The requested changes are too big and content was truncated. Show full diff
@@ -1,1104 +1,1109 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | ''' |
|
80 | 80 | lenOfData = len(sortdata) |
|
81 | 81 | nums_min = lenOfData*0.5 |
|
82 | 82 | |
|
83 | 83 | if nums_min <= 5: |
|
84 | 84 | |
|
85 | 85 | nums_min = 5 |
|
86 | 86 | |
|
87 | 87 | sump = 0. |
|
88 | 88 | sumq = 0. |
|
89 | 89 | |
|
90 | 90 | j = 0 |
|
91 | 91 | cont = 1 |
|
92 | 92 | |
|
93 | 93 | while((cont == 1)and(j < lenOfData)): |
|
94 | 94 | |
|
95 | 95 | sump += sortdata[j] |
|
96 | 96 | sumq += sortdata[j]**2 |
|
97 | 97 | |
|
98 | 98 | if j > nums_min: |
|
99 | 99 | rtest = float(j)/(j-1) + 1.0/navg |
|
100 | 100 | if ((sumq*j) > (rtest*sump**2)): |
|
101 | 101 | j = j - 1 |
|
102 | 102 | sump = sump - sortdata[j] |
|
103 | 103 | sumq = sumq - sortdata[j]**2 |
|
104 | 104 | cont = 0 |
|
105 | 105 | |
|
106 | 106 | j += 1 |
|
107 | 107 | |
|
108 | 108 | lnoise = sump / j |
|
109 | 109 | return lnoise |
|
110 | 110 | ''' |
|
111 | 111 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
112 | 112 | |
|
113 | 113 | |
|
114 | 114 | class Beam: |
|
115 | 115 | |
|
116 | 116 | def __init__(self): |
|
117 | 117 | self.codeList = [] |
|
118 | 118 | self.azimuthList = [] |
|
119 | 119 | self.zenithList = [] |
|
120 | 120 | |
|
121 | 121 | |
|
122 | 122 | |
|
123 | 123 | class GenericData(object): |
|
124 | 124 | |
|
125 | 125 | flagNoData = True |
|
126 | 126 | |
|
127 | 127 | def copy(self, inputObj=None): |
|
128 | 128 | |
|
129 | 129 | if inputObj == None: |
|
130 | 130 | return copy.deepcopy(self) |
|
131 | 131 | |
|
132 | 132 | for key in list(inputObj.__dict__.keys()): |
|
133 | 133 | |
|
134 | 134 | attribute = inputObj.__dict__[key] |
|
135 | 135 | |
|
136 | 136 | # If this attribute is a tuple or list |
|
137 | 137 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
138 | 138 | self.__dict__[key] = attribute[:] |
|
139 | 139 | continue |
|
140 | 140 | |
|
141 | 141 | # If this attribute is another object or instance |
|
142 | 142 | if hasattr(attribute, '__dict__'): |
|
143 | 143 | self.__dict__[key] = attribute.copy() |
|
144 | 144 | continue |
|
145 | 145 | |
|
146 | 146 | self.__dict__[key] = inputObj.__dict__[key] |
|
147 | 147 | |
|
148 | 148 | def deepcopy(self): |
|
149 | 149 | |
|
150 | 150 | return copy.deepcopy(self) |
|
151 | 151 | |
|
152 | 152 | def isEmpty(self): |
|
153 | 153 | |
|
154 | 154 | return self.flagNoData |
|
155 | 155 | |
|
156 | 156 | def isReady(self): |
|
157 | 157 | |
|
158 | 158 | return not self.flagNoData |
|
159 | 159 | |
|
160 | 160 | |
|
161 | 161 | class JROData(GenericData): |
|
162 | 162 | |
|
163 | 163 | useInputBuffer = False |
|
164 | 164 | buffer_empty = True |
|
165 | 165 | |
|
166 | 166 | systemHeaderObj = SystemHeader() |
|
167 | 167 | radarControllerHeaderObj = RadarControllerHeader() |
|
168 | 168 | type = None |
|
169 | 169 | datatype = None # dtype but in string |
|
170 | 170 | nProfiles = None |
|
171 | 171 | heightList = None |
|
172 | 172 | channelList = None |
|
173 | 173 | flagDiscontinuousBlock = False |
|
174 | 174 | useLocalTime = False |
|
175 | 175 | utctime = None |
|
176 | 176 | timeZone = None |
|
177 | 177 | dstFlag = None |
|
178 | 178 | errorCount = None |
|
179 | 179 | blocksize = None |
|
180 | 180 | flagDecodeData = False # asumo q la data no esta decodificada |
|
181 | 181 | flagDeflipData = False # asumo q la data no esta sin flip |
|
182 | 182 | flagShiftFFT = False |
|
183 | 183 | nCohInt = None |
|
184 | 184 | windowOfFilter = 1 |
|
185 | 185 | C = 3e8 |
|
186 | 186 | frequency = 49.92e6 |
|
187 | 187 | realtime = False |
|
188 | 188 | beacon_heiIndexList = None |
|
189 | 189 | last_block = None |
|
190 | 190 | blocknow = None |
|
191 | 191 | azimuth = None |
|
192 | 192 | zenith = None |
|
193 | 193 | beam = Beam() |
|
194 | 194 | profileIndex = None |
|
195 | 195 | error = None |
|
196 | 196 | data = None |
|
197 | 197 | nmodes = None |
|
198 | 198 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
199 | 199 | codeList = [] |
|
200 | 200 | azimuthList = [] |
|
201 | 201 | elevationList = [] |
|
202 | 202 | last_noise = None |
|
203 | 203 | |
|
204 | 204 | def __str__(self): |
|
205 | 205 | |
|
206 | 206 | return '{} - {}'.format(self.type, self.datatime()) |
|
207 | 207 | |
|
208 | 208 | def getNoise(self): |
|
209 | 209 | |
|
210 | 210 | raise NotImplementedError |
|
211 | 211 | |
|
212 | 212 | @property |
|
213 | 213 | def nChannels(self): |
|
214 | 214 | |
|
215 | 215 | return len(self.channelList) |
|
216 | 216 | |
|
217 | 217 | @property |
|
218 | 218 | def channelIndexList(self): |
|
219 | 219 | |
|
220 | 220 | return list(range(self.nChannels)) |
|
221 | 221 | |
|
222 | 222 | @property |
|
223 | 223 | def nHeights(self): |
|
224 | 224 | |
|
225 | 225 | return len(self.heightList) |
|
226 | 226 | |
|
227 | 227 | def getDeltaH(self): |
|
228 | 228 | |
|
229 | 229 | return self.heightList[1] - self.heightList[0] |
|
230 | 230 | |
|
231 | 231 | @property |
|
232 | 232 | def ltctime(self): |
|
233 | 233 | |
|
234 | 234 | if self.useLocalTime: |
|
235 | 235 | return self.utctime - self.timeZone * 60 |
|
236 | 236 | |
|
237 | 237 | return self.utctime |
|
238 | 238 | |
|
239 | 239 | @property |
|
240 | 240 | def datatime(self): |
|
241 | 241 | |
|
242 | 242 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
243 | 243 | return datatimeValue |
|
244 | 244 | |
|
245 | 245 | def getTimeRange(self): |
|
246 | 246 | |
|
247 | 247 | datatime = [] |
|
248 | 248 | |
|
249 | 249 | datatime.append(self.ltctime) |
|
250 | 250 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
251 | 251 | |
|
252 | 252 | datatime = numpy.array(datatime) |
|
253 | 253 | |
|
254 | 254 | return datatime |
|
255 | 255 | |
|
256 | 256 | def getFmaxTimeResponse(self): |
|
257 | 257 | |
|
258 | 258 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
259 | 259 | |
|
260 | 260 | PRF = 1. / (period * self.nCohInt) |
|
261 | 261 | |
|
262 | 262 | fmax = PRF |
|
263 | 263 | |
|
264 | 264 | return fmax |
|
265 | 265 | |
|
266 | 266 | def getFmax(self): |
|
267 | 267 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
268 | 268 | |
|
269 | 269 | fmax = PRF |
|
270 | 270 | return fmax |
|
271 | 271 | |
|
272 | 272 | def getVmax(self): |
|
273 | 273 | |
|
274 | 274 | _lambda = self.C / self.frequency |
|
275 | 275 | |
|
276 | 276 | vmax = self.getFmax() * _lambda / 2 |
|
277 | 277 | |
|
278 | 278 | return vmax |
|
279 | 279 | |
|
280 | 280 | @property |
|
281 | 281 | def ippSeconds(self): |
|
282 | 282 | ''' |
|
283 | 283 | ''' |
|
284 | 284 | return self.radarControllerHeaderObj.ippSeconds |
|
285 | 285 | |
|
286 | 286 | @ippSeconds.setter |
|
287 | 287 | def ippSeconds(self, ippSeconds): |
|
288 | 288 | ''' |
|
289 | 289 | ''' |
|
290 | 290 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
291 | 291 | |
|
292 | 292 | @property |
|
293 | 293 | def code(self): |
|
294 | 294 | ''' |
|
295 | 295 | ''' |
|
296 | 296 | return self.radarControllerHeaderObj.code |
|
297 | 297 | |
|
298 | 298 | @code.setter |
|
299 | 299 | def code(self, code): |
|
300 | 300 | ''' |
|
301 | 301 | ''' |
|
302 | 302 | self.radarControllerHeaderObj.code = code |
|
303 | 303 | |
|
304 | 304 | @property |
|
305 | 305 | def nCode(self): |
|
306 | 306 | ''' |
|
307 | 307 | ''' |
|
308 | 308 | return self.radarControllerHeaderObj.nCode |
|
309 | 309 | |
|
310 | 310 | @nCode.setter |
|
311 | 311 | def nCode(self, ncode): |
|
312 | 312 | ''' |
|
313 | 313 | ''' |
|
314 | 314 | self.radarControllerHeaderObj.nCode = ncode |
|
315 | 315 | |
|
316 | 316 | @property |
|
317 | 317 | def nBaud(self): |
|
318 | 318 | ''' |
|
319 | 319 | ''' |
|
320 | 320 | return self.radarControllerHeaderObj.nBaud |
|
321 | 321 | |
|
322 | 322 | @nBaud.setter |
|
323 | 323 | def nBaud(self, nbaud): |
|
324 | 324 | ''' |
|
325 | 325 | ''' |
|
326 | 326 | self.radarControllerHeaderObj.nBaud = nbaud |
|
327 | 327 | |
|
328 | 328 | @property |
|
329 | 329 | def ipp(self): |
|
330 | 330 | ''' |
|
331 | 331 | ''' |
|
332 | 332 | return self.radarControllerHeaderObj.ipp |
|
333 | 333 | |
|
334 | 334 | @ipp.setter |
|
335 | 335 | def ipp(self, ipp): |
|
336 | 336 | ''' |
|
337 | 337 | ''' |
|
338 | 338 | self.radarControllerHeaderObj.ipp = ipp |
|
339 | 339 | |
|
340 | 340 | @property |
|
341 | 341 | def metadata(self): |
|
342 | 342 | ''' |
|
343 | 343 | ''' |
|
344 | 344 | |
|
345 | 345 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
346 | 346 | |
|
347 | 347 | |
|
348 | 348 | class Voltage(JROData): |
|
349 | 349 | |
|
350 | 350 | dataPP_POW = None |
|
351 | 351 | dataPP_DOP = None |
|
352 | 352 | dataPP_WIDTH = None |
|
353 | 353 | dataPP_SNR = None |
|
354 | 354 | |
|
355 | 355 | def __init__(self): |
|
356 | 356 | ''' |
|
357 | 357 | Constructor |
|
358 | 358 | ''' |
|
359 | 359 | |
|
360 | 360 | self.useLocalTime = True |
|
361 | 361 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
362 | 362 | self.systemHeaderObj = SystemHeader() |
|
363 | 363 | self.type = "Voltage" |
|
364 | 364 | self.data = None |
|
365 | 365 | self.nProfiles = None |
|
366 | 366 | self.heightList = None |
|
367 | 367 | self.channelList = None |
|
368 | 368 | self.flagNoData = True |
|
369 | 369 | self.flagDiscontinuousBlock = False |
|
370 | 370 | self.utctime = None |
|
371 | 371 | self.timeZone = 0 |
|
372 | 372 | self.dstFlag = None |
|
373 | 373 | self.errorCount = None |
|
374 | 374 | self.nCohInt = None |
|
375 | 375 | self.blocksize = None |
|
376 | 376 | self.flagCohInt = False |
|
377 | 377 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
378 | 378 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
379 | 379 | self.flagShiftFFT = False |
|
380 | 380 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
381 | 381 | self.profileIndex = 0 |
|
382 | 382 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
383 | 383 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
384 | 384 | |
|
385 | 385 | def getNoisebyHildebrand(self, channel=None, ymin_index=None, ymax_index=None): |
|
386 | 386 | """ |
|
387 | 387 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
388 | 388 | |
|
389 | 389 | Return: |
|
390 | 390 | noiselevel |
|
391 | 391 | """ |
|
392 | 392 | |
|
393 | 393 | if channel != None: |
|
394 | 394 | data = self.data[channel,ymin_index:ymax_index] |
|
395 | 395 | nChannels = 1 |
|
396 | 396 | else: |
|
397 | 397 | data = self.data[:,ymin_index:ymax_index] |
|
398 | 398 | nChannels = self.nChannels |
|
399 | 399 | |
|
400 | 400 | noise = numpy.zeros(nChannels) |
|
401 | 401 | power = data * numpy.conjugate(data) |
|
402 | 402 | |
|
403 | 403 | for thisChannel in range(nChannels): |
|
404 | 404 | if nChannels == 1: |
|
405 | 405 | daux = power[:].real |
|
406 | 406 | else: |
|
407 | 407 | daux = power[thisChannel, :].real |
|
408 | 408 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
409 | 409 | |
|
410 | 410 | return noise |
|
411 | 411 | |
|
412 | 412 | def getNoise(self, type=1, channel=None,ymin_index=None, ymax_index=None): |
|
413 | 413 | |
|
414 | 414 | if type == 1: |
|
415 | 415 | noise = self.getNoisebyHildebrand(channel,ymin_index, ymax_index) |
|
416 | 416 | |
|
417 | 417 | return noise |
|
418 | 418 | |
|
419 | 419 | def getPower(self, channel=None): |
|
420 | 420 | |
|
421 | 421 | if channel != None: |
|
422 | 422 | data = self.data[channel] |
|
423 | 423 | else: |
|
424 | 424 | data = self.data |
|
425 | 425 | |
|
426 | 426 | power = data * numpy.conjugate(data) |
|
427 | 427 | powerdB = 10 * numpy.log10(power.real) |
|
428 | 428 | powerdB = numpy.squeeze(powerdB) |
|
429 | 429 | |
|
430 | 430 | return powerdB |
|
431 | 431 | |
|
432 | 432 | @property |
|
433 | 433 | def timeInterval(self): |
|
434 | 434 | |
|
435 | 435 | return self.ippSeconds * self.nCohInt |
|
436 | 436 | |
|
437 | 437 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
438 | 438 | |
|
439 | 439 | |
|
440 | 440 | class Spectra(JROData): |
|
441 | 441 | |
|
442 | 442 | data_outlier = 0 |
|
443 | 443 | |
|
444 | 444 | def __init__(self): |
|
445 | 445 | ''' |
|
446 | 446 | Constructor |
|
447 | 447 | ''' |
|
448 | 448 | |
|
449 | 449 | self.data_dc = None |
|
450 | 450 | self.data_spc = None |
|
451 | 451 | self.data_cspc = None |
|
452 | 452 | self.useLocalTime = True |
|
453 | 453 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
454 | 454 | self.systemHeaderObj = SystemHeader() |
|
455 | 455 | self.type = "Spectra" |
|
456 | 456 | self.timeZone = 0 |
|
457 | 457 | self.nProfiles = None |
|
458 | 458 | self.heightList = None |
|
459 | 459 | self.channelList = None |
|
460 | 460 | self.pairsList = None |
|
461 | 461 | self.flagNoData = True |
|
462 | 462 | self.flagDiscontinuousBlock = False |
|
463 | 463 | self.utctime = None |
|
464 | 464 | self.nCohInt = None |
|
465 | 465 | self.nIncohInt = None |
|
466 | 466 | self.blocksize = None |
|
467 | 467 | self.nFFTPoints = None |
|
468 | 468 | self.wavelength = None |
|
469 | 469 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
470 | 470 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
471 | 471 | self.flagShiftFFT = False |
|
472 | 472 | self.ippFactor = 1 |
|
473 | 473 | self.beacon_heiIndexList = [] |
|
474 | 474 | self.noise_estimation = None |
|
475 | 475 | self.codeList = [] |
|
476 | 476 | self.azimuthList = [] |
|
477 | 477 | self.elevationList = [] |
|
478 | 478 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
479 | 479 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
480 | 480 | |
|
481 | 481 | |
|
482 | 482 | self.max_nIncohInt = 1 |
|
483 | 483 | |
|
484 | 484 | |
|
485 | 485 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
486 | 486 | """ |
|
487 | 487 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
488 | 488 | |
|
489 | 489 | Return: |
|
490 | 490 | noiselevel |
|
491 | 491 | """ |
|
492 | 492 | # if hasattr(self.nIncohInt, "__len__"): #nIncohInt is a matrix |
|
493 | 493 | # |
|
494 | 494 | # heis = self.data_spc.shape[2] |
|
495 | 495 | # |
|
496 | 496 | # noise = numpy.zeros((self.nChannels, heis)) |
|
497 | 497 | # for hei in range(heis): |
|
498 | 498 | # for channel in range(self.nChannels): |
|
499 | 499 | # daux = self.data_spc[channel, xmin_index:xmax_index, hei] |
|
500 | 500 | # |
|
501 | 501 | # noise[channel,hei] = hildebrand_sekhon(daux, self.nIncohInt[channel,hei]) |
|
502 | 502 | # |
|
503 | 503 | # else: |
|
504 | 504 | # noise = numpy.zeros(self.nChannels) |
|
505 | 505 | # for channel in range(self.nChannels): |
|
506 | 506 | # daux = self.data_spc[channel,xmin_index:xmax_index, ymin_index:ymax_index] |
|
507 | 507 | # |
|
508 | 508 | # noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
509 | 509 | noise = numpy.zeros(self.nChannels) |
|
510 | 510 | for channel in range(self.nChannels): |
|
511 | 511 | daux = self.data_spc[channel,xmin_index:xmax_index, ymin_index:ymax_index] |
|
512 | 512 | |
|
513 | 513 | noise[channel] = hildebrand_sekhon(daux, self.max_nIncohInt) |
|
514 | 514 | |
|
515 | 515 | return noise |
|
516 | 516 | |
|
517 | 517 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
518 | 518 | |
|
519 | 519 | if self.noise_estimation is not None: |
|
520 | 520 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
521 | 521 | return self.noise_estimation |
|
522 | 522 | else: |
|
523 | 523 | noise = self.getNoisebyHildebrand( |
|
524 | 524 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
525 | 525 | return noise |
|
526 | 526 | |
|
527 | 527 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
528 | 528 | |
|
529 | 529 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
530 | 530 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
531 | 531 | |
|
532 | 532 | return freqrange |
|
533 | 533 | |
|
534 | 534 | def getAcfRange(self, extrapoints=0): |
|
535 | 535 | |
|
536 | 536 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
537 | 537 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
538 | 538 | |
|
539 | 539 | return freqrange |
|
540 | 540 | |
|
541 | 541 | def getFreqRange(self, extrapoints=0): |
|
542 | 542 | |
|
543 | 543 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
544 | 544 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
545 | 545 | |
|
546 | 546 | return freqrange |
|
547 | 547 | |
|
548 | 548 | def getVelRange(self, extrapoints=0): |
|
549 | 549 | |
|
550 | 550 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
551 | 551 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
552 | 552 | |
|
553 | 553 | if self.nmodes: |
|
554 | 554 | return velrange/self.nmodes |
|
555 | 555 | else: |
|
556 | 556 | return velrange |
|
557 | 557 | |
|
558 | 558 | @property |
|
559 | 559 | def nPairs(self): |
|
560 | 560 | |
|
561 | 561 | return len(self.pairsList) |
|
562 | 562 | |
|
563 | 563 | @property |
|
564 | 564 | def pairsIndexList(self): |
|
565 | 565 | |
|
566 | 566 | return list(range(self.nPairs)) |
|
567 | 567 | |
|
568 | 568 | @property |
|
569 | 569 | def normFactor(self): |
|
570 | 570 | |
|
571 | 571 | pwcode = 1 |
|
572 | 572 | |
|
573 | 573 | if self.flagDecodeData: |
|
574 | 574 | pwcode = numpy.sum(self.code[0]**2) |
|
575 | 575 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
576 | 576 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
577 | 577 | |
|
578 | 578 | |
|
579 | 579 | return normFactor |
|
580 | 580 | |
|
581 | 581 | @property |
|
582 | 582 | def flag_cspc(self): |
|
583 | 583 | |
|
584 | 584 | if self.data_cspc is None: |
|
585 | 585 | return True |
|
586 | 586 | |
|
587 | 587 | return False |
|
588 | 588 | |
|
589 | 589 | @property |
|
590 | 590 | def flag_dc(self): |
|
591 | 591 | |
|
592 | 592 | if self.data_dc is None: |
|
593 | 593 | return True |
|
594 | 594 | |
|
595 | 595 | return False |
|
596 | 596 | |
|
597 | 597 | @property |
|
598 | 598 | def timeInterval(self): |
|
599 | 599 | |
|
600 | 600 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
601 | 601 | if self.nmodes: |
|
602 | 602 | return self.nmodes*timeInterval |
|
603 | 603 | else: |
|
604 | 604 | return timeInterval |
|
605 | 605 | |
|
606 | 606 | def getPower(self): |
|
607 | 607 | |
|
608 | 608 | factor = self.normFactor |
|
609 | z = numpy.divide(self.data_spc,factor) | |
|
609 | power = numpy.zeros( (self.nChannels,self.nHeights) ) | |
|
610 | for ch in range(self.nChannels): | |
|
611 | if hasattr(factor,'shape'): | |
|
612 | z = numpy.divide(self.data_spc[ch],factor[ch]) | |
|
613 | else: | |
|
614 | z = numpy.divide(self.data_spc[ch],factor) | |
|
610 | 615 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
611 |
avg = numpy.average(z, axis= |
|
|
612 | ||
|
613 |
return |
|
|
616 | avg = numpy.average(z, axis=0) | |
|
617 | power[ch,:] = 10 * numpy.log10(avg) | |
|
618 | return power | |
|
614 | 619 | |
|
615 | 620 | def getCoherence(self, pairsList=None, phase=False): |
|
616 | 621 | |
|
617 | 622 | z = [] |
|
618 | 623 | if pairsList is None: |
|
619 | 624 | pairsIndexList = self.pairsIndexList |
|
620 | 625 | else: |
|
621 | 626 | pairsIndexList = [] |
|
622 | 627 | for pair in pairsList: |
|
623 | 628 | if pair not in self.pairsList: |
|
624 | 629 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
625 | 630 | pair)) |
|
626 | 631 | pairsIndexList.append(self.pairsList.index(pair)) |
|
627 | 632 | for i in range(len(pairsIndexList)): |
|
628 | 633 | pair = self.pairsList[pairsIndexList[i]] |
|
629 | 634 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
630 | 635 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
631 | 636 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
632 | 637 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
633 | 638 | if phase: |
|
634 | 639 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
635 | 640 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
636 | 641 | else: |
|
637 | 642 | data = numpy.abs(avgcoherenceComplex) |
|
638 | 643 | |
|
639 | 644 | z.append(data) |
|
640 | 645 | |
|
641 | 646 | return numpy.array(z) |
|
642 | 647 | |
|
643 | 648 | def setValue(self, value): |
|
644 | 649 | |
|
645 | 650 | print("This property should not be initialized", value) |
|
646 | 651 | |
|
647 | 652 | return |
|
648 | 653 | |
|
649 | 654 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
650 | 655 | |
|
651 | 656 | |
|
652 | 657 | class SpectraHeis(Spectra): |
|
653 | 658 | |
|
654 | 659 | def __init__(self): |
|
655 | 660 | |
|
656 | 661 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
657 | 662 | self.systemHeaderObj = SystemHeader() |
|
658 | 663 | self.type = "SpectraHeis" |
|
659 | 664 | self.nProfiles = None |
|
660 | 665 | self.heightList = None |
|
661 | 666 | self.channelList = None |
|
662 | 667 | self.flagNoData = True |
|
663 | 668 | self.flagDiscontinuousBlock = False |
|
664 | 669 | self.utctime = None |
|
665 | 670 | self.blocksize = None |
|
666 | 671 | self.profileIndex = 0 |
|
667 | 672 | self.nCohInt = 1 |
|
668 | 673 | self.nIncohInt = 1 |
|
669 | 674 | |
|
670 | 675 | @property |
|
671 | 676 | def normFactor(self): |
|
672 | 677 | pwcode = 1 |
|
673 | 678 | if self.flagDecodeData: |
|
674 | 679 | pwcode = numpy.sum(self.code[0]**2) |
|
675 | 680 | |
|
676 | 681 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
677 | 682 | |
|
678 | 683 | return normFactor |
|
679 | 684 | |
|
680 | 685 | @property |
|
681 | 686 | def timeInterval(self): |
|
682 | 687 | |
|
683 | 688 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
684 | 689 | |
|
685 | 690 | |
|
686 | 691 | class Fits(JROData): |
|
687 | 692 | |
|
688 | 693 | def __init__(self): |
|
689 | 694 | |
|
690 | 695 | self.type = "Fits" |
|
691 | 696 | self.nProfiles = None |
|
692 | 697 | self.heightList = None |
|
693 | 698 | self.channelList = None |
|
694 | 699 | self.flagNoData = True |
|
695 | 700 | self.utctime = None |
|
696 | 701 | self.nCohInt = 1 |
|
697 | 702 | self.nIncohInt = 1 |
|
698 | 703 | self.useLocalTime = True |
|
699 | 704 | self.profileIndex = 0 |
|
700 | 705 | self.timeZone = 0 |
|
701 | 706 | |
|
702 | 707 | def getTimeRange(self): |
|
703 | 708 | |
|
704 | 709 | datatime = [] |
|
705 | 710 | |
|
706 | 711 | datatime.append(self.ltctime) |
|
707 | 712 | datatime.append(self.ltctime + self.timeInterval) |
|
708 | 713 | |
|
709 | 714 | datatime = numpy.array(datatime) |
|
710 | 715 | |
|
711 | 716 | return datatime |
|
712 | 717 | |
|
713 | 718 | def getChannelIndexList(self): |
|
714 | 719 | |
|
715 | 720 | return list(range(self.nChannels)) |
|
716 | 721 | |
|
717 | 722 | def getNoise(self, type=1): |
|
718 | 723 | |
|
719 | 724 | |
|
720 | 725 | if type == 1: |
|
721 | 726 | noise = self.getNoisebyHildebrand() |
|
722 | 727 | |
|
723 | 728 | if type == 2: |
|
724 | 729 | noise = self.getNoisebySort() |
|
725 | 730 | |
|
726 | 731 | if type == 3: |
|
727 | 732 | noise = self.getNoisebyWindow() |
|
728 | 733 | |
|
729 | 734 | return noise |
|
730 | 735 | |
|
731 | 736 | @property |
|
732 | 737 | def timeInterval(self): |
|
733 | 738 | |
|
734 | 739 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
735 | 740 | |
|
736 | 741 | return timeInterval |
|
737 | 742 | |
|
738 | 743 | @property |
|
739 | 744 | def ippSeconds(self): |
|
740 | 745 | ''' |
|
741 | 746 | ''' |
|
742 | 747 | return self.ipp_sec |
|
743 | 748 | |
|
744 | 749 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
745 | 750 | |
|
746 | 751 | |
|
747 | 752 | class Correlation(JROData): |
|
748 | 753 | |
|
749 | 754 | def __init__(self): |
|
750 | 755 | ''' |
|
751 | 756 | Constructor |
|
752 | 757 | ''' |
|
753 | 758 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
754 | 759 | self.systemHeaderObj = SystemHeader() |
|
755 | 760 | self.type = "Correlation" |
|
756 | 761 | self.data = None |
|
757 | 762 | self.dtype = None |
|
758 | 763 | self.nProfiles = None |
|
759 | 764 | self.heightList = None |
|
760 | 765 | self.channelList = None |
|
761 | 766 | self.flagNoData = True |
|
762 | 767 | self.flagDiscontinuousBlock = False |
|
763 | 768 | self.utctime = None |
|
764 | 769 | self.timeZone = 0 |
|
765 | 770 | self.dstFlag = None |
|
766 | 771 | self.errorCount = None |
|
767 | 772 | self.blocksize = None |
|
768 | 773 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
769 | 774 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
770 | 775 | self.pairsList = None |
|
771 | 776 | self.nPoints = None |
|
772 | 777 | |
|
773 | 778 | def getPairsList(self): |
|
774 | 779 | |
|
775 | 780 | return self.pairsList |
|
776 | 781 | |
|
777 | 782 | def getNoise(self, mode=2): |
|
778 | 783 | |
|
779 | 784 | indR = numpy.where(self.lagR == 0)[0][0] |
|
780 | 785 | indT = numpy.where(self.lagT == 0)[0][0] |
|
781 | 786 | |
|
782 | 787 | jspectra0 = self.data_corr[:, :, indR, :] |
|
783 | 788 | jspectra = copy.copy(jspectra0) |
|
784 | 789 | |
|
785 | 790 | num_chan = jspectra.shape[0] |
|
786 | 791 | num_hei = jspectra.shape[2] |
|
787 | 792 | |
|
788 | 793 | freq_dc = jspectra.shape[1] / 2 |
|
789 | 794 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
790 | 795 | |
|
791 | 796 | if ind_vel[0] < 0: |
|
792 | 797 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
793 | 798 | range(0, 1))] + self.num_prof |
|
794 | 799 | |
|
795 | 800 | if mode == 1: |
|
796 | 801 | jspectra[:, freq_dc, :] = ( |
|
797 | 802 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
798 | 803 | |
|
799 | 804 | if mode == 2: |
|
800 | 805 | |
|
801 | 806 | vel = numpy.array([-2, -1, 1, 2]) |
|
802 | 807 | xx = numpy.zeros([4, 4]) |
|
803 | 808 | |
|
804 | 809 | for fil in range(4): |
|
805 | 810 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
806 | 811 | |
|
807 | 812 | xx_inv = numpy.linalg.inv(xx) |
|
808 | 813 | xx_aux = xx_inv[0, :] |
|
809 | 814 | |
|
810 | 815 | for ich in range(num_chan): |
|
811 | 816 | yy = jspectra[ich, ind_vel, :] |
|
812 | 817 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
813 | 818 | |
|
814 | 819 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
815 | 820 | cjunkid = sum(junkid) |
|
816 | 821 | |
|
817 | 822 | if cjunkid.any(): |
|
818 | 823 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
819 | 824 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
820 | 825 | |
|
821 | 826 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
822 | 827 | |
|
823 | 828 | return noise |
|
824 | 829 | |
|
825 | 830 | @property |
|
826 | 831 | def timeInterval(self): |
|
827 | 832 | |
|
828 | 833 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
829 | 834 | |
|
830 | 835 | def splitFunctions(self): |
|
831 | 836 | |
|
832 | 837 | pairsList = self.pairsList |
|
833 | 838 | ccf_pairs = [] |
|
834 | 839 | acf_pairs = [] |
|
835 | 840 | ccf_ind = [] |
|
836 | 841 | acf_ind = [] |
|
837 | 842 | for l in range(len(pairsList)): |
|
838 | 843 | chan0 = pairsList[l][0] |
|
839 | 844 | chan1 = pairsList[l][1] |
|
840 | 845 | |
|
841 | 846 | # Obteniendo pares de Autocorrelacion |
|
842 | 847 | if chan0 == chan1: |
|
843 | 848 | acf_pairs.append(chan0) |
|
844 | 849 | acf_ind.append(l) |
|
845 | 850 | else: |
|
846 | 851 | ccf_pairs.append(pairsList[l]) |
|
847 | 852 | ccf_ind.append(l) |
|
848 | 853 | |
|
849 | 854 | data_acf = self.data_cf[acf_ind] |
|
850 | 855 | data_ccf = self.data_cf[ccf_ind] |
|
851 | 856 | |
|
852 | 857 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
853 | 858 | |
|
854 | 859 | @property |
|
855 | 860 | def normFactor(self): |
|
856 | 861 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
857 | 862 | acf_pairs = numpy.array(acf_pairs) |
|
858 | 863 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
859 | 864 | |
|
860 | 865 | for p in range(self.nPairs): |
|
861 | 866 | pair = self.pairsList[p] |
|
862 | 867 | |
|
863 | 868 | ch0 = pair[0] |
|
864 | 869 | ch1 = pair[1] |
|
865 | 870 | |
|
866 | 871 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
867 | 872 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
868 | 873 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
869 | 874 | |
|
870 | 875 | return normFactor |
|
871 | 876 | |
|
872 | 877 | |
|
873 | 878 | class Parameters(Spectra): |
|
874 | 879 | |
|
875 | 880 | groupList = None # List of Pairs, Groups, etc |
|
876 | 881 | data_param = None # Parameters obtained |
|
877 | 882 | data_pre = None # Data Pre Parametrization |
|
878 | 883 | data_SNR = None # Signal to Noise Ratio |
|
879 | 884 | data_outlier = None |
|
880 | 885 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
881 | 886 | utctimeInit = None # Initial UTC time |
|
882 | 887 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
883 | 888 | useLocalTime = True |
|
884 | 889 | # Fitting |
|
885 | 890 | data_error = None # Error of the estimation |
|
886 | 891 | constants = None |
|
887 | 892 | library = None |
|
888 | 893 | # Output signal |
|
889 | 894 | outputInterval = None # Time interval to calculate output signal in seconds |
|
890 | 895 | data_output = None # Out signal |
|
891 | 896 | nAvg = None |
|
892 | 897 | noise_estimation = None |
|
893 | 898 | GauSPC = None # Fit gaussian SPC |
|
894 | 899 | max_nIncohInt = 1 |
|
895 | 900 | def __init__(self): |
|
896 | 901 | ''' |
|
897 | 902 | Constructor |
|
898 | 903 | ''' |
|
899 | 904 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
900 | 905 | self.systemHeaderObj = SystemHeader() |
|
901 | 906 | self.type = "Parameters" |
|
902 | 907 | self.timeZone = 0 |
|
903 | 908 | |
|
904 | 909 | def getTimeRange1(self, interval): |
|
905 | 910 | |
|
906 | 911 | datatime = [] |
|
907 | 912 | |
|
908 | 913 | if self.useLocalTime: |
|
909 | 914 | time1 = self.utctimeInit - self.timeZone * 60 |
|
910 | 915 | else: |
|
911 | 916 | time1 = self.utctimeInit |
|
912 | 917 | |
|
913 | 918 | datatime.append(time1) |
|
914 | 919 | datatime.append(time1 + interval) |
|
915 | 920 | datatime = numpy.array(datatime) |
|
916 | 921 | |
|
917 | 922 | return datatime |
|
918 | 923 | |
|
919 | 924 | @property |
|
920 | 925 | def timeInterval(self): |
|
921 | 926 | |
|
922 | 927 | if hasattr(self, 'timeInterval1'): |
|
923 | 928 | return self.timeInterval1 |
|
924 | 929 | else: |
|
925 | 930 | return self.paramInterval |
|
926 | 931 | |
|
927 | 932 | def setValue(self, value): |
|
928 | 933 | |
|
929 | 934 | print("This property should not be initialized") |
|
930 | 935 | |
|
931 | 936 | return |
|
932 | 937 | |
|
933 | 938 | def getNoise(self): |
|
934 | 939 | |
|
935 | 940 | return self.spc_noise |
|
936 | 941 | |
|
937 | 942 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
938 | 943 | |
|
939 | 944 | |
|
940 | 945 | class PlotterData(object): |
|
941 | 946 | ''' |
|
942 | 947 | Object to hold data to be plotted |
|
943 | 948 | ''' |
|
944 | 949 | |
|
945 | 950 | MAXNUMX = 200 |
|
946 | 951 | MAXNUMY = 200 |
|
947 | 952 | |
|
948 | 953 | def __init__(self, code, exp_code, localtime=True): |
|
949 | 954 | |
|
950 | 955 | self.key = code |
|
951 | 956 | self.exp_code = exp_code |
|
952 | 957 | self.ready = False |
|
953 | 958 | self.flagNoData = False |
|
954 | 959 | self.localtime = localtime |
|
955 | 960 | self.data = {} |
|
956 | 961 | self.meta = {} |
|
957 | 962 | self.__heights = [] |
|
958 | 963 | |
|
959 | 964 | def __str__(self): |
|
960 | 965 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
961 | 966 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
962 | 967 | |
|
963 | 968 | def __len__(self): |
|
964 | 969 | return len(self.data) |
|
965 | 970 | |
|
966 | 971 | def __getitem__(self, key): |
|
967 | 972 | if isinstance(key, int): |
|
968 | 973 | return self.data[self.times[key]] |
|
969 | 974 | elif isinstance(key, str): |
|
970 | 975 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
971 | 976 | if ret.ndim > 1: |
|
972 | 977 | ret = numpy.swapaxes(ret, 0, 1) |
|
973 | 978 | return ret |
|
974 | 979 | |
|
975 | 980 | def __contains__(self, key): |
|
976 | 981 | return key in self.data[self.min_time] |
|
977 | 982 | |
|
978 | 983 | def setup(self): |
|
979 | 984 | ''' |
|
980 | 985 | Configure object |
|
981 | 986 | ''' |
|
982 | 987 | self.type = '' |
|
983 | 988 | self.ready = False |
|
984 | 989 | del self.data |
|
985 | 990 | self.data = {} |
|
986 | 991 | self.__heights = [] |
|
987 | 992 | self.__all_heights = set() |
|
988 | 993 | |
|
989 | 994 | def shape(self, key): |
|
990 | 995 | ''' |
|
991 | 996 | Get the shape of the one-element data for the given key |
|
992 | 997 | ''' |
|
993 | 998 | |
|
994 | 999 | if len(self.data[self.min_time][key]): |
|
995 | 1000 | return self.data[self.min_time][key].shape |
|
996 | 1001 | return (0,) |
|
997 | 1002 | |
|
998 | 1003 | def update(self, data, tm, meta={}): |
|
999 | 1004 | ''' |
|
1000 | 1005 | Update data object with new dataOut |
|
1001 | 1006 | ''' |
|
1002 | 1007 | |
|
1003 | 1008 | self.data[tm] = data |
|
1004 | 1009 | |
|
1005 | 1010 | for key, value in meta.items(): |
|
1006 | 1011 | setattr(self, key, value) |
|
1007 | 1012 | |
|
1008 | 1013 | def normalize_heights(self): |
|
1009 | 1014 | ''' |
|
1010 | 1015 | Ensure same-dimension of the data for different heighList |
|
1011 | 1016 | ''' |
|
1012 | 1017 | |
|
1013 | 1018 | H = numpy.array(list(self.__all_heights)) |
|
1014 | 1019 | H.sort() |
|
1015 | 1020 | for key in self.data: |
|
1016 | 1021 | shape = self.shape(key)[:-1] + H.shape |
|
1017 | 1022 | for tm, obj in list(self.data[key].items()): |
|
1018 | 1023 | h = self.__heights[self.times.tolist().index(tm)] |
|
1019 | 1024 | if H.size == h.size: |
|
1020 | 1025 | continue |
|
1021 | 1026 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1022 | 1027 | dummy = numpy.zeros(shape) + numpy.nan |
|
1023 | 1028 | if len(shape) == 2: |
|
1024 | 1029 | dummy[:, index] = obj |
|
1025 | 1030 | else: |
|
1026 | 1031 | dummy[index] = obj |
|
1027 | 1032 | self.data[key][tm] = dummy |
|
1028 | 1033 | |
|
1029 | 1034 | self.__heights = [H for tm in self.times] |
|
1030 | 1035 | |
|
1031 | 1036 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1032 | 1037 | ''' |
|
1033 | 1038 | Convert data to json |
|
1034 | 1039 | ''' |
|
1035 | 1040 | |
|
1036 | 1041 | meta = {} |
|
1037 | 1042 | meta['xrange'] = [] |
|
1038 | 1043 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1039 | 1044 | tmp = self.data[tm][self.key] |
|
1040 | 1045 | shape = tmp.shape |
|
1041 | 1046 | if len(shape) == 2: |
|
1042 | 1047 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1043 | 1048 | elif len(shape) == 3: |
|
1044 | 1049 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1045 | 1050 | data = self.roundFloats( |
|
1046 | 1051 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1047 | 1052 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1048 | 1053 | else: |
|
1049 | 1054 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1050 | 1055 | |
|
1051 | 1056 | ret = { |
|
1052 | 1057 | 'plot': plot_name, |
|
1053 | 1058 | 'code': self.exp_code, |
|
1054 | 1059 | 'time': float(tm), |
|
1055 | 1060 | 'data': data, |
|
1056 | 1061 | } |
|
1057 | 1062 | meta['type'] = plot_type |
|
1058 | 1063 | meta['interval'] = float(self.interval) |
|
1059 | 1064 | meta['localtime'] = self.localtime |
|
1060 | 1065 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1061 | 1066 | meta.update(self.meta) |
|
1062 | 1067 | ret['metadata'] = meta |
|
1063 | 1068 | return json.dumps(ret) |
|
1064 | 1069 | |
|
1065 | 1070 | @property |
|
1066 | 1071 | def times(self): |
|
1067 | 1072 | ''' |
|
1068 | 1073 | Return the list of times of the current data |
|
1069 | 1074 | ''' |
|
1070 | 1075 | |
|
1071 | 1076 | ret = [t for t in self.data] |
|
1072 | 1077 | ret.sort() |
|
1073 | 1078 | return numpy.array(ret) |
|
1074 | 1079 | |
|
1075 | 1080 | @property |
|
1076 | 1081 | def min_time(self): |
|
1077 | 1082 | ''' |
|
1078 | 1083 | Return the minimun time value |
|
1079 | 1084 | ''' |
|
1080 | 1085 | |
|
1081 | 1086 | return self.times[0] |
|
1082 | 1087 | |
|
1083 | 1088 | @property |
|
1084 | 1089 | def max_time(self): |
|
1085 | 1090 | ''' |
|
1086 | 1091 | Return the maximun time value |
|
1087 | 1092 | ''' |
|
1088 | 1093 | |
|
1089 | 1094 | return self.times[-1] |
|
1090 | 1095 | |
|
1091 | 1096 | # @property |
|
1092 | 1097 | # def heights(self): |
|
1093 | 1098 | # ''' |
|
1094 | 1099 | # Return the list of heights of the current data |
|
1095 | 1100 | # ''' |
|
1096 | 1101 | |
|
1097 | 1102 | # return numpy.array(self.__heights[-1]) |
|
1098 | 1103 | |
|
1099 | 1104 | @staticmethod |
|
1100 | 1105 | def roundFloats(obj): |
|
1101 | 1106 | if isinstance(obj, list): |
|
1102 | 1107 | return list(map(PlotterData.roundFloats, obj)) |
|
1103 | 1108 | elif isinstance(obj, float): |
|
1104 | 1109 | return round(obj, 2) |
@@ -1,1194 +1,1194 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | from itertools import combinations |
|
14 | 14 | from matplotlib.ticker import LinearLocator |
|
15 | 15 | |
|
16 | 16 | class SpectraPlot(Plot): |
|
17 | 17 | ''' |
|
18 | 18 | Plot for Spectra data |
|
19 | 19 | ''' |
|
20 | 20 | |
|
21 | 21 | CODE = 'spc' |
|
22 | 22 | colormap = 'jet' |
|
23 | 23 | plot_type = 'pcolor' |
|
24 | 24 | buffering = False |
|
25 | 25 | channelList = [] |
|
26 | 26 | elevationList = [] |
|
27 | 27 | azimuthList = [] |
|
28 | 28 | |
|
29 | 29 | def setup(self): |
|
30 | 30 | |
|
31 | 31 | self.nplots = len(self.data.channels) |
|
32 | 32 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
33 | 33 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
34 | 34 | self.height = 3.4 * self.nrows |
|
35 | 35 | |
|
36 | 36 | self.cb_label = 'dB' |
|
37 | 37 | if self.showprofile: |
|
38 | 38 | self.width = 5.2 * self.ncols |
|
39 | 39 | else: |
|
40 | 40 | self.width = 4.2* self.ncols |
|
41 | 41 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
42 | 42 | self.ylabel = 'Range [km]' |
|
43 | 43 | |
|
44 | 44 | |
|
45 | 45 | def update_list(self,dataOut): |
|
46 | 46 | if len(self.channelList) == 0: |
|
47 | 47 | self.channelList = dataOut.channelList |
|
48 | 48 | if len(self.elevationList) == 0: |
|
49 | 49 | self.elevationList = dataOut.elevationList |
|
50 | 50 | if len(self.azimuthList) == 0: |
|
51 | 51 | self.azimuthList = dataOut.azimuthList |
|
52 | 52 | |
|
53 | 53 | def update(self, dataOut): |
|
54 | 54 | |
|
55 | 55 | self.update_list(dataOut) |
|
56 | 56 | data = {} |
|
57 | 57 | meta = {} |
|
58 | 58 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
59 | 59 | data['spc'] = spc |
|
60 | 60 | data['rti'] = dataOut.getPower() |
|
61 | 61 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
62 | 62 | noise = 10*numpy.log10(dataOut.getNoise()/float(norm)) |
|
63 | 63 | data['noise'] = noise |
|
64 | 64 | |
|
65 | 65 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
66 | 66 | if self.CODE == 'spc_moments': |
|
67 | 67 | data['moments'] = dataOut.moments |
|
68 | 68 | |
|
69 | 69 | return data, meta |
|
70 | 70 | |
|
71 | 71 | def plot(self): |
|
72 | 72 | if self.xaxis == "frequency": |
|
73 | 73 | x = self.data.xrange[0] |
|
74 | 74 | self.xlabel = "Frequency (kHz)" |
|
75 | 75 | elif self.xaxis == "time": |
|
76 | 76 | x = self.data.xrange[1] |
|
77 | 77 | self.xlabel = "Time (ms)" |
|
78 | 78 | else: |
|
79 | 79 | x = self.data.xrange[2] |
|
80 | 80 | self.xlabel = "Velocity (m/s)" |
|
81 | 81 | |
|
82 | 82 | if self.CODE == 'spc_moments': |
|
83 | 83 | x = self.data.xrange[2] |
|
84 | 84 | self.xlabel = "Velocity (m/s)" |
|
85 | 85 | |
|
86 | 86 | self.titles = [] |
|
87 | 87 | y = self.data.yrange |
|
88 | 88 | self.y = y |
|
89 | 89 | |
|
90 | 90 | data = self.data[-1] |
|
91 | 91 | z = data['spc'] |
|
92 | 92 | #print(z.shape, x.shape, y.shape) |
|
93 | 93 | for n, ax in enumerate(self.axes): |
|
94 | 94 | noise = self.data['noise'][n][0] |
|
95 | 95 | #print(noise) |
|
96 | 96 | if self.CODE == 'spc_moments': |
|
97 | 97 | mean = data['moments'][n, 1] |
|
98 | 98 | if ax.firsttime: |
|
99 | 99 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
100 | 100 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
101 | 101 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
102 | 102 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
103 | 103 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
104 | 104 | vmin=self.zmin, |
|
105 | 105 | vmax=self.zmax, |
|
106 | 106 | cmap=plt.get_cmap(self.colormap) |
|
107 | 107 | ) |
|
108 | 108 | |
|
109 | 109 | if self.showprofile: |
|
110 | 110 | ax.plt_profile = self.pf_axes[n].plot( |
|
111 | 111 | data['rti'][n], y)[0] |
|
112 | 112 | # ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
113 | 113 | # color="k", linestyle="dashed", lw=1)[0] |
|
114 | 114 | if self.CODE == 'spc_moments': |
|
115 | 115 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
116 | 116 | else: |
|
117 | 117 | ax.plt.set_array(z[n].T.ravel()) |
|
118 | 118 | if self.showprofile: |
|
119 | 119 | ax.plt_profile.set_data(data['rti'][n], y) |
|
120 | 120 | #ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
121 | 121 | if self.CODE == 'spc_moments': |
|
122 | 122 | ax.plt_mean.set_data(mean, y) |
|
123 | 123 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: |
|
124 | 124 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) |
|
125 | 125 | else: |
|
126 | 126 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
127 | 127 | |
|
128 | 128 | |
|
129 | 129 | class CrossSpectraPlot(Plot): |
|
130 | 130 | |
|
131 | 131 | CODE = 'cspc' |
|
132 | 132 | colormap = 'jet' |
|
133 | 133 | plot_type = 'pcolor' |
|
134 | 134 | zmin_coh = None |
|
135 | 135 | zmax_coh = None |
|
136 | 136 | zmin_phase = None |
|
137 | 137 | zmax_phase = None |
|
138 | 138 | realChannels = None |
|
139 | 139 | crossPairs = None |
|
140 | 140 | |
|
141 | 141 | def setup(self): |
|
142 | 142 | |
|
143 | 143 | self.ncols = 4 |
|
144 | 144 | self.nplots = len(self.data.pairs) * 2 |
|
145 | 145 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
146 | 146 | self.width = 3.1 * self.ncols |
|
147 | 147 | self.height = 2.6 * self.nrows |
|
148 | 148 | self.ylabel = 'Range [km]' |
|
149 | 149 | self.showprofile = False |
|
150 | 150 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
151 | 151 | |
|
152 | 152 | def update(self, dataOut): |
|
153 | 153 | |
|
154 | 154 | data = {} |
|
155 | 155 | meta = {} |
|
156 | 156 | |
|
157 | 157 | spc = dataOut.data_spc |
|
158 | 158 | cspc = dataOut.data_cspc |
|
159 | 159 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
160 | 160 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
161 | 161 | meta['pairs'] = rawPairs |
|
162 | 162 | |
|
163 | 163 | if self.crossPairs == None: |
|
164 | 164 | self.crossPairs = dataOut.pairsList |
|
165 | 165 | |
|
166 | 166 | tmp = [] |
|
167 | 167 | |
|
168 | 168 | for n, pair in enumerate(meta['pairs']): |
|
169 | 169 | |
|
170 | 170 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
171 | 171 | coh = numpy.abs(out) |
|
172 | 172 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
173 | 173 | tmp.append(coh) |
|
174 | 174 | tmp.append(phase) |
|
175 | 175 | |
|
176 | 176 | data['cspc'] = numpy.array(tmp) |
|
177 | 177 | |
|
178 | 178 | return data, meta |
|
179 | 179 | |
|
180 | 180 | def plot(self): |
|
181 | 181 | |
|
182 | 182 | if self.xaxis == "frequency": |
|
183 | 183 | x = self.data.xrange[0] |
|
184 | 184 | self.xlabel = "Frequency (kHz)" |
|
185 | 185 | elif self.xaxis == "time": |
|
186 | 186 | x = self.data.xrange[1] |
|
187 | 187 | self.xlabel = "Time (ms)" |
|
188 | 188 | else: |
|
189 | 189 | x = self.data.xrange[2] |
|
190 | 190 | self.xlabel = "Velocity (m/s)" |
|
191 | 191 | |
|
192 | 192 | self.titles = [] |
|
193 | 193 | |
|
194 | 194 | y = self.data.yrange |
|
195 | 195 | self.y = y |
|
196 | 196 | |
|
197 | 197 | data = self.data[-1] |
|
198 | 198 | cspc = data['cspc'] |
|
199 | 199 | |
|
200 | 200 | for n in range(len(self.data.pairs)): |
|
201 | 201 | |
|
202 | 202 | pair = self.crossPairs[n] |
|
203 | 203 | |
|
204 | 204 | coh = cspc[n*2] |
|
205 | 205 | phase = cspc[n*2+1] |
|
206 | 206 | ax = self.axes[2 * n] |
|
207 | 207 | |
|
208 | 208 | if ax.firsttime: |
|
209 | 209 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
210 | 210 | vmin=self.zmin_coh, |
|
211 | 211 | vmax=self.zmax_coh, |
|
212 | 212 | cmap=plt.get_cmap(self.colormap_coh) |
|
213 | 213 | ) |
|
214 | 214 | else: |
|
215 | 215 | ax.plt.set_array(coh.T.ravel()) |
|
216 | 216 | self.titles.append( |
|
217 | 217 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
218 | 218 | |
|
219 | 219 | ax = self.axes[2 * n + 1] |
|
220 | 220 | if ax.firsttime: |
|
221 | 221 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
222 | 222 | vmin=-180, |
|
223 | 223 | vmax=180, |
|
224 | 224 | cmap=plt.get_cmap(self.colormap_phase) |
|
225 | 225 | ) |
|
226 | 226 | else: |
|
227 | 227 | ax.plt.set_array(phase.T.ravel()) |
|
228 | 228 | |
|
229 | 229 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
230 | 230 | |
|
231 | 231 | |
|
232 | 232 | class RTIPlot(Plot): |
|
233 | 233 | ''' |
|
234 | 234 | Plot for RTI data |
|
235 | 235 | ''' |
|
236 | 236 | |
|
237 | 237 | CODE = 'rti' |
|
238 | 238 | colormap = 'jet' |
|
239 | 239 | plot_type = 'pcolorbuffer' |
|
240 | 240 | titles = None |
|
241 | 241 | channelList = [] |
|
242 | 242 | elevationList = [] |
|
243 | 243 | azimuthList = [] |
|
244 | 244 | |
|
245 | 245 | def setup(self): |
|
246 | 246 | self.xaxis = 'time' |
|
247 | 247 | self.ncols = 1 |
|
248 | 248 | #print("dataChannels ",self.data.channels) |
|
249 | 249 | self.nrows = len(self.data.channels) |
|
250 | 250 | self.nplots = len(self.data.channels) |
|
251 | 251 | self.ylabel = 'Range [km]' |
|
252 | 252 | self.xlabel = 'Time' |
|
253 | 253 | self.cb_label = 'dB' |
|
254 | 254 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
255 | 255 | self.titles = ['{} Channel {}'.format( |
|
256 | 256 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
257 | 257 | |
|
258 | 258 | def update_list(self,dataOut): |
|
259 | 259 | |
|
260 | 260 | if len(self.channelList) == 0: |
|
261 | 261 | self.channelList = dataOut.channelList |
|
262 | 262 | if len(self.elevationList) == 0: |
|
263 | 263 | self.elevationList = dataOut.elevationList |
|
264 | 264 | if len(self.azimuthList) == 0: |
|
265 | 265 | self.azimuthList = dataOut.azimuthList |
|
266 | 266 | |
|
267 | 267 | |
|
268 | 268 | def update(self, dataOut): |
|
269 | 269 | if len(self.channelList) == 0: |
|
270 | 270 | self.update_list(dataOut) |
|
271 | 271 | data = {} |
|
272 | 272 | meta = {} |
|
273 | 273 | data['rti'] = dataOut.getPower() |
|
274 | 274 | |
|
275 | 275 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
276 | 276 | noise = 10*numpy.log10(dataOut.getNoise()/float(norm)) |
|
277 | 277 | data['noise'] = noise |
|
278 | 278 | |
|
279 | 279 | return data, meta |
|
280 | 280 | |
|
281 | 281 | def plot(self): |
|
282 | 282 | |
|
283 | 283 | self.x = self.data.times |
|
284 | 284 | self.y = self.data.yrange |
|
285 | 285 | #print(" x, y: ",self.x, self.y) |
|
286 | 286 | self.z = self.data[self.CODE] |
|
287 | 287 | self.z = numpy.array(self.z, dtype=float) |
|
288 | 288 | self.z = numpy.ma.masked_invalid(self.z) |
|
289 | 289 | |
|
290 | 290 | try: |
|
291 | 291 | if self.channelList != None: |
|
292 | 292 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
293 | 293 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
294 | 294 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
295 | 295 | else: |
|
296 | 296 | self.titles = ['{} Channel {}'.format( |
|
297 | 297 | self.CODE.upper(), x) for x in self.channelList] |
|
298 | 298 | except: |
|
299 | 299 | if self.channelList.any() != None: |
|
300 | 300 | |
|
301 | 301 | self.titles = ['{} Channel {}'.format( |
|
302 | 302 | self.CODE.upper(), x) for x in self.channelList] |
|
303 | 303 | |
|
304 | 304 | if self.decimation is None: |
|
305 | 305 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
306 | 306 | else: |
|
307 | 307 | x, y, z = self.fill_gaps(*self.decimate()) |
|
308 | 308 | |
|
309 | 309 | #dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
310 | 310 | for n, ax in enumerate(self.axes): |
|
311 | 311 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
312 | 312 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
313 | 313 | data = self.data[-1] |
|
314 | 314 | |
|
315 | 315 | if ax.firsttime: |
|
316 | 316 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
317 | 317 | vmin=self.zmin, |
|
318 | 318 | vmax=self.zmax, |
|
319 | 319 | cmap=plt.get_cmap(self.colormap) |
|
320 | 320 | ) |
|
321 | 321 | if self.showprofile: |
|
322 | 322 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
323 | 323 | if "noise" in self.data: |
|
324 | 324 | |
|
325 | 325 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
326 | 326 | color="k", linestyle="dashed", lw=1)[0] |
|
327 | 327 | else: |
|
328 | 328 | ax.collections.remove(ax.collections[0]) |
|
329 | 329 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
330 | 330 | vmin=self.zmin, |
|
331 | 331 | vmax=self.zmax, |
|
332 | 332 | cmap=plt.get_cmap(self.colormap) |
|
333 | 333 | ) |
|
334 | 334 | if self.showprofile: |
|
335 | 335 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
336 | 336 | if "noise" in self.data: |
|
337 | 337 | ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
338 | 338 | |
|
339 | 339 | |
|
340 | 340 | class CoherencePlot(RTIPlot): |
|
341 | 341 | ''' |
|
342 | 342 | Plot for Coherence data |
|
343 | 343 | ''' |
|
344 | 344 | |
|
345 | 345 | CODE = 'coh' |
|
346 | 346 | |
|
347 | 347 | def setup(self): |
|
348 | 348 | self.xaxis = 'time' |
|
349 | 349 | self.ncols = 1 |
|
350 | 350 | self.nrows = len(self.data.pairs) |
|
351 | 351 | self.nplots = len(self.data.pairs) |
|
352 | 352 | self.ylabel = 'Range [km]' |
|
353 | 353 | self.xlabel = 'Time' |
|
354 | 354 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
355 | 355 | if self.CODE == 'coh': |
|
356 | 356 | self.cb_label = '' |
|
357 | 357 | self.titles = [ |
|
358 | 358 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
359 | 359 | else: |
|
360 | 360 | self.cb_label = 'Degrees' |
|
361 | 361 | self.titles = [ |
|
362 | 362 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
363 | 363 | |
|
364 | 364 | def update(self, dataOut): |
|
365 | 365 | self.update_list(dataOut) |
|
366 | 366 | data = {} |
|
367 | 367 | meta = {} |
|
368 | 368 | data['coh'] = dataOut.getCoherence() |
|
369 | 369 | meta['pairs'] = dataOut.pairsList |
|
370 | 370 | |
|
371 | 371 | |
|
372 | 372 | return data, meta |
|
373 | 373 | |
|
374 | 374 | class PhasePlot(CoherencePlot): |
|
375 | 375 | ''' |
|
376 | 376 | Plot for Phase map data |
|
377 | 377 | ''' |
|
378 | 378 | |
|
379 | 379 | CODE = 'phase' |
|
380 | 380 | colormap = 'seismic' |
|
381 | 381 | |
|
382 | 382 | def update(self, dataOut): |
|
383 | 383 | |
|
384 | 384 | data = {} |
|
385 | 385 | meta = {} |
|
386 | 386 | data['phase'] = dataOut.getCoherence(phase=True) |
|
387 | 387 | meta['pairs'] = dataOut.pairsList |
|
388 | 388 | |
|
389 | 389 | return data, meta |
|
390 | 390 | |
|
391 | 391 | class NoisePlot(Plot): |
|
392 | 392 | ''' |
|
393 | 393 | Plot for noise |
|
394 | 394 | ''' |
|
395 | 395 | |
|
396 | 396 | CODE = 'noise' |
|
397 | 397 | plot_type = 'scatterbuffer' |
|
398 | 398 | |
|
399 | 399 | def setup(self): |
|
400 | 400 | self.xaxis = 'time' |
|
401 | 401 | self.ncols = 1 |
|
402 | 402 | self.nrows = 1 |
|
403 | 403 | self.nplots = 1 |
|
404 | 404 | self.ylabel = 'Intensity [dB]' |
|
405 | 405 | self.xlabel = 'Time' |
|
406 | 406 | self.titles = ['Noise'] |
|
407 | 407 | self.colorbar = False |
|
408 | 408 | self.plots_adjust.update({'right': 0.85 }) |
|
409 | 409 | #if not self.titles: |
|
410 | 410 | self.titles = ['Noise Plot'] |
|
411 | 411 | |
|
412 | 412 | def update(self, dataOut): |
|
413 | 413 | |
|
414 | 414 | data = {} |
|
415 | 415 | meta = {} |
|
416 | 416 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
417 | #noise = 10*numpy.log10(dataOut.getNoise()/norm) | |
|
418 | 417 | noise = 10*numpy.log10(dataOut.getNoise()) |
|
419 | 418 | noise = noise.reshape(dataOut.nChannels, 1) |
|
420 | 419 | data['noise'] = noise |
|
421 | 420 | meta['yrange'] = numpy.array([]) |
|
422 | 421 | |
|
423 | 422 | return data, meta |
|
424 | 423 | |
|
425 | 424 | def plot(self): |
|
426 | 425 | |
|
427 | 426 | x = self.data.times |
|
428 | 427 | xmin = self.data.min_time |
|
429 | 428 | xmax = xmin + self.xrange * 60 * 60 |
|
430 | 429 | Y = self.data['noise'] |
|
431 | 430 | |
|
432 | 431 | if self.axes[0].firsttime: |
|
433 | 432 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 |
|
434 | 433 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
435 | 434 | for ch in self.data.channels: |
|
436 | 435 | y = Y[ch] |
|
437 | 436 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
438 | 437 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
439 | 438 | else: |
|
440 | 439 | for ch in self.data.channels: |
|
441 | 440 | y = Y[ch] |
|
442 | 441 | self.axes[0].lines[ch].set_data(x, y) |
|
443 | 442 | |
|
444 | 443 | |
|
445 | 444 | class PowerProfilePlot(Plot): |
|
446 | 445 | |
|
447 | 446 | CODE = 'pow_profile' |
|
448 | 447 | plot_type = 'scatter' |
|
449 | 448 | |
|
450 | 449 | def setup(self): |
|
451 | 450 | |
|
452 | 451 | self.ncols = 1 |
|
453 | 452 | self.nrows = 1 |
|
454 | 453 | self.nplots = 1 |
|
455 | 454 | self.height = 4 |
|
456 | 455 | self.width = 3 |
|
457 | 456 | self.ylabel = 'Range [km]' |
|
458 | 457 | self.xlabel = 'Intensity [dB]' |
|
459 | 458 | self.titles = ['Power Profile'] |
|
460 | 459 | self.colorbar = False |
|
461 | 460 | |
|
462 | 461 | def update(self, dataOut): |
|
463 | 462 | |
|
464 | 463 | data = {} |
|
465 | 464 | meta = {} |
|
466 | 465 | data[self.CODE] = dataOut.getPower() |
|
467 | 466 | |
|
468 | 467 | return data, meta |
|
469 | 468 | |
|
470 | 469 | def plot(self): |
|
471 | 470 | |
|
472 | 471 | y = self.data.yrange |
|
473 | 472 | self.y = y |
|
474 | 473 | |
|
475 | 474 | x = self.data[-1][self.CODE] |
|
476 | 475 | |
|
477 | 476 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
478 | 477 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
479 | 478 | |
|
480 | 479 | if self.axes[0].firsttime: |
|
481 | 480 | for ch in self.data.channels: |
|
482 | 481 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
483 | 482 | plt.legend() |
|
484 | 483 | else: |
|
485 | 484 | for ch in self.data.channels: |
|
486 | 485 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
487 | 486 | |
|
488 | 487 | |
|
489 | 488 | class SpectraCutPlot(Plot): |
|
490 | 489 | |
|
491 | 490 | CODE = 'spc_cut' |
|
492 | 491 | plot_type = 'scatter' |
|
493 | 492 | buffering = False |
|
494 | 493 | heights = [] |
|
495 | 494 | channelList = [] |
|
496 | 495 | maintitle = "Spectra Cuts" |
|
497 | 496 | flag_setIndex = False |
|
498 | 497 | |
|
499 | 498 | def setup(self): |
|
500 | 499 | |
|
501 | 500 | self.nplots = len(self.data.channels) |
|
502 | 501 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
503 | 502 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
504 | 503 | self.width = 4.5 * self.ncols + 2.5 |
|
505 | 504 | self.height = 4.8 * self.nrows |
|
506 | 505 | self.ylabel = 'Power [dB]' |
|
507 | 506 | self.colorbar = False |
|
508 | 507 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08}) |
|
509 | 508 | |
|
510 | 509 | if len(self.selectedHeightsList) > 0: |
|
511 | 510 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) |
|
512 | 511 | |
|
513 | 512 | |
|
514 | 513 | |
|
515 | 514 | def update(self, dataOut): |
|
516 | 515 | if len(self.channelList) == 0: |
|
517 | 516 | self.channelList = dataOut.channelList |
|
518 | 517 | |
|
519 | 518 | self.heights = dataOut.heightList |
|
520 | 519 | #print("sels: ",self.selectedHeightsList) |
|
521 | 520 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: |
|
522 | 521 | |
|
523 | 522 | for sel_height in self.selectedHeightsList: |
|
524 | 523 | index_list = numpy.where(self.heights >= sel_height) |
|
525 | 524 | index_list = index_list[0] |
|
526 | 525 | self.height_index.append(index_list[0]) |
|
527 | 526 | #print("sels i:"", self.height_index) |
|
528 | 527 | self.flag_setIndex = True |
|
529 | 528 | #print(self.height_index) |
|
530 | 529 | data = {} |
|
531 | 530 | meta = {} |
|
532 | 531 | |
|
533 | 532 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
534 | 533 | n0 = 10*numpy.log10(dataOut.getNoise()/float(norm)) |
|
535 | 534 | |
|
536 | 535 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
537 | 536 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
538 | 537 | |
|
539 | 538 | data['spc'] = spc - noise |
|
540 | 539 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
541 | 540 | |
|
542 | 541 | return data, meta |
|
543 | 542 | |
|
544 | 543 | def plot(self): |
|
545 | 544 | if self.xaxis == "frequency": |
|
546 | 545 | x = self.data.xrange[0][1:] |
|
547 | 546 | self.xlabel = "Frequency (kHz)" |
|
548 | 547 | elif self.xaxis == "time": |
|
549 | 548 | x = self.data.xrange[1] |
|
550 | 549 | self.xlabel = "Time (ms)" |
|
551 | 550 | else: |
|
552 | 551 | x = self.data.xrange[2] |
|
553 | 552 | self.xlabel = "Velocity (m/s)" |
|
554 | 553 | |
|
555 | 554 | self.titles = [] |
|
556 | 555 | |
|
557 | 556 | y = self.data.yrange |
|
558 | 557 | z = self.data[-1]['spc'] |
|
559 | 558 | #print(z.shape) |
|
560 | 559 | if len(self.height_index) > 0: |
|
561 | 560 | index = self.height_index |
|
562 | 561 | else: |
|
563 | 562 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
564 | 563 | #print("inde x ", index, self.axes) |
|
565 | 564 | |
|
566 | 565 | for n, ax in enumerate(self.axes): |
|
567 | 566 | |
|
568 | 567 | if ax.firsttime: |
|
569 | 568 | |
|
570 | 569 | |
|
571 | 570 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
572 | 571 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
573 | 572 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
574 | 573 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
575 | 574 | |
|
576 | 575 | |
|
577 | 576 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
578 | 577 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
579 | 578 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) |
|
580 | 579 | ax.minorticks_on() |
|
581 | 580 | ax.grid(which='major', axis='both') |
|
582 | 581 | ax.grid(which='minor', axis='x') |
|
583 | 582 | else: |
|
584 | 583 | for i, line in enumerate(ax.plt): |
|
585 | 584 | line.set_data(x, z[n, :, index[i]]) |
|
586 | 585 | |
|
587 | 586 | |
|
588 | 587 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
589 | 588 | plt.suptitle(self.maintitle, fontsize=10) |
|
590 | 589 | |
|
591 | 590 | |
|
592 | 591 | class BeaconPhase(Plot): |
|
593 | 592 | |
|
594 | 593 | __isConfig = None |
|
595 | 594 | __nsubplots = None |
|
596 | 595 | |
|
597 | 596 | PREFIX = 'beacon_phase' |
|
598 | 597 | |
|
599 | 598 | def __init__(self): |
|
600 | 599 | Plot.__init__(self) |
|
601 | 600 | self.timerange = 24*60*60 |
|
602 | 601 | self.isConfig = False |
|
603 | 602 | self.__nsubplots = 1 |
|
604 | 603 | self.counter_imagwr = 0 |
|
605 | 604 | self.WIDTH = 800 |
|
606 | 605 | self.HEIGHT = 400 |
|
607 | 606 | self.WIDTHPROF = 120 |
|
608 | 607 | self.HEIGHTPROF = 0 |
|
609 | 608 | self.xdata = None |
|
610 | 609 | self.ydata = None |
|
611 | 610 | |
|
612 | 611 | self.PLOT_CODE = BEACON_CODE |
|
613 | 612 | |
|
614 | 613 | self.FTP_WEI = None |
|
615 | 614 | self.EXP_CODE = None |
|
616 | 615 | self.SUB_EXP_CODE = None |
|
617 | 616 | self.PLOT_POS = None |
|
618 | 617 | |
|
619 | 618 | self.filename_phase = None |
|
620 | 619 | |
|
621 | 620 | self.figfile = None |
|
622 | 621 | |
|
623 | 622 | self.xmin = None |
|
624 | 623 | self.xmax = None |
|
625 | 624 | |
|
626 | 625 | def getSubplots(self): |
|
627 | 626 | |
|
628 | 627 | ncol = 1 |
|
629 | 628 | nrow = 1 |
|
630 | 629 | |
|
631 | 630 | return nrow, ncol |
|
632 | 631 | |
|
633 | 632 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
634 | 633 | |
|
635 | 634 | self.__showprofile = showprofile |
|
636 | 635 | self.nplots = nplots |
|
637 | 636 | |
|
638 | 637 | ncolspan = 7 |
|
639 | 638 | colspan = 6 |
|
640 | 639 | self.__nsubplots = 2 |
|
641 | 640 | |
|
642 | 641 | self.createFigure(id = id, |
|
643 | 642 | wintitle = wintitle, |
|
644 | 643 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
645 | 644 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
646 | 645 | show=show) |
|
647 | 646 | |
|
648 | 647 | nrow, ncol = self.getSubplots() |
|
649 | 648 | |
|
650 | 649 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
651 | 650 | |
|
652 | 651 | def save_phase(self, filename_phase): |
|
653 | 652 | f = open(filename_phase,'w+') |
|
654 | 653 | f.write('\n\n') |
|
655 | 654 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
656 | 655 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
657 | 656 | f.close() |
|
658 | 657 | |
|
659 | 658 | def save_data(self, filename_phase, data, data_datetime): |
|
660 | 659 | f=open(filename_phase,'a') |
|
661 | 660 | timetuple_data = data_datetime.timetuple() |
|
662 | 661 | day = str(timetuple_data.tm_mday) |
|
663 | 662 | month = str(timetuple_data.tm_mon) |
|
664 | 663 | year = str(timetuple_data.tm_year) |
|
665 | 664 | hour = str(timetuple_data.tm_hour) |
|
666 | 665 | minute = str(timetuple_data.tm_min) |
|
667 | 666 | second = str(timetuple_data.tm_sec) |
|
668 | 667 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
669 | 668 | f.close() |
|
670 | 669 | |
|
671 | 670 | def plot(self): |
|
672 | 671 | log.warning('TODO: Not yet implemented...') |
|
673 | 672 | |
|
674 | 673 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
675 | 674 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
676 | 675 | timerange=None, |
|
677 | 676 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
678 | 677 | server=None, folder=None, username=None, password=None, |
|
679 | 678 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
680 | 679 | |
|
681 | 680 | if dataOut.flagNoData: |
|
682 | 681 | return dataOut |
|
683 | 682 | |
|
684 | 683 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
685 | 684 | return |
|
686 | 685 | |
|
687 | 686 | if pairsList == None: |
|
688 | 687 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
689 | 688 | else: |
|
690 | 689 | pairsIndexList = [] |
|
691 | 690 | for pair in pairsList: |
|
692 | 691 | if pair not in dataOut.pairsList: |
|
693 | 692 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
694 | 693 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
695 | 694 | |
|
696 | 695 | if pairsIndexList == []: |
|
697 | 696 | return |
|
698 | 697 | |
|
699 | 698 | # if len(pairsIndexList) > 4: |
|
700 | 699 | # pairsIndexList = pairsIndexList[0:4] |
|
701 | 700 | |
|
702 | 701 | hmin_index = None |
|
703 | 702 | hmax_index = None |
|
704 | 703 | |
|
705 | 704 | if hmin != None and hmax != None: |
|
706 | 705 | indexes = numpy.arange(dataOut.nHeights) |
|
707 | 706 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
708 | 707 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
709 | 708 | |
|
710 | 709 | if hmin_list.any(): |
|
711 | 710 | hmin_index = hmin_list[0] |
|
712 | 711 | |
|
713 | 712 | if hmax_list.any(): |
|
714 | 713 | hmax_index = hmax_list[-1]+1 |
|
715 | 714 | |
|
716 | 715 | x = dataOut.getTimeRange() |
|
717 | 716 | |
|
718 | 717 | thisDatetime = dataOut.datatime |
|
719 | 718 | |
|
720 | 719 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
721 | 720 | xlabel = "Local Time" |
|
722 | 721 | ylabel = "Phase (degrees)" |
|
723 | 722 | |
|
724 | 723 | update_figfile = False |
|
725 | 724 | |
|
726 | 725 | nplots = len(pairsIndexList) |
|
727 | 726 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
728 | 727 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
729 | 728 | for i in range(nplots): |
|
730 | 729 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
731 | 730 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
732 | 731 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
733 | 732 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
734 | 733 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
735 | 734 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
736 | 735 | |
|
737 | 736 | if dataOut.beacon_heiIndexList: |
|
738 | 737 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
739 | 738 | else: |
|
740 | 739 | phase_beacon[i] = numpy.average(phase) |
|
741 | 740 | |
|
742 | 741 | if not self.isConfig: |
|
743 | 742 | |
|
744 | 743 | nplots = len(pairsIndexList) |
|
745 | 744 | |
|
746 | 745 | self.setup(id=id, |
|
747 | 746 | nplots=nplots, |
|
748 | 747 | wintitle=wintitle, |
|
749 | 748 | showprofile=showprofile, |
|
750 | 749 | show=show) |
|
751 | 750 | |
|
752 | 751 | if timerange != None: |
|
753 | 752 | self.timerange = timerange |
|
754 | 753 | |
|
755 | 754 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
756 | 755 | |
|
757 | 756 | if ymin == None: ymin = 0 |
|
758 | 757 | if ymax == None: ymax = 360 |
|
759 | 758 | |
|
760 | 759 | self.FTP_WEI = ftp_wei |
|
761 | 760 | self.EXP_CODE = exp_code |
|
762 | 761 | self.SUB_EXP_CODE = sub_exp_code |
|
763 | 762 | self.PLOT_POS = plot_pos |
|
764 | 763 | |
|
765 | 764 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
766 | 765 | self.isConfig = True |
|
767 | 766 | self.figfile = figfile |
|
768 | 767 | self.xdata = numpy.array([]) |
|
769 | 768 | self.ydata = numpy.array([]) |
|
770 | 769 | |
|
771 | 770 | update_figfile = True |
|
772 | 771 | |
|
773 | 772 | #open file beacon phase |
|
774 | 773 | path = '%s%03d' %(self.PREFIX, self.id) |
|
775 | 774 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
776 | 775 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
777 | 776 | #self.save_phase(self.filename_phase) |
|
778 | 777 | |
|
779 | 778 | |
|
780 | 779 | #store data beacon phase |
|
781 | 780 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
782 | 781 | |
|
783 | 782 | self.setWinTitle(title) |
|
784 | 783 | |
|
785 | 784 | |
|
786 | 785 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
787 | 786 | |
|
788 | 787 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
789 | 788 | |
|
790 | 789 | axes = self.axesList[0] |
|
791 | 790 | |
|
792 | 791 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
793 | 792 | |
|
794 | 793 | if len(self.ydata)==0: |
|
795 | 794 | self.ydata = phase_beacon.reshape(-1,1) |
|
796 | 795 | else: |
|
797 | 796 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
798 | 797 | |
|
799 | 798 | |
|
800 | 799 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
801 | 800 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
802 | 801 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
803 | 802 | XAxisAsTime=True, grid='both' |
|
804 | 803 | ) |
|
805 | 804 | |
|
806 | 805 | self.draw() |
|
807 | 806 | |
|
808 | 807 | if dataOut.ltctime >= self.xmax: |
|
809 | 808 | self.counter_imagwr = wr_period |
|
810 | 809 | self.isConfig = False |
|
811 | 810 | update_figfile = True |
|
812 | 811 | |
|
813 | 812 | self.save(figpath=figpath, |
|
814 | 813 | figfile=figfile, |
|
815 | 814 | save=save, |
|
816 | 815 | ftp=ftp, |
|
817 | 816 | wr_period=wr_period, |
|
818 | 817 | thisDatetime=thisDatetime, |
|
819 | 818 | update_figfile=update_figfile) |
|
820 | 819 | |
|
821 | 820 | return dataOut |
|
822 | 821 | |
|
823 | 822 | class NoiselessSpectraPlot(Plot): |
|
824 | 823 | ''' |
|
825 | 824 | Plot for Spectra data, subtracting |
|
826 | 825 | the noise in all channels, using for |
|
827 | 826 | amisr-14 data |
|
828 | 827 | ''' |
|
829 | 828 | |
|
830 | 829 | CODE = 'noiseless_spc' |
|
831 | 830 | colormap = 'jet' |
|
832 | 831 | plot_type = 'pcolor' |
|
833 | 832 | buffering = False |
|
834 | 833 | channelList = [] |
|
835 | 834 | last_noise = None |
|
836 | 835 | |
|
837 | 836 | def setup(self): |
|
838 | 837 | |
|
839 | 838 | self.nplots = len(self.data.channels) |
|
840 | 839 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
841 | 840 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
842 | 841 | self.height = 3.5 * self.nrows |
|
843 | 842 | |
|
844 | 843 | self.cb_label = 'dB' |
|
845 | 844 | if self.showprofile: |
|
846 | 845 | self.width = 5.8 * self.ncols |
|
847 | 846 | else: |
|
848 | 847 | self.width = 4.8* self.ncols |
|
849 | 848 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12}) |
|
850 | 849 | |
|
851 | 850 | self.ylabel = 'Range [km]' |
|
852 | 851 | |
|
853 | 852 | |
|
854 | 853 | def update_list(self,dataOut): |
|
855 | 854 | if len(self.channelList) == 0: |
|
856 | 855 | self.channelList = dataOut.channelList |
|
857 | 856 | |
|
858 | 857 | def update(self, dataOut): |
|
859 | 858 | |
|
860 | 859 | self.update_list(dataOut) |
|
861 | 860 | data = {} |
|
862 | 861 | meta = {} |
|
863 | 862 | |
|
864 | 863 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
865 | 864 | n0 = 10*numpy.log10(dataOut.getNoise()/float(norm)) |
|
866 | 865 | |
|
867 | 866 | |
|
868 | 867 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
869 | 868 | |
|
870 | 869 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
871 | 870 | data['rti'] = dataOut.getPower() - noise |
|
872 | 871 | |
|
873 | 872 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
874 | 873 | data['spc'] = spc - noise |
|
875 | 874 | |
|
876 | 875 | |
|
877 | 876 | # data['noise'] = noise |
|
878 | 877 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
879 | 878 | |
|
880 | 879 | return data, meta |
|
881 | 880 | |
|
882 | 881 | def plot(self): |
|
883 | 882 | if self.xaxis == "frequency": |
|
884 | 883 | x = self.data.xrange[0] |
|
885 | 884 | self.xlabel = "Frequency (kHz)" |
|
886 | 885 | elif self.xaxis == "time": |
|
887 | 886 | x = self.data.xrange[1] |
|
888 | 887 | self.xlabel = "Time (ms)" |
|
889 | 888 | else: |
|
890 | 889 | x = self.data.xrange[2] |
|
891 | 890 | self.xlabel = "Velocity (m/s)" |
|
892 | 891 | |
|
893 | 892 | self.titles = [] |
|
894 | 893 | y = self.data.yrange |
|
895 | 894 | self.y = y |
|
896 | 895 | |
|
897 | 896 | data = self.data[-1] |
|
898 | 897 | z = data['spc'] |
|
899 | 898 | |
|
900 | 899 | for n, ax in enumerate(self.axes): |
|
901 | 900 | #noise = data['noise'][n] |
|
902 | 901 | |
|
903 | 902 | if ax.firsttime: |
|
904 | 903 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
905 | 904 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
906 | 905 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
907 | 906 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
908 | 907 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
909 | 908 | vmin=self.zmin, |
|
910 | 909 | vmax=self.zmax, |
|
911 | 910 | cmap=plt.get_cmap(self.colormap) |
|
912 | 911 | ) |
|
913 | 912 | |
|
914 | 913 | if self.showprofile: |
|
915 | 914 | ax.plt_profile = self.pf_axes[n].plot( |
|
916 | 915 | data['rti'][n], y)[0] |
|
917 | 916 | |
|
918 | 917 | |
|
919 | 918 | else: |
|
920 | 919 | ax.plt.set_array(z[n].T.ravel()) |
|
921 | 920 | if self.showprofile: |
|
922 | 921 | ax.plt_profile.set_data(data['rti'][n], y) |
|
923 | 922 | |
|
924 | 923 | |
|
925 | 924 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
926 | 925 | |
|
927 | 926 | |
|
928 | 927 | class NoiselessRTIPlot(Plot): |
|
929 | 928 | ''' |
|
930 | 929 | Plot for RTI data |
|
931 | 930 | ''' |
|
932 | 931 | |
|
933 | 932 | CODE = 'noiseless_rti' |
|
934 | 933 | colormap = 'jet' |
|
935 | 934 | plot_type = 'pcolorbuffer' |
|
936 | 935 | titles = None |
|
937 | 936 | channelList = [] |
|
938 | 937 | elevationList = [] |
|
939 | 938 | azimuthList = [] |
|
940 | 939 | last_noise = None |
|
941 | 940 | |
|
942 | 941 | def setup(self): |
|
943 | 942 | self.xaxis = 'time' |
|
944 | 943 | self.ncols = 1 |
|
945 | 944 | #print("dataChannels ",self.data.channels) |
|
946 | 945 | self.nrows = len(self.data.channels) |
|
947 | 946 | self.nplots = len(self.data.channels) |
|
948 | 947 | self.ylabel = 'Range [km]' |
|
949 | 948 | self.xlabel = 'Time' |
|
950 | 949 | self.cb_label = 'dB' |
|
951 | 950 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
952 | 951 | self.titles = ['{} Channel {}'.format( |
|
953 | 952 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
954 | 953 | |
|
955 | 954 | def update_list(self,dataOut): |
|
956 | 955 | if len(self.channelList) == 0: |
|
957 | 956 | self.channelList = dataOut.channelList |
|
958 | 957 | if len(self.elevationList) == 0: |
|
959 | 958 | self.elevationList = dataOut.elevationList |
|
960 | 959 | if len(self.azimuthList) == 0: |
|
961 | 960 | self.azimuthList = dataOut.azimuthList |
|
962 | 961 | |
|
963 | 962 | def update(self, dataOut): |
|
964 | 963 | if len(self.channelList) == 0: |
|
965 | 964 | self.update_list(dataOut) |
|
966 | 965 | data = {} |
|
967 | 966 | meta = {} |
|
968 | 967 | |
|
969 | 968 | |
|
970 | 969 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
971 | 970 | #print("Norm: ", norm) |
|
972 | 971 | #print(dataOut.nProfiles , dataOut.max_nIncohInt ,dataOut.nCohInt, dataOut.windowOfFilter) |
|
973 | 972 | n0 = 10*numpy.log10(dataOut.getNoise()/float(norm)) |
|
974 | 973 | |
|
975 | 974 | data['noise'] = n0 |
|
976 | 975 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
976 | ||
|
977 | 977 | data['noiseless_rti'] = dataOut.getPower() - noise |
|
978 | 978 | |
|
979 | 979 | return data, meta |
|
980 | 980 | |
|
981 | 981 | def plot(self): |
|
982 | 982 | |
|
983 | 983 | self.x = self.data.times |
|
984 | 984 | self.y = self.data.yrange |
|
985 | 985 | self.z = self.data['noiseless_rti'] |
|
986 | 986 | self.z = numpy.array(self.z, dtype=float) |
|
987 | 987 | self.z = numpy.ma.masked_invalid(self.z) |
|
988 | 988 | |
|
989 | 989 | |
|
990 | 990 | try: |
|
991 | 991 | if self.channelList != None: |
|
992 | 992 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
993 | 993 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
994 | 994 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
995 | 995 | else: |
|
996 | 996 | self.titles = ['{} Channel {}'.format( |
|
997 | 997 | self.CODE.upper(), x) for x in self.channelList] |
|
998 | 998 | except: |
|
999 | 999 | if self.channelList.any() != None: |
|
1000 | 1000 | |
|
1001 | 1001 | self.titles = ['{} Channel {}'.format( |
|
1002 | 1002 | self.CODE.upper(), x) for x in self.channelList] |
|
1003 | 1003 | |
|
1004 | 1004 | |
|
1005 | 1005 | if self.decimation is None: |
|
1006 | 1006 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1007 | 1007 | else: |
|
1008 | 1008 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1009 | 1009 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
1010 | 1010 | #print("plot shapes ", z.shape, x.shape, y.shape) |
|
1011 | 1011 | for n, ax in enumerate(self.axes): |
|
1012 | 1012 | |
|
1013 | 1013 | |
|
1014 | 1014 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
1015 | 1015 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
1016 | 1016 | data = self.data[-1] |
|
1017 | 1017 | if ax.firsttime: |
|
1018 | 1018 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1019 | 1019 | vmin=self.zmin, |
|
1020 | 1020 | vmax=self.zmax, |
|
1021 | 1021 | cmap=plt.get_cmap(self.colormap) |
|
1022 | 1022 | ) |
|
1023 | 1023 | if self.showprofile: |
|
1024 | 1024 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
1025 | 1025 | |
|
1026 | 1026 | else: |
|
1027 | 1027 | ax.collections.remove(ax.collections[0]) |
|
1028 | 1028 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1029 | 1029 | vmin=self.zmin, |
|
1030 | 1030 | vmax=self.zmax, |
|
1031 | 1031 | cmap=plt.get_cmap(self.colormap) |
|
1032 | 1032 | ) |
|
1033 | 1033 | if self.showprofile: |
|
1034 | 1034 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
1035 | 1035 | # if "noise" in self.data: |
|
1036 | 1036 | # #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
1037 | 1037 | # ax.plot_noise.set_data(data['noise'][n], self.y) |
|
1038 | 1038 | |
|
1039 | 1039 | |
|
1040 | 1040 | class OutliersRTIPlot(Plot): |
|
1041 | 1041 | ''' |
|
1042 | 1042 | Plot for data_xxxx object |
|
1043 | 1043 | ''' |
|
1044 | 1044 | |
|
1045 | 1045 | CODE = 'outlier_rtc' # Range Time Counts |
|
1046 | 1046 | colormap = 'cool' |
|
1047 | 1047 | plot_type = 'pcolorbuffer' |
|
1048 | 1048 | |
|
1049 | 1049 | def setup(self): |
|
1050 | 1050 | self.xaxis = 'time' |
|
1051 | 1051 | self.ncols = 1 |
|
1052 | 1052 | self.nrows = self.data.shape('outlier_rtc')[0] |
|
1053 | 1053 | self.nplots = self.nrows |
|
1054 | 1054 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1055 | 1055 | |
|
1056 | 1056 | |
|
1057 | 1057 | if not self.xlabel: |
|
1058 | 1058 | self.xlabel = 'Time' |
|
1059 | 1059 | |
|
1060 | 1060 | self.ylabel = 'Height [km]' |
|
1061 | 1061 | if not self.titles: |
|
1062 | 1062 | self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)] |
|
1063 | 1063 | |
|
1064 | 1064 | def update(self, dataOut): |
|
1065 | 1065 | |
|
1066 | 1066 | data = {} |
|
1067 | 1067 | data['outlier_rtc'] = dataOut.data_outlier |
|
1068 | 1068 | |
|
1069 | 1069 | meta = {} |
|
1070 | 1070 | |
|
1071 | 1071 | return data, meta |
|
1072 | 1072 | |
|
1073 | 1073 | def plot(self): |
|
1074 | 1074 | # self.data.normalize_heights() |
|
1075 | 1075 | self.x = self.data.times |
|
1076 | 1076 | self.y = self.data.yrange |
|
1077 | 1077 | self.z = self.data['outlier_rtc'] |
|
1078 | 1078 | |
|
1079 | 1079 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1080 | 1080 | |
|
1081 | 1081 | if self.decimation is None: |
|
1082 | 1082 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1083 | 1083 | else: |
|
1084 | 1084 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1085 | 1085 | |
|
1086 | 1086 | for n, ax in enumerate(self.axes): |
|
1087 | 1087 | |
|
1088 | 1088 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1089 | 1089 | self.z[n]) |
|
1090 | 1090 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1091 | 1091 | self.z[n]) |
|
1092 | 1092 | data = self.data[-1] |
|
1093 | 1093 | if ax.firsttime: |
|
1094 | 1094 | if self.zlimits is not None: |
|
1095 | 1095 | self.zmin, self.zmax = self.zlimits[n] |
|
1096 | 1096 | |
|
1097 | 1097 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1098 | 1098 | vmin=self.zmin, |
|
1099 | 1099 | vmax=self.zmax, |
|
1100 | 1100 | cmap=self.cmaps[n] |
|
1101 | 1101 | ) |
|
1102 | 1102 | if self.showprofile: |
|
1103 | 1103 | ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0] |
|
1104 | 1104 | self.pf_axes[n].set_xlabel('') |
|
1105 | 1105 | else: |
|
1106 | 1106 | if self.zlimits is not None: |
|
1107 | 1107 | self.zmin, self.zmax = self.zlimits[n] |
|
1108 | 1108 | ax.collections.remove(ax.collections[0]) |
|
1109 | 1109 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1110 | 1110 | vmin=self.zmin, |
|
1111 | 1111 | vmax=self.zmax, |
|
1112 | 1112 | cmap=self.cmaps[n] |
|
1113 | 1113 | ) |
|
1114 | 1114 | if self.showprofile: |
|
1115 | 1115 | ax.plot_profile.set_data(data['outlier_rtc'][n], self.y) |
|
1116 | 1116 | self.pf_axes[n].set_xlabel('') |
|
1117 | 1117 | |
|
1118 | 1118 | class NIncohIntRTIPlot(Plot): |
|
1119 | 1119 | ''' |
|
1120 | 1120 | Plot for data_xxxx object |
|
1121 | 1121 | ''' |
|
1122 | 1122 | |
|
1123 | 1123 | CODE = 'integrations_rtc' # Range Time Counts |
|
1124 | 1124 | colormap = 'BuGn' |
|
1125 | 1125 | plot_type = 'pcolorbuffer' |
|
1126 | 1126 | |
|
1127 | 1127 | def setup(self): |
|
1128 | 1128 | self.xaxis = 'time' |
|
1129 | 1129 | self.ncols = 1 |
|
1130 | 1130 | self.nrows = self.data.shape('integrations_rtc')[0] |
|
1131 | 1131 | self.nplots = self.nrows |
|
1132 | 1132 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1133 | 1133 | |
|
1134 | 1134 | |
|
1135 | 1135 | if not self.xlabel: |
|
1136 | 1136 | self.xlabel = 'Time' |
|
1137 | 1137 | |
|
1138 | 1138 | self.ylabel = 'Height [km]' |
|
1139 | 1139 | if not self.titles: |
|
1140 | 1140 | self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)] |
|
1141 | 1141 | |
|
1142 | 1142 | def update(self, dataOut): |
|
1143 | 1143 | |
|
1144 | 1144 | data = {} |
|
1145 | 1145 | data['integrations_rtc'] = dataOut.nIncohInt |
|
1146 | 1146 | |
|
1147 | 1147 | meta = {} |
|
1148 | 1148 | |
|
1149 | 1149 | return data, meta |
|
1150 | 1150 | |
|
1151 | 1151 | def plot(self): |
|
1152 | 1152 | # self.data.normalize_heights() |
|
1153 | 1153 | self.x = self.data.times |
|
1154 | 1154 | self.y = self.data.yrange |
|
1155 | 1155 | self.z = self.data['integrations_rtc'] |
|
1156 | 1156 | |
|
1157 | 1157 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1158 | 1158 | |
|
1159 | 1159 | if self.decimation is None: |
|
1160 | 1160 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1161 | 1161 | else: |
|
1162 | 1162 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1163 | 1163 | |
|
1164 | 1164 | for n, ax in enumerate(self.axes): |
|
1165 | 1165 | |
|
1166 | 1166 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1167 | 1167 | self.z[n]) |
|
1168 | 1168 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1169 | 1169 | self.z[n]) |
|
1170 | 1170 | data = self.data[-1] |
|
1171 | 1171 | if ax.firsttime: |
|
1172 | 1172 | if self.zlimits is not None: |
|
1173 | 1173 | self.zmin, self.zmax = self.zlimits[n] |
|
1174 | 1174 | |
|
1175 | 1175 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1176 | 1176 | vmin=self.zmin, |
|
1177 | 1177 | vmax=self.zmax, |
|
1178 | 1178 | cmap=self.cmaps[n] |
|
1179 | 1179 | ) |
|
1180 | 1180 | if self.showprofile: |
|
1181 | 1181 | ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0] |
|
1182 | 1182 | self.pf_axes[n].set_xlabel('') |
|
1183 | 1183 | else: |
|
1184 | 1184 | if self.zlimits is not None: |
|
1185 | 1185 | self.zmin, self.zmax = self.zlimits[n] |
|
1186 | 1186 | ax.collections.remove(ax.collections[0]) |
|
1187 | 1187 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1188 | 1188 | vmin=self.zmin, |
|
1189 | 1189 | vmax=self.zmax, |
|
1190 | 1190 | cmap=self.cmaps[n] |
|
1191 | 1191 | ) |
|
1192 | 1192 | if self.showprofile: |
|
1193 | 1193 | ax.plot_profile.set_data(data['integrations_rtc'][n], self.y) |
|
1194 | 1194 | self.pf_axes[n].set_xlabel('') |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,2154 +1,2155 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | import math |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
18 | 18 | from schainpy.model.data.jrodata import Spectra |
|
19 | 19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
20 | 20 | from schainpy.model.data import _noise |
|
21 | 21 | |
|
22 | 22 | from schainpy.utils import log |
|
23 | 23 | import matplotlib.pyplot as plt |
|
24 | 24 | #from scipy.optimize import curve_fit |
|
25 | 25 | from schainpy.model.io.utils import getHei_index |
|
26 | 26 | |
|
27 | 27 | class SpectraProc(ProcessingUnit): |
|
28 | 28 | |
|
29 | 29 | def __init__(self): |
|
30 | 30 | |
|
31 | 31 | ProcessingUnit.__init__(self) |
|
32 | 32 | |
|
33 | 33 | self.buffer = None |
|
34 | 34 | self.firstdatatime = None |
|
35 | 35 | self.profIndex = 0 |
|
36 | 36 | self.dataOut = Spectra() |
|
37 | 37 | self.id_min = None |
|
38 | 38 | self.id_max = None |
|
39 | 39 | self.setupReq = False #Agregar a todas las unidades de proc |
|
40 | 40 | |
|
41 | 41 | def __updateSpecFromVoltage(self): |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | |
|
45 | 45 | self.dataOut.timeZone = self.dataIn.timeZone |
|
46 | 46 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
47 | 47 | self.dataOut.errorCount = self.dataIn.errorCount |
|
48 | 48 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
49 | 49 | try: |
|
50 | 50 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
51 | 51 | except: |
|
52 | 52 | pass |
|
53 | 53 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
54 | 54 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
55 | 55 | self.dataOut.channelList = self.dataIn.channelList |
|
56 | 56 | self.dataOut.heightList = self.dataIn.heightList |
|
57 | 57 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
58 | 58 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
59 | 59 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
60 | 60 | self.dataOut.utctime = self.firstdatatime |
|
61 | 61 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
62 | 62 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
63 | 63 | self.dataOut.flagShiftFFT = False |
|
64 | 64 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
65 | 65 | self.dataOut.nIncohInt = 1 |
|
66 | 66 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
67 | 67 | self.dataOut.frequency = self.dataIn.frequency |
|
68 | 68 | self.dataOut.realtime = self.dataIn.realtime |
|
69 | 69 | self.dataOut.azimuth = self.dataIn.azimuth |
|
70 | 70 | self.dataOut.zenith = self.dataIn.zenith |
|
71 | 71 | self.dataOut.codeList = self.dataIn.codeList |
|
72 | 72 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
73 | 73 | self.dataOut.elevationList = self.dataIn.elevationList |
|
74 | 74 | |
|
75 | 75 | |
|
76 | 76 | def __getFft(self): |
|
77 | 77 | # print("fft donw") |
|
78 | 78 | """ |
|
79 | 79 | Convierte valores de Voltaje a Spectra |
|
80 | 80 | |
|
81 | 81 | Affected: |
|
82 | 82 | self.dataOut.data_spc |
|
83 | 83 | self.dataOut.data_cspc |
|
84 | 84 | self.dataOut.data_dc |
|
85 | 85 | self.dataOut.heightList |
|
86 | 86 | self.profIndex |
|
87 | 87 | self.buffer |
|
88 | 88 | self.dataOut.flagNoData |
|
89 | 89 | """ |
|
90 | 90 | fft_volt = numpy.fft.fft( |
|
91 | 91 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
92 | 92 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
93 | 93 | dc = fft_volt[:, 0, :] |
|
94 | 94 | |
|
95 | 95 | # calculo de self-spectra |
|
96 | 96 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
97 | 97 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
98 | 98 | spc = spc.real |
|
99 | 99 | |
|
100 | 100 | blocksize = 0 |
|
101 | 101 | blocksize += dc.size |
|
102 | 102 | blocksize += spc.size |
|
103 | 103 | |
|
104 | 104 | cspc = None |
|
105 | 105 | pairIndex = 0 |
|
106 | 106 | if self.dataOut.pairsList != None: |
|
107 | 107 | # calculo de cross-spectra |
|
108 | 108 | cspc = numpy.zeros( |
|
109 | 109 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
110 | 110 | for pair in self.dataOut.pairsList: |
|
111 | 111 | if pair[0] not in self.dataOut.channelList: |
|
112 | 112 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
113 | 113 | str(pair), str(self.dataOut.channelList))) |
|
114 | 114 | if pair[1] not in self.dataOut.channelList: |
|
115 | 115 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
116 | 116 | str(pair), str(self.dataOut.channelList))) |
|
117 | 117 | |
|
118 | 118 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
119 | 119 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
120 | 120 | pairIndex += 1 |
|
121 | 121 | blocksize += cspc.size |
|
122 | 122 | |
|
123 | 123 | self.dataOut.data_spc = spc |
|
124 | 124 | self.dataOut.data_cspc = cspc |
|
125 | 125 | self.dataOut.data_dc = dc |
|
126 | 126 | self.dataOut.blockSize = blocksize |
|
127 | 127 | self.dataOut.flagShiftFFT = False |
|
128 | 128 | |
|
129 | 129 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, zeroPad=False): |
|
130 | 130 | #print("run spc proc") |
|
131 | 131 | try: |
|
132 | 132 | type = self.dataIn.type.decode("utf-8") |
|
133 | 133 | self.dataIn.type = type |
|
134 | 134 | except: |
|
135 | 135 | pass |
|
136 | 136 | if self.dataIn.type == "Spectra": |
|
137 | 137 | |
|
138 | 138 | try: |
|
139 | 139 | self.dataOut.copy(self.dataIn) |
|
140 | 140 | |
|
141 | 141 | except Exception as e: |
|
142 | 142 | print("Error dataIn ",e) |
|
143 | 143 | |
|
144 | 144 | if shift_fft: |
|
145 | 145 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
146 | 146 | shift = int(self.dataOut.nFFTPoints/2) |
|
147 | 147 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
148 | 148 | |
|
149 | 149 | if self.dataOut.data_cspc is not None: |
|
150 | 150 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
151 | 151 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
152 | 152 | if pairsList: |
|
153 | 153 | self.__selectPairs(pairsList) |
|
154 | 154 | |
|
155 | 155 | |
|
156 | 156 | elif self.dataIn.type == "Voltage": |
|
157 | 157 | |
|
158 | 158 | self.dataOut.flagNoData = True |
|
159 | 159 | |
|
160 | 160 | if nFFTPoints == None: |
|
161 | 161 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
162 | 162 | |
|
163 | 163 | if nProfiles == None: |
|
164 | 164 | nProfiles = nFFTPoints |
|
165 | 165 | |
|
166 | 166 | if ippFactor == None: |
|
167 | 167 | self.dataOut.ippFactor = 1 |
|
168 | 168 | |
|
169 | 169 | self.dataOut.nFFTPoints = nFFTPoints |
|
170 | 170 | #print(" volts ch,prof, h: ", self.dataIn.data.shape) |
|
171 | 171 | if self.buffer is None: |
|
172 | 172 | if not zeroPad: |
|
173 | 173 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
174 | 174 | nProfiles, |
|
175 | 175 | self.dataIn.nHeights), |
|
176 | 176 | dtype='complex') |
|
177 | 177 | else: |
|
178 | 178 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
179 | 179 | nFFTPoints, |
|
180 | 180 | self.dataIn.nHeights), |
|
181 | 181 | dtype='complex') |
|
182 | 182 | |
|
183 | 183 | if self.dataIn.flagDataAsBlock: |
|
184 | 184 | nVoltProfiles = self.dataIn.data.shape[1] |
|
185 | 185 | |
|
186 | 186 | if nVoltProfiles == nProfiles or zeroPad: |
|
187 | 187 | self.buffer = self.dataIn.data.copy() |
|
188 | 188 | self.profIndex = nVoltProfiles |
|
189 | 189 | |
|
190 | 190 | elif nVoltProfiles < nProfiles: |
|
191 | 191 | |
|
192 | 192 | if self.profIndex == 0: |
|
193 | 193 | self.id_min = 0 |
|
194 | 194 | self.id_max = nVoltProfiles |
|
195 | 195 | |
|
196 | 196 | self.buffer[:, self.id_min:self.id_max, |
|
197 | 197 | :] = self.dataIn.data |
|
198 | 198 | self.profIndex += nVoltProfiles |
|
199 | 199 | self.id_min += nVoltProfiles |
|
200 | 200 | self.id_max += nVoltProfiles |
|
201 | 201 | else: |
|
202 | 202 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
203 | 203 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
204 | 204 | self.dataOut.flagNoData = True |
|
205 | 205 | else: |
|
206 | 206 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
207 | 207 | self.profIndex += 1 |
|
208 | 208 | |
|
209 | 209 | if self.firstdatatime == None: |
|
210 | 210 | self.firstdatatime = self.dataIn.utctime |
|
211 | 211 | |
|
212 | 212 | if self.profIndex == nProfiles or zeroPad: |
|
213 | 213 | |
|
214 | 214 | self.__updateSpecFromVoltage() |
|
215 | 215 | |
|
216 | 216 | if pairsList == None: |
|
217 | 217 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
218 | 218 | else: |
|
219 | 219 | self.dataOut.pairsList = pairsList |
|
220 | 220 | self.__getFft() |
|
221 | 221 | self.dataOut.flagNoData = False |
|
222 | 222 | self.firstdatatime = None |
|
223 | 223 | self.profIndex = 0 |
|
224 | 224 | |
|
225 | 225 | elif self.dataIn.type == "Parameters": |
|
226 | 226 | |
|
227 | 227 | self.dataOut.data_spc = self.dataIn.data_spc |
|
228 | 228 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
229 | 229 | self.dataOut.data_outlier = self.dataIn.data_outlier |
|
230 | 230 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
231 | 231 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
232 | 232 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
233 | 233 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
234 | 234 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt |
|
235 | 235 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
236 | 236 | self.dataOut.ipp = self.dataIn.ipp |
|
237 | 237 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
238 | 238 | #self.dataOut.spc_noise = self.dataIn.getNoise() |
|
239 | 239 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
240 | 240 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
241 | 241 | if hasattr(self.dataIn, 'channelList'): |
|
242 | 242 | self.dataOut.channelList = self.dataIn.channelList |
|
243 | 243 | if hasattr(self.dataIn, 'pairsList'): |
|
244 | 244 | self.dataOut.pairsList = self.dataIn.pairsList |
|
245 | 245 | self.dataOut.groupList = self.dataIn.pairsList |
|
246 | 246 | |
|
247 | 247 | self.dataOut.flagNoData = False |
|
248 | 248 | |
|
249 | 249 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
250 | 250 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
251 | 251 | else: self.dataOut.ChanDist = None |
|
252 | 252 | |
|
253 | 253 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
254 | 254 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
255 | 255 | #else: self.dataOut.VelRange = None |
|
256 | 256 | |
|
257 | 257 | |
|
258 | 258 | |
|
259 | 259 | else: |
|
260 | 260 | raise ValueError("The type of input object {} is not valid".format( |
|
261 | 261 | self.dataIn.type)) |
|
262 | ||
|
262 | #print("spc proc Done") | |
|
263 | 263 | |
|
264 | 264 | def __selectPairs(self, pairsList): |
|
265 | 265 | |
|
266 | 266 | if not pairsList: |
|
267 | 267 | return |
|
268 | 268 | |
|
269 | 269 | pairs = [] |
|
270 | 270 | pairsIndex = [] |
|
271 | 271 | |
|
272 | 272 | for pair in pairsList: |
|
273 | 273 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
274 | 274 | continue |
|
275 | 275 | pairs.append(pair) |
|
276 | 276 | pairsIndex.append(pairs.index(pair)) |
|
277 | 277 | |
|
278 | 278 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
279 | 279 | self.dataOut.pairsList = pairs |
|
280 | 280 | |
|
281 | 281 | return |
|
282 | 282 | |
|
283 | 283 | def selectFFTs(self, minFFT, maxFFT ): |
|
284 | 284 | """ |
|
285 | 285 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
286 | 286 | minFFT<= FFT <= maxFFT |
|
287 | 287 | """ |
|
288 | 288 | |
|
289 | 289 | if (minFFT > maxFFT): |
|
290 | 290 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
291 | 291 | |
|
292 | 292 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
293 | 293 | minFFT = self.dataOut.getFreqRange()[0] |
|
294 | 294 | |
|
295 | 295 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
296 | 296 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
297 | 297 | |
|
298 | 298 | minIndex = 0 |
|
299 | 299 | maxIndex = 0 |
|
300 | 300 | FFTs = self.dataOut.getFreqRange() |
|
301 | 301 | |
|
302 | 302 | inda = numpy.where(FFTs >= minFFT) |
|
303 | 303 | indb = numpy.where(FFTs <= maxFFT) |
|
304 | 304 | |
|
305 | 305 | try: |
|
306 | 306 | minIndex = inda[0][0] |
|
307 | 307 | except: |
|
308 | 308 | minIndex = 0 |
|
309 | 309 | |
|
310 | 310 | try: |
|
311 | 311 | maxIndex = indb[0][-1] |
|
312 | 312 | except: |
|
313 | 313 | maxIndex = len(FFTs) |
|
314 | 314 | |
|
315 | 315 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
316 | 316 | |
|
317 | 317 | return 1 |
|
318 | 318 | |
|
319 | 319 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
320 | 320 | newheis = numpy.where( |
|
321 | 321 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
322 | 322 | |
|
323 | 323 | if hei_ref != None: |
|
324 | 324 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
325 | 325 | |
|
326 | 326 | minIndex = min(newheis[0]) |
|
327 | 327 | maxIndex = max(newheis[0]) |
|
328 | 328 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
329 | 329 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
330 | 330 | |
|
331 | 331 | # determina indices |
|
332 | 332 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
333 | 333 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
334 | 334 | avg_dB = 10 * \ |
|
335 | 335 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
336 | 336 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
337 | 337 | beacon_heiIndexList = [] |
|
338 | 338 | for val in avg_dB.tolist(): |
|
339 | 339 | if val >= beacon_dB[0]: |
|
340 | 340 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
341 | 341 | |
|
342 | 342 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
343 | 343 | data_cspc = None |
|
344 | 344 | if self.dataOut.data_cspc is not None: |
|
345 | 345 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
346 | 346 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
347 | 347 | |
|
348 | 348 | data_dc = None |
|
349 | 349 | if self.dataOut.data_dc is not None: |
|
350 | 350 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
351 | 351 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
352 | 352 | |
|
353 | 353 | self.dataOut.data_spc = data_spc |
|
354 | 354 | self.dataOut.data_cspc = data_cspc |
|
355 | 355 | self.dataOut.data_dc = data_dc |
|
356 | 356 | self.dataOut.heightList = heightList |
|
357 | 357 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
358 | 358 | |
|
359 | 359 | return 1 |
|
360 | 360 | |
|
361 | 361 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
362 | 362 | """ |
|
363 | 363 | |
|
364 | 364 | """ |
|
365 | 365 | |
|
366 | 366 | if (minIndex < 0) or (minIndex > maxIndex): |
|
367 | 367 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
368 | 368 | |
|
369 | 369 | if (maxIndex >= self.dataOut.nProfiles): |
|
370 | 370 | maxIndex = self.dataOut.nProfiles-1 |
|
371 | 371 | |
|
372 | 372 | #Spectra |
|
373 | 373 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
374 | 374 | |
|
375 | 375 | data_cspc = None |
|
376 | 376 | if self.dataOut.data_cspc is not None: |
|
377 | 377 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
378 | 378 | |
|
379 | 379 | data_dc = None |
|
380 | 380 | if self.dataOut.data_dc is not None: |
|
381 | 381 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
382 | 382 | |
|
383 | 383 | self.dataOut.data_spc = data_spc |
|
384 | 384 | self.dataOut.data_cspc = data_cspc |
|
385 | 385 | self.dataOut.data_dc = data_dc |
|
386 | 386 | |
|
387 | 387 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
388 | 388 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
389 | 389 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
390 | 390 | |
|
391 | 391 | return 1 |
|
392 | 392 | |
|
393 | 393 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
394 | 394 | # validacion de rango |
|
395 | 395 | if minHei == None: |
|
396 | 396 | minHei = self.dataOut.heightList[0] |
|
397 | 397 | |
|
398 | 398 | if maxHei == None: |
|
399 | 399 | maxHei = self.dataOut.heightList[-1] |
|
400 | 400 | |
|
401 | 401 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
402 | 402 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
403 | 403 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
404 | 404 | minHei = self.dataOut.heightList[0] |
|
405 | 405 | |
|
406 | 406 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
407 | 407 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
408 | 408 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
409 | 409 | maxHei = self.dataOut.heightList[-1] |
|
410 | 410 | |
|
411 | 411 | # validacion de velocidades |
|
412 | 412 | velrange = self.dataOut.getVelRange(1) |
|
413 | 413 | |
|
414 | 414 | if minVel == None: |
|
415 | 415 | minVel = velrange[0] |
|
416 | 416 | |
|
417 | 417 | if maxVel == None: |
|
418 | 418 | maxVel = velrange[-1] |
|
419 | 419 | |
|
420 | 420 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
421 | 421 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
422 | 422 | print('minVel is setting to %.2f' % (velrange[0])) |
|
423 | 423 | minVel = velrange[0] |
|
424 | 424 | |
|
425 | 425 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
426 | 426 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
427 | 427 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
428 | 428 | maxVel = velrange[-1] |
|
429 | 429 | |
|
430 | 430 | # seleccion de indices para rango |
|
431 | 431 | minIndex = 0 |
|
432 | 432 | maxIndex = 0 |
|
433 | 433 | heights = self.dataOut.heightList |
|
434 | 434 | |
|
435 | 435 | inda = numpy.where(heights >= minHei) |
|
436 | 436 | indb = numpy.where(heights <= maxHei) |
|
437 | 437 | |
|
438 | 438 | try: |
|
439 | 439 | minIndex = inda[0][0] |
|
440 | 440 | except: |
|
441 | 441 | minIndex = 0 |
|
442 | 442 | |
|
443 | 443 | try: |
|
444 | 444 | maxIndex = indb[0][-1] |
|
445 | 445 | except: |
|
446 | 446 | maxIndex = len(heights) |
|
447 | 447 | |
|
448 | 448 | if (minIndex < 0) or (minIndex > maxIndex): |
|
449 | 449 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
450 | 450 | minIndex, maxIndex)) |
|
451 | 451 | |
|
452 | 452 | if (maxIndex >= self.dataOut.nHeights): |
|
453 | 453 | maxIndex = self.dataOut.nHeights - 1 |
|
454 | 454 | |
|
455 | 455 | # seleccion de indices para velocidades |
|
456 | 456 | indminvel = numpy.where(velrange >= minVel) |
|
457 | 457 | indmaxvel = numpy.where(velrange <= maxVel) |
|
458 | 458 | try: |
|
459 | 459 | minIndexVel = indminvel[0][0] |
|
460 | 460 | except: |
|
461 | 461 | minIndexVel = 0 |
|
462 | 462 | |
|
463 | 463 | try: |
|
464 | 464 | maxIndexVel = indmaxvel[0][-1] |
|
465 | 465 | except: |
|
466 | 466 | maxIndexVel = len(velrange) |
|
467 | 467 | |
|
468 | 468 | # seleccion del espectro |
|
469 | 469 | data_spc = self.dataOut.data_spc[:, |
|
470 | 470 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
471 | 471 | # estimacion de ruido |
|
472 | 472 | noise = numpy.zeros(self.dataOut.nChannels) |
|
473 | 473 | |
|
474 | 474 | for channel in range(self.dataOut.nChannels): |
|
475 | 475 | daux = data_spc[channel, :, :] |
|
476 | 476 | sortdata = numpy.sort(daux, axis=None) |
|
477 | 477 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
478 | 478 | |
|
479 | 479 | self.dataOut.noise_estimation = noise.copy() |
|
480 | 480 | |
|
481 | 481 | return 1 |
|
482 | 482 | |
|
483 | 483 | class removeDC(Operation): |
|
484 | 484 | |
|
485 | 485 | def run(self, dataOut, mode=2): |
|
486 | 486 | self.dataOut = dataOut |
|
487 | 487 | jspectra = self.dataOut.data_spc |
|
488 | 488 | jcspectra = self.dataOut.data_cspc |
|
489 | 489 | |
|
490 | 490 | num_chan = jspectra.shape[0] |
|
491 | 491 | num_hei = jspectra.shape[2] |
|
492 | 492 | |
|
493 | 493 | if jcspectra is not None: |
|
494 | 494 | jcspectraExist = True |
|
495 | 495 | num_pairs = jcspectra.shape[0] |
|
496 | 496 | else: |
|
497 | 497 | jcspectraExist = False |
|
498 | 498 | |
|
499 | 499 | freq_dc = int(jspectra.shape[1] / 2) |
|
500 | 500 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
501 | 501 | ind_vel = ind_vel.astype(int) |
|
502 | 502 | |
|
503 | 503 | if ind_vel[0] < 0: |
|
504 | 504 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
505 | 505 | |
|
506 | 506 | if mode == 1: |
|
507 | 507 | jspectra[:, freq_dc, :] = ( |
|
508 | 508 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
509 | 509 | |
|
510 | 510 | if jcspectraExist: |
|
511 | 511 | jcspectra[:, freq_dc, :] = ( |
|
512 | 512 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
513 | 513 | |
|
514 | 514 | if mode == 2: |
|
515 | 515 | |
|
516 | 516 | vel = numpy.array([-2, -1, 1, 2]) |
|
517 | 517 | xx = numpy.zeros([4, 4]) |
|
518 | 518 | |
|
519 | 519 | for fil in range(4): |
|
520 | 520 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
521 | 521 | |
|
522 | 522 | xx_inv = numpy.linalg.inv(xx) |
|
523 | 523 | xx_aux = xx_inv[0, :] |
|
524 | 524 | |
|
525 | 525 | for ich in range(num_chan): |
|
526 | 526 | yy = jspectra[ich, ind_vel, :] |
|
527 | 527 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
528 | 528 | |
|
529 | 529 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
530 | 530 | cjunkid = sum(junkid) |
|
531 | 531 | |
|
532 | 532 | if cjunkid.any(): |
|
533 | 533 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
534 | 534 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
535 | 535 | |
|
536 | 536 | if jcspectraExist: |
|
537 | 537 | for ip in range(num_pairs): |
|
538 | 538 | yy = jcspectra[ip, ind_vel, :] |
|
539 | 539 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
540 | 540 | |
|
541 | 541 | self.dataOut.data_spc = jspectra |
|
542 | 542 | self.dataOut.data_cspc = jcspectra |
|
543 | 543 | |
|
544 | 544 | return self.dataOut |
|
545 | 545 | |
|
546 | 546 | class getNoiseB(Operation): |
|
547 | 547 | |
|
548 | 548 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') |
|
549 | 549 | def __init__(self): |
|
550 | 550 | |
|
551 | 551 | Operation.__init__(self) |
|
552 | 552 | self.isConfig = False |
|
553 | 553 | |
|
554 | 554 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
555 | 555 | |
|
556 | 556 | self.warnings = warnings |
|
557 | 557 | if minHei == None: |
|
558 | 558 | minHei = self.dataOut.heightList[0] |
|
559 | 559 | |
|
560 | 560 | if maxHei == None: |
|
561 | 561 | maxHei = self.dataOut.heightList[-1] |
|
562 | 562 | |
|
563 | 563 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
564 | 564 | if self.warnings: |
|
565 | 565 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
566 | 566 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
567 | 567 | minHei = self.dataOut.heightList[0] |
|
568 | 568 | |
|
569 | 569 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
570 | 570 | if self.warnings: |
|
571 | 571 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
572 | 572 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
573 | 573 | maxHei = self.dataOut.heightList[-1] |
|
574 | 574 | |
|
575 | 575 | |
|
576 | 576 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
577 | 577 | minIndexFFT = 0 |
|
578 | 578 | maxIndexFFT = 0 |
|
579 | 579 | # validacion de velocidades |
|
580 | 580 | indminPoint = None |
|
581 | 581 | indmaxPoint = None |
|
582 | 582 | if self.dataOut.type == 'Spectra': |
|
583 | 583 | if minVel == None and maxVel == None : |
|
584 | 584 | |
|
585 | 585 | freqrange = self.dataOut.getFreqRange(1) |
|
586 | 586 | |
|
587 | 587 | if minFreq == None: |
|
588 | 588 | minFreq = freqrange[0] |
|
589 | 589 | |
|
590 | 590 | if maxFreq == None: |
|
591 | 591 | maxFreq = freqrange[-1] |
|
592 | 592 | |
|
593 | 593 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
594 | 594 | if self.warnings: |
|
595 | 595 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
596 | 596 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
597 | 597 | minFreq = freqrange[0] |
|
598 | 598 | |
|
599 | 599 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
600 | 600 | if self.warnings: |
|
601 | 601 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
602 | 602 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
603 | 603 | maxFreq = freqrange[-1] |
|
604 | 604 | |
|
605 | 605 | indminPoint = numpy.where(freqrange >= minFreq) |
|
606 | 606 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
607 | 607 | |
|
608 | 608 | else: |
|
609 | 609 | |
|
610 | 610 | velrange = self.dataOut.getVelRange(1) |
|
611 | 611 | |
|
612 | 612 | if minVel == None: |
|
613 | 613 | minVel = velrange[0] |
|
614 | 614 | |
|
615 | 615 | if maxVel == None: |
|
616 | 616 | maxVel = velrange[-1] |
|
617 | 617 | |
|
618 | 618 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
619 | 619 | if self.warnings: |
|
620 | 620 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
621 | 621 | print('minVel is setting to %.2f' % (velrange[0])) |
|
622 | 622 | minVel = velrange[0] |
|
623 | 623 | |
|
624 | 624 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
625 | 625 | if self.warnings: |
|
626 | 626 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
627 | 627 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
628 | 628 | maxVel = velrange[-1] |
|
629 | 629 | |
|
630 | 630 | indminPoint = numpy.where(velrange >= minVel) |
|
631 | 631 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
632 | 632 | |
|
633 | 633 | |
|
634 | 634 | # seleccion de indices para rango |
|
635 | 635 | minIndex = 0 |
|
636 | 636 | maxIndex = 0 |
|
637 | 637 | heights = self.dataOut.heightList |
|
638 | 638 | |
|
639 | 639 | inda = numpy.where(heights >= minHei) |
|
640 | 640 | indb = numpy.where(heights <= maxHei) |
|
641 | 641 | |
|
642 | 642 | try: |
|
643 | 643 | minIndex = inda[0][0] |
|
644 | 644 | except: |
|
645 | 645 | minIndex = 0 |
|
646 | 646 | |
|
647 | 647 | try: |
|
648 | 648 | maxIndex = indb[0][-1] |
|
649 | 649 | except: |
|
650 | 650 | maxIndex = len(heights) |
|
651 | 651 | |
|
652 | 652 | if (minIndex < 0) or (minIndex > maxIndex): |
|
653 | 653 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
654 | 654 | minIndex, maxIndex)) |
|
655 | 655 | |
|
656 | 656 | if (maxIndex >= self.dataOut.nHeights): |
|
657 | 657 | maxIndex = self.dataOut.nHeights - 1 |
|
658 | 658 | #############################################################3 |
|
659 | 659 | # seleccion de indices para velocidades |
|
660 | 660 | if self.dataOut.type == 'Spectra': |
|
661 | 661 | try: |
|
662 | 662 | minIndexFFT = indminPoint[0][0] |
|
663 | 663 | except: |
|
664 | 664 | minIndexFFT = 0 |
|
665 | 665 | |
|
666 | 666 | try: |
|
667 | 667 | maxIndexFFT = indmaxPoint[0][-1] |
|
668 | 668 | except: |
|
669 | 669 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
670 | 670 | |
|
671 | 671 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT |
|
672 | 672 | self.isConfig = True |
|
673 | 673 | self.offset = 1 |
|
674 | 674 | if offset!=None: |
|
675 | 675 | self.offset = 10**(offset/10) |
|
676 | 676 | #print("config getNoiseB Done") |
|
677 | 677 | |
|
678 | 678 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
679 | 679 | self.dataOut = dataOut |
|
680 | 680 | |
|
681 | 681 | if not self.isConfig: |
|
682 | 682 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) |
|
683 | 683 | |
|
684 | 684 | self.dataOut.noise_estimation = None |
|
685 | 685 | noise = None |
|
686 | 686 | if self.dataOut.type == 'Voltage': |
|
687 | 687 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
688 | 688 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) |
|
689 | 689 | elif self.dataOut.type == 'Spectra': |
|
690 | 690 | #print(self.minIndex, self.maxIndex,self.minIndexFFT, self.maxIndexFFT, self.dataOut.nIncohInt) |
|
691 | 691 | noise = numpy.zeros( self.dataOut.nChannels) |
|
692 | 692 | norm = 1 |
|
693 | 693 | |
|
694 | 694 | for channel in range( self.dataOut.nChannels): |
|
695 | 695 | if not hasattr(self.dataOut.nIncohInt,'__len__'): |
|
696 | 696 | norm = 1 |
|
697 | 697 | else: |
|
698 | 698 | norm = self.dataOut.max_nIncohInt/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] |
|
699 | 699 | #print("norm nIncoh: ", norm ,self.dataOut.data_spc.shape) |
|
700 | 700 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] |
|
701 | 701 | daux = numpy.multiply(daux, norm) |
|
702 | 702 | #print("offset: ", self.offset, 10*numpy.log10(self.offset)) |
|
703 | 703 | # noise[channel] = self.getNoiseByMean(daux)/self.offset |
|
704 | 704 | #print(daux.shape, daux) |
|
705 | 705 | #noise[channel] = self.getNoiseByHS(daux, self.dataOut.max_nIncohInt)/self.offset |
|
706 | 706 | sortdata = numpy.sort(daux, axis=None) |
|
707 | 707 | noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt)/self.offset |
|
708 | 708 | # data = numpy.mean(daux,axis=1) |
|
709 | 709 | # sortdata = numpy.sort(data, axis=None) |
|
710 | 710 | # noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt)/self.offset |
|
711 | 711 | |
|
712 | 712 | #noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
713 | 713 | else: |
|
714 | 714 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
715 | 715 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise |
|
716 | 716 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) |
|
717 | ||
|
717 | #print("2: ",self.dataOut.noise_estimation) | |
|
718 | 718 | #print(self.dataOut.flagNoData) |
|
719 | 719 | #print("getNoise Done", noise) |
|
720 | 720 | return self.dataOut |
|
721 | 721 | |
|
722 | 722 | def getNoiseByMean(self,data): |
|
723 | 723 | #data debe estar ordenado |
|
724 | 724 | data = numpy.mean(data,axis=1) |
|
725 | 725 | sortdata = numpy.sort(data, axis=None) |
|
726 | 726 | #sortID=data.argsort() |
|
727 | 727 | #print(data.shape) |
|
728 | 728 | |
|
729 | 729 | pnoise = None |
|
730 | 730 | j = 0 |
|
731 | 731 | |
|
732 | 732 | mean = numpy.mean(sortdata) |
|
733 | 733 | min = numpy.min(sortdata) |
|
734 | 734 | delta = mean - min |
|
735 | 735 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes |
|
736 | 736 | #print(len(indexes)) |
|
737 | 737 | if len(indexes)==0: |
|
738 | 738 | pnoise = numpy.mean(sortdata) |
|
739 | 739 | else: |
|
740 | 740 | j = indexes[0] |
|
741 | 741 | pnoise = numpy.mean(sortdata[0:j]) |
|
742 | 742 | |
|
743 | 743 | # from matplotlib import pyplot as plt |
|
744 | 744 | # plt.plot(sortdata) |
|
745 | 745 | # plt.vlines(j,(pnoise-delta),(pnoise+delta), color='r') |
|
746 | 746 | # plt.show() |
|
747 | 747 | #print("noise: ", 10*numpy.log10(pnoise)) |
|
748 | 748 | return pnoise |
|
749 | 749 | |
|
750 | 750 | def getNoiseByHS(self,data, navg): |
|
751 | 751 | #data debe estar ordenado |
|
752 | 752 | #data = numpy.mean(data,axis=1) |
|
753 | 753 | sortdata = numpy.sort(data, axis=None) |
|
754 | 754 | |
|
755 | 755 | lenOfData = len(sortdata) |
|
756 | 756 | nums_min = lenOfData*0.2 |
|
757 | 757 | |
|
758 | 758 | if nums_min <= 5: |
|
759 | 759 | |
|
760 | 760 | nums_min = 5 |
|
761 | 761 | |
|
762 | 762 | sump = 0. |
|
763 | 763 | sumq = 0. |
|
764 | 764 | |
|
765 | 765 | j = 0 |
|
766 | 766 | cont = 1 |
|
767 | 767 | |
|
768 | 768 | while((cont == 1)and(j < lenOfData)): |
|
769 | 769 | |
|
770 | 770 | sump += sortdata[j] |
|
771 | 771 | sumq += sortdata[j]**2 |
|
772 | 772 | #sumq -= sump**2 |
|
773 | 773 | if j > nums_min: |
|
774 | 774 | rtest = float(j)/(j-1) + 1.0/navg |
|
775 | 775 | #if ((sumq*j) > (sump**2)): |
|
776 | 776 | if ((sumq*j) > (rtest*sump**2)): |
|
777 | 777 | j = j - 1 |
|
778 | 778 | sump = sump - sortdata[j] |
|
779 | 779 | sumq = sumq - sortdata[j]**2 |
|
780 | 780 | cont = 0 |
|
781 | 781 | |
|
782 | 782 | j += 1 |
|
783 | 783 | |
|
784 | 784 | lnoise = sump / j |
|
785 | 785 | |
|
786 | 786 | return lnoise |
|
787 | 787 | |
|
788 | 788 | |
|
789 | 789 | |
|
790 | 790 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
791 | 791 | z = (x - a1) / a2 |
|
792 | 792 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
793 | 793 | return y |
|
794 | 794 | |
|
795 | 795 | |
|
796 | 796 | class CleanRayleigh(Operation): |
|
797 | 797 | |
|
798 | 798 | def __init__(self): |
|
799 | 799 | |
|
800 | 800 | Operation.__init__(self) |
|
801 | 801 | self.i=0 |
|
802 | 802 | self.isConfig = False |
|
803 | 803 | self.__dataReady = False |
|
804 | 804 | self.__profIndex = 0 |
|
805 | 805 | self.byTime = False |
|
806 | 806 | self.byProfiles = False |
|
807 | 807 | |
|
808 | 808 | self.bloques = None |
|
809 | 809 | self.bloque0 = None |
|
810 | 810 | |
|
811 | 811 | self.index = 0 |
|
812 | 812 | |
|
813 | 813 | self.buffer = 0 |
|
814 | 814 | self.buffer2 = 0 |
|
815 | 815 | self.buffer3 = 0 |
|
816 | 816 | |
|
817 | 817 | |
|
818 | 818 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
819 | 819 | |
|
820 | 820 | self.nChannels = dataOut.nChannels |
|
821 | 821 | self.nProf = dataOut.nProfiles |
|
822 | 822 | self.nPairs = dataOut.data_cspc.shape[0] |
|
823 | 823 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
824 | 824 | self.spectra = dataOut.data_spc |
|
825 | 825 | self.cspectra = dataOut.data_cspc |
|
826 | 826 | self.heights = dataOut.heightList #alturas totales |
|
827 | 827 | self.nHeights = len(self.heights) |
|
828 | 828 | self.min_hei = min_hei |
|
829 | 829 | self.max_hei = max_hei |
|
830 | 830 | if (self.min_hei == None): |
|
831 | 831 | self.min_hei = 0 |
|
832 | 832 | if (self.max_hei == None): |
|
833 | 833 | self.max_hei = dataOut.heightList[-1] |
|
834 | 834 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
835 | 835 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
836 | 836 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
837 | 837 | self.nHeightsClean = len(self.heightsClean) |
|
838 | 838 | self.channels = dataOut.channelList |
|
839 | 839 | self.nChan = len(self.channels) |
|
840 | 840 | self.nIncohInt = dataOut.nIncohInt |
|
841 | 841 | self.__initime = dataOut.utctime |
|
842 | 842 | self.maxAltInd = self.hval[-1]+1 |
|
843 | 843 | self.minAltInd = self.hval[0] |
|
844 | 844 | |
|
845 | 845 | self.crosspairs = dataOut.pairsList |
|
846 | 846 | self.nPairs = len(self.crosspairs) |
|
847 | 847 | self.normFactor = dataOut.normFactor |
|
848 | 848 | self.nFFTPoints = dataOut.nFFTPoints |
|
849 | 849 | self.ippSeconds = dataOut.ippSeconds |
|
850 | 850 | self.currentTime = self.__initime |
|
851 | 851 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
852 | 852 | self.factor_stdv = factor_stdv |
|
853 | 853 | |
|
854 | 854 | if n != None : |
|
855 | 855 | self.byProfiles = True |
|
856 | 856 | self.nIntProfiles = n |
|
857 | 857 | else: |
|
858 | 858 | self.__integrationtime = timeInterval |
|
859 | 859 | |
|
860 | 860 | self.__dataReady = False |
|
861 | 861 | self.isConfig = True |
|
862 | 862 | |
|
863 | 863 | |
|
864 | 864 | |
|
865 | 865 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
866 | 866 | #print("runing cleanRayleigh") |
|
867 | 867 | if not self.isConfig : |
|
868 | 868 | |
|
869 | 869 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
870 | 870 | |
|
871 | 871 | tini=dataOut.utctime |
|
872 | 872 | |
|
873 | 873 | if self.byProfiles: |
|
874 | 874 | if self.__profIndex == self.nIntProfiles: |
|
875 | 875 | self.__dataReady = True |
|
876 | 876 | else: |
|
877 | 877 | if (tini - self.__initime) >= self.__integrationtime: |
|
878 | 878 | |
|
879 | 879 | self.__dataReady = True |
|
880 | 880 | self.__initime = tini |
|
881 | 881 | |
|
882 | 882 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
883 | 883 | |
|
884 | 884 | if self.__dataReady: |
|
885 | 885 | |
|
886 | 886 | self.__profIndex = 0 |
|
887 | 887 | jspc = self.buffer |
|
888 | 888 | jcspc = self.buffer2 |
|
889 | 889 | #jnoise = self.buffer3 |
|
890 | 890 | self.buffer = dataOut.data_spc |
|
891 | 891 | self.buffer2 = dataOut.data_cspc |
|
892 | 892 | #self.buffer3 = dataOut.noise |
|
893 | 893 | self.currentTime = dataOut.utctime |
|
894 | 894 | if numpy.any(jspc) : |
|
895 | 895 | #print( jspc.shape, jcspc.shape) |
|
896 | 896 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
897 | 897 | try: |
|
898 | 898 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
899 | 899 | except: |
|
900 | 900 | print("no cspc") |
|
901 | 901 | self.__dataReady = False |
|
902 | 902 | #print( jspc.shape, jcspc.shape) |
|
903 | 903 | dataOut.flagNoData = False |
|
904 | 904 | else: |
|
905 | 905 | dataOut.flagNoData = True |
|
906 | 906 | self.__dataReady = False |
|
907 | 907 | return dataOut |
|
908 | 908 | else: |
|
909 | 909 | #print( len(self.buffer)) |
|
910 | 910 | if numpy.any(self.buffer): |
|
911 | 911 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
912 | 912 | try: |
|
913 | 913 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
914 | 914 | self.buffer3 += dataOut.data_dc |
|
915 | 915 | except: |
|
916 | 916 | pass |
|
917 | 917 | else: |
|
918 | 918 | self.buffer = dataOut.data_spc |
|
919 | 919 | self.buffer2 = dataOut.data_cspc |
|
920 | 920 | self.buffer3 = dataOut.data_dc |
|
921 | 921 | #print self.index, self.fint |
|
922 | 922 | #print self.buffer2.shape |
|
923 | 923 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
924 | 924 | self.__profIndex += 1 |
|
925 | 925 | return dataOut ## NOTE: REV |
|
926 | 926 | |
|
927 | 927 | |
|
928 | 928 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
929 | 929 | ''' |
|
930 | 930 | #REVISAR |
|
931 | 931 | ''' |
|
932 | 932 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
933 | 933 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
934 | 934 | |
|
935 | 935 | |
|
936 | 936 | |
|
937 | 937 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
938 | 938 | dataOut.data_spc = tmp_spectra |
|
939 | 939 | dataOut.data_cspc = tmp_cspectra |
|
940 | 940 | |
|
941 | 941 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
942 | 942 | |
|
943 | 943 | dataOut.data_dc = self.buffer3 |
|
944 | 944 | dataOut.nIncohInt *= self.nIntProfiles |
|
945 | 945 | dataOut.max_nIncohInt = self.nIntProfiles |
|
946 | 946 | dataOut.utctime = self.currentTime #tiempo promediado |
|
947 | 947 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
948 | 948 | # dataOut.data_spc = sat_spectra |
|
949 | 949 | # dataOut.data_cspc = sat_cspectra |
|
950 | 950 | self.buffer = 0 |
|
951 | 951 | self.buffer2 = 0 |
|
952 | 952 | self.buffer3 = 0 |
|
953 | 953 | |
|
954 | 954 | return dataOut |
|
955 | 955 | |
|
956 | 956 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
957 | 957 | print("OP cleanRayleigh") |
|
958 | 958 | #import matplotlib.pyplot as plt |
|
959 | 959 | #for k in range(149): |
|
960 | 960 | #channelsProcssd = [] |
|
961 | 961 | #channelA_ok = False |
|
962 | 962 | #rfunc = cspectra.copy() #self.bloques |
|
963 | 963 | rfunc = spectra.copy() |
|
964 | 964 | #rfunc = cspectra |
|
965 | 965 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
966 | 966 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
967 | 967 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
968 | 968 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
969 | 969 | |
|
970 | 970 | |
|
971 | 971 | ###ONLY FOR TEST: |
|
972 | 972 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
973 | 973 | if raxs == 0: |
|
974 | 974 | raxs = 1 |
|
975 | 975 | caxs = math.ceil(self.nPairs/raxs) |
|
976 | 976 | if self.nPairs <4: |
|
977 | 977 | raxs = 2 |
|
978 | 978 | caxs = 2 |
|
979 | 979 | #print(raxs, caxs) |
|
980 | 980 | fft_rev = 14 #nFFT to plot |
|
981 | 981 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
982 | 982 | hei_rev = hei_rev[0] |
|
983 | 983 | #print(hei_rev) |
|
984 | 984 | |
|
985 | 985 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
986 | 986 | |
|
987 | 987 | gauss_fit, covariance = None, None |
|
988 | 988 | for ih in range(self.minAltInd,self.maxAltInd): |
|
989 | 989 | for ifreq in range(self.nFFTPoints): |
|
990 | 990 | ''' |
|
991 | 991 | ###ONLY FOR TEST: |
|
992 | 992 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
993 | 993 | fig, axs = plt.subplots(raxs, caxs) |
|
994 | 994 | fig2, axs2 = plt.subplots(raxs, caxs) |
|
995 | 995 | col_ax = 0 |
|
996 | 996 | row_ax = 0 |
|
997 | 997 | ''' |
|
998 | 998 | #print(self.nPairs) |
|
999 | 999 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
1000 | 1000 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
1001 | 1001 | # continue |
|
1002 | 1002 | # if not self.crosspairs[ii][0] in channelsProcssd: |
|
1003 | 1003 | # channelA_ok = True |
|
1004 | 1004 | #print("pair: ",self.crosspairs[ii]) |
|
1005 | 1005 | ''' |
|
1006 | 1006 | ###ONLY FOR TEST: |
|
1007 | 1007 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
1008 | 1008 | col_ax = 0 |
|
1009 | 1009 | row_ax += 1 |
|
1010 | 1010 | ''' |
|
1011 | 1011 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
1012 | 1012 | #print(func2clean.shape) |
|
1013 | 1013 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
1014 | 1014 | |
|
1015 | 1015 | if len(val)>0: #limitador |
|
1016 | 1016 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
1017 | 1017 | if min_val <= -40 : |
|
1018 | 1018 | min_val = -40 |
|
1019 | 1019 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
1020 | 1020 | if max_val >= 200 : |
|
1021 | 1021 | max_val = 200 |
|
1022 | 1022 | #print min_val, max_val |
|
1023 | 1023 | step = 1 |
|
1024 | 1024 | #print("Getting bins and the histogram") |
|
1025 | 1025 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
1026 | 1026 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
1027 | 1027 | #print(len(y_dist),len(binstep[:-1])) |
|
1028 | 1028 | #print(row_ax,col_ax, " ..") |
|
1029 | 1029 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
1030 | 1030 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
1031 | 1031 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
1032 | 1032 | parg = [numpy.amax(y_dist),mean,sigma] |
|
1033 | 1033 | |
|
1034 | 1034 | newY = None |
|
1035 | 1035 | |
|
1036 | 1036 | try : |
|
1037 | 1037 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
1038 | 1038 | mode = gauss_fit[1] |
|
1039 | 1039 | stdv = gauss_fit[2] |
|
1040 | 1040 | #print(" FIT OK",gauss_fit) |
|
1041 | 1041 | ''' |
|
1042 | 1042 | ###ONLY FOR TEST: |
|
1043 | 1043 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1044 | 1044 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
1045 | 1045 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
1046 | 1046 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
1047 | 1047 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
1048 | 1048 | ''' |
|
1049 | 1049 | except: |
|
1050 | 1050 | mode = mean |
|
1051 | 1051 | stdv = sigma |
|
1052 | 1052 | #print("FIT FAIL") |
|
1053 | 1053 | #continue |
|
1054 | 1054 | |
|
1055 | 1055 | |
|
1056 | 1056 | #print(mode,stdv) |
|
1057 | 1057 | #Removing echoes greater than mode + std_factor*stdv |
|
1058 | 1058 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
1059 | 1059 | #noval tiene los indices que se van a remover |
|
1060 | 1060 | #print("Chan ",ii," novals: ",len(noval[0])) |
|
1061 | 1061 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
1062 | 1062 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
1063 | 1063 | #print(novall) |
|
1064 | 1064 | #print(" ",self.pairsArray[ii]) |
|
1065 | 1065 | #cross_pairs = self.pairsArray[ii] |
|
1066 | 1066 | #Getting coherent echoes which are removed. |
|
1067 | 1067 | # if len(novall[0]) > 0: |
|
1068 | 1068 | # |
|
1069 | 1069 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
1070 | 1070 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
1071 | 1071 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
1072 | 1072 | #print("OUT NOVALL 1") |
|
1073 | 1073 | try: |
|
1074 | 1074 | pair = (self.channels[ii],self.channels[ii + 1]) |
|
1075 | 1075 | except: |
|
1076 | 1076 | pair = (99,99) |
|
1077 | 1077 | #print("par ", pair) |
|
1078 | 1078 | if ( pair in self.crosspairs): |
|
1079 | 1079 | q = self.crosspairs.index(pair) |
|
1080 | 1080 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) |
|
1081 | 1081 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
1082 | 1082 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
1083 | 1083 | |
|
1084 | 1084 | #if channelA_ok: |
|
1085 | 1085 | #chA = self.channels.index(cross_pairs[0]) |
|
1086 | 1086 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
1087 | 1087 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
1088 | 1088 | #channelA_ok = False |
|
1089 | 1089 | |
|
1090 | 1090 | # chB = self.channels.index(cross_pairs[1]) |
|
1091 | 1091 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
1092 | 1092 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
1093 | 1093 | # |
|
1094 | 1094 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
1095 | 1095 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
1096 | 1096 | ''' |
|
1097 | 1097 | ###ONLY FOR TEST: |
|
1098 | 1098 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1099 | 1099 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
1100 | 1100 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
1101 | 1101 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
1102 | 1102 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
1103 | 1103 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
1104 | 1104 | ''' |
|
1105 | 1105 | ''' |
|
1106 | 1106 | ###ONLY FOR TEST: |
|
1107 | 1107 | col_ax += 1 #contador de ploteo columnas |
|
1108 | 1108 | ##print(col_ax) |
|
1109 | 1109 | ###ONLY FOR TEST: |
|
1110 | 1110 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1111 | 1111 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
1112 | 1112 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
1113 | 1113 | fig.suptitle(title) |
|
1114 | 1114 | fig2.suptitle(title2) |
|
1115 | 1115 | plt.show() |
|
1116 | 1116 | ''' |
|
1117 | 1117 | ################################################################################################## |
|
1118 | 1118 | |
|
1119 | 1119 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
1120 | 1120 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
1121 | 1121 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
1122 | 1122 | for ih in range(self.nHeights): |
|
1123 | 1123 | for ifreq in range(self.nFFTPoints): |
|
1124 | 1124 | for ich in range(self.nChan): |
|
1125 | 1125 | tmp = spectra[:,ich,ifreq,ih] |
|
1126 | 1126 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
1127 | 1127 | |
|
1128 | 1128 | if len(valid[0]) >0 : |
|
1129 | 1129 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
1130 | 1130 | |
|
1131 | 1131 | for icr in range(self.nPairs): |
|
1132 | 1132 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
1133 | 1133 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
1134 | 1134 | if len(valid[0]) > 0: |
|
1135 | 1135 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
1136 | 1136 | |
|
1137 | 1137 | return out_spectra, out_cspectra |
|
1138 | 1138 | |
|
1139 | 1139 | def REM_ISOLATED_POINTS(self,array,rth): |
|
1140 | 1140 | # import matplotlib.pyplot as plt |
|
1141 | 1141 | if rth == None : |
|
1142 | 1142 | rth = 4 |
|
1143 | 1143 | #print("REM ISO") |
|
1144 | 1144 | num_prof = len(array[0,:,0]) |
|
1145 | 1145 | num_hei = len(array[0,0,:]) |
|
1146 | 1146 | n2d = len(array[:,0,0]) |
|
1147 | 1147 | |
|
1148 | 1148 | for ii in range(n2d) : |
|
1149 | 1149 | #print ii,n2d |
|
1150 | 1150 | tmp = array[ii,:,:] |
|
1151 | 1151 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
1152 | 1152 | |
|
1153 | 1153 | # fig = plt.figure(figsize=(6,5)) |
|
1154 | 1154 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1155 | 1155 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1156 | 1156 | # x = range(num_prof) |
|
1157 | 1157 | # y = range(num_hei) |
|
1158 | 1158 | # cp = ax.contour(y,x,tmp) |
|
1159 | 1159 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1160 | 1160 | # plt.show() |
|
1161 | 1161 | |
|
1162 | 1162 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
1163 | 1163 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
1164 | 1164 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
1165 | 1165 | indxs2 = (tmp > 0).nonzero() |
|
1166 | 1166 | |
|
1167 | 1167 | indxs1 = (indxs1[0]) |
|
1168 | 1168 | indxs2 = indxs2[0] |
|
1169 | 1169 | #indxs1 = numpy.array(indxs1[0]) |
|
1170 | 1170 | #indxs2 = numpy.array(indxs2[0]) |
|
1171 | 1171 | indxs = None |
|
1172 | 1172 | #print indxs1 , indxs2 |
|
1173 | 1173 | for iv in range(len(indxs2)): |
|
1174 | 1174 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
1175 | 1175 | #print len(indxs2), indv |
|
1176 | 1176 | if len(indv[0]) > 0 : |
|
1177 | 1177 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
1178 | 1178 | # print indxs |
|
1179 | 1179 | indxs = indxs[1:] |
|
1180 | 1180 | #print(indxs, len(indxs)) |
|
1181 | 1181 | if len(indxs) < 4 : |
|
1182 | 1182 | array[ii,:,:] = 0. |
|
1183 | 1183 | return |
|
1184 | 1184 | |
|
1185 | 1185 | xpos = numpy.mod(indxs ,num_hei) |
|
1186 | 1186 | ypos = (indxs / num_hei) |
|
1187 | 1187 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
1188 | 1188 | #print sx |
|
1189 | 1189 | xpos = xpos[sx] |
|
1190 | 1190 | ypos = ypos[sx] |
|
1191 | 1191 | |
|
1192 | 1192 | # *********************************** Cleaning isolated points ********************************** |
|
1193 | 1193 | ic = 0 |
|
1194 | 1194 | while True : |
|
1195 | 1195 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
1196 | 1196 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
1197 | 1197 | #plt.plot(r) |
|
1198 | 1198 | #plt.show() |
|
1199 | 1199 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
1200 | 1200 | no_coh2 = (r <= rth).nonzero() |
|
1201 | 1201 | #print r, no_coh1, no_coh2 |
|
1202 | 1202 | no_coh1 = numpy.array(no_coh1[0]) |
|
1203 | 1203 | no_coh2 = numpy.array(no_coh2[0]) |
|
1204 | 1204 | no_coh = None |
|
1205 | 1205 | #print valid1 , valid2 |
|
1206 | 1206 | for iv in range(len(no_coh2)): |
|
1207 | 1207 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
1208 | 1208 | if len(indv[0]) > 0 : |
|
1209 | 1209 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
1210 | 1210 | no_coh = no_coh[1:] |
|
1211 | 1211 | #print len(no_coh), no_coh |
|
1212 | 1212 | if len(no_coh) < 4 : |
|
1213 | 1213 | #print xpos[ic], ypos[ic], ic |
|
1214 | 1214 | # plt.plot(r) |
|
1215 | 1215 | # plt.show() |
|
1216 | 1216 | xpos[ic] = numpy.nan |
|
1217 | 1217 | ypos[ic] = numpy.nan |
|
1218 | 1218 | |
|
1219 | 1219 | ic = ic + 1 |
|
1220 | 1220 | if (ic == len(indxs)) : |
|
1221 | 1221 | break |
|
1222 | 1222 | #print( xpos, ypos) |
|
1223 | 1223 | |
|
1224 | 1224 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1225 | 1225 | #print indxs[0] |
|
1226 | 1226 | if len(indxs[0]) < 4 : |
|
1227 | 1227 | array[ii,:,:] = 0. |
|
1228 | 1228 | return |
|
1229 | 1229 | |
|
1230 | 1230 | xpos = xpos[indxs[0]] |
|
1231 | 1231 | ypos = ypos[indxs[0]] |
|
1232 | 1232 | for i in range(0,len(ypos)): |
|
1233 | 1233 | ypos[i]=int(ypos[i]) |
|
1234 | 1234 | junk = tmp |
|
1235 | 1235 | tmp = junk*0.0 |
|
1236 | 1236 | |
|
1237 | 1237 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1238 | 1238 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1239 | 1239 | |
|
1240 | 1240 | #print array.shape |
|
1241 | 1241 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1242 | 1242 | #print tmp.shape |
|
1243 | 1243 | |
|
1244 | 1244 | # fig = plt.figure(figsize=(6,5)) |
|
1245 | 1245 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1246 | 1246 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1247 | 1247 | # x = range(num_prof) |
|
1248 | 1248 | # y = range(num_hei) |
|
1249 | 1249 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
1250 | 1250 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1251 | 1251 | # plt.show() |
|
1252 | 1252 | return array |
|
1253 | 1253 | |
|
1254 | 1254 | |
|
1255 | 1255 | class IntegrationFaradaySpectra(Operation): |
|
1256 | 1256 | |
|
1257 | 1257 | __profIndex = 0 |
|
1258 | 1258 | __withOverapping = False |
|
1259 | 1259 | |
|
1260 | 1260 | __byTime = False |
|
1261 | 1261 | __initime = None |
|
1262 | 1262 | __lastdatatime = None |
|
1263 | 1263 | __integrationtime = None |
|
1264 | 1264 | |
|
1265 | 1265 | __buffer_spc = None |
|
1266 | 1266 | __buffer_cspc = None |
|
1267 | 1267 | __buffer_dc = None |
|
1268 | 1268 | |
|
1269 | 1269 | __dataReady = False |
|
1270 | 1270 | |
|
1271 | 1271 | __timeInterval = None |
|
1272 | 1272 | n_ints = None #matriz de numero de integracions (CH,HEI) |
|
1273 | 1273 | n = None |
|
1274 | 1274 | minHei_ind = None |
|
1275 | 1275 | maxHei_ind = None |
|
1276 | 1276 | navg = 1.0 |
|
1277 | 1277 | factor = 0.0 |
|
1278 | 1278 | dataoutliers = None # (CHANNELS, HEIGHTS) |
|
1279 | 1279 | |
|
1280 | 1280 | def __init__(self): |
|
1281 | 1281 | |
|
1282 | 1282 | Operation.__init__(self) |
|
1283 | 1283 | |
|
1284 | 1284 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): |
|
1285 | 1285 | """ |
|
1286 | 1286 | Set the parameters of the integration class. |
|
1287 | 1287 | |
|
1288 | 1288 | Inputs: |
|
1289 | 1289 | |
|
1290 | 1290 | n : Number of coherent integrations |
|
1291 | 1291 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1292 | 1292 | overlapping : |
|
1293 | 1293 | |
|
1294 | 1294 | """ |
|
1295 | 1295 | |
|
1296 | 1296 | self.__initime = None |
|
1297 | 1297 | self.__lastdatatime = 0 |
|
1298 | 1298 | |
|
1299 | 1299 | self.__buffer_spc = [] |
|
1300 | 1300 | self.__buffer_cspc = [] |
|
1301 | 1301 | self.__buffer_dc = 0 |
|
1302 | 1302 | |
|
1303 | 1303 | self.__profIndex = 0 |
|
1304 | 1304 | self.__dataReady = False |
|
1305 | 1305 | self.__byTime = False |
|
1306 | 1306 | |
|
1307 | 1307 | self.factor = factor |
|
1308 | 1308 | self.navg = avg |
|
1309 | 1309 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1310 | 1310 | self.ByLags = False |
|
1311 | 1311 | self.maxProfilesInt = 1 |
|
1312 | ||
|
1312 | self.__nChannels = dataOut.nChannels | |
|
1313 | 1313 | if DPL != None: |
|
1314 | 1314 | self.DPL=DPL |
|
1315 | 1315 | else: |
|
1316 | 1316 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1317 | 1317 | self.DPL=0 |
|
1318 | 1318 | |
|
1319 | 1319 | if n is None and timeInterval is None: |
|
1320 | 1320 | raise ValueError("n or timeInterval should be specified ...") |
|
1321 | 1321 | |
|
1322 | 1322 | if n is not None: |
|
1323 | 1323 | self.n = int(n) |
|
1324 | 1324 | else: |
|
1325 | 1325 | self.__integrationtime = int(timeInterval) |
|
1326 | 1326 | self.n = None |
|
1327 | 1327 | self.__byTime = True |
|
1328 | 1328 | |
|
1329 | 1329 | if minHei == None: |
|
1330 | 1330 | minHei = self.dataOut.heightList[0] |
|
1331 | 1331 | |
|
1332 | 1332 | if maxHei == None: |
|
1333 | 1333 | maxHei = self.dataOut.heightList[-1] |
|
1334 | 1334 | |
|
1335 | 1335 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1336 | 1336 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
1337 | 1337 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
1338 | 1338 | minHei = self.dataOut.heightList[0] |
|
1339 | 1339 | |
|
1340 | 1340 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1341 | 1341 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
1342 | 1342 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
1343 | 1343 | maxHei = self.dataOut.heightList[-1] |
|
1344 | 1344 | |
|
1345 | 1345 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) |
|
1346 | 1346 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) |
|
1347 | 1347 | self.minHei_ind = ind_list1[0][0] |
|
1348 | 1348 | self.maxHei_ind = ind_list2[0][-1] |
|
1349 | #print("setup rem sats done") | |
|
1349 | 1350 | |
|
1350 | 1351 | def putData(self, data_spc, data_cspc, data_dc): |
|
1351 | 1352 | """ |
|
1352 | 1353 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1353 | 1354 | |
|
1354 | 1355 | """ |
|
1355 | 1356 | |
|
1356 | 1357 | self.__buffer_spc.append(data_spc) |
|
1357 | 1358 | |
|
1358 | if data_cspc is None: | |
|
1359 | if self.__nChannels < 2: | |
|
1359 | 1360 | self.__buffer_cspc = None |
|
1360 | 1361 | else: |
|
1361 | 1362 | self.__buffer_cspc.append(data_cspc) |
|
1362 | 1363 | |
|
1363 | 1364 | if data_dc is None: |
|
1364 | 1365 | self.__buffer_dc = None |
|
1365 | 1366 | else: |
|
1366 | 1367 | self.__buffer_dc += data_dc |
|
1367 | 1368 | |
|
1368 | 1369 | self.__profIndex += 1 |
|
1369 | 1370 | |
|
1370 | 1371 | return |
|
1371 | 1372 | |
|
1372 | 1373 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): |
|
1373 | 1374 | #data debe estar ordenado |
|
1374 | 1375 | #sortdata = numpy.sort(data, axis=None) |
|
1375 | 1376 | #sortID=data.argsort() |
|
1376 | 1377 | lenOfData = len(sortdata) |
|
1377 | 1378 | nums_min = lenOfData*factor |
|
1378 | 1379 | if nums_min <= 5: |
|
1379 | 1380 | nums_min = 5 |
|
1380 | 1381 | sump = 0. |
|
1381 | 1382 | sumq = 0. |
|
1382 | 1383 | j = 0 |
|
1383 | 1384 | cont = 1 |
|
1384 | 1385 | while((cont == 1)and(j < lenOfData)): |
|
1385 | 1386 | sump += sortdata[j] |
|
1386 | 1387 | sumq += sortdata[j]**2 |
|
1387 | 1388 | if j > nums_min: |
|
1388 | 1389 | rtest = float(j)/(j-1) + 1.0/navg |
|
1389 | 1390 | if ((sumq*j) > (rtest*sump**2)): |
|
1390 | 1391 | j = j - 1 |
|
1391 | 1392 | sump = sump - sortdata[j] |
|
1392 | 1393 | sumq = sumq - sortdata[j]**2 |
|
1393 | 1394 | cont = 0 |
|
1394 | 1395 | j += 1 |
|
1395 | 1396 | #lnoise = sump / j |
|
1396 | 1397 | #print("H S done") |
|
1397 | 1398 | #return j,sortID |
|
1398 | 1399 | return j |
|
1399 | 1400 | |
|
1400 | 1401 | |
|
1401 | 1402 | def pushData(self): |
|
1402 | 1403 | """ |
|
1403 | 1404 | Return the sum of the last profiles and the profiles used in the sum. |
|
1404 | 1405 | |
|
1405 | 1406 | Affected: |
|
1406 | 1407 | |
|
1407 | 1408 | self.__profileIndex |
|
1408 | 1409 | |
|
1409 | 1410 | """ |
|
1410 | 1411 | bufferH=None |
|
1411 | 1412 | buffer=None |
|
1412 | 1413 | buffer1=None |
|
1413 | 1414 | buffer_cspc=None |
|
1414 | 1415 | #print("aes: ", self.__buffer_cspc) |
|
1415 | 1416 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1416 | if self.__buffer_cspc != None: | |
|
1417 | if self.__nChannels > 1 : | |
|
1417 | 1418 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1418 | 1419 | |
|
1419 | 1420 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) |
|
1420 | 1421 | |
|
1421 | 1422 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1422 | 1423 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1423 | 1424 | |
|
1424 | 1425 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers |
|
1425 | 1426 | |
|
1426 | 1427 | for k in range(self.minHei_ind,self.maxHei_ind): |
|
1427 |
if self.__ |
|
|
1428 | if self.__nChannels > 1: | |
|
1428 | 1429 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1429 | 1430 | |
|
1430 | 1431 | outliers_IDs_cspc=[] |
|
1431 | 1432 | cspc_outliers_exist=False |
|
1432 | 1433 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1433 | 1434 | |
|
1434 | 1435 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1435 | 1436 | indexes=[] |
|
1436 | 1437 | #sortIDs=[] |
|
1437 | 1438 | outliers_IDs=[] |
|
1438 | 1439 | |
|
1439 | 1440 | for j in range(self.nProfiles): #frecuencias en el tiempo |
|
1440 | 1441 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1441 | 1442 | # continue |
|
1442 | 1443 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1443 | 1444 | # continue |
|
1444 | 1445 | buffer=buffer1[:,j] |
|
1445 | 1446 | sortdata = numpy.sort(buffer, axis=None) |
|
1446 | 1447 | |
|
1447 | 1448 | sortID=buffer.argsort() |
|
1448 | 1449 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) |
|
1449 | 1450 | |
|
1450 | 1451 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) |
|
1451 | 1452 | |
|
1452 | 1453 | # fig,ax = plt.subplots() |
|
1453 | 1454 | # ax.set_title(str(k)+" "+str(j)) |
|
1454 | 1455 | # x=range(len(sortdata)) |
|
1455 | 1456 | # ax.scatter(x,sortdata) |
|
1456 | 1457 | # ax.axvline(index) |
|
1457 | 1458 | # plt.show() |
|
1458 | 1459 | |
|
1459 | 1460 | indexes.append(index) |
|
1460 | 1461 | #sortIDs.append(sortID) |
|
1461 | 1462 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1462 | 1463 | |
|
1463 | 1464 | #print("Outliers: ",outliers_IDs) |
|
1464 | 1465 | outliers_IDs=numpy.array(outliers_IDs) |
|
1465 | 1466 | outliers_IDs=outliers_IDs.ravel() |
|
1466 | 1467 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1467 | 1468 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1468 | 1469 | indexes=numpy.array(indexes) |
|
1469 | 1470 | indexmin=numpy.min(indexes) |
|
1470 | 1471 | |
|
1471 | 1472 | |
|
1472 | 1473 | #print(indexmin,buffer1.shape[0], k) |
|
1473 | 1474 | |
|
1474 | 1475 | # fig,ax = plt.subplots() |
|
1475 | 1476 | # ax.plot(sortdata) |
|
1476 | 1477 | # ax2 = ax.twinx() |
|
1477 | 1478 | # x=range(len(indexes)) |
|
1478 | 1479 | # #plt.scatter(x,indexes) |
|
1479 | 1480 | # ax2.scatter(x,indexes) |
|
1480 | 1481 | # plt.show() |
|
1481 | 1482 | |
|
1482 | 1483 | if indexmin != buffer1.shape[0]: |
|
1483 | if self.nChannels > 1: | |
|
1484 | if self.__nChannels > 1: | |
|
1484 | 1485 | cspc_outliers_exist= True |
|
1485 | 1486 | |
|
1486 | 1487 | lt=outliers_IDs |
|
1487 | 1488 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1488 | 1489 | |
|
1489 | 1490 | for p in list(outliers_IDs): |
|
1490 | 1491 | #buffer1[p,:]=avg |
|
1491 | 1492 | buffer1[p,:] = numpy.NaN |
|
1492 | 1493 | |
|
1493 | 1494 | self.dataOutliers[i,k] = len(outliers_IDs) |
|
1494 | 1495 | |
|
1495 | 1496 | |
|
1496 | 1497 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1497 | 1498 | |
|
1498 | 1499 | |
|
1499 |
if self.__ |
|
|
1500 | if self.__nChannels > 1: | |
|
1500 | 1501 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1501 | 1502 | |
|
1502 | 1503 | |
|
1503 |
if self.__ |
|
|
1504 | if self.__nChannels > 1: | |
|
1504 | 1505 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1505 | 1506 | if cspc_outliers_exist: |
|
1506 | 1507 | |
|
1507 | 1508 | lt=outliers_IDs_cspc |
|
1508 | 1509 | |
|
1509 | 1510 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1510 | 1511 | for p in list(outliers_IDs_cspc): |
|
1511 | 1512 | #buffer_cspc[p,:]=avg |
|
1512 | 1513 | buffer_cspc[p,:] = numpy.NaN |
|
1513 | 1514 | |
|
1514 |
if self.__ |
|
|
1515 | if self.__nChannels > 1: | |
|
1515 | 1516 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1516 | 1517 | |
|
1517 | 1518 | |
|
1518 | 1519 | |
|
1519 | 1520 | |
|
1520 | 1521 | nOutliers = len(outliers_IDs) |
|
1521 | 1522 | #print("Outliers n: ",self.dataOutliers,nOutliers) |
|
1522 | 1523 | buffer=None |
|
1523 | 1524 | bufferH=None |
|
1524 | 1525 | buffer1=None |
|
1525 | 1526 | buffer_cspc=None |
|
1526 | 1527 | |
|
1527 | 1528 | |
|
1528 | 1529 | buffer=None |
|
1529 | 1530 | |
|
1530 | 1531 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1531 | 1532 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) |
|
1532 |
if self.__ |
|
|
1533 | if self.__nChannels > 1: | |
|
1533 | 1534 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1534 | 1535 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) |
|
1535 | 1536 | else: |
|
1536 | 1537 | data_cspc = None |
|
1537 | 1538 | data_dc = self.__buffer_dc |
|
1538 | 1539 | #(CH, HEIGH) |
|
1539 | 1540 | self.maxProfilesInt = self.__profIndex |
|
1540 | 1541 | n = self.__profIndex - self.dataOutliers # n becomes a matrix |
|
1541 | 1542 | |
|
1542 | 1543 | self.__buffer_spc = [] |
|
1543 | 1544 | self.__buffer_cspc = [] |
|
1544 | 1545 | self.__buffer_dc = 0 |
|
1545 | 1546 | self.__profIndex = 0 |
|
1546 | 1547 | #print("cleaned ",data_cspc) |
|
1547 | 1548 | return data_spc, data_cspc, data_dc, n |
|
1548 | 1549 | |
|
1549 | 1550 | def byProfiles(self, *args): |
|
1550 | 1551 | |
|
1551 | 1552 | self.__dataReady = False |
|
1552 | 1553 | avgdata_spc = None |
|
1553 | 1554 | avgdata_cspc = None |
|
1554 | 1555 | avgdata_dc = None |
|
1555 | 1556 | |
|
1556 | 1557 | self.putData(*args) |
|
1557 | 1558 | |
|
1558 | 1559 | if self.__profIndex == self.n: |
|
1559 | 1560 | |
|
1560 | 1561 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1561 | 1562 | self.n_ints = n |
|
1562 | 1563 | self.__dataReady = True |
|
1563 | 1564 | |
|
1564 | 1565 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1565 | 1566 | |
|
1566 | 1567 | def byTime(self, datatime, *args): |
|
1567 | 1568 | |
|
1568 | 1569 | self.__dataReady = False |
|
1569 | 1570 | avgdata_spc = None |
|
1570 | 1571 | avgdata_cspc = None |
|
1571 | 1572 | avgdata_dc = None |
|
1572 | 1573 | |
|
1573 | 1574 | self.putData(*args) |
|
1574 | 1575 | |
|
1575 | 1576 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1576 | 1577 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1577 | 1578 | self.n_ints = n |
|
1578 | 1579 | self.__dataReady = True |
|
1579 | 1580 | |
|
1580 | 1581 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1581 | 1582 | |
|
1582 | 1583 | def integrate(self, datatime, *args): |
|
1583 | 1584 | |
|
1584 | 1585 | if self.__profIndex == 0: |
|
1585 | 1586 | self.__initime = datatime |
|
1586 | 1587 | |
|
1587 | 1588 | if self.__byTime: |
|
1588 | 1589 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1589 | 1590 | datatime, *args) |
|
1590 | 1591 | else: |
|
1591 | 1592 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1592 | 1593 | |
|
1593 | 1594 | if not self.__dataReady: |
|
1594 | 1595 | return None, None, None, None |
|
1595 | 1596 | |
|
1596 | 1597 | #print("integrate", avgdata_cspc) |
|
1597 | 1598 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1598 | 1599 | |
|
1599 | 1600 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): |
|
1600 | 1601 | self.dataOut = dataOut |
|
1601 | 1602 | if n == 1: |
|
1602 | 1603 | return self.dataOut |
|
1603 | 1604 | |
|
1604 | 1605 | #print("nchannels", self.dataOut.nChannels) |
|
1605 | 1606 | if self.dataOut.nChannels == 1: |
|
1606 | 1607 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS |
|
1607 | 1608 | #print("IN spc:", self.dataOut.data_spc.shape, self.dataOut.data_cspc) |
|
1608 | 1609 | if not self.isConfig: |
|
1609 | 1610 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) |
|
1610 | 1611 | self.isConfig = True |
|
1611 | 1612 | |
|
1612 | 1613 | if not self.ByLags: |
|
1613 | 1614 | self.nProfiles=self.dataOut.nProfiles |
|
1614 | 1615 | self.nChannels=self.dataOut.nChannels |
|
1615 | 1616 | self.nHeights=self.dataOut.nHeights |
|
1616 | 1617 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1617 | 1618 | self.dataOut.data_spc, |
|
1618 | 1619 | self.dataOut.data_cspc, |
|
1619 | 1620 | self.dataOut.data_dc) |
|
1620 | 1621 | else: |
|
1621 | 1622 | self.nProfiles=self.dataOut.nProfiles |
|
1622 | 1623 | self.nChannels=self.dataOut.nChannels |
|
1623 | 1624 | self.nHeights=self.dataOut.nHeights |
|
1624 | 1625 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1625 | 1626 | self.dataOut.dataLag_spc, |
|
1626 | 1627 | self.dataOut.dataLag_cspc, |
|
1627 | 1628 | self.dataOut.dataLag_dc) |
|
1628 | 1629 | self.dataOut.flagNoData = True |
|
1629 | 1630 | if self.__dataReady: |
|
1630 | 1631 | |
|
1631 | 1632 | if not self.ByLags: |
|
1632 | 1633 | if self.nChannels == 1: |
|
1633 | 1634 | #print("f int", avgdata_spc.shape) |
|
1634 | 1635 | self.dataOut.data_spc = avgdata_spc |
|
1635 | 1636 | self.dataOut.data_cspc = None |
|
1636 | 1637 | else: |
|
1637 | 1638 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1638 | 1639 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1639 | 1640 | self.dataOut.data_dc = avgdata_dc |
|
1640 | 1641 | self.dataOut.data_outlier = self.dataOutliers |
|
1641 | 1642 | |
|
1642 | 1643 | else: |
|
1643 | 1644 | self.dataOut.dataLag_spc = avgdata_spc |
|
1644 | 1645 | self.dataOut.dataLag_cspc = avgdata_cspc |
|
1645 | 1646 | self.dataOut.dataLag_dc = avgdata_dc |
|
1646 | 1647 | |
|
1647 | 1648 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] |
|
1648 | 1649 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1649 | 1650 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1650 | 1651 | |
|
1651 | 1652 | |
|
1652 | 1653 | self.dataOut.nIncohInt *= self.n_ints |
|
1653 | 1654 | self.dataOut.max_nIncohInt = self.maxProfilesInt |
|
1654 | 1655 | #print(self.dataOut.max_nIncohInt) |
|
1655 | 1656 | self.dataOut.utctime = avgdatatime |
|
1656 | 1657 | self.dataOut.flagNoData = False |
|
1657 | 1658 | #print("Faraday Integration DONE...", self.dataOut.data_cspc) |
|
1658 | 1659 | #print(self.dataOut.flagNoData) |
|
1659 | 1660 | return self.dataOut |
|
1660 | 1661 | |
|
1661 | 1662 | |
|
1662 | 1663 | |
|
1663 | 1664 | class removeInterference(Operation): |
|
1664 | 1665 | |
|
1665 | 1666 | def removeInterference3(self, min_hei = None, max_hei = None): |
|
1666 | 1667 | |
|
1667 | 1668 | jspectra = self.dataOut.data_spc |
|
1668 | 1669 | #jcspectra = self.dataOut.data_cspc |
|
1669 | 1670 | jnoise = self.dataOut.getNoise() |
|
1670 | 1671 | num_incoh = self.dataOut.max_nIncohInt |
|
1671 | 1672 | #print(jspectra.shape) |
|
1672 | 1673 | num_channel, num_prof, num_hei = jspectra.shape |
|
1673 | 1674 | minHei = min_hei |
|
1674 | 1675 | maxHei = max_hei |
|
1675 | 1676 | ######################################################################## |
|
1676 | 1677 | if minHei == None or (minHei < self.dataOut.heightList[0]): |
|
1677 | 1678 | minHei = self.dataOut.heightList[0] |
|
1678 | 1679 | |
|
1679 | 1680 | if maxHei == None or (maxHei > self.dataOut.heightList[-1]): |
|
1680 | 1681 | maxHei = self.dataOut.heightList[-1] |
|
1681 | 1682 | minIndex = 0 |
|
1682 | 1683 | maxIndex = 0 |
|
1683 | 1684 | heights = self.dataOut.heightList |
|
1684 | 1685 | |
|
1685 | 1686 | inda = numpy.where(heights >= minHei) |
|
1686 | 1687 | indb = numpy.where(heights <= maxHei) |
|
1687 | 1688 | |
|
1688 | 1689 | try: |
|
1689 | 1690 | minIndex = inda[0][0] |
|
1690 | 1691 | except: |
|
1691 | 1692 | minIndex = 0 |
|
1692 | 1693 | try: |
|
1693 | 1694 | maxIndex = indb[0][-1] |
|
1694 | 1695 | except: |
|
1695 | 1696 | maxIndex = len(heights) |
|
1696 | 1697 | |
|
1697 | 1698 | if (minIndex < 0) or (minIndex > maxIndex): |
|
1698 | 1699 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
1699 | 1700 | minIndex, maxIndex)) |
|
1700 | 1701 | if (maxIndex >= self.dataOut.nHeights): |
|
1701 | 1702 | maxIndex = self.dataOut.nHeights - 1 |
|
1702 | 1703 | |
|
1703 | 1704 | ######################################################################## |
|
1704 | 1705 | |
|
1705 | 1706 | |
|
1706 | 1707 | #dataOut.max_nIncohInt * dataOut.nCohInt |
|
1707 | 1708 | norm = self.dataOut.nIncohInt /self.dataOut.max_nIncohInt |
|
1708 | 1709 | #print(norm.shape) |
|
1709 | 1710 | # Subrutina de Remocion de la Interferencia |
|
1710 | 1711 | for ich in range(num_channel): |
|
1711 | 1712 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1712 | 1713 | #power = jspectra[ich, mask_prof, :] |
|
1713 | 1714 | interf = jspectra[ich, :, minIndex:maxIndex] |
|
1714 | 1715 | #print(interf.shape) |
|
1715 | 1716 | inttef = interf.mean(axis=1) |
|
1716 | 1717 | |
|
1717 | 1718 | for hei in range(num_hei): |
|
1718 | 1719 | temp = jspectra[ich,:, hei] |
|
1719 | 1720 | temp -= inttef |
|
1720 | 1721 | temp += jnoise[ich]*norm[ich,hei] |
|
1721 | 1722 | jspectra[ich,:, hei] = temp |
|
1722 | 1723 | |
|
1723 | 1724 | # Guardar Resultados |
|
1724 | 1725 | self.dataOut.data_spc = jspectra |
|
1725 | 1726 | #self.dataOut.data_cspc = jcspectra |
|
1726 | 1727 | |
|
1727 | 1728 | return 1 |
|
1728 | 1729 | |
|
1729 | 1730 | def removeInterference2(self): |
|
1730 | 1731 | |
|
1731 | 1732 | cspc = self.dataOut.data_cspc |
|
1732 | 1733 | spc = self.dataOut.data_spc |
|
1733 | 1734 | Heights = numpy.arange(cspc.shape[2]) |
|
1734 | 1735 | realCspc = numpy.abs(cspc) |
|
1735 | 1736 | |
|
1736 | 1737 | for i in range(cspc.shape[0]): |
|
1737 | 1738 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1738 | 1739 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1739 | 1740 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1740 | 1741 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1741 | 1742 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1742 | 1743 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1743 | 1744 | |
|
1744 | 1745 | |
|
1745 | 1746 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1746 | 1747 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1747 | 1748 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1748 | 1749 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1749 | 1750 | |
|
1750 | 1751 | self.dataOut.data_cspc = cspc |
|
1751 | 1752 | |
|
1752 | 1753 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1753 | 1754 | |
|
1754 | 1755 | jspectra = self.dataOut.data_spc |
|
1755 | 1756 | jcspectra = self.dataOut.data_cspc |
|
1756 | 1757 | jnoise = self.dataOut.getNoise() |
|
1757 | 1758 | #num_incoh = self.dataOut.nIncohInt |
|
1758 | 1759 | num_incoh = self.dataOut.max_nIncohInt |
|
1759 | 1760 | #print("spc: ", jspectra.shape, jcspectra) |
|
1760 | 1761 | num_channel = jspectra.shape[0] |
|
1761 | 1762 | num_prof = jspectra.shape[1] |
|
1762 | 1763 | num_hei = jspectra.shape[2] |
|
1763 | 1764 | |
|
1764 | 1765 | # hei_interf |
|
1765 | 1766 | if hei_interf is None: |
|
1766 | 1767 | count_hei = int(num_hei / 2) # a half of total ranges |
|
1767 | 1768 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1768 | 1769 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1769 | 1770 | #print(hei_interf) |
|
1770 | 1771 | # nhei_interf |
|
1771 | 1772 | if (nhei_interf == None): |
|
1772 | 1773 | nhei_interf = 5 |
|
1773 | 1774 | if (nhei_interf < 1): |
|
1774 | 1775 | nhei_interf = 1 |
|
1775 | 1776 | if (nhei_interf > count_hei): |
|
1776 | 1777 | nhei_interf = count_hei |
|
1777 | 1778 | if (offhei_interf == None): |
|
1778 | 1779 | offhei_interf = 0 |
|
1779 | 1780 | |
|
1780 | 1781 | ind_hei = list(range(num_hei)) |
|
1781 | 1782 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1782 | 1783 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1783 | 1784 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1784 | 1785 | num_mask_prof = mask_prof.size |
|
1785 | 1786 | comp_mask_prof = [0, num_prof / 2] |
|
1786 | 1787 | |
|
1787 | 1788 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1788 | 1789 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1789 | 1790 | jnoise = numpy.nan |
|
1790 | 1791 | noise_exist = jnoise[0] < numpy.Inf |
|
1791 | 1792 | |
|
1792 | 1793 | # Subrutina de Remocion de la Interferencia |
|
1793 | 1794 | for ich in range(num_channel): |
|
1794 | 1795 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1795 | 1796 | power = jspectra[ich, mask_prof, :] |
|
1796 | 1797 | power = power[:, hei_interf] |
|
1797 | 1798 | power = power.sum(axis=0) |
|
1798 | 1799 | psort = power.ravel().argsort() |
|
1799 | 1800 | print(hei_interf[psort[list(range(offhei_interf, nhei_interf + offhei_interf))]]) |
|
1800 | 1801 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1801 | 1802 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1802 | 1803 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1803 | 1804 | |
|
1804 | 1805 | if noise_exist: |
|
1805 | 1806 | # tmp_noise = jnoise[ich] / num_prof |
|
1806 | 1807 | tmp_noise = jnoise[ich] |
|
1807 | 1808 | junkspc_interf = junkspc_interf - tmp_noise |
|
1808 | 1809 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1809 | 1810 | print(junkspc_interf.shape) |
|
1810 | 1811 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1811 | 1812 | jspc_interf = jspc_interf.transpose() |
|
1812 | 1813 | # Calculando el espectro de interferencia promedio |
|
1813 | 1814 | noiseid = numpy.where(jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1814 | 1815 | noiseid = noiseid[0] |
|
1815 | 1816 | cnoiseid = noiseid.size |
|
1816 | 1817 | interfid = numpy.where(jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1817 | 1818 | interfid = interfid[0] |
|
1818 | 1819 | cinterfid = interfid.size |
|
1819 | 1820 | |
|
1820 | 1821 | if (cnoiseid > 0): |
|
1821 | 1822 | jspc_interf[noiseid] = 0 |
|
1822 | 1823 | # Expandiendo los perfiles a limpiar |
|
1823 | 1824 | if (cinterfid > 0): |
|
1824 | 1825 | new_interfid = ( |
|
1825 | 1826 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1826 | 1827 | new_interfid = numpy.asarray(new_interfid) |
|
1827 | 1828 | new_interfid = {x for x in new_interfid} |
|
1828 | 1829 | new_interfid = numpy.array(list(new_interfid)) |
|
1829 | 1830 | new_cinterfid = new_interfid.size |
|
1830 | 1831 | else: |
|
1831 | 1832 | new_cinterfid = 0 |
|
1832 | 1833 | |
|
1833 | 1834 | for ip in range(new_cinterfid): |
|
1834 | 1835 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1835 | 1836 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1836 | 1837 | |
|
1837 | 1838 | jspectra[ich, :, ind_hei] = jspectra[ich, :,ind_hei] - jspc_interf # Corregir indices |
|
1838 | 1839 | |
|
1839 | 1840 | # Removiendo la interferencia del punto de mayor interferencia |
|
1840 | 1841 | ListAux = jspc_interf[mask_prof].tolist() |
|
1841 | 1842 | maxid = ListAux.index(max(ListAux)) |
|
1842 | 1843 | print(cinterfid) |
|
1843 | 1844 | if cinterfid > 0: |
|
1844 | 1845 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1845 | 1846 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1846 | 1847 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1847 | 1848 | cind = len(ind) |
|
1848 | 1849 | |
|
1849 | 1850 | if (cind > 0): |
|
1850 | 1851 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1851 | 1852 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1852 | 1853 | numpy.sqrt(num_incoh)) |
|
1853 | 1854 | |
|
1854 | 1855 | ind = numpy.array([-2, -1, 1, 2]) |
|
1855 | 1856 | xx = numpy.zeros([4, 4]) |
|
1856 | 1857 | |
|
1857 | 1858 | for id1 in range(4): |
|
1858 | 1859 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1859 | 1860 | xx_inv = numpy.linalg.inv(xx) |
|
1860 | 1861 | xx = xx_inv[:, 0] |
|
1861 | 1862 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1862 | 1863 | yy = jspectra[ich, mask_prof[ind], :] |
|
1863 | 1864 | jspectra[ich, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1864 | 1865 | |
|
1865 | 1866 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1866 | 1867 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1867 | 1868 | print(indAux) |
|
1868 | 1869 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1869 | 1870 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1870 | 1871 | |
|
1871 | 1872 | # Remocion de Interferencia en el Cross Spectra |
|
1872 | 1873 | if jcspectra is None: |
|
1873 | 1874 | return jspectra, jcspectra |
|
1874 | 1875 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1875 | 1876 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1876 | 1877 | |
|
1877 | 1878 | for ip in range(num_pairs): |
|
1878 | 1879 | |
|
1879 | 1880 | #------------------------------------------- |
|
1880 | 1881 | |
|
1881 | 1882 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1882 | 1883 | cspower = cspower[:, hei_interf] |
|
1883 | 1884 | cspower = cspower.sum(axis=0) |
|
1884 | 1885 | |
|
1885 | 1886 | cspsort = cspower.ravel().argsort() |
|
1886 | 1887 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1887 | 1888 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1888 | 1889 | junkcspc_interf = junkcspc_interf.transpose() |
|
1889 | 1890 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1890 | 1891 | |
|
1891 | 1892 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1892 | 1893 | |
|
1893 | 1894 | median_real = int(numpy.median(numpy.real( |
|
1894 | 1895 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1895 | 1896 | median_imag = int(numpy.median(numpy.imag( |
|
1896 | 1897 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1897 | 1898 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1898 | 1899 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1899 | 1900 | median_real, median_imag) |
|
1900 | 1901 | |
|
1901 | 1902 | for iprof in range(num_prof): |
|
1902 | 1903 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1903 | 1904 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1904 | 1905 | |
|
1905 | 1906 | # Removiendo la Interferencia |
|
1906 | 1907 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1907 | 1908 | :, ind_hei] - jcspc_interf |
|
1908 | 1909 | |
|
1909 | 1910 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1910 | 1911 | maxid = ListAux.index(max(ListAux)) |
|
1911 | 1912 | |
|
1912 | 1913 | ind = numpy.array([-2, -1, 1, 2]) |
|
1913 | 1914 | xx = numpy.zeros([4, 4]) |
|
1914 | 1915 | |
|
1915 | 1916 | for id1 in range(4): |
|
1916 | 1917 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1917 | 1918 | |
|
1918 | 1919 | xx_inv = numpy.linalg.inv(xx) |
|
1919 | 1920 | xx = xx_inv[:, 0] |
|
1920 | 1921 | |
|
1921 | 1922 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1922 | 1923 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1923 | 1924 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1924 | 1925 | |
|
1925 | 1926 | # Guardar Resultados |
|
1926 | 1927 | self.dataOut.data_spc = jspectra |
|
1927 | 1928 | self.dataOut.data_cspc = jcspectra |
|
1928 | 1929 | |
|
1929 | 1930 | return 1 |
|
1930 | 1931 | |
|
1931 | 1932 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1, minHei=None, maxHei=None): |
|
1932 | 1933 | |
|
1933 | 1934 | self.dataOut = dataOut |
|
1934 | 1935 | |
|
1935 | 1936 | if mode == 1: |
|
1936 | 1937 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1937 | 1938 | elif mode == 2: |
|
1938 | 1939 | self.removeInterference2() |
|
1939 | 1940 | elif mode == 3: |
|
1940 | 1941 | self.removeInterference3(min_hei=minHei, max_hei=maxHei) |
|
1941 | 1942 | return self.dataOut |
|
1942 | 1943 | |
|
1943 | 1944 | |
|
1944 | 1945 | class IncohInt(Operation): |
|
1945 | 1946 | |
|
1946 | 1947 | __profIndex = 0 |
|
1947 | 1948 | __withOverapping = False |
|
1948 | 1949 | |
|
1949 | 1950 | __byTime = False |
|
1950 | 1951 | __initime = None |
|
1951 | 1952 | __lastdatatime = None |
|
1952 | 1953 | __integrationtime = None |
|
1953 | 1954 | |
|
1954 | 1955 | __buffer_spc = None |
|
1955 | 1956 | __buffer_cspc = None |
|
1956 | 1957 | __buffer_dc = None |
|
1957 | 1958 | |
|
1958 | 1959 | __dataReady = False |
|
1959 | 1960 | |
|
1960 | 1961 | __timeInterval = None |
|
1961 | 1962 | incohInt = 0 |
|
1962 | 1963 | nOutliers = 0 |
|
1963 | 1964 | n = None |
|
1964 | 1965 | |
|
1965 | 1966 | def __init__(self): |
|
1966 | 1967 | |
|
1967 | 1968 | Operation.__init__(self) |
|
1968 | 1969 | |
|
1969 | 1970 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1970 | 1971 | """ |
|
1971 | 1972 | Set the parameters of the integration class. |
|
1972 | 1973 | |
|
1973 | 1974 | Inputs: |
|
1974 | 1975 | |
|
1975 | 1976 | n : Number of coherent integrations |
|
1976 | 1977 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1977 | 1978 | overlapping : |
|
1978 | 1979 | |
|
1979 | 1980 | """ |
|
1980 | 1981 | |
|
1981 | 1982 | self.__initime = None |
|
1982 | 1983 | self.__lastdatatime = 0 |
|
1983 | 1984 | |
|
1984 | 1985 | self.__buffer_spc = 0 |
|
1985 | 1986 | self.__buffer_cspc = 0 |
|
1986 | 1987 | self.__buffer_dc = 0 |
|
1987 | 1988 | |
|
1988 | 1989 | self.__profIndex = 0 |
|
1989 | 1990 | self.__dataReady = False |
|
1990 | 1991 | self.__byTime = False |
|
1991 | 1992 | self.incohInt = 0 |
|
1992 | 1993 | self.nOutliers = 0 |
|
1993 | 1994 | if n is None and timeInterval is None: |
|
1994 | 1995 | raise ValueError("n or timeInterval should be specified ...") |
|
1995 | 1996 | |
|
1996 | 1997 | if n is not None: |
|
1997 | 1998 | self.n = int(n) |
|
1998 | 1999 | else: |
|
1999 | 2000 | |
|
2000 | 2001 | self.__integrationtime = int(timeInterval) |
|
2001 | 2002 | self.n = None |
|
2002 | 2003 | self.__byTime = True |
|
2003 | 2004 | |
|
2004 | 2005 | def putData(self, data_spc, data_cspc, data_dc): |
|
2005 | 2006 | """ |
|
2006 | 2007 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
2007 | 2008 | |
|
2008 | 2009 | """ |
|
2009 | 2010 | if data_spc.all() == numpy.nan : |
|
2010 | 2011 | print("nan ") |
|
2011 | 2012 | return |
|
2012 | 2013 | self.__buffer_spc += data_spc |
|
2013 | 2014 | |
|
2014 | 2015 | if data_cspc is None: |
|
2015 | 2016 | self.__buffer_cspc = None |
|
2016 | 2017 | else: |
|
2017 | 2018 | self.__buffer_cspc += data_cspc |
|
2018 | 2019 | |
|
2019 | 2020 | if data_dc is None: |
|
2020 | 2021 | self.__buffer_dc = None |
|
2021 | 2022 | else: |
|
2022 | 2023 | self.__buffer_dc += data_dc |
|
2023 | 2024 | |
|
2024 | 2025 | self.__profIndex += 1 |
|
2025 | 2026 | |
|
2026 | 2027 | return |
|
2027 | 2028 | |
|
2028 | 2029 | def pushData(self): |
|
2029 | 2030 | """ |
|
2030 | 2031 | Return the sum of the last profiles and the profiles used in the sum. |
|
2031 | 2032 | |
|
2032 | 2033 | Affected: |
|
2033 | 2034 | |
|
2034 | 2035 | self.__profileIndex |
|
2035 | 2036 | |
|
2036 | 2037 | """ |
|
2037 | 2038 | |
|
2038 | 2039 | data_spc = self.__buffer_spc |
|
2039 | 2040 | data_cspc = self.__buffer_cspc |
|
2040 | 2041 | data_dc = self.__buffer_dc |
|
2041 | 2042 | n = self.__profIndex |
|
2042 | 2043 | |
|
2043 | 2044 | self.__buffer_spc = 0 |
|
2044 | 2045 | self.__buffer_cspc = 0 |
|
2045 | 2046 | self.__buffer_dc = 0 |
|
2046 | 2047 | |
|
2047 | 2048 | |
|
2048 | 2049 | return data_spc, data_cspc, data_dc, n |
|
2049 | 2050 | |
|
2050 | 2051 | def byProfiles(self, *args): |
|
2051 | 2052 | |
|
2052 | 2053 | self.__dataReady = False |
|
2053 | 2054 | avgdata_spc = None |
|
2054 | 2055 | avgdata_cspc = None |
|
2055 | 2056 | avgdata_dc = None |
|
2056 | 2057 | |
|
2057 | 2058 | self.putData(*args) |
|
2058 | 2059 | |
|
2059 | 2060 | if self.__profIndex == self.n: |
|
2060 | 2061 | |
|
2061 | 2062 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
2062 | 2063 | self.n = n |
|
2063 | 2064 | self.__dataReady = True |
|
2064 | 2065 | |
|
2065 | 2066 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
2066 | 2067 | |
|
2067 | 2068 | def byTime(self, datatime, *args): |
|
2068 | 2069 | |
|
2069 | 2070 | self.__dataReady = False |
|
2070 | 2071 | avgdata_spc = None |
|
2071 | 2072 | avgdata_cspc = None |
|
2072 | 2073 | avgdata_dc = None |
|
2073 | 2074 | |
|
2074 | 2075 | self.putData(*args) |
|
2075 | 2076 | |
|
2076 | 2077 | if (datatime - self.__initime) >= self.__integrationtime: |
|
2077 | 2078 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
2078 | 2079 | self.n = n |
|
2079 | 2080 | self.__dataReady = True |
|
2080 | 2081 | |
|
2081 | 2082 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
2082 | 2083 | |
|
2083 | 2084 | def integrate(self, datatime, *args): |
|
2084 | 2085 | |
|
2085 | 2086 | if self.__profIndex == 0: |
|
2086 | 2087 | self.__initime = datatime |
|
2087 | 2088 | |
|
2088 | 2089 | if self.__byTime: |
|
2089 | 2090 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
2090 | 2091 | datatime, *args) |
|
2091 | 2092 | else: |
|
2092 | 2093 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
2093 | 2094 | |
|
2094 | 2095 | if not self.__dataReady: |
|
2095 | 2096 | return None, None, None, None |
|
2096 | 2097 | |
|
2097 | 2098 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
2098 | 2099 | |
|
2099 | 2100 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
2100 | 2101 | if n == 1: |
|
2101 | 2102 | return dataOut |
|
2102 | 2103 | |
|
2103 | 2104 | if dataOut.flagNoData == True: |
|
2104 | 2105 | return dataOut |
|
2105 | 2106 | |
|
2106 | 2107 | dataOut.flagNoData = True |
|
2107 | 2108 | |
|
2108 | 2109 | if not self.isConfig: |
|
2109 | 2110 | self.setup(n, timeInterval, overlapping) |
|
2110 | 2111 | self.isConfig = True |
|
2111 | 2112 | |
|
2112 | 2113 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
2113 | 2114 | dataOut.data_spc, |
|
2114 | 2115 | dataOut.data_cspc, |
|
2115 | 2116 | dataOut.data_dc) |
|
2116 | 2117 | self.incohInt += dataOut.nIncohInt |
|
2117 | 2118 | self.nOutliers += dataOut.data_outlier |
|
2118 | 2119 | if self.__dataReady: |
|
2119 | 2120 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) |
|
2120 | 2121 | dataOut.data_spc = avgdata_spc |
|
2121 | 2122 | dataOut.data_cspc = avgdata_cspc |
|
2122 | 2123 | dataOut.data_dc = avgdata_dc |
|
2123 | 2124 | dataOut.nIncohInt = self.incohInt |
|
2124 | 2125 | dataOut.data_outlier = self.nOutliers |
|
2125 | 2126 | dataOut.utctime = avgdatatime |
|
2126 | 2127 | dataOut.flagNoData = False |
|
2127 | 2128 | dataOut.max_nIncohInt = self.__profIndex |
|
2128 | 2129 | self.incohInt = 0 |
|
2129 | 2130 | self.nOutliers = 0 |
|
2130 | 2131 | self.__profIndex = 0 |
|
2131 | 2132 | #print("IncohInt Done") |
|
2132 | 2133 | return dataOut |
|
2133 | 2134 | |
|
2134 | 2135 | class dopplerFlip(Operation): |
|
2135 | 2136 | |
|
2136 | 2137 | def run(self, dataOut): |
|
2137 | 2138 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
2138 | 2139 | self.dataOut = dataOut |
|
2139 | 2140 | # JULIA-oblicua, indice 2 |
|
2140 | 2141 | # arreglo 2: (num_profiles, num_heights) |
|
2141 | 2142 | jspectra = self.dataOut.data_spc[2] |
|
2142 | 2143 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
2143 | 2144 | num_profiles = jspectra.shape[0] |
|
2144 | 2145 | freq_dc = int(num_profiles / 2) |
|
2145 | 2146 | # Flip con for |
|
2146 | 2147 | for j in range(num_profiles): |
|
2147 | 2148 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
2148 | 2149 | # Intercambio perfil de DC con perfil inmediato anterior |
|
2149 | 2150 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
2150 | 2151 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
2151 | 2152 | # canal modificado es re-escrito en el arreglo de canales |
|
2152 | 2153 | self.dataOut.data_spc[2] = jspectra_tmp |
|
2153 | 2154 | |
|
2154 | 2155 | return self.dataOut |
@@ -1,2839 +1,3137 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy,math |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
5 | 5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
6 | 6 | from schainpy.utils import log |
|
7 | 7 | from schainpy.model.io.utils import getHei_index |
|
8 | 8 | from time import time |
|
9 | 9 | import datetime |
|
10 | 10 | import numpy |
|
11 | 11 | #import copy |
|
12 | 12 | from schainpy.model.data import _noise |
|
13 | 13 | |
|
14 | 14 | class VoltageProc(ProcessingUnit): |
|
15 | 15 | |
|
16 | 16 | def __init__(self): |
|
17 | 17 | |
|
18 | 18 | ProcessingUnit.__init__(self) |
|
19 | 19 | |
|
20 | 20 | self.dataOut = Voltage() |
|
21 | 21 | self.flip = 1 |
|
22 | 22 | self.setupReq = False |
|
23 | 23 | |
|
24 | 24 | def run(self): |
|
25 | 25 | #print("running volt proc") |
|
26 | 26 | if self.dataIn.type == 'AMISR': |
|
27 | 27 | self.__updateObjFromAmisrInput() |
|
28 | 28 | |
|
29 | 29 | if self.dataOut.buffer_empty: |
|
30 | 30 | if self.dataIn.type == 'Voltage': |
|
31 | 31 | self.dataOut.copy(self.dataIn) |
|
32 | 32 | #print("new volts reading") |
|
33 | 33 | |
|
34 | 34 | |
|
35 | 35 | def __updateObjFromAmisrInput(self): |
|
36 | 36 | |
|
37 | 37 | self.dataOut.timeZone = self.dataIn.timeZone |
|
38 | 38 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
39 | 39 | self.dataOut.errorCount = self.dataIn.errorCount |
|
40 | 40 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
41 | 41 | |
|
42 | 42 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
43 | 43 | self.dataOut.data = self.dataIn.data |
|
44 | 44 | self.dataOut.utctime = self.dataIn.utctime |
|
45 | 45 | self.dataOut.channelList = self.dataIn.channelList |
|
46 | 46 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
47 | 47 | self.dataOut.heightList = self.dataIn.heightList |
|
48 | 48 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
49 | 49 | |
|
50 | 50 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
51 | 51 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
52 | 52 | self.dataOut.frequency = self.dataIn.frequency |
|
53 | 53 | |
|
54 | 54 | self.dataOut.azimuth = self.dataIn.azimuth |
|
55 | 55 | self.dataOut.zenith = self.dataIn.zenith |
|
56 | 56 | |
|
57 | 57 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
58 | 58 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
59 | 59 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
60 | 60 | |
|
61 | 61 | |
|
62 | 62 | class selectChannels(Operation): |
|
63 | 63 | |
|
64 | 64 | def run(self, dataOut, channelList=None): |
|
65 | 65 | self.channelList = channelList |
|
66 | 66 | if self.channelList == None: |
|
67 | 67 | print("Missing channelList") |
|
68 | 68 | return dataOut |
|
69 | 69 | channelIndexList = [] |
|
70 | 70 | |
|
71 | 71 | if type(dataOut.channelList) is not list: #leer array desde HDF5 |
|
72 | 72 | try: |
|
73 | 73 | dataOut.channelList = dataOut.channelList.tolist() |
|
74 | 74 | except Exception as e: |
|
75 | 75 | print("Select Channels: ",e) |
|
76 | 76 | for channel in self.channelList: |
|
77 | 77 | if channel not in dataOut.channelList: |
|
78 | 78 | raise ValueError("Channel %d is not in %s" %(channel, str(dataOut.channelList))) |
|
79 | 79 | |
|
80 | 80 | index = dataOut.channelList.index(channel) |
|
81 | 81 | channelIndexList.append(index) |
|
82 | 82 | dataOut = self.selectChannelsByIndex(dataOut,channelIndexList) |
|
83 | 83 | return dataOut |
|
84 | 84 | |
|
85 | 85 | def selectChannelsByIndex(self, dataOut, channelIndexList): |
|
86 | 86 | """ |
|
87 | 87 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
88 | 88 | |
|
89 | 89 | Input: |
|
90 | 90 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
91 | 91 | |
|
92 | 92 | Affected: |
|
93 | 93 | dataOut.data |
|
94 | 94 | dataOut.channelIndexList |
|
95 | 95 | dataOut.nChannels |
|
96 | 96 | dataOut.m_ProcessingHeader.totalSpectra |
|
97 | 97 | dataOut.systemHeaderObj.numChannels |
|
98 | 98 | dataOut.m_ProcessingHeader.blockSize |
|
99 | 99 | |
|
100 | 100 | Return: |
|
101 | 101 | None |
|
102 | 102 | """ |
|
103 | 103 | #print("selectChannelsByIndex") |
|
104 | 104 | # for channelIndex in channelIndexList: |
|
105 | 105 | # if channelIndex not in dataOut.channelIndexList: |
|
106 | 106 | # raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
107 | 107 | |
|
108 | 108 | if dataOut.type == 'Voltage': |
|
109 | 109 | if dataOut.flagDataAsBlock: |
|
110 | 110 | """ |
|
111 | 111 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
112 | 112 | """ |
|
113 | 113 | data = dataOut.data[channelIndexList,:,:] |
|
114 | 114 | else: |
|
115 | 115 | data = dataOut.data[channelIndexList,:] |
|
116 | 116 | |
|
117 | 117 | dataOut.data = data |
|
118 | 118 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] |
|
119 | 119 | dataOut.channelList = range(len(channelIndexList)) |
|
120 | 120 | |
|
121 | 121 | elif dataOut.type == 'Spectra': |
|
122 | 122 | if hasattr(dataOut, 'data_spc'): |
|
123 | 123 | if dataOut.data_spc is None: |
|
124 | 124 | raise ValueError("data_spc is None") |
|
125 | 125 | return dataOut |
|
126 | 126 | else: |
|
127 | 127 | data_spc = dataOut.data_spc[channelIndexList, :] |
|
128 | 128 | dataOut.data_spc = data_spc |
|
129 | 129 | |
|
130 | 130 | # if hasattr(dataOut, 'data_dc') :# and |
|
131 | 131 | # if dataOut.data_dc is None: |
|
132 | 132 | # raise ValueError("data_dc is None") |
|
133 | 133 | # return dataOut |
|
134 | 134 | # else: |
|
135 | 135 | # data_dc = dataOut.data_dc[channelIndexList, :] |
|
136 | 136 | # dataOut.data_dc = data_dc |
|
137 | 137 | # dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList] |
|
138 | 138 | dataOut.channelList = channelIndexList |
|
139 | 139 | dataOut = self.__selectPairsByChannel(dataOut,channelIndexList) |
|
140 | 140 | |
|
141 | 141 | return dataOut |
|
142 | 142 | |
|
143 | 143 | def __selectPairsByChannel(self, dataOut, channelList=None): |
|
144 | 144 | #print("__selectPairsByChannel") |
|
145 | 145 | if channelList == None: |
|
146 | 146 | return |
|
147 | 147 | |
|
148 | 148 | pairsIndexListSelected = [] |
|
149 | 149 | for pairIndex in dataOut.pairsIndexList: |
|
150 | 150 | # First pair |
|
151 | 151 | if dataOut.pairsList[pairIndex][0] not in channelList: |
|
152 | 152 | continue |
|
153 | 153 | # Second pair |
|
154 | 154 | if dataOut.pairsList[pairIndex][1] not in channelList: |
|
155 | 155 | continue |
|
156 | 156 | |
|
157 | 157 | pairsIndexListSelected.append(pairIndex) |
|
158 | 158 | if not pairsIndexListSelected: |
|
159 | 159 | dataOut.data_cspc = None |
|
160 | 160 | dataOut.pairsList = [] |
|
161 | 161 | return |
|
162 | 162 | |
|
163 | 163 | dataOut.data_cspc = dataOut.data_cspc[pairsIndexListSelected] |
|
164 | 164 | dataOut.pairsList = [dataOut.pairsList[i] |
|
165 | 165 | for i in pairsIndexListSelected] |
|
166 | 166 | |
|
167 | 167 | return dataOut |
|
168 | 168 | |
|
169 | 169 | class selectHeights(Operation): |
|
170 | 170 | |
|
171 | 171 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
172 | 172 | """ |
|
173 | 173 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
174 | 174 | minHei <= height <= maxHei |
|
175 | 175 | |
|
176 | 176 | Input: |
|
177 | 177 | minHei : valor minimo de altura a considerar |
|
178 | 178 | maxHei : valor maximo de altura a considerar |
|
179 | 179 | |
|
180 | 180 | Affected: |
|
181 | 181 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
182 | 182 | |
|
183 | 183 | Return: |
|
184 | 184 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
185 | 185 | """ |
|
186 | 186 | |
|
187 | 187 | self.dataOut = dataOut |
|
188 | 188 | |
|
189 | 189 | if minHei and maxHei: |
|
190 | 190 | |
|
191 | 191 | if (minHei < dataOut.heightList[0]): |
|
192 | 192 | minHei = dataOut.heightList[0] |
|
193 | 193 | |
|
194 | 194 | if (maxHei > dataOut.heightList[-1]): |
|
195 | 195 | maxHei = dataOut.heightList[-1] |
|
196 | 196 | |
|
197 | 197 | minIndex = 0 |
|
198 | 198 | maxIndex = 0 |
|
199 | 199 | heights = dataOut.heightList |
|
200 | 200 | |
|
201 | 201 | inda = numpy.where(heights >= minHei) |
|
202 | 202 | indb = numpy.where(heights <= maxHei) |
|
203 | 203 | |
|
204 | 204 | try: |
|
205 | 205 | minIndex = inda[0][0] |
|
206 | 206 | except: |
|
207 | 207 | minIndex = 0 |
|
208 | 208 | |
|
209 | 209 | try: |
|
210 | 210 | maxIndex = indb[0][-1] |
|
211 | 211 | except: |
|
212 | 212 | maxIndex = len(heights) |
|
213 | 213 | |
|
214 | 214 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
215 | 215 | |
|
216 | 216 | return dataOut |
|
217 | 217 | |
|
218 | 218 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
219 | 219 | """ |
|
220 | 220 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
221 | 221 | minIndex <= index <= maxIndex |
|
222 | 222 | |
|
223 | 223 | Input: |
|
224 | 224 | minIndex : valor de indice minimo de altura a considerar |
|
225 | 225 | maxIndex : valor de indice maximo de altura a considerar |
|
226 | 226 | |
|
227 | 227 | Affected: |
|
228 | 228 | self.dataOut.data |
|
229 | 229 | self.dataOut.heightList |
|
230 | 230 | |
|
231 | 231 | Return: |
|
232 | 232 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
233 | 233 | """ |
|
234 | 234 | |
|
235 | 235 | if self.dataOut.type == 'Voltage': |
|
236 | 236 | if (minIndex < 0) or (minIndex > maxIndex): |
|
237 | 237 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
238 | 238 | |
|
239 | 239 | if (maxIndex >= self.dataOut.nHeights): |
|
240 | 240 | maxIndex = self.dataOut.nHeights |
|
241 | 241 | |
|
242 | 242 | #voltage |
|
243 | 243 | if self.dataOut.flagDataAsBlock: |
|
244 | 244 | """ |
|
245 | 245 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
246 | 246 | """ |
|
247 | 247 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
248 | 248 | else: |
|
249 | 249 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
250 | 250 | |
|
251 | 251 | # firstHeight = self.dataOut.heightList[minIndex] |
|
252 | 252 | |
|
253 | 253 | self.dataOut.data = data |
|
254 | 254 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
255 | 255 | |
|
256 | 256 | if self.dataOut.nHeights <= 1: |
|
257 | 257 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
258 | 258 | elif self.dataOut.type == 'Spectra': |
|
259 | 259 | if (minIndex < 0) or (minIndex > maxIndex): |
|
260 | 260 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
261 | 261 | minIndex, maxIndex)) |
|
262 | 262 | |
|
263 | 263 | if (maxIndex >= self.dataOut.nHeights): |
|
264 | 264 | maxIndex = self.dataOut.nHeights - 1 |
|
265 | 265 | |
|
266 | 266 | # Spectra |
|
267 | 267 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
268 | 268 | |
|
269 | 269 | data_cspc = None |
|
270 | 270 | if self.dataOut.data_cspc is not None: |
|
271 | 271 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
272 | 272 | |
|
273 | 273 | data_dc = None |
|
274 | 274 | if self.dataOut.data_dc is not None: |
|
275 | 275 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
276 | 276 | |
|
277 | 277 | self.dataOut.data_spc = data_spc |
|
278 | 278 | self.dataOut.data_cspc = data_cspc |
|
279 | 279 | self.dataOut.data_dc = data_dc |
|
280 | 280 | |
|
281 | 281 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
282 | 282 | |
|
283 | 283 | return 1 |
|
284 | 284 | |
|
285 | 285 | |
|
286 | 286 | class filterByHeights(Operation): |
|
287 | 287 | |
|
288 | 288 | def run(self, dataOut, window): |
|
289 | 289 | |
|
290 | 290 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
291 | 291 | |
|
292 | 292 | if window == None: |
|
293 | 293 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
294 | 294 | |
|
295 | 295 | newdelta = deltaHeight * window |
|
296 | 296 | r = dataOut.nHeights % window |
|
297 | 297 | newheights = (dataOut.nHeights-r)/window |
|
298 | 298 | |
|
299 | 299 | if newheights <= 1: |
|
300 | 300 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
301 | 301 | |
|
302 | 302 | if dataOut.flagDataAsBlock: |
|
303 | 303 | """ |
|
304 | 304 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
305 | 305 | """ |
|
306 | 306 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
307 | 307 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
308 | 308 | buffer = numpy.sum(buffer,3) |
|
309 | 309 | |
|
310 | 310 | else: |
|
311 | 311 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
312 | 312 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
313 | 313 | buffer = numpy.sum(buffer,2) |
|
314 | 314 | |
|
315 | 315 | dataOut.data = buffer |
|
316 | 316 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
317 | 317 | dataOut.windowOfFilter = window |
|
318 | 318 | |
|
319 | 319 | return dataOut |
|
320 | 320 | |
|
321 | 321 | |
|
322 | 322 | class setH0(Operation): |
|
323 | 323 | |
|
324 | 324 | def run(self, dataOut, h0, deltaHeight = None): |
|
325 | 325 | |
|
326 | 326 | if not deltaHeight: |
|
327 | 327 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
328 | 328 | |
|
329 | 329 | nHeights = dataOut.nHeights |
|
330 | 330 | |
|
331 | 331 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
332 | 332 | |
|
333 | 333 | dataOut.heightList = newHeiRange |
|
334 | 334 | |
|
335 | 335 | return dataOut |
|
336 | 336 | |
|
337 | 337 | |
|
338 | 338 | class deFlip(Operation): |
|
339 | 339 | |
|
340 | 340 | def run(self, dataOut, channelList = []): |
|
341 | 341 | |
|
342 | 342 | data = dataOut.data.copy() |
|
343 | 343 | |
|
344 | 344 | if dataOut.flagDataAsBlock: |
|
345 | 345 | flip = self.flip |
|
346 | 346 | profileList = list(range(dataOut.nProfiles)) |
|
347 | 347 | |
|
348 | 348 | if not channelList: |
|
349 | 349 | for thisProfile in profileList: |
|
350 | 350 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
351 | 351 | flip *= -1.0 |
|
352 | 352 | else: |
|
353 | 353 | for thisChannel in channelList: |
|
354 | 354 | if thisChannel not in dataOut.channelList: |
|
355 | 355 | continue |
|
356 | 356 | |
|
357 | 357 | for thisProfile in profileList: |
|
358 | 358 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
359 | 359 | flip *= -1.0 |
|
360 | 360 | |
|
361 | 361 | self.flip = flip |
|
362 | 362 | |
|
363 | 363 | else: |
|
364 | 364 | if not channelList: |
|
365 | 365 | data[:,:] = data[:,:]*self.flip |
|
366 | 366 | else: |
|
367 | 367 | for thisChannel in channelList: |
|
368 | 368 | if thisChannel not in dataOut.channelList: |
|
369 | 369 | continue |
|
370 | 370 | |
|
371 | 371 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
372 | 372 | |
|
373 | 373 | self.flip *= -1. |
|
374 | 374 | |
|
375 | 375 | dataOut.data = data |
|
376 | 376 | |
|
377 | 377 | return dataOut |
|
378 | 378 | |
|
379 | 379 | |
|
380 | 380 | class setAttribute(Operation): |
|
381 | 381 | ''' |
|
382 | 382 | Set an arbitrary attribute(s) to dataOut |
|
383 | 383 | ''' |
|
384 | 384 | |
|
385 | 385 | def __init__(self): |
|
386 | 386 | |
|
387 | 387 | Operation.__init__(self) |
|
388 | 388 | self._ready = False |
|
389 | 389 | |
|
390 | 390 | def run(self, dataOut, **kwargs): |
|
391 | 391 | |
|
392 | 392 | for key, value in kwargs.items(): |
|
393 | 393 | setattr(dataOut, key, value) |
|
394 | 394 | |
|
395 | 395 | return dataOut |
|
396 | 396 | |
|
397 | 397 | |
|
398 | 398 | @MPDecorator |
|
399 | 399 | class printAttribute(Operation): |
|
400 | 400 | ''' |
|
401 | 401 | Print an arbitrary attribute of dataOut |
|
402 | 402 | ''' |
|
403 | 403 | |
|
404 | 404 | def __init__(self): |
|
405 | 405 | |
|
406 | 406 | Operation.__init__(self) |
|
407 | 407 | |
|
408 | 408 | def run(self, dataOut, attributes): |
|
409 | 409 | |
|
410 | 410 | if isinstance(attributes, str): |
|
411 | 411 | attributes = [attributes] |
|
412 | 412 | for attr in attributes: |
|
413 | 413 | if hasattr(dataOut, attr): |
|
414 | 414 | log.log(getattr(dataOut, attr), attr) |
|
415 | 415 | |
|
416 | 416 | class cleanHeightsInterf(Operation): |
|
417 | __slots__ =('heights_indx', 'repeats', 'step', 'factor', 'idate', 'idxs','config','wMask') | |
|
418 | def __init__(self): | |
|
419 | self.repeats = 0 | |
|
420 | self.factor=1 | |
|
421 | self.wMask = None | |
|
422 | self.config = False | |
|
423 | self.idxs = None | |
|
424 | self.heights_indx = None | |
|
417 | 425 | |
|
418 | 426 | def run(self, dataOut, heightsList, repeats=0, step=0, factor=1, idate=None, startH=None, endH=None): |
|
419 | 427 | |
|
420 | 428 | #print(dataOut.data.shape) |
|
421 | 429 | |
|
422 | 430 | startTime = datetime.datetime.combine(idate,startH) |
|
423 | 431 | endTime = datetime.datetime.combine(idate,endH) |
|
424 | 432 | currentTime = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
425 | 433 | |
|
426 | 434 | if currentTime < startTime or currentTime > endTime: |
|
427 | 435 | return dataOut |
|
436 | if not self.config: | |
|
428 | 437 | |
|
429 | wMask = numpy.asarray(factor) | |
|
430 | wMask = numpy.tile(wMask,(repeats+2)) | |
|
431 | 438 | #print(wMask) |
|
432 | 439 | heights = [float(hei) for hei in heightsList] |
|
433 | 440 | for r in range(repeats): |
|
434 | 441 | heights += [ (h+(step*(r+1))) for h in heights] |
|
435 | 442 | #print(heights) |
|
436 | 443 | heiList = dataOut.heightList |
|
437 | heights_indx = [getHei_index(h,h,heiList)[0] for h in heights] | |
|
444 | self.heights_indx = [getHei_index(h,h,heiList)[0] for h in heights] | |
|
445 | ||
|
446 | self.wMask = numpy.asarray(factor) | |
|
447 | self.wMask = numpy.tile(self.wMask,(repeats+2)) | |
|
448 | self.config = True | |
|
449 | ||
|
450 | """ | |
|
451 | getNoisebyHildebrand(self, channel=None, ymin_index=None, ymax_index=None) | |
|
452 | """ | |
|
453 | #print(self.noise =10*numpy.log10(dataOut.getNoisebyHildebrand(ymin_index=self.min_ref, ymax_index=self.max_ref))) | |
|
454 | ||
|
438 | 455 | |
|
439 | 456 | for ch in range(dataOut.data.shape[0]): |
|
440 | 457 | i = 0 |
|
441 | for hei in heights_indx: | |
|
442 | #print(dataOut.data[ch,hei]) | |
|
458 | ||
|
459 | ||
|
460 | for hei in self.heights_indx: | |
|
461 | h = hei - 1 | |
|
462 | ||
|
463 | ||
|
443 | 464 | if dataOut.data.ndim < 3: |
|
444 |
|
|
|
465 | module = numpy.absolute(dataOut.data[ch,h]) | |
|
466 | prev_h1 = numpy.absolute(dataOut.data[ch,h-1]) | |
|
467 | dataOut.data[ch,h] = (dataOut.data[ch,h])/module * prev_h1 | |
|
468 | ||
|
469 | #dataOut.data[ch,hei-1] = (dataOut.data[ch,hei-1])*self.wMask[i] | |
|
445 | 470 | else: |
|
446 |
|
|
|
471 | module = numpy.absolute(dataOut.data[ch,:,h]) | |
|
472 | prev_h1 = numpy.absolute(dataOut.data[ch,:,h-1]) | |
|
473 | dataOut.data[ch,:,h] = (dataOut.data[ch,:,h])/module * prev_h1 | |
|
474 | #dataOut.data[ch,:,hei-1] = (dataOut.data[ch,:,hei-1])*self.wMask[i] | |
|
447 | 475 | #print("done") |
|
448 | 476 | i += 1 |
|
449 | 477 | |
|
478 | ||
|
450 | 479 | return dataOut |
|
451 | 480 | |
|
452 | 481 | |
|
482 | ||
|
453 | 483 | class interpolateHeights(Operation): |
|
454 | 484 | |
|
455 | 485 | def run(self, dataOut, topLim, botLim): |
|
456 | 486 | #69 al 72 para julia |
|
457 | 487 | #82-84 para meteoros |
|
458 | 488 | if len(numpy.shape(dataOut.data))==2: |
|
459 | 489 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
460 | 490 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
461 | 491 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
462 | 492 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
463 | 493 | else: |
|
464 | 494 | nHeights = dataOut.data.shape[2] |
|
465 | 495 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
466 | 496 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
467 | 497 | f = interpolate.interp1d(x, y, axis = 2) |
|
468 | 498 | xnew = numpy.arange(botLim,topLim+1) |
|
469 | 499 | ynew = f(xnew) |
|
470 | 500 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
471 | 501 | |
|
472 | 502 | return dataOut |
|
473 | 503 | |
|
474 | 504 | |
|
475 | 505 | class CohInt(Operation): |
|
476 | 506 | |
|
477 | 507 | isConfig = False |
|
478 | 508 | __profIndex = 0 |
|
479 | 509 | __byTime = False |
|
480 | 510 | __initime = None |
|
481 | 511 | __lastdatatime = None |
|
482 | 512 | __integrationtime = None |
|
483 | 513 | __buffer = None |
|
484 | 514 | __bufferStride = [] |
|
485 | 515 | __dataReady = False |
|
486 | 516 | __profIndexStride = 0 |
|
487 | 517 | __dataToPutStride = False |
|
488 | 518 | n = None |
|
489 | 519 | |
|
490 | 520 | def __init__(self, **kwargs): |
|
491 | 521 | |
|
492 | 522 | Operation.__init__(self, **kwargs) |
|
493 | 523 | |
|
494 | 524 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
495 | 525 | """ |
|
496 | 526 | Set the parameters of the integration class. |
|
497 | 527 | |
|
498 | 528 | Inputs: |
|
499 | 529 | |
|
500 | 530 | n : Number of coherent integrations |
|
501 | 531 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
502 | 532 | overlapping : |
|
503 | 533 | """ |
|
504 | 534 | |
|
505 | 535 | self.__initime = None |
|
506 | 536 | self.__lastdatatime = 0 |
|
507 | 537 | self.__buffer = None |
|
508 | 538 | self.__dataReady = False |
|
509 | 539 | self.byblock = byblock |
|
510 | 540 | self.stride = stride |
|
511 | 541 | |
|
512 | 542 | if n == None and timeInterval == None: |
|
513 | 543 | raise ValueError("n or timeInterval should be specified ...") |
|
514 | 544 | |
|
515 | 545 | if n != None: |
|
516 | 546 | self.n = n |
|
517 | 547 | self.__byTime = False |
|
518 | 548 | else: |
|
519 | 549 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
520 | 550 | self.n = 9999 |
|
521 | 551 | self.__byTime = True |
|
522 | 552 | |
|
523 | 553 | if overlapping: |
|
524 | 554 | self.__withOverlapping = True |
|
525 | 555 | self.__buffer = None |
|
526 | 556 | else: |
|
527 | 557 | self.__withOverlapping = False |
|
528 | 558 | self.__buffer = 0 |
|
529 | 559 | |
|
530 | 560 | self.__profIndex = 0 |
|
531 | 561 | |
|
532 | 562 | def putData(self, data): |
|
533 | 563 | |
|
534 | 564 | """ |
|
535 | 565 | Add a profile to the __buffer and increase in one the __profileIndex |
|
536 | 566 | |
|
537 | 567 | """ |
|
538 | 568 | |
|
539 | 569 | if not self.__withOverlapping: |
|
540 | 570 | self.__buffer += data.copy() |
|
541 | 571 | self.__profIndex += 1 |
|
542 | 572 | return |
|
543 | 573 | |
|
544 | 574 | #Overlapping data |
|
545 | 575 | nChannels, nHeis = data.shape |
|
546 | 576 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
547 | 577 | |
|
548 | 578 | #If the buffer is empty then it takes the data value |
|
549 | 579 | if self.__buffer is None: |
|
550 | 580 | self.__buffer = data |
|
551 | 581 | self.__profIndex += 1 |
|
552 | 582 | return |
|
553 | 583 | |
|
554 | 584 | #If the buffer length is lower than n then stakcing the data value |
|
555 | 585 | if self.__profIndex < self.n: |
|
556 | 586 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
557 | 587 | self.__profIndex += 1 |
|
558 | 588 | return |
|
559 | 589 | |
|
560 | 590 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
561 | 591 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
562 | 592 | self.__buffer[self.n-1] = data |
|
563 | 593 | self.__profIndex = self.n |
|
564 | 594 | return |
|
565 | 595 | |
|
566 | 596 | |
|
567 | 597 | def pushData(self): |
|
568 | 598 | """ |
|
569 | 599 | Return the sum of the last profiles and the profiles used in the sum. |
|
570 | 600 | |
|
571 | 601 | Affected: |
|
572 | 602 | |
|
573 | 603 | self.__profileIndex |
|
574 | 604 | |
|
575 | 605 | """ |
|
576 | 606 | |
|
577 | 607 | if not self.__withOverlapping: |
|
578 | 608 | data = self.__buffer |
|
579 | 609 | n = self.__profIndex |
|
580 | 610 | |
|
581 | 611 | self.__buffer = 0 |
|
582 | 612 | self.__profIndex = 0 |
|
583 | 613 | |
|
584 | 614 | return data, n |
|
585 | 615 | |
|
586 | 616 | #Integration with Overlapping |
|
587 | 617 | data = numpy.sum(self.__buffer, axis=0) |
|
588 | 618 | # print data |
|
589 | 619 | # raise |
|
590 | 620 | n = self.__profIndex |
|
591 | 621 | |
|
592 | 622 | return data, n |
|
593 | 623 | |
|
594 | 624 | def byProfiles(self, data): |
|
595 | 625 | |
|
596 | 626 | self.__dataReady = False |
|
597 | 627 | avgdata = None |
|
598 | 628 | # n = None |
|
599 | 629 | # print data |
|
600 | 630 | # raise |
|
601 | 631 | self.putData(data) |
|
602 | 632 | |
|
603 | 633 | if self.__profIndex == self.n: |
|
604 | 634 | avgdata, n = self.pushData() |
|
605 | 635 | self.__dataReady = True |
|
606 | 636 | |
|
607 | 637 | return avgdata |
|
608 | 638 | |
|
609 | 639 | def byTime(self, data, datatime): |
|
610 | 640 | |
|
611 | 641 | self.__dataReady = False |
|
612 | 642 | avgdata = None |
|
613 | 643 | n = None |
|
614 | 644 | |
|
615 | 645 | self.putData(data) |
|
616 | 646 | |
|
617 | 647 | if (datatime - self.__initime) >= self.__integrationtime: |
|
618 | 648 | avgdata, n = self.pushData() |
|
619 | 649 | self.n = n |
|
620 | 650 | self.__dataReady = True |
|
621 | 651 | |
|
622 | 652 | return avgdata |
|
623 | 653 | |
|
624 | 654 | def integrateByStride(self, data, datatime): |
|
625 | 655 | # print data |
|
626 | 656 | if self.__profIndex == 0: |
|
627 | 657 | self.__buffer = [[data.copy(), datatime]] |
|
628 | 658 | else: |
|
629 | 659 | self.__buffer.append([data.copy(),datatime]) |
|
630 | 660 | self.__profIndex += 1 |
|
631 | 661 | self.__dataReady = False |
|
632 | 662 | |
|
633 | 663 | if self.__profIndex == self.n * self.stride : |
|
634 | 664 | self.__dataToPutStride = True |
|
635 | 665 | self.__profIndexStride = 0 |
|
636 | 666 | self.__profIndex = 0 |
|
637 | 667 | self.__bufferStride = [] |
|
638 | 668 | for i in range(self.stride): |
|
639 | 669 | current = self.__buffer[i::self.stride] |
|
640 | 670 | data = numpy.sum([t[0] for t in current], axis=0) |
|
641 | 671 | avgdatatime = numpy.average([t[1] for t in current]) |
|
642 | 672 | # print data |
|
643 | 673 | self.__bufferStride.append((data, avgdatatime)) |
|
644 | 674 | |
|
645 | 675 | if self.__dataToPutStride: |
|
646 | 676 | self.__dataReady = True |
|
647 | 677 | self.__profIndexStride += 1 |
|
648 | 678 | if self.__profIndexStride == self.stride: |
|
649 | 679 | self.__dataToPutStride = False |
|
650 | 680 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
651 | 681 | # raise |
|
652 | 682 | return self.__bufferStride[self.__profIndexStride - 1] |
|
653 | 683 | |
|
654 | 684 | |
|
655 | 685 | return None, None |
|
656 | 686 | |
|
657 | 687 | def integrate(self, data, datatime=None): |
|
658 | 688 | |
|
659 | 689 | if self.__initime == None: |
|
660 | 690 | self.__initime = datatime |
|
661 | 691 | |
|
662 | 692 | if self.__byTime: |
|
663 | 693 | avgdata = self.byTime(data, datatime) |
|
664 | 694 | else: |
|
665 | 695 | avgdata = self.byProfiles(data) |
|
666 | 696 | |
|
667 | 697 | |
|
668 | 698 | self.__lastdatatime = datatime |
|
669 | 699 | |
|
670 | 700 | if avgdata is None: |
|
671 | 701 | return None, None |
|
672 | 702 | |
|
673 | 703 | avgdatatime = self.__initime |
|
674 | 704 | |
|
675 | 705 | deltatime = datatime - self.__lastdatatime |
|
676 | 706 | |
|
677 | 707 | if not self.__withOverlapping: |
|
678 | 708 | self.__initime = datatime |
|
679 | 709 | else: |
|
680 | 710 | self.__initime += deltatime |
|
681 | 711 | |
|
682 | 712 | return avgdata, avgdatatime |
|
683 | 713 | |
|
684 | 714 | def integrateByBlock(self, dataOut): |
|
685 | 715 | |
|
686 | 716 | times = int(dataOut.data.shape[1]/self.n) |
|
687 | 717 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
688 | 718 | |
|
689 | 719 | id_min = 0 |
|
690 | 720 | id_max = self.n |
|
691 | 721 | |
|
692 | 722 | for i in range(times): |
|
693 | 723 | junk = dataOut.data[:,id_min:id_max,:] |
|
694 | 724 | avgdata[:,i,:] = junk.sum(axis=1) |
|
695 | 725 | id_min += self.n |
|
696 | 726 | id_max += self.n |
|
697 | 727 | |
|
698 | 728 | timeInterval = dataOut.ippSeconds*self.n |
|
699 | 729 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
700 | 730 | self.__dataReady = True |
|
701 | 731 | return avgdata, avgdatatime |
|
702 | 732 | |
|
703 | 733 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
704 | 734 | |
|
705 | 735 | if not self.isConfig: |
|
706 | 736 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
707 | 737 | self.isConfig = True |
|
708 | 738 | |
|
709 | 739 | if dataOut.flagDataAsBlock: |
|
710 | 740 | """ |
|
711 | 741 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
712 | 742 | """ |
|
713 | 743 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
714 | 744 | dataOut.nProfiles /= self.n |
|
715 | 745 | else: |
|
716 | 746 | if stride is None: |
|
717 | 747 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
718 | 748 | else: |
|
719 | 749 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
720 | 750 | |
|
721 | 751 | |
|
722 | 752 | # dataOut.timeInterval *= n |
|
723 | 753 | dataOut.flagNoData = True |
|
724 | 754 | |
|
725 | 755 | if self.__dataReady: |
|
726 | 756 | dataOut.data = avgdata |
|
727 | 757 | if not dataOut.flagCohInt: |
|
728 | 758 | dataOut.nCohInt *= self.n |
|
729 | 759 | dataOut.flagCohInt = True |
|
730 | 760 | dataOut.utctime = avgdatatime |
|
731 | 761 | # print avgdata, avgdatatime |
|
732 | 762 | # raise |
|
733 | 763 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
734 | 764 | dataOut.flagNoData = False |
|
735 | 765 | return dataOut |
|
736 | 766 | |
|
737 | 767 | class Decoder(Operation): |
|
738 | 768 | |
|
739 | 769 | isConfig = False |
|
740 | 770 | __profIndex = 0 |
|
741 | 771 | |
|
742 | 772 | code = None |
|
743 | 773 | |
|
744 | 774 | nCode = None |
|
745 | 775 | nBaud = None |
|
746 | 776 | |
|
747 | 777 | def __init__(self, **kwargs): |
|
748 | 778 | |
|
749 | 779 | Operation.__init__(self, **kwargs) |
|
750 | 780 | |
|
751 | 781 | self.times = None |
|
752 | 782 | self.osamp = None |
|
753 | 783 | # self.__setValues = False |
|
754 | 784 | self.isConfig = False |
|
755 | 785 | self.setupReq = False |
|
756 | 786 | def setup(self, code, osamp, dataOut): |
|
757 | 787 | |
|
758 | 788 | self.__profIndex = 0 |
|
759 | 789 | |
|
760 | 790 | self.code = code |
|
761 | 791 | |
|
762 | 792 | self.nCode = len(code) |
|
763 | 793 | self.nBaud = len(code[0]) |
|
764 | 794 | if (osamp != None) and (osamp >1): |
|
765 | 795 | self.osamp = osamp |
|
766 | 796 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
767 | 797 | self.nBaud = self.nBaud*self.osamp |
|
768 | 798 | |
|
769 | 799 | self.__nChannels = dataOut.nChannels |
|
770 | 800 | self.__nProfiles = dataOut.nProfiles |
|
771 | 801 | self.__nHeis = dataOut.nHeights |
|
772 | 802 | |
|
773 | 803 | if self.__nHeis < self.nBaud: |
|
774 | 804 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
775 | 805 | |
|
776 | 806 | #Frequency |
|
777 | 807 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
778 | 808 | |
|
779 | 809 | __codeBuffer[:,0:self.nBaud] = self.code |
|
780 | 810 | |
|
781 | 811 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
782 | 812 | |
|
783 | 813 | if dataOut.flagDataAsBlock: |
|
784 | 814 | |
|
785 | 815 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
786 | 816 | |
|
787 | 817 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
788 | 818 | |
|
789 | 819 | else: |
|
790 | 820 | |
|
791 | 821 | #Time |
|
792 | 822 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
793 | 823 | |
|
794 | 824 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
795 | 825 | |
|
796 | 826 | def __convolutionInFreq(self, data): |
|
797 | 827 | |
|
798 | 828 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
799 | 829 | |
|
800 | 830 | fft_data = numpy.fft.fft(data, axis=1) |
|
801 | 831 | |
|
802 | 832 | conv = fft_data*fft_code |
|
803 | 833 | |
|
804 | 834 | data = numpy.fft.ifft(conv,axis=1) |
|
805 | 835 | |
|
806 | 836 | return data |
|
807 | 837 | |
|
808 | 838 | def __convolutionInFreqOpt(self, data): |
|
809 | 839 | |
|
810 | 840 | raise NotImplementedError |
|
811 | 841 | |
|
812 | 842 | def __convolutionInTime(self, data): |
|
813 | 843 | |
|
814 | 844 | code = self.code[self.__profIndex] |
|
815 | 845 | for i in range(self.__nChannels): |
|
816 | 846 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
817 | 847 | |
|
818 | 848 | return self.datadecTime |
|
819 | 849 | |
|
820 | 850 | def __convolutionByBlockInTime(self, data): |
|
821 | 851 | |
|
822 | 852 | repetitions = int(self.__nProfiles / self.nCode) |
|
823 | 853 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
824 | 854 | junk = junk.flatten() |
|
825 | 855 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
826 | 856 | profilesList = range(self.__nProfiles) |
|
827 | 857 | |
|
828 | 858 | for i in range(self.__nChannels): |
|
829 | 859 | for j in profilesList: |
|
830 | 860 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
831 | 861 | return self.datadecTime |
|
832 | 862 | |
|
833 | 863 | def __convolutionByBlockInFreq(self, data): |
|
834 | 864 | |
|
835 | 865 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
836 | 866 | |
|
837 | 867 | |
|
838 | 868 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
839 | 869 | |
|
840 | 870 | fft_data = numpy.fft.fft(data, axis=2) |
|
841 | 871 | |
|
842 | 872 | conv = fft_data*fft_code |
|
843 | 873 | |
|
844 | 874 | data = numpy.fft.ifft(conv,axis=2) |
|
845 | 875 | |
|
846 | 876 | return data |
|
847 | 877 | |
|
848 | 878 | |
|
849 | 879 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
850 | 880 | |
|
851 | 881 | if dataOut.flagDecodeData: |
|
852 | 882 | print("This data is already decoded, recoding again ...") |
|
853 | 883 | |
|
854 | 884 | if not self.isConfig: |
|
855 | 885 | |
|
856 | 886 | if code is None: |
|
857 | 887 | if dataOut.code is None: |
|
858 | 888 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
859 | 889 | |
|
860 | 890 | code = dataOut.code |
|
861 | 891 | else: |
|
862 | 892 | code = numpy.array(code).reshape(nCode,nBaud) |
|
863 | 893 | self.setup(code, osamp, dataOut) |
|
864 | 894 | |
|
865 | 895 | self.isConfig = True |
|
866 | 896 | |
|
867 | 897 | if mode == 3: |
|
868 | 898 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
869 | 899 | |
|
870 | 900 | if times != None: |
|
871 | 901 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
872 | 902 | |
|
873 | 903 | if self.code is None: |
|
874 | 904 | print("Fail decoding: Code is not defined.") |
|
875 | 905 | return |
|
876 | 906 | |
|
877 | 907 | self.__nProfiles = dataOut.nProfiles |
|
878 | 908 | datadec = None |
|
879 | 909 | |
|
880 | 910 | if mode == 3: |
|
881 | 911 | mode = 0 |
|
882 | 912 | |
|
883 | 913 | if dataOut.flagDataAsBlock: |
|
884 | 914 | """ |
|
885 | 915 | Decoding when data have been read as block, |
|
886 | 916 | """ |
|
887 | 917 | |
|
888 | 918 | if mode == 0: |
|
889 | 919 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
890 | 920 | if mode == 1: |
|
891 | 921 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
892 | 922 | else: |
|
893 | 923 | """ |
|
894 | 924 | Decoding when data have been read profile by profile |
|
895 | 925 | """ |
|
896 | 926 | if mode == 0: |
|
897 | 927 | datadec = self.__convolutionInTime(dataOut.data) |
|
898 | 928 | |
|
899 | 929 | if mode == 1: |
|
900 | 930 | datadec = self.__convolutionInFreq(dataOut.data) |
|
901 | 931 | |
|
902 | 932 | if mode == 2: |
|
903 | 933 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
904 | 934 | |
|
905 | 935 | if datadec is None: |
|
906 | 936 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
907 | 937 | |
|
908 | 938 | dataOut.code = self.code |
|
909 | 939 | dataOut.nCode = self.nCode |
|
910 | 940 | dataOut.nBaud = self.nBaud |
|
911 | 941 | |
|
912 | 942 | dataOut.data = datadec |
|
913 | 943 | |
|
914 | 944 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
915 | 945 | |
|
916 | 946 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
917 | 947 | |
|
918 | 948 | if self.__profIndex == self.nCode-1: |
|
919 | 949 | self.__profIndex = 0 |
|
920 | 950 | return dataOut |
|
921 | 951 | |
|
922 | 952 | self.__profIndex += 1 |
|
923 | 953 | |
|
924 | 954 | return dataOut |
|
925 | 955 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
926 | 956 | |
|
927 | 957 | |
|
928 | 958 | class ProfileConcat(Operation): |
|
929 | 959 | |
|
930 | 960 | isConfig = False |
|
931 | 961 | buffer = None |
|
932 | 962 | |
|
933 | 963 | def __init__(self, **kwargs): |
|
934 | 964 | |
|
935 | 965 | Operation.__init__(self, **kwargs) |
|
936 | 966 | self.profileIndex = 0 |
|
937 | 967 | |
|
938 | 968 | def reset(self): |
|
939 | 969 | self.buffer = numpy.zeros_like(self.buffer) |
|
940 | 970 | self.start_index = 0 |
|
941 | 971 | self.times = 1 |
|
942 | 972 | |
|
943 | 973 | def setup(self, data, m, n=1): |
|
944 | 974 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
945 | 975 | self.nHeights = data.shape[1]#.nHeights |
|
946 | 976 | self.start_index = 0 |
|
947 | 977 | self.times = 1 |
|
948 | 978 | |
|
949 | 979 | def concat(self, data): |
|
950 | 980 | |
|
951 | 981 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
952 | 982 | self.start_index = self.start_index + self.nHeights |
|
953 | 983 | |
|
954 | 984 | def run(self, dataOut, m): |
|
955 | 985 | dataOut.flagNoData = True |
|
956 | 986 | |
|
957 | 987 | if not self.isConfig: |
|
958 | 988 | self.setup(dataOut.data, m, 1) |
|
959 | 989 | self.isConfig = True |
|
960 | 990 | |
|
961 | 991 | if dataOut.flagDataAsBlock: |
|
962 | 992 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
963 | 993 | |
|
964 | 994 | else: |
|
965 | 995 | self.concat(dataOut.data) |
|
966 | 996 | self.times += 1 |
|
967 | 997 | if self.times > m: |
|
968 | 998 | dataOut.data = self.buffer |
|
969 | 999 | self.reset() |
|
970 | 1000 | dataOut.flagNoData = False |
|
971 | 1001 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
972 | 1002 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
973 | 1003 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
974 | 1004 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
975 | 1005 | dataOut.ippSeconds *= m |
|
976 | 1006 | return dataOut |
|
977 | 1007 | |
|
978 | 1008 | class ProfileSelector(Operation): |
|
979 | 1009 | |
|
980 | 1010 | profileIndex = None |
|
981 | 1011 | # Tamanho total de los perfiles |
|
982 | 1012 | nProfiles = None |
|
983 | 1013 | |
|
984 | 1014 | def __init__(self, **kwargs): |
|
985 | 1015 | |
|
986 | 1016 | Operation.__init__(self, **kwargs) |
|
987 | 1017 | self.profileIndex = 0 |
|
988 | 1018 | |
|
989 | 1019 | def incProfileIndex(self): |
|
990 | 1020 | |
|
991 | 1021 | self.profileIndex += 1 |
|
992 | 1022 | |
|
993 | 1023 | if self.profileIndex >= self.nProfiles: |
|
994 | 1024 | self.profileIndex = 0 |
|
995 | 1025 | |
|
996 | 1026 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
997 | 1027 | |
|
998 | 1028 | if profileIndex < minIndex: |
|
999 | 1029 | return False |
|
1000 | 1030 | |
|
1001 | 1031 | if profileIndex > maxIndex: |
|
1002 | 1032 | return False |
|
1003 | 1033 | |
|
1004 | 1034 | return True |
|
1005 | 1035 | |
|
1006 | 1036 | def isThisProfileInList(self, profileIndex, profileList): |
|
1007 | 1037 | |
|
1008 | 1038 | if profileIndex not in profileList: |
|
1009 | 1039 | return False |
|
1010 | 1040 | |
|
1011 | 1041 | return True |
|
1012 | 1042 | |
|
1013 | 1043 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
1014 | 1044 | |
|
1015 | 1045 | """ |
|
1016 | 1046 | ProfileSelector: |
|
1017 | 1047 | |
|
1018 | 1048 | Inputs: |
|
1019 | 1049 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
1020 | 1050 | |
|
1021 | 1051 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
1022 | 1052 | |
|
1023 | 1053 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
1024 | 1054 | |
|
1025 | 1055 | """ |
|
1026 | 1056 | |
|
1027 | 1057 | if rangeList is not None: |
|
1028 | 1058 | if type(rangeList[0]) not in (tuple, list): |
|
1029 | 1059 | rangeList = [rangeList] |
|
1030 | 1060 | |
|
1031 | 1061 | dataOut.flagNoData = True |
|
1032 | 1062 | |
|
1033 | 1063 | if dataOut.flagDataAsBlock: |
|
1034 | 1064 | """ |
|
1035 | 1065 | data dimension = [nChannels, nProfiles, nHeis] |
|
1036 | 1066 | """ |
|
1037 | 1067 | if profileList != None: |
|
1038 | 1068 | dataOut.data = dataOut.data[:,profileList,:] |
|
1039 | 1069 | |
|
1040 | 1070 | if profileRangeList != None: |
|
1041 | 1071 | minIndex = profileRangeList[0] |
|
1042 | 1072 | maxIndex = profileRangeList[1] |
|
1043 | 1073 | profileList = list(range(minIndex, maxIndex+1)) |
|
1044 | 1074 | |
|
1045 | 1075 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
1046 | 1076 | |
|
1047 | 1077 | if rangeList != None: |
|
1048 | 1078 | |
|
1049 | 1079 | profileList = [] |
|
1050 | 1080 | |
|
1051 | 1081 | for thisRange in rangeList: |
|
1052 | 1082 | minIndex = thisRange[0] |
|
1053 | 1083 | maxIndex = thisRange[1] |
|
1054 | 1084 | |
|
1055 | 1085 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
1056 | 1086 | |
|
1057 | 1087 | dataOut.data = dataOut.data[:,profileList,:] |
|
1058 | 1088 | |
|
1059 | 1089 | dataOut.nProfiles = len(profileList) |
|
1060 | 1090 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1061 | 1091 | dataOut.flagNoData = False |
|
1062 | 1092 | |
|
1063 | 1093 | return dataOut |
|
1064 | 1094 | |
|
1065 | 1095 | """ |
|
1066 | 1096 | data dimension = [nChannels, nHeis] |
|
1067 | 1097 | """ |
|
1068 | 1098 | |
|
1069 | 1099 | if profileList != None: |
|
1070 | 1100 | |
|
1071 | 1101 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1072 | 1102 | |
|
1073 | 1103 | self.nProfiles = len(profileList) |
|
1074 | 1104 | dataOut.nProfiles = self.nProfiles |
|
1075 | 1105 | dataOut.profileIndex = self.profileIndex |
|
1076 | 1106 | dataOut.flagNoData = False |
|
1077 | 1107 | |
|
1078 | 1108 | self.incProfileIndex() |
|
1079 | 1109 | return dataOut |
|
1080 | 1110 | |
|
1081 | 1111 | if profileRangeList != None: |
|
1082 | 1112 | |
|
1083 | 1113 | minIndex = profileRangeList[0] |
|
1084 | 1114 | maxIndex = profileRangeList[1] |
|
1085 | 1115 | |
|
1086 | 1116 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1087 | 1117 | |
|
1088 | 1118 | self.nProfiles = maxIndex - minIndex + 1 |
|
1089 | 1119 | dataOut.nProfiles = self.nProfiles |
|
1090 | 1120 | dataOut.profileIndex = self.profileIndex |
|
1091 | 1121 | dataOut.flagNoData = False |
|
1092 | 1122 | |
|
1093 | 1123 | self.incProfileIndex() |
|
1094 | 1124 | return dataOut |
|
1095 | 1125 | |
|
1096 | 1126 | if rangeList != None: |
|
1097 | 1127 | |
|
1098 | 1128 | nProfiles = 0 |
|
1099 | 1129 | |
|
1100 | 1130 | for thisRange in rangeList: |
|
1101 | 1131 | minIndex = thisRange[0] |
|
1102 | 1132 | maxIndex = thisRange[1] |
|
1103 | 1133 | |
|
1104 | 1134 | nProfiles += maxIndex - minIndex + 1 |
|
1105 | 1135 | |
|
1106 | 1136 | for thisRange in rangeList: |
|
1107 | 1137 | |
|
1108 | 1138 | minIndex = thisRange[0] |
|
1109 | 1139 | maxIndex = thisRange[1] |
|
1110 | 1140 | |
|
1111 | 1141 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1112 | 1142 | |
|
1113 | 1143 | self.nProfiles = nProfiles |
|
1114 | 1144 | dataOut.nProfiles = self.nProfiles |
|
1115 | 1145 | dataOut.profileIndex = self.profileIndex |
|
1116 | 1146 | dataOut.flagNoData = False |
|
1117 | 1147 | |
|
1118 | 1148 | self.incProfileIndex() |
|
1119 | 1149 | |
|
1120 | 1150 | break |
|
1121 | 1151 | |
|
1122 | 1152 | return dataOut |
|
1123 | 1153 | |
|
1124 | 1154 | |
|
1125 | 1155 | if beam != None: #beam is only for AMISR data |
|
1126 | 1156 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1127 | 1157 | dataOut.flagNoData = False |
|
1128 | 1158 | dataOut.profileIndex = self.profileIndex |
|
1129 | 1159 | |
|
1130 | 1160 | self.incProfileIndex() |
|
1131 | 1161 | |
|
1132 | 1162 | return dataOut |
|
1133 | 1163 | |
|
1134 | 1164 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1135 | 1165 | |
|
1136 | 1166 | |
|
1137 | 1167 | class Reshaper(Operation): |
|
1138 | 1168 | |
|
1139 | 1169 | def __init__(self, **kwargs): |
|
1140 | 1170 | |
|
1141 | 1171 | Operation.__init__(self, **kwargs) |
|
1142 | 1172 | |
|
1143 | 1173 | self.__buffer = None |
|
1144 | 1174 | self.__nitems = 0 |
|
1145 | 1175 | |
|
1146 | 1176 | def __appendProfile(self, dataOut, nTxs): |
|
1147 | 1177 | |
|
1148 | 1178 | if self.__buffer is None: |
|
1149 | 1179 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1150 | 1180 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1151 | 1181 | |
|
1152 | 1182 | ini = dataOut.nHeights * self.__nitems |
|
1153 | 1183 | end = ini + dataOut.nHeights |
|
1154 | 1184 | |
|
1155 | 1185 | self.__buffer[:, ini:end] = dataOut.data |
|
1156 | 1186 | |
|
1157 | 1187 | self.__nitems += 1 |
|
1158 | 1188 | |
|
1159 | 1189 | return int(self.__nitems*nTxs) |
|
1160 | 1190 | |
|
1161 | 1191 | def __getBuffer(self): |
|
1162 | 1192 | |
|
1163 | 1193 | if self.__nitems == int(1./self.__nTxs): |
|
1164 | 1194 | |
|
1165 | 1195 | self.__nitems = 0 |
|
1166 | 1196 | |
|
1167 | 1197 | return self.__buffer.copy() |
|
1168 | 1198 | |
|
1169 | 1199 | return None |
|
1170 | 1200 | |
|
1171 | 1201 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1172 | 1202 | |
|
1173 | 1203 | if shape is None and nTxs is None: |
|
1174 | 1204 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1175 | 1205 | |
|
1176 | 1206 | if nTxs: |
|
1177 | 1207 | if nTxs < 0: |
|
1178 | 1208 | raise ValueError("nTxs should be greater than 0") |
|
1179 | 1209 | |
|
1180 | 1210 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1181 | 1211 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1182 | 1212 | |
|
1183 | 1213 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1184 | 1214 | |
|
1185 | 1215 | return shape, nTxs |
|
1186 | 1216 | |
|
1187 | 1217 | if len(shape) != 2 and len(shape) != 3: |
|
1188 | 1218 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1189 | 1219 | |
|
1190 | 1220 | if len(shape) == 2: |
|
1191 | 1221 | shape_tuple = [dataOut.nChannels] |
|
1192 | 1222 | shape_tuple.extend(shape) |
|
1193 | 1223 | else: |
|
1194 | 1224 | shape_tuple = list(shape) |
|
1195 | 1225 | |
|
1196 | 1226 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1197 | 1227 | |
|
1198 | 1228 | return shape_tuple, nTxs |
|
1199 | 1229 | |
|
1200 | 1230 | def run(self, dataOut, shape=None, nTxs=None): |
|
1201 | 1231 | |
|
1202 | 1232 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1203 | 1233 | |
|
1204 | 1234 | dataOut.flagNoData = True |
|
1205 | 1235 | profileIndex = None |
|
1206 | 1236 | |
|
1207 | 1237 | if dataOut.flagDataAsBlock: |
|
1208 | 1238 | |
|
1209 | 1239 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1210 | 1240 | dataOut.flagNoData = False |
|
1211 | 1241 | |
|
1212 | 1242 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1213 | 1243 | |
|
1214 | 1244 | else: |
|
1215 | 1245 | |
|
1216 | 1246 | if self.__nTxs < 1: |
|
1217 | 1247 | |
|
1218 | 1248 | self.__appendProfile(dataOut, self.__nTxs) |
|
1219 | 1249 | new_data = self.__getBuffer() |
|
1220 | 1250 | |
|
1221 | 1251 | if new_data is not None: |
|
1222 | 1252 | dataOut.data = new_data |
|
1223 | 1253 | dataOut.flagNoData = False |
|
1224 | 1254 | |
|
1225 | 1255 | profileIndex = dataOut.profileIndex*nTxs |
|
1226 | 1256 | |
|
1227 | 1257 | else: |
|
1228 | 1258 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1229 | 1259 | |
|
1230 | 1260 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1231 | 1261 | |
|
1232 | 1262 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1233 | 1263 | |
|
1234 | 1264 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1235 | 1265 | |
|
1236 | 1266 | dataOut.profileIndex = profileIndex |
|
1237 | 1267 | |
|
1238 | 1268 | dataOut.ippSeconds /= self.__nTxs |
|
1239 | 1269 | |
|
1240 | 1270 | return dataOut |
|
1241 | 1271 | |
|
1242 | 1272 | class SplitProfiles(Operation): |
|
1243 | 1273 | |
|
1244 | 1274 | def __init__(self, **kwargs): |
|
1245 | 1275 | |
|
1246 | 1276 | Operation.__init__(self, **kwargs) |
|
1247 | 1277 | |
|
1248 | 1278 | def run(self, dataOut, n): |
|
1249 | 1279 | |
|
1250 | 1280 | dataOut.flagNoData = True |
|
1251 | 1281 | profileIndex = None |
|
1252 | 1282 | |
|
1253 | 1283 | if dataOut.flagDataAsBlock: |
|
1254 | 1284 | |
|
1255 | 1285 | #nchannels, nprofiles, nsamples |
|
1256 | 1286 | shape = dataOut.data.shape |
|
1257 | 1287 | |
|
1258 | 1288 | if shape[2] % n != 0: |
|
1259 | 1289 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1260 | 1290 | |
|
1261 | 1291 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1262 | 1292 | |
|
1263 | 1293 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1264 | 1294 | dataOut.flagNoData = False |
|
1265 | 1295 | |
|
1266 | 1296 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1267 | 1297 | |
|
1268 | 1298 | else: |
|
1269 | 1299 | |
|
1270 | 1300 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1271 | 1301 | |
|
1272 | 1302 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1273 | 1303 | |
|
1274 | 1304 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1275 | 1305 | |
|
1276 | 1306 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1277 | 1307 | |
|
1278 | 1308 | dataOut.profileIndex = profileIndex |
|
1279 | 1309 | |
|
1280 | 1310 | dataOut.ippSeconds /= n |
|
1281 | 1311 | |
|
1282 | 1312 | return dataOut |
|
1283 | 1313 | |
|
1284 | 1314 | class CombineProfiles(Operation): |
|
1285 | 1315 | def __init__(self, **kwargs): |
|
1286 | 1316 | |
|
1287 | 1317 | Operation.__init__(self, **kwargs) |
|
1288 | 1318 | |
|
1289 | 1319 | self.__remData = None |
|
1290 | 1320 | self.__profileIndex = 0 |
|
1291 | 1321 | |
|
1292 | 1322 | def run(self, dataOut, n): |
|
1293 | 1323 | |
|
1294 | 1324 | dataOut.flagNoData = True |
|
1295 | 1325 | profileIndex = None |
|
1296 | 1326 | |
|
1297 | 1327 | if dataOut.flagDataAsBlock: |
|
1298 | 1328 | |
|
1299 | 1329 | #nchannels, nprofiles, nsamples |
|
1300 | 1330 | shape = dataOut.data.shape |
|
1301 | 1331 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1302 | 1332 | |
|
1303 | 1333 | if shape[1] % n != 0: |
|
1304 | 1334 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1305 | 1335 | |
|
1306 | 1336 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1307 | 1337 | dataOut.flagNoData = False |
|
1308 | 1338 | |
|
1309 | 1339 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1310 | 1340 | |
|
1311 | 1341 | else: |
|
1312 | 1342 | |
|
1313 | 1343 | #nchannels, nsamples |
|
1314 | 1344 | if self.__remData is None: |
|
1315 | 1345 | newData = dataOut.data |
|
1316 | 1346 | else: |
|
1317 | 1347 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1318 | 1348 | |
|
1319 | 1349 | self.__profileIndex += 1 |
|
1320 | 1350 | |
|
1321 | 1351 | if self.__profileIndex < n: |
|
1322 | 1352 | self.__remData = newData |
|
1323 | 1353 | #continue |
|
1324 | 1354 | return |
|
1325 | 1355 | |
|
1326 | 1356 | self.__profileIndex = 0 |
|
1327 | 1357 | self.__remData = None |
|
1328 | 1358 | |
|
1329 | 1359 | dataOut.data = newData |
|
1330 | 1360 | dataOut.flagNoData = False |
|
1331 | 1361 | |
|
1332 | 1362 | profileIndex = dataOut.profileIndex/n |
|
1333 | 1363 | |
|
1334 | 1364 | |
|
1335 | 1365 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1336 | 1366 | |
|
1337 | 1367 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1338 | 1368 | |
|
1339 | 1369 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1340 | 1370 | |
|
1341 | 1371 | dataOut.profileIndex = profileIndex |
|
1342 | 1372 | |
|
1343 | 1373 | dataOut.ippSeconds *= n |
|
1344 | 1374 | |
|
1345 | 1375 | return dataOut |
|
1346 | 1376 | |
|
1347 | 1377 | class PulsePairVoltage(Operation): |
|
1348 | 1378 | ''' |
|
1349 | 1379 | Function PulsePair(Signal Power, Velocity) |
|
1350 | 1380 | The real component of Lag[0] provides Intensity Information |
|
1351 | 1381 | The imag component of Lag[1] Phase provides Velocity Information |
|
1352 | 1382 | |
|
1353 | 1383 | Configuration Parameters: |
|
1354 | 1384 | nPRF = Number of Several PRF |
|
1355 | 1385 | theta = Degree Azimuth angel Boundaries |
|
1356 | 1386 | |
|
1357 | 1387 | Input: |
|
1358 | 1388 | self.dataOut |
|
1359 | 1389 | lag[N] |
|
1360 | 1390 | Affected: |
|
1361 | 1391 | self.dataOut.spc |
|
1362 | 1392 | ''' |
|
1363 | 1393 | isConfig = False |
|
1364 | 1394 | __profIndex = 0 |
|
1365 | 1395 | __initime = None |
|
1366 | 1396 | __lastdatatime = None |
|
1367 | 1397 | __buffer = None |
|
1368 | 1398 | noise = None |
|
1369 | 1399 | __dataReady = False |
|
1370 | 1400 | n = None |
|
1371 | 1401 | __nch = 0 |
|
1372 | 1402 | __nHeis = 0 |
|
1373 | 1403 | removeDC = False |
|
1374 | 1404 | ipp = None |
|
1375 | 1405 | lambda_ = 0 |
|
1376 | 1406 | |
|
1377 | 1407 | def __init__(self,**kwargs): |
|
1378 | 1408 | Operation.__init__(self,**kwargs) |
|
1379 | 1409 | |
|
1380 | 1410 | def setup(self, dataOut, n = None, removeDC=False): |
|
1381 | 1411 | ''' |
|
1382 | 1412 | n= Numero de PRF's de entrada |
|
1383 | 1413 | ''' |
|
1384 | 1414 | self.__initime = None |
|
1385 | 1415 | self.__lastdatatime = 0 |
|
1386 | 1416 | self.__dataReady = False |
|
1387 | 1417 | self.__buffer = 0 |
|
1388 | 1418 | self.__profIndex = 0 |
|
1389 | 1419 | self.noise = None |
|
1390 | 1420 | self.__nch = dataOut.nChannels |
|
1391 | 1421 | self.__nHeis = dataOut.nHeights |
|
1392 | 1422 | self.removeDC = removeDC |
|
1393 | 1423 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1394 | 1424 | self.ippSec = dataOut.ippSeconds |
|
1395 | 1425 | self.nCohInt = dataOut.nCohInt |
|
1396 | 1426 | |
|
1397 | 1427 | if n == None: |
|
1398 | 1428 | raise ValueError("n should be specified.") |
|
1399 | 1429 | |
|
1400 | 1430 | if n != None: |
|
1401 | 1431 | if n<2: |
|
1402 | 1432 | raise ValueError("n should be greater than 2") |
|
1403 | 1433 | |
|
1404 | 1434 | self.n = n |
|
1405 | 1435 | self.__nProf = n |
|
1406 | 1436 | |
|
1407 | 1437 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1408 | 1438 | n, |
|
1409 | 1439 | dataOut.nHeights), |
|
1410 | 1440 | dtype='complex') |
|
1411 | 1441 | |
|
1412 | 1442 | def putData(self,data): |
|
1413 | 1443 | ''' |
|
1414 | 1444 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1415 | 1445 | ''' |
|
1416 | 1446 | self.__buffer[:,self.__profIndex,:]= data |
|
1417 | 1447 | self.__profIndex += 1 |
|
1418 | 1448 | return |
|
1419 | 1449 | |
|
1420 | 1450 | def pushData(self,dataOut): |
|
1421 | 1451 | ''' |
|
1422 | 1452 | Return the PULSEPAIR and the profiles used in the operation |
|
1423 | 1453 | Affected : self.__profileIndex |
|
1424 | 1454 | ''' |
|
1425 | 1455 | #----------------- Remove DC----------------------------------- |
|
1426 | 1456 | if self.removeDC==True: |
|
1427 | 1457 | mean = numpy.mean(self.__buffer,1) |
|
1428 | 1458 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1429 | 1459 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1430 | 1460 | self.__buffer = self.__buffer - dc |
|
1431 | 1461 | #------------------Calculo de Potencia ------------------------ |
|
1432 | 1462 | pair0 = self.__buffer*numpy.conj(self.__buffer) |
|
1433 | 1463 | pair0 = pair0.real |
|
1434 | 1464 | lag_0 = numpy.sum(pair0,1) |
|
1435 | 1465 | #------------------Calculo de Ruido x canal-------------------- |
|
1436 | 1466 | self.noise = numpy.zeros(self.__nch) |
|
1437 | 1467 | for i in range(self.__nch): |
|
1438 | 1468 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1439 | 1469 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) |
|
1440 | 1470 | |
|
1441 | 1471 | self.noise = self.noise.reshape(self.__nch,1) |
|
1442 | 1472 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1443 | 1473 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1444 | 1474 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1445 | 1475 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1446 | 1476 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1447 | 1477 | #-------------------- Power -------------------------------------------------- |
|
1448 | 1478 | data_power = lag_0/(self.n*self.nCohInt) |
|
1449 | 1479 | #------------------ Senal --------------------------------------------------- |
|
1450 | 1480 | data_intensity = pair0 - noise_buffer |
|
1451 | 1481 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1452 | 1482 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1453 | 1483 | for i in range(self.__nch): |
|
1454 | 1484 | for j in range(self.__nHeis): |
|
1455 | 1485 | if data_intensity[i][j] < 0: |
|
1456 | 1486 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1457 | 1487 | |
|
1458 | 1488 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1459 | 1489 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1460 | 1490 | lag_1 = numpy.sum(pair1,1) |
|
1461 | 1491 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1462 | 1492 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1463 | 1493 | |
|
1464 | 1494 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1465 | 1495 | lag_0 = lag_0/self.n |
|
1466 | 1496 | S = lag_0-self.noise |
|
1467 | 1497 | |
|
1468 | 1498 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1469 | 1499 | lag_1 = lag_1/(self.n-1) |
|
1470 | 1500 | R1 = numpy.abs(lag_1) |
|
1471 | 1501 | |
|
1472 | 1502 | #---------------- Calculo del SNR---------------------------------- |
|
1473 | 1503 | data_snrPP = S/self.noise |
|
1474 | 1504 | for i in range(self.__nch): |
|
1475 | 1505 | for j in range(self.__nHeis): |
|
1476 | 1506 | if data_snrPP[i][j] < 1.e-20: |
|
1477 | 1507 | data_snrPP[i][j] = 1.e-20 |
|
1478 | 1508 | |
|
1479 | 1509 | #----------------- Calculo del ancho espectral ---------------------- |
|
1480 | 1510 | L = S/R1 |
|
1481 | 1511 | L = numpy.where(L<0,1,L) |
|
1482 | 1512 | L = numpy.log(L) |
|
1483 | 1513 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1484 | 1514 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1485 | 1515 | n = self.__profIndex |
|
1486 | 1516 | |
|
1487 | 1517 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1488 | 1518 | self.__profIndex = 0 |
|
1489 | 1519 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1490 | 1520 | |
|
1491 | 1521 | |
|
1492 | 1522 | def pulsePairbyProfiles(self,dataOut): |
|
1493 | 1523 | |
|
1494 | 1524 | self.__dataReady = False |
|
1495 | 1525 | data_power = None |
|
1496 | 1526 | data_intensity = None |
|
1497 | 1527 | data_velocity = None |
|
1498 | 1528 | data_specwidth = None |
|
1499 | 1529 | data_snrPP = None |
|
1500 | 1530 | self.putData(data=dataOut.data) |
|
1501 | 1531 | if self.__profIndex == self.n: |
|
1502 | 1532 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) |
|
1503 | 1533 | self.__dataReady = True |
|
1504 | 1534 | |
|
1505 | 1535 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth |
|
1506 | 1536 | |
|
1507 | 1537 | |
|
1508 | 1538 | def pulsePairOp(self, dataOut, datatime= None): |
|
1509 | 1539 | |
|
1510 | 1540 | if self.__initime == None: |
|
1511 | 1541 | self.__initime = datatime |
|
1512 | 1542 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
1513 | 1543 | self.__lastdatatime = datatime |
|
1514 | 1544 | |
|
1515 | 1545 | if data_power is None: |
|
1516 | 1546 | return None, None, None,None,None,None |
|
1517 | 1547 | |
|
1518 | 1548 | avgdatatime = self.__initime |
|
1519 | 1549 | deltatime = datatime - self.__lastdatatime |
|
1520 | 1550 | self.__initime = datatime |
|
1521 | 1551 | |
|
1522 | 1552 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime |
|
1523 | 1553 | |
|
1524 | 1554 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1525 | 1555 | |
|
1526 | 1556 | if not self.isConfig: |
|
1527 | 1557 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1528 | 1558 | self.isConfig = True |
|
1529 | 1559 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1530 | 1560 | dataOut.flagNoData = True |
|
1531 | 1561 | |
|
1532 | 1562 | if self.__dataReady: |
|
1533 | 1563 | dataOut.nCohInt *= self.n |
|
1534 | 1564 | dataOut.dataPP_POW = data_intensity # S |
|
1535 | 1565 | dataOut.dataPP_POWER = data_power # P |
|
1536 | 1566 | dataOut.dataPP_DOP = data_velocity |
|
1537 | 1567 | dataOut.dataPP_SNR = data_snrPP |
|
1538 | 1568 | dataOut.dataPP_WIDTH = data_specwidth |
|
1539 | 1569 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1540 | 1570 | dataOut.utctime = avgdatatime |
|
1541 | 1571 | dataOut.flagNoData = False |
|
1542 | 1572 | return dataOut |
|
1543 | 1573 | |
|
1544 | 1574 | |
|
1545 | 1575 | |
|
1546 | 1576 | # import collections |
|
1547 | 1577 | # from scipy.stats import mode |
|
1548 | 1578 | # |
|
1549 | 1579 | # class Synchronize(Operation): |
|
1550 | 1580 | # |
|
1551 | 1581 | # isConfig = False |
|
1552 | 1582 | # __profIndex = 0 |
|
1553 | 1583 | # |
|
1554 | 1584 | # def __init__(self, **kwargs): |
|
1555 | 1585 | # |
|
1556 | 1586 | # Operation.__init__(self, **kwargs) |
|
1557 | 1587 | # # self.isConfig = False |
|
1558 | 1588 | # self.__powBuffer = None |
|
1559 | 1589 | # self.__startIndex = 0 |
|
1560 | 1590 | # self.__pulseFound = False |
|
1561 | 1591 | # |
|
1562 | 1592 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1563 | 1593 | # |
|
1564 | 1594 | # #Read data |
|
1565 | 1595 | # |
|
1566 | 1596 | # powerdB = dataOut.getPower(channel = channel) |
|
1567 | 1597 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1568 | 1598 | # |
|
1569 | 1599 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1570 | 1600 | # |
|
1571 | 1601 | # dataArray = numpy.array(self.__powBuffer) |
|
1572 | 1602 | # |
|
1573 | 1603 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1574 | 1604 | # |
|
1575 | 1605 | # maxValue = numpy.nanmax(filteredPower) |
|
1576 | 1606 | # |
|
1577 | 1607 | # if maxValue < noisedB + 10: |
|
1578 | 1608 | # #No se encuentra ningun pulso de transmision |
|
1579 | 1609 | # return None |
|
1580 | 1610 | # |
|
1581 | 1611 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1582 | 1612 | # |
|
1583 | 1613 | # if len(maxValuesIndex) < 2: |
|
1584 | 1614 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1585 | 1615 | # return None |
|
1586 | 1616 | # |
|
1587 | 1617 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1588 | 1618 | # |
|
1589 | 1619 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1590 | 1620 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1591 | 1621 | # |
|
1592 | 1622 | # if len(pulseIndex) < 2: |
|
1593 | 1623 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1594 | 1624 | # return None |
|
1595 | 1625 | # |
|
1596 | 1626 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1597 | 1627 | # |
|
1598 | 1628 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1599 | 1629 | # #(No deberian existir IPP menor a 10 unidades) |
|
1600 | 1630 | # |
|
1601 | 1631 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1602 | 1632 | # |
|
1603 | 1633 | # if len(realIndex) < 2: |
|
1604 | 1634 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1605 | 1635 | # return None |
|
1606 | 1636 | # |
|
1607 | 1637 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1608 | 1638 | # realPulseIndex = pulseIndex[realIndex] |
|
1609 | 1639 | # |
|
1610 | 1640 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1611 | 1641 | # |
|
1612 | 1642 | # print "IPP = %d samples" %period |
|
1613 | 1643 | # |
|
1614 | 1644 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1615 | 1645 | # self.__startIndex = int(realPulseIndex[0]) |
|
1616 | 1646 | # |
|
1617 | 1647 | # return 1 |
|
1618 | 1648 | # |
|
1619 | 1649 | # |
|
1620 | 1650 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1621 | 1651 | # |
|
1622 | 1652 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1623 | 1653 | # maxlen = buffer_size*nSamples) |
|
1624 | 1654 | # |
|
1625 | 1655 | # bufferList = [] |
|
1626 | 1656 | # |
|
1627 | 1657 | # for i in range(nChannels): |
|
1628 | 1658 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1629 | 1659 | # maxlen = buffer_size*nSamples) |
|
1630 | 1660 | # |
|
1631 | 1661 | # bufferList.append(bufferByChannel) |
|
1632 | 1662 | # |
|
1633 | 1663 | # self.__nSamples = nSamples |
|
1634 | 1664 | # self.__nChannels = nChannels |
|
1635 | 1665 | # self.__bufferList = bufferList |
|
1636 | 1666 | # |
|
1637 | 1667 | # def run(self, dataOut, channel = 0): |
|
1638 | 1668 | # |
|
1639 | 1669 | # if not self.isConfig: |
|
1640 | 1670 | # nSamples = dataOut.nHeights |
|
1641 | 1671 | # nChannels = dataOut.nChannels |
|
1642 | 1672 | # self.setup(nSamples, nChannels) |
|
1643 | 1673 | # self.isConfig = True |
|
1644 | 1674 | # |
|
1645 | 1675 | # #Append new data to internal buffer |
|
1646 | 1676 | # for thisChannel in range(self.__nChannels): |
|
1647 | 1677 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1648 | 1678 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1649 | 1679 | # |
|
1650 | 1680 | # if self.__pulseFound: |
|
1651 | 1681 | # self.__startIndex -= self.__nSamples |
|
1652 | 1682 | # |
|
1653 | 1683 | # #Finding Tx Pulse |
|
1654 | 1684 | # if not self.__pulseFound: |
|
1655 | 1685 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1656 | 1686 | # |
|
1657 | 1687 | # if indexFound == None: |
|
1658 | 1688 | # dataOut.flagNoData = True |
|
1659 | 1689 | # return |
|
1660 | 1690 | # |
|
1661 | 1691 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1662 | 1692 | # self.__pulseFound = True |
|
1663 | 1693 | # self.__startIndex = indexFound |
|
1664 | 1694 | # |
|
1665 | 1695 | # #If pulse was found ... |
|
1666 | 1696 | # for thisChannel in range(self.__nChannels): |
|
1667 | 1697 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1668 | 1698 | # #print self.__startIndex |
|
1669 | 1699 | # x = numpy.array(bufferByChannel) |
|
1670 | 1700 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1671 | 1701 | # |
|
1672 | 1702 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1673 | 1703 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1674 | 1704 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1675 | 1705 | # |
|
1676 | 1706 | # dataOut.data = self.__arrayBuffer |
|
1677 | 1707 | # |
|
1678 | 1708 | # self.__startIndex += self.__newNSamples |
|
1679 | 1709 | # |
|
1680 | 1710 | # return |
|
1681 | 1711 | class SSheightProfiles(Operation): |
|
1682 | 1712 | |
|
1683 | 1713 | step = None |
|
1684 | 1714 | nsamples = None |
|
1685 | 1715 | bufferShape = None |
|
1686 | 1716 | profileShape = None |
|
1687 | 1717 | sshProfiles = None |
|
1688 | 1718 | profileIndex = None |
|
1689 | 1719 | |
|
1690 | 1720 | def __init__(self, **kwargs): |
|
1691 | 1721 | |
|
1692 | 1722 | Operation.__init__(self, **kwargs) |
|
1693 | 1723 | self.isConfig = False |
|
1694 | 1724 | |
|
1695 | 1725 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1696 | 1726 | |
|
1697 | 1727 | if step == None and nsamples == None: |
|
1698 | 1728 | raise ValueError("step or nheights should be specified ...") |
|
1699 | 1729 | |
|
1700 | 1730 | self.step = step |
|
1701 | 1731 | self.nsamples = nsamples |
|
1702 | 1732 | self.__nChannels = dataOut.nChannels |
|
1703 | 1733 | self.__nProfiles = dataOut.nProfiles |
|
1704 | 1734 | self.__nHeis = dataOut.nHeights |
|
1705 | 1735 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples |
|
1706 | 1736 | |
|
1707 | 1737 | residue = (shape[1] - self.nsamples) % self.step |
|
1708 | 1738 | if residue != 0: |
|
1709 | 1739 | print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue)) |
|
1710 | 1740 | |
|
1711 | 1741 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1712 | 1742 | numberProfile = self.nsamples |
|
1713 | 1743 | numberSamples = (shape[1] - self.nsamples)/self.step |
|
1714 | 1744 | |
|
1715 | 1745 | self.bufferShape = int(shape[0]), int(numberSamples), int(numberProfile) # nchannels, nsamples , nprofiles |
|
1716 | 1746 | self.profileShape = int(shape[0]), int(numberProfile), int(numberSamples) # nchannels, nprofiles, nsamples |
|
1717 | 1747 | |
|
1718 | 1748 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1719 | 1749 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1720 | 1750 | |
|
1721 | 1751 | def run(self, dataOut, step, nsamples, code = None, repeat = None): |
|
1722 | 1752 | dataOut.flagNoData = True |
|
1723 | 1753 | |
|
1724 | 1754 | profileIndex = None |
|
1725 | 1755 | #print("nProfiles, nHeights ",dataOut.nProfiles, dataOut.nHeights) |
|
1726 | 1756 | #print(dataOut.getFreqRange(1)/1000.) |
|
1727 | 1757 | #exit(1) |
|
1728 | 1758 | if dataOut.flagDataAsBlock: |
|
1729 | 1759 | dataOut.data = numpy.average(dataOut.data,axis=1) |
|
1730 | 1760 | #print("jee") |
|
1731 | 1761 | dataOut.flagDataAsBlock = False |
|
1732 | 1762 | if not self.isConfig: |
|
1733 | 1763 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1734 | 1764 | #print("Setup done") |
|
1735 | 1765 | self.isConfig = True |
|
1736 | 1766 | |
|
1737 | 1767 | |
|
1738 | 1768 | if code is not None: |
|
1739 | 1769 | code = numpy.array(code) |
|
1740 | 1770 | code_block = code |
|
1741 | 1771 | |
|
1742 | 1772 | if repeat is not None: |
|
1743 | 1773 | code_block = numpy.repeat(code_block, repeats=repeat, axis=1) |
|
1744 | 1774 | #print(code_block.shape) |
|
1745 | 1775 | for i in range(self.buffer.shape[1]): |
|
1746 | 1776 | |
|
1747 | 1777 | if code is not None: |
|
1748 | 1778 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]*code_block |
|
1749 | 1779 | |
|
1750 | 1780 | else: |
|
1751 | 1781 | |
|
1752 | 1782 | self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:] |
|
1753 | 1783 | |
|
1754 | 1784 | #self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights]) |
|
1755 | 1785 | |
|
1756 | 1786 | for j in range(self.buffer.shape[0]): |
|
1757 | 1787 | self.sshProfiles[j] = numpy.transpose(self.buffer[j]) |
|
1758 | 1788 | |
|
1759 | 1789 | profileIndex = self.nsamples |
|
1760 | 1790 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1761 | 1791 | ippSeconds = (deltaHeight*1.0e-6)/(0.15) |
|
1762 | 1792 | #print("ippSeconds, dH: ",ippSeconds,deltaHeight) |
|
1763 | 1793 | try: |
|
1764 | 1794 | if dataOut.concat_m is not None: |
|
1765 | 1795 | ippSeconds= ippSeconds/float(dataOut.concat_m) |
|
1766 | 1796 | #print "Profile concat %d"%dataOut.concat_m |
|
1767 | 1797 | except: |
|
1768 | 1798 | pass |
|
1769 | 1799 | |
|
1770 | 1800 | dataOut.data = self.sshProfiles |
|
1771 | 1801 | dataOut.flagNoData = False |
|
1772 | 1802 | dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0] |
|
1773 | 1803 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
1774 | 1804 | |
|
1775 | 1805 | dataOut.profileIndex = profileIndex |
|
1776 | 1806 | dataOut.flagDataAsBlock = True |
|
1777 | 1807 | dataOut.ippSeconds = ippSeconds |
|
1778 | 1808 | dataOut.step = self.step |
|
1779 | 1809 | #print(numpy.shape(dataOut.data)) |
|
1780 | 1810 | #exit(1) |
|
1781 | 1811 | #print("new data shape and time:", dataOut.data.shape, dataOut.utctime) |
|
1782 | 1812 | |
|
1783 | 1813 | return dataOut |
|
1784 | 1814 | ################################################################################3############################3 |
|
1785 | 1815 | ################################################################################3############################3 |
|
1786 | 1816 | ################################################################################3############################3 |
|
1787 | 1817 | ################################################################################3############################3 |
|
1788 | 1818 | |
|
1789 | 1819 | class SSheightProfiles2(Operation): |
|
1790 | 1820 | ''' |
|
1791 | 1821 | Procesa por perfiles y por bloques |
|
1792 | 1822 | ''' |
|
1793 | 1823 | |
|
1794 | 1824 | |
|
1795 | 1825 | bufferShape = None |
|
1796 | 1826 | profileShape = None |
|
1797 | 1827 | sshProfiles = None |
|
1798 | 1828 | profileIndex = None |
|
1799 | 1829 | #nsamples = None |
|
1800 | 1830 | #step = None |
|
1801 | 1831 | #deltaHeight = None |
|
1802 | 1832 | #init_range = None |
|
1803 | 1833 | __slots__ = ('step', 'nsamples', 'deltaHeight', 'init_range', 'isConfig', '__nChannels', |
|
1804 | 1834 | '__nProfiles', '__nHeis', 'deltaHeight', 'new_nHeights') |
|
1805 | 1835 | |
|
1806 | 1836 | def __init__(self, **kwargs): |
|
1807 | 1837 | |
|
1808 | 1838 | Operation.__init__(self, **kwargs) |
|
1809 | 1839 | self.isConfig = False |
|
1810 | 1840 | |
|
1811 | 1841 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1812 | 1842 | |
|
1813 | 1843 | if step == None and nsamples == None: |
|
1814 | 1844 | raise ValueError("step or nheights should be specified ...") |
|
1815 | 1845 | |
|
1816 | 1846 | self.step = step |
|
1817 | 1847 | self.nsamples = nsamples |
|
1818 | 1848 | self.__nChannels = int(dataOut.nChannels) |
|
1819 | 1849 | self.__nProfiles = int(dataOut.nProfiles) |
|
1820 | 1850 | self.__nHeis = int(dataOut.nHeights) |
|
1821 | 1851 | |
|
1822 | 1852 | residue = (self.__nHeis - self.nsamples) % self.step |
|
1823 | 1853 | if residue != 0: |
|
1824 | 1854 | print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,self.__nProfiles - self.nsamples,residue)) |
|
1825 | 1855 | |
|
1826 | 1856 | self.deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1827 | 1857 | self.init_range = dataOut.heightList[0] |
|
1828 | 1858 | #numberProfile = self.nsamples |
|
1829 | 1859 | numberSamples = (self.__nHeis - self.nsamples)/self.step |
|
1830 | 1860 | |
|
1831 | 1861 | self.new_nHeights = numberSamples |
|
1832 | 1862 | |
|
1833 | 1863 | self.bufferShape = int(self.__nChannels), int(numberSamples), int(self.nsamples) # nchannels, nsamples , nprofiles |
|
1834 | 1864 | self.profileShape = int(self.__nChannels), int(self.nsamples), int(numberSamples) # nchannels, nprofiles, nsamples |
|
1835 | 1865 | |
|
1836 | 1866 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1837 | 1867 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1838 | 1868 | |
|
1839 | 1869 | def getNewProfiles(self, data, code=None, repeat=None): |
|
1840 | 1870 | |
|
1841 | 1871 | if code is not None: |
|
1842 | 1872 | code = numpy.array(code) |
|
1843 | 1873 | code_block = code |
|
1844 | 1874 | |
|
1845 | 1875 | if repeat is not None: |
|
1846 | 1876 | code_block = numpy.repeat(code_block, repeats=repeat, axis=1) |
|
1847 | 1877 | if data.ndim < 3: |
|
1848 | 1878 | data = data.reshape(self.__nChannels,1,self.__nHeis ) |
|
1849 | 1879 | #print("buff, data, :",self.buffer.shape, data.shape,self.sshProfiles.shape, code_block.shape) |
|
1850 | 1880 | for ch in range(self.__nChannels): |
|
1851 | 1881 | for i in range(int(self.new_nHeights)): #nuevas alturas |
|
1852 | 1882 | if code is not None: |
|
1853 | 1883 | self.buffer[ch,i,:] = data[ch,:,i*self.step:i*self.step + self.nsamples]*code_block |
|
1854 | 1884 | else: |
|
1855 | 1885 | self.buffer[ch,i,:] = data[ch,:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:] |
|
1856 | 1886 | |
|
1857 | 1887 | for j in range(self.__nChannels): #en los cananles |
|
1858 | 1888 | self.sshProfiles[j,:,:] = numpy.transpose(self.buffer[j,:,:]) |
|
1859 | 1889 | #print("new profs Done") |
|
1860 | 1890 | |
|
1861 | 1891 | |
|
1862 | 1892 | |
|
1863 | 1893 | def run(self, dataOut, step, nsamples, code = None, repeat = None): |
|
1864 | 1894 | # print("running") |
|
1865 | 1895 | if dataOut.flagNoData == True: |
|
1866 | 1896 | return dataOut |
|
1867 | 1897 | dataOut.flagNoData = True |
|
1868 | 1898 | #print("init data shape:", dataOut.data.shape) |
|
1869 | 1899 | #print("ch: {} prof: {} hs: {}".format(int(dataOut.nChannels), |
|
1870 | 1900 | # int(dataOut.nProfiles),int(dataOut.nHeights))) |
|
1871 | 1901 | |
|
1872 | 1902 | profileIndex = None |
|
1873 | 1903 | # if not dataOut.flagDataAsBlock: |
|
1874 | 1904 | # dataOut.nProfiles = 1 |
|
1875 | 1905 | |
|
1876 | 1906 | if not self.isConfig: |
|
1877 | 1907 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1878 | 1908 | #print("Setup done") |
|
1879 | 1909 | self.isConfig = True |
|
1880 | 1910 | |
|
1881 | 1911 | dataBlock = None |
|
1882 | 1912 | |
|
1883 | 1913 | nprof = 1 |
|
1884 | 1914 | if dataOut.flagDataAsBlock: |
|
1885 | 1915 | nprof = int(dataOut.nProfiles) |
|
1886 | 1916 | |
|
1887 | 1917 | #print("dataOut nProfiles:", dataOut.nProfiles) |
|
1888 | 1918 | for profile in range(nprof): |
|
1889 | 1919 | if dataOut.flagDataAsBlock: |
|
1890 | 1920 | #print("read blocks") |
|
1891 | 1921 | self.getNewProfiles(dataOut.data[:,profile,:], code=code, repeat=repeat) |
|
1892 | 1922 | else: |
|
1893 | 1923 | #print("read profiles") |
|
1894 | 1924 | self.getNewProfiles(dataOut.data, code=code, repeat=repeat) #only one channe |
|
1895 | 1925 | if profile == 0: |
|
1896 | 1926 | dataBlock = self.sshProfiles.copy() |
|
1897 | 1927 | else: #by blocks |
|
1898 | 1928 | dataBlock = numpy.concatenate((dataBlock,self.sshProfiles), axis=1) #profile axis |
|
1899 | 1929 | #print("by blocks: ",dataBlock.shape, self.sshProfiles.shape) |
|
1900 | 1930 | |
|
1901 | 1931 | profileIndex = self.nsamples |
|
1902 | 1932 | #deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1903 | 1933 | ippSeconds = (self.deltaHeight*1.0e-6)/(0.15) |
|
1904 | 1934 | |
|
1905 | 1935 | |
|
1906 | 1936 | dataOut.data = dataBlock |
|
1907 | 1937 | #print("show me: ",self.step,self.deltaHeight, dataOut.heightList, self.new_nHeights) |
|
1908 | 1938 | dataOut.heightList = numpy.arange(int(self.new_nHeights)) *self.step*self.deltaHeight + self.init_range |
|
1909 | 1939 | |
|
1910 | 1940 | dataOut.ippSeconds = ippSeconds |
|
1911 | 1941 | dataOut.step = self.step |
|
1912 | 1942 | dataOut.flagNoData = False |
|
1913 | 1943 | if dataOut.flagDataAsBlock: |
|
1914 | 1944 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
1915 | 1945 | |
|
1916 | 1946 | else: |
|
1917 | 1947 | dataOut.nProfiles = int(self.nsamples) |
|
1918 | 1948 | dataOut.profileIndex = dataOut.nProfiles |
|
1919 | 1949 | dataOut.flagDataAsBlock = True |
|
1920 | 1950 | |
|
1921 | 1951 | dataBlock = None |
|
1922 | 1952 | |
|
1923 | 1953 | #print("new data shape:", dataOut.data.shape, dataOut.utctime) |
|
1924 | 1954 | |
|
1925 | 1955 | return dataOut |
|
1926 | 1956 | |
|
1927 | 1957 | |
|
1928 | 1958 | |
|
1929 | 1959 | |
|
1930 | 1960 | |
|
1931 | 1961 | class removeProfileByFaradayHS(Operation): |
|
1932 | 1962 | ''' |
|
1933 | 1963 | |
|
1934 | 1964 | ''' |
|
1935 | 1965 | |
|
1936 | 1966 | __buffer_data = [] |
|
1937 | 1967 | __buffer_times = [] |
|
1938 | 1968 | |
|
1939 | 1969 | buffer = None |
|
1940 | 1970 | |
|
1941 | 1971 | outliers_IDs_list = [] |
|
1942 | 1972 | |
|
1943 | 1973 | |
|
1944 | 1974 | __slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights', |
|
1945 | 1975 | '__dh','first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels', |
|
1946 | 1976 | '__count_exec','__initime','__dataReady','__ipp') |
|
1947 | 1977 | def __init__(self, **kwargs): |
|
1948 | 1978 | |
|
1949 | 1979 | Operation.__init__(self, **kwargs) |
|
1950 | 1980 | self.isConfig = False |
|
1951 | 1981 | |
|
1952 | 1982 | def setup(self,dataOut, n=None , navg=0.8, profileMargin=50,thHistOutlier=3, minHei=None, maxHei=None): |
|
1953 | 1983 | |
|
1954 | 1984 | if n == None and timeInterval == None: |
|
1955 | 1985 | raise ValueError("nprofiles or timeInterval should be specified ...") |
|
1956 | 1986 | |
|
1957 | 1987 | if n != None: |
|
1958 | 1988 | self.n = n |
|
1959 | 1989 | |
|
1960 | 1990 | self.navg = navg |
|
1961 | 1991 | self.profileMargin = profileMargin |
|
1962 | 1992 | self.thHistOutlier = thHistOutlier |
|
1963 | 1993 | self.__profIndex = 0 |
|
1964 | 1994 | self.buffer = None |
|
1965 | 1995 | self._ipp = dataOut.ippSeconds |
|
1966 | 1996 | self.n_prof_released = 0 |
|
1967 | 1997 | self.heightList = dataOut.heightList |
|
1968 | 1998 | self.init_prof = 0 |
|
1969 | 1999 | self.end_prof = 0 |
|
1970 | 2000 | self.__count_exec = 0 |
|
1971 | 2001 | self.__profIndex = 0 |
|
1972 | 2002 | self.first_utcBlock = None |
|
1973 | 2003 | self.__dh = dataOut.heightList[1] - dataOut.heightList[0] |
|
1974 | 2004 | minHei = minHei |
|
1975 | 2005 | maxHei = maxHei |
|
1976 | 2006 | if minHei==None : |
|
1977 | 2007 | minHei = dataOut.heightList[0] |
|
1978 | 2008 | if maxHei==None : |
|
1979 | 2009 | maxHei = dataOut.heightList[-1] |
|
1980 | 2010 | self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList) |
|
1981 | 2011 | |
|
1982 | 2012 | self.nChannels = dataOut.nChannels |
|
1983 | 2013 | self.nHeights = dataOut.nHeights |
|
1984 | 2014 | self.test_counter = 0 |
|
1985 | 2015 | |
|
1986 | 2016 | def filterSatsProfiles(self): |
|
1987 | 2017 | data = self.__buffer_data |
|
1988 | 2018 | #print(data.shape) |
|
1989 | 2019 | nChannels, profiles, heights = data.shape |
|
1990 | 2020 | indexes=[] |
|
1991 | 2021 | outliers_IDs=[] |
|
1992 | 2022 | for c in range(nChannels): |
|
1993 | 2023 | for h in range(self.minHei_idx, self.maxHei_idx): |
|
1994 | power = data[c,:,h] * numpy.conjugate(data[c,:,h]) | |
|
1995 | power = power.real | |
|
2024 | power = 10* numpy.log10((data[c,:,h] * numpy.conjugate(data[c,:,h])).real) | |
|
2025 | #power = power.real | |
|
1996 | 2026 | #power = (numpy.abs(data[c,:,h].real)) |
|
1997 | 2027 | sortdata = numpy.sort(power, axis=None) |
|
1998 | 2028 | sortID=power.argsort() |
|
1999 |
index = _noise.hildebrand_sekhon2(sortdata,self.navg) |
|
|
2029 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) | |
|
2000 | 2030 | |
|
2001 | 2031 | indexes.append(index) |
|
2002 | 2032 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
2003 | # print(outliers_IDs) | |
|
2033 | ||
|
2034 | # print(sortdata.min(), sortdata.max(), sortdata.mean()) | |
|
2004 | 2035 | # fig,ax = plt.subplots() |
|
2005 | 2036 | # #ax.set_title(str(k)+" "+str(j)) |
|
2006 | 2037 | # x=range(len(sortdata)) |
|
2007 | 2038 | # ax.scatter(x,sortdata) |
|
2008 | 2039 | # ax.axvline(index) |
|
2009 | 2040 | # plt.grid() |
|
2010 | 2041 | # plt.show() |
|
2011 | 2042 | |
|
2012 | 2043 | |
|
2013 | 2044 | outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) |
|
2014 | 2045 | outliers_IDs = numpy.unique(outliers_IDs) |
|
2015 | 2046 | outs_lines = numpy.sort(outliers_IDs) |
|
2016 | 2047 | # #print("outliers Ids: ", outs_lines, outs_lines.shape) |
|
2017 | 2048 | #hist, bin_edges = numpy.histogram(outs_lines, bins=10, density=True) |
|
2018 | 2049 | |
|
2019 | 2050 | |
|
2020 | 2051 | #Agrupando el histograma de outliers, |
|
2021 |
|
|
|
2022 |
my_bins = numpy.linspace(0, |
|
|
2052 | my_bins = numpy.linspace(0,int(profiles), int(profiles/100), endpoint=False) | |
|
2053 | #my_bins = numpy.linspace(0,1600, 96, endpoint=False) | |
|
2023 | 2054 | |
|
2024 | 2055 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) |
|
2025 | 2056 | hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier |
|
2026 | 2057 | #print(hist_outliers_indexes[0]) |
|
2027 | 2058 | bins_outliers_indexes = [int(i) for i in bins[hist_outliers_indexes]] # |
|
2028 | 2059 | #print(bins_outliers_indexes) |
|
2029 | 2060 | outlier_loc_index = [] |
|
2030 | 2061 | |
|
2031 | 2062 | |
|
2032 | 2063 | # for n in range(len(bins_outliers_indexes)-1): |
|
2033 | 2064 | # for k in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin): |
|
2034 | 2065 | # outlier_loc_index.append(k) |
|
2035 | 2066 | |
|
2036 | 2067 | outlier_loc_index = [e for n in range(len(bins_outliers_indexes)-1) for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin) ] |
|
2037 | 2068 | |
|
2038 | 2069 | outlier_loc_index = numpy.asarray(outlier_loc_index) |
|
2039 | 2070 | #print(len(numpy.unique(outlier_loc_index)), numpy.unique(outlier_loc_index)) |
|
2040 | 2071 | |
|
2041 | 2072 | |
|
2042 | 2073 | |
|
2043 |
|
|
|
2044 |
|
|
|
2045 | # | |
|
2046 |
|
|
|
2047 | # m = numpy.nanmean(dat) | |
|
2048 |
|
|
|
2049 | # #print(m, o, x.shape, y.shape) | |
|
2050 | # c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) | |
|
2051 | # ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') | |
|
2052 | # fig.colorbar(c) | |
|
2053 | # ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') | |
|
2054 | # ax[1].hist(outs_lines,bins=my_bins) | |
|
2074 | x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) | |
|
2075 | fig, ax = plt.subplots(1,2,figsize=(8, 6)) | |
|
2076 | ||
|
2077 | dat = data[0,:,:].real | |
|
2078 | dat = 10* numpy.log10((data[0,:,:] * numpy.conjugate(data[0,:,:])).real) | |
|
2079 | m = numpy.nanmean(dat) | |
|
2080 | o = numpy.nanstd(dat) | |
|
2081 | #print(m, o, x.shape, y.shape) | |
|
2082 | c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) | |
|
2083 | ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') | |
|
2084 | fig.colorbar(c) | |
|
2085 | ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') | |
|
2086 | ax[1].hist(outs_lines,bins=my_bins) | |
|
2087 | plt.show() | |
|
2088 | ||
|
2089 | ||
|
2090 | self.outliers_IDs_list = numpy.unique(outlier_loc_index) | |
|
2091 | print("outs list: ", self.outliers_IDs_list) | |
|
2092 | return data | |
|
2093 | ||
|
2094 | def filterSatsProfiles2(self): | |
|
2095 | data = self.__buffer_data | |
|
2096 | #print(data.shape) | |
|
2097 | nChannels, profiles, heights = data.shape | |
|
2098 | indexes=numpy.zeros([], dtype=int) | |
|
2099 | outliers_IDs=[] | |
|
2100 | for c in range(nChannels): | |
|
2101 | noise_ref =10* numpy.log10((data[c,:,550:600] * numpy.conjugate(data[c,:,550:600])).real) | |
|
2102 | print("Noise ",noise_ref.mean()) | |
|
2103 | for h in range(self.minHei_idx, self.maxHei_idx): | |
|
2104 | power = 10* numpy.log10((data[c,:,h] * numpy.conjugate(data[c,:,h])).real) | |
|
2105 | #power = power.real | |
|
2106 | #power = (numpy.abs(data[c,:,h].real)) | |
|
2107 | #sortdata = numpy.sort(power, axis=None) | |
|
2108 | #sortID=power.argsort() | |
|
2109 | #print(sortID) | |
|
2110 | th = 60 + 10 | |
|
2111 | index = numpy.where(power > th ) | |
|
2112 | if index[0].size > 10 and index[0].size < int(0.8*profiles): | |
|
2113 | indexes = numpy.append(indexes, index[0]) | |
|
2114 | #print(index[0]) | |
|
2115 | #print(index[0]) | |
|
2116 | ||
|
2117 | # fig,ax = plt.subplots() | |
|
2118 | # #ax.set_title(str(k)+" "+str(j)) | |
|
2119 | # x=range(len(power)) | |
|
2120 | # ax.scatter(x,power) | |
|
2121 | # #ax.axvline(index) | |
|
2122 | # plt.grid() | |
|
2055 | 2123 | # plt.show() |
|
2124 | #print(indexes) | |
|
2125 | ||
|
2126 | #outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) | |
|
2127 | #outliers_IDs = numpy.unique(outliers_IDs) | |
|
2128 | ||
|
2129 | outs_lines = numpy.unique(indexes) | |
|
2130 | print("outliers Ids: ", outs_lines, outs_lines.shape) | |
|
2131 | #hist, bin_edges = numpy.histogram(outs_lines, bins=10, density=True) | |
|
2132 | ||
|
2133 | ||
|
2134 | #Agrupando el histograma de outliers, | |
|
2135 | my_bins = numpy.linspace(0,int(profiles), int(profiles/100), endpoint=False) | |
|
2136 | #my_bins = numpy.linspace(0,1600, 96, endpoint=False) | |
|
2137 | ||
|
2138 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) | |
|
2139 | hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier | |
|
2140 | #print(hist_outliers_indexes[0]) | |
|
2141 | bins_outliers_indexes = [int(i) for i in bins[hist_outliers_indexes]] # | |
|
2142 | #print(bins_outliers_indexes) | |
|
2143 | outlier_loc_index = [] | |
|
2144 | ||
|
2145 | ||
|
2146 | ||
|
2147 | outlier_loc_index = [e for n in range(len(bins_outliers_indexes)-1) for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n+1]+self.profileMargin) ] | |
|
2148 | ||
|
2149 | outlier_loc_index = numpy.asarray(outlier_loc_index) | |
|
2150 | outlier_loc_index = outlier_loc_index[~numpy.all(outlier_loc_index < 0)] | |
|
2151 | ||
|
2152 | print("outliers final: ", outlier_loc_index) | |
|
2153 | ||
|
2154 | x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) | |
|
2155 | fig, ax = plt.subplots(1,2,figsize=(8, 6)) | |
|
2156 | ||
|
2157 | dat = data[0,:,:].real | |
|
2158 | dat = 10* numpy.log10((data[0,:,:] * numpy.conjugate(data[0,:,:])).real) | |
|
2159 | m = numpy.nanmean(dat) | |
|
2160 | o = numpy.nanstd(dat) | |
|
2161 | #print(m, o, x.shape, y.shape) | |
|
2162 | c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) | |
|
2163 | ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') | |
|
2164 | fig.colorbar(c) | |
|
2165 | ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') | |
|
2166 | ax[1].hist(outs_lines,bins=my_bins) | |
|
2167 | plt.show() | |
|
2056 | 2168 | |
|
2057 | 2169 | |
|
2058 | 2170 | self.outliers_IDs_list = numpy.unique(outlier_loc_index) |
|
2171 | print("outs list: ", self.outliers_IDs_list) | |
|
2059 | 2172 | return data |
|
2060 | 2173 | |
|
2061 | 2174 | def cleanSpikesFFT2D(self): |
|
2062 | 2175 | incoh_int = 10 |
|
2063 | 2176 | norm_img = 75 |
|
2064 | 2177 | import matplotlib.pyplot as plt |
|
2065 | 2178 | import datetime |
|
2066 | 2179 | import cv2 |
|
2067 | 2180 | data = self.__buffer_data |
|
2068 | 2181 | print("cleaning shape inpt: ",data.shape) |
|
2069 | 2182 | self.__buffer_data = [] |
|
2070 | 2183 | |
|
2071 | 2184 | |
|
2072 | 2185 | channels , profiles, heights = data.shape |
|
2073 | 2186 | len_split_prof = profiles / incoh_int |
|
2074 | 2187 | |
|
2075 | 2188 | |
|
2076 | 2189 | for ch in range(channels): |
|
2077 | 2190 | data_10 = numpy.split(data[ch, :, self.minHei_idx:], incoh_int, axis=0) # divisiΓ³n de los perfiles |
|
2078 | 2191 | print("splited data: ",len(data_10)," -> ", data_10[0].shape) |
|
2079 | 2192 | int_img = None |
|
2080 | 2193 | i_count = 0 |
|
2081 | 2194 | n_x, n_y = data_10[0].shape |
|
2082 | 2195 | for s_data in data_10: #porciones de espectro |
|
2083 | 2196 | spectrum = numpy.fft.fft2(s_data, axes=(0,1)) |
|
2084 | 2197 | z = numpy.abs(spectrum) |
|
2085 | 2198 | mg = z[2:n_y,:] #omitir dc y adjunto |
|
2086 | 2199 | dat = numpy.log10(mg.T) |
|
2087 | 2200 | i_count += 1 |
|
2088 | 2201 | if i_count == 1: |
|
2089 | 2202 | int_img = dat |
|
2090 | 2203 | else: |
|
2091 | 2204 | int_img += dat |
|
2092 | 2205 | #print(i_count) |
|
2093 | 2206 | |
|
2094 | 2207 | min, max = int_img.min(), int_img.max() |
|
2095 | 2208 | int_img = ((int_img-min)*255/(max-min)).astype(numpy.uint8) |
|
2096 | 2209 | |
|
2097 | 2210 | cv2.imshow('integrated image', int_img) #numpy.fft.fftshift(img)) |
|
2098 | 2211 | cv2.waitKey(0) |
|
2099 | 2212 | ##################################################################### |
|
2100 | 2213 | kernel_h = numpy.zeros((3,3)) # |
|
2101 | 2214 | kernel_h[0, :] = -2 |
|
2102 | 2215 | kernel_h[1, :] = 3 |
|
2103 | 2216 | kernel_h[2, :] = -2 |
|
2104 | 2217 | |
|
2105 | 2218 | |
|
2106 | 2219 | kernel_5h = numpy.zeros((5,5)) # |
|
2107 | 2220 | kernel_5h[0, :] = -2 |
|
2108 | 2221 | kernel_5h[1, :] = -1 |
|
2109 | 2222 | kernel_5h[2, :] = 5 |
|
2110 | 2223 | kernel_5h[3, :] = -1 |
|
2111 | 2224 | kernel_5h[4, :] = -2 |
|
2112 | 2225 | |
|
2113 | 2226 | ##################################################################### |
|
2114 | 2227 | sharp_img = cv2.filter2D(src=int_img, ddepth=-1, kernel=kernel_5h) |
|
2115 | 2228 | # cv2.imshow('sharp image h ', sharp_img) |
|
2116 | 2229 | # cv2.waitKey(0) |
|
2117 | 2230 | ##################################################################### |
|
2118 | 2231 | horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,1)) #11 |
|
2119 | 2232 | ##################################################################### |
|
2120 | 2233 | detected_lines_h = cv2.morphologyEx(sharp_img, cv2.MORPH_OPEN, horizontal_kernel, iterations=1) |
|
2121 | 2234 | # cv2.imshow('lines horizontal', detected_lines_h) #numpy.fft.fftshift(detected_lines_h)) |
|
2122 | 2235 | # cv2.waitKey(0) |
|
2123 | 2236 | ##################################################################### |
|
2124 | 2237 | ret, detected_lines_h = cv2.threshold(detected_lines_h, 200, 255, cv2.THRESH_BINARY)# |
|
2125 | 2238 | cv2.imshow('binary img', detected_lines_h) #numpy.fft.fftshift(detected_lines_h)) |
|
2126 | 2239 | cv2.waitKey(0) |
|
2127 | 2240 | ##################################################################### |
|
2128 | 2241 | cnts_h, h0 = cv2.findContours(detected_lines_h, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2129 | 2242 | ##################################################################### |
|
2130 | 2243 | h_line_index = [] |
|
2131 | 2244 | v_line_index = [] |
|
2132 | 2245 | |
|
2133 | 2246 | #cnts_h += cnts_h_s #combine large and small lines |
|
2134 | 2247 | |
|
2135 | 2248 | # line indexes x1, x2, y |
|
2136 | 2249 | for c in cnts_h: |
|
2137 | 2250 | #print(c) |
|
2138 | 2251 | if len(c) < 3: #contorno linea |
|
2139 | 2252 | x1 = c[0][0][0] |
|
2140 | 2253 | x2 = c[1][0][0] |
|
2141 | 2254 | if x1 > 5 and x2 < (n_x-5) : |
|
2142 | 2255 | start = incoh_int + (x1 * incoh_int) |
|
2143 | 2256 | end = incoh_int + (x2 * incoh_int) |
|
2144 | 2257 | h_line_index.append( [start, end, c[0][0][1]] ) |
|
2145 | 2258 | |
|
2146 | 2259 | #print("x1, x2, y", c[0][0][0],c[1][0][0], c[0][0][1]) |
|
2147 | 2260 | else: #contorno poligono |
|
2148 | 2261 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2149 | 2262 | y = numpy.unique(pairs[:,1]) |
|
2150 | 2263 | x = numpy.unique(pairs[:,0]) |
|
2151 | 2264 | #print(x) |
|
2152 | 2265 | for yk in y: |
|
2153 | 2266 | x0 = x[0] |
|
2154 | 2267 | if x0 < 8: |
|
2155 | 2268 | x0 = 10 |
|
2156 | 2269 | #print(x[0], x[-1], yk) |
|
2157 | 2270 | h_line_index.append( [x0, x[-1], yk]) |
|
2158 | 2271 | #print("x1, x2, y ->p ", x[0], x[-1], yk) |
|
2159 | 2272 | ################################################################### |
|
2160 | 2273 | #print("Cleaning") |
|
2161 | 2274 | # # clean Spectrum |
|
2162 | 2275 | spectrum = numpy.fft.fft2(data[ch,:,self.minHei_idx:], axes=(0,1)) |
|
2163 | 2276 | z = numpy.abs(spectrum) |
|
2164 | 2277 | phase = numpy.angle(spectrum) |
|
2165 | 2278 | print("Total Horizontal", len(h_line_index)) |
|
2166 | 2279 | if len(h_line_index) < 75 : |
|
2167 | 2280 | for x1, x2, y in h_line_index: |
|
2168 | 2281 | print(x1, x2, y) |
|
2169 | 2282 | z[x1:x2,y] = 0 |
|
2170 | 2283 | |
|
2171 | 2284 | |
|
2172 | 2285 | spcCleaned = z * numpy.exp(1j*phase) |
|
2173 | 2286 | |
|
2174 | 2287 | dat2 = numpy.log10(z[1:-1,:].T) |
|
2175 | 2288 | min, max =dat2.min(), dat2.max() |
|
2176 | 2289 | print(min, max) |
|
2177 | 2290 | img2 = ((dat2-min)*255/(max-min)).astype(numpy.uint8) |
|
2178 | 2291 | cv2.imshow('cleaned', img2) #numpy.fft.fftshift(img_cleaned)) |
|
2179 | 2292 | cv2.waitKey(0) |
|
2180 | 2293 | cv2.destroyAllWindows() |
|
2181 | 2294 | |
|
2182 | 2295 | data[ch,:,self.minHei_idx:] = numpy.fft.ifft2(spcCleaned, axes=(0,1)) |
|
2183 | 2296 | |
|
2184 | 2297 | |
|
2185 | 2298 | #print("cleanOutliersByBlock Done", data.shape) |
|
2186 | 2299 | self.__buffer_data = data |
|
2187 | 2300 | return data |
|
2188 | 2301 | |
|
2189 | 2302 | |
|
2190 | 2303 | |
|
2191 | 2304 | |
|
2192 | 2305 | def cleanOutliersByBlock(self): |
|
2193 | 2306 | import matplotlib.pyplot as plt |
|
2194 | 2307 | import datetime |
|
2195 | 2308 | import cv2 |
|
2196 | 2309 | #print(self.__buffer_data[0].shape) |
|
2197 | 2310 | data = self.__buffer_data#.copy() |
|
2198 | 2311 | print("cleaning shape inpt: ",data.shape) |
|
2199 | 2312 | self.__buffer_data = [] |
|
2200 | 2313 | |
|
2201 | 2314 | |
|
2202 | 2315 | spectrum = numpy.fft.fft2(data[:,:,self.minHei_idx:], axes=(1,2)) |
|
2203 | 2316 | print("spc : ",spectrum.shape) |
|
2204 | 2317 | (nch,nsamples, nh) = spectrum.shape |
|
2205 | 2318 | data2 = None |
|
2206 | 2319 | #print(data.shape) |
|
2207 | 2320 | cleanedBlock = None |
|
2208 | 2321 | spectrum2 = spectrum.copy() |
|
2209 | 2322 | for ch in range(nch): |
|
2210 | 2323 | dh = self.__dh |
|
2211 | 2324 | dt1 = (dh*1.0e-6)/(0.15) |
|
2212 | 2325 | dt2 = self.__buffer_times[1]-self.__buffer_times[0] |
|
2213 | 2326 | |
|
2214 | 2327 | freqv = numpy.fft.fftfreq(nh, d=dt1) |
|
2215 | 2328 | freqh = numpy.fft.fftfreq(self.n, d=dt2) |
|
2216 | 2329 | |
|
2217 | 2330 | z = numpy.abs(spectrum[ch,:,:]) |
|
2218 | 2331 | phase = numpy.angle(spectrum[ch,:,:]) |
|
2219 | 2332 | z1 = z[0,:] |
|
2220 | 2333 | #print("shape z: ", z.shape, nsamples) |
|
2221 | 2334 | |
|
2222 | 2335 | dat = numpy.log10(z[1:nsamples,:].T) |
|
2223 | 2336 | |
|
2224 | 2337 | pdat = numpy.log10(phase.T) |
|
2225 | 2338 | #print("dat mean",dat.mean()) |
|
2226 | 2339 | |
|
2227 | 2340 | mean, min, max = dat.mean(), dat.min(), dat.max() |
|
2228 | 2341 | img = ((dat-min)*200/(max-min)).astype(numpy.uint8) |
|
2229 | 2342 | |
|
2230 | 2343 | # print(img.shape) |
|
2231 | 2344 | cv2.imshow('image', img) #numpy.fft.fftshift(img)) |
|
2232 | 2345 | cv2.waitKey(0) |
|
2233 | 2346 | |
|
2234 | 2347 | |
|
2235 | 2348 | ''' #FUNCIONA LINEAS PEQUEΓAS |
|
2236 | 2349 | kernel_5h = numpy.zeros((5,3)) # |
|
2237 | 2350 | kernel_5h[0, :] = 2 |
|
2238 | 2351 | kernel_5h[1, :] = 1 |
|
2239 | 2352 | kernel_5h[2, :] = 0 |
|
2240 | 2353 | kernel_5h[3, :] = -1 |
|
2241 | 2354 | kernel_5h[4, :] = -2 |
|
2242 | 2355 | |
|
2243 | 2356 | sharp_imgh = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_5h) |
|
2244 | 2357 | cv2.imshow('sharp image h',sharp_imgh) |
|
2245 | 2358 | cv2.waitKey(0) |
|
2246 | 2359 | horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (20,1)) |
|
2247 | 2360 | |
|
2248 | 2361 | detected_lines_h = cv2.morphologyEx(sharp_imgh, cv2.MORPH_OPEN, horizontal_kernel, iterations=1) |
|
2249 | 2362 | #detected_lines_h = cv2.medianBlur(detected_lines_h, 3) |
|
2250 | 2363 | #detected_lines_h = cv2.filter2D(src=img, ddepth=-1, kernel=kernel) |
|
2251 | 2364 | cv2.imshow('lines h gray', detected_lines_h) |
|
2252 | 2365 | cv2.waitKey(0) |
|
2253 | 2366 | reth, detected_lines_h = cv2.threshold(detected_lines_h, 90, 255, cv2.THRESH_BINARY) |
|
2254 | 2367 | cv2.imshow('lines h ', detected_lines_h) |
|
2255 | 2368 | cv2.waitKey(0) |
|
2256 | 2369 | ''' |
|
2257 | 2370 | |
|
2258 | 2371 | |
|
2259 | 2372 | ''' |
|
2260 | 2373 | kernel_3h = numpy.zeros((3,10)) #10 |
|
2261 | 2374 | kernel_3h[0, :] = -1 |
|
2262 | 2375 | kernel_3h[1, :] = 2 |
|
2263 | 2376 | kernel_3h[2, :] = -1 |
|
2264 | 2377 | |
|
2265 | 2378 | |
|
2266 | 2379 | kernel_h = numpy.zeros((3,20)) #20 |
|
2267 | 2380 | kernel_h[0, :] = -1 |
|
2268 | 2381 | kernel_h[1, :] = 2 |
|
2269 | 2382 | kernel_h[2, :] = -1 |
|
2270 | 2383 | |
|
2271 | 2384 | kernel_v = numpy.zeros((30,3)) #30 |
|
2272 | 2385 | kernel_v[:, 0] = -1 |
|
2273 | 2386 | kernel_v[:, 1] = 2 |
|
2274 | 2387 | kernel_v[:, 2] = -1 |
|
2275 | 2388 | |
|
2276 | 2389 | kernel_4h = numpy.zeros((4,20)) # |
|
2277 | 2390 | kernel_4h[0, :] = 1 |
|
2278 | 2391 | kernel_4h[1, :] = 0 |
|
2279 | 2392 | kernel_4h[2, :] = 0 |
|
2280 | 2393 | kernel_4h[3, :] = -1 |
|
2281 | 2394 | |
|
2282 | 2395 | kernel_5h = numpy.zeros((5,30)) # |
|
2283 | 2396 | kernel_5h[0, :] = 2 |
|
2284 | 2397 | kernel_5h[1, :] = 1 |
|
2285 | 2398 | kernel_5h[2, :] = 0 |
|
2286 | 2399 | kernel_5h[3, :] = -1 |
|
2287 | 2400 | kernel_5h[4, :] = -2 |
|
2288 | 2401 | |
|
2289 | 2402 | |
|
2290 | 2403 | sharp_img0 = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_3h) |
|
2291 | 2404 | # cv2.imshow('sharp image small h',sharp_img0) # numpy.fft.fftshift(sharp_img1)) |
|
2292 | 2405 | # cv2.waitKey(0) |
|
2293 | 2406 | |
|
2294 | 2407 | sharp_img1 = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_h) |
|
2295 | 2408 | # cv2.imshow('sharp image h',sharp_img1) # numpy.fft.fftshift(sharp_img1)) |
|
2296 | 2409 | # cv2.waitKey(0) |
|
2297 | 2410 | |
|
2298 | 2411 | sharp_img2 = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_v) |
|
2299 | 2412 | # cv2.imshow('sharp image v', sharp_img2) #numpy.fft.fftshift(sharp_img2)) |
|
2300 | 2413 | # cv2.waitKey(0) |
|
2301 | 2414 | |
|
2302 | 2415 | sharp_imgw = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_4h) |
|
2303 | 2416 | # cv2.imshow('sharp image h wide', sharp_imgw) #numpy.fft.fftshift(sharp_img2)) |
|
2304 | 2417 | # cv2.waitKey(0) |
|
2305 | 2418 | |
|
2306 | 2419 | sharp_imgwl = cv2.filter2D(src=img, ddepth=-1, kernel=kernel_5h, borderType = cv2.BORDER_ISOLATED) |
|
2307 | 2420 | cv2.imshow('sharp image h long wide', sharp_imgwl) #numpy.fft.fftshift(sharp_img2)) |
|
2308 | 2421 | cv2.waitKey(0) |
|
2309 | 2422 | |
|
2310 | 2423 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/sharp_h.jpg', sharp_img1) |
|
2311 | 2424 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/sharp_v.jpg', sharp_img2) |
|
2312 | 2425 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/input_img.jpg', img) |
|
2313 | 2426 | |
|
2314 | 2427 | ########################small horizontal |
|
2315 | 2428 | horizontal_kernel_s = cv2.getStructuringElement(cv2.MORPH_RECT, (11,1)) #11 |
|
2316 | 2429 | ######################## horizontal |
|
2317 | 2430 | horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (30,1)) #30 |
|
2318 | 2431 | ######################## vertical |
|
2319 | 2432 | vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,50)) #50 |
|
2320 | 2433 | ######################## horizontal wide |
|
2321 | 2434 | horizontal_kernel_w = cv2.getStructuringElement(cv2.MORPH_RECT, (30,1)) # 30 |
|
2322 | 2435 | |
|
2323 | 2436 | horizontal_kernel_expand = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3)) # |
|
2324 | 2437 | |
|
2325 | 2438 | horizontal_kernel_wl = cv2.getStructuringElement(cv2.MORPH_RECT, (50,1)) # |
|
2326 | 2439 | |
|
2327 | 2440 | detected_lines_h_s = cv2.morphologyEx(sharp_img0, cv2.MORPH_OPEN, horizontal_kernel_s, iterations=7) #7 |
|
2328 | 2441 | detected_lines_h = cv2.morphologyEx(sharp_img1, cv2.MORPH_OPEN, horizontal_kernel, iterations=7) #7 |
|
2329 | 2442 | detected_lines_v = cv2.morphologyEx(sharp_img2, cv2.MORPH_OPEN, vertical_kernel, iterations=7) #7 |
|
2330 | 2443 | detected_lines_h_w = cv2.morphologyEx(sharp_imgw, cv2.MORPH_OPEN, horizontal_kernel_w, iterations=5) #5 |
|
2331 | 2444 | |
|
2332 | 2445 | detected_lines_h_wl = cv2.morphologyEx(sharp_imgwl, cv2.MORPH_OPEN, horizontal_kernel_wl, iterations=5) # |
|
2333 | 2446 | detected_lines_h_wl = cv2.filter2D(src=detected_lines_h_wl, ddepth=-1, kernel=horizontal_kernel_expand) |
|
2334 | 2447 | |
|
2335 | 2448 | # cv2.imshow('lines h small gray', detected_lines_h_s) #numpy.fft.fftshift(detected_lines_h)) |
|
2336 | 2449 | # cv2.waitKey(0) |
|
2337 | 2450 | # cv2.imshow('lines h gray', detected_lines_h) #numpy.fft.fftshift(detected_lines_h)) |
|
2338 | 2451 | # cv2.waitKey(0) |
|
2339 | 2452 | # cv2.imshow('lines v gray', detected_lines_v) #numpy.fft.fftshift(detected_lines_h)) |
|
2340 | 2453 | # cv2.waitKey(0) |
|
2341 | 2454 | # cv2.imshow('lines h wide gray', detected_lines_h_w) #numpy.fft.fftshift(detected_lines_h)) |
|
2342 | 2455 | # cv2.waitKey(0) |
|
2343 | 2456 | cv2.imshow('lines h long wide gray', detected_lines_h_wl) #numpy.fft.fftshift(detected_lines_h)) |
|
2344 | 2457 | cv2.waitKey(0) |
|
2345 | 2458 | |
|
2346 | 2459 | reth_s, detected_lines_h_s = cv2.threshold(detected_lines_h_s, 85, 255, cv2.THRESH_BINARY)# 85 |
|
2347 | 2460 | reth, detected_lines_h = cv2.threshold(detected_lines_h, 30, 255, cv2.THRESH_BINARY) #30 |
|
2348 | 2461 | retv, detected_lines_v = cv2.threshold(detected_lines_v, 30, 255, cv2.THRESH_BINARY) #30 |
|
2349 | 2462 | reth_w, detected_lines_h_w = cv2.threshold(detected_lines_h_w, 35, 255, cv2.THRESH_BINARY)# |
|
2350 | 2463 | reth_wl, detected_lines_h_wl = cv2.threshold(detected_lines_h_wl, 200, 255, cv2.THRESH_BINARY)# |
|
2351 | 2464 | |
|
2352 | 2465 | cnts_h_s, h0 = cv2.findContours(detected_lines_h_s, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2353 | 2466 | cnts_h, h1 = cv2.findContours(detected_lines_h, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2354 | 2467 | cnts_v, h2 = cv2.findContours(detected_lines_v, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2355 | 2468 | cnts_h_w, h3 = cv2.findContours(detected_lines_h_w, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2356 | 2469 | cnts_h_wl, h4 = cv2.findContours(detected_lines_h_wl, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
|
2357 | 2470 | #print("horizontal ", cnts_h) |
|
2358 | 2471 | #print("vertical ", cnts_v) |
|
2359 | 2472 | # cnts, h = cv2.findContours(detected_lines_h, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
2360 | 2473 | # print(cnts) |
|
2361 | 2474 | # cv2.imshow('lines h wide', detected_lines_h_w) #numpy.fft.fftshift(detected_lines_h)) |
|
2362 | 2475 | # cv2.waitKey(0) |
|
2363 | 2476 | cv2.imshow('lines h wide long ', detected_lines_h_wl) #numpy.fft.fftshift(detected_lines_v)) |
|
2364 | 2477 | cv2.waitKey(0) |
|
2365 | 2478 | # cv2.imshow('lines h small', detected_lines_h_s) #numpy.fft.fftshift(detected_lines_h)) |
|
2366 | 2479 | # cv2.waitKey(0) |
|
2367 | 2480 | # cv2.imshow('lines h ', detected_lines_h) #numpy.fft.fftshift(detected_lines_h)) |
|
2368 | 2481 | # cv2.waitKey(0) |
|
2369 | 2482 | # cv2.imshow('lines v ', detected_lines_v) #numpy.fft.fftshift(detected_lines_v)) |
|
2370 | 2483 | # cv2.waitKey(0) |
|
2371 | 2484 | |
|
2372 | 2485 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/lines_h.jpg', detected_lines_h) |
|
2373 | 2486 | # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/lines_v.jpg', detected_lines_v) |
|
2374 | 2487 | |
|
2375 | 2488 | #cnts = cnts[0] if len(cnts) == 2 else cnts[1] |
|
2376 | 2489 | #y_line_index = numpy.asarray([ [c[0][0][0],c[1][0][0], c[0][0][1]] for c in cnts_v ]) |
|
2377 | 2490 | h_line_index = [] |
|
2378 | 2491 | v_line_index = [] |
|
2379 | 2492 | |
|
2380 | 2493 | cnts_h += cnts_h_s #combine large and small lines |
|
2381 | 2494 | |
|
2382 | 2495 | # line indexes x1, x2, y |
|
2383 | 2496 | for c in cnts_h: |
|
2384 | 2497 | #print(c) |
|
2385 | 2498 | if len(c) < 3: #contorno linea |
|
2386 | 2499 | x1 = c[0][0][0] |
|
2387 | 2500 | if x1 < 8: |
|
2388 | 2501 | x1 = 10 |
|
2389 | 2502 | h_line_index.append( [x1,c[1][0][0], c[0][0][1]] ) |
|
2390 | 2503 | #print("x1, x2, y", c[0][0][0],c[1][0][0], c[0][0][1]) |
|
2391 | 2504 | else: #contorno poligono |
|
2392 | 2505 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2393 | 2506 | y = numpy.unique(pairs[:,1]) |
|
2394 | 2507 | x = numpy.unique(pairs[:,0]) |
|
2395 | 2508 | #print(x) |
|
2396 | 2509 | for yk in y: |
|
2397 | 2510 | x0 = x[0] |
|
2398 | 2511 | if x0 < 8: |
|
2399 | 2512 | x0 = 10 |
|
2400 | 2513 | #print(x[0], x[-1], yk) |
|
2401 | 2514 | h_line_index.append( [x0, x[-1], yk]) |
|
2402 | 2515 | #print("x1, x2, y ->p ", x[0], x[-1], yk) |
|
2403 | 2516 | for c in cnts_h_w: |
|
2404 | 2517 | #print(c) |
|
2405 | 2518 | if len(c) < 3: #contorno linea |
|
2406 | 2519 | x1 = c[0][0][0] |
|
2407 | 2520 | if x1 < 8: |
|
2408 | 2521 | x1 = 10 |
|
2409 | 2522 | y = c[0][0][1] - 2 # se incrementa 2 lΓneas x el filtro |
|
2410 | 2523 | h_line_index.append( [x1,c[1][0][0],y] ) |
|
2411 | 2524 | #print("x1, x2, y", c[0][0][0],c[1][0][0], c[0][0][1]) |
|
2412 | 2525 | else: #contorno poligono |
|
2413 | 2526 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2414 | 2527 | y = numpy.unique(pairs[:,1]) |
|
2415 | 2528 | x = numpy.unique(pairs[:,0]) |
|
2416 | 2529 | #print(x) |
|
2417 | 2530 | for yk in y: |
|
2418 | 2531 | |
|
2419 | 2532 | x0 = x[0] |
|
2420 | 2533 | if x0 < 8: |
|
2421 | 2534 | x0 = 10 |
|
2422 | 2535 | h_line_index.append( [x0, x[-1], yk-2]) |
|
2423 | 2536 | |
|
2424 | 2537 | for c in cnts_h_wl: # # revisar |
|
2425 | 2538 | #print(c) |
|
2426 | 2539 | if len(c) < 3: #contorno linea |
|
2427 | 2540 | x1 = c[0][0][0] |
|
2428 | 2541 | if x1 < 8: |
|
2429 | 2542 | x1 = 10 |
|
2430 | 2543 | y = c[0][0][1] - 2 # se incrementa 2 lΓneas x el filtro |
|
2431 | 2544 | h_line_index.append( [x1,c[1][0][0],y] ) |
|
2432 | 2545 | #print("x1, x2, y", c[0][0][0],c[1][0][0], c[0][0][1]) |
|
2433 | 2546 | else: #contorno poligono |
|
2434 | 2547 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2435 | 2548 | y = numpy.unique(pairs[:,1]) |
|
2436 | 2549 | x = numpy.unique(pairs[:,0]) |
|
2437 | 2550 | for yk in range(y[-1]-y[0]): |
|
2438 | 2551 | y_k = yk +y[0] |
|
2439 | 2552 | |
|
2440 | 2553 | x0 = x[0] |
|
2441 | 2554 | if x0 < 8: |
|
2442 | 2555 | x0 = 10 |
|
2443 | 2556 | h_line_index.append( [x0, x[-1], y_k-2]) |
|
2444 | 2557 | |
|
2445 | 2558 | print([[c[0][0][1],c[1][0][1], c[0][0][0] ] for c in cnts_v]) |
|
2446 | 2559 | # line indexes y1, y2, x |
|
2447 | 2560 | for c in cnts_v: |
|
2448 | 2561 | if len(c) < 3: #contorno linea |
|
2449 | 2562 | v_line_index.append( [c[0][0][1],c[1][0][1], c[0][0][0] ] ) |
|
2450 | 2563 | else: #contorno poligono |
|
2451 | 2564 | pairs = numpy.asarray([c[n][0] for n in range(len(c))]) |
|
2452 | 2565 | #print(pairs) |
|
2453 | 2566 | y = numpy.unique(pairs[:,1]) |
|
2454 | 2567 | x = numpy.unique(pairs[:,0]) |
|
2455 | 2568 | |
|
2456 | 2569 | for xk in x: |
|
2457 | 2570 | #print(x[0], x[-1], yk) |
|
2458 | 2571 | v_line_index.append( [y[0],y[-1], xk]) |
|
2459 | 2572 | |
|
2460 | 2573 | ################################################################### |
|
2461 | 2574 | # # clean Horizontal |
|
2462 | 2575 | print("Total Horizontal", len(h_line_index)) |
|
2463 | 2576 | if len(h_line_index) < 75 : |
|
2464 | 2577 | for x1, x2, y in h_line_index: |
|
2465 | 2578 | #print("cleaning ",x1, x2, y) |
|
2466 | 2579 | len_line = x2 - x1 |
|
2467 | 2580 | if y > 10 and y < (nh -10): |
|
2468 | 2581 | # if y != (nh-1): |
|
2469 | 2582 | # list = [ ((z[n, y-1] + z[n,y+1])/2) for n in range(len_line)] |
|
2470 | 2583 | # else: |
|
2471 | 2584 | # list = [ ((z[n, y-1] + z[n,0])/2) for n in range(len_line)] |
|
2472 | 2585 | # |
|
2473 | 2586 | # z[x1:x2,y] = numpy.asarray(list) |
|
2474 | 2587 | z[x1-5:x2+5,y:y+1] = 0 |
|
2475 | 2588 | |
|
2476 | 2589 | # clean vertical |
|
2477 | 2590 | for y1, y2, x in v_line_index: |
|
2478 | 2591 | len_line = y2 - y1 |
|
2479 | 2592 | #print(x) |
|
2480 | 2593 | if x > 0 and x < (nsamples-2): |
|
2481 | 2594 | # if x != (nsamples-1): |
|
2482 | 2595 | # list = [ ((z[x-2, n] + z[x+2,n])/2) for n in range(len_line)] |
|
2483 | 2596 | # else: |
|
2484 | 2597 | # list = [ ((z[x-2, n] + z[1,n])/2) for n in range(len_line)] |
|
2485 | 2598 | # |
|
2486 | 2599 | # #z[x-1:x+1,y1:y2] = numpy.asarray(list) |
|
2487 | 2600 | # |
|
2488 | 2601 | z[x+1,y1:y2] = 0 |
|
2489 | 2602 | |
|
2490 | 2603 | ''' |
|
2491 | 2604 | #z[: ,[215, 217, 221, 223, 225, 340, 342, 346, 348, 350, 465, 467, 471, 473, 475]]=0 |
|
2492 | 2605 | z[1: ,[112, 114, 118, 120, 122, 237, 239, 245, 247, 249, 362, 364, 368, 370, 372]]=0 |
|
2493 | 2606 | # z[: ,217]=0 |
|
2494 | 2607 | # z[: ,221]=0 |
|
2495 | 2608 | # z[: ,223]=0 |
|
2496 | 2609 | # z[: ,225]=0 |
|
2497 | 2610 | |
|
2498 | 2611 | dat2 = numpy.log10(z.T) |
|
2499 | 2612 | #print(dat2) |
|
2500 | 2613 | max = dat2.max() |
|
2501 | 2614 | #print(" min, max ", max, min) |
|
2502 | 2615 | img2 = ((dat2-min)*255/(max-min)).astype(numpy.uint8) |
|
2503 | 2616 | #img_cleaned = img2.copy() |
|
2504 | 2617 | #cv2.drawContours(img2, cnts_h, -1, (255,255,255), 1) |
|
2505 | 2618 | #cv2.drawContours(img2, cnts_v, -1, (255,255,255), 1) |
|
2506 | 2619 | |
|
2507 | 2620 | |
|
2508 | 2621 | spcCleaned = z * numpy.exp(1j*phase) |
|
2509 | 2622 | #print(spcCleaned) |
|
2510 | 2623 | |
|
2511 | 2624 | |
|
2512 | 2625 | # cv2.imshow('image contours', img2) #numpy.fft.fftshift(img)) |
|
2513 | 2626 | # cv2.waitKey(0) |
|
2514 | 2627 | |
|
2515 | 2628 | cv2.imshow('cleaned', img2) #numpy.fft.fftshift(img_cleaned)) |
|
2516 | 2629 | cv2.waitKey(0) |
|
2517 | 2630 | # # cv2.imwrite('/home/soporte/Data/AMISR14/ISR/spc/spc/cleaned_{}.jpg'.format(self.test_counter), img2) |
|
2518 | 2631 | cv2.destroyAllWindows() |
|
2519 | 2632 | # self.test_counter += 1 |
|
2520 | 2633 | |
|
2521 | 2634 | |
|
2522 | 2635 | #print("DC difference " ,z1 - z[0,:]) |
|
2523 | 2636 | |
|
2524 | 2637 | # m = numpy.mean(dat) |
|
2525 | 2638 | # o = numpy.std(dat) |
|
2526 | 2639 | # print("mean ", m, " std ", o) |
|
2527 | 2640 | # fig, ax = plt.subplots(1,2,figsize=(12, 6)) |
|
2528 | 2641 | # #X, Y = numpy.meshgrid(numpy.sort(freqh),numpy.sort(freqv)) |
|
2529 | 2642 | # X, Y = numpy.meshgrid(numpy.fft.fftshift(freqh),numpy.fft.fftshift(freqv)) |
|
2530 | 2643 | # |
|
2531 | 2644 | # colormap = 'jet' |
|
2532 | 2645 | # #c = ax[0].pcolormesh(x, y, dat, cmap =colormap, vmin = (m-2*o)/2, vmax = (m+2*o)) |
|
2533 | 2646 | # #c = ax[0].pcolormesh(X, Y, numpy.fft.fftshift(dat), cmap =colormap, vmin = 6.5, vmax = 6.8) |
|
2534 | 2647 | # c = ax[0].pcolormesh(X, Y, numpy.fft.fftshift(dat), cmap =colormap, vmin = (m-2*o), vmax = (m+1.5*o)) |
|
2535 | 2648 | # fig.colorbar(c, ax=ax[0]) |
|
2536 | 2649 | # |
|
2537 | 2650 | # |
|
2538 | 2651 | # #c = ax.pcolor( z.T , cmap ='gray', vmin = (m-2*o), vmax = (m+2*o)) |
|
2539 | 2652 | # #date_time = datetime.datetime.fromtimestamp(self.__buffer_times[0]).strftime('%Y-%m-%d %H:%M:%S.%f') |
|
2540 | 2653 | # #strftime('%Y-%m-%d %H:%M:%S') |
|
2541 | 2654 | # #ax[0].set_title('Spectrum magnitude '+date_time) |
|
2542 | 2655 | # #fig.canvas.set_window_title('Spectrum magnitude {} '.format(self.n)+date_time) |
|
2543 | 2656 | # #print("aqui estoy2",dat2[:,:,0].shape) |
|
2544 | 2657 | # #c = ax[1].pcolormesh(X, Y, numpy.fft.fftshift(pdat), cmap =colormap, vmin = 4.2, vmax = 5.0) |
|
2545 | 2658 | # c = ax[0].pcolormesh(X, Y, numpy.fft.fftshift(dat2), cmap =colormap, vmin = (m-2*o), vmax = (m+1.5*o)) |
|
2546 | 2659 | # #c = ax[1].pcolormesh(X, Y, numpy.fft.fftshift(pdat), cmap =colormap ) #, vmin = 0.0, vmax = 0.5) |
|
2547 | 2660 | # #c = ax[1].pcolormesh(x, y, dat2[:,:,0], cmap =colormap, vmin = (m-2*o)/2, vmax = (m+2*o)-1) |
|
2548 | 2661 | # #print("aqui estoy3") |
|
2549 | 2662 | # fig.colorbar(c, ax=ax[1]) |
|
2550 | 2663 | # plt.show() |
|
2551 | 2664 | |
|
2552 | 2665 | spectrum[ch,:,:] = spcCleaned |
|
2553 | 2666 | |
|
2554 | 2667 | #print(data2.shape) |
|
2555 | 2668 | |
|
2556 | 2669 | |
|
2557 | 2670 | |
|
2558 | 2671 | data[:,:,self.minHei_idx:] = numpy.fft.ifft2(spectrum, axes=(1,2)) |
|
2559 | 2672 | |
|
2560 | 2673 | #print("cleanOutliersByBlock Done", data.shape) |
|
2561 | 2674 | self.__buffer_data = data |
|
2562 | 2675 | return data |
|
2563 | 2676 | |
|
2564 | 2677 | |
|
2565 | 2678 | |
|
2566 | 2679 | def fillBuffer(self, data, datatime): |
|
2567 | 2680 | |
|
2568 | 2681 | if self.__profIndex == 0: |
|
2569 | 2682 | self.__buffer_data = data.copy() |
|
2570 | 2683 | |
|
2571 | 2684 | else: |
|
2572 | 2685 | self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles |
|
2573 | 2686 | self.__profIndex += 1 |
|
2574 | 2687 | self.__buffer_times.append(datatime) |
|
2575 | 2688 | |
|
2576 | 2689 | def getData(self, data, datatime=None): |
|
2577 | 2690 | |
|
2578 | 2691 | if self.__profIndex == 0: |
|
2579 | 2692 | self.__initime = datatime |
|
2580 | 2693 | |
|
2581 | 2694 | |
|
2582 | 2695 | self.__dataReady = False |
|
2583 | 2696 | |
|
2584 | 2697 | self.fillBuffer(data, datatime) |
|
2585 | 2698 | dataBlock = None |
|
2586 | 2699 | |
|
2587 | 2700 | if self.__profIndex == self.n: |
|
2588 | 2701 | #print("apnd : ",data) |
|
2589 | 2702 | #dataBlock = self.cleanOutliersByBlock() |
|
2590 | 2703 | #dataBlock = self.cleanSpikesFFT2D() |
|
2591 | dataBlock = self.filterSatsProfiles() | |
|
2704 | dataBlock = self.filterSatsProfiles2() | |
|
2592 | 2705 | self.__dataReady = True |
|
2593 | 2706 | |
|
2594 | 2707 | return dataBlock |
|
2595 | 2708 | |
|
2596 | 2709 | if dataBlock is None: |
|
2597 | 2710 | return None, None |
|
2598 | 2711 | |
|
2599 | 2712 | |
|
2600 | 2713 | |
|
2601 | 2714 | return dataBlock |
|
2602 | 2715 | |
|
2603 | 2716 | def releaseBlock(self): |
|
2604 | 2717 | |
|
2605 | 2718 | if self.n % self.lenProfileOut != 0: |
|
2606 | 2719 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
2607 | 2720 | return None |
|
2608 | 2721 | |
|
2609 | 2722 | data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt |
|
2610 | 2723 | |
|
2611 | 2724 | self.init_prof = self.end_prof |
|
2612 | 2725 | self.end_prof += self.lenProfileOut |
|
2613 | 2726 | #print("data release shape: ",dataOut.data.shape, self.end_prof) |
|
2614 | 2727 | self.n_prof_released += 1 |
|
2615 | 2728 | |
|
2616 | 2729 | |
|
2617 | 2730 | #print("f_no_data ", dataOut.flagNoData) |
|
2618 | 2731 | return data |
|
2619 | 2732 | |
|
2620 | 2733 | def run(self, dataOut, n=None, navg=0.8, nProfilesOut=1, profile_margin=50,th_hist_outlier=3,minHei=None, maxHei=None): |
|
2621 | 2734 | #print("run op buffer 2D",dataOut.ippSeconds) |
|
2622 | 2735 | # self.nChannels = dataOut.nChannels |
|
2623 | 2736 | # self.nHeights = dataOut.nHeights |
|
2624 | 2737 | |
|
2625 | 2738 | if not self.isConfig: |
|
2626 | 2739 | #print("init p idx: ", dataOut.profileIndex ) |
|
2627 | 2740 | self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin, |
|
2628 | 2741 | thHistOutlier=th_hist_outlier,minHei=minHei, maxHei=maxHei) |
|
2629 | 2742 | self.isConfig = True |
|
2630 | 2743 | |
|
2631 | 2744 | dataBlock = None |
|
2632 | 2745 | |
|
2633 | 2746 | if not dataOut.buffer_empty: #hay datos acumulados |
|
2634 | 2747 | |
|
2635 | 2748 | if self.init_prof == 0: |
|
2636 | 2749 | self.n_prof_released = 0 |
|
2637 | 2750 | self.lenProfileOut = nProfilesOut |
|
2638 | 2751 | dataOut.flagNoData = False |
|
2639 | 2752 | #print("tp 2 ",dataOut.data.shape) |
|
2640 | 2753 | |
|
2641 | 2754 | self.init_prof = 0 |
|
2642 | 2755 | self.end_prof = self.lenProfileOut |
|
2643 | 2756 | |
|
2644 | 2757 | dataOut.nProfiles = self.lenProfileOut |
|
2645 | 2758 | if nProfilesOut == 1: |
|
2646 | 2759 | dataOut.flagDataAsBlock = False |
|
2647 | 2760 | else: |
|
2648 | 2761 | dataOut.flagDataAsBlock = True |
|
2649 | 2762 | #print("prof: ",self.init_prof) |
|
2650 | 2763 | dataOut.flagNoData = False |
|
2651 | 2764 | if numpy.isin(self.n_prof_released, self.outliers_IDs_list): |
|
2652 |
|
|
|
2765 | print("omitting: ", self.n_prof_released) | |
|
2653 | 2766 | dataOut.flagNoData = True |
|
2654 | 2767 | dataOut.ippSeconds = self._ipp |
|
2655 | 2768 | dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp |
|
2656 | 2769 | # print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds) |
|
2657 | 2770 | #dataOut.data = self.releaseBlock() |
|
2658 | 2771 | #########################################################3 |
|
2659 | 2772 | if self.n % self.lenProfileOut != 0: |
|
2660 | 2773 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) |
|
2661 | 2774 | return None |
|
2662 | 2775 | |
|
2663 | 2776 | dataOut.data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt |
|
2664 | 2777 | |
|
2665 | 2778 | self.init_prof = self.end_prof |
|
2666 | 2779 | self.end_prof += self.lenProfileOut |
|
2667 |
|
|
|
2780 | #print("data release shape: ",dataOut.data.shape, self.end_prof, dataOut.flagNoData) | |
|
2668 | 2781 | self.n_prof_released += 1 |
|
2669 | 2782 | |
|
2670 | 2783 | if self.end_prof >= (self.n +self.lenProfileOut): |
|
2671 | 2784 | |
|
2672 | 2785 | self.init_prof = 0 |
|
2673 | 2786 | self.__profIndex = 0 |
|
2674 | 2787 | self.buffer = None |
|
2675 | 2788 | dataOut.buffer_empty = True |
|
2676 | 2789 | self.outliers_IDs_list = [] |
|
2677 | 2790 | self.n_prof_released = 0 |
|
2678 | 2791 | dataOut.flagNoData = False #enviar ultimo aunque sea outlier :( |
|
2679 | 2792 | #print("cleaning...", dataOut.buffer_empty) |
|
2680 | 2793 | dataOut.profileIndex = 0 #self.lenProfileOut |
|
2681 | 2794 | #################################################################### |
|
2682 | 2795 | return dataOut |
|
2683 | 2796 | |
|
2684 | 2797 | |
|
2685 | 2798 | #print("tp 223 ",dataOut.data.shape) |
|
2686 | 2799 | dataOut.flagNoData = True |
|
2687 | 2800 | |
|
2688 | 2801 | |
|
2689 | 2802 | |
|
2690 | 2803 | try: |
|
2691 | 2804 | #dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime) |
|
2692 | 2805 | dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime) |
|
2693 | 2806 | self.__count_exec +=1 |
|
2694 | 2807 | except Exception as e: |
|
2695 | 2808 | print("Error getting profiles data",self.__count_exec ) |
|
2696 | 2809 | print(e) |
|
2697 | 2810 | sys.exit() |
|
2698 | 2811 | |
|
2699 | 2812 | if self.__dataReady: |
|
2700 | 2813 | #print("omitting: ", len(self.outliers_IDs_list)) |
|
2701 | 2814 | self.__count_exec = 0 |
|
2702 | 2815 | #dataOut.data = |
|
2703 | 2816 | #self.buffer = numpy.flip(dataBlock, axis=1) |
|
2704 | 2817 | self.buffer = dataBlock |
|
2705 | 2818 | self.first_utcBlock = self.__initime |
|
2706 | 2819 | dataOut.utctime = self.__initime |
|
2707 | 2820 | dataOut.nProfiles = self.__profIndex |
|
2708 | 2821 | #dataOut.flagNoData = False |
|
2709 | 2822 | self.init_prof = 0 |
|
2710 | 2823 | self.__profIndex = 0 |
|
2711 | 2824 | self.__initime = None |
|
2712 | 2825 | dataBlock = None |
|
2713 | 2826 | self.__buffer_times = [] |
|
2714 | 2827 | dataOut.error = False |
|
2715 | 2828 | dataOut.useInputBuffer = True |
|
2716 | 2829 | dataOut.buffer_empty = False |
|
2717 | 2830 | #print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights))) |
|
2718 | 2831 | |
|
2719 | 2832 | |
|
2720 | 2833 | |
|
2721 | 2834 | #print(self.__count_exec) |
|
2722 | 2835 | |
|
2723 | 2836 | return dataOut |
|
2724 | 2837 | |
|
2838 | ||
|
2725 | 2839 | class RemoveProfileSats(Operation): |
|
2726 | 2840 | ''' |
|
2727 |
Omite los perfiles contaminados con seΓ±al de sat |
|
|
2841 | Omite los perfiles contaminados con seΓ±al de satΓ©lites, usando una altura de referencia | |
|
2728 | 2842 | In: minHei = min_sat_range |
|
2729 | 2843 | max_sat_range |
|
2730 | 2844 | min_hei_ref |
|
2731 | 2845 | max_hei_ref |
|
2732 | 2846 | th = diference between profiles mean, ref and sats |
|
2733 | 2847 | Out: |
|
2734 | 2848 | profile clean |
|
2735 | 2849 | ''' |
|
2736 | 2850 | |
|
2737 | isConfig = False | |
|
2738 | min_sats = 0 | |
|
2739 | max_sats = 999999999 | |
|
2740 | min_ref= 0 | |
|
2741 | max_ref= 9999999999 | |
|
2742 | needReshape = False | |
|
2743 | count = 0 | |
|
2744 | thdB = 0 | |
|
2745 | byRanges = False | |
|
2746 | min_sats = None | |
|
2747 | max_sats = None | |
|
2748 | noise = 0 | |
|
2749 | 2851 | |
|
2852 | __buffer_data = [] | |
|
2853 | __buffer_times = [] | |
|
2854 | ||
|
2855 | buffer = None | |
|
2856 | ||
|
2857 | outliers_IDs_list = [] | |
|
2858 | ||
|
2859 | ||
|
2860 | __slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights', | |
|
2861 | 'first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels', | |
|
2862 | '__count_exec','__initime','__dataReady','__ipp', 'minRef', 'maxRef', 'thdB') | |
|
2750 | 2863 | def __init__(self, **kwargs): |
|
2751 | 2864 | |
|
2752 | 2865 | Operation.__init__(self, **kwargs) |
|
2753 | 2866 | self.isConfig = False |
|
2754 | 2867 | |
|
2868 | def setup(self,dataOut, n=None , navg=0.8, profileMargin=50,thHistOutlier=3, | |
|
2869 | minHei=None, maxHei=None, minRef=None, maxRef=None, thdB=10): | |
|
2870 | ||
|
2871 | if n == None and timeInterval == None: | |
|
2872 | raise ValueError("nprofiles or timeInterval should be specified ...") | |
|
2755 | 2873 | |
|
2756 | def setup(self, dataOut, minHei, maxHei, minRef, maxRef, th, thdB, rangeHeiList): | |
|
2874 | if n != None: | |
|
2875 | self.n = n | |
|
2757 | 2876 | |
|
2758 | if rangeHeiList!=None: | |
|
2759 | self.byRanges = True | |
|
2760 | else: | |
|
2761 | if minHei==None or maxHei==None : | |
|
2762 | raise ValueError("Parameters heights are required") | |
|
2763 | if minRef==None or maxRef==None: | |
|
2764 | raise ValueError("Parameters heights are required") | |
|
2765 | ||
|
2766 | if self.byRanges: | |
|
2767 |
|
|
|
2768 | self.max_sats = [] | |
|
2769 | for min,max in rangeHeiList: | |
|
2770 | a,b = getHei_index(min, max, dataOut.heightList) | |
|
2771 | self.min_sats.append(a) | |
|
2772 | self.max_sats.append(b) | |
|
2773 | else: | |
|
2774 | self.min_sats, self.max_sats = getHei_index(minHei, maxHei, dataOut.heightList) | |
|
2877 | self.navg = navg | |
|
2878 | self.profileMargin = profileMargin | |
|
2879 | self.thHistOutlier = thHistOutlier | |
|
2880 | self.__profIndex = 0 | |
|
2881 | self.buffer = None | |
|
2882 | self._ipp = dataOut.ippSeconds | |
|
2883 | self.n_prof_released = 0 | |
|
2884 | self.heightList = dataOut.heightList | |
|
2885 | self.init_prof = 0 | |
|
2886 | self.end_prof = 0 | |
|
2887 | self.__count_exec = 0 | |
|
2888 | self.__profIndex = 0 | |
|
2889 | self.first_utcBlock = None | |
|
2890 | #self.__dh = dataOut.heightList[1] - dataOut.heightList[0] | |
|
2891 | minHei = minHei | |
|
2892 | maxHei = maxHei | |
|
2893 | if minHei==None : | |
|
2894 | minHei = dataOut.heightList[0] | |
|
2895 | if maxHei==None : | |
|
2896 | maxHei = dataOut.heightList[-1] | |
|
2897 | self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList) | |
|
2775 | 2898 | self.min_ref, self.max_ref = getHei_index(minRef, maxRef, dataOut.heightList) |
|
2776 |
self. |
|
|
2899 | self.nChannels = dataOut.nChannels | |
|
2900 | self.nHeights = dataOut.nHeights | |
|
2901 | self.test_counter = 0 | |
|
2777 | 2902 | self.thdB = thdB |
|
2778 | self.isConfig = True | |
|
2779 | 2903 | |
|
2904 | def filterSatsProfiles(self): | |
|
2905 | data = self.__buffer_data | |
|
2906 | #print(data.shape) | |
|
2907 | nChannels, profiles, heights = data.shape | |
|
2908 | indexes=numpy.zeros([], dtype=int) | |
|
2909 | outliers_IDs=[] | |
|
2910 | for c in range(nChannels): | |
|
2911 | #print(self.min_ref,self.max_ref) | |
|
2912 | noise_ref = 10* numpy.log10((data[c,:,self.min_ref:self.max_ref] * numpy.conjugate(data[c,:,self.min_ref:self.max_ref])).real) | |
|
2913 | #print("Noise ",numpy.percentile(noise_ref,95)) | |
|
2914 | p95 = numpy.percentile(noise_ref,95) | |
|
2915 | noise_ref = noise_ref.mean() | |
|
2916 | #print("Noise ",noise_ref | |
|
2780 | 2917 | |
|
2781 | def compareRanges(self,data, minHei,maxHei): | |
|
2782 | 2918 | |
|
2783 | # ref = data[0,self.min_ref:self.max_ref] * numpy.conjugate(data[0,self.min_ref:self.max_ref]) | |
|
2784 | # p_ref = 10*numpy.log10(ref.real) | |
|
2785 | # m_ref = numpy.mean(p_ref) | |
|
2919 | for h in range(self.minHei_idx, self.maxHei_idx): | |
|
2920 | power = 10* numpy.log10((data[c,:,h] * numpy.conjugate(data[c,:,h])).real) | |
|
2921 | #th = noise_ref + self.thdB | |
|
2922 | th = noise_ref + 1.5*(p95-noise_ref) | |
|
2923 | index = numpy.where(power > th ) | |
|
2924 | if index[0].size > 10 and index[0].size < int(self.navg*profiles): | |
|
2925 | indexes = numpy.append(indexes, index[0]) | |
|
2926 | #print(index[0]) | |
|
2927 | #print(index[0]) | |
|
2786 | 2928 | |
|
2787 | m_ref = self.noise | |
|
2929 | # fig,ax = plt.subplots() | |
|
2930 | # #ax.set_title(str(k)+" "+str(j)) | |
|
2931 | # x=range(len(power)) | |
|
2932 | # ax.scatter(x,power) | |
|
2933 | # #ax.axvline(index) | |
|
2934 | # plt.grid() | |
|
2935 | # plt.show() | |
|
2936 | #print(indexes) | |
|
2788 | 2937 | |
|
2789 | sats = data[0,minHei:maxHei] * numpy.conjugate(data[0,minHei:maxHei]) | |
|
2790 | p_sats = 10*numpy.log10(sats.real) | |
|
2791 | m_sats = numpy.mean(p_sats) | |
|
2938 | #outliers_IDs = outliers_IDs.astype(numpy.dtype('int64')) | |
|
2939 | #outliers_IDs = numpy.unique(outliers_IDs) | |
|
2792 | 2940 | |
|
2793 | if m_sats > (m_ref + self.th): #and (m_sats > self.thdB): | |
|
2794 | #print("msats: ",m_sats," \tmRef: ", m_ref, "\t",(m_sats - m_ref)) | |
|
2795 | #print("Removing profiles...") | |
|
2796 | return False | |
|
2941 | outs_lines = numpy.unique(indexes) | |
|
2797 | 2942 | |
|
2798 | return True | |
|
2799 | 2943 | |
|
2800 | def isProfileClean(self, data): | |
|
2801 | ''' | |
|
2802 | Analiza solo 1 canal, y descarta todos... | |
|
2803 | ''' | |
|
2944 | #Agrupando el histograma de outliers, | |
|
2945 | my_bins = numpy.linspace(0,int(profiles), int(profiles/100), endpoint=True) | |
|
2804 | 2946 | |
|
2805 | clean = True | |
|
2806 | 2947 | |
|
2807 | if self.byRanges: | |
|
2948 | hist, bins = numpy.histogram(outs_lines,bins=my_bins) | |
|
2949 | hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier | |
|
2950 | hist_outliers_indexes = hist_outliers_indexes[0] | |
|
2951 | if len(hist_outliers_indexes>0): | |
|
2952 | hist_outliers_indexes = numpy.append(hist_outliers_indexes,hist_outliers_indexes[-1]+1) | |
|
2953 | #print(hist_outliers_indexes) | |
|
2954 | #print(bins, hist_outliers_indexes) | |
|
2955 | bins_outliers_indexes = [int(i) for i in (bins[hist_outliers_indexes])] # | |
|
2956 | ||
|
2957 | outlier_loc_index = [e for n in range(len(bins_outliers_indexes)) for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n]+ profiles//100 + self.profileMargin) ] | |
|
2958 | outlier_loc_index = numpy.asarray(outlier_loc_index) | |
|
2959 | ||
|
2960 | #print("outliers Ids: ", outlier_loc_index, outlier_loc_index.shape) | |
|
2961 | outlier_loc_index = outlier_loc_index[ (outlier_loc_index >= 0) & (outlier_loc_index<profiles)] | |
|
2962 | #print("outliers final: ", outlier_loc_index) | |
|
2963 | ||
|
2964 | # from matplotlib import pyplot as plt | |
|
2965 | # x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList) | |
|
2966 | # fig, ax = plt.subplots(1,2,figsize=(8, 6)) | |
|
2967 | # dat = data[0,:,:].real | |
|
2968 | # dat = 10* numpy.log10((data[0,:,:] * numpy.conjugate(data[0,:,:])).real) | |
|
2969 | # m = numpy.nanmean(dat) | |
|
2970 | # o = numpy.nanstd(dat) | |
|
2971 | # #print(m, o, x.shape, y.shape) | |
|
2972 | # c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o)) | |
|
2973 | # ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w') | |
|
2974 | # fig.colorbar(c) | |
|
2975 | # ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r') | |
|
2976 | # ax[1].hist(outs_lines,bins=my_bins) | |
|
2977 | # plt.show() | |
|
2978 | ||
|
2979 | ||
|
2980 | self.outliers_IDs_list = outlier_loc_index | |
|
2981 | #print("outs list: ", self.outliers_IDs_list) | |
|
2982 | return data | |
|
2983 | ||
|
2984 | ||
|
2985 | ||
|
2986 | def fillBuffer(self, data, datatime): | |
|
2987 | ||
|
2988 | if self.__profIndex == 0: | |
|
2989 | self.__buffer_data = data.copy() | |
|
2808 | 2990 | |
|
2809 | for n in range(len(self.min_sats)): | |
|
2810 | c = self.compareRanges(data,self.min_sats[n],self.max_sats[n]) | |
|
2811 | clean = clean and c | |
|
2812 | 2991 | else: |
|
2992 | self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles | |
|
2993 | self.__profIndex += 1 | |
|
2994 | self.__buffer_times.append(datatime) | |
|
2813 | 2995 | |
|
2814 | clean = (self.compareRanges(data, self.min_sats,self.max_sats)) | |
|
2996 | def getData(self, data, datatime=None): | |
|
2815 | 2997 | |
|
2816 | return clean | |
|
2998 | if self.__profIndex == 0: | |
|
2999 | self.__initime = datatime | |
|
2817 | 3000 | |
|
2818 | 3001 | |
|
3002 | self.__dataReady = False | |
|
2819 | 3003 | |
|
2820 | def run(self, dataOut, minHei=None, maxHei=None, minRef=None, maxRef=None, th=5, thdB=65, rangeHeiList=None): | |
|
2821 |
data |
|
|
3004 | self.fillBuffer(data, datatime) | |
|
3005 | dataBlock = None | |
|
3006 | ||
|
3007 | if self.__profIndex == self.n: | |
|
3008 | #print("apnd : ",data) | |
|
3009 | dataBlock = self.filterSatsProfiles() | |
|
3010 | self.__dataReady = True | |
|
3011 | ||
|
3012 | return dataBlock | |
|
3013 | ||
|
3014 | if dataBlock is None: | |
|
3015 | return None, None | |
|
3016 | ||
|
3017 | ||
|
3018 | ||
|
3019 | return dataBlock | |
|
3020 | ||
|
3021 | def releaseBlock(self): | |
|
3022 | ||
|
3023 | if self.n % self.lenProfileOut != 0: | |
|
3024 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) | |
|
3025 | return None | |
|
3026 | ||
|
3027 | data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt | |
|
3028 | ||
|
3029 | self.init_prof = self.end_prof | |
|
3030 | self.end_prof += self.lenProfileOut | |
|
3031 | #print("data release shape: ",dataOut.data.shape, self.end_prof) | |
|
3032 | self.n_prof_released += 1 | |
|
3033 | ||
|
3034 | return data | |
|
3035 | ||
|
3036 | def run(self, dataOut, n=None, navg=0.75, nProfilesOut=1, profile_margin=50, | |
|
3037 | th_hist_outlier=3,minHei=None, maxHei=None, minRef=None, maxRef=None, thdB=10): | |
|
2822 | 3038 | |
|
2823 | 3039 | if not self.isConfig: |
|
2824 | self.setup(dataOut, minHei, maxHei, minRef, maxRef, th, thdB, rangeHeiList) | |
|
3040 | #print("init p idx: ", dataOut.profileIndex ) | |
|
3041 | self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin,thHistOutlier=th_hist_outlier, | |
|
3042 | minHei=minHei, maxHei=maxHei, minRef=minRef, maxRef=maxRef, thdB=thdB) | |
|
2825 | 3043 | self.isConfig = True |
|
2826 | #print(self.min_sats,self.max_sats) | |
|
2827 | if dataOut.flagDataAsBlock: | |
|
2828 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
|
2829 | 3044 | |
|
3045 | dataBlock = None | |
|
3046 | ||
|
3047 | if not dataOut.buffer_empty: #hay datos acumulados | |
|
3048 | ||
|
3049 | if self.init_prof == 0: | |
|
3050 | self.n_prof_released = 0 | |
|
3051 | self.lenProfileOut = nProfilesOut | |
|
3052 | dataOut.flagNoData = False | |
|
3053 | #print("tp 2 ",dataOut.data.shape) | |
|
3054 | ||
|
3055 | self.init_prof = 0 | |
|
3056 | self.end_prof = self.lenProfileOut | |
|
3057 | ||
|
3058 | dataOut.nProfiles = self.lenProfileOut | |
|
3059 | if nProfilesOut == 1: | |
|
3060 | dataOut.flagDataAsBlock = False | |
|
2830 | 3061 | else: |
|
2831 | self.noise =10*numpy.log10(dataOut.getNoisebyHildebrand(ymin_index=self.min_ref, ymax_index=self.max_ref)) | |
|
2832 | if not self.isProfileClean(dataOut.data): | |
|
3062 | dataOut.flagDataAsBlock = True | |
|
3063 | #print("prof: ",self.init_prof) | |
|
3064 | dataOut.flagNoData = False | |
|
3065 | if numpy.isin(self.n_prof_released, self.outliers_IDs_list): | |
|
3066 | #print("omitting: ", self.n_prof_released) | |
|
3067 | dataOut.flagNoData = True | |
|
3068 | dataOut.ippSeconds = self._ipp | |
|
3069 | dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp | |
|
3070 | # print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds) | |
|
3071 | #dataOut.data = self.releaseBlock() | |
|
3072 | #########################################################3 | |
|
3073 | if self.n % self.lenProfileOut != 0: | |
|
3074 | raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n)) | |
|
3075 | return None | |
|
3076 | ||
|
3077 | dataOut.data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt | |
|
3078 | ||
|
3079 | self.init_prof = self.end_prof | |
|
3080 | self.end_prof += self.lenProfileOut | |
|
3081 | #print("data release shape: ",dataOut.data.shape, self.end_prof, dataOut.flagNoData) | |
|
3082 | self.n_prof_released += 1 | |
|
3083 | ||
|
3084 | if self.end_prof >= (self.n +self.lenProfileOut): | |
|
3085 | ||
|
3086 | self.init_prof = 0 | |
|
3087 | self.__profIndex = 0 | |
|
3088 | self.buffer = None | |
|
3089 | dataOut.buffer_empty = True | |
|
3090 | self.outliers_IDs_list = [] | |
|
3091 | self.n_prof_released = 0 | |
|
3092 | dataOut.flagNoData = False #enviar ultimo aunque sea outlier :( | |
|
3093 | #print("cleaning...", dataOut.buffer_empty) | |
|
3094 | dataOut.profileIndex = 0 #self.lenProfileOut | |
|
3095 | #################################################################### | |
|
2833 | 3096 |
|
|
2834 | #dataOut.data = numpy.full((dataOut.nChannels,dataOut.nHeights),numpy.NAN) | |
|
2835 | #self.count += 1 | |
|
2836 | 3097 | |
|
2837 | dataOut.flagNoData = False | |
|
3098 | ||
|
3099 | #print("tp 223 ",dataOut.data.shape) | |
|
3100 | dataOut.flagNoData = True | |
|
3101 | ||
|
3102 | ||
|
3103 | ||
|
3104 | try: | |
|
3105 | #dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime) | |
|
3106 | dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime) | |
|
3107 | self.__count_exec +=1 | |
|
3108 | except Exception as e: | |
|
3109 | print("Error getting profiles data",self.__count_exec ) | |
|
3110 | print(e) | |
|
3111 | sys.exit() | |
|
3112 | ||
|
3113 | if self.__dataReady: | |
|
3114 | #print("omitting: ", len(self.outliers_IDs_list)) | |
|
3115 | self.__count_exec = 0 | |
|
3116 | #dataOut.data = | |
|
3117 | #self.buffer = numpy.flip(dataBlock, axis=1) | |
|
3118 | self.buffer = dataBlock | |
|
3119 | self.first_utcBlock = self.__initime | |
|
3120 | dataOut.utctime = self.__initime | |
|
3121 | dataOut.nProfiles = self.__profIndex | |
|
3122 | #dataOut.flagNoData = False | |
|
3123 | self.init_prof = 0 | |
|
3124 | self.__profIndex = 0 | |
|
3125 | self.__initime = None | |
|
3126 | dataBlock = None | |
|
3127 | self.__buffer_times = [] | |
|
3128 | dataOut.error = False | |
|
3129 | dataOut.useInputBuffer = True | |
|
3130 | dataOut.buffer_empty = False | |
|
3131 | #print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights))) | |
|
3132 | ||
|
3133 | ||
|
3134 | ||
|
3135 | #print(self.__count_exec) | |
|
2838 | 3136 | |
|
2839 | 3137 | return dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now