.nPairs = self.nRdPairs
2053 2053
2054 2054 self.dataOut.pairsList = self.rdPairList
2055 2055
2056 2056 # self.dataOut.nHeights = self.processingHeaderObj.nHeights
2057 2057
2058 2058 self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock
2059 2059
2060 2060 self.dataOut.nFFTPoints = self.processingHeaderObj.profilesPerBlock
2061 2061
2062 2062 self.dataOut.nCohInt = self.processingHeaderObj.nCohInt
2063 2063
2064 2064 self.dataOut.nIncohInt = self.processingHeaderObj.nIncohInt
2065 2065
2066 2066 xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight
2067 2067
2068 2068 self.dataOut.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight)
2069 2069
2070 2070 self.dataOut.channelList = range(self.systemHeaderObj.nChannels)
2071 2071
2072 2072 # self.dataOut.channelIndexList = range(self.systemHeaderObj.nChannels)
2073 2073
2074 2074 self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/1000.#+ self.profileIndex * self.ippSeconds
2075 2075
2076 2076 self.dataOut.ippSeconds = self.ippSeconds
2077 2077
2078 2078 self.dataOut.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt * self.processingHeaderObj.nIncohInt * self.dataOut.nFFTPoints
2079 2079
2080 2080 # self.profileIndex += 1
2081 2081
2082 2082 self.dataOut.systemHeaderObj = self.systemHeaderObj.copy()
2083 2083
2084 2084 self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
2085 2085
2086 2086 self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft
2087 2087
2088 2088 self.dataOut.flagDecodeData = False #asumo q la data no esta decodificada
2089 2089
2090 2090 self.dataOut.flagDeflipData = True #asumo q la data no esta sin flip
2091 2091
2092 2092 if self.processingHeaderObj.code != None:
2093 2093
2094 2094 self.dataOut.nCode = self.processingHeaderObj.nCode
2095 2095
2096 2096 self.dataOut.nBaud = self.processingHeaderObj.nBaud
2097 2097
2098 2098 self.dataOut.code = self.processingHeaderObj.code
2099 2099
2100 2100 self.dataOut.flagDecodeData = True
2101 2101
2102 2102 return self.dataOut.data_spc
2103 2103
2104 2104
2105 2105 class SpectraWriter(JRODataWriter):
2106 2106
2107 2107 """
2108 2108 Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura
2109 2109 de los datos siempre se realiza por bloques.
2110 2110 """
2111 2111
2112 2112 ext = ".pdata"
2113 2113
2114 2114 optchar = "P"
2115 2115
2116 2116 shape_spc_Buffer = None
2117 2117
2118 2118 shape_cspc_Buffer = None
2119 2119
2120 2120 shape_dc_Buffer = None
2121 2121
2122 2122 data_spc = None
2123 2123
2124 2124 data_cspc = None
2125 2125
2126 2126 data_dc = None
2127 2127
2128 2128 # dataOut = None
2129 2129
2130 2130 def __init__(self):
2131 2131 """
2132 2132 Inicializador de la clase SpectraWriter para la escritura de datos de espectros.
2133 2133
2134 2134 Affected:
2135 2135 self.dataOut
2136 2136 self.basicHeaderObj
2137 2137 self.systemHeaderObj
2138 2138 self.radarControllerHeaderObj
2139 2139 self.processingHeaderObj
2140 2140
2141 2141 Return: None
2142 2142 """
2143 2143
2144 2144 self.isConfig = False
2145 2145
2146 2146 self.nTotalBlocks = 0
2147 2147
2148 2148 self.data_spc = None
2149 2149
2150 2150 self.data_cspc = None
2151 2151
2152 2152 self.data_dc = None
2153 2153
2154 2154 self.fp = None
2155 2155
2156 2156 self.flagIsNewFile = 1
2157 2157
2158 2158 self.nTotalBlocks = 0
2159 2159
2160 2160 self.flagIsNewBlock = 0
2161 2161
2162 2162 self.setFile = None
2163 2163
2164 2164 self.dtype = None
2165 2165
2166 2166 self.path = None
2167 2167
2168 2168 self.noMoreFiles = 0
2169 2169
2170 2170 self.filename = None
2171 2171
2172 2172 self.basicHeaderObj = BasicHeader(LOCALTIME)
2173 2173
2174 2174 self.systemHeaderObj = SystemHeader()
2175 2175
2176 2176 self.radarControllerHeaderObj = RadarControllerHeader()
2177 2177
2178 2178 self.processingHeaderObj = ProcessingHeader()
2179 2179
2180 2180
2181 2181 def hasAllDataInBuffer(self):
2182 2182 return 1
2183 2183
2184 2184
2185 2185 def setBlockDimension(self):
2186 2186 """
2187 2187 Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
2188 2188
2189 2189 Affected:
2190 2190 self.shape_spc_Buffer
2191 2191 self.shape_cspc_Buffer
2192 2192 self.shape_dc_Buffer
2193 2193
2194 2194 Return: None
2195 2195 """
2196 2196 self.shape_spc_Buffer = (self.dataOut.nChannels,
2197 2197 self.processingHeaderObj.nHeights,
2198 2198 self.processingHeaderObj.profilesPerBlock)
2199 2199
2200 2200 self.shape_cspc_Buffer = (self.dataOut.nPairs,
2201 2201 self.processingHeaderObj.nHeights,
2202 2202 self.processingHeaderObj.profilesPerBlock)
2203 2203
2204 2204 self.shape_dc_Buffer = (self.dataOut.nChannels,
2205 2205 self.processingHeaderObj.nHeights)
2206 2206
2207 2207
2208 2208 def writeBlock(self):
2209 2209 """
2210 2210 Escribe el buffer en el file designado
2211 2211
2212 2212 Affected:
2213 2213 self.data_spc
2214 2214 self.data_cspc
2215 2215 self.data_dc
2216 2216 self.flagIsNewFile
2217 2217 self.flagIsNewBlock
2218 2218 self.nTotalBlocks
2219 2219 self.nWriteBlocks
2220 2220
2221 2221 Return: None
2222 2222 """
2223 2223
2224 2224 spc = numpy.transpose( self.data_spc, (0,2,1) )
2225 2225 if not( self.processingHeaderObj.shif_fft ):
2226 2226 spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
2227 2227 data = spc.reshape((-1))
2228 2228 data.tofile(self.fp)
2229 2229
2230 2230 if self.data_cspc != None:
2231 2231 data = numpy.zeros( self.shape_cspc_Buffer, self.dtype )
2232 2232 cspc = numpy.transpose( self.data_cspc, (0,2,1) )
2233 2233 if not( self.processingHeaderObj.shif_fft ):
2234 2234 cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
2235 2235 data['real'] = cspc.real
2236 2236 data['imag'] = cspc.imag
2237 2237 data = data.reshape((-1))
2238 2238 data.tofile(self.fp)
2239 2239
2240 2240 if self.data_dc != None:
2241 2241 data = numpy.zeros( self.shape_dc_Buffer, self.dtype )
2242 2242 dc = self.data_dc
2243 2243 data['real'] = dc.real
2244 2244 data['imag'] = dc.imag
2245 2245 data = data.reshape((-1))
2246 2246 data.tofile(self.fp)
2247 2247
2248 2248 self.data_spc.fill(0)
2249 2249 self.data_dc.fill(0)
2250 2250 if self.data_cspc != None:
2251 2251 self.data_cspc.fill(0)
2252 2252
2253 2253 self.flagIsNewFile = 0
2254 2254 self.flagIsNewBlock = 1
2255 2255 self.nTotalBlocks += 1
2256 2256 self.nWriteBlocks += 1
2257 2257 self.blockIndex += 1
2258 2258
2259 2259
2260 2260 def putData(self):
2261 2261 """
2262 2262 Setea un bloque de datos y luego los escribe en un file
2263 2263
2264 2264 Affected:
2265 2265 self.data_spc
2266 2266 self.data_cspc
2267 2267 self.data_dc
2268 2268
2269 2269 Return:
2270 2270 0 : Si no hay data o no hay mas files que puedan escribirse
2271 2271 1 : Si se escribio la data de un bloque en un file
2272 2272 """
2273 2273
2274 2274 if self.dataOut.flagNoData:
2275 2275 return 0
2276 2276
2277 2277 self.flagIsNewBlock = 0
2278 2278
2279 2279 if self.dataOut.flagTimeBlock:
2280 2280 self.data_spc.fill(0)
2281 2281 self.data_cspc.fill(0)
2282 2282 self.data_dc.fill(0)
2283 2283 self.setNextFile()
2284 2284
2285 2285 if self.flagIsNewFile == 0:
2286 2286 self.getBasicHeader()
2287 2287
2288 2288 self.data_spc = self.dataOut.data_spc.copy()
2289 2289 self.data_cspc = self.dataOut.data_cspc.copy()
2290 2290 self.data_dc = self.dataOut.data_dc.copy()
2291 2291
2292 2292 # #self.processingHeaderObj.dataBlocksPerFile)
2293 2293 if self.hasAllDataInBuffer():
2294 2294 # self.getDataHeader()
2295 2295 self.writeNextBlock()
2296 2296
2297 2297 return 1
2298 2298
2299 2299
2300 2300 def __getProcessFlags(self):
2301 2301
2302 2302 processFlags = 0
2303 2303
2304 2304 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
2305 2305 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
2306 2306 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
2307 2307 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
2308 2308 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
2309 2309 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
2310 2310
2311 2311 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
2312 2312
2313 2313
2314 2314
2315 2315 datatypeValueList = [PROCFLAG.DATATYPE_CHAR,
2316 2316 PROCFLAG.DATATYPE_SHORT,
2317 2317 PROCFLAG.DATATYPE_LONG,
2318 2318 PROCFLAG.DATATYPE_INT64,
2319 2319 PROCFLAG.DATATYPE_FLOAT,
2320 2320 PROCFLAG.DATATYPE_DOUBLE]
2321 2321
2322 2322
2323 2323 for index in range(len(dtypeList)):
2324 2324 if self.dataOut.dtype == dtypeList[index]:
2325 2325 dtypeValue = datatypeValueList[index]
2326 2326 break
2327 2327
2328 2328 processFlags += dtypeValue
2329 2329
2330 2330 if self.dataOut.flagDecodeData:
2331 2331 processFlags += PROCFLAG.DECODE_DATA
2332 2332
2333 2333 if self.dataOut.flagDeflipData:
2334 2334 processFlags += PROCFLAG.DEFLIP_DATA
2335 2335
2336 2336 if self.dataOut.code != None:
2337 2337 processFlags += PROCFLAG.DEFINE_PROCESS_CODE
2338 2338
2339 2339 if self.dataOut.nIncohInt > 1:
2340 2340 processFlags += PROCFLAG.INCOHERENT_INTEGRATION
2341 2341
2342 2342 if self.dataOut.data_dc != None:
2343 2343 processFlags += PROCFLAG.SAVE_CHANNELS_DC
2344 2344
2345 2345 return processFlags
2346 2346
2347 2347
2348 2348 def __getBlockSize(self):
2349 2349 '''
2350 2350 Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra
2351 2351 '''
2352 2352
2353 2353 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
2354 2354 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
2355 2355 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
2356 2356 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
2357 2357 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
2358 2358 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
2359 2359
2360 2360 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
2361 2361 datatypeValueList = [1,2,4,8,4,8]
2362 2362 for index in range(len(dtypeList)):
2363 2363 if self.dataOut.dtype == dtypeList[index]:
2364 2364 datatypeValue = datatypeValueList[index]
2365 2365 break
2366 2366
2367 2367
2368 2368 pts2write = self.dataOut.nHeights * self.dataOut.nFFTPoints
2369 2369
2370 2370 pts2write_SelfSpectra = int(self.dataOut.nChannels * pts2write)
2371 2371 blocksize = (pts2write_SelfSpectra*datatypeValue)
2372 2372
2373 2373 if self.dataOut.data_cspc != None:
2374 2374 pts2write_CrossSpectra = int(self.dataOut.nPairs * pts2write)
2375 2375 blocksize += (pts2write_CrossSpectra*datatypeValue*2)
2376 2376
2377 2377 if self.dataOut.data_dc != None:
2378 2378 pts2write_DCchannels = int(self.dataOut.nChannels * self.dataOut.nHeights)
2379 2379 blocksize += (pts2write_DCchannels*datatypeValue*2)
2380 2380
2381 2381 blocksize = blocksize #* datatypeValue * 2 #CORREGIR ESTO
2382 2382
2383 2383 return blocksize
2384 2384
2385 2385 def getDataHeader(self):
2386 2386
2387 2387 """
2388 2388 Obtiene una copia del First Header
2389 2389
2390 2390 Affected:
2391 2391 self.systemHeaderObj
2392 2392 self.radarControllerHeaderObj
2393 2393 self.dtype
2394 2394
2395 2395 Return:
2396 2396 None
2397 2397 """
2398 2398
2399 2399 self.systemHeaderObj = self.dataOut.systemHeaderObj.copy()
2400 2400 self.systemHeaderObj.nChannels = self.dataOut.nChannels
2401 2401 self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy()
2402 2402
2403 2403 self.getBasicHeader()
2404 2404
2405 2405 processingHeaderSize = 40 # bytes
2406 2406 self.processingHeaderObj.dtype = 0 # Voltage
2407 2407 self.processingHeaderObj.blockSize = self.__getBlockSize()
2408 2408 self.processingHeaderObj.profilesPerBlock = self.dataOut.nFFTPoints
2409 2409 self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile
2410 2410 self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOut.processingHeaderObj.nWindows
2411 2411 self.processingHeaderObj.processFlags = self.__getProcessFlags()
2412 2412 self.processingHeaderObj.nCohInt = self.dataOut.nCohInt# Se requiere para determinar el valor de timeInterval
2413 2413 self.processingHeaderObj.nIncohInt = self.dataOut.nIncohInt
2414 2414 self.processingHeaderObj.totalSpectra = self.dataOut.nPairs + self.dataOut.nChannels
2415 2415
2416 2416 if self.processingHeaderObj.totalSpectra > 0:
2417 2417 channelList = []
2418 2418 for channel in range(self.dataOut.nChannels):
2419 2419 channelList.append(channel)
2420 2420 channelList.append(channel)
2421 2421
2422 2422 pairsList = []
2423 2423 for pair in self.dataOut.pairsList:
2424 2424 pairsList.append(pair[0])
2425 2425 pairsList.append(pair[1])
2426 2426 spectraComb = channelList + pairsList
2427 2427 spectraComb = numpy.array(spectraComb,dtype="u1")
2428 2428 self.processingHeaderObj.spectraComb = spectraComb
2429 2429 sizeOfSpcComb = len(spectraComb)
2430 2430 processingHeaderSize += sizeOfSpcComb
2431 2431
2432 2432 if self.dataOut.code != None:
2433 2433 self.processingHeaderObj.code = self.dataOut.code
2434 2434 self.processingHeaderObj.nCode = self.dataOut.nCode
2435 2435 self.processingHeaderObj.nBaud = self.dataOut.nBaud
2436 2436 nCodeSize = 4 # bytes
2437 2437 nBaudSize = 4 # bytes
2438 2438 codeSize = 4 # bytes
2439 2439 sizeOfCode = int(nCodeSize + nBaudSize + codeSize * self.dataOut.nCode * self.dataOut.nBaud)
2440 2440 processingHeaderSize += sizeOfCode
2441 2441
2442 2442 if self.processingHeaderObj.nWindows != 0:
2443 2443 self.processingHeaderObj.firstHeight = self.dataOut.heightList[0]
2444 2444 self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
2445 2445 self.processingHeaderObj.nHeights = self.dataOut.nHeights
2446 2446 self.processingHeaderObj.samplesWin = self.dataOut.nHeights
2447 2447 sizeOfFirstHeight = 4
2448 2448 sizeOfdeltaHeight = 4
2449 2449 sizeOfnHeights = 4
2450 2450 sizeOfWindows = (sizeOfFirstHeight + sizeOfdeltaHeight + sizeOfnHeights)*self.processingHeaderObj.nWindows
2451 2451 processingHeaderSize += sizeOfWindows
2452 2452
2453 2453 self.processingHeaderObj.size = processingHeaderSize
2454 2454
2455 2455 class SpectraHeisWriter():
2456 2456
2457 2457 i=0
2458 2458
2459 2459 def __init__(self, dataOut):
2460 2460
2461 2461 self.wrObj = FITS()
2462 2462 self.dataOut = dataOut
2463 2463
2464 2464 def isNumber(str):
2465 2465 """
2466 2466 Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
2467 2467
2468 2468 Excepciones:
2469 2469 Si un determinado string no puede ser convertido a numero
2470 2470 Input:
2471 2471 str, string al cual se le analiza para determinar si convertible a un numero o no
2472 2472
2473 2473 Return:
2474 2474 True : si el string es uno numerico
2475 2475 False : no es un string numerico
2476 2476 """
2477 2477 try:
2478 2478 float( str )
2479 2479 return True
2480 2480 except:
2481 2481 return False
2482 2482
2483 2483 def setup(self, wrpath,):
2484 2484
2485 2485 if not(os.path.exists(wrpath)):
2486 2486 os.mkdir(wrpath)
2487 2487
2488 2488 self.wrpath = wrpath
2489 2489 self.setFile = 0
2490 2490
2491 2491 def putData(self):
2492 2492 # self.wrObj.writeHeader(nChannels=self.dataOut.nChannels, nFFTPoints=self.dataOut.nFFTPoints)
2493 2493 #name = self.dataOut.utctime
2494 2494 name= time.localtime( self.dataOut.utctime)
2495 2495 ext=".fits"
2496 2496 #folder='D%4.4d%3.3d'%(name.tm_year,name.tm_yday)
2497 2497 subfolder = 'D%4.4d%3.3d' % (name.tm_year,name.tm_yday)
2498 2498
2499 2499 fullpath = os.path.join( self.wrpath, subfolder )
2500 2500 if not( os.path.exists(fullpath) ):
2501 2501 os.mkdir(fullpath)
2502 2502 self.setFile += 1
2503 2503 file = 'D%4.4d%3.3d%3.3d%s' % (name.tm_year,name.tm_yday,self.setFile,ext)
2504 2504
2505 2505 filename = os.path.join(self.wrpath,subfolder, file)
2506 2506
2507 2507 # print self.dataOut.ippSeconds
2508 2508 freq=numpy.arange(-1*self.dataOut.nHeights/2.,self.dataOut.nHeights/2.)/(2*self.dataOut.ippSeconds)
2509 2509
2510 2510 col1=self.wrObj.setColF(name="freq", format=str(self.dataOut.nFFTPoints)+'E', array=freq)
2511 2511 col2=self.wrObj.writeData(name="P_Ch1",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[0,:]))
2512 2512 col3=self.wrObj.writeData(name="P_Ch2",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[1,:]))
2513 2513 col4=self.wrObj.writeData(name="P_Ch3",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[2,:]))
2514 2514 col5=self.wrObj.writeData(name="P_Ch4",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[3,:]))
2515 2515 col6=self.wrObj.writeData(name="P_Ch5",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[4,:]))
2516 2516 col7=self.wrObj.writeData(name="P_Ch6",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[5,:]))
2517 2517 col8=self.wrObj.writeData(name="P_Ch7",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[6,:]))
2518 2518 col9=self.wrObj.writeData(name="P_Ch8",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[7,:]))
2519 2519 #n=numpy.arange((100))
2520 2520 n=self.dataOut.data_spc[6,:]
2521 2521 a=self.wrObj.cFImage(n)
2522 2522 b=self.wrObj.Ctable(col1,col2,col3,col4,col5,col6,col7,col8,col9)
2523 2523 self.wrObj.CFile(a,b)
2524 2524 self.wrObj.wFile(filename)
2525 2525 return 1
2526 2526
2527 2527 class FITS:
2528 2528
2529 2529 name=None
2530 2530 format=None
2531 2531 array =None
2532 2532 data =None
2533 2533 thdulist=None
2534 2534
2535 2535 def __init__(self):
2536 2536
2537 2537 pass
2538 2538
2539 2539 def setColF(self,name,format,array):
2540 2540 self.name=name
2541 2541 self.format=format
2542 2542 self.array=array
2543 2543 a1=numpy.array([self.array],dtype=numpy.float32)
2544 2544 self.col1 = pyfits.Column(name=self.name, format=self.format, array=a1)
2545 2545 return self.col1
2546 2546
2547 2547 # def setColP(self,name,format,data):
2548 2548 # self.name=name
2549 2549 # self.format=format
2550 2550 # self.data=data
2551 2551 # a2=numpy.array([self.data],dtype=numpy.float32)
2552 2552 # self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
2553 2553 # return self.col2
2554 2554
2555 2555 def writeHeader(self,):
2556 2556 pass
2557 2557
2558 2558 def writeData(self,name,format,data):
2559 2559 self.name=name
2560 2560 self.format=format
2561 2561 self.data=data
2562 2562 a2=numpy.array([self.data],dtype=numpy.float32)
2563 2563 self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
2564 2564 return self.col2
2565 2565
2566 2566 def cFImage(self,n):
2567 2567 self.hdu= pyfits.PrimaryHDU(n)
2568 2568 return self.hdu
2569 2569
2570 2570 def Ctable(self,col1,col2,col3,col4,col5,col6,col7,col8,col9):
2571 2571 self.cols=pyfits.ColDefs( [col1,col2,col3,col4,col5,col6,col7,col8,col9])
2572 2572 self.tbhdu = pyfits.new_table(self.cols)
2573 2573 return self.tbhdu
2574 2574
2575 2575 def CFile(self,hdu,tbhdu):
2576 2576 self.thdulist=pyfits.HDUList([hdu,tbhdu])
2577 2577
2578 2578 def wFile(self,filename):
2579 2579 self.thdulist.writeto(filename) No newline at end of file
General Comments 0
You need to be logged in to leave comments. Login now