@@ -1,519 +1,519 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter | |
5 |
|
5 | |||
6 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
8 | from schainpy.utils import log |
|
8 | from schainpy.utils import log | |
9 |
|
9 | |||
10 | import wradlib.georef as georef |
|
10 | import wradlib.georef as georef | |
11 |
|
11 | |||
12 | EARTH_RADIUS = 6.3710e3 |
|
12 | EARTH_RADIUS = 6.3710e3 | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | def ll2xy(lat1, lon1, lat2, lon2): |
|
15 | def ll2xy(lat1, lon1, lat2, lon2): | |
16 |
|
16 | |||
17 | p = 0.017453292519943295 |
|
17 | p = 0.017453292519943295 | |
18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
23 | theta = -theta + numpy.pi/2 |
|
23 | theta = -theta + numpy.pi/2 | |
24 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
24 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
25 |
|
25 | |||
26 |
|
26 | |||
27 | def km2deg(km): |
|
27 | def km2deg(km): | |
28 | ''' |
|
28 | ''' | |
29 | Convert distance in km to degrees |
|
29 | Convert distance in km to degrees | |
30 | ''' |
|
30 | ''' | |
31 |
|
31 | |||
32 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
32 | return numpy.rad2deg(km/EARTH_RADIUS) | |
33 |
|
33 | |||
34 |
|
34 | |||
35 |
|
35 | |||
36 | class SpectralMomentsPlot(SpectraPlot): |
|
36 | class SpectralMomentsPlot(SpectraPlot): | |
37 | ''' |
|
37 | ''' | |
38 | Plot for Spectral Moments |
|
38 | Plot for Spectral Moments | |
39 | ''' |
|
39 | ''' | |
40 | CODE = 'spc_moments' |
|
40 | CODE = 'spc_moments' | |
41 | # colormap = 'jet' |
|
41 | # colormap = 'jet' | |
42 | # plot_type = 'pcolor' |
|
42 | # plot_type = 'pcolor' | |
43 |
|
43 | |||
44 | class DobleGaussianPlot(SpectraPlot): |
|
44 | class DobleGaussianPlot(SpectraPlot): | |
45 | ''' |
|
45 | ''' | |
46 | Plot for Double Gaussian Plot |
|
46 | Plot for Double Gaussian Plot | |
47 | ''' |
|
47 | ''' | |
48 | CODE = 'gaussian_fit' |
|
48 | CODE = 'gaussian_fit' | |
49 | # colormap = 'jet' |
|
49 | # colormap = 'jet' | |
50 | # plot_type = 'pcolor' |
|
50 | # plot_type = 'pcolor' | |
51 |
|
51 | |||
52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
53 | ''' |
|
53 | ''' | |
54 | Plot SpectraCut with Double Gaussian Fit |
|
54 | Plot SpectraCut with Double Gaussian Fit | |
55 | ''' |
|
55 | ''' | |
56 | CODE = 'cut_gaussian_fit' |
|
56 | CODE = 'cut_gaussian_fit' | |
57 |
|
57 | |||
58 | class SnrPlot(RTIPlot): |
|
58 | class SnrPlot(RTIPlot): | |
59 | ''' |
|
59 | ''' | |
60 | Plot for SNR Data |
|
60 | Plot for SNR Data | |
61 | ''' |
|
61 | ''' | |
62 |
|
62 | |||
63 | CODE = 'snr' |
|
63 | CODE = 'snr' | |
64 | colormap = 'jet' |
|
64 | colormap = 'jet' | |
65 |
|
65 | |||
66 | def update(self, dataOut): |
|
66 | def update(self, dataOut): | |
67 |
|
67 | |||
68 | data = { |
|
68 | data = { | |
69 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
69 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
70 | } |
|
70 | } | |
71 |
|
71 | |||
72 | return data, {} |
|
72 | return data, {} | |
73 |
|
73 | |||
74 | class DopplerPlot(RTIPlot): |
|
74 | class DopplerPlot(RTIPlot): | |
75 | ''' |
|
75 | ''' | |
76 | Plot for DOPPLER Data (1st moment) |
|
76 | Plot for DOPPLER Data (1st moment) | |
77 | ''' |
|
77 | ''' | |
78 |
|
78 | |||
79 | CODE = 'dop' |
|
79 | CODE = 'dop' | |
80 | colormap = 'jet' |
|
80 | colormap = 'jet' | |
81 |
|
81 | |||
82 | def update(self, dataOut): |
|
82 | def update(self, dataOut): | |
83 |
|
83 | |||
84 | data = { |
|
84 | data = { | |
85 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
85 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
86 | } |
|
86 | } | |
87 |
|
87 | |||
88 | return data, {} |
|
88 | return data, {} | |
89 |
|
89 | |||
90 | class PowerPlot(RTIPlot): |
|
90 | class PowerPlot(RTIPlot): | |
91 | ''' |
|
91 | ''' | |
92 | Plot for Power Data (0 moment) |
|
92 | Plot for Power Data (0 moment) | |
93 | ''' |
|
93 | ''' | |
94 |
|
94 | |||
95 | CODE = 'pow' |
|
95 | CODE = 'pow' | |
96 | colormap = 'jet' |
|
96 | colormap = 'jet' | |
97 |
|
97 | |||
98 | def update(self, dataOut): |
|
98 | def update(self, dataOut): | |
99 | data = { |
|
99 | data = { | |
100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
101 | } |
|
101 | } | |
102 | return data, {} |
|
102 | return data, {} | |
103 |
|
103 | |||
104 | class SpectralWidthPlot(RTIPlot): |
|
104 | class SpectralWidthPlot(RTIPlot): | |
105 | ''' |
|
105 | ''' | |
106 | Plot for Spectral Width Data (2nd moment) |
|
106 | Plot for Spectral Width Data (2nd moment) | |
107 | ''' |
|
107 | ''' | |
108 |
|
108 | |||
109 | CODE = 'width' |
|
109 | CODE = 'width' | |
110 | colormap = 'jet' |
|
110 | colormap = 'jet' | |
111 |
|
111 | |||
112 | def update(self, dataOut): |
|
112 | def update(self, dataOut): | |
113 |
|
113 | |||
114 | data = { |
|
114 | data = { | |
115 | 'width': dataOut.data_width |
|
115 | 'width': dataOut.data_width | |
116 | } |
|
116 | } | |
117 |
|
117 | |||
118 | return data, {} |
|
118 | return data, {} | |
119 |
|
119 | |||
120 | class SkyMapPlot(Plot): |
|
120 | class SkyMapPlot(Plot): | |
121 | ''' |
|
121 | ''' | |
122 | Plot for meteors detection data |
|
122 | Plot for meteors detection data | |
123 | ''' |
|
123 | ''' | |
124 |
|
124 | |||
125 | CODE = 'param' |
|
125 | CODE = 'param' | |
126 |
|
126 | |||
127 | def setup(self): |
|
127 | def setup(self): | |
128 |
|
128 | |||
129 | self.ncols = 1 |
|
129 | self.ncols = 1 | |
130 | self.nrows = 1 |
|
130 | self.nrows = 1 | |
131 | self.width = 7.2 |
|
131 | self.width = 7.2 | |
132 | self.height = 7.2 |
|
132 | self.height = 7.2 | |
133 | self.nplots = 1 |
|
133 | self.nplots = 1 | |
134 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
134 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
135 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
135 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
136 | self.polar = True |
|
136 | self.polar = True | |
137 | self.ymin = -180 |
|
137 | self.ymin = -180 | |
138 | self.ymax = 180 |
|
138 | self.ymax = 180 | |
139 | self.colorbar = False |
|
139 | self.colorbar = False | |
140 |
|
140 | |||
141 | def plot(self): |
|
141 | def plot(self): | |
142 |
|
142 | |||
143 | arrayParameters = numpy.concatenate(self.data['param']) |
|
143 | arrayParameters = numpy.concatenate(self.data['param']) | |
144 | error = arrayParameters[:, -1] |
|
144 | error = arrayParameters[:, -1] | |
145 | indValid = numpy.where(error == 0)[0] |
|
145 | indValid = numpy.where(error == 0)[0] | |
146 | finalMeteor = arrayParameters[indValid, :] |
|
146 | finalMeteor = arrayParameters[indValid, :] | |
147 | finalAzimuth = finalMeteor[:, 3] |
|
147 | finalAzimuth = finalMeteor[:, 3] | |
148 | finalZenith = finalMeteor[:, 4] |
|
148 | finalZenith = finalMeteor[:, 4] | |
149 |
|
149 | |||
150 | x = finalAzimuth * numpy.pi / 180 |
|
150 | x = finalAzimuth * numpy.pi / 180 | |
151 | y = finalZenith |
|
151 | y = finalZenith | |
152 |
|
152 | |||
153 | ax = self.axes[0] |
|
153 | ax = self.axes[0] | |
154 |
|
154 | |||
155 | if ax.firsttime: |
|
155 | if ax.firsttime: | |
156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
157 | else: |
|
157 | else: | |
158 | ax.plot.set_data(x, y) |
|
158 | ax.plot.set_data(x, y) | |
159 |
|
159 | |||
160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
163 | dt2, |
|
163 | dt2, | |
164 | len(x)) |
|
164 | len(x)) | |
165 | self.titles[0] = title |
|
165 | self.titles[0] = title | |
166 |
|
166 | |||
167 |
|
167 | |||
168 | class GenericRTIPlot(Plot): |
|
168 | class GenericRTIPlot(Plot): | |
169 | ''' |
|
169 | ''' | |
170 | Plot for data_xxxx object |
|
170 | Plot for data_xxxx object | |
171 | ''' |
|
171 | ''' | |
172 |
|
172 | |||
173 | CODE = 'param' |
|
173 | CODE = 'param' | |
174 | colormap = 'viridis' |
|
174 | colormap = 'viridis' | |
175 | plot_type = 'pcolorbuffer' |
|
175 | plot_type = 'pcolorbuffer' | |
176 |
|
176 | |||
177 | def setup(self): |
|
177 | def setup(self): | |
178 | self.xaxis = 'time' |
|
178 | self.xaxis = 'time' | |
179 | self.ncols = 1 |
|
179 | self.ncols = 1 | |
180 | self.nrows = self.data.shape('param')[0] |
|
180 | self.nrows = self.data.shape('param')[0] | |
181 | self.nplots = self.nrows |
|
181 | self.nplots = self.nrows | |
182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
183 |
|
183 | |||
184 | if not self.xlabel: |
|
184 | if not self.xlabel: | |
185 | self.xlabel = 'Time' |
|
185 | self.xlabel = 'Time' | |
186 |
|
186 | |||
187 | self.ylabel = 'Range [km]' |
|
187 | self.ylabel = 'Range [km]' | |
188 | if not self.titles: |
|
188 | if not self.titles: | |
189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
190 |
|
190 | |||
191 | def update(self, dataOut): |
|
191 | def update(self, dataOut): | |
192 |
|
192 | |||
193 | data = { |
|
193 | data = { | |
194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
195 | } |
|
195 | } | |
196 |
|
196 | |||
197 | meta = {} |
|
197 | meta = {} | |
198 |
|
198 | |||
199 | return data, meta |
|
199 | return data, meta | |
200 |
|
200 | |||
201 | def plot(self): |
|
201 | def plot(self): | |
202 | # self.data.normalize_heights() |
|
202 | # self.data.normalize_heights() | |
203 | self.x = self.data.times |
|
203 | self.x = self.data.times | |
204 | self.y = self.data.yrange |
|
204 | self.y = self.data.yrange | |
205 | self.z = self.data['param'] |
|
205 | self.z = self.data['param'] | |
206 | self.z = 10*numpy.log10(self.z) |
|
206 | self.z = 10*numpy.log10(self.z) | |
207 | self.z = numpy.ma.masked_invalid(self.z) |
|
207 | self.z = numpy.ma.masked_invalid(self.z) | |
208 |
|
208 | |||
209 | if self.decimation is None: |
|
209 | if self.decimation is None: | |
210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
211 | else: |
|
211 | else: | |
212 | x, y, z = self.fill_gaps(*self.decimate()) |
|
212 | x, y, z = self.fill_gaps(*self.decimate()) | |
213 |
|
213 | |||
214 | for n, ax in enumerate(self.axes): |
|
214 | for n, ax in enumerate(self.axes): | |
215 |
|
215 | |||
216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
217 | self.z[n]) |
|
217 | self.z[n]) | |
218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
219 | self.z[n]) |
|
219 | self.z[n]) | |
220 |
|
220 | |||
221 | if ax.firsttime: |
|
221 | if ax.firsttime: | |
222 | if self.zlimits is not None: |
|
222 | if self.zlimits is not None: | |
223 | self.zmin, self.zmax = self.zlimits[n] |
|
223 | self.zmin, self.zmax = self.zlimits[n] | |
224 |
|
224 | |||
225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
226 | vmin=self.zmin, |
|
226 | vmin=self.zmin, | |
227 | vmax=self.zmax, |
|
227 | vmax=self.zmax, | |
228 | cmap=self.cmaps[n] |
|
228 | cmap=self.cmaps[n] | |
229 | ) |
|
229 | ) | |
230 | else: |
|
230 | else: | |
231 | if self.zlimits is not None: |
|
231 | if self.zlimits is not None: | |
232 | self.zmin, self.zmax = self.zlimits[n] |
|
232 | self.zmin, self.zmax = self.zlimits[n] | |
233 | ax.collections.remove(ax.collections[0]) |
|
233 | ax.collections.remove(ax.collections[0]) | |
234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
235 | vmin=self.zmin, |
|
235 | vmin=self.zmin, | |
236 | vmax=self.zmax, |
|
236 | vmax=self.zmax, | |
237 | cmap=self.cmaps[n] |
|
237 | cmap=self.cmaps[n] | |
238 | ) |
|
238 | ) | |
239 |
|
239 | |||
240 |
|
240 | |||
241 | class PolarMapPlot(Plot): |
|
241 | class PolarMapPlot(Plot): | |
242 | ''' |
|
242 | ''' | |
243 | Plot for weather radar |
|
243 | Plot for weather radar | |
244 | ''' |
|
244 | ''' | |
245 |
|
245 | |||
246 | CODE = 'param' |
|
246 | CODE = 'param' | |
247 | colormap = 'seismic' |
|
247 | colormap = 'seismic' | |
248 |
|
248 | |||
249 | def setup(self): |
|
249 | def setup(self): | |
250 | self.ncols = 1 |
|
250 | self.ncols = 1 | |
251 | self.nrows = 1 |
|
251 | self.nrows = 1 | |
252 | self.width = 9 |
|
252 | self.width = 9 | |
253 | self.height = 8 |
|
253 | self.height = 8 | |
254 | self.mode = self.data.meta['mode'] |
|
254 | self.mode = self.data.meta['mode'] | |
255 | if self.channels is not None: |
|
255 | if self.channels is not None: | |
256 | self.nplots = len(self.channels) |
|
256 | self.nplots = len(self.channels) | |
257 | self.nrows = len(self.channels) |
|
257 | self.nrows = len(self.channels) | |
258 | else: |
|
258 | else: | |
259 | self.nplots = self.data.shape(self.CODE)[0] |
|
259 | self.nplots = self.data.shape(self.CODE)[0] | |
260 | self.nrows = self.nplots |
|
260 | self.nrows = self.nplots | |
261 | self.channels = list(range(self.nplots)) |
|
261 | self.channels = list(range(self.nplots)) | |
262 | if self.mode == 'E': |
|
262 | if self.mode == 'E': | |
263 | self.xlabel = 'Longitude' |
|
263 | self.xlabel = 'Longitude' | |
264 | self.ylabel = 'Latitude' |
|
264 | self.ylabel = 'Latitude' | |
265 | else: |
|
265 | else: | |
266 | self.xlabel = 'Range (km)' |
|
266 | self.xlabel = 'Range (km)' | |
267 | self.ylabel = 'Height (km)' |
|
267 | self.ylabel = 'Height (km)' | |
268 | self.bgcolor = 'white' |
|
268 | self.bgcolor = 'white' | |
269 | self.cb_labels = self.data.meta['units'] |
|
269 | self.cb_labels = self.data.meta['units'] | |
270 | self.lat = self.data.meta['latitude'] |
|
270 | self.lat = self.data.meta['latitude'] | |
271 | self.lon = self.data.meta['longitude'] |
|
271 | self.lon = self.data.meta['longitude'] | |
272 | self.xmin, self.xmax = float( |
|
272 | self.xmin, self.xmax = float( | |
273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
274 | self.ymin, self.ymax = float( |
|
274 | self.ymin, self.ymax = float( | |
275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
276 | # self.polar = True |
|
276 | # self.polar = True | |
277 |
|
277 | |||
278 | def plot(self): |
|
278 | def plot(self): | |
279 |
|
279 | |||
280 | for n, ax in enumerate(self.axes): |
|
280 | for n, ax in enumerate(self.axes): | |
281 | data = self.data['param'][self.channels[n]] |
|
281 | data = self.data['param'][self.channels[n]] | |
282 |
|
282 | |||
283 | zeniths = numpy.linspace( |
|
283 | zeniths = numpy.linspace( | |
284 | 0, self.data.meta['max_range'], data.shape[1]) |
|
284 | 0, self.data.meta['max_range'], data.shape[1]) | |
285 | if self.mode == 'E': |
|
285 | if self.mode == 'E': | |
286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
287 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
287 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
290 | x = km2deg(x) + self.lon |
|
290 | x = km2deg(x) + self.lon | |
291 | y = km2deg(y) + self.lat |
|
291 | y = km2deg(y) + self.lat | |
292 | else: |
|
292 | else: | |
293 | azimuths = numpy.radians(self.data.yrange) |
|
293 | azimuths = numpy.radians(self.data.yrange) | |
294 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
294 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
296 | self.y = zeniths |
|
296 | self.y = zeniths | |
297 |
|
297 | |||
298 | if ax.firsttime: |
|
298 | if ax.firsttime: | |
299 | if self.zlimits is not None: |
|
299 | if self.zlimits is not None: | |
300 | self.zmin, self.zmax = self.zlimits[n] |
|
300 | self.zmin, self.zmax = self.zlimits[n] | |
301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
303 | vmin=self.zmin, |
|
303 | vmin=self.zmin, | |
304 | vmax=self.zmax, |
|
304 | vmax=self.zmax, | |
305 | cmap=self.cmaps[n]) |
|
305 | cmap=self.cmaps[n]) | |
306 | else: |
|
306 | else: | |
307 | if self.zlimits is not None: |
|
307 | if self.zlimits is not None: | |
308 | self.zmin, self.zmax = self.zlimits[n] |
|
308 | self.zmin, self.zmax = self.zlimits[n] | |
309 | ax.collections.remove(ax.collections[0]) |
|
309 | ax.collections.remove(ax.collections[0]) | |
310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
312 | vmin=self.zmin, |
|
312 | vmin=self.zmin, | |
313 | vmax=self.zmax, |
|
313 | vmax=self.zmax, | |
314 | cmap=self.cmaps[n]) |
|
314 | cmap=self.cmaps[n]) | |
315 |
|
315 | |||
316 | if self.mode == 'A': |
|
316 | if self.mode == 'A': | |
317 | continue |
|
317 | continue | |
318 |
|
318 | |||
319 | # plot district names |
|
319 | # plot district names | |
320 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
320 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
321 | for line in f: |
|
321 | for line in f: | |
322 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
322 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
323 | lat = float(lat) |
|
323 | lat = float(lat) | |
324 | lon = float(lon) |
|
324 | lon = float(lon) | |
325 | # ax.plot(lon, lat, '.b', ms=2) |
|
325 | # ax.plot(lon, lat, '.b', ms=2) | |
326 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
326 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
327 | va='bottom', size='8', color='black') |
|
327 | va='bottom', size='8', color='black') | |
328 |
|
328 | |||
329 | # plot limites |
|
329 | # plot limites | |
330 | limites = [] |
|
330 | limites = [] | |
331 | tmp = [] |
|
331 | tmp = [] | |
332 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
332 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
333 | if '#' in line: |
|
333 | if '#' in line: | |
334 | if tmp: |
|
334 | if tmp: | |
335 | limites.append(tmp) |
|
335 | limites.append(tmp) | |
336 | tmp = [] |
|
336 | tmp = [] | |
337 | continue |
|
337 | continue | |
338 | values = line.strip().split(',') |
|
338 | values = line.strip().split(',') | |
339 | tmp.append((float(values[0]), float(values[1]))) |
|
339 | tmp.append((float(values[0]), float(values[1]))) | |
340 | for points in limites: |
|
340 | for points in limites: | |
341 | ax.add_patch( |
|
341 | ax.add_patch( | |
342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
343 |
|
343 | |||
344 | # plot Cuencas |
|
344 | # plot Cuencas | |
345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
347 | values = [line.strip().split(',') for line in f] |
|
347 | values = [line.strip().split(',') for line in f] | |
348 | points = [(float(s[0]), float(s[1])) for s in values] |
|
348 | points = [(float(s[0]), float(s[1])) for s in values] | |
349 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
349 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
350 |
|
350 | |||
351 | # plot grid |
|
351 | # plot grid | |
352 | for r in (15, 30, 45, 60): |
|
352 | for r in (15, 30, 45, 60): | |
353 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
353 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
354 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
354 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
355 | ax.text( |
|
355 | ax.text( | |
356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
358 | '{}km'.format(r), |
|
358 | '{}km'.format(r), | |
359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
360 |
|
360 | |||
361 | if self.mode == 'E': |
|
361 | if self.mode == 'E': | |
362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
364 | else: |
|
364 | else: | |
365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
367 |
|
367 | |||
368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
369 | self.titles = ['{} {}'.format( |
|
369 | self.titles = ['{} {}'.format( | |
370 | self.data.parameters[x], title) for x in self.channels] |
|
370 | self.data.parameters[x], title) for x in self.channels] | |
371 |
|
371 | |||
372 | class WeatherParamsPlot(Plot): |
|
372 | class WeatherParamsPlot(Plot): | |
373 | #CODE = 'RHI' |
|
373 | #CODE = 'RHI' | |
374 | #plot_name = 'RHI' |
|
374 | #plot_name = 'RHI' | |
375 | plot_type = 'scattermap' |
|
375 | plot_type = 'scattermap' | |
376 | buffering = False |
|
376 | buffering = False | |
377 |
|
377 | |||
378 | def setup(self): |
|
378 | def setup(self): | |
379 |
|
379 | |||
380 | self.ncols = 1 |
|
380 | self.ncols = 1 | |
381 | self.nrows = 1 |
|
381 | self.nrows = 1 | |
382 | self.nplots= 1 |
|
382 | self.nplots= 1 | |
383 | self.ylabel= 'Range [km]' |
|
383 | self.ylabel= 'Range [km]' | |
384 | self.xlabel= 'Range [km]' |
|
384 | self.xlabel= 'Range [km]' | |
385 | self.polar = True |
|
385 | self.polar = True | |
386 | self.grid = True |
|
386 | self.grid = True | |
387 | if self.channels is not None: |
|
387 | if self.channels is not None: | |
388 | self.nplots = len(self.channels) |
|
388 | self.nplots = len(self.channels) | |
389 | self.nrows = len(self.channels) |
|
389 | self.nrows = len(self.channels) | |
390 | else: |
|
390 | else: | |
391 | self.nplots = self.data.shape(self.CODE)[0] |
|
391 | self.nplots = self.data.shape(self.CODE)[0] | |
392 | self.nrows = self.nplots |
|
392 | self.nrows = self.nplots | |
393 | self.channels = list(range(self.nplots)) |
|
393 | self.channels = list(range(self.nplots)) | |
394 |
|
394 | |||
395 | self.colorbar=True |
|
395 | self.colorbar=True | |
396 | self.width =8 |
|
396 | self.width =8 | |
397 | self.height =8 |
|
397 | self.height =8 | |
398 | self.ini =0 |
|
398 | self.ini =0 | |
399 | self.len_azi =0 |
|
399 | self.len_azi =0 | |
400 | self.buffer_ini = None |
|
400 | self.buffer_ini = None | |
401 | self.buffer_ele = None |
|
401 | self.buffer_ele = None | |
402 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
402 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
403 | self.flag =0 |
|
403 | self.flag =0 | |
404 | self.indicador= 0 |
|
404 | self.indicador= 0 | |
405 | self.last_data_ele = None |
|
405 | self.last_data_ele = None | |
406 | self.val_mean = None |
|
406 | self.val_mean = None | |
407 |
|
407 | |||
408 | def update(self, dataOut): |
|
408 | def update(self, dataOut): | |
409 |
|
409 | |||
410 | data = {} |
|
410 | data = {} | |
411 | meta = {} |
|
411 | meta = {} | |
412 | if hasattr(dataOut, 'dataPP_POWER'): |
|
412 | if hasattr(dataOut, 'dataPP_POWER'): | |
413 | factor = 1 |
|
413 | factor = 1 | |
414 | if hasattr(dataOut, 'nFFTPoints'): |
|
414 | if hasattr(dataOut, 'nFFTPoints'): | |
415 | factor = dataOut.normFactor |
|
415 | factor = dataOut.normFactor | |
416 |
|
416 | |||
417 | mask = dataOut.data_snr<self.snr_threshold |
|
417 | mask = dataOut.data_snr<self.snr_threshold | |
418 |
|
418 | |||
419 | if 'pow' in self.attr_data[0].lower(): |
|
419 | if 'pow' in self.attr_data[0].lower(): | |
420 | # data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) |
|
420 | # data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)) | |
421 | tmp = numpy.ma.masked_array(10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor)), mask=mask) |
|
421 | tmp = numpy.ma.masked_array(10*numpy.log10(10.0*getattr(dataOut, self.attr_data[0])/(factor)), mask=mask) | |
422 | else: |
|
422 | else: | |
423 | tmp = numpy.ma.masked_array(getattr(dataOut, self.attr_data[0]), mask=mask) |
|
423 | tmp = numpy.ma.masked_array(getattr(dataOut, self.attr_data[0]), mask=mask) | |
424 | # tmp = getattr(dataOut, self.attr_data[0]) |
|
424 | # tmp = getattr(dataOut, self.attr_data[0]) | |
425 |
|
425 | |||
426 | r = dataOut.heightList |
|
426 | r = dataOut.heightList | |
427 | delta_height = r[1]-r[0] |
|
427 | delta_height = r[1]-r[0] | |
428 | valid = numpy.where(r>=0)[0] |
|
428 | valid = numpy.where(r>=0)[0] | |
429 | data['r'] = numpy.arange(len(valid))*delta_height |
|
429 | data['r'] = numpy.arange(len(valid))*delta_height | |
430 |
|
430 | |||
431 | try: |
|
431 | try: | |
432 | data['data'] = tmp[self.channels[0]][:,valid] |
|
432 | data['data'] = tmp[self.channels[0]][:,valid] | |
433 | except: |
|
433 | except: | |
434 | data['data'] = tmp[0][:,valid] |
|
434 | data['data'] = tmp[0][:,valid] | |
435 |
|
435 | |||
436 | if dataOut.mode_op == 'PPI': |
|
436 | if dataOut.mode_op == 'PPI': | |
437 | self.CODE = 'PPI' |
|
437 | self.CODE = 'PPI' | |
438 | self.title = self.CODE |
|
438 | self.title = self.CODE | |
439 | elif dataOut.mode_op == 'RHI': |
|
439 | elif dataOut.mode_op == 'RHI': | |
440 | self.CODE = 'RHI' |
|
440 | self.CODE = 'RHI' | |
441 | self.title = self.CODE |
|
441 | self.title = self.CODE | |
442 |
|
442 | |||
443 | data['azi'] = dataOut.data_azi |
|
443 | data['azi'] = dataOut.data_azi | |
444 | data['ele'] = dataOut.data_ele |
|
444 | data['ele'] = dataOut.data_ele | |
445 | data['mode_op'] = dataOut.mode_op |
|
445 | data['mode_op'] = dataOut.mode_op | |
446 | var = data['data'].flatten() |
|
446 | var = data['data'].flatten() | |
447 | r = numpy.tile(data['r'], data['data'].shape[0]).reshape(data['data'].shape)*1000 |
|
447 | r = numpy.tile(data['r'], data['data'].shape[0]).reshape(data['data'].shape)*1000 | |
448 | lla = georef.spherical_to_proj(r, data['azi'], data['ele'], (-75.295893, -12.040436, 3379.2147)) |
|
448 | lla = georef.spherical_to_proj(r, data['azi'], data['ele'], (-75.295893, -12.040436, 3379.2147)) | |
449 |
meta['lat'] = lla[:,:,1].flatten()[var.mask==False] |
|
449 | meta['lat'] = lla[:,:,1].flatten()[var.mask==False] | |
450 | meta['lon'] = lla[:,:,0].flatten()[var.mask==False] |
|
450 | meta['lon'] = lla[:,:,0].flatten()[var.mask==False] | |
451 | data['var'] = numpy.array([var[var.mask==False]]) |
|
451 | data['var'] = numpy.array([var[var.mask==False]]) | |
452 |
|
452 | |||
453 | return data, meta |
|
453 | return data, meta | |
454 |
|
454 | |||
455 | def plot(self): |
|
455 | def plot(self): | |
456 | data = self.data[-1] |
|
456 | data = self.data[-1] | |
457 | z = data['data'] |
|
457 | z = data['data'] | |
458 | r = data['r'] |
|
458 | r = data['r'] | |
459 | self.titles = [] |
|
459 | self.titles = [] | |
460 |
|
460 | |||
461 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
461 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) | |
462 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
462 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) | |
463 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
463 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
464 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) |
|
464 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) | |
465 |
|
465 | |||
466 | if data['mode_op'] == 'RHI': |
|
466 | if data['mode_op'] == 'RHI': | |
467 | try: |
|
467 | try: | |
468 | if self.data['mode_op'][-2] == 'PPI': |
|
468 | if self.data['mode_op'][-2] == 'PPI': | |
469 | self.ang_min = None |
|
469 | self.ang_min = None | |
470 | self.ang_max = None |
|
470 | self.ang_max = None | |
471 | except: |
|
471 | except: | |
472 | pass |
|
472 | pass | |
473 | self.ang_min = self.ang_min if self.ang_min else 0 |
|
473 | self.ang_min = self.ang_min if self.ang_min else 0 | |
474 | self.ang_max = self.ang_max if self.ang_max else 90 |
|
474 | self.ang_max = self.ang_max if self.ang_max else 90 | |
475 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) ) |
|
475 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) ) | |
476 | elif data['mode_op'] == 'PPI': |
|
476 | elif data['mode_op'] == 'PPI': | |
477 | try: |
|
477 | try: | |
478 | if self.data['mode_op'][-2] == 'RHI': |
|
478 | if self.data['mode_op'][-2] == 'RHI': | |
479 | self.ang_min = None |
|
479 | self.ang_min = None | |
480 | self.ang_max = None |
|
480 | self.ang_max = None | |
481 | except: |
|
481 | except: | |
482 | pass |
|
482 | pass | |
483 | self.ang_min = self.ang_min if self.ang_min else 0 |
|
483 | self.ang_min = self.ang_min if self.ang_min else 0 | |
484 | self.ang_max = self.ang_max if self.ang_max else 360 |
|
484 | self.ang_max = self.ang_max if self.ang_max else 360 | |
485 | r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) ) |
|
485 | r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) ) | |
486 |
|
486 | |||
487 | self.clear_figures() |
|
487 | self.clear_figures() | |
488 |
|
488 | |||
489 | for i,ax in enumerate(self.axes): |
|
489 | for i,ax in enumerate(self.axes): | |
490 |
|
490 | |||
491 | if ax.firsttime: |
|
491 | if ax.firsttime: | |
492 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
492 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |
493 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
493 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
494 | if data['mode_op'] == 'PPI': |
|
494 | if data['mode_op'] == 'PPI': | |
495 | ax.set_theta_direction(-1) |
|
495 | ax.set_theta_direction(-1) | |
496 | ax.set_theta_offset(numpy.pi/2) |
|
496 | ax.set_theta_offset(numpy.pi/2) | |
497 |
|
497 | |||
498 | else: |
|
498 | else: | |
499 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) |
|
499 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |
500 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
500 | ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
501 | if data['mode_op'] == 'PPI': |
|
501 | if data['mode_op'] == 'PPI': | |
502 | ax.set_theta_direction(-1) |
|
502 | ax.set_theta_direction(-1) | |
503 | ax.set_theta_offset(numpy.pi/2) |
|
503 | ax.set_theta_offset(numpy.pi/2) | |
504 |
|
504 | |||
505 | ax.grid(True) |
|
505 | ax.grid(True) | |
506 | if data['mode_op'] == 'RHI': |
|
506 | if data['mode_op'] == 'RHI': | |
507 | len_aux = int(data['azi'].shape[0]/4) |
|
507 | len_aux = int(data['azi'].shape[0]/4) | |
508 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
508 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) | |
509 | if len(self.channels) !=1: |
|
509 | if len(self.channels) !=1: | |
510 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in range(self.nrows)] |
|
510 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in range(self.nrows)] | |
511 | else: |
|
511 | else: | |
512 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
512 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] | |
513 | elif data['mode_op'] == 'PPI': |
|
513 | elif data['mode_op'] == 'PPI': | |
514 | len_aux = int(data['ele'].shape[0]/4) |
|
514 | len_aux = int(data['ele'].shape[0]/4) | |
515 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
515 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) | |
516 | if len(self.channels) !=1: |
|
516 | if len(self.channels) !=1: | |
517 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.self.labels[x], str(round(mean,1)), x) for x in range(self.nrows)] |
|
517 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.self.labels[x], str(round(mean,1)), x) for x in range(self.nrows)] | |
518 | else: |
|
518 | else: | |
519 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
519 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
General Comments 0
You need to be logged in to leave comments.
Login now