@@ -1,1169 +1,1183 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | |
|
13 | 13 | def getNumpyDtype(dataTypeCode): |
|
14 | 14 | |
|
15 | 15 | if dataTypeCode == 0: |
|
16 | 16 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
17 | 17 | elif dataTypeCode == 1: |
|
18 | 18 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
19 | 19 | elif dataTypeCode == 2: |
|
20 | 20 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
21 | 21 | elif dataTypeCode == 3: |
|
22 | 22 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
23 | 23 | elif dataTypeCode == 4: |
|
24 | 24 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
25 | 25 | elif dataTypeCode == 5: |
|
26 | 26 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
27 | 27 | else: |
|
28 | 28 | raise ValueError, 'dataTypeCode was not defined' |
|
29 | 29 | |
|
30 | 30 | return numpyDtype |
|
31 | 31 | |
|
32 | 32 | def getDataTypeCode(numpyDtype): |
|
33 | 33 | |
|
34 | 34 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
35 | 35 | datatype = 0 |
|
36 | 36 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
37 | 37 | datatype = 1 |
|
38 | 38 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
39 | 39 | datatype = 2 |
|
40 | 40 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
41 | 41 | datatype = 3 |
|
42 | 42 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
43 | 43 | datatype = 4 |
|
44 | 44 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
45 | 45 | datatype = 5 |
|
46 | 46 | else: |
|
47 | 47 | datatype = None |
|
48 | 48 | |
|
49 | 49 | return datatype |
|
50 | 50 | |
|
51 | 51 | def hildebrand_sekhon(data, navg): |
|
52 | 52 | """ |
|
53 | 53 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
54 | 54 | implementation technique is based on the fact that the standard deviation of the spectral |
|
55 | 55 | densities is equal to the mean spectral density for white Gaussian noise |
|
56 | 56 | |
|
57 | 57 | Inputs: |
|
58 | 58 | Data : heights |
|
59 | 59 | navg : numbers of averages |
|
60 | 60 | |
|
61 | 61 | Return: |
|
62 | 62 | -1 : any error |
|
63 | 63 | anoise : noise's level |
|
64 | 64 | """ |
|
65 | 65 | |
|
66 | 66 | sortdata = numpy.sort(data,axis=None) |
|
67 | 67 | lenOfData = len(sortdata) |
|
68 | 68 | nums_min = lenOfData*0.2 |
|
69 | 69 | |
|
70 | 70 | if nums_min <= 5: |
|
71 | 71 | nums_min = 5 |
|
72 | 72 | |
|
73 | 73 | sump = 0. |
|
74 | 74 | |
|
75 | 75 | sumq = 0. |
|
76 | 76 | |
|
77 | 77 | j = 0 |
|
78 | 78 | |
|
79 | 79 | cont = 1 |
|
80 | 80 | |
|
81 | 81 | while((cont==1)and(j<lenOfData)): |
|
82 | 82 | |
|
83 | 83 | sump += sortdata[j] |
|
84 | 84 | |
|
85 | 85 | sumq += sortdata[j]**2 |
|
86 | 86 | |
|
87 | 87 | if j > nums_min: |
|
88 | 88 | rtest = float(j)/(j-1) + 1.0/navg |
|
89 | 89 | if ((sumq*j) > (rtest*sump**2)): |
|
90 | 90 | j = j - 1 |
|
91 | 91 | sump = sump - sortdata[j] |
|
92 | 92 | sumq = sumq - sortdata[j]**2 |
|
93 | 93 | cont = 0 |
|
94 | 94 | |
|
95 | 95 | j += 1 |
|
96 | 96 | |
|
97 | 97 | lnoise = sump /j |
|
98 | 98 | # stdv = numpy.sqrt((sumq - lnoise**2)/(j - 1)) |
|
99 | 99 | return lnoise |
|
100 | 100 | |
|
101 | 101 | class Beam: |
|
102 | 102 | def __init__(self): |
|
103 | 103 | self.codeList = [] |
|
104 | 104 | self.azimuthList = [] |
|
105 | 105 | self.zenithList = [] |
|
106 | 106 | |
|
107 | 107 | class GenericData(object): |
|
108 | 108 | |
|
109 | 109 | flagNoData = True |
|
110 | 110 | |
|
111 | 111 | def __init__(self): |
|
112 | 112 | |
|
113 | 113 | raise NotImplementedError |
|
114 | 114 | |
|
115 | 115 | def copy(self, inputObj=None): |
|
116 | 116 | |
|
117 | 117 | if inputObj == None: |
|
118 | 118 | return copy.deepcopy(self) |
|
119 | 119 | |
|
120 | 120 | for key in inputObj.__dict__.keys(): |
|
121 | 121 | |
|
122 | 122 | attribute = inputObj.__dict__[key] |
|
123 | 123 | |
|
124 | 124 | #If this attribute is a tuple or list |
|
125 | 125 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
126 | 126 | self.__dict__[key] = attribute[:] |
|
127 | 127 | continue |
|
128 | 128 | |
|
129 | 129 | #If this attribute is another object or instance |
|
130 | 130 | if hasattr(attribute, '__dict__'): |
|
131 | 131 | self.__dict__[key] = attribute.copy() |
|
132 | 132 | continue |
|
133 | 133 | |
|
134 | 134 | self.__dict__[key] = inputObj.__dict__[key] |
|
135 | 135 | |
|
136 | 136 | def deepcopy(self): |
|
137 | 137 | |
|
138 | 138 | return copy.deepcopy(self) |
|
139 | 139 | |
|
140 | 140 | def isEmpty(self): |
|
141 | 141 | |
|
142 | 142 | return self.flagNoData |
|
143 | 143 | |
|
144 | 144 | class JROData(GenericData): |
|
145 | 145 | |
|
146 | 146 | # m_BasicHeader = BasicHeader() |
|
147 | 147 | # m_ProcessingHeader = ProcessingHeader() |
|
148 | 148 | |
|
149 | 149 | systemHeaderObj = SystemHeader() |
|
150 | 150 | |
|
151 | 151 | radarControllerHeaderObj = RadarControllerHeader() |
|
152 | 152 | |
|
153 | 153 | # data = None |
|
154 | 154 | |
|
155 | 155 | type = None |
|
156 | 156 | |
|
157 | 157 | datatype = None #dtype but in string |
|
158 | 158 | |
|
159 | 159 | # dtype = None |
|
160 | 160 | |
|
161 | 161 | # nChannels = None |
|
162 | 162 | |
|
163 | 163 | # nHeights = None |
|
164 | 164 | |
|
165 | 165 | nProfiles = None |
|
166 | 166 | |
|
167 | 167 | heightList = None |
|
168 | 168 | |
|
169 | 169 | channelList = None |
|
170 | 170 | |
|
171 | 171 | flagDiscontinuousBlock = False |
|
172 | 172 | |
|
173 | 173 | useLocalTime = False |
|
174 | 174 | |
|
175 | 175 | utctime = None |
|
176 | 176 | |
|
177 | 177 | timeZone = None |
|
178 | 178 | |
|
179 | 179 | dstFlag = None |
|
180 | 180 | |
|
181 | 181 | errorCount = None |
|
182 | 182 | |
|
183 | 183 | blocksize = None |
|
184 | 184 | |
|
185 | 185 | # nCode = None |
|
186 | 186 | # |
|
187 | 187 | # nBaud = None |
|
188 | 188 | # |
|
189 | 189 | # code = None |
|
190 | 190 | |
|
191 | 191 | flagDecodeData = False #asumo q la data no esta decodificada |
|
192 | 192 | |
|
193 | 193 | flagDeflipData = False #asumo q la data no esta sin flip |
|
194 | 194 | |
|
195 | 195 | flagShiftFFT = False |
|
196 | 196 | |
|
197 | 197 | # ippSeconds = None |
|
198 | 198 | |
|
199 | 199 | # timeInterval = None |
|
200 | 200 | |
|
201 | 201 | nCohInt = None |
|
202 | 202 | |
|
203 | 203 | # noise = None |
|
204 | 204 | |
|
205 | 205 | windowOfFilter = 1 |
|
206 | 206 | |
|
207 | 207 | #Speed of ligth |
|
208 | 208 | C = 3e8 |
|
209 | 209 | |
|
210 | 210 | frequency = 49.92e6 |
|
211 | 211 | |
|
212 | 212 | realtime = False |
|
213 | 213 | |
|
214 | 214 | beacon_heiIndexList = None |
|
215 | 215 | |
|
216 | 216 | last_block = None |
|
217 | 217 | |
|
218 | 218 | blocknow = None |
|
219 | 219 | |
|
220 | 220 | azimuth = None |
|
221 | 221 | |
|
222 | 222 | zenith = None |
|
223 | 223 | |
|
224 | 224 | beam = Beam() |
|
225 | 225 | |
|
226 | 226 | profileIndex = None |
|
227 | 227 | |
|
228 | 228 | def __init__(self): |
|
229 | 229 | |
|
230 | 230 | raise NotImplementedError |
|
231 | 231 | |
|
232 | 232 | def getNoise(self): |
|
233 | 233 | |
|
234 | 234 | raise NotImplementedError |
|
235 | 235 | |
|
236 | 236 | def getNChannels(self): |
|
237 | 237 | |
|
238 | 238 | return len(self.channelList) |
|
239 | 239 | |
|
240 | 240 | def getChannelIndexList(self): |
|
241 | 241 | |
|
242 | 242 | return range(self.nChannels) |
|
243 | 243 | |
|
244 | 244 | def getNHeights(self): |
|
245 | 245 | |
|
246 | 246 | return len(self.heightList) |
|
247 | 247 | |
|
248 | 248 | def getHeiRange(self, extrapoints=0): |
|
249 | 249 | |
|
250 | 250 | heis = self.heightList |
|
251 | 251 | # deltah = self.heightList[1] - self.heightList[0] |
|
252 | 252 | # |
|
253 | 253 | # heis.append(self.heightList[-1]) |
|
254 | 254 | |
|
255 | 255 | return heis |
|
256 | 256 | |
|
257 | 257 | def getDeltaH(self): |
|
258 | 258 | |
|
259 | 259 | delta = self.heightList[1] - self.heightList[0] |
|
260 | 260 | |
|
261 | 261 | return delta |
|
262 | 262 | |
|
263 | 263 | def getltctime(self): |
|
264 | 264 | |
|
265 | 265 | if self.useLocalTime: |
|
266 | 266 | return self.utctime - self.timeZone*60 |
|
267 | 267 | |
|
268 | 268 | return self.utctime |
|
269 | 269 | |
|
270 | 270 | def getDatatime(self): |
|
271 | 271 | |
|
272 | 272 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
273 | 273 | return datatimeValue |
|
274 | 274 | |
|
275 | 275 | def getTimeRange(self): |
|
276 | 276 | |
|
277 | 277 | datatime = [] |
|
278 | 278 | |
|
279 | 279 | datatime.append(self.ltctime) |
|
280 | 280 | datatime.append(self.ltctime + self.timeInterval+1) |
|
281 | 281 | |
|
282 | 282 | datatime = numpy.array(datatime) |
|
283 | 283 | |
|
284 | 284 | return datatime |
|
285 | 285 | |
|
286 | 286 | def getFmaxTimeResponse(self): |
|
287 | 287 | |
|
288 | 288 | period = (10**-6)*self.getDeltaH()/(0.15) |
|
289 | 289 | |
|
290 | 290 | PRF = 1./(period * self.nCohInt) |
|
291 | 291 | |
|
292 | 292 | fmax = PRF |
|
293 | 293 | |
|
294 | 294 | return fmax |
|
295 | 295 | |
|
296 | 296 | def getFmax(self): |
|
297 | 297 | |
|
298 | 298 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
299 | 299 | |
|
300 | 300 | fmax = PRF |
|
301 | 301 | |
|
302 | 302 | return fmax |
|
303 | 303 | |
|
304 | 304 | def getVmax(self): |
|
305 | 305 | |
|
306 | 306 | _lambda = self.C/self.frequency |
|
307 | 307 | |
|
308 | 308 | vmax = self.getFmax() * _lambda |
|
309 | 309 | |
|
310 | 310 | return vmax |
|
311 | 311 | |
|
312 | 312 | def get_ippSeconds(self): |
|
313 | 313 | ''' |
|
314 | 314 | ''' |
|
315 | 315 | return self.radarControllerHeaderObj.ippSeconds |
|
316 | 316 | |
|
317 | 317 | def set_ippSeconds(self, ippSeconds): |
|
318 | 318 | ''' |
|
319 | 319 | ''' |
|
320 | 320 | |
|
321 | 321 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
322 | 322 | |
|
323 | 323 | return |
|
324 | 324 | |
|
325 | 325 | def get_dtype(self): |
|
326 | 326 | ''' |
|
327 | 327 | ''' |
|
328 | 328 | return getNumpyDtype(self.datatype) |
|
329 | 329 | |
|
330 | 330 | def set_dtype(self, numpyDtype): |
|
331 | 331 | ''' |
|
332 | 332 | ''' |
|
333 | 333 | |
|
334 | 334 | self.datatype = getDataTypeCode(numpyDtype) |
|
335 | 335 | |
|
336 | 336 | def get_code(self): |
|
337 | 337 | ''' |
|
338 | 338 | ''' |
|
339 | 339 | return self.radarControllerHeaderObj.code |
|
340 | 340 | |
|
341 | 341 | def set_code(self, code): |
|
342 | 342 | ''' |
|
343 | 343 | ''' |
|
344 | 344 | self.radarControllerHeaderObj.code = code |
|
345 | 345 | |
|
346 | 346 | return |
|
347 | 347 | |
|
348 | 348 | def get_ncode(self): |
|
349 | 349 | ''' |
|
350 | 350 | ''' |
|
351 | 351 | return self.radarControllerHeaderObj.nCode |
|
352 | 352 | |
|
353 | 353 | def set_ncode(self, nCode): |
|
354 | 354 | ''' |
|
355 | 355 | ''' |
|
356 | 356 | self.radarControllerHeaderObj.nCode = nCode |
|
357 | 357 | |
|
358 | 358 | return |
|
359 | 359 | |
|
360 | 360 | def get_nbaud(self): |
|
361 | 361 | ''' |
|
362 | 362 | ''' |
|
363 | 363 | return self.radarControllerHeaderObj.nBaud |
|
364 | 364 | |
|
365 | 365 | def set_nbaud(self, nBaud): |
|
366 | 366 | ''' |
|
367 | 367 | ''' |
|
368 | 368 | self.radarControllerHeaderObj.nBaud = nBaud |
|
369 | 369 | |
|
370 | 370 | return |
|
371 | 371 | |
|
372 | 372 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
373 | 373 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
374 | 374 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
375 | 375 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
376 | 376 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
377 | 377 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
378 | 378 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
379 | 379 | dtype = property(get_dtype, set_dtype) |
|
380 | 380 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
381 | 381 | code = property(get_code, set_code) |
|
382 | 382 | nCode = property(get_ncode, set_ncode) |
|
383 | 383 | nBaud = property(get_nbaud, set_nbaud) |
|
384 | 384 | |
|
385 | 385 | class Voltage(JROData): |
|
386 | 386 | |
|
387 | 387 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
388 | 388 | data = None |
|
389 | 389 | |
|
390 | 390 | def __init__(self): |
|
391 | 391 | ''' |
|
392 | 392 | Constructor |
|
393 | 393 | ''' |
|
394 | 394 | |
|
395 | 395 | self.useLocalTime = True |
|
396 | 396 | |
|
397 | 397 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
398 | 398 | |
|
399 | 399 | self.systemHeaderObj = SystemHeader() |
|
400 | 400 | |
|
401 | 401 | self.type = "Voltage" |
|
402 | 402 | |
|
403 | 403 | self.data = None |
|
404 | 404 | |
|
405 | 405 | # self.dtype = None |
|
406 | 406 | |
|
407 | 407 | # self.nChannels = 0 |
|
408 | 408 | |
|
409 | 409 | # self.nHeights = 0 |
|
410 | 410 | |
|
411 | 411 | self.nProfiles = None |
|
412 | 412 | |
|
413 | 413 | self.heightList = None |
|
414 | 414 | |
|
415 | 415 | self.channelList = None |
|
416 | 416 | |
|
417 | 417 | # self.channelIndexList = None |
|
418 | 418 | |
|
419 | 419 | self.flagNoData = True |
|
420 | 420 | |
|
421 | 421 | self.flagDiscontinuousBlock = False |
|
422 | 422 | |
|
423 | 423 | self.utctime = None |
|
424 | 424 | |
|
425 | 425 | self.timeZone = None |
|
426 | 426 | |
|
427 | 427 | self.dstFlag = None |
|
428 | 428 | |
|
429 | 429 | self.errorCount = None |
|
430 | 430 | |
|
431 | 431 | self.nCohInt = None |
|
432 | 432 | |
|
433 | 433 | self.blocksize = None |
|
434 | 434 | |
|
435 | 435 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
436 | 436 | |
|
437 | 437 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
438 | 438 | |
|
439 | 439 | self.flagShiftFFT = False |
|
440 | 440 | |
|
441 | 441 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
442 | 442 | |
|
443 | 443 | self.profileIndex = 0 |
|
444 | 444 | |
|
445 | 445 | def getNoisebyHildebrand(self, channel = None): |
|
446 | 446 | """ |
|
447 | 447 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
448 | 448 | |
|
449 | 449 | Return: |
|
450 | 450 | noiselevel |
|
451 | 451 | """ |
|
452 | 452 | |
|
453 | 453 | if channel != None: |
|
454 | 454 | data = self.data[channel] |
|
455 | 455 | nChannels = 1 |
|
456 | 456 | else: |
|
457 | 457 | data = self.data |
|
458 | 458 | nChannels = self.nChannels |
|
459 | 459 | |
|
460 | 460 | noise = numpy.zeros(nChannels) |
|
461 | 461 | power = data * numpy.conjugate(data) |
|
462 | 462 | |
|
463 | 463 | for thisChannel in range(nChannels): |
|
464 | 464 | if nChannels == 1: |
|
465 | 465 | daux = power[:].real |
|
466 | 466 | else: |
|
467 | 467 | daux = power[thisChannel,:].real |
|
468 | 468 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
469 | 469 | |
|
470 | 470 | return noise |
|
471 | 471 | |
|
472 | 472 | def getNoise(self, type = 1, channel = None): |
|
473 | 473 | |
|
474 | 474 | if type == 1: |
|
475 | 475 | noise = self.getNoisebyHildebrand(channel) |
|
476 | 476 | |
|
477 | 477 | return noise |
|
478 | 478 | |
|
479 | 479 | def getPower(self, channel = None): |
|
480 | 480 | |
|
481 | 481 | if channel != None: |
|
482 | 482 | data = self.data[channel] |
|
483 | 483 | else: |
|
484 | 484 | data = self.data |
|
485 | 485 | |
|
486 | 486 | power = data * numpy.conjugate(data) |
|
487 | 487 | |
|
488 | 488 | return 10*numpy.log10(power.real) |
|
489 | 489 | |
|
490 | 490 | def getTimeInterval(self): |
|
491 | 491 | |
|
492 | 492 | timeInterval = self.ippSeconds * self.nCohInt |
|
493 | 493 | |
|
494 | 494 | return timeInterval |
|
495 | 495 | |
|
496 | 496 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
497 | 497 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
498 | 498 | |
|
499 | 499 | class Spectra(JROData): |
|
500 | 500 | |
|
501 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
|
501 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
|
502 | 502 | data_spc = None |
|
503 | 503 | |
|
504 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) | |
|
504 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) | |
|
505 | 505 | data_cspc = None |
|
506 | 506 | |
|
507 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
|
507 | #data dc es un numpy array de 2 dmensiones (canales, alturas) | |
|
508 | 508 | data_dc = None |
|
509 | 509 | |
|
510 | #data power | |
|
511 | data_pwr = None | |
|
512 | ||
|
510 | 513 | nFFTPoints = None |
|
511 | 514 | |
|
512 | 515 | # nPairs = None |
|
513 | 516 | |
|
514 | 517 | pairsList = None |
|
515 | 518 | |
|
516 | 519 | nIncohInt = None |
|
517 | 520 | |
|
518 | 521 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
519 | 522 | |
|
520 | 523 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
521 | 524 | |
|
522 | 525 | ippFactor = None |
|
523 | 526 | |
|
524 | 527 | profileIndex = 0 |
|
525 | 528 | |
|
526 | 529 | plotting = "spectra" |
|
527 | 530 | |
|
528 | 531 | def __init__(self): |
|
529 | 532 | ''' |
|
530 | 533 | Constructor |
|
531 | 534 | ''' |
|
532 | 535 | |
|
533 | 536 | self.useLocalTime = True |
|
534 | 537 | |
|
535 | 538 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
536 | 539 | |
|
537 | 540 | self.systemHeaderObj = SystemHeader() |
|
538 | 541 | |
|
539 | 542 | self.type = "Spectra" |
|
540 | 543 | |
|
541 | 544 | # self.data = None |
|
542 | 545 | |
|
543 | 546 | # self.dtype = None |
|
544 | 547 | |
|
545 | 548 | # self.nChannels = 0 |
|
546 | 549 | |
|
547 | 550 | # self.nHeights = 0 |
|
548 | 551 | |
|
549 | 552 | self.nProfiles = None |
|
550 | 553 | |
|
551 | 554 | self.heightList = None |
|
552 | 555 | |
|
553 | 556 | self.channelList = None |
|
554 | 557 | |
|
555 | 558 | # self.channelIndexList = None |
|
556 | 559 | |
|
557 | 560 | self.pairsList = None |
|
558 | 561 | |
|
559 | 562 | self.flagNoData = True |
|
560 | 563 | |
|
561 | 564 | self.flagDiscontinuousBlock = False |
|
562 | 565 | |
|
563 | 566 | self.utctime = None |
|
564 | 567 | |
|
565 | 568 | self.nCohInt = None |
|
566 | 569 | |
|
567 | 570 | self.nIncohInt = None |
|
568 | 571 | |
|
569 | 572 | self.blocksize = None |
|
570 | 573 | |
|
571 | 574 | self.nFFTPoints = None |
|
572 | 575 | |
|
573 | 576 | self.wavelength = None |
|
574 | 577 | |
|
575 | 578 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
576 | 579 | |
|
577 | 580 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
578 | 581 | |
|
579 | 582 | self.flagShiftFFT = False |
|
580 | 583 | |
|
581 | 584 | self.ippFactor = 1 |
|
582 | 585 | |
|
583 | 586 | #self.noise = None |
|
584 | 587 | |
|
585 | 588 | self.beacon_heiIndexList = [] |
|
586 | 589 | |
|
587 | 590 | self.noise_estimation = None |
|
588 | 591 | |
|
589 | 592 | |
|
590 | 593 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
591 | 594 | """ |
|
592 | 595 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
593 | 596 | |
|
594 | 597 | Return: |
|
595 | 598 | noiselevel |
|
596 | 599 | """ |
|
597 | 600 | |
|
598 | 601 | noise = numpy.zeros(self.nChannels) |
|
599 | 602 | |
|
600 | 603 | for channel in range(self.nChannels): |
|
601 | 604 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
602 | 605 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
603 | 606 | |
|
604 | 607 | return noise |
|
605 | 608 | |
|
606 | 609 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
607 | 610 | |
|
608 | 611 | if self.noise_estimation is not None: |
|
609 | 612 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
610 | 613 | else: |
|
611 | 614 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
612 | 615 | return noise |
|
613 | 616 | |
|
614 | 617 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
615 | 618 | |
|
616 | 619 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) |
|
617 | 620 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
618 | 621 | |
|
619 | 622 | return freqrange |
|
620 | 623 | |
|
621 | 624 | def getAcfRange(self, extrapoints=0): |
|
622 | 625 | |
|
623 | 626 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) |
|
624 | 627 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
625 | 628 | |
|
626 | 629 | return freqrange |
|
627 | 630 | |
|
628 | 631 | def getFreqRange(self, extrapoints=0): |
|
629 | 632 | |
|
630 | 633 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
631 | 634 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
632 | 635 | |
|
633 | 636 | return freqrange |
|
634 | 637 | |
|
635 | 638 | def getVelRange(self, extrapoints=0): |
|
636 | 639 | |
|
637 | 640 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
638 | 641 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 |
|
639 | 642 | |
|
640 | 643 | return velrange |
|
641 | 644 | |
|
642 | 645 | def getNPairs(self): |
|
643 | 646 | |
|
644 | 647 | return len(self.pairsList) |
|
645 | 648 | |
|
646 | 649 | def getPairsIndexList(self): |
|
647 | 650 | |
|
648 | 651 | return range(self.nPairs) |
|
649 | 652 | |
|
650 | 653 | def getNormFactor(self): |
|
651 | 654 | |
|
652 | 655 | pwcode = 1 |
|
653 | 656 | |
|
654 | 657 | if self.flagDecodeData: |
|
655 | 658 | pwcode = numpy.sum(self.code[0]**2) |
|
656 | 659 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
657 | 660 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
658 | 661 | |
|
659 | 662 | return normFactor |
|
660 | 663 | |
|
661 | 664 | def getFlagCspc(self): |
|
662 | 665 | |
|
663 | 666 | if self.data_cspc is None: |
|
664 | 667 | return True |
|
665 | 668 | |
|
666 | 669 | return False |
|
667 | 670 | |
|
668 | 671 | def getFlagDc(self): |
|
669 | 672 | |
|
670 | 673 | if self.data_dc is None: |
|
671 | 674 | return True |
|
672 | 675 | |
|
673 | 676 | return False |
|
674 | 677 | |
|
675 | 678 | def getTimeInterval(self): |
|
676 | 679 | |
|
677 | 680 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
678 | 681 | |
|
679 | 682 | return timeInterval |
|
680 | 683 | |
|
684 | def getPower(self): | |
|
685 | ||
|
686 | factor = self.normFactor | |
|
687 | z = self.data_spc/factor | |
|
688 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
689 | avg = numpy.average(z, axis=1) | |
|
690 | ||
|
691 | return 10*numpy.log10(avg) | |
|
692 | ||
|
681 | 693 | def setValue(self, value): |
|
682 | 694 | |
|
683 | 695 | print "This property should not be initialized" |
|
684 | 696 | |
|
685 | 697 | return |
|
686 | 698 | |
|
687 | 699 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
688 | 700 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
689 | 701 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") |
|
690 | 702 | flag_cspc = property(getFlagCspc, setValue) |
|
691 | 703 | flag_dc = property(getFlagDc, setValue) |
|
692 | 704 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
693 | 705 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") |
|
694 | 706 | |
|
695 | 707 | class SpectraHeis(Spectra): |
|
696 | 708 | |
|
697 | 709 | data_spc = None |
|
698 | 710 | |
|
699 | 711 | data_cspc = None |
|
700 | 712 | |
|
701 | 713 | data_dc = None |
|
702 | 714 | |
|
703 | 715 | nFFTPoints = None |
|
704 | 716 | |
|
705 | 717 | # nPairs = None |
|
706 | 718 | |
|
707 | 719 | pairsList = None |
|
708 | 720 | |
|
709 | 721 | nCohInt = None |
|
710 | 722 | |
|
711 | 723 | nIncohInt = None |
|
712 | 724 | |
|
713 | 725 | def __init__(self): |
|
714 | 726 | |
|
715 | 727 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
716 | 728 | |
|
717 | 729 | self.systemHeaderObj = SystemHeader() |
|
718 | 730 | |
|
719 | 731 | self.type = "SpectraHeis" |
|
720 | 732 | |
|
721 | 733 | # self.dtype = None |
|
722 | 734 | |
|
723 | 735 | # self.nChannels = 0 |
|
724 | 736 | |
|
725 | 737 | # self.nHeights = 0 |
|
726 | 738 | |
|
727 | 739 | self.nProfiles = None |
|
728 | 740 | |
|
729 | 741 | self.heightList = None |
|
730 | 742 | |
|
731 | 743 | self.channelList = None |
|
732 | 744 | |
|
733 | 745 | # self.channelIndexList = None |
|
734 | 746 | |
|
735 | 747 | self.flagNoData = True |
|
736 | 748 | |
|
737 | 749 | self.flagDiscontinuousBlock = False |
|
738 | 750 | |
|
739 | 751 | # self.nPairs = 0 |
|
740 | 752 | |
|
741 | 753 | self.utctime = None |
|
742 | 754 | |
|
743 | 755 | self.blocksize = None |
|
744 | 756 | |
|
745 | 757 | self.profileIndex = 0 |
|
746 | 758 | |
|
747 | 759 | self.nCohInt = 1 |
|
748 | 760 | |
|
749 | 761 | self.nIncohInt = 1 |
|
750 | 762 | |
|
751 | 763 | def getNormFactor(self): |
|
752 | 764 | pwcode = 1 |
|
753 | 765 | if self.flagDecodeData: |
|
754 | 766 | pwcode = numpy.sum(self.code[0]**2) |
|
755 | 767 | |
|
756 | 768 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
757 | 769 | |
|
758 | 770 | return normFactor |
|
759 | 771 | |
|
760 | 772 | def getTimeInterval(self): |
|
761 | 773 | |
|
762 | 774 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
763 | 775 | |
|
764 | 776 | return timeInterval |
|
765 | 777 | |
|
766 | 778 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
767 | 779 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
768 | 780 | |
|
769 | 781 | class Fits(JROData): |
|
770 | 782 | |
|
771 | 783 | heightList = None |
|
772 | 784 | |
|
773 | 785 | channelList = None |
|
774 | 786 | |
|
775 | 787 | flagNoData = True |
|
776 | 788 | |
|
777 | 789 | flagDiscontinuousBlock = False |
|
778 | 790 | |
|
779 | 791 | useLocalTime = False |
|
780 | 792 | |
|
781 | 793 | utctime = None |
|
782 | 794 | |
|
783 | 795 | timeZone = None |
|
784 | 796 | |
|
785 | 797 | # ippSeconds = None |
|
786 | 798 | |
|
787 | 799 | # timeInterval = None |
|
788 | 800 | |
|
789 | 801 | nCohInt = None |
|
790 | 802 | |
|
791 | 803 | nIncohInt = None |
|
792 | 804 | |
|
793 | 805 | noise = None |
|
794 | 806 | |
|
795 | 807 | windowOfFilter = 1 |
|
796 | 808 | |
|
797 | 809 | #Speed of ligth |
|
798 | 810 | C = 3e8 |
|
799 | 811 | |
|
800 | 812 | frequency = 49.92e6 |
|
801 | 813 | |
|
802 | 814 | realtime = False |
|
803 | 815 | |
|
804 | 816 | |
|
805 | 817 | def __init__(self): |
|
806 | 818 | |
|
807 | 819 | self.type = "Fits" |
|
808 | 820 | |
|
809 | 821 | self.nProfiles = None |
|
810 | 822 | |
|
811 | 823 | self.heightList = None |
|
812 | 824 | |
|
813 | 825 | self.channelList = None |
|
814 | 826 | |
|
815 | 827 | # self.channelIndexList = None |
|
816 | 828 | |
|
817 | 829 | self.flagNoData = True |
|
818 | 830 | |
|
819 | 831 | self.utctime = None |
|
820 | 832 | |
|
821 | 833 | self.nCohInt = 1 |
|
822 | 834 | |
|
823 | 835 | self.nIncohInt = 1 |
|
824 | 836 | |
|
825 | 837 | self.useLocalTime = True |
|
826 | 838 | |
|
827 | 839 | self.profileIndex = 0 |
|
828 | 840 | |
|
829 | 841 | # self.utctime = None |
|
830 | 842 | # self.timeZone = None |
|
831 | 843 | # self.ltctime = None |
|
832 | 844 | # self.timeInterval = None |
|
833 | 845 | # self.header = None |
|
834 | 846 | # self.data_header = None |
|
835 | 847 | # self.data = None |
|
836 | 848 | # self.datatime = None |
|
837 | 849 | # self.flagNoData = False |
|
838 | 850 | # self.expName = '' |
|
839 | 851 | # self.nChannels = None |
|
840 | 852 | # self.nSamples = None |
|
841 | 853 | # self.dataBlocksPerFile = None |
|
842 | 854 | # self.comments = '' |
|
843 | 855 | # |
|
844 | 856 | |
|
845 | 857 | |
|
846 | 858 | def getltctime(self): |
|
847 | 859 | |
|
848 | 860 | if self.useLocalTime: |
|
849 | 861 | return self.utctime - self.timeZone*60 |
|
850 | 862 | |
|
851 | 863 | return self.utctime |
|
852 | 864 | |
|
853 | 865 | def getDatatime(self): |
|
854 | 866 | |
|
855 | 867 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
856 | 868 | return datatime |
|
857 | 869 | |
|
858 | 870 | def getTimeRange(self): |
|
859 | 871 | |
|
860 | 872 | datatime = [] |
|
861 | 873 | |
|
862 | 874 | datatime.append(self.ltctime) |
|
863 | 875 | datatime.append(self.ltctime + self.timeInterval) |
|
864 | 876 | |
|
865 | 877 | datatime = numpy.array(datatime) |
|
866 | 878 | |
|
867 | 879 | return datatime |
|
868 | 880 | |
|
869 | 881 | def getHeiRange(self): |
|
870 | 882 | |
|
871 | 883 | heis = self.heightList |
|
872 | 884 | |
|
873 | 885 | return heis |
|
874 | 886 | |
|
875 | 887 | def getNHeights(self): |
|
876 | 888 | |
|
877 | 889 | return len(self.heightList) |
|
878 | 890 | |
|
879 | 891 | def getNChannels(self): |
|
880 | 892 | |
|
881 | 893 | return len(self.channelList) |
|
882 | 894 | |
|
883 | 895 | def getChannelIndexList(self): |
|
884 | 896 | |
|
885 | 897 | return range(self.nChannels) |
|
886 | 898 | |
|
887 | 899 | def getNoise(self, type = 1): |
|
888 | 900 | |
|
889 | 901 | #noise = numpy.zeros(self.nChannels) |
|
890 | 902 | |
|
891 | 903 | if type == 1: |
|
892 | 904 | noise = self.getNoisebyHildebrand() |
|
893 | 905 | |
|
894 | 906 | if type == 2: |
|
895 | 907 | noise = self.getNoisebySort() |
|
896 | 908 | |
|
897 | 909 | if type == 3: |
|
898 | 910 | noise = self.getNoisebyWindow() |
|
899 | 911 | |
|
900 | 912 | return noise |
|
901 | 913 | |
|
902 | 914 | def getTimeInterval(self): |
|
903 | 915 | |
|
904 | 916 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
905 | 917 | |
|
906 | 918 | return timeInterval |
|
907 | 919 | |
|
908 | 920 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
909 | 921 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
910 | 922 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
911 | 923 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
912 | 924 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
913 | 925 | |
|
914 | 926 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
915 | 927 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
916 | 928 | |
|
917 | 929 | class Correlation(JROData): |
|
918 | 930 | |
|
919 | 931 | noise = None |
|
920 | 932 | |
|
921 | 933 | SNR = None |
|
922 | 934 | |
|
923 | 935 | pairsAutoCorr = None #Pairs of Autocorrelation |
|
924 | 936 | |
|
925 | 937 | #-------------------------------------------------- |
|
926 | 938 | |
|
927 | 939 | data_corr = None |
|
928 | 940 | |
|
929 | 941 | data_volt = None |
|
930 | 942 | |
|
931 | 943 | lagT = None # each element value is a profileIndex |
|
932 | 944 | |
|
933 | 945 | lagR = None # each element value is in km |
|
934 | 946 | |
|
935 | 947 | pairsList = None |
|
936 | 948 | |
|
937 | 949 | calculateVelocity = None |
|
938 | 950 | |
|
939 | 951 | nPoints = None |
|
940 | 952 | |
|
941 | 953 | nAvg = None |
|
942 | 954 | |
|
943 | 955 | bufferSize = None |
|
944 | 956 | |
|
945 | 957 | def __init__(self): |
|
946 | 958 | ''' |
|
947 | 959 | Constructor |
|
948 | 960 | ''' |
|
949 | 961 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
950 | 962 | |
|
951 | 963 | self.systemHeaderObj = SystemHeader() |
|
952 | 964 | |
|
953 | 965 | self.type = "Correlation" |
|
954 | 966 | |
|
955 | 967 | self.data = None |
|
956 | 968 | |
|
957 | 969 | self.dtype = None |
|
958 | 970 | |
|
959 | 971 | self.nProfiles = None |
|
960 | 972 | |
|
961 | 973 | self.heightList = None |
|
962 | 974 | |
|
963 | 975 | self.channelList = None |
|
964 | 976 | |
|
965 | 977 | self.flagNoData = True |
|
966 | 978 | |
|
967 | 979 | self.flagDiscontinuousBlock = False |
|
968 | 980 | |
|
969 | 981 | self.utctime = None |
|
970 | 982 | |
|
971 | 983 | self.timeZone = None |
|
972 | 984 | |
|
973 | 985 | self.dstFlag = None |
|
974 | 986 | |
|
975 | 987 | self.errorCount = None |
|
976 | 988 | |
|
977 | 989 | self.blocksize = None |
|
978 | 990 | |
|
979 | 991 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
980 | 992 | |
|
981 | 993 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
982 | 994 | |
|
983 | 995 | self.pairsList = None |
|
984 | 996 | |
|
985 | 997 | self.nPoints = None |
|
986 | 998 | |
|
987 | 999 | def getLagTRange(self, extrapoints=0): |
|
988 | 1000 | |
|
989 | 1001 | lagTRange = self.lagT |
|
990 | 1002 | diff = lagTRange[1] - lagTRange[0] |
|
991 | 1003 | extra = numpy.arange(1,extrapoints + 1)*diff + lagTRange[-1] |
|
992 | 1004 | lagTRange = numpy.hstack((lagTRange, extra)) |
|
993 | 1005 | |
|
994 | 1006 | return lagTRange |
|
995 | 1007 | |
|
996 | 1008 | def getLagRRange(self, extrapoints=0): |
|
997 | 1009 | |
|
998 | 1010 | return self.lagR |
|
999 | 1011 | |
|
1000 | 1012 | def getPairsList(self): |
|
1001 | 1013 | |
|
1002 | 1014 | return self.pairsList |
|
1003 | 1015 | |
|
1004 | 1016 | def getCalculateVelocity(self): |
|
1005 | 1017 | |
|
1006 | 1018 | return self.calculateVelocity |
|
1007 | 1019 | |
|
1008 | 1020 | def getNPoints(self): |
|
1009 | 1021 | |
|
1010 | 1022 | return self.nPoints |
|
1011 | 1023 | |
|
1012 | 1024 | def getNAvg(self): |
|
1013 | 1025 | |
|
1014 | 1026 | return self.nAvg |
|
1015 | 1027 | |
|
1016 | 1028 | def getBufferSize(self): |
|
1017 | 1029 | |
|
1018 | 1030 | return self.bufferSize |
|
1019 | 1031 | |
|
1020 | 1032 | def getPairsAutoCorr(self): |
|
1021 | 1033 | pairsList = self.pairsList |
|
1022 | 1034 | pairsAutoCorr = numpy.zeros(self.nChannels, dtype = 'int')*numpy.nan |
|
1023 | 1035 | |
|
1024 | 1036 | for l in range(len(pairsList)): |
|
1025 | 1037 | firstChannel = pairsList[l][0] |
|
1026 | 1038 | secondChannel = pairsList[l][1] |
|
1027 | 1039 | |
|
1028 | 1040 | #Obteniendo pares de Autocorrelacion |
|
1029 | 1041 | if firstChannel == secondChannel: |
|
1030 | 1042 | pairsAutoCorr[firstChannel] = int(l) |
|
1031 | 1043 | |
|
1032 | 1044 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1033 | 1045 | |
|
1034 | 1046 | return pairsAutoCorr |
|
1035 | 1047 | |
|
1036 | 1048 | def getNoise(self, mode = 2): |
|
1037 | 1049 | |
|
1038 | 1050 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1039 | 1051 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1040 | 1052 | |
|
1041 | 1053 | jspectra0 = self.data_corr[:,:,indR,:] |
|
1042 | 1054 | jspectra = copy.copy(jspectra0) |
|
1043 | 1055 | |
|
1044 | 1056 | num_chan = jspectra.shape[0] |
|
1045 | 1057 | num_hei = jspectra.shape[2] |
|
1046 | 1058 | |
|
1047 | 1059 | freq_dc = jspectra.shape[1]/2 |
|
1048 | 1060 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1049 | 1061 | |
|
1050 | 1062 | if ind_vel[0]<0: |
|
1051 | 1063 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1052 | 1064 | |
|
1053 | 1065 | if mode == 1: |
|
1054 | 1066 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1055 | 1067 | |
|
1056 | 1068 | if mode == 2: |
|
1057 | 1069 | |
|
1058 | 1070 | vel = numpy.array([-2,-1,1,2]) |
|
1059 | 1071 | xx = numpy.zeros([4,4]) |
|
1060 | 1072 | |
|
1061 | 1073 | for fil in range(4): |
|
1062 | 1074 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1063 | 1075 | |
|
1064 | 1076 | xx_inv = numpy.linalg.inv(xx) |
|
1065 | 1077 | xx_aux = xx_inv[0,:] |
|
1066 | 1078 | |
|
1067 | 1079 | for ich in range(num_chan): |
|
1068 | 1080 | yy = jspectra[ich,ind_vel,:] |
|
1069 | 1081 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1070 | 1082 | |
|
1071 | 1083 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1072 | 1084 | cjunkid = sum(junkid) |
|
1073 | 1085 | |
|
1074 | 1086 | if cjunkid.any(): |
|
1075 | 1087 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1076 | 1088 | |
|
1077 | 1089 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1078 | 1090 | |
|
1079 | 1091 | return noise |
|
1080 | 1092 | |
|
1081 | 1093 | def getTimeInterval(self): |
|
1082 | 1094 | |
|
1083 | 1095 | timeInterval = self.ippSeconds * self.nCohInt * self.nPoints |
|
1084 | 1096 | |
|
1085 | 1097 | return timeInterval |
|
1086 | 1098 | |
|
1087 | 1099 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1088 | 1100 | # pairsList = property(getPairsList, "I'm the 'pairsList' property.") |
|
1089 | 1101 | # nPoints = property(getNPoints, "I'm the 'nPoints' property.") |
|
1090 | 1102 | calculateVelocity = property(getCalculateVelocity, "I'm the 'calculateVelocity' property.") |
|
1091 | 1103 | nAvg = property(getNAvg, "I'm the 'nAvg' property.") |
|
1092 | 1104 | bufferSize = property(getBufferSize, "I'm the 'bufferSize' property.") |
|
1093 | 1105 | |
|
1094 | 1106 | |
|
1095 | 1107 | class Parameters(JROData): |
|
1096 | 1108 | |
|
1109 | experimentInfo = None #Information about the experiment | |
|
1110 | ||
|
1097 | 1111 | #Information from previous data |
|
1098 | 1112 | |
|
1099 | 1113 | inputUnit = None #Type of data to be processed |
|
1100 | 1114 | |
|
1101 | 1115 | operation = None #Type of operation to parametrize |
|
1102 | 1116 | |
|
1103 | 1117 | normFactor = None #Normalization Factor |
|
1104 | 1118 | |
|
1105 | 1119 | groupList = None #List of Pairs, Groups, etc |
|
1106 | 1120 | |
|
1107 | 1121 | #Parameters |
|
1108 | 1122 | |
|
1109 | 1123 | data_param = None #Parameters obtained |
|
1110 | 1124 | |
|
1111 | 1125 | data_pre = None #Data Pre Parametrization |
|
1112 | 1126 | |
|
1113 | 1127 | data_SNR = None #Signal to Noise Ratio |
|
1114 | 1128 | |
|
1115 | 1129 | # heightRange = None #Heights |
|
1116 | 1130 | |
|
1117 | 1131 | abscissaList = None #Abscissa, can be velocities, lags or time |
|
1118 | 1132 | |
|
1119 | 1133 | noise = None #Noise Potency |
|
1120 | 1134 | |
|
1121 | 1135 | utctimeInit = None #Initial UTC time |
|
1122 | 1136 | |
|
1123 | 1137 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1124 | 1138 | |
|
1125 | 1139 | useLocalTime = True |
|
1126 | 1140 | |
|
1127 | 1141 | #Fitting |
|
1128 | 1142 | |
|
1129 | 1143 | data_error = None #Error of the estimation |
|
1130 | 1144 | |
|
1131 | 1145 | constants = None |
|
1132 | 1146 | |
|
1133 | 1147 | library = None |
|
1134 | 1148 | |
|
1135 | 1149 | #Output signal |
|
1136 | 1150 | |
|
1137 | 1151 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1138 | 1152 | |
|
1139 | 1153 | data_output = None #Out signal |
|
1140 | 1154 | |
|
1141 | 1155 | |
|
1142 | 1156 | |
|
1143 | 1157 | def __init__(self): |
|
1144 | 1158 | ''' |
|
1145 | 1159 | Constructor |
|
1146 | 1160 | ''' |
|
1147 | 1161 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1148 | 1162 | |
|
1149 | 1163 | self.systemHeaderObj = SystemHeader() |
|
1150 | 1164 | |
|
1151 | 1165 | self.type = "Parameters" |
|
1152 | 1166 | |
|
1153 | 1167 | def getTimeRange1(self, interval): |
|
1154 | 1168 | |
|
1155 | 1169 | datatime = [] |
|
1156 | 1170 | |
|
1157 | 1171 | if self.useLocalTime: |
|
1158 | 1172 | time1 = self.utctimeInit - self.timeZone*60 |
|
1159 | 1173 | else: |
|
1160 | 1174 | time1 = self.utctimeInit |
|
1161 | 1175 | |
|
1162 | 1176 | # datatime.append(self.utctimeInit) |
|
1163 | 1177 | # datatime.append(self.utctimeInit + self.outputInterval) |
|
1164 | 1178 | datatime.append(time1) |
|
1165 | 1179 | datatime.append(time1 + interval) |
|
1166 | 1180 | |
|
1167 | 1181 | datatime = numpy.array(datatime) |
|
1168 | 1182 | |
|
1169 | 1183 | return datatime |
@@ -1,1364 +1,1569 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | from figure import Figure, isRealtime | |
|
5 | from figure import Figure, isRealtime, isTimeInHourRange | |
|
6 | 6 | from plotting_codes import * |
|
7 | 7 | |
|
8 | 8 | class MomentsPlot(Figure): |
|
9 | 9 | |
|
10 | 10 | isConfig = None |
|
11 | 11 | __nsubplots = None |
|
12 | 12 | |
|
13 | 13 | WIDTHPROF = None |
|
14 | 14 | HEIGHTPROF = None |
|
15 | 15 | PREFIX = 'prm' |
|
16 | 16 | |
|
17 | 17 | def __init__(self): |
|
18 | 18 | |
|
19 | 19 | self.isConfig = False |
|
20 | 20 | self.__nsubplots = 1 |
|
21 | 21 | |
|
22 | 22 | self.WIDTH = 280 |
|
23 | 23 | self.HEIGHT = 250 |
|
24 | 24 | self.WIDTHPROF = 120 |
|
25 | 25 | self.HEIGHTPROF = 0 |
|
26 | 26 | self.counter_imagwr = 0 |
|
27 | 27 | |
|
28 | 28 | self.PLOT_CODE = MOMENTS_CODE |
|
29 | 29 | |
|
30 | 30 | self.FTP_WEI = None |
|
31 | 31 | self.EXP_CODE = None |
|
32 | 32 | self.SUB_EXP_CODE = None |
|
33 | 33 | self.PLOT_POS = None |
|
34 | 34 | |
|
35 | 35 | def getSubplots(self): |
|
36 | 36 | |
|
37 | 37 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
38 | 38 | nrow = int(self.nplots*1./ncol + 0.9) |
|
39 | 39 | |
|
40 | 40 | return nrow, ncol |
|
41 | 41 | |
|
42 | 42 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
43 | 43 | |
|
44 | 44 | self.__showprofile = showprofile |
|
45 | 45 | self.nplots = nplots |
|
46 | 46 | |
|
47 | 47 | ncolspan = 1 |
|
48 | 48 | colspan = 1 |
|
49 | 49 | if showprofile: |
|
50 | 50 | ncolspan = 3 |
|
51 | 51 | colspan = 2 |
|
52 | 52 | self.__nsubplots = 2 |
|
53 | 53 | |
|
54 | 54 | self.createFigure(id = id, |
|
55 | 55 | wintitle = wintitle, |
|
56 | 56 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
57 | 57 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
58 | 58 | show=show) |
|
59 | 59 | |
|
60 | 60 | nrow, ncol = self.getSubplots() |
|
61 | 61 | |
|
62 | 62 | counter = 0 |
|
63 | 63 | for y in range(nrow): |
|
64 | 64 | for x in range(ncol): |
|
65 | 65 | |
|
66 | 66 | if counter >= self.nplots: |
|
67 | 67 | break |
|
68 | 68 | |
|
69 | 69 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
70 | 70 | |
|
71 | 71 | if showprofile: |
|
72 | 72 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
73 | 73 | |
|
74 | 74 | counter += 1 |
|
75 | 75 | |
|
76 | 76 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
77 | 77 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
78 | 78 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
79 | 79 | server=None, folder=None, username=None, password=None, |
|
80 | 80 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
81 | 81 | |
|
82 | 82 | """ |
|
83 | 83 | |
|
84 | 84 | Input: |
|
85 | 85 | dataOut : |
|
86 | 86 | id : |
|
87 | 87 | wintitle : |
|
88 | 88 | channelList : |
|
89 | 89 | showProfile : |
|
90 | 90 | xmin : None, |
|
91 | 91 | xmax : None, |
|
92 | 92 | ymin : None, |
|
93 | 93 | ymax : None, |
|
94 | 94 | zmin : None, |
|
95 | 95 | zmax : None |
|
96 | 96 | """ |
|
97 | 97 | |
|
98 | 98 | if dataOut.flagNoData: |
|
99 | 99 | return None |
|
100 | 100 | |
|
101 | 101 | if realtime: |
|
102 | 102 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
103 | 103 | print 'Skipping this plot function' |
|
104 | 104 | return |
|
105 | 105 | |
|
106 | 106 | if channelList == None: |
|
107 | 107 | channelIndexList = dataOut.channelIndexList |
|
108 | 108 | else: |
|
109 | 109 | channelIndexList = [] |
|
110 | 110 | for channel in channelList: |
|
111 | 111 | if channel not in dataOut.channelList: |
|
112 | 112 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
113 | 113 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
114 | 114 | |
|
115 | 115 | factor = dataOut.normFactor |
|
116 | 116 | x = dataOut.abscissaList |
|
117 | 117 | y = dataOut.heightList |
|
118 | 118 | |
|
119 | 119 | z = dataOut.data_pre[channelIndexList,:,:]/factor |
|
120 | 120 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
121 | 121 | avg = numpy.average(z, axis=1) |
|
122 | 122 | noise = dataOut.noise/factor |
|
123 | 123 | |
|
124 | 124 | zdB = 10*numpy.log10(z) |
|
125 | 125 | avgdB = 10*numpy.log10(avg) |
|
126 | 126 | noisedB = 10*numpy.log10(noise) |
|
127 | 127 | |
|
128 | 128 | #thisDatetime = dataOut.datatime |
|
129 | 129 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
130 | 130 | title = wintitle + " Parameters" |
|
131 | 131 | xlabel = "Velocity (m/s)" |
|
132 | 132 | ylabel = "Range (Km)" |
|
133 | 133 | |
|
134 | 134 | update_figfile = False |
|
135 | 135 | |
|
136 | 136 | if not self.isConfig: |
|
137 | 137 | |
|
138 | 138 | nplots = len(channelIndexList) |
|
139 | 139 | |
|
140 | 140 | self.setup(id=id, |
|
141 | 141 | nplots=nplots, |
|
142 | 142 | wintitle=wintitle, |
|
143 | 143 | showprofile=showprofile, |
|
144 | 144 | show=show) |
|
145 | 145 | |
|
146 | 146 | if xmin == None: xmin = numpy.nanmin(x) |
|
147 | 147 | if xmax == None: xmax = numpy.nanmax(x) |
|
148 | 148 | if ymin == None: ymin = numpy.nanmin(y) |
|
149 | 149 | if ymax == None: ymax = numpy.nanmax(y) |
|
150 | 150 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 |
|
151 | 151 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 |
|
152 | 152 | |
|
153 | 153 | self.FTP_WEI = ftp_wei |
|
154 | 154 | self.EXP_CODE = exp_code |
|
155 | 155 | self.SUB_EXP_CODE = sub_exp_code |
|
156 | 156 | self.PLOT_POS = plot_pos |
|
157 | 157 | |
|
158 | 158 | self.isConfig = True |
|
159 | 159 | update_figfile = True |
|
160 | 160 | |
|
161 | 161 | self.setWinTitle(title) |
|
162 | 162 | |
|
163 | 163 | for i in range(self.nplots): |
|
164 | 164 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
165 | 165 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i], noisedB[i], str_datetime) |
|
166 | 166 | axes = self.axesList[i*self.__nsubplots] |
|
167 | 167 | axes.pcolor(x, y, zdB[i,:,:], |
|
168 | 168 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
169 | 169 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
170 | 170 | ticksize=9, cblabel='') |
|
171 | 171 | #Mean Line |
|
172 | 172 | mean = dataOut.data_param[i, 1, :] |
|
173 | 173 | axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1) |
|
174 | 174 | |
|
175 | 175 | if self.__showprofile: |
|
176 | 176 | axes = self.axesList[i*self.__nsubplots +1] |
|
177 | 177 | axes.pline(avgdB[i], y, |
|
178 | 178 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
179 | 179 | xlabel='dB', ylabel='', title='', |
|
180 | 180 | ytick_visible=False, |
|
181 | 181 | grid='x') |
|
182 | 182 | |
|
183 | 183 | noiseline = numpy.repeat(noisedB[i], len(y)) |
|
184 | 184 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
185 | 185 | |
|
186 | 186 | self.draw() |
|
187 | 187 | |
|
188 | 188 | self.save(figpath=figpath, |
|
189 | 189 | figfile=figfile, |
|
190 | 190 | save=save, |
|
191 | 191 | ftp=ftp, |
|
192 | 192 | wr_period=wr_period, |
|
193 | 193 | thisDatetime=thisDatetime) |
|
194 | 194 | |
|
195 | 195 | |
|
196 | 196 | |
|
197 | 197 | class SkyMapPlot(Figure): |
|
198 | 198 | |
|
199 | 199 | __isConfig = None |
|
200 | 200 | __nsubplots = None |
|
201 | 201 | |
|
202 | 202 | WIDTHPROF = None |
|
203 | 203 | HEIGHTPROF = None |
|
204 | 204 | PREFIX = 'mmap' |
|
205 | 205 | |
|
206 | 206 | def __init__(self): |
|
207 | 207 | |
|
208 | 208 | self.isConfig = False |
|
209 | 209 | self.__nsubplots = 1 |
|
210 | 210 | |
|
211 | 211 | # self.WIDTH = 280 |
|
212 | 212 | # self.HEIGHT = 250 |
|
213 | 213 | self.WIDTH = 600 |
|
214 | 214 | self.HEIGHT = 600 |
|
215 | 215 | self.WIDTHPROF = 120 |
|
216 | 216 | self.HEIGHTPROF = 0 |
|
217 | 217 | self.counter_imagwr = 0 |
|
218 | 218 | |
|
219 | 219 | self.PLOT_CODE = MSKYMAP_CODE |
|
220 | 220 | |
|
221 | 221 | self.FTP_WEI = None |
|
222 | 222 | self.EXP_CODE = None |
|
223 | 223 | self.SUB_EXP_CODE = None |
|
224 | 224 | self.PLOT_POS = None |
|
225 | 225 | |
|
226 | 226 | def getSubplots(self): |
|
227 | 227 | |
|
228 | 228 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
229 | 229 | nrow = int(self.nplots*1./ncol + 0.9) |
|
230 | 230 | |
|
231 | 231 | return nrow, ncol |
|
232 | 232 | |
|
233 | 233 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
234 | 234 | |
|
235 | 235 | self.__showprofile = showprofile |
|
236 | 236 | self.nplots = nplots |
|
237 | 237 | |
|
238 | 238 | ncolspan = 1 |
|
239 | 239 | colspan = 1 |
|
240 | 240 | |
|
241 | 241 | self.createFigure(id = id, |
|
242 | 242 | wintitle = wintitle, |
|
243 | 243 | widthplot = self.WIDTH, #+ self.WIDTHPROF, |
|
244 | 244 | heightplot = self.HEIGHT,# + self.HEIGHTPROF, |
|
245 | 245 | show=show) |
|
246 | 246 | |
|
247 | 247 | nrow, ncol = 1,1 |
|
248 | 248 | counter = 0 |
|
249 | 249 | x = 0 |
|
250 | 250 | y = 0 |
|
251 | 251 | self.addAxes(1, 1, 0, 0, 1, 1, True) |
|
252 | 252 | |
|
253 | 253 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
254 | 254 | tmin=0, tmax=24, timerange=None, |
|
255 | 255 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
256 | 256 | server=None, folder=None, username=None, password=None, |
|
257 | 257 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
258 | 258 | |
|
259 | 259 | """ |
|
260 | 260 | |
|
261 | 261 | Input: |
|
262 | 262 | dataOut : |
|
263 | 263 | id : |
|
264 | 264 | wintitle : |
|
265 | 265 | channelList : |
|
266 | 266 | showProfile : |
|
267 | 267 | xmin : None, |
|
268 | 268 | xmax : None, |
|
269 | 269 | ymin : None, |
|
270 | 270 | ymax : None, |
|
271 | 271 | zmin : None, |
|
272 | 272 | zmax : None |
|
273 | 273 | """ |
|
274 | 274 | |
|
275 | 275 | arrayParameters = dataOut.data_param |
|
276 | 276 | error = arrayParameters[:,-1] |
|
277 | 277 | indValid = numpy.where(error == 0)[0] |
|
278 | 278 | finalMeteor = arrayParameters[indValid,:] |
|
279 | 279 | finalAzimuth = finalMeteor[:,3] |
|
280 | 280 | finalZenith = finalMeteor[:,4] |
|
281 | 281 | |
|
282 | 282 | x = finalAzimuth*numpy.pi/180 |
|
283 | 283 | y = finalZenith |
|
284 | 284 | x1 = [dataOut.ltctime, dataOut.ltctime] |
|
285 | 285 | |
|
286 | 286 | #thisDatetime = dataOut.datatime |
|
287 | 287 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
288 | 288 | title = wintitle + " Parameters" |
|
289 | 289 | xlabel = "Zonal Zenith Angle (deg) " |
|
290 | 290 | ylabel = "Meridional Zenith Angle (deg)" |
|
291 | 291 | update_figfile = False |
|
292 | 292 | |
|
293 | 293 | if not self.isConfig: |
|
294 | 294 | |
|
295 | 295 | nplots = 1 |
|
296 | 296 | |
|
297 | 297 | self.setup(id=id, |
|
298 | 298 | nplots=nplots, |
|
299 | 299 | wintitle=wintitle, |
|
300 | 300 | showprofile=showprofile, |
|
301 | 301 | show=show) |
|
302 | 302 | |
|
303 | 303 | if self.xmin is None and self.xmax is None: |
|
304 | 304 | self.xmin, self.xmax = self.getTimeLim(x1, tmin, tmax, timerange) |
|
305 | 305 | |
|
306 | 306 | if timerange != None: |
|
307 | 307 | self.timerange = timerange |
|
308 | 308 | else: |
|
309 | 309 | self.timerange = self.xmax - self.xmin |
|
310 | 310 | |
|
311 | 311 | self.FTP_WEI = ftp_wei |
|
312 | 312 | self.EXP_CODE = exp_code |
|
313 | 313 | self.SUB_EXP_CODE = sub_exp_code |
|
314 | 314 | self.PLOT_POS = plot_pos |
|
315 | 315 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
316 | 316 | self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
317 | 317 | self.isConfig = True |
|
318 | 318 | update_figfile = True |
|
319 | 319 | |
|
320 | 320 | self.setWinTitle(title) |
|
321 | 321 | |
|
322 | 322 | i = 0 |
|
323 | 323 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
324 | 324 | |
|
325 | 325 | axes = self.axesList[i*self.__nsubplots] |
|
326 | 326 | nevents = axes.x_buffer.shape[0] + x.shape[0] |
|
327 | 327 | title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents) |
|
328 | 328 | axes.polar(x, y, |
|
329 | 329 | title=title, xlabel=xlabel, ylabel=ylabel, |
|
330 | 330 | ticksize=9, cblabel='') |
|
331 | 331 | |
|
332 | 332 | self.draw() |
|
333 | 333 | |
|
334 | 334 | self.save(figpath=figpath, |
|
335 | 335 | figfile=figfile, |
|
336 | 336 | save=save, |
|
337 | 337 | ftp=ftp, |
|
338 | 338 | wr_period=wr_period, |
|
339 | 339 | thisDatetime=thisDatetime, |
|
340 | 340 | update_figfile=update_figfile) |
|
341 | 341 | |
|
342 | 342 | if dataOut.ltctime >= self.xmax: |
|
343 | 343 | self.isConfigmagwr = wr_period |
|
344 | 344 | self.isConfig = False |
|
345 | 345 | update_figfile = True |
|
346 | 346 | axes.__firsttime = True |
|
347 | 347 | self.xmin += self.timerange |
|
348 | 348 | self.xmax += self.timerange |
|
349 | 349 | |
|
350 | 350 | |
|
351 | 351 | |
|
352 | 352 | |
|
353 | 353 | class WindProfilerPlot(Figure): |
|
354 | 354 | |
|
355 | 355 | __isConfig = None |
|
356 | 356 | __nsubplots = None |
|
357 | 357 | |
|
358 | 358 | WIDTHPROF = None |
|
359 | 359 | HEIGHTPROF = None |
|
360 | 360 | PREFIX = 'wind' |
|
361 | 361 | |
|
362 | 362 | def __init__(self): |
|
363 | 363 | |
|
364 | 364 | self.timerange = None |
|
365 | 365 | self.isConfig = False |
|
366 | 366 | self.__nsubplots = 1 |
|
367 | 367 | |
|
368 | 368 | self.WIDTH = 800 |
|
369 | 369 | self.HEIGHT = 150 |
|
370 | 370 | self.WIDTHPROF = 120 |
|
371 | 371 | self.HEIGHTPROF = 0 |
|
372 | 372 | self.counter_imagwr = 0 |
|
373 | 373 | |
|
374 | 374 | self.PLOT_CODE = WIND_CODE |
|
375 | 375 | |
|
376 | 376 | self.FTP_WEI = None |
|
377 | 377 | self.EXP_CODE = None |
|
378 | 378 | self.SUB_EXP_CODE = None |
|
379 | 379 | self.PLOT_POS = None |
|
380 | 380 | self.tmin = None |
|
381 | 381 | self.tmax = None |
|
382 | 382 | |
|
383 | 383 | self.xmin = None |
|
384 | 384 | self.xmax = None |
|
385 | 385 | |
|
386 | 386 | self.figfile = None |
|
387 | 387 | |
|
388 | 388 | def getSubplots(self): |
|
389 | 389 | |
|
390 | 390 | ncol = 1 |
|
391 | 391 | nrow = self.nplots |
|
392 | 392 | |
|
393 | 393 | return nrow, ncol |
|
394 | 394 | |
|
395 | 395 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
396 | 396 | |
|
397 | 397 | self.__showprofile = showprofile |
|
398 | 398 | self.nplots = nplots |
|
399 | 399 | |
|
400 | 400 | ncolspan = 1 |
|
401 | 401 | colspan = 1 |
|
402 | 402 | |
|
403 | 403 | self.createFigure(id = id, |
|
404 | 404 | wintitle = wintitle, |
|
405 | 405 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
406 | 406 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
407 | 407 | show=show) |
|
408 | 408 | |
|
409 | 409 | nrow, ncol = self.getSubplots() |
|
410 | 410 | |
|
411 | 411 | counter = 0 |
|
412 | 412 | for y in range(nrow): |
|
413 | 413 | if counter >= self.nplots: |
|
414 | 414 | break |
|
415 | 415 | |
|
416 | 416 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
417 | 417 | counter += 1 |
|
418 | 418 | |
|
419 | 419 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='False', |
|
420 | 420 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
421 | 421 | zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None, |
|
422 | 422 | timerange=None, SNRthresh = None, |
|
423 | 423 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
424 | 424 | server=None, folder=None, username=None, password=None, |
|
425 | 425 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
426 | 426 | """ |
|
427 | 427 | |
|
428 | 428 | Input: |
|
429 | 429 | dataOut : |
|
430 | 430 | id : |
|
431 | 431 | wintitle : |
|
432 | 432 | channelList : |
|
433 | 433 | showProfile : |
|
434 | 434 | xmin : None, |
|
435 | 435 | xmax : None, |
|
436 | 436 | ymin : None, |
|
437 | 437 | ymax : None, |
|
438 | 438 | zmin : None, |
|
439 | 439 | zmax : None |
|
440 | 440 | """ |
|
441 | 441 | |
|
442 | 442 | # if timerange is not None: |
|
443 | 443 | # self.timerange = timerange |
|
444 | 444 | # |
|
445 | 445 | # tmin = None |
|
446 | 446 | # tmax = None |
|
447 | 447 | |
|
448 | 448 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
449 | 449 | # y = dataOut.heightList |
|
450 | 450 | y = dataOut.heightList |
|
451 | 451 | |
|
452 | 452 | z = dataOut.data_output.copy() |
|
453 | 453 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
454 | 454 | nplotsw = nplots |
|
455 | 455 | |
|
456 | 456 | #If there is a SNR function defined |
|
457 | 457 | if dataOut.data_SNR is not None: |
|
458 | 458 | nplots += 1 |
|
459 | 459 | SNR = dataOut.data_SNR |
|
460 | 460 | SNRavg = numpy.average(SNR, axis=0) |
|
461 | 461 | |
|
462 | 462 | SNRdB = 10*numpy.log10(SNR) |
|
463 | 463 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
464 | 464 | |
|
465 | 465 | if SNRthresh == None: SNRthresh = -5.0 |
|
466 | 466 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
467 | 467 | |
|
468 | 468 | for i in range(nplotsw): |
|
469 | 469 | z[i,ind] = numpy.nan |
|
470 | 470 | |
|
471 | 471 | |
|
472 | 472 | # showprofile = False |
|
473 | 473 | # thisDatetime = dataOut.datatime |
|
474 | 474 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
475 | 475 | title = wintitle + "Wind" |
|
476 | 476 | xlabel = "" |
|
477 | 477 | ylabel = "Range (Km)" |
|
478 | 478 | update_figfile = False |
|
479 | 479 | |
|
480 | 480 | if not self.isConfig: |
|
481 | 481 | |
|
482 | 482 | self.setup(id=id, |
|
483 | 483 | nplots=nplots, |
|
484 | 484 | wintitle=wintitle, |
|
485 | 485 | showprofile=showprofile, |
|
486 | 486 | show=show) |
|
487 | 487 | |
|
488 | 488 | if timerange is not None: |
|
489 | 489 | self.timerange = timerange |
|
490 | 490 | |
|
491 | 491 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
492 | 492 | |
|
493 | 493 | if ymin == None: ymin = numpy.nanmin(y) |
|
494 | 494 | if ymax == None: ymax = numpy.nanmax(y) |
|
495 | 495 | |
|
496 | 496 | if zmax == None: zmax = numpy.nanmax(abs(z[range(2),:])) |
|
497 | 497 | #if numpy.isnan(zmax): zmax = 50 |
|
498 | 498 | if zmin == None: zmin = -zmax |
|
499 | 499 | |
|
500 | 500 | if nplotsw == 3: |
|
501 | 501 | if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:])) |
|
502 | 502 | if zmin_ver == None: zmin_ver = -zmax_ver |
|
503 | 503 | |
|
504 | 504 | if dataOut.data_SNR is not None: |
|
505 | 505 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
506 | 506 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
507 | 507 | |
|
508 | 508 | |
|
509 | 509 | self.FTP_WEI = ftp_wei |
|
510 | 510 | self.EXP_CODE = exp_code |
|
511 | 511 | self.SUB_EXP_CODE = sub_exp_code |
|
512 | 512 | self.PLOT_POS = plot_pos |
|
513 | 513 | |
|
514 | 514 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
515 | 515 | self.isConfig = True |
|
516 | 516 | self.figfile = figfile |
|
517 | 517 | update_figfile = True |
|
518 | 518 | |
|
519 | 519 | self.setWinTitle(title) |
|
520 | 520 | |
|
521 | 521 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
522 | 522 | x[1] = self.xmax |
|
523 | 523 | |
|
524 | 524 | strWind = ['Zonal', 'Meridional', 'Vertical'] |
|
525 | 525 | strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] |
|
526 | 526 | zmaxVector = [zmax, zmax, zmax_ver] |
|
527 | 527 | zminVector = [zmin, zmin, zmin_ver] |
|
528 | 528 | windFactor = [1,1,100] |
|
529 | 529 | |
|
530 | 530 | for i in range(nplotsw): |
|
531 | 531 | |
|
532 | 532 | title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
533 | 533 | axes = self.axesList[i*self.__nsubplots] |
|
534 | 534 | |
|
535 | 535 | z1 = z[i,:].reshape((1,-1))*windFactor[i] |
|
536 | 536 | |
|
537 | 537 | axes.pcolorbuffer(x, y, z1, |
|
538 | 538 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
539 | 539 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
540 | 540 | ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="RdBu_r" ) |
|
541 | 541 | |
|
542 | 542 | if dataOut.data_SNR is not None: |
|
543 | 543 | i += 1 |
|
544 | 544 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
545 | 545 | axes = self.axesList[i*self.__nsubplots] |
|
546 | 546 | |
|
547 | 547 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
548 | 548 | |
|
549 | 549 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
550 | 550 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
551 | 551 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
552 | 552 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
553 | 553 | |
|
554 | 554 | self.draw() |
|
555 | 555 | |
|
556 | 556 | if dataOut.ltctime >= self.xmax: |
|
557 | 557 | self.counter_imagwr = wr_period |
|
558 | 558 | self.isConfig = False |
|
559 | 559 | update_figfile = True |
|
560 | 560 | |
|
561 | 561 | self.save(figpath=figpath, |
|
562 | 562 | figfile=figfile, |
|
563 | 563 | save=save, |
|
564 | 564 | ftp=ftp, |
|
565 | 565 | wr_period=wr_period, |
|
566 | 566 | thisDatetime=thisDatetime, |
|
567 | 567 | update_figfile=update_figfile) |
|
568 | 568 | |
|
569 | class ParametersPlot(Figure): | |
|
569 | 570 | |
|
571 | __isConfig = None | |
|
572 | __nsubplots = None | |
|
570 | 573 | |
|
571 | class ParametersPlot(Figure): | |
|
574 | WIDTHPROF = None | |
|
575 | HEIGHTPROF = None | |
|
576 | PREFIX = 'param' | |
|
577 | ||
|
578 | nplots = None | |
|
579 | nchan = None | |
|
580 | ||
|
581 | def __init__(self): | |
|
582 | ||
|
583 | self.timerange = None | |
|
584 | self.isConfig = False | |
|
585 | self.__nsubplots = 1 | |
|
586 | ||
|
587 | self.WIDTH = 800 | |
|
588 | self.HEIGHT = 180 | |
|
589 | self.WIDTHPROF = 120 | |
|
590 | self.HEIGHTPROF = 0 | |
|
591 | self.counter_imagwr = 0 | |
|
592 | ||
|
593 | self.PLOT_CODE = RTI_CODE | |
|
594 | ||
|
595 | self.FTP_WEI = None | |
|
596 | self.EXP_CODE = None | |
|
597 | self.SUB_EXP_CODE = None | |
|
598 | self.PLOT_POS = None | |
|
599 | self.tmin = None | |
|
600 | self.tmax = None | |
|
601 | ||
|
602 | self.xmin = None | |
|
603 | self.xmax = None | |
|
604 | ||
|
605 | self.figfile = None | |
|
606 | ||
|
607 | def getSubplots(self): | |
|
608 | ||
|
609 | ncol = 1 | |
|
610 | nrow = self.nplots | |
|
611 | ||
|
612 | return nrow, ncol | |
|
613 | ||
|
614 | def setup(self, id, nplots, wintitle, show=True): | |
|
615 | ||
|
616 | self.nplots = nplots | |
|
617 | ||
|
618 | ncolspan = 1 | |
|
619 | colspan = 1 | |
|
620 | ||
|
621 | self.createFigure(id = id, | |
|
622 | wintitle = wintitle, | |
|
623 | widthplot = self.WIDTH + self.WIDTHPROF, | |
|
624 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
|
625 | show=show) | |
|
626 | ||
|
627 | nrow, ncol = self.getSubplots() | |
|
628 | ||
|
629 | counter = 0 | |
|
630 | for y in range(nrow): | |
|
631 | for x in range(ncol): | |
|
632 | ||
|
633 | if counter >= self.nplots: | |
|
634 | break | |
|
635 | ||
|
636 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
|
637 | ||
|
638 | counter += 1 | |
|
639 | ||
|
640 | def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap=True, | |
|
641 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, timerange=None, | |
|
642 | showSNR=False, SNRthresh = -numpy.inf, SNRmin=None, SNRmax=None, | |
|
643 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
|
644 | server=None, folder=None, username=None, password=None, | |
|
645 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
|
646 | ||
|
647 | """ | |
|
648 | ||
|
649 | Input: | |
|
650 | dataOut : | |
|
651 | id : | |
|
652 | wintitle : | |
|
653 | channelList : | |
|
654 | showProfile : | |
|
655 | xmin : None, | |
|
656 | xmax : None, | |
|
657 | ymin : None, | |
|
658 | ymax : None, | |
|
659 | zmin : None, | |
|
660 | zmax : None | |
|
661 | """ | |
|
662 | ||
|
663 | if colormap: | |
|
664 | colormap="jet" | |
|
665 | else: | |
|
666 | colormap="RdBu_r" | |
|
667 | ||
|
668 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
|
669 | return | |
|
670 | ||
|
671 | if channelList == None: | |
|
672 | channelIndexList = dataOut.channelIndexList | |
|
673 | else: | |
|
674 | channelIndexList = [] | |
|
675 | for channel in channelList: | |
|
676 | if channel not in dataOut.channelList: | |
|
677 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
|
678 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
679 | ||
|
680 | x = dataOut.getTimeRange1(dataOut.paramInterval) | |
|
681 | y = dataOut.getHeiRange() | |
|
682 | z = dataOut.data_param[channelIndexList,paramIndex,:] | |
|
683 | ||
|
684 | if showSNR: | |
|
685 | #SNR data | |
|
686 | SNRarray = dataOut.data_SNR[channelIndexList,:] | |
|
687 | SNRdB = 10*numpy.log10(SNRarray) | |
|
688 | ind = numpy.where(SNRdB < SNRthresh) | |
|
689 | z[ind] = numpy.nan | |
|
690 | ||
|
691 | thisDatetime = dataOut.datatime | |
|
692 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
|
693 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
|
694 | xlabel = "" | |
|
695 | ylabel = "Range (Km)" | |
|
696 | ||
|
697 | update_figfile = False | |
|
698 | ||
|
699 | if not self.isConfig: | |
|
700 | ||
|
701 | nchan = len(channelIndexList) | |
|
702 | self.nchan = nchan | |
|
703 | self.plotFact = 1 | |
|
704 | nplots = nchan | |
|
705 | ||
|
706 | if showSNR: | |
|
707 | nplots = nchan*2 | |
|
708 | self.plotFact = 2 | |
|
709 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) | |
|
710 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) | |
|
711 | ||
|
712 | self.setup(id=id, | |
|
713 | nplots=nplots, | |
|
714 | wintitle=wintitle, | |
|
715 | show=show) | |
|
716 | ||
|
717 | if timerange != None: | |
|
718 | self.timerange = timerange | |
|
719 | ||
|
720 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
|
721 | ||
|
722 | if ymin == None: ymin = numpy.nanmin(y) | |
|
723 | if ymax == None: ymax = numpy.nanmax(y) | |
|
724 | if zmin == None: zmin = dataOut.abscissaList[0] | |
|
725 | if zmax == None: zmax = dataOut.abscissaList[-1] | |
|
726 | ||
|
727 | self.FTP_WEI = ftp_wei | |
|
728 | self.EXP_CODE = exp_code | |
|
729 | self.SUB_EXP_CODE = sub_exp_code | |
|
730 | self.PLOT_POS = plot_pos | |
|
731 | ||
|
732 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
|
733 | self.isConfig = True | |
|
734 | self.figfile = figfile | |
|
735 | update_figfile = True | |
|
736 | ||
|
737 | self.setWinTitle(title) | |
|
738 | ||
|
739 | for i in range(self.nchan): | |
|
740 | index = channelIndexList[i] | |
|
741 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
|
742 | axes = self.axesList[i*self.plotFact] | |
|
743 | z1 = z[i,:].reshape((1,-1)) | |
|
744 | axes.pcolorbuffer(x, y, z1, | |
|
745 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
746 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
|
747 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) | |
|
748 | ||
|
749 | if showSNR: | |
|
750 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
|
751 | axes = self.axesList[i*self.plotFact + 1] | |
|
752 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |
|
753 | axes.pcolorbuffer(x, y, SNRdB1, | |
|
754 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
|
755 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
|
756 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |
|
757 | ||
|
758 | ||
|
759 | self.draw() | |
|
760 | ||
|
761 | if dataOut.ltctime >= self.xmax: | |
|
762 | self.counter_imagwr = wr_period | |
|
763 | self.isConfig = False | |
|
764 | update_figfile = True | |
|
765 | ||
|
766 | self.save(figpath=figpath, | |
|
767 | figfile=figfile, | |
|
768 | save=save, | |
|
769 | ftp=ftp, | |
|
770 | wr_period=wr_period, | |
|
771 | thisDatetime=thisDatetime, | |
|
772 | update_figfile=update_figfile) | |
|
773 | ||
|
774 | ||
|
775 | ||
|
776 | class Parameters1Plot(Figure): | |
|
572 | 777 | |
|
573 | 778 | __isConfig = None |
|
574 | 779 | __nsubplots = None |
|
575 | 780 | |
|
576 | 781 | WIDTHPROF = None |
|
577 | 782 | HEIGHTPROF = None |
|
578 | 783 | PREFIX = 'prm' |
|
579 | 784 | |
|
580 | 785 | def __init__(self): |
|
581 | 786 | |
|
582 | 787 | self.timerange = 2*60*60 |
|
583 | 788 | self.isConfig = False |
|
584 | 789 | self.__nsubplots = 1 |
|
585 | 790 | |
|
586 | 791 | self.WIDTH = 800 |
|
587 | 792 | self.HEIGHT = 150 |
|
588 | 793 | self.WIDTHPROF = 120 |
|
589 | 794 | self.HEIGHTPROF = 0 |
|
590 | 795 | self.counter_imagwr = 0 |
|
591 | 796 | |
|
592 | 797 | self.PLOT_CODE = PARMS_CODE |
|
593 | 798 | |
|
594 | 799 | self.FTP_WEI = None |
|
595 | 800 | self.EXP_CODE = None |
|
596 | 801 | self.SUB_EXP_CODE = None |
|
597 | 802 | self.PLOT_POS = None |
|
598 | 803 | self.tmin = None |
|
599 | 804 | self.tmax = None |
|
600 | 805 | |
|
601 | 806 | self.xmin = None |
|
602 | 807 | self.xmax = None |
|
603 | 808 | |
|
604 | 809 | self.figfile = None |
|
605 | 810 | |
|
606 | 811 | def getSubplots(self): |
|
607 | 812 | |
|
608 | 813 | ncol = 1 |
|
609 | 814 | nrow = self.nplots |
|
610 | 815 | |
|
611 | 816 | return nrow, ncol |
|
612 | 817 | |
|
613 | 818 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
614 | 819 | |
|
615 | 820 | self.__showprofile = showprofile |
|
616 | 821 | self.nplots = nplots |
|
617 | 822 | |
|
618 | 823 | ncolspan = 1 |
|
619 | 824 | colspan = 1 |
|
620 | 825 | |
|
621 | 826 | self.createFigure(id = id, |
|
622 | 827 | wintitle = wintitle, |
|
623 | 828 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
624 | 829 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
625 | 830 | show=show) |
|
626 | 831 | |
|
627 | 832 | nrow, ncol = self.getSubplots() |
|
628 | 833 | |
|
629 | 834 | counter = 0 |
|
630 | 835 | for y in range(nrow): |
|
631 | 836 | for x in range(ncol): |
|
632 | 837 | |
|
633 | 838 | if counter >= self.nplots: |
|
634 | 839 | break |
|
635 | 840 | |
|
636 | 841 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
637 | 842 | |
|
638 | 843 | if showprofile: |
|
639 | 844 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
640 | 845 | |
|
641 | 846 | counter += 1 |
|
642 | 847 | |
|
643 | 848 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
644 | 849 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, |
|
645 | 850 | parameterIndex = None, onlyPositive = False, |
|
646 | 851 | SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, onlySNR = False, |
|
647 | 852 | DOP = True, |
|
648 | 853 | zlabel = "", parameterName = "", parameterObject = "data_param", |
|
649 | 854 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
650 | 855 | server=None, folder=None, username=None, password=None, |
|
651 | 856 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
652 | 857 | |
|
653 | 858 | """ |
|
654 | 859 | |
|
655 | 860 | Input: |
|
656 | 861 | dataOut : |
|
657 | 862 | id : |
|
658 | 863 | wintitle : |
|
659 | 864 | channelList : |
|
660 | 865 | showProfile : |
|
661 | 866 | xmin : None, |
|
662 | 867 | xmax : None, |
|
663 | 868 | ymin : None, |
|
664 | 869 | ymax : None, |
|
665 | 870 | zmin : None, |
|
666 | 871 | zmax : None |
|
667 | 872 | """ |
|
668 | 873 | |
|
669 | 874 | data_param = getattr(dataOut, parameterObject) |
|
670 | 875 | |
|
671 | 876 | if channelList == None: |
|
672 | 877 | channelIndexList = numpy.arange(data_param.shape[0]) |
|
673 | 878 | else: |
|
674 | 879 | channelIndexList = numpy.array(channelList) |
|
675 | 880 | |
|
676 | 881 | nchan = len(channelIndexList) #Number of channels being plotted |
|
677 | 882 | |
|
678 | 883 | if nchan < 1: |
|
679 | 884 | return |
|
680 | 885 | |
|
681 | 886 | nGraphsByChannel = 0 |
|
682 | 887 | |
|
683 | 888 | if SNR: |
|
684 | 889 | nGraphsByChannel += 1 |
|
685 | 890 | if DOP: |
|
686 | 891 | nGraphsByChannel += 1 |
|
687 | 892 | |
|
688 | 893 | if nGraphsByChannel < 1: |
|
689 | 894 | return |
|
690 | 895 | |
|
691 | 896 | nplots = nGraphsByChannel*nchan |
|
692 | 897 | |
|
693 | 898 | if timerange is not None: |
|
694 | 899 | self.timerange = timerange |
|
695 | 900 | |
|
696 | 901 | #tmin = None |
|
697 | 902 | #tmax = None |
|
698 | 903 | if parameterIndex == None: |
|
699 | 904 | parameterIndex = 1 |
|
700 | 905 | |
|
701 | 906 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
702 | 907 | y = dataOut.heightList |
|
703 | 908 | z = data_param[channelIndexList,parameterIndex,:].copy() |
|
704 | 909 | |
|
705 | 910 | zRange = dataOut.abscissaList |
|
706 | 911 | # nChannels = z.shape[0] #Number of wind dimensions estimated |
|
707 | 912 | # thisDatetime = dataOut.datatime |
|
708 | 913 | |
|
709 | 914 | if dataOut.data_SNR is not None: |
|
710 | 915 | SNRarray = dataOut.data_SNR[channelIndexList,:] |
|
711 | 916 | SNRdB = 10*numpy.log10(SNRarray) |
|
712 | 917 | # SNRavgdB = 10*numpy.log10(SNRavg) |
|
713 | 918 | ind = numpy.where(SNRdB < 10**(SNRthresh/10)) |
|
714 | 919 | z[ind] = numpy.nan |
|
715 | 920 | |
|
716 | 921 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
717 | 922 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
718 | 923 | xlabel = "" |
|
719 | 924 | ylabel = "Range (Km)" |
|
720 | 925 | |
|
721 | 926 | if (SNR and not onlySNR): nplots = 2*nplots |
|
722 | 927 | |
|
723 | 928 | if onlyPositive: |
|
724 | 929 | colormap = "jet" |
|
725 | 930 | zmin = 0 |
|
726 | 931 | else: colormap = "RdBu_r" |
|
727 | 932 | |
|
728 | 933 | if not self.isConfig: |
|
729 | 934 | |
|
730 | 935 | self.setup(id=id, |
|
731 | 936 | nplots=nplots, |
|
732 | 937 | wintitle=wintitle, |
|
733 | 938 | showprofile=showprofile, |
|
734 | 939 | show=show) |
|
735 | 940 | |
|
736 | 941 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
737 | 942 | |
|
738 | 943 | if ymin == None: ymin = numpy.nanmin(y) |
|
739 | 944 | if ymax == None: ymax = numpy.nanmax(y) |
|
740 | 945 | if zmin == None: zmin = numpy.nanmin(zRange) |
|
741 | 946 | if zmax == None: zmax = numpy.nanmax(zRange) |
|
742 | 947 | |
|
743 | 948 | if SNR: |
|
744 | 949 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
745 | 950 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
746 | 951 | |
|
747 | 952 | self.FTP_WEI = ftp_wei |
|
748 | 953 | self.EXP_CODE = exp_code |
|
749 | 954 | self.SUB_EXP_CODE = sub_exp_code |
|
750 | 955 | self.PLOT_POS = plot_pos |
|
751 | 956 | |
|
752 | 957 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
753 | 958 | self.isConfig = True |
|
754 | 959 | self.figfile = figfile |
|
755 | 960 | |
|
756 | 961 | self.setWinTitle(title) |
|
757 | 962 | |
|
758 | 963 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
759 | 964 | x[1] = self.xmax |
|
760 | 965 | |
|
761 | 966 | for i in range(nchan): |
|
762 | 967 | |
|
763 | 968 | if (SNR and not onlySNR): j = 2*i |
|
764 | 969 | else: j = i |
|
765 | 970 | |
|
766 | 971 | j = nGraphsByChannel*i |
|
767 | 972 | |
|
768 | 973 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
769 | 974 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
770 | 975 | |
|
771 | 976 | if not onlySNR: |
|
772 | 977 | axes = self.axesList[j*self.__nsubplots] |
|
773 | 978 | z1 = z[i,:].reshape((1,-1)) |
|
774 | 979 | axes.pcolorbuffer(x, y, z1, |
|
775 | 980 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
776 | 981 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
777 | 982 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
778 | 983 | |
|
779 | 984 | if DOP: |
|
780 | 985 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
781 | 986 | |
|
782 | 987 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
783 | 988 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
784 | 989 | axes = self.axesList[j] |
|
785 | 990 | z1 = z[i,:].reshape((1,-1)) |
|
786 | 991 | axes.pcolorbuffer(x, y, z1, |
|
787 | 992 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
788 | 993 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
789 | 994 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
790 | 995 | |
|
791 | 996 | if SNR: |
|
792 | 997 | title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
793 | 998 | axes = self.axesList[(j)*self.__nsubplots] |
|
794 | 999 | if not onlySNR: |
|
795 | 1000 | axes = self.axesList[(j + 1)*self.__nsubplots] |
|
796 | 1001 | |
|
797 | 1002 | axes = self.axesList[(j + nGraphsByChannel-1)] |
|
798 | 1003 | |
|
799 | 1004 | z1 = SNRdB[i,:].reshape((1,-1)) |
|
800 | 1005 | axes.pcolorbuffer(x, y, z1, |
|
801 | 1006 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
802 | 1007 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap="jet", |
|
803 | 1008 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
804 | 1009 | |
|
805 | 1010 | |
|
806 | 1011 | |
|
807 | 1012 | self.draw() |
|
808 | 1013 | |
|
809 | 1014 | if x[1] >= self.axesList[0].xmax: |
|
810 | 1015 | self.counter_imagwr = wr_period |
|
811 | 1016 | self.isConfig = False |
|
812 | 1017 | self.figfile = None |
|
813 | 1018 | |
|
814 | 1019 | self.save(figpath=figpath, |
|
815 | 1020 | figfile=figfile, |
|
816 | 1021 | save=save, |
|
817 | 1022 | ftp=ftp, |
|
818 | 1023 | wr_period=wr_period, |
|
819 | 1024 | thisDatetime=thisDatetime, |
|
820 | 1025 | update_figfile=False) |
|
821 | 1026 | |
|
822 | 1027 | class SpectralFittingPlot(Figure): |
|
823 | 1028 | |
|
824 | 1029 | __isConfig = None |
|
825 | 1030 | __nsubplots = None |
|
826 | 1031 | |
|
827 | 1032 | WIDTHPROF = None |
|
828 | 1033 | HEIGHTPROF = None |
|
829 | 1034 | PREFIX = 'prm' |
|
830 | 1035 | |
|
831 | 1036 | |
|
832 | 1037 | N = None |
|
833 | 1038 | ippSeconds = None |
|
834 | 1039 | |
|
835 | 1040 | def __init__(self): |
|
836 | 1041 | self.isConfig = False |
|
837 | 1042 | self.__nsubplots = 1 |
|
838 | 1043 | |
|
839 | 1044 | self.PLOT_CODE = SPECFIT_CODE |
|
840 | 1045 | |
|
841 | 1046 | self.WIDTH = 450 |
|
842 | 1047 | self.HEIGHT = 250 |
|
843 | 1048 | self.WIDTHPROF = 0 |
|
844 | 1049 | self.HEIGHTPROF = 0 |
|
845 | 1050 | |
|
846 | 1051 | def getSubplots(self): |
|
847 | 1052 | |
|
848 | 1053 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
849 | 1054 | nrow = int(self.nplots*1./ncol + 0.9) |
|
850 | 1055 | |
|
851 | 1056 | return nrow, ncol |
|
852 | 1057 | |
|
853 | 1058 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
854 | 1059 | |
|
855 | 1060 | showprofile = False |
|
856 | 1061 | self.__showprofile = showprofile |
|
857 | 1062 | self.nplots = nplots |
|
858 | 1063 | |
|
859 | 1064 | ncolspan = 5 |
|
860 | 1065 | colspan = 4 |
|
861 | 1066 | if showprofile: |
|
862 | 1067 | ncolspan = 5 |
|
863 | 1068 | colspan = 4 |
|
864 | 1069 | self.__nsubplots = 2 |
|
865 | 1070 | |
|
866 | 1071 | self.createFigure(id = id, |
|
867 | 1072 | wintitle = wintitle, |
|
868 | 1073 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
869 | 1074 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
870 | 1075 | show=show) |
|
871 | 1076 | |
|
872 | 1077 | nrow, ncol = self.getSubplots() |
|
873 | 1078 | |
|
874 | 1079 | counter = 0 |
|
875 | 1080 | for y in range(nrow): |
|
876 | 1081 | for x in range(ncol): |
|
877 | 1082 | |
|
878 | 1083 | if counter >= self.nplots: |
|
879 | 1084 | break |
|
880 | 1085 | |
|
881 | 1086 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
882 | 1087 | |
|
883 | 1088 | if showprofile: |
|
884 | 1089 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
885 | 1090 | |
|
886 | 1091 | counter += 1 |
|
887 | 1092 | |
|
888 | 1093 | def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True, |
|
889 | 1094 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
890 | 1095 | save=False, figpath='./', figfile=None, show=True): |
|
891 | 1096 | |
|
892 | 1097 | """ |
|
893 | 1098 | |
|
894 | 1099 | Input: |
|
895 | 1100 | dataOut : |
|
896 | 1101 | id : |
|
897 | 1102 | wintitle : |
|
898 | 1103 | channelList : |
|
899 | 1104 | showProfile : |
|
900 | 1105 | xmin : None, |
|
901 | 1106 | xmax : None, |
|
902 | 1107 | zmin : None, |
|
903 | 1108 | zmax : None |
|
904 | 1109 | """ |
|
905 | 1110 | |
|
906 | 1111 | if cutHeight==None: |
|
907 | 1112 | h=270 |
|
908 | 1113 | heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin() |
|
909 | 1114 | cutHeight = dataOut.heightList[heightindex] |
|
910 | 1115 | |
|
911 | 1116 | factor = dataOut.normFactor |
|
912 | 1117 | x = dataOut.abscissaList[:-1] |
|
913 | 1118 | #y = dataOut.getHeiRange() |
|
914 | 1119 | |
|
915 | 1120 | z = dataOut.data_pre[:,:,heightindex]/factor |
|
916 | 1121 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
917 | 1122 | avg = numpy.average(z, axis=1) |
|
918 | 1123 | listChannels = z.shape[0] |
|
919 | 1124 | |
|
920 | 1125 | #Reconstruct Function |
|
921 | 1126 | if fit==True: |
|
922 | 1127 | groupArray = dataOut.groupList |
|
923 | 1128 | listChannels = groupArray.reshape((groupArray.size)) |
|
924 | 1129 | listChannels.sort() |
|
925 | 1130 | spcFitLine = numpy.zeros(z.shape) |
|
926 | 1131 | constants = dataOut.constants |
|
927 | 1132 | |
|
928 | 1133 | nGroups = groupArray.shape[0] |
|
929 | 1134 | nChannels = groupArray.shape[1] |
|
930 | 1135 | nProfiles = z.shape[1] |
|
931 | 1136 | |
|
932 | 1137 | for f in range(nGroups): |
|
933 | 1138 | groupChann = groupArray[f,:] |
|
934 | 1139 | p = dataOut.data_param[f,:,heightindex] |
|
935 | 1140 | # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167]) |
|
936 | 1141 | fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles |
|
937 | 1142 | fitLineAux = fitLineAux.reshape((nChannels,nProfiles)) |
|
938 | 1143 | spcFitLine[groupChann,:] = fitLineAux |
|
939 | 1144 | # spcFitLine = spcFitLine/factor |
|
940 | 1145 | |
|
941 | 1146 | z = z[listChannels,:] |
|
942 | 1147 | spcFitLine = spcFitLine[listChannels,:] |
|
943 | 1148 | spcFitLinedB = 10*numpy.log10(spcFitLine) |
|
944 | 1149 | |
|
945 | 1150 | zdB = 10*numpy.log10(z) |
|
946 | 1151 | #thisDatetime = dataOut.datatime |
|
947 | 1152 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
948 | 1153 | title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
949 | 1154 | xlabel = "Velocity (m/s)" |
|
950 | 1155 | ylabel = "Spectrum" |
|
951 | 1156 | |
|
952 | 1157 | if not self.isConfig: |
|
953 | 1158 | |
|
954 | 1159 | nplots = listChannels.size |
|
955 | 1160 | |
|
956 | 1161 | self.setup(id=id, |
|
957 | 1162 | nplots=nplots, |
|
958 | 1163 | wintitle=wintitle, |
|
959 | 1164 | showprofile=showprofile, |
|
960 | 1165 | show=show) |
|
961 | 1166 | |
|
962 | 1167 | if xmin == None: xmin = numpy.nanmin(x) |
|
963 | 1168 | if xmax == None: xmax = numpy.nanmax(x) |
|
964 | 1169 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
965 | 1170 | if ymax == None: ymax = numpy.nanmax(zdB)+2 |
|
966 | 1171 | |
|
967 | 1172 | self.isConfig = True |
|
968 | 1173 | |
|
969 | 1174 | self.setWinTitle(title) |
|
970 | 1175 | for i in range(self.nplots): |
|
971 | 1176 | # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i]) |
|
972 | 1177 | title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i]) |
|
973 | 1178 | axes = self.axesList[i*self.__nsubplots] |
|
974 | 1179 | if fit == False: |
|
975 | 1180 | axes.pline(x, zdB[i,:], |
|
976 | 1181 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
977 | 1182 | xlabel=xlabel, ylabel=ylabel, title=title |
|
978 | 1183 | ) |
|
979 | 1184 | if fit == True: |
|
980 | 1185 | fitline=spcFitLinedB[i,:] |
|
981 | 1186 | y=numpy.vstack([zdB[i,:],fitline] ) |
|
982 | 1187 | legendlabels=['Data','Fitting'] |
|
983 | 1188 | axes.pmultilineyaxis(x, y, |
|
984 | 1189 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
985 | 1190 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
986 | 1191 | legendlabels=legendlabels, marker=None, |
|
987 | 1192 | linestyle='solid', grid='both') |
|
988 | 1193 | |
|
989 | 1194 | self.draw() |
|
990 | 1195 | |
|
991 | 1196 | self.save(figpath=figpath, |
|
992 | 1197 | figfile=figfile, |
|
993 | 1198 | save=save, |
|
994 | 1199 | ftp=ftp, |
|
995 | 1200 | wr_period=wr_period, |
|
996 | 1201 | thisDatetime=thisDatetime) |
|
997 | 1202 | |
|
998 | 1203 | |
|
999 | 1204 | class EWDriftsPlot(Figure): |
|
1000 | 1205 | |
|
1001 | 1206 | __isConfig = None |
|
1002 | 1207 | __nsubplots = None |
|
1003 | 1208 | |
|
1004 | 1209 | WIDTHPROF = None |
|
1005 | 1210 | HEIGHTPROF = None |
|
1006 | 1211 | PREFIX = 'drift' |
|
1007 | 1212 | |
|
1008 | 1213 | def __init__(self): |
|
1009 | 1214 | |
|
1010 | 1215 | self.timerange = 2*60*60 |
|
1011 | 1216 | self.isConfig = False |
|
1012 | 1217 | self.__nsubplots = 1 |
|
1013 | 1218 | |
|
1014 | 1219 | self.WIDTH = 800 |
|
1015 | 1220 | self.HEIGHT = 150 |
|
1016 | 1221 | self.WIDTHPROF = 120 |
|
1017 | 1222 | self.HEIGHTPROF = 0 |
|
1018 | 1223 | self.counter_imagwr = 0 |
|
1019 | 1224 | |
|
1020 | 1225 | self.PLOT_CODE = EWDRIFT_CODE |
|
1021 | 1226 | |
|
1022 | 1227 | self.FTP_WEI = None |
|
1023 | 1228 | self.EXP_CODE = None |
|
1024 | 1229 | self.SUB_EXP_CODE = None |
|
1025 | 1230 | self.PLOT_POS = None |
|
1026 | 1231 | self.tmin = None |
|
1027 | 1232 | self.tmax = None |
|
1028 | 1233 | |
|
1029 | 1234 | self.xmin = None |
|
1030 | 1235 | self.xmax = None |
|
1031 | 1236 | |
|
1032 | 1237 | self.figfile = None |
|
1033 | 1238 | |
|
1034 | 1239 | def getSubplots(self): |
|
1035 | 1240 | |
|
1036 | 1241 | ncol = 1 |
|
1037 | 1242 | nrow = self.nplots |
|
1038 | 1243 | |
|
1039 | 1244 | return nrow, ncol |
|
1040 | 1245 | |
|
1041 | 1246 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1042 | 1247 | |
|
1043 | 1248 | self.__showprofile = showprofile |
|
1044 | 1249 | self.nplots = nplots |
|
1045 | 1250 | |
|
1046 | 1251 | ncolspan = 1 |
|
1047 | 1252 | colspan = 1 |
|
1048 | 1253 | |
|
1049 | 1254 | self.createFigure(id = id, |
|
1050 | 1255 | wintitle = wintitle, |
|
1051 | 1256 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1052 | 1257 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1053 | 1258 | show=show) |
|
1054 | 1259 | |
|
1055 | 1260 | nrow, ncol = self.getSubplots() |
|
1056 | 1261 | |
|
1057 | 1262 | counter = 0 |
|
1058 | 1263 | for y in range(nrow): |
|
1059 | 1264 | if counter >= self.nplots: |
|
1060 | 1265 | break |
|
1061 | 1266 | |
|
1062 | 1267 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
1063 | 1268 | counter += 1 |
|
1064 | 1269 | |
|
1065 | 1270 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1066 | 1271 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
1067 | 1272 | zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None, |
|
1068 | 1273 | timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False, |
|
1069 | 1274 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1070 | 1275 | server=None, folder=None, username=None, password=None, |
|
1071 | 1276 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1072 | 1277 | """ |
|
1073 | 1278 | |
|
1074 | 1279 | Input: |
|
1075 | 1280 | dataOut : |
|
1076 | 1281 | id : |
|
1077 | 1282 | wintitle : |
|
1078 | 1283 | channelList : |
|
1079 | 1284 | showProfile : |
|
1080 | 1285 | xmin : None, |
|
1081 | 1286 | xmax : None, |
|
1082 | 1287 | ymin : None, |
|
1083 | 1288 | ymax : None, |
|
1084 | 1289 | zmin : None, |
|
1085 | 1290 | zmax : None |
|
1086 | 1291 | """ |
|
1087 | 1292 | |
|
1088 | 1293 | if timerange is not None: |
|
1089 | 1294 | self.timerange = timerange |
|
1090 | 1295 | |
|
1091 | 1296 | tmin = None |
|
1092 | 1297 | tmax = None |
|
1093 | 1298 | |
|
1094 | 1299 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
1095 | 1300 | # y = dataOut.heightList |
|
1096 | 1301 | y = dataOut.heightList |
|
1097 | 1302 | |
|
1098 | 1303 | z = dataOut.data_output |
|
1099 | 1304 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
1100 | 1305 | nplotsw = nplots |
|
1101 | 1306 | |
|
1102 | 1307 | #If there is a SNR function defined |
|
1103 | 1308 | if dataOut.data_SNR is not None: |
|
1104 | 1309 | nplots += 1 |
|
1105 | 1310 | SNR = dataOut.data_SNR |
|
1106 | 1311 | |
|
1107 | 1312 | if SNR_1: |
|
1108 | 1313 | SNR += 1 |
|
1109 | 1314 | |
|
1110 | 1315 | SNRavg = numpy.average(SNR, axis=0) |
|
1111 | 1316 | |
|
1112 | 1317 | SNRdB = 10*numpy.log10(SNR) |
|
1113 | 1318 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
1114 | 1319 | |
|
1115 | 1320 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
1116 | 1321 | |
|
1117 | 1322 | for i in range(nplotsw): |
|
1118 | 1323 | z[i,ind] = numpy.nan |
|
1119 | 1324 | |
|
1120 | 1325 | |
|
1121 | 1326 | showprofile = False |
|
1122 | 1327 | # thisDatetime = dataOut.datatime |
|
1123 | 1328 | thisDatetime = datetime.datetime.utcfromtimestamp(x[1]) |
|
1124 | 1329 | title = wintitle + " EW Drifts" |
|
1125 | 1330 | xlabel = "" |
|
1126 | 1331 | ylabel = "Height (Km)" |
|
1127 | 1332 | |
|
1128 | 1333 | if not self.isConfig: |
|
1129 | 1334 | |
|
1130 | 1335 | self.setup(id=id, |
|
1131 | 1336 | nplots=nplots, |
|
1132 | 1337 | wintitle=wintitle, |
|
1133 | 1338 | showprofile=showprofile, |
|
1134 | 1339 | show=show) |
|
1135 | 1340 | |
|
1136 | 1341 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1137 | 1342 | |
|
1138 | 1343 | if ymin == None: ymin = numpy.nanmin(y) |
|
1139 | 1344 | if ymax == None: ymax = numpy.nanmax(y) |
|
1140 | 1345 | |
|
1141 | 1346 | if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:])) |
|
1142 | 1347 | if zminZonal == None: zminZonal = -zmaxZonal |
|
1143 | 1348 | if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:])) |
|
1144 | 1349 | if zminVertical == None: zminVertical = -zmaxVertical |
|
1145 | 1350 | |
|
1146 | 1351 | if dataOut.data_SNR is not None: |
|
1147 | 1352 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
1148 | 1353 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
1149 | 1354 | |
|
1150 | 1355 | self.FTP_WEI = ftp_wei |
|
1151 | 1356 | self.EXP_CODE = exp_code |
|
1152 | 1357 | self.SUB_EXP_CODE = sub_exp_code |
|
1153 | 1358 | self.PLOT_POS = plot_pos |
|
1154 | 1359 | |
|
1155 | 1360 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1156 | 1361 | self.isConfig = True |
|
1157 | 1362 | |
|
1158 | 1363 | |
|
1159 | 1364 | self.setWinTitle(title) |
|
1160 | 1365 | |
|
1161 | 1366 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
1162 | 1367 | x[1] = self.xmax |
|
1163 | 1368 | |
|
1164 | 1369 | strWind = ['Zonal','Vertical'] |
|
1165 | 1370 | strCb = 'Velocity (m/s)' |
|
1166 | 1371 | zmaxVector = [zmaxZonal, zmaxVertical] |
|
1167 | 1372 | zminVector = [zminZonal, zminVertical] |
|
1168 | 1373 | |
|
1169 | 1374 | for i in range(nplotsw): |
|
1170 | 1375 | |
|
1171 | 1376 | title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1172 | 1377 | axes = self.axesList[i*self.__nsubplots] |
|
1173 | 1378 | |
|
1174 | 1379 | z1 = z[i,:].reshape((1,-1)) |
|
1175 | 1380 | |
|
1176 | 1381 | axes.pcolorbuffer(x, y, z1, |
|
1177 | 1382 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
1178 | 1383 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1179 | 1384 | ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r") |
|
1180 | 1385 | |
|
1181 | 1386 | if dataOut.data_SNR is not None: |
|
1182 | 1387 | i += 1 |
|
1183 | 1388 | if SNR_1: |
|
1184 | 1389 | title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1185 | 1390 | else: |
|
1186 | 1391 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1187 | 1392 | axes = self.axesList[i*self.__nsubplots] |
|
1188 | 1393 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
1189 | 1394 | |
|
1190 | 1395 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
1191 | 1396 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1192 | 1397 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1193 | 1398 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
1194 | 1399 | |
|
1195 | 1400 | self.draw() |
|
1196 | 1401 | |
|
1197 | 1402 | if x[1] >= self.axesList[0].xmax: |
|
1198 | 1403 | self.counter_imagwr = wr_period |
|
1199 | 1404 | self.isConfig = False |
|
1200 | 1405 | self.figfile = None |
|
1201 | 1406 | |
|
1202 | 1407 | |
|
1203 | 1408 | |
|
1204 | 1409 | |
|
1205 | 1410 | class PhasePlot(Figure): |
|
1206 | 1411 | |
|
1207 | 1412 | __isConfig = None |
|
1208 | 1413 | __nsubplots = None |
|
1209 | 1414 | |
|
1210 | 1415 | PREFIX = 'mphase' |
|
1211 | 1416 | |
|
1212 | 1417 | def __init__(self): |
|
1213 | 1418 | |
|
1214 | 1419 | self.timerange = 24*60*60 |
|
1215 | 1420 | self.isConfig = False |
|
1216 | 1421 | self.__nsubplots = 1 |
|
1217 | 1422 | self.counter_imagwr = 0 |
|
1218 | 1423 | self.WIDTH = 600 |
|
1219 | 1424 | self.HEIGHT = 300 |
|
1220 | 1425 | self.WIDTHPROF = 120 |
|
1221 | 1426 | self.HEIGHTPROF = 0 |
|
1222 | 1427 | self.xdata = None |
|
1223 | 1428 | self.ydata = None |
|
1224 | 1429 | |
|
1225 | 1430 | self.PLOT_CODE = MPHASE_CODE |
|
1226 | 1431 | |
|
1227 | 1432 | self.FTP_WEI = None |
|
1228 | 1433 | self.EXP_CODE = None |
|
1229 | 1434 | self.SUB_EXP_CODE = None |
|
1230 | 1435 | self.PLOT_POS = None |
|
1231 | 1436 | |
|
1232 | 1437 | |
|
1233 | 1438 | self.filename_phase = None |
|
1234 | 1439 | |
|
1235 | 1440 | self.figfile = None |
|
1236 | 1441 | |
|
1237 | 1442 | def getSubplots(self): |
|
1238 | 1443 | |
|
1239 | 1444 | ncol = 1 |
|
1240 | 1445 | nrow = 1 |
|
1241 | 1446 | |
|
1242 | 1447 | return nrow, ncol |
|
1243 | 1448 | |
|
1244 | 1449 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1245 | 1450 | |
|
1246 | 1451 | self.__showprofile = showprofile |
|
1247 | 1452 | self.nplots = nplots |
|
1248 | 1453 | |
|
1249 | 1454 | ncolspan = 7 |
|
1250 | 1455 | colspan = 6 |
|
1251 | 1456 | self.__nsubplots = 2 |
|
1252 | 1457 | |
|
1253 | 1458 | self.createFigure(id = id, |
|
1254 | 1459 | wintitle = wintitle, |
|
1255 | 1460 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1256 | 1461 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1257 | 1462 | show=show) |
|
1258 | 1463 | |
|
1259 | 1464 | nrow, ncol = self.getSubplots() |
|
1260 | 1465 | |
|
1261 | 1466 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1262 | 1467 | |
|
1263 | 1468 | |
|
1264 | 1469 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1265 | 1470 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1266 | 1471 | timerange=None, |
|
1267 | 1472 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1268 | 1473 | server=None, folder=None, username=None, password=None, |
|
1269 | 1474 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1270 | 1475 | |
|
1271 | 1476 | |
|
1272 | 1477 | tmin = None |
|
1273 | 1478 | tmax = None |
|
1274 | 1479 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
1275 | 1480 | y = dataOut.getHeiRange() |
|
1276 | 1481 | |
|
1277 | 1482 | |
|
1278 | 1483 | #thisDatetime = dataOut.datatime |
|
1279 | 1484 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1]) |
|
1280 | 1485 | title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1281 | 1486 | xlabel = "Local Time" |
|
1282 | 1487 | ylabel = "Phase" |
|
1283 | 1488 | |
|
1284 | 1489 | |
|
1285 | 1490 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1286 | 1491 | phase_beacon = dataOut.data_output |
|
1287 | 1492 | update_figfile = False |
|
1288 | 1493 | |
|
1289 | 1494 | if not self.isConfig: |
|
1290 | 1495 | |
|
1291 | 1496 | self.nplots = phase_beacon.size |
|
1292 | 1497 | |
|
1293 | 1498 | self.setup(id=id, |
|
1294 | 1499 | nplots=self.nplots, |
|
1295 | 1500 | wintitle=wintitle, |
|
1296 | 1501 | showprofile=showprofile, |
|
1297 | 1502 | show=show) |
|
1298 | 1503 | |
|
1299 | 1504 | if timerange is not None: |
|
1300 | 1505 | self.timerange = timerange |
|
1301 | 1506 | |
|
1302 | 1507 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1303 | 1508 | |
|
1304 | 1509 | if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0 |
|
1305 | 1510 | if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0 |
|
1306 | 1511 | |
|
1307 | 1512 | self.FTP_WEI = ftp_wei |
|
1308 | 1513 | self.EXP_CODE = exp_code |
|
1309 | 1514 | self.SUB_EXP_CODE = sub_exp_code |
|
1310 | 1515 | self.PLOT_POS = plot_pos |
|
1311 | 1516 | |
|
1312 | 1517 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1313 | 1518 | self.isConfig = True |
|
1314 | 1519 | self.figfile = figfile |
|
1315 | 1520 | self.xdata = numpy.array([]) |
|
1316 | 1521 | self.ydata = numpy.array([]) |
|
1317 | 1522 | |
|
1318 | 1523 | #open file beacon phase |
|
1319 | 1524 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1320 | 1525 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1321 | 1526 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1322 | 1527 | update_figfile = True |
|
1323 | 1528 | |
|
1324 | 1529 | |
|
1325 | 1530 | #store data beacon phase |
|
1326 | 1531 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1327 | 1532 | |
|
1328 | 1533 | self.setWinTitle(title) |
|
1329 | 1534 | |
|
1330 | 1535 | |
|
1331 | 1536 | title = "Phase Offset %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1332 | 1537 | |
|
1333 | 1538 | legendlabels = ["phase %d"%(chan) for chan in numpy.arange(self.nplots)] |
|
1334 | 1539 | |
|
1335 | 1540 | axes = self.axesList[0] |
|
1336 | 1541 | |
|
1337 | 1542 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1338 | 1543 | |
|
1339 | 1544 | if len(self.ydata)==0: |
|
1340 | 1545 | self.ydata = phase_beacon.reshape(-1,1) |
|
1341 | 1546 | else: |
|
1342 | 1547 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1343 | 1548 | |
|
1344 | 1549 | |
|
1345 | 1550 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1346 | 1551 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1347 | 1552 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1348 | 1553 | XAxisAsTime=True, grid='both' |
|
1349 | 1554 | ) |
|
1350 | 1555 | |
|
1351 | 1556 | self.draw() |
|
1352 | 1557 | |
|
1353 | 1558 | if dataOut.ltctime >= self.xmax: |
|
1354 | 1559 | self.counter_imagwr = wr_period |
|
1355 | 1560 | self.isConfig = False |
|
1356 | 1561 | update_figfile = True |
|
1357 | 1562 | |
|
1358 | 1563 | self.save(figpath=figpath, |
|
1359 | 1564 | figfile=figfile, |
|
1360 | 1565 | save=save, |
|
1361 | 1566 | ftp=ftp, |
|
1362 | 1567 | wr_period=wr_period, |
|
1363 | 1568 | thisDatetime=thisDatetime, |
|
1364 | 1569 | update_figfile=update_figfile) |
@@ -1,1522 +1,1527 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | from figure import Figure, isRealtime, isTimeInHourRange |
|
11 | 11 | from plotting_codes import * |
|
12 | 12 | |
|
13 | 13 | class SpectraPlot(Figure): |
|
14 | 14 | |
|
15 | 15 | isConfig = None |
|
16 | 16 | __nsubplots = None |
|
17 | 17 | |
|
18 | 18 | WIDTHPROF = None |
|
19 | 19 | HEIGHTPROF = None |
|
20 | 20 | PREFIX = 'spc' |
|
21 | 21 | |
|
22 | 22 | def __init__(self): |
|
23 | 23 | |
|
24 | 24 | self.isConfig = False |
|
25 | 25 | self.__nsubplots = 1 |
|
26 | 26 | |
|
27 | 27 | self.WIDTH = 250 |
|
28 | 28 | self.HEIGHT = 250 |
|
29 | 29 | self.WIDTHPROF = 120 |
|
30 | 30 | self.HEIGHTPROF = 0 |
|
31 | 31 | self.counter_imagwr = 0 |
|
32 | 32 | |
|
33 | 33 | self.PLOT_CODE = SPEC_CODE |
|
34 | 34 | |
|
35 | 35 | self.FTP_WEI = None |
|
36 | 36 | self.EXP_CODE = None |
|
37 | 37 | self.SUB_EXP_CODE = None |
|
38 | 38 | self.PLOT_POS = None |
|
39 | 39 | |
|
40 | 40 | self.__xfilter_ena = False |
|
41 | 41 | self.__yfilter_ena = False |
|
42 | 42 | |
|
43 | 43 | def getSubplots(self): |
|
44 | 44 | |
|
45 | 45 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
46 | 46 | nrow = int(self.nplots*1./ncol + 0.9) |
|
47 | 47 | |
|
48 | 48 | return nrow, ncol |
|
49 | 49 | |
|
50 | 50 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
51 | 51 | |
|
52 | 52 | self.__showprofile = showprofile |
|
53 | 53 | self.nplots = nplots |
|
54 | 54 | |
|
55 | 55 | ncolspan = 1 |
|
56 | 56 | colspan = 1 |
|
57 | 57 | if showprofile: |
|
58 | 58 | ncolspan = 3 |
|
59 | 59 | colspan = 2 |
|
60 | 60 | self.__nsubplots = 2 |
|
61 | 61 | |
|
62 | 62 | self.createFigure(id = id, |
|
63 | 63 | wintitle = wintitle, |
|
64 | 64 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
65 | 65 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
66 | 66 | show=show) |
|
67 | 67 | |
|
68 | 68 | nrow, ncol = self.getSubplots() |
|
69 | 69 | |
|
70 | 70 | counter = 0 |
|
71 | 71 | for y in range(nrow): |
|
72 | 72 | for x in range(ncol): |
|
73 | 73 | |
|
74 | 74 | if counter >= self.nplots: |
|
75 | 75 | break |
|
76 | 76 | |
|
77 | 77 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
78 | 78 | |
|
79 | 79 | if showprofile: |
|
80 | 80 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
81 | 81 | |
|
82 | 82 | counter += 1 |
|
83 | 83 | |
|
84 | 84 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
85 | 85 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
86 | 86 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
87 | 87 | server=None, folder=None, username=None, password=None, |
|
88 | 88 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
89 | 89 | xaxis="frequency"): |
|
90 | 90 | |
|
91 | 91 | """ |
|
92 | 92 | |
|
93 | 93 | Input: |
|
94 | 94 | dataOut : |
|
95 | 95 | id : |
|
96 | 96 | wintitle : |
|
97 | 97 | channelList : |
|
98 | 98 | showProfile : |
|
99 | 99 | xmin : None, |
|
100 | 100 | xmax : None, |
|
101 | 101 | ymin : None, |
|
102 | 102 | ymax : None, |
|
103 | 103 | zmin : None, |
|
104 | 104 | zmax : None |
|
105 | 105 | """ |
|
106 | 106 | |
|
107 | 107 | if realtime: |
|
108 | 108 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
109 | 109 | print 'Skipping this plot function' |
|
110 | 110 | return |
|
111 | 111 | |
|
112 | 112 | if channelList == None: |
|
113 | 113 | channelIndexList = dataOut.channelIndexList |
|
114 | 114 | else: |
|
115 | 115 | channelIndexList = [] |
|
116 | 116 | for channel in channelList: |
|
117 | 117 | if channel not in dataOut.channelList: |
|
118 | 118 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
119 | 119 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
120 | 120 | |
|
121 | 121 | factor = dataOut.normFactor |
|
122 | 122 | |
|
123 | 123 | if xaxis == "frequency": |
|
124 | 124 | x = dataOut.getFreqRange(1)/1000. |
|
125 | 125 | xlabel = "Frequency (kHz)" |
|
126 | 126 | |
|
127 | 127 | elif xaxis == "time": |
|
128 | 128 | x = dataOut.getAcfRange(1) |
|
129 | 129 | xlabel = "Time (ms)" |
|
130 | 130 | |
|
131 | 131 | else: |
|
132 | 132 | x = dataOut.getVelRange(1) |
|
133 | 133 | xlabel = "Velocity (m/s)" |
|
134 | 134 | |
|
135 | 135 | ylabel = "Range (Km)" |
|
136 | 136 | |
|
137 | 137 | y = dataOut.getHeiRange() |
|
138 | 138 | |
|
139 | 139 | z = dataOut.data_spc/factor |
|
140 | 140 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
141 | 141 | zdB = 10*numpy.log10(z) |
|
142 | 142 | |
|
143 | 143 | avg = numpy.average(z, axis=1) |
|
144 | 144 | avgdB = 10*numpy.log10(avg) |
|
145 | 145 | |
|
146 | 146 | noise = dataOut.getNoise()/factor |
|
147 | 147 | noisedB = 10*numpy.log10(noise) |
|
148 | 148 | |
|
149 | 149 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
150 | 150 | title = wintitle + " Spectra" |
|
151 | 151 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
152 | 152 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
153 | 153 | |
|
154 | 154 | if not self.isConfig: |
|
155 | 155 | |
|
156 | 156 | nplots = len(channelIndexList) |
|
157 | 157 | |
|
158 | 158 | self.setup(id=id, |
|
159 | 159 | nplots=nplots, |
|
160 | 160 | wintitle=wintitle, |
|
161 | 161 | showprofile=showprofile, |
|
162 | 162 | show=show) |
|
163 | 163 | |
|
164 | 164 | if xmin == None: xmin = numpy.nanmin(x) |
|
165 | 165 | if xmax == None: xmax = numpy.nanmax(x) |
|
166 | 166 | if ymin == None: ymin = numpy.nanmin(y) |
|
167 | 167 | if ymax == None: ymax = numpy.nanmax(y) |
|
168 | 168 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
169 | 169 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
170 | 170 | |
|
171 | 171 | self.FTP_WEI = ftp_wei |
|
172 | 172 | self.EXP_CODE = exp_code |
|
173 | 173 | self.SUB_EXP_CODE = sub_exp_code |
|
174 | 174 | self.PLOT_POS = plot_pos |
|
175 | 175 | |
|
176 | 176 | self.isConfig = True |
|
177 | 177 | |
|
178 | 178 | self.setWinTitle(title) |
|
179 | 179 | |
|
180 | 180 | for i in range(self.nplots): |
|
181 | 181 | index = channelIndexList[i] |
|
182 | 182 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
183 | 183 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
184 | 184 | if len(dataOut.beam.codeList) != 0: |
|
185 | 185 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
186 | 186 | |
|
187 | 187 | axes = self.axesList[i*self.__nsubplots] |
|
188 | 188 | axes.pcolor(x, y, zdB[index,:,:], |
|
189 | 189 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
190 | 190 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
191 | 191 | ticksize=9, cblabel='') |
|
192 | 192 | |
|
193 | 193 | if self.__showprofile: |
|
194 | 194 | axes = self.axesList[i*self.__nsubplots +1] |
|
195 | 195 | axes.pline(avgdB[index,:], y, |
|
196 | 196 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
197 | 197 | xlabel='dB', ylabel='', title='', |
|
198 | 198 | ytick_visible=False, |
|
199 | 199 | grid='x') |
|
200 | 200 | |
|
201 | 201 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
202 | 202 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
203 | 203 | |
|
204 | 204 | self.draw() |
|
205 | 205 | |
|
206 | 206 | if figfile == None: |
|
207 | 207 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
208 | 208 | name = str_datetime |
|
209 | 209 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
210 | 210 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
211 | 211 | figfile = self.getFilename(name) |
|
212 | 212 | |
|
213 | 213 | self.save(figpath=figpath, |
|
214 | 214 | figfile=figfile, |
|
215 | 215 | save=save, |
|
216 | 216 | ftp=ftp, |
|
217 | 217 | wr_period=wr_period, |
|
218 | 218 | thisDatetime=thisDatetime) |
|
219 | 219 | |
|
220 | 220 | class CrossSpectraPlot(Figure): |
|
221 | 221 | |
|
222 | 222 | isConfig = None |
|
223 | 223 | __nsubplots = None |
|
224 | 224 | |
|
225 | 225 | WIDTH = None |
|
226 | 226 | HEIGHT = None |
|
227 | 227 | WIDTHPROF = None |
|
228 | 228 | HEIGHTPROF = None |
|
229 | 229 | PREFIX = 'cspc' |
|
230 | 230 | |
|
231 | 231 | def __init__(self): |
|
232 | 232 | |
|
233 | 233 | self.isConfig = False |
|
234 | 234 | self.__nsubplots = 4 |
|
235 | 235 | self.counter_imagwr = 0 |
|
236 | 236 | self.WIDTH = 250 |
|
237 | 237 | self.HEIGHT = 250 |
|
238 | 238 | self.WIDTHPROF = 0 |
|
239 | 239 | self.HEIGHTPROF = 0 |
|
240 | 240 | |
|
241 | 241 | self.PLOT_CODE = CROSS_CODE |
|
242 | 242 | self.FTP_WEI = None |
|
243 | 243 | self.EXP_CODE = None |
|
244 | 244 | self.SUB_EXP_CODE = None |
|
245 | 245 | self.PLOT_POS = None |
|
246 | 246 | |
|
247 | 247 | def getSubplots(self): |
|
248 | 248 | |
|
249 | 249 | ncol = 4 |
|
250 | 250 | nrow = self.nplots |
|
251 | 251 | |
|
252 | 252 | return nrow, ncol |
|
253 | 253 | |
|
254 | 254 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
255 | 255 | |
|
256 | 256 | self.__showprofile = showprofile |
|
257 | 257 | self.nplots = nplots |
|
258 | 258 | |
|
259 | 259 | ncolspan = 1 |
|
260 | 260 | colspan = 1 |
|
261 | 261 | |
|
262 | 262 | self.createFigure(id = id, |
|
263 | 263 | wintitle = wintitle, |
|
264 | 264 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
265 | 265 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
266 | 266 | show=True) |
|
267 | 267 | |
|
268 | 268 | nrow, ncol = self.getSubplots() |
|
269 | 269 | |
|
270 | 270 | counter = 0 |
|
271 | 271 | for y in range(nrow): |
|
272 | 272 | for x in range(ncol): |
|
273 | 273 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
274 | 274 | |
|
275 | 275 | counter += 1 |
|
276 | 276 | |
|
277 | 277 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
278 | 278 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
279 | 279 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
280 | 280 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
281 | 281 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
282 | 282 | server=None, folder=None, username=None, password=None, |
|
283 | 283 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, |
|
284 | 284 | xaxis='frequency'): |
|
285 | 285 | |
|
286 | 286 | """ |
|
287 | 287 | |
|
288 | 288 | Input: |
|
289 | 289 | dataOut : |
|
290 | 290 | id : |
|
291 | 291 | wintitle : |
|
292 | 292 | channelList : |
|
293 | 293 | showProfile : |
|
294 | 294 | xmin : None, |
|
295 | 295 | xmax : None, |
|
296 | 296 | ymin : None, |
|
297 | 297 | ymax : None, |
|
298 | 298 | zmin : None, |
|
299 | 299 | zmax : None |
|
300 | 300 | """ |
|
301 | 301 | |
|
302 | 302 | if pairsList == None: |
|
303 | 303 | pairsIndexList = dataOut.pairsIndexList |
|
304 | 304 | else: |
|
305 | 305 | pairsIndexList = [] |
|
306 | 306 | for pair in pairsList: |
|
307 | 307 | if pair not in dataOut.pairsList: |
|
308 | 308 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) |
|
309 | 309 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
310 | 310 | |
|
311 | 311 | if not pairsIndexList: |
|
312 | 312 | return |
|
313 | 313 | |
|
314 | 314 | if len(pairsIndexList) > 4: |
|
315 | 315 | pairsIndexList = pairsIndexList[0:4] |
|
316 | 316 | |
|
317 | 317 | factor = dataOut.normFactor |
|
318 | 318 | x = dataOut.getVelRange(1) |
|
319 | 319 | y = dataOut.getHeiRange() |
|
320 | 320 | z = dataOut.data_spc[:,:,:]/factor |
|
321 | 321 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
322 | 322 | |
|
323 | 323 | noise = dataOut.noise/factor |
|
324 | 324 | |
|
325 | 325 | zdB = 10*numpy.log10(z) |
|
326 | 326 | noisedB = 10*numpy.log10(noise) |
|
327 | 327 | |
|
328 | 328 | if coh_min == None: |
|
329 | 329 | coh_min = 0.0 |
|
330 | 330 | if coh_max == None: |
|
331 | 331 | coh_max = 1.0 |
|
332 | 332 | |
|
333 | 333 | if phase_min == None: |
|
334 | 334 | phase_min = -180 |
|
335 | 335 | if phase_max == None: |
|
336 | 336 | phase_max = 180 |
|
337 | 337 | |
|
338 | 338 | #thisDatetime = dataOut.datatime |
|
339 | 339 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
340 | 340 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
341 | 341 | # xlabel = "Velocity (m/s)" |
|
342 | 342 | ylabel = "Range (Km)" |
|
343 | 343 | |
|
344 | 344 | if xaxis == "frequency": |
|
345 | 345 | x = dataOut.getFreqRange(1)/1000. |
|
346 | 346 | xlabel = "Frequency (kHz)" |
|
347 | 347 | |
|
348 | 348 | elif xaxis == "time": |
|
349 | 349 | x = dataOut.getAcfRange(1) |
|
350 | 350 | xlabel = "Time (ms)" |
|
351 | 351 | |
|
352 | 352 | else: |
|
353 | 353 | x = dataOut.getVelRange(1) |
|
354 | 354 | xlabel = "Velocity (m/s)" |
|
355 | 355 | |
|
356 | 356 | if not self.isConfig: |
|
357 | 357 | |
|
358 | 358 | nplots = len(pairsIndexList) |
|
359 | 359 | |
|
360 | 360 | self.setup(id=id, |
|
361 | 361 | nplots=nplots, |
|
362 | 362 | wintitle=wintitle, |
|
363 | 363 | showprofile=False, |
|
364 | 364 | show=show) |
|
365 | 365 | |
|
366 | 366 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
367 | 367 | avgdB = 10*numpy.log10(avg) |
|
368 | 368 | |
|
369 | 369 | if xmin == None: xmin = numpy.nanmin(x) |
|
370 | 370 | if xmax == None: xmax = numpy.nanmax(x) |
|
371 | 371 | if ymin == None: ymin = numpy.nanmin(y) |
|
372 | 372 | if ymax == None: ymax = numpy.nanmax(y) |
|
373 | 373 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
374 | 374 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
375 | 375 | |
|
376 | 376 | self.FTP_WEI = ftp_wei |
|
377 | 377 | self.EXP_CODE = exp_code |
|
378 | 378 | self.SUB_EXP_CODE = sub_exp_code |
|
379 | 379 | self.PLOT_POS = plot_pos |
|
380 | 380 | |
|
381 | 381 | self.isConfig = True |
|
382 | 382 | |
|
383 | 383 | self.setWinTitle(title) |
|
384 | 384 | |
|
385 | 385 | for i in range(self.nplots): |
|
386 | 386 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
387 | 387 | |
|
388 | 388 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
389 | 389 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
390 | 390 | |
|
391 | 391 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
392 | 392 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
393 | 393 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
394 | 394 | axes0 = self.axesList[i*self.__nsubplots] |
|
395 | 395 | axes0.pcolor(x, y, zdB, |
|
396 | 396 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
397 | 397 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
398 | 398 | ticksize=9, colormap=power_cmap, cblabel='') |
|
399 | 399 | |
|
400 | 400 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
401 | 401 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
402 | 402 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
403 | 403 | axes0.pcolor(x, y, zdB, |
|
404 | 404 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
405 | 405 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
406 | 406 | ticksize=9, colormap=power_cmap, cblabel='') |
|
407 | 407 | |
|
408 | 408 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:]) |
|
409 | 409 | coherence = numpy.abs(coherenceComplex) |
|
410 | 410 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
411 | 411 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
412 | 412 | |
|
413 | 413 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
414 | 414 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
415 | 415 | axes0.pcolor(x, y, coherence, |
|
416 | 416 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
417 | 417 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
418 | 418 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
419 | 419 | |
|
420 | 420 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
421 | 421 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
422 | 422 | axes0.pcolor(x, y, phase, |
|
423 | 423 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
424 | 424 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
425 | 425 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
426 | 426 | |
|
427 | 427 | |
|
428 | 428 | |
|
429 | 429 | self.draw() |
|
430 | 430 | |
|
431 | 431 | self.save(figpath=figpath, |
|
432 | 432 | figfile=figfile, |
|
433 | 433 | save=save, |
|
434 | 434 | ftp=ftp, |
|
435 | 435 | wr_period=wr_period, |
|
436 | 436 | thisDatetime=thisDatetime) |
|
437 | 437 | |
|
438 | 438 | |
|
439 | 439 | class RTIPlot(Figure): |
|
440 | 440 | |
|
441 | 441 | __isConfig = None |
|
442 | 442 | __nsubplots = None |
|
443 | 443 | |
|
444 | 444 | WIDTHPROF = None |
|
445 | 445 | HEIGHTPROF = None |
|
446 | 446 | PREFIX = 'rti' |
|
447 | 447 | |
|
448 | 448 | def __init__(self): |
|
449 | 449 | |
|
450 | 450 | self.timerange = None |
|
451 | 451 | self.isConfig = False |
|
452 | 452 | self.__nsubplots = 1 |
|
453 | 453 | |
|
454 | 454 | self.WIDTH = 800 |
|
455 | 455 | self.HEIGHT = 180 |
|
456 | 456 | self.WIDTHPROF = 120 |
|
457 | 457 | self.HEIGHTPROF = 0 |
|
458 | 458 | self.counter_imagwr = 0 |
|
459 | 459 | |
|
460 | 460 | self.PLOT_CODE = RTI_CODE |
|
461 | 461 | |
|
462 | 462 | self.FTP_WEI = None |
|
463 | 463 | self.EXP_CODE = None |
|
464 | 464 | self.SUB_EXP_CODE = None |
|
465 | 465 | self.PLOT_POS = None |
|
466 | 466 | self.tmin = None |
|
467 | 467 | self.tmax = None |
|
468 | 468 | |
|
469 | 469 | self.xmin = None |
|
470 | 470 | self.xmax = None |
|
471 | 471 | |
|
472 | 472 | self.figfile = None |
|
473 | 473 | |
|
474 | 474 | def getSubplots(self): |
|
475 | 475 | |
|
476 | 476 | ncol = 1 |
|
477 | 477 | nrow = self.nplots |
|
478 | 478 | |
|
479 | 479 | return nrow, ncol |
|
480 | 480 | |
|
481 | 481 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
482 | 482 | |
|
483 | 483 | self.__showprofile = showprofile |
|
484 | 484 | self.nplots = nplots |
|
485 | 485 | |
|
486 | 486 | ncolspan = 1 |
|
487 | 487 | colspan = 1 |
|
488 | 488 | if showprofile: |
|
489 | 489 | ncolspan = 7 |
|
490 | 490 | colspan = 6 |
|
491 | 491 | self.__nsubplots = 2 |
|
492 | 492 | |
|
493 | 493 | self.createFigure(id = id, |
|
494 | 494 | wintitle = wintitle, |
|
495 | 495 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
496 | 496 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
497 | 497 | show=show) |
|
498 | 498 | |
|
499 | 499 | nrow, ncol = self.getSubplots() |
|
500 | 500 | |
|
501 | 501 | counter = 0 |
|
502 | 502 | for y in range(nrow): |
|
503 | 503 | for x in range(ncol): |
|
504 | 504 | |
|
505 | 505 | if counter >= self.nplots: |
|
506 | 506 | break |
|
507 | 507 | |
|
508 | 508 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
509 | 509 | |
|
510 | 510 | if showprofile: |
|
511 | 511 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
512 | 512 | |
|
513 | 513 | counter += 1 |
|
514 | 514 | |
|
515 | 515 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
516 | 516 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
517 | 517 | timerange=None, |
|
518 | 518 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
519 | 519 | server=None, folder=None, username=None, password=None, |
|
520 | 520 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
521 | 521 | |
|
522 | 522 | """ |
|
523 | 523 | |
|
524 | 524 | Input: |
|
525 | 525 | dataOut : |
|
526 | 526 | id : |
|
527 | 527 | wintitle : |
|
528 | 528 | channelList : |
|
529 | 529 | showProfile : |
|
530 | 530 | xmin : None, |
|
531 | 531 | xmax : None, |
|
532 | 532 | ymin : None, |
|
533 | 533 | ymax : None, |
|
534 | 534 | zmin : None, |
|
535 | 535 | zmax : None |
|
536 | 536 | """ |
|
537 | 537 | |
|
538 | 538 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
539 | 539 | return |
|
540 | 540 | |
|
541 | 541 | if channelList == None: |
|
542 | 542 | channelIndexList = dataOut.channelIndexList |
|
543 | 543 | else: |
|
544 | 544 | channelIndexList = [] |
|
545 | 545 | for channel in channelList: |
|
546 | 546 | if channel not in dataOut.channelList: |
|
547 | 547 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
548 | 548 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
549 | 549 | |
|
550 | if hasattr(dataOut, 'normFactor'): | |
|
550 | 551 | factor = dataOut.normFactor |
|
552 | else: | |
|
553 | factor = 1 | |
|
554 | ||
|
555 | # factor = dataOut.normFactor | |
|
551 | 556 | x = dataOut.getTimeRange() |
|
552 | 557 | y = dataOut.getHeiRange() |
|
553 | 558 | |
|
554 | z = dataOut.data_spc/factor | |
|
555 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
556 | avg = numpy.average(z, axis=1) | |
|
557 | ||
|
558 | avgdB = 10.*numpy.log10(avg) | |
|
559 | # z = dataOut.data_spc/factor | |
|
560 | # z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
561 | # avg = numpy.average(z, axis=1) | |
|
562 | # avgdB = 10.*numpy.log10(avg) | |
|
563 | avgdB = dataOut.getPower() | |
|
559 | 564 | |
|
560 | 565 | thisDatetime = dataOut.datatime |
|
561 | 566 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
562 | 567 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
563 | 568 | xlabel = "" |
|
564 | 569 | ylabel = "Range (Km)" |
|
565 | 570 | |
|
566 | 571 | update_figfile = False |
|
567 | 572 | |
|
568 | 573 | if dataOut.ltctime >= self.xmax: |
|
569 | 574 | self.counter_imagwr = wr_period |
|
570 | 575 | self.isConfig = False |
|
571 | 576 | update_figfile = True |
|
572 | 577 | |
|
573 | 578 | if not self.isConfig: |
|
574 | 579 | |
|
575 | 580 | nplots = len(channelIndexList) |
|
576 | 581 | |
|
577 | 582 | self.setup(id=id, |
|
578 | 583 | nplots=nplots, |
|
579 | 584 | wintitle=wintitle, |
|
580 | 585 | showprofile=showprofile, |
|
581 | 586 | show=show) |
|
582 | 587 | |
|
583 | 588 | if timerange != None: |
|
584 | 589 | self.timerange = timerange |
|
585 | 590 | |
|
586 | 591 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
587 | 592 | |
|
588 | 593 | noise = dataOut.noise/factor |
|
589 | 594 | noisedB = 10*numpy.log10(noise) |
|
590 | 595 | |
|
591 | 596 | if ymin == None: ymin = numpy.nanmin(y) |
|
592 | 597 | if ymax == None: ymax = numpy.nanmax(y) |
|
593 | 598 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
594 | 599 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
595 | 600 | |
|
596 | 601 | self.FTP_WEI = ftp_wei |
|
597 | 602 | self.EXP_CODE = exp_code |
|
598 | 603 | self.SUB_EXP_CODE = sub_exp_code |
|
599 | 604 | self.PLOT_POS = plot_pos |
|
600 | 605 | |
|
601 | 606 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
602 | 607 | self.isConfig = True |
|
603 | 608 | self.figfile = figfile |
|
604 | 609 | update_figfile = True |
|
605 | 610 | |
|
606 | 611 | self.setWinTitle(title) |
|
607 | 612 | |
|
608 | 613 | for i in range(self.nplots): |
|
609 | 614 | index = channelIndexList[i] |
|
610 | 615 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
611 | 616 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
612 | 617 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
613 | 618 | axes = self.axesList[i*self.__nsubplots] |
|
614 | 619 | zdB = avgdB[index].reshape((1,-1)) |
|
615 | 620 | axes.pcolorbuffer(x, y, zdB, |
|
616 | 621 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
617 | 622 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
618 | 623 | ticksize=9, cblabel='', cbsize="1%") |
|
619 | 624 | |
|
620 | 625 | if self.__showprofile: |
|
621 | 626 | axes = self.axesList[i*self.__nsubplots +1] |
|
622 | 627 | axes.pline(avgdB[index], y, |
|
623 | 628 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
624 | 629 | xlabel='dB', ylabel='', title='', |
|
625 | 630 | ytick_visible=False, |
|
626 | 631 | grid='x') |
|
627 | 632 | |
|
628 | 633 | self.draw() |
|
629 | 634 | |
|
630 | 635 | self.save(figpath=figpath, |
|
631 | 636 | figfile=figfile, |
|
632 | 637 | save=save, |
|
633 | 638 | ftp=ftp, |
|
634 | 639 | wr_period=wr_period, |
|
635 | 640 | thisDatetime=thisDatetime, |
|
636 | 641 | update_figfile=update_figfile) |
|
637 | 642 | |
|
638 | 643 | class CoherenceMap(Figure): |
|
639 | 644 | isConfig = None |
|
640 | 645 | __nsubplots = None |
|
641 | 646 | |
|
642 | 647 | WIDTHPROF = None |
|
643 | 648 | HEIGHTPROF = None |
|
644 | 649 | PREFIX = 'cmap' |
|
645 | 650 | |
|
646 | 651 | def __init__(self): |
|
647 | 652 | self.timerange = 2*60*60 |
|
648 | 653 | self.isConfig = False |
|
649 | 654 | self.__nsubplots = 1 |
|
650 | 655 | |
|
651 | 656 | self.WIDTH = 800 |
|
652 | 657 | self.HEIGHT = 180 |
|
653 | 658 | self.WIDTHPROF = 120 |
|
654 | 659 | self.HEIGHTPROF = 0 |
|
655 | 660 | self.counter_imagwr = 0 |
|
656 | 661 | |
|
657 | 662 | self.PLOT_CODE = COH_CODE |
|
658 | 663 | |
|
659 | 664 | self.FTP_WEI = None |
|
660 | 665 | self.EXP_CODE = None |
|
661 | 666 | self.SUB_EXP_CODE = None |
|
662 | 667 | self.PLOT_POS = None |
|
663 | 668 | self.counter_imagwr = 0 |
|
664 | 669 | |
|
665 | 670 | self.xmin = None |
|
666 | 671 | self.xmax = None |
|
667 | 672 | |
|
668 | 673 | def getSubplots(self): |
|
669 | 674 | ncol = 1 |
|
670 | 675 | nrow = self.nplots*2 |
|
671 | 676 | |
|
672 | 677 | return nrow, ncol |
|
673 | 678 | |
|
674 | 679 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
675 | 680 | self.__showprofile = showprofile |
|
676 | 681 | self.nplots = nplots |
|
677 | 682 | |
|
678 | 683 | ncolspan = 1 |
|
679 | 684 | colspan = 1 |
|
680 | 685 | if showprofile: |
|
681 | 686 | ncolspan = 7 |
|
682 | 687 | colspan = 6 |
|
683 | 688 | self.__nsubplots = 2 |
|
684 | 689 | |
|
685 | 690 | self.createFigure(id = id, |
|
686 | 691 | wintitle = wintitle, |
|
687 | 692 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
688 | 693 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
689 | 694 | show=True) |
|
690 | 695 | |
|
691 | 696 | nrow, ncol = self.getSubplots() |
|
692 | 697 | |
|
693 | 698 | for y in range(nrow): |
|
694 | 699 | for x in range(ncol): |
|
695 | 700 | |
|
696 | 701 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
697 | 702 | |
|
698 | 703 | if showprofile: |
|
699 | 704 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
700 | 705 | |
|
701 | 706 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
702 | 707 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
703 | 708 | timerange=None, phase_min=None, phase_max=None, |
|
704 | 709 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
705 | 710 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
706 | 711 | server=None, folder=None, username=None, password=None, |
|
707 | 712 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
708 | 713 | |
|
709 | 714 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
710 | 715 | return |
|
711 | 716 | |
|
712 | 717 | if pairsList == None: |
|
713 | 718 | pairsIndexList = dataOut.pairsIndexList |
|
714 | 719 | else: |
|
715 | 720 | pairsIndexList = [] |
|
716 | 721 | for pair in pairsList: |
|
717 | 722 | if pair not in dataOut.pairsList: |
|
718 | 723 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
719 | 724 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
720 | 725 | |
|
721 | 726 | if pairsIndexList == []: |
|
722 | 727 | return |
|
723 | 728 | |
|
724 | 729 | if len(pairsIndexList) > 4: |
|
725 | 730 | pairsIndexList = pairsIndexList[0:4] |
|
726 | 731 | |
|
727 | 732 | if phase_min == None: |
|
728 | 733 | phase_min = -180 |
|
729 | 734 | if phase_max == None: |
|
730 | 735 | phase_max = 180 |
|
731 | 736 | |
|
732 | 737 | x = dataOut.getTimeRange() |
|
733 | 738 | y = dataOut.getHeiRange() |
|
734 | 739 | |
|
735 | 740 | thisDatetime = dataOut.datatime |
|
736 | 741 | |
|
737 | 742 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
738 | 743 | xlabel = "" |
|
739 | 744 | ylabel = "Range (Km)" |
|
740 | 745 | update_figfile = False |
|
741 | 746 | |
|
742 | 747 | if not self.isConfig: |
|
743 | 748 | nplots = len(pairsIndexList) |
|
744 | 749 | self.setup(id=id, |
|
745 | 750 | nplots=nplots, |
|
746 | 751 | wintitle=wintitle, |
|
747 | 752 | showprofile=showprofile, |
|
748 | 753 | show=show) |
|
749 | 754 | |
|
750 | 755 | if timerange != None: |
|
751 | 756 | self.timerange = timerange |
|
752 | 757 | |
|
753 | 758 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
754 | 759 | |
|
755 | 760 | if ymin == None: ymin = numpy.nanmin(y) |
|
756 | 761 | if ymax == None: ymax = numpy.nanmax(y) |
|
757 | 762 | if zmin == None: zmin = 0. |
|
758 | 763 | if zmax == None: zmax = 1. |
|
759 | 764 | |
|
760 | 765 | self.FTP_WEI = ftp_wei |
|
761 | 766 | self.EXP_CODE = exp_code |
|
762 | 767 | self.SUB_EXP_CODE = sub_exp_code |
|
763 | 768 | self.PLOT_POS = plot_pos |
|
764 | 769 | |
|
765 | 770 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
766 | 771 | |
|
767 | 772 | self.isConfig = True |
|
768 | 773 | update_figfile = True |
|
769 | 774 | |
|
770 | 775 | self.setWinTitle(title) |
|
771 | 776 | |
|
772 | 777 | for i in range(self.nplots): |
|
773 | 778 | |
|
774 | 779 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
775 | 780 | |
|
776 | 781 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
777 | 782 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
778 | 783 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
779 | 784 | |
|
780 | 785 | |
|
781 | 786 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
782 | 787 | coherence = numpy.abs(avgcoherenceComplex) |
|
783 | 788 | |
|
784 | 789 | z = coherence.reshape((1,-1)) |
|
785 | 790 | |
|
786 | 791 | counter = 0 |
|
787 | 792 | |
|
788 | 793 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
789 | 794 | axes = self.axesList[i*self.__nsubplots*2] |
|
790 | 795 | axes.pcolorbuffer(x, y, z, |
|
791 | 796 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
792 | 797 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
793 | 798 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
794 | 799 | |
|
795 | 800 | if self.__showprofile: |
|
796 | 801 | counter += 1 |
|
797 | 802 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
798 | 803 | axes.pline(coherence, y, |
|
799 | 804 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
800 | 805 | xlabel='', ylabel='', title='', ticksize=7, |
|
801 | 806 | ytick_visible=False, nxticks=5, |
|
802 | 807 | grid='x') |
|
803 | 808 | |
|
804 | 809 | counter += 1 |
|
805 | 810 | |
|
806 | 811 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
807 | 812 | |
|
808 | 813 | z = phase.reshape((1,-1)) |
|
809 | 814 | |
|
810 | 815 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
811 | 816 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
812 | 817 | axes.pcolorbuffer(x, y, z, |
|
813 | 818 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
814 | 819 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
815 | 820 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
816 | 821 | |
|
817 | 822 | if self.__showprofile: |
|
818 | 823 | counter += 1 |
|
819 | 824 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
820 | 825 | axes.pline(phase, y, |
|
821 | 826 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
822 | 827 | xlabel='', ylabel='', title='', ticksize=7, |
|
823 | 828 | ytick_visible=False, nxticks=4, |
|
824 | 829 | grid='x') |
|
825 | 830 | |
|
826 | 831 | self.draw() |
|
827 | 832 | |
|
828 | 833 | if dataOut.ltctime >= self.xmax: |
|
829 | 834 | self.counter_imagwr = wr_period |
|
830 | 835 | self.isConfig = False |
|
831 | 836 | update_figfile = True |
|
832 | 837 | |
|
833 | 838 | self.save(figpath=figpath, |
|
834 | 839 | figfile=figfile, |
|
835 | 840 | save=save, |
|
836 | 841 | ftp=ftp, |
|
837 | 842 | wr_period=wr_period, |
|
838 | 843 | thisDatetime=thisDatetime, |
|
839 | 844 | update_figfile=update_figfile) |
|
840 | 845 | |
|
841 | 846 | class PowerProfilePlot(Figure): |
|
842 | 847 | |
|
843 | 848 | isConfig = None |
|
844 | 849 | __nsubplots = None |
|
845 | 850 | |
|
846 | 851 | WIDTHPROF = None |
|
847 | 852 | HEIGHTPROF = None |
|
848 | 853 | PREFIX = 'spcprofile' |
|
849 | 854 | |
|
850 | 855 | def __init__(self): |
|
851 | 856 | self.isConfig = False |
|
852 | 857 | self.__nsubplots = 1 |
|
853 | 858 | |
|
854 | 859 | self.PLOT_CODE = POWER_CODE |
|
855 | 860 | |
|
856 | 861 | self.WIDTH = 300 |
|
857 | 862 | self.HEIGHT = 500 |
|
858 | 863 | self.counter_imagwr = 0 |
|
859 | 864 | |
|
860 | 865 | def getSubplots(self): |
|
861 | 866 | ncol = 1 |
|
862 | 867 | nrow = 1 |
|
863 | 868 | |
|
864 | 869 | return nrow, ncol |
|
865 | 870 | |
|
866 | 871 | def setup(self, id, nplots, wintitle, show): |
|
867 | 872 | |
|
868 | 873 | self.nplots = nplots |
|
869 | 874 | |
|
870 | 875 | ncolspan = 1 |
|
871 | 876 | colspan = 1 |
|
872 | 877 | |
|
873 | 878 | self.createFigure(id = id, |
|
874 | 879 | wintitle = wintitle, |
|
875 | 880 | widthplot = self.WIDTH, |
|
876 | 881 | heightplot = self.HEIGHT, |
|
877 | 882 | show=show) |
|
878 | 883 | |
|
879 | 884 | nrow, ncol = self.getSubplots() |
|
880 | 885 | |
|
881 | 886 | counter = 0 |
|
882 | 887 | for y in range(nrow): |
|
883 | 888 | for x in range(ncol): |
|
884 | 889 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
885 | 890 | |
|
886 | 891 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
887 | 892 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
888 | 893 | save=False, figpath='./', figfile=None, show=True, |
|
889 | 894 | ftp=False, wr_period=1, server=None, |
|
890 | 895 | folder=None, username=None, password=None): |
|
891 | 896 | |
|
892 | 897 | |
|
893 | 898 | if channelList == None: |
|
894 | 899 | channelIndexList = dataOut.channelIndexList |
|
895 | 900 | channelList = dataOut.channelList |
|
896 | 901 | else: |
|
897 | 902 | channelIndexList = [] |
|
898 | 903 | for channel in channelList: |
|
899 | 904 | if channel not in dataOut.channelList: |
|
900 | 905 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
901 | 906 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
902 | 907 | |
|
903 | 908 | factor = dataOut.normFactor |
|
904 | 909 | |
|
905 | 910 | y = dataOut.getHeiRange() |
|
906 | 911 | |
|
907 | 912 | #for voltage |
|
908 | 913 | if dataOut.type == 'Voltage': |
|
909 | 914 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
910 | 915 | x = x.real |
|
911 | 916 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
912 | 917 | |
|
913 | 918 | #for spectra |
|
914 | 919 | if dataOut.type == 'Spectra': |
|
915 | 920 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
916 | 921 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
917 | 922 | x = numpy.average(x, axis=1) |
|
918 | 923 | |
|
919 | 924 | |
|
920 | 925 | xdB = 10*numpy.log10(x) |
|
921 | 926 | |
|
922 | 927 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
923 | 928 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
924 | 929 | xlabel = "dB" |
|
925 | 930 | ylabel = "Range (Km)" |
|
926 | 931 | |
|
927 | 932 | if not self.isConfig: |
|
928 | 933 | |
|
929 | 934 | nplots = 1 |
|
930 | 935 | |
|
931 | 936 | self.setup(id=id, |
|
932 | 937 | nplots=nplots, |
|
933 | 938 | wintitle=wintitle, |
|
934 | 939 | show=show) |
|
935 | 940 | |
|
936 | 941 | if ymin == None: ymin = numpy.nanmin(y) |
|
937 | 942 | if ymax == None: ymax = numpy.nanmax(y) |
|
938 | 943 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
939 | 944 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
940 | 945 | |
|
941 | 946 | self.isConfig = True |
|
942 | 947 | |
|
943 | 948 | self.setWinTitle(title) |
|
944 | 949 | |
|
945 | 950 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
946 | 951 | axes = self.axesList[0] |
|
947 | 952 | |
|
948 | 953 | legendlabels = ["channel %d"%x for x in channelList] |
|
949 | 954 | axes.pmultiline(xdB, y, |
|
950 | 955 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
951 | 956 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
952 | 957 | ytick_visible=True, nxticks=5, |
|
953 | 958 | grid='x') |
|
954 | 959 | |
|
955 | 960 | self.draw() |
|
956 | 961 | |
|
957 | 962 | self.save(figpath=figpath, |
|
958 | 963 | figfile=figfile, |
|
959 | 964 | save=save, |
|
960 | 965 | ftp=ftp, |
|
961 | 966 | wr_period=wr_period, |
|
962 | 967 | thisDatetime=thisDatetime) |
|
963 | 968 | |
|
964 | 969 | class SpectraCutPlot(Figure): |
|
965 | 970 | |
|
966 | 971 | isConfig = None |
|
967 | 972 | __nsubplots = None |
|
968 | 973 | |
|
969 | 974 | WIDTHPROF = None |
|
970 | 975 | HEIGHTPROF = None |
|
971 | 976 | PREFIX = 'spc_cut' |
|
972 | 977 | |
|
973 | 978 | def __init__(self): |
|
974 | 979 | self.isConfig = False |
|
975 | 980 | self.__nsubplots = 1 |
|
976 | 981 | |
|
977 | 982 | self.PLOT_CODE = POWER_CODE |
|
978 | 983 | |
|
979 | 984 | self.WIDTH = 700 |
|
980 | 985 | self.HEIGHT = 500 |
|
981 | 986 | self.counter_imagwr = 0 |
|
982 | 987 | |
|
983 | 988 | def getSubplots(self): |
|
984 | 989 | ncol = 1 |
|
985 | 990 | nrow = 1 |
|
986 | 991 | |
|
987 | 992 | return nrow, ncol |
|
988 | 993 | |
|
989 | 994 | def setup(self, id, nplots, wintitle, show): |
|
990 | 995 | |
|
991 | 996 | self.nplots = nplots |
|
992 | 997 | |
|
993 | 998 | ncolspan = 1 |
|
994 | 999 | colspan = 1 |
|
995 | 1000 | |
|
996 | 1001 | self.createFigure(id = id, |
|
997 | 1002 | wintitle = wintitle, |
|
998 | 1003 | widthplot = self.WIDTH, |
|
999 | 1004 | heightplot = self.HEIGHT, |
|
1000 | 1005 | show=show) |
|
1001 | 1006 | |
|
1002 | 1007 | nrow, ncol = self.getSubplots() |
|
1003 | 1008 | |
|
1004 | 1009 | counter = 0 |
|
1005 | 1010 | for y in range(nrow): |
|
1006 | 1011 | for x in range(ncol): |
|
1007 | 1012 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1008 | 1013 | |
|
1009 | 1014 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1010 | 1015 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1011 | 1016 | save=False, figpath='./', figfile=None, show=True, |
|
1012 | 1017 | ftp=False, wr_period=1, server=None, |
|
1013 | 1018 | folder=None, username=None, password=None, |
|
1014 | 1019 | xaxis="frequency"): |
|
1015 | 1020 | |
|
1016 | 1021 | |
|
1017 | 1022 | if channelList == None: |
|
1018 | 1023 | channelIndexList = dataOut.channelIndexList |
|
1019 | 1024 | channelList = dataOut.channelList |
|
1020 | 1025 | else: |
|
1021 | 1026 | channelIndexList = [] |
|
1022 | 1027 | for channel in channelList: |
|
1023 | 1028 | if channel not in dataOut.channelList: |
|
1024 | 1029 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1025 | 1030 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1026 | 1031 | |
|
1027 | 1032 | factor = dataOut.normFactor |
|
1028 | 1033 | |
|
1029 | 1034 | y = dataOut.getHeiRange() |
|
1030 | 1035 | |
|
1031 | 1036 | z = dataOut.data_spc/factor |
|
1032 | 1037 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1033 | 1038 | |
|
1034 | 1039 | hei_index = numpy.arange(25)*3 + 20 |
|
1035 | 1040 | |
|
1036 | 1041 | if xaxis == "frequency": |
|
1037 | 1042 | x = dataOut.getFreqRange()/1000. |
|
1038 | 1043 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1039 | 1044 | xlabel = "Frequency (kHz)" |
|
1040 | 1045 | ylabel = "Power (dB)" |
|
1041 | 1046 | |
|
1042 | 1047 | elif xaxis == "time": |
|
1043 | 1048 | x = dataOut.getAcfRange() |
|
1044 | 1049 | zdB = z[0,:,hei_index] |
|
1045 | 1050 | xlabel = "Time (ms)" |
|
1046 | 1051 | ylabel = "ACF" |
|
1047 | 1052 | |
|
1048 | 1053 | else: |
|
1049 | 1054 | x = dataOut.getVelRange() |
|
1050 | 1055 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1051 | 1056 | xlabel = "Velocity (m/s)" |
|
1052 | 1057 | ylabel = "Power (dB)" |
|
1053 | 1058 | |
|
1054 | 1059 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1055 | 1060 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1056 | 1061 | |
|
1057 | 1062 | if not self.isConfig: |
|
1058 | 1063 | |
|
1059 | 1064 | nplots = 1 |
|
1060 | 1065 | |
|
1061 | 1066 | self.setup(id=id, |
|
1062 | 1067 | nplots=nplots, |
|
1063 | 1068 | wintitle=wintitle, |
|
1064 | 1069 | show=show) |
|
1065 | 1070 | |
|
1066 | 1071 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1067 | 1072 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1068 | 1073 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1069 | 1074 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1070 | 1075 | |
|
1071 | 1076 | self.isConfig = True |
|
1072 | 1077 | |
|
1073 | 1078 | self.setWinTitle(title) |
|
1074 | 1079 | |
|
1075 | 1080 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1076 | 1081 | axes = self.axesList[0] |
|
1077 | 1082 | |
|
1078 | 1083 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1079 | 1084 | |
|
1080 | 1085 | axes.pmultilineyaxis( x, zdB, |
|
1081 | 1086 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1082 | 1087 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1083 | 1088 | ytick_visible=True, nxticks=5, |
|
1084 | 1089 | grid='x') |
|
1085 | 1090 | |
|
1086 | 1091 | self.draw() |
|
1087 | 1092 | |
|
1088 | 1093 | self.save(figpath=figpath, |
|
1089 | 1094 | figfile=figfile, |
|
1090 | 1095 | save=save, |
|
1091 | 1096 | ftp=ftp, |
|
1092 | 1097 | wr_period=wr_period, |
|
1093 | 1098 | thisDatetime=thisDatetime) |
|
1094 | 1099 | |
|
1095 | 1100 | class Noise(Figure): |
|
1096 | 1101 | |
|
1097 | 1102 | isConfig = None |
|
1098 | 1103 | __nsubplots = None |
|
1099 | 1104 | |
|
1100 | 1105 | PREFIX = 'noise' |
|
1101 | 1106 | |
|
1102 | 1107 | def __init__(self): |
|
1103 | 1108 | |
|
1104 | 1109 | self.timerange = 24*60*60 |
|
1105 | 1110 | self.isConfig = False |
|
1106 | 1111 | self.__nsubplots = 1 |
|
1107 | 1112 | self.counter_imagwr = 0 |
|
1108 | 1113 | self.WIDTH = 800 |
|
1109 | 1114 | self.HEIGHT = 400 |
|
1110 | 1115 | self.WIDTHPROF = 120 |
|
1111 | 1116 | self.HEIGHTPROF = 0 |
|
1112 | 1117 | self.xdata = None |
|
1113 | 1118 | self.ydata = None |
|
1114 | 1119 | |
|
1115 | 1120 | self.PLOT_CODE = NOISE_CODE |
|
1116 | 1121 | |
|
1117 | 1122 | self.FTP_WEI = None |
|
1118 | 1123 | self.EXP_CODE = None |
|
1119 | 1124 | self.SUB_EXP_CODE = None |
|
1120 | 1125 | self.PLOT_POS = None |
|
1121 | 1126 | self.figfile = None |
|
1122 | 1127 | |
|
1123 | 1128 | self.xmin = None |
|
1124 | 1129 | self.xmax = None |
|
1125 | 1130 | |
|
1126 | 1131 | def getSubplots(self): |
|
1127 | 1132 | |
|
1128 | 1133 | ncol = 1 |
|
1129 | 1134 | nrow = 1 |
|
1130 | 1135 | |
|
1131 | 1136 | return nrow, ncol |
|
1132 | 1137 | |
|
1133 | 1138 | def openfile(self, filename): |
|
1134 | 1139 | dirname = os.path.dirname(filename) |
|
1135 | 1140 | |
|
1136 | 1141 | if not os.path.exists(dirname): |
|
1137 | 1142 | os.mkdir(dirname) |
|
1138 | 1143 | |
|
1139 | 1144 | f = open(filename,'w+') |
|
1140 | 1145 | f.write('\n\n') |
|
1141 | 1146 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1142 | 1147 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1143 | 1148 | f.close() |
|
1144 | 1149 | |
|
1145 | 1150 | def save_data(self, filename_phase, data, data_datetime): |
|
1146 | 1151 | |
|
1147 | 1152 | f=open(filename_phase,'a') |
|
1148 | 1153 | |
|
1149 | 1154 | timetuple_data = data_datetime.timetuple() |
|
1150 | 1155 | day = str(timetuple_data.tm_mday) |
|
1151 | 1156 | month = str(timetuple_data.tm_mon) |
|
1152 | 1157 | year = str(timetuple_data.tm_year) |
|
1153 | 1158 | hour = str(timetuple_data.tm_hour) |
|
1154 | 1159 | minute = str(timetuple_data.tm_min) |
|
1155 | 1160 | second = str(timetuple_data.tm_sec) |
|
1156 | 1161 | |
|
1157 | 1162 | data_msg = '' |
|
1158 | 1163 | for i in range(len(data)): |
|
1159 | 1164 | data_msg += str(data[i]) + ' ' |
|
1160 | 1165 | |
|
1161 | 1166 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1162 | 1167 | f.close() |
|
1163 | 1168 | |
|
1164 | 1169 | |
|
1165 | 1170 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1166 | 1171 | |
|
1167 | 1172 | self.__showprofile = showprofile |
|
1168 | 1173 | self.nplots = nplots |
|
1169 | 1174 | |
|
1170 | 1175 | ncolspan = 7 |
|
1171 | 1176 | colspan = 6 |
|
1172 | 1177 | self.__nsubplots = 2 |
|
1173 | 1178 | |
|
1174 | 1179 | self.createFigure(id = id, |
|
1175 | 1180 | wintitle = wintitle, |
|
1176 | 1181 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1177 | 1182 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1178 | 1183 | show=show) |
|
1179 | 1184 | |
|
1180 | 1185 | nrow, ncol = self.getSubplots() |
|
1181 | 1186 | |
|
1182 | 1187 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1183 | 1188 | |
|
1184 | 1189 | |
|
1185 | 1190 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1186 | 1191 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1187 | 1192 | timerange=None, |
|
1188 | 1193 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1189 | 1194 | server=None, folder=None, username=None, password=None, |
|
1190 | 1195 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1191 | 1196 | |
|
1192 | 1197 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1193 | 1198 | return |
|
1194 | 1199 | |
|
1195 | 1200 | if channelList == None: |
|
1196 | 1201 | channelIndexList = dataOut.channelIndexList |
|
1197 | 1202 | channelList = dataOut.channelList |
|
1198 | 1203 | else: |
|
1199 | 1204 | channelIndexList = [] |
|
1200 | 1205 | for channel in channelList: |
|
1201 | 1206 | if channel not in dataOut.channelList: |
|
1202 | 1207 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1203 | 1208 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1204 | 1209 | |
|
1205 | 1210 | x = dataOut.getTimeRange() |
|
1206 | 1211 | #y = dataOut.getHeiRange() |
|
1207 | 1212 | factor = dataOut.normFactor |
|
1208 | 1213 | noise = dataOut.noise[channelIndexList]/factor |
|
1209 | 1214 | noisedB = 10*numpy.log10(noise) |
|
1210 | 1215 | |
|
1211 | 1216 | thisDatetime = dataOut.datatime |
|
1212 | 1217 | |
|
1213 | 1218 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1214 | 1219 | xlabel = "" |
|
1215 | 1220 | ylabel = "Intensity (dB)" |
|
1216 | 1221 | update_figfile = False |
|
1217 | 1222 | |
|
1218 | 1223 | if not self.isConfig: |
|
1219 | 1224 | |
|
1220 | 1225 | nplots = 1 |
|
1221 | 1226 | |
|
1222 | 1227 | self.setup(id=id, |
|
1223 | 1228 | nplots=nplots, |
|
1224 | 1229 | wintitle=wintitle, |
|
1225 | 1230 | showprofile=showprofile, |
|
1226 | 1231 | show=show) |
|
1227 | 1232 | |
|
1228 | 1233 | if timerange != None: |
|
1229 | 1234 | self.timerange = timerange |
|
1230 | 1235 | |
|
1231 | 1236 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1232 | 1237 | |
|
1233 | 1238 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1234 | 1239 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1235 | 1240 | |
|
1236 | 1241 | self.FTP_WEI = ftp_wei |
|
1237 | 1242 | self.EXP_CODE = exp_code |
|
1238 | 1243 | self.SUB_EXP_CODE = sub_exp_code |
|
1239 | 1244 | self.PLOT_POS = plot_pos |
|
1240 | 1245 | |
|
1241 | 1246 | |
|
1242 | 1247 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1243 | 1248 | self.isConfig = True |
|
1244 | 1249 | self.figfile = figfile |
|
1245 | 1250 | self.xdata = numpy.array([]) |
|
1246 | 1251 | self.ydata = numpy.array([]) |
|
1247 | 1252 | |
|
1248 | 1253 | update_figfile = True |
|
1249 | 1254 | |
|
1250 | 1255 | #open file beacon phase |
|
1251 | 1256 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1252 | 1257 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1253 | 1258 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1254 | 1259 | |
|
1255 | 1260 | self.setWinTitle(title) |
|
1256 | 1261 | |
|
1257 | 1262 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1258 | 1263 | |
|
1259 | 1264 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1260 | 1265 | axes = self.axesList[0] |
|
1261 | 1266 | |
|
1262 | 1267 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1263 | 1268 | |
|
1264 | 1269 | if len(self.ydata)==0: |
|
1265 | 1270 | self.ydata = noisedB.reshape(-1,1) |
|
1266 | 1271 | else: |
|
1267 | 1272 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1268 | 1273 | |
|
1269 | 1274 | |
|
1270 | 1275 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1271 | 1276 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1272 | 1277 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1273 | 1278 | XAxisAsTime=True, grid='both' |
|
1274 | 1279 | ) |
|
1275 | 1280 | |
|
1276 | 1281 | self.draw() |
|
1277 | 1282 | |
|
1278 | 1283 | if dataOut.ltctime >= self.xmax: |
|
1279 | 1284 | self.counter_imagwr = wr_period |
|
1280 | 1285 | self.isConfig = False |
|
1281 | 1286 | update_figfile = True |
|
1282 | 1287 | |
|
1283 | 1288 | self.save(figpath=figpath, |
|
1284 | 1289 | figfile=figfile, |
|
1285 | 1290 | save=save, |
|
1286 | 1291 | ftp=ftp, |
|
1287 | 1292 | wr_period=wr_period, |
|
1288 | 1293 | thisDatetime=thisDatetime, |
|
1289 | 1294 | update_figfile=update_figfile) |
|
1290 | 1295 | |
|
1291 | 1296 | #store data beacon phase |
|
1292 | 1297 | if save: |
|
1293 | 1298 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1294 | 1299 | |
|
1295 | 1300 | class BeaconPhase(Figure): |
|
1296 | 1301 | |
|
1297 | 1302 | __isConfig = None |
|
1298 | 1303 | __nsubplots = None |
|
1299 | 1304 | |
|
1300 | 1305 | PREFIX = 'beacon_phase' |
|
1301 | 1306 | |
|
1302 | 1307 | def __init__(self): |
|
1303 | 1308 | |
|
1304 | 1309 | self.timerange = 24*60*60 |
|
1305 | 1310 | self.isConfig = False |
|
1306 | 1311 | self.__nsubplots = 1 |
|
1307 | 1312 | self.counter_imagwr = 0 |
|
1308 | 1313 | self.WIDTH = 800 |
|
1309 | 1314 | self.HEIGHT = 400 |
|
1310 | 1315 | self.WIDTHPROF = 120 |
|
1311 | 1316 | self.HEIGHTPROF = 0 |
|
1312 | 1317 | self.xdata = None |
|
1313 | 1318 | self.ydata = None |
|
1314 | 1319 | |
|
1315 | 1320 | self.PLOT_CODE = BEACON_CODE |
|
1316 | 1321 | |
|
1317 | 1322 | self.FTP_WEI = None |
|
1318 | 1323 | self.EXP_CODE = None |
|
1319 | 1324 | self.SUB_EXP_CODE = None |
|
1320 | 1325 | self.PLOT_POS = None |
|
1321 | 1326 | |
|
1322 | 1327 | self.filename_phase = None |
|
1323 | 1328 | |
|
1324 | 1329 | self.figfile = None |
|
1325 | 1330 | |
|
1326 | 1331 | self.xmin = None |
|
1327 | 1332 | self.xmax = None |
|
1328 | 1333 | |
|
1329 | 1334 | def getSubplots(self): |
|
1330 | 1335 | |
|
1331 | 1336 | ncol = 1 |
|
1332 | 1337 | nrow = 1 |
|
1333 | 1338 | |
|
1334 | 1339 | return nrow, ncol |
|
1335 | 1340 | |
|
1336 | 1341 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1337 | 1342 | |
|
1338 | 1343 | self.__showprofile = showprofile |
|
1339 | 1344 | self.nplots = nplots |
|
1340 | 1345 | |
|
1341 | 1346 | ncolspan = 7 |
|
1342 | 1347 | colspan = 6 |
|
1343 | 1348 | self.__nsubplots = 2 |
|
1344 | 1349 | |
|
1345 | 1350 | self.createFigure(id = id, |
|
1346 | 1351 | wintitle = wintitle, |
|
1347 | 1352 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1348 | 1353 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1349 | 1354 | show=show) |
|
1350 | 1355 | |
|
1351 | 1356 | nrow, ncol = self.getSubplots() |
|
1352 | 1357 | |
|
1353 | 1358 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1354 | 1359 | |
|
1355 | 1360 | def save_phase(self, filename_phase): |
|
1356 | 1361 | f = open(filename_phase,'w+') |
|
1357 | 1362 | f.write('\n\n') |
|
1358 | 1363 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1359 | 1364 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1360 | 1365 | f.close() |
|
1361 | 1366 | |
|
1362 | 1367 | def save_data(self, filename_phase, data, data_datetime): |
|
1363 | 1368 | f=open(filename_phase,'a') |
|
1364 | 1369 | timetuple_data = data_datetime.timetuple() |
|
1365 | 1370 | day = str(timetuple_data.tm_mday) |
|
1366 | 1371 | month = str(timetuple_data.tm_mon) |
|
1367 | 1372 | year = str(timetuple_data.tm_year) |
|
1368 | 1373 | hour = str(timetuple_data.tm_hour) |
|
1369 | 1374 | minute = str(timetuple_data.tm_min) |
|
1370 | 1375 | second = str(timetuple_data.tm_sec) |
|
1371 | 1376 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1372 | 1377 | f.close() |
|
1373 | 1378 | |
|
1374 | 1379 | |
|
1375 | 1380 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1376 | 1381 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1377 | 1382 | timerange=None, |
|
1378 | 1383 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1379 | 1384 | server=None, folder=None, username=None, password=None, |
|
1380 | 1385 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1381 | 1386 | |
|
1382 | 1387 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1383 | 1388 | return |
|
1384 | 1389 | |
|
1385 | 1390 | if pairsList == None: |
|
1386 | 1391 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1387 | 1392 | else: |
|
1388 | 1393 | pairsIndexList = [] |
|
1389 | 1394 | for pair in pairsList: |
|
1390 | 1395 | if pair not in dataOut.pairsList: |
|
1391 | 1396 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
1392 | 1397 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1393 | 1398 | |
|
1394 | 1399 | if pairsIndexList == []: |
|
1395 | 1400 | return |
|
1396 | 1401 | |
|
1397 | 1402 | # if len(pairsIndexList) > 4: |
|
1398 | 1403 | # pairsIndexList = pairsIndexList[0:4] |
|
1399 | 1404 | |
|
1400 | 1405 | hmin_index = None |
|
1401 | 1406 | hmax_index = None |
|
1402 | 1407 | |
|
1403 | 1408 | if hmin != None and hmax != None: |
|
1404 | 1409 | indexes = numpy.arange(dataOut.nHeights) |
|
1405 | 1410 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1406 | 1411 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1407 | 1412 | |
|
1408 | 1413 | if hmin_list.any(): |
|
1409 | 1414 | hmin_index = hmin_list[0] |
|
1410 | 1415 | |
|
1411 | 1416 | if hmax_list.any(): |
|
1412 | 1417 | hmax_index = hmax_list[-1]+1 |
|
1413 | 1418 | |
|
1414 | 1419 | x = dataOut.getTimeRange() |
|
1415 | 1420 | #y = dataOut.getHeiRange() |
|
1416 | 1421 | |
|
1417 | 1422 | |
|
1418 | 1423 | thisDatetime = dataOut.datatime |
|
1419 | 1424 | |
|
1420 | 1425 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1421 | 1426 | xlabel = "Local Time" |
|
1422 | 1427 | ylabel = "Phase (degrees)" |
|
1423 | 1428 | |
|
1424 | 1429 | update_figfile = False |
|
1425 | 1430 | |
|
1426 | 1431 | nplots = len(pairsIndexList) |
|
1427 | 1432 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1428 | 1433 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1429 | 1434 | for i in range(nplots): |
|
1430 | 1435 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1431 | 1436 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1432 | 1437 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1433 | 1438 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1434 | 1439 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1435 | 1440 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1436 | 1441 | |
|
1437 | 1442 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
1438 | 1443 | #print phase[dataOut.beacon_heiIndexList] |
|
1439 | 1444 | |
|
1440 | 1445 | if dataOut.beacon_heiIndexList: |
|
1441 | 1446 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1442 | 1447 | else: |
|
1443 | 1448 | phase_beacon[i] = numpy.average(phase) |
|
1444 | 1449 | |
|
1445 | 1450 | if not self.isConfig: |
|
1446 | 1451 | |
|
1447 | 1452 | nplots = len(pairsIndexList) |
|
1448 | 1453 | |
|
1449 | 1454 | self.setup(id=id, |
|
1450 | 1455 | nplots=nplots, |
|
1451 | 1456 | wintitle=wintitle, |
|
1452 | 1457 | showprofile=showprofile, |
|
1453 | 1458 | show=show) |
|
1454 | 1459 | |
|
1455 | 1460 | if timerange != None: |
|
1456 | 1461 | self.timerange = timerange |
|
1457 | 1462 | |
|
1458 | 1463 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1459 | 1464 | |
|
1460 | 1465 | if ymin == None: ymin = 0 |
|
1461 | 1466 | if ymax == None: ymax = 360 |
|
1462 | 1467 | |
|
1463 | 1468 | self.FTP_WEI = ftp_wei |
|
1464 | 1469 | self.EXP_CODE = exp_code |
|
1465 | 1470 | self.SUB_EXP_CODE = sub_exp_code |
|
1466 | 1471 | self.PLOT_POS = plot_pos |
|
1467 | 1472 | |
|
1468 | 1473 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1469 | 1474 | self.isConfig = True |
|
1470 | 1475 | self.figfile = figfile |
|
1471 | 1476 | self.xdata = numpy.array([]) |
|
1472 | 1477 | self.ydata = numpy.array([]) |
|
1473 | 1478 | |
|
1474 | 1479 | update_figfile = True |
|
1475 | 1480 | |
|
1476 | 1481 | #open file beacon phase |
|
1477 | 1482 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1478 | 1483 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1479 | 1484 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1480 | 1485 | #self.save_phase(self.filename_phase) |
|
1481 | 1486 | |
|
1482 | 1487 | |
|
1483 | 1488 | #store data beacon phase |
|
1484 | 1489 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1485 | 1490 | |
|
1486 | 1491 | self.setWinTitle(title) |
|
1487 | 1492 | |
|
1488 | 1493 | |
|
1489 | 1494 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1490 | 1495 | |
|
1491 | 1496 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1492 | 1497 | |
|
1493 | 1498 | axes = self.axesList[0] |
|
1494 | 1499 | |
|
1495 | 1500 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1496 | 1501 | |
|
1497 | 1502 | if len(self.ydata)==0: |
|
1498 | 1503 | self.ydata = phase_beacon.reshape(-1,1) |
|
1499 | 1504 | else: |
|
1500 | 1505 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1501 | 1506 | |
|
1502 | 1507 | |
|
1503 | 1508 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1504 | 1509 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1505 | 1510 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1506 | 1511 | XAxisAsTime=True, grid='both' |
|
1507 | 1512 | ) |
|
1508 | 1513 | |
|
1509 | 1514 | self.draw() |
|
1510 | 1515 | |
|
1511 | 1516 | if dataOut.ltctime >= self.xmax: |
|
1512 | 1517 | self.counter_imagwr = wr_period |
|
1513 | 1518 | self.isConfig = False |
|
1514 | 1519 | update_figfile = True |
|
1515 | 1520 | |
|
1516 | 1521 | self.save(figpath=figpath, |
|
1517 | 1522 | figfile=figfile, |
|
1518 | 1523 | save=save, |
|
1519 | 1524 | ftp=ftp, |
|
1520 | 1525 | wr_period=wr_period, |
|
1521 | 1526 | thisDatetime=thisDatetime, |
|
1522 | 1527 | update_figfile=update_figfile) |
General Comments 0
You need to be logged in to leave comments.
Login now