##// END OF EJS Templates
lagp.f update 7
rflores -
r1628:32a168b1b07d
parent child
Show More
@@ -1,570 +1,570
1 1 subroutine lagp(plag,wl,r0,dr,nl,nrange)
2 2 c
3 3 c predict lagged product matrix using state parameters stored
4 4 c as cubic b-splines
5 5 c read weights for numeric integration from a file
6 6 c
7 7 c faster version - assumes samples taken at half-integer lags, ranges
8 8 c
9 9 include 'fitter.h'
10 10 include 'spline.h'
11 11 include 'bfield.h'
12 12 integer nl,nrange
13 13 real plag(nl,nrange),taus(nl)
14 14 parameter(nw=1000)
15 15 integer ilag(nw)
16 16 real weight(nw),dtau(nw),drange(nw)
17 17 logical first
18 18 real store(2*nl,2*nrange,2)
19 19
20 20 character(1024) :: fqual_temp
21 21 character(:), allocatable :: fqual
22 22 character bfmodel_str*8
23 23
24 24 data first/.true./
25 25 c
26 26
27 27 c write(*,*) "dens_before: ",dens
28 28 c call exit
29 29 c zero out array
30 30 c write(*,*) "Starting lagp"
31 31 do i=1,nrange
32 32 do j=1,nl
33 33 plag(j,i)=0.0
34 34 end do
35 35 end do
36 36
37 37 c
38 38 c compute all required acfs
39 39 c
40 40 do i=1,2*nrange
41 41 ii=(i-1)/2+1
42 42 alt=r0+float(i-1)*dr*0.5 ! half integer ranges
43 43 c write(*,*) "dens_before: ",dens
44 44 c call exit
45 45 c write(*,*) "alt: ",alt
46 46 c write(*,*) "dens: ",dens
47 47 c write(*,*) "te: ",te
48 48 c write(*,*) "ti1: ",ti1
49 49 c write(*,*) "hf: ",hf
50 50 c write(*,*) "hef: ",hef
51 51 c call exit
52 52 call get_spline(alt,dens,te,ti1,hf,hef)
53 53 c write(*,*) "dens_after: ",dens
54 54 c call exit
55 55 do k=1,nion
56 56 ti(k)=ti1
57 57 end do
58 58 fi(2)=hf
59 59 fi(3)=hef
60 60 fi(1)=1.0-hf-hef
61 61
62 62 do j=1,2*nl
63 63 tau=float(j-1)*(dr/1.5e5)*0.5 ! half integer lags
64 64
65 65 c just consider a single azimuth angle for now
66 66
67 67 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
68 68 c & alpha_prof(ii)+1.74e-2,dens,bfld_prof(ii),rho)
69 69 c store(j,i,1)=rho*dens*(100.0/alt)**2
70 70
71 71 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
72 72 c & alpha_prof(ii)-1.74e-2,dens,bfld_prof(ii),rho)
73 73 c store(j,i,2)=rho*dens*(100.0/alt)**2
74 74
75 75 call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
76 76 & alpha_prof(ii),dens,bfld_prof(ii),rho)
77 77 store(j,i,1)=rho*dens*(100.0/alt)**2
78 78 c write(*,*) "store", store(j,i,1)
79 79 c call exit
80 80 end do
81 81 end do
82 82
83 83 c construct lagged products
84 84 c
85 85 c write(*,*) "before weights"
86 86 c write(*,*) first
87 87 c write(*,*) "weight before: ",weight
88 88 c write(*,*) "BEFORE GET_PATH"
89 89 call get_path(fqual_temp)
90 90 c write(*,*) "L_BEF: ", fqual_temp, "L_BEF_end"
91 91 fqual = TRIM(fqual_temp)
92 92 bfmodel_str = 'bfmodel/'
93 93 write(*,*) "bfmodel_str: ", bfmodel_str
94 fqual(1:len_trim(fqual)-len_trim(bfmodel_str))
95 fqual = fqual//'weights.dat'
94 c fqual(1:len_trim(fqual)-len_trim(bfmodel_str))
95 fqual = fqual(1:index(fqual, bfmodel-str))//'weights.dat'
96 96 c write(*,*) "Final fqual",fqual,"FINAL"
97 97
98 98 if(first) then
99 99 open(unit=25,file=fqual,
100 100 & status='old')
101 101 read (25,*) nwt
102 102 do i=1,nwt
103 103 read(25,*) weight(i),dtau(i),drange(i),ilag(i)
104 104 c write(*,*) "ilag: ",ilag(i)
105 105 end do
106 106 c flush(25)
107 107 close(25)
108 108 c first=.false.
109 109 end if
110 110
111 111 c write(*,*) "after weights"
112 112
113 113 c write(*,*) "weight(3): ",weight(3)
114 114 c call exit
115 115 c write(*,*) "nl: ",nl,"nrange: ",nrange,"nwt: ",nwt
116 116
117 117 do i=1+nl,nrange ! don't worry about redundancy here
118 118
119 119 do j=1,nwt
120 120 c write(*,*) "j: ",j
121 121 alt=r0+(float(i-1)+drange(j))*dr
122 122 tau=abs(dtau(j)*dr/1.5e5)
123 123 lag=ilag(j)+1
124 124 c write(*,*) tau
125 125
126 126 k=1+2.0*(tau/(dr/1.5e5))
127 127 l=1+2.0*(alt-r0)/dr
128 128
129 129 do m=1,1 ! 2
130 130
131 131 c call exit
132 132 c write(*,*) i
133 133 c call exit
134 134 c if (i .eq. nrange) then
135 135 c if (j .eq. 227) then
136 136
137 137 c write(*,*) "lag: ",lag
138 138 c write(*,*) "ilag: ",ilag(j)
139 139 c call exit
140 140 c write(*,*) "plag: ",plag(lag,i)
141 141 c write(*,*) "weight: ",weight
142 142 c
143 143 c write(*,*) "weight: ",weight(j)
144 144 c write(*,*) "store: ",store(k,l,m)
145 145 c call exit
146 146 c end if
147 147 c end if
148 148 plag(lag,i)=plag(lag,i)+weight(j)*store(k,l,m)
149 149 c if (i .eq. nrange) then
150 150 c write(*,*) "lag: ",lag
151 151 c write(*,*) "plag: ",plag(lag,i)
152 152 c write(*,*) "plag: ",plag(lag,i)
153 153 c call exit
154 154 c end if
155 155 end do
156 156 c write(*,*) "plag: ",plag(lag,i)
157 157 c write(*,*) "plag: ",plag(12,72)
158 158 c call exit
159 159 end do
160 160 c call exit
161 161 c write(*,*) "plag: ",plag(12,72)
162 162 end do
163 163 c write(*,*) "plag: ",plag(12,72)
164 164 c call exit
165 165 c write(*,*) "End LAGP"
166 166 return
167 167 end
168 168
169 169 subroutine lagp_old(plag,wl,r0,dr,nl,nrange)
170 170 c
171 171 c predict lagged product matrix using state parameters stored
172 172 c as cubic b-splines
173 173 c read weights for numeric integration from a file
174 174 c
175 175 c general version - samples can be anywhere
176 176 c
177 177 include 'fitter.h'
178 178 include 'spline.h'
179 179 include 'bfield.h'
180 180 integer nl,nrange
181 181 real plag(nl,nrange),taus(nl)
182 182 parameter(nw=1000)
183 183 integer ilag(nw)
184 184 real weight(nw),dtau(nw),drange(nw)
185 185 logical first
186 186 data first/.true./
187 187 c
188 188
189 189 c zero out array
190 190
191 191 do i=1,nrange
192 192 do j=1,nl
193 193 plag(j,i)=0.0
194 194 end do
195 195 end do
196 196
197 197 c
198 198 c construct lagged products
199 199 c
200 200
201 201 if(first) then
202 202 open(unit=25,file='weights.dat',status='old')
203 203 read (25,*) nwt
204 204 do i=1,nwt
205 205 read(25,*) weight(i),dtau(i),drange(i),ilag(i)
206 206 end do
207 207 close(25)
208 208 first=.false.
209 209 end if
210 210
211 211 c can avoid recalculating splines and/or ACFs when parameters repeat
212 212
213 213 altp=-1.0
214 214 taup=-1.0
215 215
216 216 do i=1+nl,nrange
217 217 do j=1,nwt
218 218 alt=r0+(float(i-1)+drange(j))*dr
219 219 ii=(alt-r0)/dr+1
220 220
221 221 if(alt.ne.altp) then
222 222 call get_spline(alt,dens,te,ti1,hf,hef)
223 223
224 224 c write(*,*) alt,dens,te,ti1,hf,hef
225 225
226 226 do k=1,nion
227 227 ti(k)=ti1
228 228 end do
229 229 fi(2)=hf
230 230 fi(3)=hef
231 231 fi(1)=1.0-hf-hef
232 232 end if
233 233
234 234 tau=abs(dtau(j)*dr/1.5e5)
235 235 lag=ilag(j)+1
236 236
237 237 c write(*,*) i,alpha_prof(i),bfld_prof(i)
238 238
239 239 if(tau.ne.taup.or.alt.ne.altp) then
240 240
241 241 c two- or three- point Gauss Hermite quadrature rule
242 242
243 243 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
244 244 c & alpha_prof(ii)+1.74e-2,dens,bfld_prof(ii),rho1)
245 245
246 246 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
247 247 c & alpha_prof(ii)-1.74e-2,dens,bfld_prof(ii),rho2)
248 248
249 249 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
250 250 c & alpha_prof(ii),dens,bfld_prof(ii),rho1)
251 251
252 252 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
253 253 c & alpha_prof(ii)+1.9e-2,dens,bfld_prof(ii),rho2)
254 254
255 255 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
256 256 c & alpha_prof(ii)-1.9e-2,dens,bfld_prof(ii),rho3)
257 257
258 258 call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
259 259 & alpha_prof(ii),dens,bfld_prof(ii),rho)
260 260
261 261 c rho=(rho1+rho2)/2.0
262 262 c rho=(rho2+rho3)*0.29541+rho1*1.18164)/1.77246
263 263
264 264 end if
265 265
266 266 plag(lag,i)=plag(lag,i)+weight(j)*rho*dens*(100.0/alt)**2
267 267
268 268 altp=alt
269 269 taup=tau
270 270
271 271 end do
272 272 end do
273 273
274 274 return
275 275 end
276 276
277 277 function atanh(x)
278 278 c
279 279 real atanh,x
280 280 c
281 281 atanh=log(sqrt((1.+x)/(1.-x)))
282 282 return
283 283 end
284 284
285 285 subroutine get_spline(alt,dens,te,ti,hf,hef)
286 286 c
287 287 c routines for handling cubic b-spline interpolation
288 288 c gets values consistent with stored coefficients
289 289 c
290 290
291 291 include 'spline.h'
292 292
293 293 c
294 294 c bspline values from 200-1500 km in 15-km intervals
295 295 c must specify five knots above ceiling
296 296 c note offset ... start accessing splines above bottom two knots
297 297 c
298 298 c five banks of splines, for Ne, Te, Ti, H+, and He+ versus altitude
299 299 c need to initialize ta somewhere
300 300 c
301 301 c write(*,*) "ta: ",ta
302 302 c write(*,*) "bcoef(1,1): ",bcoef(1,1)
303 303 c write(*,*) "nspline: ",nspline
304 304 c write(*,*) "norder: ",norder
305 305 c write(*,*) "alt: ",alt
306 306 dens=bvalue(ta,bcoef(1,1),nspline,norder,alt,0)
307 307 c write(*,*) "dens_inside_get_spline: ",dens
308 308 c write(*,*) dens
309 309 c call exit
310 310 dens=10.0**MAX(dens,2.0)
311 311 c write(*,*) dens
312 312 c call exit
313 313 te=bvalue(ta,bcoef(1,2),nspline,norder,alt,0)
314 314 te=t0+t1*(1.0+tanh(te))/2.0 ! DLH 10/14 was 3500
315 315 c tr=bvalue(ta,bcoef(1,3),nspline,norder,alt,0)
316 316 c tr=exp(tr)
317 317 c ti=te/tr
318 318 ti=bvalue(ta,bcoef(1,3),nspline,norder,alt,0)
319 319 ti=t0+t1*(1.0+tanh(ti))/2.0 ! DLH 10/14 was 3500
320 320 hf=bvalue(ta,bcoef(1,4),nspline,norder,alt,0)
321 321 hf=(1.0+tanh(hf))/2.0
322 322 hef=bvalue(ta,bcoef(1,5),nspline,norder,alt,0)
323 323 hef=(1.0+tanh(hef))/2.0
324 324 return
325 325 end
326 326
327 327
328 328 real function bvalue ( t, bcoef, n, k, x, jderiv )
329 329 c from * a practical guide to splines * by c. de boor
330 330 calls interv
331 331 c
332 332 calculates value at x of jderiv-th derivative of spline from b-repr.
333 333 c the spline is taken to be continuous from the right, EXCEPT at the
334 334 c rightmost knot, where it is taken to be continuous from the left.
335 335 c
336 336 c****** i n p u t ******
337 337 c t, bcoef, n, k......forms the b-representation of the spline f to
338 338 c be evaluated. specifically,
339 339 c t.....knot sequence, of length n+k, assumed nondecreasing.
340 340 c bcoef.....b-coefficient sequence, of length n .
341 341 c n.....length of bcoef and dimension of spline(k,t),
342 342 c a s s u m e d positive .
343 343 c k.....order of the spline .
344 344 c
345 345 c w a r n i n g . . . the restriction k .le. kmax (=20) is imposed
346 346 c arbitrarily by the dimension statement for aj, dl, dr below,
347 347 c but is n o w h e r e c h e c k e d for.
348 348 c
349 349 c x.....the point at which to evaluate .
350 350 c jderiv.....integer giving the order of the derivative to be evaluated
351 351 c a s s u m e d to be zero or positive.
352 352 c
353 353 c****** o u t p u t ******
354 354 c bvalue.....the value of the (jderiv)-th derivative of f at x .
355 355 c
356 356 c****** m e t h o d ******
357 357 c The nontrivial knot interval (t(i),t(i+1)) containing x is lo-
358 358 c cated with the aid of interv . The k b-coeffs of f relevant for
359 359 c this interval are then obtained from bcoef (or taken to be zero if
360 360 c not explicitly available) and are then differenced jderiv times to
361 361 c obtain the b-coeffs of (d**jderiv)f relevant for that interval.
362 362 c Precisely, with j = jderiv, we have from x.(12) of the text that
363 363 c
364 364 c (d**j)f = sum ( bcoef(.,j)*b(.,k-j,t) )
365 365 c
366 366 c where
367 367 c / bcoef(.), , j .eq. 0
368 368 c /
369 369 c bcoef(.,j) = / bcoef(.,j-1) - bcoef(.-1,j-1)
370 370 c / ----------------------------- , j .gt. 0
371 371 c / (t(.+k-j) - t(.))/(k-j)
372 372 c
373 373 c Then, we use repeatedly the fact that
374 374 c
375 375 c sum ( a(.)*b(.,m,t)(x) ) = sum ( a(.,x)*b(.,m-1,t)(x) )
376 376 c with
377 377 c (x - t(.))*a(.) + (t(.+m-1) - x)*a(.-1)
378 378 c a(.,x) = ---------------------------------------
379 379 c (x - t(.)) + (t(.+m-1) - x)
380 380 c
381 381 c to write (d**j)f(x) eventually as a linear combination of b-splines
382 382 c of order 1 , and the coefficient for b(i,1,t)(x) must then be the
383 383 c desired number (d**j)f(x). (see x.(17)-(19) of text).
384 384 c
385 385 parameter (kmax = 40)
386 386 integer jderiv,k,n, i,ilo,imk,j,jc,jcmin,jcmax,jj,kmj,km1
387 387 * ,mflag,nmi,jdrvp1
388 388 c integer kmax
389 389 C real bcoef(n),t(1),x, aj(20),dl(20),dr(20),fkmj
390 390 real bcoef(n),x, aj(kmax),dl(kmax),dr(kmax),fkmj
391 391 dimension t(n+k)
392 392 c former fortran standard made it impossible to specify the length of t
393 393 c precisely without the introduction of otherwise superfluous addition-
394 394 c al arguments.
395 395 bvalue = 0.
396 396 if (jderiv .ge. k) go to 99
397 397 c
398 398 c *** Find i s.t. 1 .le. i .lt. n+k and t(i) .lt. t(i+1) and
399 399 c t(i) .le. x .lt. t(i+1) . If no such i can be found, x lies
400 400 c outside the support of the spline f , hence bvalue = 0.
401 401 c (The asymmetry in this choice of i makes f rightcontinuous, except
402 402 c at t(n+k) where it is leftcontinuous.)
403 403 call interv ( t, n+k, x, i, mflag )
404 404 if (mflag .ne. 0) go to 99
405 405 c *** if k = 1 (and jderiv = 0), bvalue = bcoef(i).
406 406 km1 = k - 1
407 407 if (km1 .gt. 0) go to 1
408 408 bvalue = bcoef(i)
409 409 go to 99
410 410 c
411 411 c *** store the k b-spline coefficients relevant for the knot interval
412 412 c (t(i),t(i+1)) in aj(1),...,aj(k) and compute dl(j) = x - t(i+1-j),
413 413 c dr(j) = t(i+j) - x, j=1,...,k-1 . set any of the aj not obtainable
414 414 c from input to zero. set any t.s not obtainable equal to t(1) or
415 415 c to t(n+k) appropriately.
416 416 1 jcmin = 1
417 417 imk = i - k
418 418 if (imk .ge. 0) go to 8
419 419 jcmin = 1 - imk
420 420 do 5 j=1,i
421 421 5 dl(j) = x - t(i+1-j)
422 422 do 6 j=i,km1
423 423 aj(k-j) = 0.
424 424 6 dl(j) = dl(i)
425 425 go to 10
426 426 8 do 9 j=1,km1
427 427 9 dl(j) = x - t(i+1-j)
428 428 c
429 429 10 jcmax = k
430 430 nmi = n - i
431 431 if (nmi .ge. 0) go to 18
432 432 jcmax = k + nmi
433 433 do 15 j=1,jcmax
434 434 15 dr(j) = t(i+j) - x
435 435 do 16 j=jcmax,km1
436 436 aj(j+1) = 0.
437 437 16 dr(j) = dr(jcmax)
438 438 go to 20
439 439 18 do 19 j=1,km1
440 440 19 dr(j) = t(i+j) - x
441 441 c
442 442 20 do 21 jc=jcmin,jcmax
443 443 21 aj(jc) = bcoef(imk + jc)
444 444 c
445 445 c *** difference the coefficients jderiv times.
446 446 if (jderiv .eq. 0) go to 30
447 447 do 23 j=1,jderiv
448 448 kmj = k-j
449 449 fkmj = float(kmj)
450 450 ilo = kmj
451 451 do 23 jj=1,kmj
452 452 aj(jj) = ((aj(jj+1) - aj(jj))/(dl(ilo) + dr(jj)))*fkmj
453 453 23 ilo = ilo - 1
454 454 c
455 455 c *** compute value at x in (t(i),t(i+1)) of jderiv-th derivative,
456 456 c given its relevant b-spline coeffs in aj(1),...,aj(k-jderiv).
457 457 30 if (jderiv .eq. km1) go to 39
458 458 jdrvp1 = jderiv + 1
459 459 do 33 j=jdrvp1,km1
460 460 kmj = k-j
461 461 ilo = kmj
462 462 do 33 jj=1,kmj
463 463 aj(jj) = (aj(jj+1)*dl(ilo) + aj(jj)*dr(jj))/(dl(ilo)+dr(jj))
464 464 33 ilo = ilo - 1
465 465 39 bvalue = aj(1)
466 466 c
467 467 99 return
468 468 end
469 469 subroutine interv ( xt, lxt, x, left, mflag )
470 470 c from * a practical guide to splines * by C. de Boor
471 471 computes left = max( i : xt(i) .lt. xt(lxt) .and. xt(i) .le. x ) .
472 472 c
473 473 c****** i n p u t ******
474 474 c xt.....a real sequence, of length lxt , assumed to be nondecreasing
475 475 c lxt.....number of terms in the sequence xt .
476 476 c x.....the point whose location with respect to the sequence xt is
477 477 c to be determined.
478 478 c
479 479 c****** o u t p u t ******
480 480 c left, mflag.....both integers, whose value is
481 481 c
482 482 c 1 -1 if x .lt. xt(1)
483 483 c i 0 if xt(i) .le. x .lt. xt(i+1)
484 484 c i 0 if xt(i) .lt. x .eq. xt(i+1) .eq. xt(lxt)
485 485 c i 1 if xt(i) .lt. xt(i+1) .eq. xt(lxt) .lt. x
486 486 c
487 487 c In particular, mflag = 0 is the 'usual' case. mflag .ne. 0
488 488 c indicates that x lies outside the CLOSED interval
489 489 c xt(1) .le. y .le. xt(lxt) . The asymmetric treatment of the
490 490 c intervals is due to the decision to make all pp functions cont-
491 491 c inuous from the right, but, by returning mflag = 0 even if
492 492 C x = xt(lxt), there is the option of having the computed pp function
493 493 c continuous from the left at xt(lxt) .
494 494 c
495 495 c****** m e t h o d ******
496 496 c The program is designed to be efficient in the common situation that
497 497 c it is called repeatedly, with x taken from an increasing or decrea-
498 498 c sing sequence. This will happen, e.g., when a pp function is to be
499 499 c graphed. The first guess for left is therefore taken to be the val-
500 500 c ue returned at the previous call and stored in the l o c a l varia-
501 501 c ble ilo . A first check ascertains that ilo .lt. lxt (this is nec-
502 502 c essary since the present call may have nothing to do with the previ-
503 503 c ous call). Then, if xt(ilo) .le. x .lt. xt(ilo+1), we set left =
504 504 c ilo and are done after just three comparisons.
505 505 c Otherwise, we repeatedly double the difference istep = ihi - ilo
506 506 c while also moving ilo and ihi in the direction of x , until
507 507 c xt(ilo) .le. x .lt. xt(ihi) ,
508 508 c after which we use bisection to get, in addition, ilo+1 = ihi .
509 509 c left = ilo is then returned.
510 510 c
511 511 integer left,lxt,mflag, ihi,ilo,istep,middle
512 512 real x,xt(lxt)
513 513 data ilo /1/
514 514 save ilo
515 515 ihi = ilo + 1
516 516 if (ihi .lt. lxt) go to 20
517 517 if (x .ge. xt(lxt)) go to 110
518 518 if (lxt .le. 1) go to 90
519 519 ilo = lxt - 1
520 520 ihi = lxt
521 521 c
522 522 20 if (x .ge. xt(ihi)) go to 40
523 523 if (x .ge. xt(ilo)) go to 100
524 524 c
525 525 c **** now x .lt. xt(ilo) . decrease ilo to capture x .
526 526 istep = 1
527 527 31 ihi = ilo
528 528 ilo = ihi - istep
529 529 if (ilo .le. 1) go to 35
530 530 if (x .ge. xt(ilo)) go to 50
531 531 istep = istep*2
532 532 go to 31
533 533 35 ilo = 1
534 534 if (x .lt. xt(1)) go to 90
535 535 go to 50
536 536 c **** now x .ge. xt(ihi) . increase ihi to capture x .
537 537 40 istep = 1
538 538 41 ilo = ihi
539 539 ihi = ilo + istep
540 540 if (ihi .ge. lxt) go to 45
541 541 if (x .lt. xt(ihi)) go to 50
542 542 istep = istep*2
543 543 go to 41
544 544 45 if (x .ge. xt(lxt)) go to 110
545 545 ihi = lxt
546 546 c
547 547 c **** now xt(ilo) .le. x .lt. xt(ihi) . narrow the interval.
548 548 50 middle = (ilo + ihi)/2
549 549 if (middle .eq. ilo) go to 100
550 550 c note. it is assumed that middle = ilo in case ihi = ilo+1 .
551 551 if (x .lt. xt(middle)) go to 53
552 552 ilo = middle
553 553 go to 50
554 554 53 ihi = middle
555 555 go to 50
556 556 c**** set output and return.
557 557 90 mflag = -1
558 558 left = 1
559 559 return
560 560 100 mflag = 0
561 561 left = ilo
562 562 return
563 563 110 mflag = 1
564 564 if (x .eq. xt(lxt)) mflag = 0
565 565 left = lxt
566 566 111 if (left .eq. 1) return
567 567 left = left - 1
568 568 if (xt(left) .lt. xt(lxt)) return
569 569 go to 111
570 570 end
General Comments 0
You need to be logged in to leave comments. Login now