@@ -1,1163 +1,1167 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader,ProcessingHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | SPEED_OF_LIGHT = 3e8 |
|
23 | 23 | |
|
24 | 24 | |
|
25 | 25 | def getNumpyDtype(dataTypeCode): |
|
26 | 26 | |
|
27 | 27 | if dataTypeCode == 0: |
|
28 | 28 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
29 | 29 | elif dataTypeCode == 1: |
|
30 | 30 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
31 | 31 | elif dataTypeCode == 2: |
|
32 | 32 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
33 | 33 | elif dataTypeCode == 3: |
|
34 | 34 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
35 | 35 | elif dataTypeCode == 4: |
|
36 | 36 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
37 | 37 | elif dataTypeCode == 5: |
|
38 | 38 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
39 | 39 | else: |
|
40 | 40 | raise ValueError('dataTypeCode was not defined') |
|
41 | 41 | |
|
42 | 42 | return numpyDtype |
|
43 | 43 | |
|
44 | 44 | |
|
45 | 45 | def getDataTypeCode(numpyDtype): |
|
46 | 46 | |
|
47 | 47 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
48 | 48 | datatype = 0 |
|
49 | 49 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
50 | 50 | datatype = 1 |
|
51 | 51 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
52 | 52 | datatype = 2 |
|
53 | 53 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
54 | 54 | datatype = 3 |
|
55 | 55 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
56 | 56 | datatype = 4 |
|
57 | 57 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
58 | 58 | datatype = 5 |
|
59 | 59 | else: |
|
60 | 60 | datatype = None |
|
61 | 61 | |
|
62 | 62 | return datatype |
|
63 | 63 | |
|
64 | 64 | |
|
65 | 65 | def hildebrand_sekhon(data, navg): |
|
66 | 66 | """ |
|
67 | 67 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
68 | 68 | implementation technique is based on the fact that the standard deviation of the spectral |
|
69 | 69 | densities is equal to the mean spectral density for white Gaussian noise |
|
70 | 70 | |
|
71 | 71 | Inputs: |
|
72 | 72 | Data : heights |
|
73 | 73 | navg : numbers of averages |
|
74 | 74 | |
|
75 | 75 | Return: |
|
76 | 76 | mean : noise's level |
|
77 | 77 | """ |
|
78 | 78 | |
|
79 | 79 | sortdata = numpy.sort(data, axis=None) |
|
80 | 80 | ''' |
|
81 | 81 | lenOfData = len(sortdata) |
|
82 | 82 | nums_min = lenOfData*0.2 |
|
83 | 83 | |
|
84 | 84 | if nums_min <= 5: |
|
85 | 85 | |
|
86 | 86 | nums_min = 5 |
|
87 | 87 | |
|
88 | 88 | sump = 0. |
|
89 | 89 | sumq = 0. |
|
90 | 90 | |
|
91 | 91 | j = 0 |
|
92 | 92 | cont = 1 |
|
93 | 93 | |
|
94 | 94 | while((cont == 1)and(j < lenOfData)): |
|
95 | 95 | |
|
96 | 96 | sump += sortdata[j] |
|
97 | 97 | sumq += sortdata[j]**2 |
|
98 | 98 | |
|
99 | 99 | if j > nums_min: |
|
100 | 100 | rtest = float(j)/(j-1) + 1.0/navg |
|
101 | 101 | if ((sumq*j) > (rtest*sump**2)): |
|
102 | 102 | j = j - 1 |
|
103 | 103 | sump = sump - sortdata[j] |
|
104 | 104 | sumq = sumq - sortdata[j]**2 |
|
105 | 105 | cont = 0 |
|
106 | 106 | |
|
107 | 107 | j += 1 |
|
108 | 108 | |
|
109 | 109 | lnoise = sump / j |
|
110 | 110 | ''' |
|
111 | 111 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
112 | 112 | |
|
113 | 113 | |
|
114 | 114 | class Beam: |
|
115 | 115 | |
|
116 | 116 | def __init__(self): |
|
117 | 117 | self.codeList = [] |
|
118 | 118 | self.azimuthList = [] |
|
119 | 119 | self.zenithList = [] |
|
120 | 120 | |
|
121 | 121 | |
|
122 | 122 | class GenericData(object): |
|
123 | 123 | |
|
124 | 124 | flagNoData = True |
|
125 | 125 | |
|
126 | 126 | def copy(self, inputObj=None): |
|
127 | 127 | |
|
128 | 128 | if inputObj == None: |
|
129 | 129 | return copy.deepcopy(self) |
|
130 | 130 | |
|
131 | 131 | for key in list(inputObj.__dict__.keys()): |
|
132 | 132 | |
|
133 | 133 | attribute = inputObj.__dict__[key] |
|
134 | 134 | |
|
135 | 135 | # If this attribute is a tuple or list |
|
136 | 136 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
137 | 137 | self.__dict__[key] = attribute[:] |
|
138 | 138 | continue |
|
139 | 139 | |
|
140 | 140 | # If this attribute is another object or instance |
|
141 | 141 | if hasattr(attribute, '__dict__'): |
|
142 | 142 | self.__dict__[key] = attribute.copy() |
|
143 | 143 | continue |
|
144 | 144 | |
|
145 | 145 | self.__dict__[key] = inputObj.__dict__[key] |
|
146 | 146 | |
|
147 | 147 | def deepcopy(self): |
|
148 | 148 | |
|
149 | 149 | return copy.deepcopy(self) |
|
150 | 150 | |
|
151 | 151 | def isEmpty(self): |
|
152 | 152 | |
|
153 | 153 | return self.flagNoData |
|
154 | 154 | |
|
155 | 155 | def isReady(self): |
|
156 | 156 | |
|
157 | 157 | return not self.flagNoData |
|
158 | 158 | |
|
159 | 159 | |
|
160 | 160 | class JROData(GenericData): |
|
161 | 161 | |
|
162 | 162 | systemHeaderObj = SystemHeader() |
|
163 | 163 | radarControllerHeaderObj = RadarControllerHeader() |
|
164 | 164 | type = None |
|
165 | 165 | datatype = None # dtype but in string |
|
166 | 166 | nProfiles = None |
|
167 | 167 | heightList = None |
|
168 | 168 | channelList = None |
|
169 | 169 | flagDiscontinuousBlock = False |
|
170 | 170 | useLocalTime = False |
|
171 | 171 | utctime = None |
|
172 | 172 | timeZone = None |
|
173 | 173 | dstFlag = None |
|
174 | 174 | errorCount = None |
|
175 | 175 | blocksize = None |
|
176 | 176 | flagDecodeData = False # asumo q la data no esta decodificada |
|
177 | 177 | flagDeflipData = False # asumo q la data no esta sin flip |
|
178 | 178 | flagShiftFFT = False |
|
179 | 179 | nCohInt = None |
|
180 | 180 | windowOfFilter = 1 |
|
181 | 181 | C = 3e8 |
|
182 | 182 | frequency = 49.92e6 |
|
183 | 183 | realtime = False |
|
184 | 184 | beacon_heiIndexList = None |
|
185 | 185 | last_block = None |
|
186 | 186 | blocknow = None |
|
187 | 187 | azimuth = None |
|
188 | 188 | zenith = None |
|
189 | 189 | beam = Beam() |
|
190 | 190 | profileIndex = None |
|
191 | 191 | error = None |
|
192 | 192 | data = None |
|
193 | 193 | nmodes = None |
|
194 | 194 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
195 | 195 | |
|
196 | 196 | ippFactor = 1 #Added to correct the freq and vel range for AMISR data |
|
197 | 197 | useInputBuffer = False |
|
198 | 198 | buffer_empty = True |
|
199 | 199 | codeList = [] |
|
200 | 200 | azimuthList = [] |
|
201 | 201 | elevationList = [] |
|
202 | 202 | last_noise = None |
|
203 | 203 | __ipp = None |
|
204 | 204 | __ippSeconds = None |
|
205 | 205 | sampled_heightsFFT = None |
|
206 | 206 | pulseLength_TxA = None |
|
207 | 207 | deltaHeight = None |
|
208 | 208 | __code = None |
|
209 | 209 | __nCode = None |
|
210 | 210 | __nBaud = None |
|
211 | 211 | unitsDescription = "The units of the parameters are according to the International System of units (Seconds, Meter, Hertz, ...), except \ |
|
212 | 212 | the parameters related to distances such as heightList, or heightResolution wich are in Km" |
|
213 | 213 | |
|
214 | 214 | |
|
215 | 215 | |
|
216 | 216 | def __str__(self): |
|
217 | 217 | |
|
218 | 218 | return '{} - {}'.format(self.type, self.datatime()) |
|
219 | 219 | |
|
220 | 220 | def getNoise(self): |
|
221 | 221 | |
|
222 | 222 | raise NotImplementedError |
|
223 | 223 | |
|
224 | 224 | @property |
|
225 | 225 | def nChannels(self): |
|
226 | 226 | |
|
227 | 227 | return len(self.channelList) |
|
228 | 228 | |
|
229 | 229 | @property |
|
230 | 230 | def channelIndexList(self): |
|
231 | 231 | |
|
232 | 232 | return list(range(self.nChannels)) |
|
233 | 233 | |
|
234 | 234 | @property |
|
235 | 235 | def nHeights(self): |
|
236 | 236 | |
|
237 | 237 | return len(self.heightList) |
|
238 | 238 | |
|
239 | 239 | def getDeltaH(self): |
|
240 | 240 | |
|
241 | 241 | return self.heightList[1] - self.heightList[0] |
|
242 | 242 | |
|
243 | 243 | @property |
|
244 | 244 | def ltctime(self): |
|
245 | ||
|
245 | try: | |
|
246 | self.timeZone = self.timeZone.decode("utf-8") | |
|
247 | except Exception as e: | |
|
248 | pass | |
|
249 | ||
|
246 | 250 | if self.useLocalTime: |
|
247 | 251 | if self.timeZone =='lt': |
|
248 | 252 | return self.utctime - 300 * 60 |
|
249 | 253 | elif self.timeZone =='ut': |
|
250 | 254 | return self.utctime |
|
251 | 255 | else: |
|
252 | log.error("No valid timeZone detected") | |
|
256 | log.error("No valid timeZone detected:{}".format(self.timeZone)) | |
|
253 | 257 | return self.utctime |
|
254 | 258 | |
|
255 | 259 | @property |
|
256 | 260 | def datatime(self): |
|
257 | 261 | |
|
258 | 262 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
259 | 263 | return datatimeValue |
|
260 | 264 | |
|
261 | 265 | def getTimeRange(self): |
|
262 | 266 | |
|
263 | 267 | datatime = [] |
|
264 | 268 | |
|
265 | 269 | datatime.append(self.ltctime) |
|
266 | 270 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
267 | 271 | |
|
268 | 272 | datatime = numpy.array(datatime) |
|
269 | 273 | |
|
270 | 274 | return datatime |
|
271 | 275 | |
|
272 | 276 | def getFmaxTimeResponse(self): |
|
273 | 277 | |
|
274 | 278 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
275 | 279 | |
|
276 | 280 | PRF = 1. / (period * self.nCohInt) |
|
277 | 281 | |
|
278 | 282 | fmax = PRF |
|
279 | 283 | |
|
280 | 284 | return fmax |
|
281 | 285 | |
|
282 | 286 | def getFmax(self): |
|
283 | 287 | PRF = 1. / (self.__ippSeconds * self.nCohInt) |
|
284 | 288 | |
|
285 | 289 | fmax = PRF |
|
286 | 290 | return fmax |
|
287 | 291 | |
|
288 | 292 | def getVmax(self): |
|
289 | 293 | |
|
290 | 294 | _lambda = self.C / self.frequency |
|
291 | 295 | |
|
292 | 296 | vmax = self.getFmax() * _lambda / 2 |
|
293 | 297 | |
|
294 | 298 | return vmax |
|
295 | 299 | |
|
296 | 300 | ## Radar Controller Header must be immutable |
|
297 | 301 | @property |
|
298 | 302 | def ippSeconds(self): |
|
299 | 303 | ''' |
|
300 | 304 | ''' |
|
301 | 305 | #return self.radarControllerHeaderObj.ippSeconds |
|
302 | 306 | return self.__ippSeconds |
|
303 | 307 | |
|
304 | 308 | @ippSeconds.setter |
|
305 | 309 | def ippSeconds(self, ippSeconds): |
|
306 | 310 | ''' |
|
307 | 311 | ''' |
|
308 | 312 | #self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
309 | 313 | self.__ippSeconds = ippSeconds |
|
310 | 314 | self.__ipp = ippSeconds*SPEED_OF_LIGHT/2000.0 |
|
311 | 315 | |
|
312 | 316 | @property |
|
313 | 317 | def code(self): |
|
314 | 318 | ''' |
|
315 | 319 | ''' |
|
316 | 320 | # return self.radarControllerHeaderObj.code |
|
317 | 321 | return self.__code |
|
318 | 322 | |
|
319 | 323 | @code.setter |
|
320 | 324 | def code(self, code): |
|
321 | 325 | ''' |
|
322 | 326 | ''' |
|
323 | 327 | # self.radarControllerHeaderObj.code = code |
|
324 | 328 | self.__code = code |
|
325 | 329 | |
|
326 | 330 | @property |
|
327 | 331 | def nCode(self): |
|
328 | 332 | ''' |
|
329 | 333 | ''' |
|
330 | 334 | # return self.radarControllerHeaderObj.nCode |
|
331 | 335 | return self.__nCode |
|
332 | 336 | |
|
333 | 337 | @nCode.setter |
|
334 | 338 | def nCode(self, ncode): |
|
335 | 339 | ''' |
|
336 | 340 | ''' |
|
337 | 341 | # self.radarControllerHeaderObj.nCode = ncode |
|
338 | 342 | self.__nCode = ncode |
|
339 | 343 | |
|
340 | 344 | @property |
|
341 | 345 | def nBaud(self): |
|
342 | 346 | ''' |
|
343 | 347 | ''' |
|
344 | 348 | # return self.radarControllerHeaderObj.nBaud |
|
345 | 349 | return self.__nBaud |
|
346 | 350 | |
|
347 | 351 | @nBaud.setter |
|
348 | 352 | def nBaud(self, nbaud): |
|
349 | 353 | ''' |
|
350 | 354 | ''' |
|
351 | 355 | # self.radarControllerHeaderObj.nBaud = nbaud |
|
352 | 356 | self.__nBaud = nbaud |
|
353 | 357 | |
|
354 | 358 | @property |
|
355 | 359 | def ipp(self): |
|
356 | 360 | ''' |
|
357 | 361 | ''' |
|
358 | 362 | # return self.radarControllerHeaderObj.ipp |
|
359 | 363 | return self.__ipp |
|
360 | 364 | |
|
361 | 365 | @ipp.setter |
|
362 | 366 | def ipp(self, ipp): |
|
363 | 367 | ''' |
|
364 | 368 | ''' |
|
365 | 369 | # self.radarControllerHeaderObj.ipp = ipp |
|
366 | 370 | self.__ipp = ipp |
|
367 | 371 | |
|
368 | 372 | @property |
|
369 | 373 | def metadata(self): |
|
370 | 374 | ''' |
|
371 | 375 | ''' |
|
372 | 376 | |
|
373 | 377 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
374 | 378 | |
|
375 | 379 | |
|
376 | 380 | class Voltage(JROData): |
|
377 | 381 | |
|
378 | 382 | dataPP_POW = None |
|
379 | 383 | dataPP_DOP = None |
|
380 | 384 | dataPP_WIDTH = None |
|
381 | 385 | dataPP_SNR = None |
|
382 | 386 | |
|
383 | 387 | # To use oper |
|
384 | 388 | flagProfilesByRange = False |
|
385 | 389 | nProfilesByRange = None |
|
386 | 390 | max_nIncohInt = 1 |
|
387 | 391 | |
|
388 | 392 | def __init__(self): |
|
389 | 393 | ''' |
|
390 | 394 | Constructor |
|
391 | 395 | ''' |
|
392 | 396 | |
|
393 | 397 | self.useLocalTime = True |
|
394 | 398 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
395 | 399 | self.systemHeaderObj = SystemHeader() |
|
396 | 400 | self.processingHeaderObj = ProcessingHeader() |
|
397 | 401 | self.type = "Voltage" |
|
398 | 402 | self.data = None |
|
399 | 403 | self.nProfiles = None |
|
400 | 404 | self.heightList = None |
|
401 | 405 | self.channelList = None |
|
402 | 406 | self.flagNoData = True |
|
403 | 407 | self.flagDiscontinuousBlock = False |
|
404 | 408 | self.utctime = None |
|
405 | 409 | self.timeZone = 0 |
|
406 | 410 | self.dstFlag = None |
|
407 | 411 | self.errorCount = None |
|
408 | 412 | self.nCohInt = None |
|
409 | 413 | self.blocksize = None |
|
410 | 414 | self.flagCohInt = False |
|
411 | 415 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
412 | 416 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
413 | 417 | self.flagShiftFFT = False |
|
414 | 418 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
415 | 419 | self.profileIndex = 0 |
|
416 | 420 | self.ippFactor=1 |
|
417 | 421 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
418 | 422 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
419 | 423 | |
|
420 | 424 | def getNoisebyHildebrand(self, channel=None, ymin_index=None, ymax_index=None): |
|
421 | 425 | """ |
|
422 | 426 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
423 | 427 | |
|
424 | 428 | Return: |
|
425 | 429 | noiselevel |
|
426 | 430 | """ |
|
427 | 431 | |
|
428 | 432 | if channel != None: |
|
429 | 433 | data = self.data[channel,ymin_index:ymax_index] |
|
430 | 434 | nChannels = 1 |
|
431 | 435 | else: |
|
432 | 436 | data = self.data[:,ymin_index:ymax_index] |
|
433 | 437 | nChannels = self.nChannels |
|
434 | 438 | |
|
435 | 439 | noise = numpy.zeros(nChannels) |
|
436 | 440 | power = data * numpy.conjugate(data) |
|
437 | 441 | |
|
438 | 442 | for thisChannel in range(nChannels): |
|
439 | 443 | if nChannels == 1: |
|
440 | 444 | daux = power[:].real |
|
441 | 445 | else: |
|
442 | 446 | daux = power[thisChannel, :].real |
|
443 | 447 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
444 | 448 | |
|
445 | 449 | return noise |
|
446 | 450 | |
|
447 | 451 | def getNoise(self, type=1, channel=None,ymin_index=None, ymax_index=None): |
|
448 | 452 | |
|
449 | 453 | if type == 1: |
|
450 | 454 | noise = self.getNoisebyHildebrand(channel,ymin_index, ymax_index) |
|
451 | 455 | |
|
452 | 456 | return noise |
|
453 | 457 | |
|
454 | 458 | def getPower(self, channel=None): |
|
455 | 459 | |
|
456 | 460 | if channel != None: |
|
457 | 461 | data = self.data[channel] |
|
458 | 462 | else: |
|
459 | 463 | data = self.data |
|
460 | 464 | |
|
461 | 465 | power = data * numpy.conjugate(data) |
|
462 | 466 | powerdB = 10 * numpy.log10(power.real) |
|
463 | 467 | powerdB = numpy.squeeze(powerdB) |
|
464 | 468 | |
|
465 | 469 | return powerdB |
|
466 | 470 | @property |
|
467 | 471 | def data_pow(self): |
|
468 | 472 | return self.getPower() |
|
469 | 473 | |
|
470 | 474 | @property |
|
471 | 475 | def timeInterval(self): |
|
472 | 476 | |
|
473 | 477 | return self.ippSeconds * self.nCohInt |
|
474 | 478 | |
|
475 | 479 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
476 | 480 | |
|
477 | 481 | |
|
478 | 482 | class Spectra(JROData): |
|
479 | 483 | |
|
480 | 484 | data_outlier = None |
|
481 | 485 | flagProfilesByRange = False |
|
482 | 486 | nProfilesByRange = None |
|
483 | 487 | |
|
484 | 488 | def __init__(self): |
|
485 | 489 | ''' |
|
486 | 490 | Constructor |
|
487 | 491 | ''' |
|
488 | 492 | |
|
489 | 493 | self.data_dc = None |
|
490 | 494 | self.data_spc = None |
|
491 | 495 | self.data_cspc = None |
|
492 | 496 | self.useLocalTime = True |
|
493 | 497 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
494 | 498 | self.systemHeaderObj = SystemHeader() |
|
495 | 499 | self.processingHeaderObj = ProcessingHeader() |
|
496 | 500 | self.type = "Spectra" |
|
497 | 501 | self.timeZone = 0 |
|
498 | 502 | self.nProfiles = None |
|
499 | 503 | self.heightList = None |
|
500 | 504 | self.channelList = None |
|
501 | 505 | self.pairsList = None |
|
502 | 506 | self.flagNoData = True |
|
503 | 507 | self.flagDiscontinuousBlock = False |
|
504 | 508 | self.utctime = None |
|
505 | 509 | self.nCohInt = None |
|
506 | 510 | self.nIncohInt = None |
|
507 | 511 | self.blocksize = None |
|
508 | 512 | self.nFFTPoints = None |
|
509 | 513 | self.wavelength = None |
|
510 | 514 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
511 | 515 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
512 | 516 | self.flagShiftFFT = False |
|
513 | 517 | self.ippFactor = 1 |
|
514 | 518 | self.beacon_heiIndexList = [] |
|
515 | 519 | self.noise_estimation = None |
|
516 | 520 | self.codeList = [] |
|
517 | 521 | self.azimuthList = [] |
|
518 | 522 | self.elevationList = [] |
|
519 | 523 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
520 | 524 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
521 | 525 | |
|
522 | 526 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
523 | 527 | """ |
|
524 | 528 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
525 | 529 | |
|
526 | 530 | Return: |
|
527 | 531 | noiselevel |
|
528 | 532 | """ |
|
529 | 533 | |
|
530 | 534 | noise = numpy.zeros(self.nChannels) |
|
531 | 535 | |
|
532 | 536 | for channel in range(self.nChannels): |
|
533 | 537 | daux = self.data_spc[channel, |
|
534 | 538 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
535 | 539 | # noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
536 | 540 | noise[channel] = hildebrand_sekhon(daux, self.max_nIncohInt[channel]) |
|
537 | 541 | |
|
538 | 542 | return noise |
|
539 | 543 | |
|
540 | 544 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
541 | 545 | |
|
542 | 546 | if self.noise_estimation is not None: |
|
543 | 547 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
544 | 548 | return self.noise_estimation |
|
545 | 549 | else: |
|
546 | 550 | noise = self.getNoisebyHildebrand( |
|
547 | 551 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
548 | 552 | return noise |
|
549 | 553 | |
|
550 | 554 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
551 | 555 | |
|
552 | 556 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
553 | 557 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
554 | 558 | |
|
555 | 559 | return freqrange |
|
556 | 560 | |
|
557 | 561 | def getAcfRange(self, extrapoints=0): |
|
558 | 562 | |
|
559 | 563 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
560 | 564 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
561 | 565 | |
|
562 | 566 | return freqrange |
|
563 | 567 | |
|
564 | 568 | def getFreqRange(self, extrapoints=0): |
|
565 | 569 | |
|
566 | 570 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
567 | 571 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
568 | 572 | |
|
569 | 573 | return freqrange |
|
570 | 574 | |
|
571 | 575 | def getVelRange(self, extrapoints=0): |
|
572 | 576 | |
|
573 | 577 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
574 | 578 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
575 | 579 | |
|
576 | 580 | if self.nmodes: |
|
577 | 581 | return velrange/self.nmodes |
|
578 | 582 | else: |
|
579 | 583 | return velrange |
|
580 | 584 | |
|
581 | 585 | @property |
|
582 | 586 | def nPairs(self): |
|
583 | 587 | |
|
584 | 588 | return len(self.pairsList) |
|
585 | 589 | |
|
586 | 590 | @property |
|
587 | 591 | def pairsIndexList(self): |
|
588 | 592 | |
|
589 | 593 | return list(range(self.nPairs)) |
|
590 | 594 | |
|
591 | 595 | @property |
|
592 | 596 | def normFactor(self): |
|
593 | 597 | |
|
594 | 598 | pwcode = 1 |
|
595 | 599 | if self.flagDecodeData: |
|
596 | 600 | try: |
|
597 | 601 | pwcode = numpy.sum(self.code[0]**2) |
|
598 | 602 | except Exception as e: |
|
599 | 603 | log.warning("Failed pwcode read, setting to 1") |
|
600 | 604 | pwcode = 1 |
|
601 | 605 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
602 | 606 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
603 | 607 | if self.flagProfilesByRange: |
|
604 | 608 | normFactor *= (self.nProfilesByRange/self.nProfilesByRange.max()) |
|
605 | 609 | return normFactor |
|
606 | 610 | |
|
607 | 611 | @property |
|
608 | 612 | def flag_cspc(self): |
|
609 | 613 | |
|
610 | 614 | if self.data_cspc is None: |
|
611 | 615 | return True |
|
612 | 616 | |
|
613 | 617 | return False |
|
614 | 618 | |
|
615 | 619 | @property |
|
616 | 620 | def flag_dc(self): |
|
617 | 621 | |
|
618 | 622 | if self.data_dc is None: |
|
619 | 623 | return True |
|
620 | 624 | |
|
621 | 625 | return False |
|
622 | 626 | |
|
623 | 627 | @property |
|
624 | 628 | def timeInterval(self): |
|
625 | 629 | |
|
626 | 630 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
627 | 631 | if self.nmodes: |
|
628 | 632 | return self.nmodes*timeInterval |
|
629 | 633 | else: |
|
630 | 634 | return timeInterval |
|
631 | 635 | |
|
632 | 636 | def getPower(self): |
|
633 | 637 | |
|
634 | 638 | factor = self.normFactor |
|
635 | 639 | power = numpy.zeros( (self.nChannels,self.nHeights) ) |
|
636 | 640 | for ch in range(self.nChannels): |
|
637 | 641 | z = None |
|
638 | 642 | if hasattr(factor,'shape'): |
|
639 | 643 | if factor.ndim > 1: |
|
640 | 644 | z = self.data_spc[ch]/factor[ch] |
|
641 | 645 | else: |
|
642 | 646 | z = self.data_spc[ch]/factor |
|
643 | 647 | else: |
|
644 | 648 | z = self.data_spc[ch]/factor |
|
645 | 649 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
646 | 650 | avg = numpy.average(z, axis=0) |
|
647 | 651 | power[ch] = 10 * numpy.log10(avg) |
|
648 | 652 | return power |
|
649 | 653 | |
|
650 | 654 | @property |
|
651 | 655 | def max_nIncohInt(self): |
|
652 | 656 | |
|
653 | 657 | ints = numpy.zeros(self.nChannels) |
|
654 | 658 | for ch in range(self.nChannels): |
|
655 | 659 | if hasattr(self.nIncohInt,'shape'): |
|
656 | 660 | if self.nIncohInt.ndim > 1: |
|
657 | 661 | ints[ch,] = self.nIncohInt[ch].max() |
|
658 | 662 | else: |
|
659 | 663 | ints[ch,] = self.nIncohInt |
|
660 | 664 | self.nIncohInt = int(self.nIncohInt) |
|
661 | 665 | else: |
|
662 | 666 | ints[ch,] = self.nIncohInt |
|
663 | 667 | |
|
664 | 668 | return ints |
|
665 | 669 | |
|
666 | 670 | def getCoherence(self, pairsList=None, phase=False): |
|
667 | 671 | |
|
668 | 672 | z = [] |
|
669 | 673 | if pairsList is None: |
|
670 | 674 | pairsIndexList = self.pairsIndexList |
|
671 | 675 | else: |
|
672 | 676 | pairsIndexList = [] |
|
673 | 677 | for pair in pairsList: |
|
674 | 678 | if pair not in self.pairsList: |
|
675 | 679 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
676 | 680 | pair)) |
|
677 | 681 | pairsIndexList.append(self.pairsList.index(pair)) |
|
678 | 682 | for i in range(len(pairsIndexList)): |
|
679 | 683 | pair = self.pairsList[pairsIndexList[i]] |
|
680 | 684 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
681 | 685 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
682 | 686 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
683 | 687 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
684 | 688 | if phase: |
|
685 | 689 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
686 | 690 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
687 | 691 | else: |
|
688 | 692 | data = numpy.abs(avgcoherenceComplex) |
|
689 | 693 | |
|
690 | 694 | z.append(data) |
|
691 | 695 | |
|
692 | 696 | return numpy.array(z) |
|
693 | 697 | |
|
694 | 698 | def setValue(self, value): |
|
695 | 699 | |
|
696 | 700 | print("This property should not be initialized", value) |
|
697 | 701 | |
|
698 | 702 | return |
|
699 | 703 | |
|
700 | 704 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
701 | 705 | |
|
702 | 706 | |
|
703 | 707 | class SpectraHeis(Spectra): |
|
704 | 708 | |
|
705 | 709 | def __init__(self): |
|
706 | 710 | |
|
707 | 711 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
708 | 712 | self.systemHeaderObj = SystemHeader() |
|
709 | 713 | self.type = "SpectraHeis" |
|
710 | 714 | self.nProfiles = None |
|
711 | 715 | self.heightList = None |
|
712 | 716 | self.channelList = None |
|
713 | 717 | self.flagNoData = True |
|
714 | 718 | self.flagDiscontinuousBlock = False |
|
715 | 719 | self.utctime = None |
|
716 | 720 | self.blocksize = None |
|
717 | 721 | self.profileIndex = 0 |
|
718 | 722 | self.nCohInt = 1 |
|
719 | 723 | self.nIncohInt = 1 |
|
720 | 724 | |
|
721 | 725 | @property |
|
722 | 726 | def normFactor(self): |
|
723 | 727 | pwcode = 1 |
|
724 | 728 | if self.flagDecodeData: |
|
725 | 729 | pwcode = numpy.sum(self.code[0]**2) |
|
726 | 730 | |
|
727 | 731 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
728 | 732 | |
|
729 | 733 | return normFactor |
|
730 | 734 | |
|
731 | 735 | @property |
|
732 | 736 | def timeInterval(self): |
|
733 | 737 | |
|
734 | 738 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
735 | 739 | |
|
736 | 740 | |
|
737 | 741 | class Fits(JROData): |
|
738 | 742 | |
|
739 | 743 | def __init__(self): |
|
740 | 744 | |
|
741 | 745 | self.type = "Fits" |
|
742 | 746 | self.nProfiles = None |
|
743 | 747 | self.heightList = None |
|
744 | 748 | self.channelList = None |
|
745 | 749 | self.flagNoData = True |
|
746 | 750 | self.utctime = None |
|
747 | 751 | self.nCohInt = 1 |
|
748 | 752 | self.nIncohInt = 1 |
|
749 | 753 | self.useLocalTime = True |
|
750 | 754 | self.profileIndex = 0 |
|
751 | 755 | self.timeZone = 0 |
|
752 | 756 | |
|
753 | 757 | def getTimeRange(self): |
|
754 | 758 | |
|
755 | 759 | datatime = [] |
|
756 | 760 | |
|
757 | 761 | datatime.append(self.ltctime) |
|
758 | 762 | datatime.append(self.ltctime + self.timeInterval) |
|
759 | 763 | |
|
760 | 764 | datatime = numpy.array(datatime) |
|
761 | 765 | |
|
762 | 766 | return datatime |
|
763 | 767 | |
|
764 | 768 | def getChannelIndexList(self): |
|
765 | 769 | |
|
766 | 770 | return list(range(self.nChannels)) |
|
767 | 771 | |
|
768 | 772 | def getNoise(self, type=1): |
|
769 | 773 | |
|
770 | 774 | |
|
771 | 775 | if type == 1: |
|
772 | 776 | noise = self.getNoisebyHildebrand() |
|
773 | 777 | |
|
774 | 778 | if type == 2: |
|
775 | 779 | noise = self.getNoisebySort() |
|
776 | 780 | |
|
777 | 781 | if type == 3: |
|
778 | 782 | noise = self.getNoisebyWindow() |
|
779 | 783 | |
|
780 | 784 | return noise |
|
781 | 785 | |
|
782 | 786 | @property |
|
783 | 787 | def timeInterval(self): |
|
784 | 788 | |
|
785 | 789 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
786 | 790 | |
|
787 | 791 | return timeInterval |
|
788 | 792 | |
|
789 | 793 | @property |
|
790 | 794 | def ippSeconds(self): |
|
791 | 795 | ''' |
|
792 | 796 | ''' |
|
793 | 797 | return self.ipp_sec |
|
794 | 798 | |
|
795 | 799 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
796 | 800 | |
|
797 | 801 | |
|
798 | 802 | class Correlation(JROData): |
|
799 | 803 | |
|
800 | 804 | def __init__(self): |
|
801 | 805 | ''' |
|
802 | 806 | Constructor |
|
803 | 807 | ''' |
|
804 | 808 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
805 | 809 | self.systemHeaderObj = SystemHeader() |
|
806 | 810 | self.type = "Correlation" |
|
807 | 811 | self.data = None |
|
808 | 812 | self.dtype = None |
|
809 | 813 | self.nProfiles = None |
|
810 | 814 | self.heightList = None |
|
811 | 815 | self.channelList = None |
|
812 | 816 | self.flagNoData = True |
|
813 | 817 | self.flagDiscontinuousBlock = False |
|
814 | 818 | self.utctime = None |
|
815 | 819 | self.timeZone = 0 |
|
816 | 820 | self.dstFlag = None |
|
817 | 821 | self.errorCount = None |
|
818 | 822 | self.blocksize = None |
|
819 | 823 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
820 | 824 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
821 | 825 | self.pairsList = None |
|
822 | 826 | self.nPoints = None |
|
823 | 827 | |
|
824 | 828 | def getPairsList(self): |
|
825 | 829 | |
|
826 | 830 | return self.pairsList |
|
827 | 831 | |
|
828 | 832 | def getNoise(self, mode=2): |
|
829 | 833 | |
|
830 | 834 | indR = numpy.where(self.lagR == 0)[0][0] |
|
831 | 835 | indT = numpy.where(self.lagT == 0)[0][0] |
|
832 | 836 | |
|
833 | 837 | jspectra0 = self.data_corr[:, :, indR, :] |
|
834 | 838 | jspectra = copy.copy(jspectra0) |
|
835 | 839 | |
|
836 | 840 | num_chan = jspectra.shape[0] |
|
837 | 841 | num_hei = jspectra.shape[2] |
|
838 | 842 | |
|
839 | 843 | freq_dc = jspectra.shape[1] / 2 |
|
840 | 844 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
841 | 845 | |
|
842 | 846 | if ind_vel[0] < 0: |
|
843 | 847 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
844 | 848 | range(0, 1))] + self.num_prof |
|
845 | 849 | |
|
846 | 850 | if mode == 1: |
|
847 | 851 | jspectra[:, freq_dc, :] = ( |
|
848 | 852 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
849 | 853 | |
|
850 | 854 | if mode == 2: |
|
851 | 855 | |
|
852 | 856 | vel = numpy.array([-2, -1, 1, 2]) |
|
853 | 857 | xx = numpy.zeros([4, 4]) |
|
854 | 858 | |
|
855 | 859 | for fil in range(4): |
|
856 | 860 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
857 | 861 | |
|
858 | 862 | xx_inv = numpy.linalg.inv(xx) |
|
859 | 863 | xx_aux = xx_inv[0, :] |
|
860 | 864 | |
|
861 | 865 | for ich in range(num_chan): |
|
862 | 866 | yy = jspectra[ich, ind_vel, :] |
|
863 | 867 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
864 | 868 | |
|
865 | 869 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
866 | 870 | cjunkid = sum(junkid) |
|
867 | 871 | |
|
868 | 872 | if cjunkid.any(): |
|
869 | 873 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
870 | 874 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
871 | 875 | |
|
872 | 876 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
873 | 877 | |
|
874 | 878 | return noise |
|
875 | 879 | |
|
876 | 880 | @property |
|
877 | 881 | def timeInterval(self): |
|
878 | 882 | |
|
879 | 883 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
880 | 884 | |
|
881 | 885 | def splitFunctions(self): |
|
882 | 886 | |
|
883 | 887 | pairsList = self.pairsList |
|
884 | 888 | ccf_pairs = [] |
|
885 | 889 | acf_pairs = [] |
|
886 | 890 | ccf_ind = [] |
|
887 | 891 | acf_ind = [] |
|
888 | 892 | for l in range(len(pairsList)): |
|
889 | 893 | chan0 = pairsList[l][0] |
|
890 | 894 | chan1 = pairsList[l][1] |
|
891 | 895 | |
|
892 | 896 | # Obteniendo pares de Autocorrelacion |
|
893 | 897 | if chan0 == chan1: |
|
894 | 898 | acf_pairs.append(chan0) |
|
895 | 899 | acf_ind.append(l) |
|
896 | 900 | else: |
|
897 | 901 | ccf_pairs.append(pairsList[l]) |
|
898 | 902 | ccf_ind.append(l) |
|
899 | 903 | |
|
900 | 904 | data_acf = self.data_cf[acf_ind] |
|
901 | 905 | data_ccf = self.data_cf[ccf_ind] |
|
902 | 906 | |
|
903 | 907 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
904 | 908 | |
|
905 | 909 | @property |
|
906 | 910 | def normFactor(self): |
|
907 | 911 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
908 | 912 | acf_pairs = numpy.array(acf_pairs) |
|
909 | 913 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
910 | 914 | |
|
911 | 915 | for p in range(self.nPairs): |
|
912 | 916 | pair = self.pairsList[p] |
|
913 | 917 | |
|
914 | 918 | ch0 = pair[0] |
|
915 | 919 | ch1 = pair[1] |
|
916 | 920 | |
|
917 | 921 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
918 | 922 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
919 | 923 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
920 | 924 | |
|
921 | 925 | return normFactor |
|
922 | 926 | |
|
923 | 927 | |
|
924 | 928 | class Parameters(Spectra): |
|
925 | 929 | |
|
926 | 930 | groupList = None # List of Pairs, Groups, etc |
|
927 | 931 | data_param = None # Parameters obtained |
|
928 | 932 | data_pre = None # Data Pre Parametrization |
|
929 | 933 | data_SNR = None # Signal to Noise Ratio |
|
930 | 934 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
931 | 935 | utctimeInit = None # Initial UTC time |
|
932 | 936 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
933 | 937 | useLocalTime = True |
|
934 | 938 | # Fitting |
|
935 | 939 | data_error = None # Error of the estimation |
|
936 | 940 | constants = None |
|
937 | 941 | library = None |
|
938 | 942 | # Output signal |
|
939 | 943 | outputInterval = None # Time interval to calculate output signal in seconds |
|
940 | 944 | data_output = None # Out signal |
|
941 | 945 | nAvg = None |
|
942 | 946 | noise_estimation = None |
|
943 | 947 | GauSPC = None # Fit gaussian SPC |
|
944 | 948 | |
|
945 | 949 | data_outlier = None |
|
946 | 950 | data_vdrift = None |
|
947 | 951 | radarControllerHeaderTxt=None #header Controller like text |
|
948 | 952 | txPower = None |
|
949 | 953 | flagProfilesByRange = False |
|
950 | 954 | nProfilesByRange = None |
|
951 | 955 | |
|
952 | 956 | |
|
953 | 957 | def __init__(self): |
|
954 | 958 | ''' |
|
955 | 959 | Constructor |
|
956 | 960 | ''' |
|
957 | 961 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
958 | 962 | self.systemHeaderObj = SystemHeader() |
|
959 | 963 | self.processingHeaderObj = ProcessingHeader() |
|
960 | 964 | self.type = "Parameters" |
|
961 | 965 | self.timeZone = 0 |
|
962 | 966 | |
|
963 | 967 | def getTimeRange1(self, interval): |
|
964 | 968 | |
|
965 | 969 | datatime = [] |
|
966 | 970 | |
|
967 | 971 | if self.useLocalTime: |
|
968 | 972 | time1 = self.utctimeInit - self.timeZone * 60 |
|
969 | 973 | else: |
|
970 | 974 | time1 = self.utctimeInit |
|
971 | 975 | |
|
972 | 976 | datatime.append(time1) |
|
973 | 977 | datatime.append(time1 + interval) |
|
974 | 978 | datatime = numpy.array(datatime) |
|
975 | 979 | |
|
976 | 980 | return datatime |
|
977 | 981 | |
|
978 | 982 | @property |
|
979 | 983 | def timeInterval(self): |
|
980 | 984 | |
|
981 | 985 | if hasattr(self, 'timeInterval1'): |
|
982 | 986 | return self.timeInterval1 |
|
983 | 987 | else: |
|
984 | 988 | return self.paramInterval |
|
985 | 989 | |
|
986 | 990 | def setValue(self, value): |
|
987 | 991 | |
|
988 | 992 | print("This property should not be initialized") |
|
989 | 993 | |
|
990 | 994 | return |
|
991 | 995 | |
|
992 | 996 | def getNoise(self): |
|
993 | 997 | |
|
994 | 998 | return self.spc_noise |
|
995 | 999 | |
|
996 | 1000 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
997 | 1001 | |
|
998 | 1002 | |
|
999 | 1003 | class PlotterData(object): |
|
1000 | 1004 | ''' |
|
1001 | 1005 | Object to hold data to be plotted |
|
1002 | 1006 | ''' |
|
1003 | 1007 | |
|
1004 | 1008 | MAXNUMX = 200 |
|
1005 | 1009 | MAXNUMY = 200 |
|
1006 | 1010 | |
|
1007 | 1011 | def __init__(self, code, exp_code, localtime=True): |
|
1008 | 1012 | |
|
1009 | 1013 | self.key = code |
|
1010 | 1014 | self.exp_code = exp_code |
|
1011 | 1015 | self.ready = False |
|
1012 | 1016 | self.flagNoData = False |
|
1013 | 1017 | self.localtime = localtime |
|
1014 | 1018 | self.data = {} |
|
1015 | 1019 | self.meta = {} |
|
1016 | 1020 | self.__heights = [] |
|
1017 | 1021 | |
|
1018 | 1022 | def __str__(self): |
|
1019 | 1023 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1020 | 1024 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
1021 | 1025 | |
|
1022 | 1026 | def __len__(self): |
|
1023 | 1027 | return len(self.data) |
|
1024 | 1028 | |
|
1025 | 1029 | def __getitem__(self, key): |
|
1026 | 1030 | if isinstance(key, int): |
|
1027 | 1031 | return self.data[self.times[key]] |
|
1028 | 1032 | elif isinstance(key, str): |
|
1029 | 1033 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
1030 | 1034 | if ret.ndim > 1: |
|
1031 | 1035 | ret = numpy.swapaxes(ret, 0, 1) |
|
1032 | 1036 | return ret |
|
1033 | 1037 | |
|
1034 | 1038 | def __contains__(self, key): |
|
1035 | 1039 | return key in self.data[self.min_time] |
|
1036 | 1040 | |
|
1037 | 1041 | def setup(self): |
|
1038 | 1042 | ''' |
|
1039 | 1043 | Configure object |
|
1040 | 1044 | ''' |
|
1041 | 1045 | self.type = '' |
|
1042 | 1046 | self.ready = False |
|
1043 | 1047 | del self.data |
|
1044 | 1048 | self.data = {} |
|
1045 | 1049 | self.__heights = [] |
|
1046 | 1050 | self.__all_heights = set() |
|
1047 | 1051 | |
|
1048 | 1052 | def shape(self, key): |
|
1049 | 1053 | ''' |
|
1050 | 1054 | Get the shape of the one-element data for the given key |
|
1051 | 1055 | ''' |
|
1052 | 1056 | |
|
1053 | 1057 | if len(self.data[self.min_time][key]): |
|
1054 | 1058 | return self.data[self.min_time][key].shape |
|
1055 | 1059 | return (0,) |
|
1056 | 1060 | |
|
1057 | 1061 | def update(self, data, tm, meta={}): |
|
1058 | 1062 | ''' |
|
1059 | 1063 | Update data object with new dataOut |
|
1060 | 1064 | ''' |
|
1061 | 1065 | |
|
1062 | 1066 | self.data[tm] = data |
|
1063 | 1067 | |
|
1064 | 1068 | for key, value in meta.items(): |
|
1065 | 1069 | setattr(self, key, value) |
|
1066 | 1070 | |
|
1067 | 1071 | def normalize_heights(self): |
|
1068 | 1072 | ''' |
|
1069 | 1073 | Ensure same-dimension of the data for different heighList |
|
1070 | 1074 | ''' |
|
1071 | 1075 | |
|
1072 | 1076 | H = numpy.array(list(self.__all_heights)) |
|
1073 | 1077 | H.sort() |
|
1074 | 1078 | for key in self.data: |
|
1075 | 1079 | shape = self.shape(key)[:-1] + H.shape |
|
1076 | 1080 | for tm, obj in list(self.data[key].items()): |
|
1077 | 1081 | h = self.__heights[self.times.tolist().index(tm)] |
|
1078 | 1082 | if H.size == h.size: |
|
1079 | 1083 | continue |
|
1080 | 1084 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1081 | 1085 | dummy = numpy.zeros(shape) + numpy.nan |
|
1082 | 1086 | if len(shape) == 2: |
|
1083 | 1087 | dummy[:, index] = obj |
|
1084 | 1088 | else: |
|
1085 | 1089 | dummy[index] = obj |
|
1086 | 1090 | self.data[key][tm] = dummy |
|
1087 | 1091 | |
|
1088 | 1092 | self.__heights = [H for tm in self.times] |
|
1089 | 1093 | |
|
1090 | 1094 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1091 | 1095 | ''' |
|
1092 | 1096 | Convert data to json |
|
1093 | 1097 | ''' |
|
1094 | 1098 | |
|
1095 | 1099 | meta = {} |
|
1096 | 1100 | meta['xrange'] = [] |
|
1097 | 1101 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1098 | 1102 | tmp = self.data[tm][self.key] |
|
1099 | 1103 | shape = tmp.shape |
|
1100 | 1104 | if len(shape) == 2: |
|
1101 | 1105 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1102 | 1106 | elif len(shape) == 3: |
|
1103 | 1107 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1104 | 1108 | data = self.roundFloats( |
|
1105 | 1109 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1106 | 1110 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1107 | 1111 | else: |
|
1108 | 1112 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1109 | 1113 | |
|
1110 | 1114 | ret = { |
|
1111 | 1115 | 'plot': plot_name, |
|
1112 | 1116 | 'code': self.exp_code, |
|
1113 | 1117 | 'time': float(tm), |
|
1114 | 1118 | 'data': data, |
|
1115 | 1119 | } |
|
1116 | 1120 | meta['type'] = plot_type |
|
1117 | 1121 | meta['interval'] = float(self.interval) |
|
1118 | 1122 | meta['localtime'] = self.localtime |
|
1119 | 1123 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1120 | 1124 | meta.update(self.meta) |
|
1121 | 1125 | ret['metadata'] = meta |
|
1122 | 1126 | return json.dumps(ret) |
|
1123 | 1127 | |
|
1124 | 1128 | @property |
|
1125 | 1129 | def times(self): |
|
1126 | 1130 | ''' |
|
1127 | 1131 | Return the list of times of the current data |
|
1128 | 1132 | ''' |
|
1129 | 1133 | |
|
1130 | 1134 | ret = [t for t in self.data] |
|
1131 | 1135 | ret.sort() |
|
1132 | 1136 | return numpy.array(ret) |
|
1133 | 1137 | |
|
1134 | 1138 | @property |
|
1135 | 1139 | def min_time(self): |
|
1136 | 1140 | ''' |
|
1137 | 1141 | Return the minimun time value |
|
1138 | 1142 | ''' |
|
1139 | 1143 | |
|
1140 | 1144 | return self.times[0] |
|
1141 | 1145 | |
|
1142 | 1146 | @property |
|
1143 | 1147 | def max_time(self): |
|
1144 | 1148 | ''' |
|
1145 | 1149 | Return the maximun time value |
|
1146 | 1150 | ''' |
|
1147 | 1151 | |
|
1148 | 1152 | return self.times[-1] |
|
1149 | 1153 | |
|
1150 | 1154 | # @property |
|
1151 | 1155 | # def heights(self): |
|
1152 | 1156 | # ''' |
|
1153 | 1157 | # Return the list of heights of the current data |
|
1154 | 1158 | # ''' |
|
1155 | 1159 | |
|
1156 | 1160 | # return numpy.array(self.__heights[-1]) |
|
1157 | 1161 | |
|
1158 | 1162 | @staticmethod |
|
1159 | 1163 | def roundFloats(obj): |
|
1160 | 1164 | if isinstance(obj, list): |
|
1161 | 1165 | return list(map(PlotterData.roundFloats, obj)) |
|
1162 | 1166 | elif isinstance(obj, float): |
|
1163 | 1167 | return round(obj, 2) |
@@ -1,437 +1,437 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | # colormap = 'jet' |
|
39 | 39 | # plot_type = 'pcolor' |
|
40 | 40 | |
|
41 | 41 | class DobleGaussianPlot(SpectraPlot): |
|
42 | 42 | ''' |
|
43 | 43 | Plot for Double Gaussian Plot |
|
44 | 44 | ''' |
|
45 | 45 | CODE = 'gaussian_fit' |
|
46 | 46 | # colormap = 'jet' |
|
47 | 47 | # plot_type = 'pcolor' |
|
48 | 48 | |
|
49 | 49 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
50 | 50 | ''' |
|
51 | 51 | Plot SpectraCut with Double Gaussian Fit |
|
52 | 52 | ''' |
|
53 | 53 | CODE = 'cut_gaussian_fit' |
|
54 | 54 | |
|
55 | 55 | |
|
56 | 56 | class SpectralFitObliquePlot(SpectraPlot): |
|
57 | 57 | ''' |
|
58 | 58 | Plot for Spectral Oblique |
|
59 | 59 | ''' |
|
60 | 60 | CODE = 'spc_moments' |
|
61 | 61 | colormap = 'jet' |
|
62 | 62 | plot_type = 'pcolor' |
|
63 | 63 | |
|
64 | 64 | |
|
65 | 65 | class SnrPlot(RTIPlot): |
|
66 | 66 | ''' |
|
67 | 67 | Plot for SNR Data |
|
68 | 68 | ''' |
|
69 | 69 | |
|
70 | 70 | CODE = 'snr' |
|
71 | 71 | colormap = 'jet' |
|
72 | 72 | |
|
73 | 73 | def update(self, dataOut): |
|
74 | 74 | if len(self.channelList) == 0: |
|
75 | 75 | self.update_list(dataOut) |
|
76 | 76 | |
|
77 | 77 | meta = {} |
|
78 | 78 | data = { |
|
79 | 79 | 'snr': 10 * numpy.log10(dataOut.data_snr) |
|
80 | 80 | } |
|
81 | 81 | return data, meta |
|
82 | 82 | |
|
83 | 83 | class DopplerPlot(RTIPlot): |
|
84 | 84 | ''' |
|
85 | 85 | Plot for DOPPLER Data (1st moment) |
|
86 | 86 | ''' |
|
87 | 87 | |
|
88 | 88 | CODE = 'dop' |
|
89 | 89 | colormap = 'RdBu_r' |
|
90 | 90 | |
|
91 | 91 | def update(self, dataOut): |
|
92 | 92 | self.update_list(dataOut) |
|
93 | 93 | data = { |
|
94 | 94 | 'dop': dataOut.data_dop |
|
95 | 95 | } |
|
96 | 96 | |
|
97 | 97 | return data, {} |
|
98 | 98 | |
|
99 | 99 | class PowerPlot(RTIPlot): |
|
100 | 100 | ''' |
|
101 | 101 | Plot for Power Data (0 moment) |
|
102 | 102 | ''' |
|
103 | 103 | |
|
104 | 104 | CODE = 'pow' |
|
105 | 105 | colormap = 'jet' |
|
106 | 106 | |
|
107 | 107 | def update(self, dataOut): |
|
108 | 108 | self.update_list(dataOut) |
|
109 | 109 | data = { |
|
110 |
'pow': 10*numpy.log10(dataOut.data_pow |
|
|
110 | 'pow': 10*numpy.log10(dataOut.data_pow) | |
|
111 | 111 | } |
|
112 | 112 | try: |
|
113 | 113 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
114 | 114 | except: |
|
115 | 115 | pass |
|
116 | 116 | return data, {} |
|
117 | 117 | |
|
118 | 118 | class SpectralWidthPlot(RTIPlot): |
|
119 | 119 | ''' |
|
120 | 120 | Plot for Spectral Width Data (2nd moment) |
|
121 | 121 | ''' |
|
122 | 122 | |
|
123 | 123 | CODE = 'width' |
|
124 | 124 | colormap = 'jet' |
|
125 | 125 | |
|
126 | 126 | def update(self, dataOut): |
|
127 | 127 | self.update_list(dataOut) |
|
128 | 128 | data = { |
|
129 | 129 | 'width': dataOut.data_width |
|
130 | 130 | } |
|
131 | 131 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
132 | 132 | return data, {} |
|
133 | 133 | |
|
134 | 134 | class SkyMapPlot(Plot): |
|
135 | 135 | ''' |
|
136 | 136 | Plot for meteors detection data |
|
137 | 137 | ''' |
|
138 | 138 | |
|
139 | 139 | CODE = 'param' |
|
140 | 140 | |
|
141 | 141 | def setup(self): |
|
142 | 142 | |
|
143 | 143 | self.ncols = 1 |
|
144 | 144 | self.nrows = 1 |
|
145 | 145 | self.width = 7.2 |
|
146 | 146 | self.height = 7.2 |
|
147 | 147 | self.nplots = 1 |
|
148 | 148 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
149 | 149 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
150 | 150 | self.polar = True |
|
151 | 151 | self.ymin = -180 |
|
152 | 152 | self.ymax = 180 |
|
153 | 153 | self.colorbar = False |
|
154 | 154 | |
|
155 | 155 | def plot(self): |
|
156 | 156 | |
|
157 | 157 | arrayParameters = numpy.concatenate(self.data['param']) |
|
158 | 158 | error = arrayParameters[:, -1] |
|
159 | 159 | indValid = numpy.where(error == 0)[0] |
|
160 | 160 | finalMeteor = arrayParameters[indValid, :] |
|
161 | 161 | finalAzimuth = finalMeteor[:, 3] |
|
162 | 162 | finalZenith = finalMeteor[:, 4] |
|
163 | 163 | |
|
164 | 164 | x = finalAzimuth * numpy.pi / 180 |
|
165 | 165 | y = finalZenith |
|
166 | 166 | |
|
167 | 167 | ax = self.axes[0] |
|
168 | 168 | |
|
169 | 169 | if ax.firsttime: |
|
170 | 170 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
171 | 171 | else: |
|
172 | 172 | ax.plot.set_data(x, y) |
|
173 | 173 | |
|
174 | 174 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
175 | 175 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
176 | 176 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
177 | 177 | dt2, |
|
178 | 178 | len(x)) |
|
179 | 179 | self.titles[0] = title |
|
180 | 180 | |
|
181 | 181 | class GenericRTIPlot(Plot): |
|
182 | 182 | ''' |
|
183 | 183 | Plot for data_xxxx object |
|
184 | 184 | ''' |
|
185 | 185 | |
|
186 | 186 | CODE = 'param' |
|
187 | 187 | colormap = 'viridis' |
|
188 | 188 | plot_type = 'pcolorbuffer' |
|
189 | 189 | |
|
190 | 190 | def setup(self): |
|
191 | 191 | self.xaxis = 'time' |
|
192 | 192 | self.ncols = 1 |
|
193 | 193 | self.nrows = self.data.shape('param')[0] |
|
194 | 194 | self.nplots = self.nrows |
|
195 | 195 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
196 | 196 | |
|
197 | 197 | if not self.xlabel: |
|
198 | 198 | self.xlabel = 'Time' |
|
199 | 199 | |
|
200 | 200 | self.ylabel = 'Range [km]' |
|
201 | 201 | if not self.titles: |
|
202 | 202 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
203 | 203 | |
|
204 | 204 | def update(self, dataOut): |
|
205 | 205 | |
|
206 | 206 | data = { |
|
207 | 207 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
208 | 208 | } |
|
209 | 209 | |
|
210 | 210 | meta = {} |
|
211 | 211 | |
|
212 | 212 | return data, meta |
|
213 | 213 | |
|
214 | 214 | def plot(self): |
|
215 | 215 | # self.data.normalize_heights() |
|
216 | 216 | self.x = self.data.times |
|
217 | 217 | self.y = self.data.yrange |
|
218 | 218 | self.z = self.data['param'] |
|
219 | 219 | |
|
220 | 220 | self.z = numpy.ma.masked_invalid(self.z) |
|
221 | 221 | |
|
222 | 222 | if self.decimation is None: |
|
223 | 223 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
224 | 224 | else: |
|
225 | 225 | x, y, z = self.fill_gaps(*self.decimate()) |
|
226 | 226 | |
|
227 | 227 | for n, ax in enumerate(self.axes): |
|
228 | 228 | |
|
229 | 229 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
230 | 230 | self.z[n]) |
|
231 | 231 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
232 | 232 | self.z[n]) |
|
233 | 233 | |
|
234 | 234 | if ax.firsttime: |
|
235 | 235 | if self.zlimits is not None: |
|
236 | 236 | self.zmin, self.zmax = self.zlimits[n] |
|
237 | 237 | |
|
238 | 238 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
239 | 239 | vmin=self.zmin, |
|
240 | 240 | vmax=self.zmax, |
|
241 | 241 | cmap=self.cmaps[n] |
|
242 | 242 | ) |
|
243 | 243 | else: |
|
244 | 244 | if self.zlimits is not None: |
|
245 | 245 | self.zmin, self.zmax = self.zlimits[n] |
|
246 | 246 | try: |
|
247 | 247 | ax.collections.remove(ax.collections[0]) |
|
248 | 248 | except: |
|
249 | 249 | pass |
|
250 | 250 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
251 | 251 | vmin=self.zmin, |
|
252 | 252 | vmax=self.zmax, |
|
253 | 253 | cmap=self.cmaps[n] |
|
254 | 254 | ) |
|
255 | 255 | |
|
256 | 256 | |
|
257 | 257 | class PolarMapPlot(Plot): |
|
258 | 258 | ''' |
|
259 | 259 | Plot for weather radar |
|
260 | 260 | ''' |
|
261 | 261 | |
|
262 | 262 | CODE = 'param' |
|
263 | 263 | colormap = 'seismic' |
|
264 | 264 | |
|
265 | 265 | def setup(self): |
|
266 | 266 | self.ncols = 1 |
|
267 | 267 | self.nrows = 1 |
|
268 | 268 | self.width = 9 |
|
269 | 269 | self.height = 8 |
|
270 | 270 | self.mode = self.data.meta['mode'] |
|
271 | 271 | if self.channels is not None: |
|
272 | 272 | self.nplots = len(self.channels) |
|
273 | 273 | self.nrows = len(self.channels) |
|
274 | 274 | else: |
|
275 | 275 | self.nplots = self.data.shape(self.CODE)[0] |
|
276 | 276 | self.nrows = self.nplots |
|
277 | 277 | self.channels = list(range(self.nplots)) |
|
278 | 278 | if self.mode == 'E': |
|
279 | 279 | self.xlabel = 'Longitude' |
|
280 | 280 | self.ylabel = 'Latitude' |
|
281 | 281 | else: |
|
282 | 282 | self.xlabel = 'Range (km)' |
|
283 | 283 | self.ylabel = 'Height (km)' |
|
284 | 284 | self.bgcolor = 'white' |
|
285 | 285 | self.cb_labels = self.data.meta['units'] |
|
286 | 286 | self.lat = self.data.meta['latitude'] |
|
287 | 287 | self.lon = self.data.meta['longitude'] |
|
288 | 288 | self.xmin, self.xmax = float( |
|
289 | 289 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
290 | 290 | self.ymin, self.ymax = float( |
|
291 | 291 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
292 | 292 | # self.polar = True |
|
293 | 293 | |
|
294 | 294 | def plot(self): |
|
295 | 295 | |
|
296 | 296 | for n, ax in enumerate(self.axes): |
|
297 | 297 | data = self.data['param'][self.channels[n]] |
|
298 | 298 | |
|
299 | 299 | zeniths = numpy.linspace( |
|
300 | 300 | 0, self.data.meta['max_range'], data.shape[1]) |
|
301 | 301 | if self.mode == 'E': |
|
302 | 302 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
303 | 303 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
304 | 304 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
305 | 305 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
306 | 306 | x = km2deg(x) + self.lon |
|
307 | 307 | y = km2deg(y) + self.lat |
|
308 | 308 | else: |
|
309 | 309 | azimuths = numpy.radians(self.data.yrange) |
|
310 | 310 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
311 | 311 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
312 | 312 | self.y = zeniths |
|
313 | 313 | |
|
314 | 314 | if ax.firsttime: |
|
315 | 315 | if self.zlimits is not None: |
|
316 | 316 | self.zmin, self.zmax = self.zlimits[n] |
|
317 | 317 | ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
318 | 318 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
319 | 319 | vmin=self.zmin, |
|
320 | 320 | vmax=self.zmax, |
|
321 | 321 | cmap=self.cmaps[n]) |
|
322 | 322 | else: |
|
323 | 323 | if self.zlimits is not None: |
|
324 | 324 | self.zmin, self.zmax = self.zlimits[n] |
|
325 | 325 | ax.collections.remove(ax.collections[0]) |
|
326 | 326 | ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
327 | 327 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
328 | 328 | vmin=self.zmin, |
|
329 | 329 | vmax=self.zmax, |
|
330 | 330 | cmap=self.cmaps[n]) |
|
331 | 331 | |
|
332 | 332 | if self.mode == 'A': |
|
333 | 333 | continue |
|
334 | 334 | |
|
335 | 335 | # plot district names |
|
336 | 336 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
337 | 337 | for line in f: |
|
338 | 338 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
339 | 339 | lat = float(lat) |
|
340 | 340 | lon = float(lon) |
|
341 | 341 | # ax.plot(lon, lat, '.b', ms=2) |
|
342 | 342 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
343 | 343 | va='bottom', size='8', color='black') |
|
344 | 344 | |
|
345 | 345 | # plot limites |
|
346 | 346 | limites = [] |
|
347 | 347 | tmp = [] |
|
348 | 348 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
349 | 349 | if '#' in line: |
|
350 | 350 | if tmp: |
|
351 | 351 | limites.append(tmp) |
|
352 | 352 | tmp = [] |
|
353 | 353 | continue |
|
354 | 354 | values = line.strip().split(',') |
|
355 | 355 | tmp.append((float(values[0]), float(values[1]))) |
|
356 | 356 | for points in limites: |
|
357 | 357 | ax.add_patch( |
|
358 | 358 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
359 | 359 | |
|
360 | 360 | # plot Cuencas |
|
361 | 361 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
362 | 362 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
363 | 363 | values = [line.strip().split(',') for line in f] |
|
364 | 364 | points = [(float(s[0]), float(s[1])) for s in values] |
|
365 | 365 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
366 | 366 | |
|
367 | 367 | # plot grid |
|
368 | 368 | for r in (15, 30, 45, 60): |
|
369 | 369 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
370 | 370 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
371 | 371 | ax.text( |
|
372 | 372 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
373 | 373 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
374 | 374 | '{}km'.format(r), |
|
375 | 375 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
376 | 376 | |
|
377 | 377 | if self.mode == 'E': |
|
378 | 378 | title = 'El={}\N{DEGREE SIGN}'.format(self.data.meta['elevation']) |
|
379 | 379 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
380 | 380 | else: |
|
381 | 381 | title = 'Az={}\N{DEGREE SIGN}'.format(self.data.meta['azimuth']) |
|
382 | 382 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
383 | 383 | |
|
384 | 384 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
385 | 385 | self.titles = ['{} {}'.format( |
|
386 | 386 | self.data.parameters[x], title) for x in self.channels] |
|
387 | 387 | |
|
388 | 388 | |
|
389 | 389 | |
|
390 | 390 | class TxPowerPlot(Plot): |
|
391 | 391 | ''' |
|
392 | 392 | Plot for TX Power from external file |
|
393 | 393 | ''' |
|
394 | 394 | |
|
395 | 395 | CODE = 'tx_power' |
|
396 | 396 | plot_type = 'scatterbuffer' |
|
397 | 397 | |
|
398 | 398 | def setup(self): |
|
399 | 399 | self.xaxis = 'time' |
|
400 | 400 | self.ncols = 1 |
|
401 | 401 | self.nrows = 1 |
|
402 | 402 | self.nplots = 1 |
|
403 | 403 | self.ylabel = 'Power [kW]' |
|
404 | 404 | self.xlabel = 'Time' |
|
405 | 405 | self.titles = ['TX power'] |
|
406 | 406 | self.colorbar = False |
|
407 | 407 | self.plots_adjust.update({'right': 0.85 }) |
|
408 | 408 | #if not self.titles: |
|
409 | 409 | self.titles = ['TX Power Plot'] |
|
410 | 410 | |
|
411 | 411 | def update(self, dataOut): |
|
412 | 412 | |
|
413 | 413 | data = {} |
|
414 | 414 | meta = {} |
|
415 | 415 | |
|
416 | 416 | data['tx_power'] = dataOut.txPower/1000 |
|
417 | 417 | meta['yrange'] = numpy.array([]) |
|
418 | 418 | #print(dataOut.txPower/1000) |
|
419 | 419 | return data, meta |
|
420 | 420 | |
|
421 | 421 | def plot(self): |
|
422 | 422 | |
|
423 | 423 | x = self.data.times |
|
424 | 424 | xmin = self.data.min_time |
|
425 | 425 | xmax = xmin + self.xrange * 60 * 60 |
|
426 | 426 | Y = self.data['tx_power'] |
|
427 | 427 | |
|
428 | 428 | if self.axes[0].firsttime: |
|
429 | 429 | if self.ymin is None: self.ymin = 0 |
|
430 | 430 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
431 | 431 | if self.ymax == 5: |
|
432 | 432 | self.ymax = 250 |
|
433 | 433 | self.ymin = 100 |
|
434 | 434 | self.axes[0].plot(x, Y, lw=1, label='Power') |
|
435 | 435 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
436 | 436 | else: |
|
437 | 437 | self.axes[0].lines[0].set_data(x, Y) No newline at end of file |
@@ -1,1935 +1,1934 | |||
|
1 | 1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | import datetime |
|
12 | 12 | |
|
13 | 13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
14 | 14 | from itertools import combinations |
|
15 | 15 | from matplotlib.ticker import LinearLocator |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.utils.BField import BField |
|
18 | 18 | from scipy.interpolate import splrep |
|
19 | 19 | from scipy.interpolate import splev |
|
20 | 20 | |
|
21 | 21 | from matplotlib import __version__ as plt_version |
|
22 | 22 | |
|
23 | 23 | if plt_version >='3.3.4': |
|
24 | 24 | EXTRA_POINTS = 0 |
|
25 | 25 | else: |
|
26 | 26 | EXTRA_POINTS = 1 |
|
27 | 27 | class SpectraPlot(Plot): |
|
28 | 28 | ''' |
|
29 | 29 | Plot for Spectra data |
|
30 | 30 | ''' |
|
31 | 31 | |
|
32 | 32 | CODE = 'spc' |
|
33 | 33 | colormap = 'jet' |
|
34 | 34 | plot_type = 'pcolor' |
|
35 | 35 | buffering = False |
|
36 | 36 | channelList = [] |
|
37 | 37 | elevationList = [] |
|
38 | 38 | azimuthList = [] |
|
39 | 39 | |
|
40 | 40 | def setup(self): |
|
41 | 41 | |
|
42 | 42 | self.nplots = len(self.data.channels) |
|
43 | 43 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
44 | 44 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
45 | 45 | self.height = 3.4 * self.nrows |
|
46 | 46 | self.cb_label = 'dB' |
|
47 | 47 | if self.showprofile: |
|
48 | 48 | self.width = 5.2 * self.ncols |
|
49 | 49 | else: |
|
50 | 50 | self.width = 4.2* self.ncols |
|
51 | 51 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
52 | 52 | self.ylabel = 'Range [km]' |
|
53 | 53 | |
|
54 | 54 | def update_list(self,dataOut): |
|
55 | 55 | |
|
56 | 56 | if len(self.channelList) == 0: |
|
57 | 57 | self.channelList = dataOut.channelList |
|
58 | 58 | if len(self.elevationList) == 0: |
|
59 | 59 | self.elevationList = dataOut.elevationList |
|
60 | 60 | if len(self.azimuthList) == 0: |
|
61 | 61 | self.azimuthList = dataOut.azimuthList |
|
62 | 62 | |
|
63 | 63 | def update(self, dataOut): |
|
64 | 64 | |
|
65 | 65 | self.update_list(dataOut) |
|
66 | 66 | data = {} |
|
67 | 67 | meta = {} |
|
68 | 68 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
69 | 69 | if dataOut.type == "Parameters": |
|
70 | 70 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
71 | 71 | spc = 10*numpy.log10(dataOut.data_spc/(dataOut.nProfiles)) |
|
72 | 72 | else: |
|
73 | 73 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
74 | 74 | |
|
75 | 75 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
76 | 76 | for ch in range(dataOut.nChannels): |
|
77 | 77 | if hasattr(dataOut.normFactor,'ndim'): |
|
78 | 78 | if dataOut.normFactor.ndim > 1: |
|
79 | 79 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
80 | 80 | |
|
81 | 81 | else: |
|
82 | 82 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
83 | 83 | else: |
|
84 | 84 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
85 | 85 | |
|
86 | 86 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
87 | 87 | spc = 10*numpy.log10(z) |
|
88 | 88 | |
|
89 | 89 | data['spc'] = spc |
|
90 | 90 | data['rti'] = spc.mean(axis=1) |
|
91 | 91 | data['noise'] = noise |
|
92 | 92 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
93 | 93 | if self.CODE == 'spc_moments': |
|
94 | 94 | data['moments'] = dataOut.moments |
|
95 | 95 | |
|
96 | 96 | return data, meta |
|
97 | 97 | |
|
98 | 98 | def plot(self): |
|
99 | 99 | |
|
100 | 100 | if self.xaxis == "frequency": |
|
101 | 101 | x = self.data.xrange[0] |
|
102 | 102 | self.xlabel = "Frequency (kHz)" |
|
103 | 103 | elif self.xaxis == "time": |
|
104 | 104 | x = self.data.xrange[1] |
|
105 | 105 | self.xlabel = "Time (ms)" |
|
106 | 106 | else: |
|
107 | 107 | x = self.data.xrange[2] |
|
108 | 108 | self.xlabel = "Velocity (m/s)" |
|
109 | 109 | |
|
110 | 110 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
111 | 111 | x = self.data.xrange[2] |
|
112 | 112 | self.xlabel = "Velocity (m/s)" |
|
113 | 113 | |
|
114 | 114 | self.titles = [] |
|
115 | 115 | |
|
116 | 116 | y = self.data.yrange |
|
117 | 117 | self.y = y |
|
118 | 118 | |
|
119 | 119 | data = self.data[-1] |
|
120 | 120 | z = data['spc'] |
|
121 | 121 | |
|
122 | 122 | for n, ax in enumerate(self.axes): |
|
123 | 123 | noise = self.data['noise'][n][0] |
|
124 | 124 | # noise = data['noise'][n] |
|
125 | 125 | |
|
126 | 126 | if self.CODE == 'spc_moments': |
|
127 | 127 | mean = data['moments'][n, 1] |
|
128 | 128 | if self.CODE == 'gaussian_fit': |
|
129 | 129 | gau0 = data['gaussfit'][n][2,:,0] |
|
130 | 130 | gau1 = data['gaussfit'][n][2,:,1] |
|
131 | 131 | if ax.firsttime: |
|
132 | 132 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
133 | 133 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
134 | 134 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
135 | 135 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
136 | 136 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
137 | 137 | vmin=self.zmin, |
|
138 | 138 | vmax=self.zmax, |
|
139 | 139 | cmap=plt.get_cmap(self.colormap) |
|
140 | 140 | ) |
|
141 | 141 | |
|
142 | 142 | if self.showprofile: |
|
143 | 143 | ax.plt_profile = self.pf_axes[n].plot( |
|
144 | 144 | data['rti'][n], y)[0] |
|
145 | 145 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
146 | 146 | color="k", linestyle="dashed", lw=1)[0] |
|
147 | 147 | if self.CODE == 'spc_moments': |
|
148 | 148 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
149 | 149 | if self.CODE == 'gaussian_fit': |
|
150 | 150 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
151 | 151 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
152 | 152 | else: |
|
153 | 153 | ax.plt.set_array(z[n].T.ravel()) |
|
154 | 154 | if self.showprofile: |
|
155 | 155 | ax.plt_profile.set_data(data['rti'][n], y) |
|
156 | 156 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
157 | 157 | if self.CODE == 'spc_moments': |
|
158 | 158 | ax.plt_mean.set_data(mean, y) |
|
159 | 159 | if self.CODE == 'gaussian_fit': |
|
160 | 160 | ax.plt_gau0.set_data(gau0, y) |
|
161 | 161 | ax.plt_gau1.set_data(gau1, y) |
|
162 | 162 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: |
|
163 | 163 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) |
|
164 | 164 | else: |
|
165 | 165 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
166 | 166 | |
|
167 | 167 | class SpectraObliquePlot(Plot): |
|
168 | 168 | ''' |
|
169 | 169 | Plot for Spectra data |
|
170 | 170 | ''' |
|
171 | 171 | |
|
172 | 172 | CODE = 'spc_oblique' |
|
173 | 173 | colormap = 'jet' |
|
174 | 174 | plot_type = 'pcolor' |
|
175 | 175 | |
|
176 | 176 | def setup(self): |
|
177 | 177 | self.xaxis = "oblique" |
|
178 | 178 | self.nplots = len(self.data.channels) |
|
179 | 179 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
180 | 180 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
181 | 181 | self.height = 2.6 * self.nrows |
|
182 | 182 | self.cb_label = 'dB' |
|
183 | 183 | if self.showprofile: |
|
184 | 184 | self.width = 4 * self.ncols |
|
185 | 185 | else: |
|
186 | 186 | self.width = 3.5 * self.ncols |
|
187 | 187 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
188 | 188 | self.ylabel = 'Range [km]' |
|
189 | 189 | |
|
190 | 190 | def update(self, dataOut): |
|
191 | 191 | |
|
192 | 192 | data = {} |
|
193 | 193 | meta = {} |
|
194 | 194 | |
|
195 | 195 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
196 | 196 | data['spc'] = spc |
|
197 | 197 | data['rti'] = dataOut.getPower() |
|
198 | 198 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
199 | 199 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
200 | 200 | |
|
201 | 201 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
202 | 202 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
203 | 203 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
204 | 204 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
205 | 205 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
206 | 206 | |
|
207 | 207 | return data, meta |
|
208 | 208 | |
|
209 | 209 | def plot(self): |
|
210 | 210 | |
|
211 | 211 | if self.xaxis == "frequency": |
|
212 | 212 | x = self.data.xrange[0] |
|
213 | 213 | self.xlabel = "Frequency (kHz)" |
|
214 | 214 | elif self.xaxis == "time": |
|
215 | 215 | x = self.data.xrange[1] |
|
216 | 216 | self.xlabel = "Time (ms)" |
|
217 | 217 | else: |
|
218 | 218 | x = self.data.xrange[2] |
|
219 | 219 | self.xlabel = "Velocity (m/s)" |
|
220 | 220 | |
|
221 | 221 | self.titles = [] |
|
222 | 222 | |
|
223 | 223 | y = self.data.yrange |
|
224 | 224 | self.y = y |
|
225 | 225 | |
|
226 | 226 | data = self.data[-1] |
|
227 | 227 | z = data['spc'] |
|
228 | 228 | |
|
229 | 229 | for n, ax in enumerate(self.axes): |
|
230 | 230 | noise = self.data['noise'][n][-1] |
|
231 | 231 | shift1 = data['shift1'] |
|
232 | 232 | shift2 = data['shift2'] |
|
233 | 233 | max_val_2 = data['max_val_2'] |
|
234 | 234 | err1 = data['shift1_error'] |
|
235 | 235 | err2 = data['shift2_error'] |
|
236 | 236 | if ax.firsttime: |
|
237 | 237 | |
|
238 | 238 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
239 | 239 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
240 | 240 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
241 | 241 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
242 | 242 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
243 | 243 | vmin=self.zmin, |
|
244 | 244 | vmax=self.zmax, |
|
245 | 245 | cmap=plt.get_cmap(self.colormap) |
|
246 | 246 | ) |
|
247 | 247 | |
|
248 | 248 | if self.showprofile: |
|
249 | 249 | ax.plt_profile = self.pf_axes[n].plot( |
|
250 | 250 | self.data['rti'][n][-1], y)[0] |
|
251 | 251 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
252 | 252 | color="k", linestyle="dashed", lw=1)[0] |
|
253 | 253 | |
|
254 | 254 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
255 | 255 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
256 | 256 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
257 | 257 | |
|
258 | 258 | else: |
|
259 | 259 | self.ploterr1.remove() |
|
260 | 260 | self.ploterr2.remove() |
|
261 | 261 | self.ploterr3.remove() |
|
262 | 262 | ax.plt.set_array(z[n].T.ravel()) |
|
263 | 263 | if self.showprofile: |
|
264 | 264 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
265 | 265 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
266 | 266 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
267 | 267 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
268 | 268 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
269 | 269 | |
|
270 | 270 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
271 | 271 | |
|
272 | 272 | |
|
273 | 273 | class CrossSpectraPlot(Plot): |
|
274 | 274 | |
|
275 | 275 | CODE = 'cspc' |
|
276 | 276 | colormap = 'jet' |
|
277 | 277 | plot_type = 'pcolor' |
|
278 | 278 | zmin_coh = None |
|
279 | 279 | zmax_coh = None |
|
280 | 280 | zmin_phase = None |
|
281 | 281 | zmax_phase = None |
|
282 | 282 | realChannels = None |
|
283 | 283 | crossPairs = None |
|
284 | 284 | |
|
285 | 285 | def setup(self): |
|
286 | 286 | |
|
287 | 287 | self.ncols = 4 |
|
288 | 288 | self.nplots = len(self.data.pairs) * 2 |
|
289 | 289 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
290 | 290 | self.width = 3.1 * self.ncols |
|
291 | 291 | self.height = 2.6 * self.nrows |
|
292 | 292 | self.ylabel = 'Range [km]' |
|
293 | 293 | self.showprofile = False |
|
294 | 294 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
295 | 295 | |
|
296 | 296 | def update(self, dataOut): |
|
297 | 297 | |
|
298 | 298 | data = {} |
|
299 | 299 | meta = {} |
|
300 | 300 | |
|
301 | 301 | spc = dataOut.data_spc |
|
302 | 302 | cspc = dataOut.data_cspc |
|
303 | 303 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
304 | 304 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
305 | 305 | meta['pairs'] = rawPairs |
|
306 | 306 | if self.crossPairs == None: |
|
307 | 307 | self.crossPairs = dataOut.pairsList |
|
308 | 308 | tmp = [] |
|
309 | 309 | |
|
310 | 310 | for n, pair in enumerate(meta['pairs']): |
|
311 | 311 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
312 | 312 | coh = numpy.abs(out) |
|
313 | 313 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
314 | 314 | tmp.append(coh) |
|
315 | 315 | tmp.append(phase) |
|
316 | 316 | |
|
317 | 317 | data['cspc'] = numpy.array(tmp) |
|
318 | 318 | |
|
319 | 319 | return data, meta |
|
320 | 320 | |
|
321 | 321 | def plot(self): |
|
322 | 322 | |
|
323 | 323 | if self.xaxis == "frequency": |
|
324 | 324 | x = self.data.xrange[0] |
|
325 | 325 | self.xlabel = "Frequency (kHz)" |
|
326 | 326 | elif self.xaxis == "time": |
|
327 | 327 | x = self.data.xrange[1] |
|
328 | 328 | self.xlabel = "Time (ms)" |
|
329 | 329 | else: |
|
330 | 330 | x = self.data.xrange[2] |
|
331 | 331 | self.xlabel = "Velocity (m/s)" |
|
332 | 332 | |
|
333 | 333 | self.titles = [] |
|
334 | 334 | |
|
335 | 335 | y = self.data.yrange |
|
336 | 336 | self.y = y |
|
337 | 337 | |
|
338 | 338 | data = self.data[-1] |
|
339 | 339 | cspc = data['cspc'] |
|
340 | 340 | |
|
341 | 341 | for n in range(len(self.data.pairs)): |
|
342 | 342 | pair = self.crossPairs[n] |
|
343 | 343 | coh = cspc[n*2] |
|
344 | 344 | phase = cspc[n*2+1] |
|
345 | 345 | ax = self.axes[2 * n] |
|
346 | 346 | if ax.firsttime: |
|
347 | 347 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
348 | 348 | vmin=self.zmin_coh, |
|
349 | 349 | vmax=self.zmax_coh, |
|
350 | 350 | cmap=plt.get_cmap(self.colormap_coh) |
|
351 | 351 | ) |
|
352 | 352 | else: |
|
353 | 353 | ax.plt.set_array(coh.T.ravel()) |
|
354 | 354 | self.titles.append( |
|
355 | 355 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
356 | 356 | |
|
357 | 357 | ax = self.axes[2 * n + 1] |
|
358 | 358 | if ax.firsttime: |
|
359 | 359 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
360 | 360 | vmin=-180, |
|
361 | 361 | vmax=180, |
|
362 | 362 | cmap=plt.get_cmap(self.colormap_phase) |
|
363 | 363 | ) |
|
364 | 364 | else: |
|
365 | 365 | ax.plt.set_array(phase.T.ravel()) |
|
366 | 366 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
367 | 367 | |
|
368 | 368 | |
|
369 | 369 | class CrossSpectra4Plot(Plot): |
|
370 | 370 | |
|
371 | 371 | CODE = 'cspc' |
|
372 | 372 | colormap = 'jet' |
|
373 | 373 | plot_type = 'pcolor' |
|
374 | 374 | zmin_coh = None |
|
375 | 375 | zmax_coh = None |
|
376 | 376 | zmin_phase = None |
|
377 | 377 | zmax_phase = None |
|
378 | 378 | |
|
379 | 379 | def setup(self): |
|
380 | 380 | |
|
381 | 381 | self.ncols = 4 |
|
382 | 382 | self.nrows = len(self.data.pairs) |
|
383 | 383 | self.nplots = self.nrows * 4 |
|
384 | 384 | self.width = 3.1 * self.ncols |
|
385 | 385 | self.height = 5 * self.nrows |
|
386 | 386 | self.ylabel = 'Range [km]' |
|
387 | 387 | self.showprofile = False |
|
388 | 388 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
389 | 389 | |
|
390 | 390 | def plot(self): |
|
391 | 391 | |
|
392 | 392 | if self.xaxis == "frequency": |
|
393 | 393 | x = self.data.xrange[0] |
|
394 | 394 | self.xlabel = "Frequency (kHz)" |
|
395 | 395 | elif self.xaxis == "time": |
|
396 | 396 | x = self.data.xrange[1] |
|
397 | 397 | self.xlabel = "Time (ms)" |
|
398 | 398 | else: |
|
399 | 399 | x = self.data.xrange[2] |
|
400 | 400 | self.xlabel = "Velocity (m/s)" |
|
401 | 401 | |
|
402 | 402 | self.titles = [] |
|
403 | 403 | |
|
404 | 404 | |
|
405 | 405 | y = self.data.heights |
|
406 | 406 | self.y = y |
|
407 | 407 | nspc = self.data['spc'] |
|
408 | 408 | spc = self.data['cspc'][0] |
|
409 | 409 | cspc = self.data['cspc'][1] |
|
410 | 410 | |
|
411 | 411 | for n in range(self.nrows): |
|
412 | 412 | noise = self.data['noise'][:,-1] |
|
413 | 413 | pair = self.data.pairs[n] |
|
414 | 414 | |
|
415 | 415 | ax = self.axes[4 * n] |
|
416 | 416 | if ax.firsttime: |
|
417 | 417 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
418 | 418 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
419 | 419 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
420 | 420 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
421 | 421 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
422 | 422 | vmin=self.zmin, |
|
423 | 423 | vmax=self.zmax, |
|
424 | 424 | cmap=plt.get_cmap(self.colormap) |
|
425 | 425 | ) |
|
426 | 426 | else: |
|
427 | 427 | |
|
428 | 428 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
429 | 429 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
430 | 430 | |
|
431 | 431 | ax = self.axes[4 * n + 1] |
|
432 | 432 | |
|
433 | 433 | if ax.firsttime: |
|
434 | 434 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
435 | 435 | vmin=self.zmin, |
|
436 | 436 | vmax=self.zmax, |
|
437 | 437 | cmap=plt.get_cmap(self.colormap) |
|
438 | 438 | ) |
|
439 | 439 | else: |
|
440 | 440 | |
|
441 | 441 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
442 | 442 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
443 | 443 | |
|
444 | 444 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
445 | 445 | coh = numpy.abs(out) |
|
446 | 446 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
447 | 447 | |
|
448 | 448 | ax = self.axes[4 * n + 2] |
|
449 | 449 | if ax.firsttime: |
|
450 | 450 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
451 | 451 | vmin=0, |
|
452 | 452 | vmax=1, |
|
453 | 453 | cmap=plt.get_cmap(self.colormap_coh) |
|
454 | 454 | ) |
|
455 | 455 | else: |
|
456 | 456 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
457 | 457 | self.titles.append( |
|
458 | 458 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
459 | 459 | |
|
460 | 460 | ax = self.axes[4 * n + 3] |
|
461 | 461 | if ax.firsttime: |
|
462 | 462 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
463 | 463 | vmin=-180, |
|
464 | 464 | vmax=180, |
|
465 | 465 | cmap=plt.get_cmap(self.colormap_phase) |
|
466 | 466 | ) |
|
467 | 467 | else: |
|
468 | 468 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
469 | 469 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
470 | 470 | |
|
471 | 471 | |
|
472 | 472 | class CrossSpectra2Plot(Plot): |
|
473 | 473 | |
|
474 | 474 | CODE = 'cspc' |
|
475 | 475 | colormap = 'jet' |
|
476 | 476 | plot_type = 'pcolor' |
|
477 | 477 | zmin_coh = None |
|
478 | 478 | zmax_coh = None |
|
479 | 479 | zmin_phase = None |
|
480 | 480 | zmax_phase = None |
|
481 | 481 | |
|
482 | 482 | def setup(self): |
|
483 | 483 | |
|
484 | 484 | self.ncols = 1 |
|
485 | 485 | self.nrows = len(self.data.pairs) |
|
486 | 486 | self.nplots = self.nrows * 1 |
|
487 | 487 | self.width = 3.1 * self.ncols |
|
488 | 488 | self.height = 5 * self.nrows |
|
489 | 489 | self.ylabel = 'Range [km]' |
|
490 | 490 | self.showprofile = False |
|
491 | 491 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
492 | 492 | |
|
493 | 493 | def plot(self): |
|
494 | 494 | |
|
495 | 495 | if self.xaxis == "frequency": |
|
496 | 496 | x = self.data.xrange[0] |
|
497 | 497 | self.xlabel = "Frequency (kHz)" |
|
498 | 498 | elif self.xaxis == "time": |
|
499 | 499 | x = self.data.xrange[1] |
|
500 | 500 | self.xlabel = "Time (ms)" |
|
501 | 501 | else: |
|
502 | 502 | x = self.data.xrange[2] |
|
503 | 503 | self.xlabel = "Velocity (m/s)" |
|
504 | 504 | |
|
505 | 505 | self.titles = [] |
|
506 | 506 | |
|
507 | 507 | |
|
508 | 508 | y = self.data.heights |
|
509 | 509 | self.y = y |
|
510 | 510 | cspc = self.data['cspc'][1] |
|
511 | 511 | |
|
512 | 512 | for n in range(self.nrows): |
|
513 | 513 | noise = self.data['noise'][:,-1] |
|
514 | 514 | pair = self.data.pairs[n] |
|
515 | 515 | out = cspc[n] |
|
516 | 516 | cross = numpy.abs(out) |
|
517 | 517 | z = cross/self.data.nFactor |
|
518 | 518 | cross = 10*numpy.log10(z) |
|
519 | 519 | |
|
520 | 520 | ax = self.axes[1 * n] |
|
521 | 521 | if ax.firsttime: |
|
522 | 522 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
523 | 523 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
524 | 524 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
525 | 525 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
526 | 526 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
527 | 527 | vmin=self.zmin, |
|
528 | 528 | vmax=self.zmax, |
|
529 | 529 | cmap=plt.get_cmap(self.colormap) |
|
530 | 530 | ) |
|
531 | 531 | else: |
|
532 | 532 | ax.plt.set_array(cross.T.ravel()) |
|
533 | 533 | self.titles.append( |
|
534 | 534 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
535 | 535 | |
|
536 | 536 | |
|
537 | 537 | class CrossSpectra3Plot(Plot): |
|
538 | 538 | |
|
539 | 539 | CODE = 'cspc' |
|
540 | 540 | colormap = 'jet' |
|
541 | 541 | plot_type = 'pcolor' |
|
542 | 542 | zmin_coh = None |
|
543 | 543 | zmax_coh = None |
|
544 | 544 | zmin_phase = None |
|
545 | 545 | zmax_phase = None |
|
546 | 546 | |
|
547 | 547 | def setup(self): |
|
548 | 548 | |
|
549 | 549 | self.ncols = 3 |
|
550 | 550 | self.nrows = len(self.data.pairs) |
|
551 | 551 | self.nplots = self.nrows * 3 |
|
552 | 552 | self.width = 3.1 * self.ncols |
|
553 | 553 | self.height = 5 * self.nrows |
|
554 | 554 | self.ylabel = 'Range [km]' |
|
555 | 555 | self.showprofile = False |
|
556 | 556 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
557 | 557 | |
|
558 | 558 | def plot(self): |
|
559 | 559 | |
|
560 | 560 | if self.xaxis == "frequency": |
|
561 | 561 | x = self.data.xrange[0] |
|
562 | 562 | self.xlabel = "Frequency (kHz)" |
|
563 | 563 | elif self.xaxis == "time": |
|
564 | 564 | x = self.data.xrange[1] |
|
565 | 565 | self.xlabel = "Time (ms)" |
|
566 | 566 | else: |
|
567 | 567 | x = self.data.xrange[2] |
|
568 | 568 | self.xlabel = "Velocity (m/s)" |
|
569 | 569 | |
|
570 | 570 | self.titles = [] |
|
571 | 571 | |
|
572 | 572 | |
|
573 | 573 | y = self.data.heights |
|
574 | 574 | self.y = y |
|
575 | 575 | |
|
576 | 576 | cspc = self.data['cspc'][1] |
|
577 | 577 | |
|
578 | 578 | for n in range(self.nrows): |
|
579 | 579 | noise = self.data['noise'][:,-1] |
|
580 | 580 | pair = self.data.pairs[n] |
|
581 | 581 | out = cspc[n] |
|
582 | 582 | |
|
583 | 583 | cross = numpy.abs(out) |
|
584 | 584 | z = cross/self.data.nFactor |
|
585 | 585 | cross = 10*numpy.log10(z) |
|
586 | 586 | |
|
587 | 587 | out_r= out.real/self.data.nFactor |
|
588 | 588 | |
|
589 | 589 | out_i= out.imag/self.data.nFactor |
|
590 | 590 | |
|
591 | 591 | ax = self.axes[3 * n] |
|
592 | 592 | if ax.firsttime: |
|
593 | 593 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
594 | 594 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
595 | 595 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
596 | 596 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
597 | 597 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
598 | 598 | vmin=self.zmin, |
|
599 | 599 | vmax=self.zmax, |
|
600 | 600 | cmap=plt.get_cmap(self.colormap) |
|
601 | 601 | ) |
|
602 | 602 | else: |
|
603 | 603 | ax.plt.set_array(cross.T.ravel()) |
|
604 | 604 | self.titles.append( |
|
605 | 605 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
606 | 606 | |
|
607 | 607 | ax = self.axes[3 * n + 1] |
|
608 | 608 | if ax.firsttime: |
|
609 | 609 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
610 | 610 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
611 | 611 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
612 | 612 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
613 | 613 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
614 | 614 | vmin=-1.e6, |
|
615 | 615 | vmax=0, |
|
616 | 616 | cmap=plt.get_cmap(self.colormap) |
|
617 | 617 | ) |
|
618 | 618 | else: |
|
619 | 619 | ax.plt.set_array(out_r.T.ravel()) |
|
620 | 620 | self.titles.append( |
|
621 | 621 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
622 | 622 | |
|
623 | 623 | ax = self.axes[3 * n + 2] |
|
624 | 624 | |
|
625 | 625 | |
|
626 | 626 | if ax.firsttime: |
|
627 | 627 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
628 | 628 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
629 | 629 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
630 | 630 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
631 | 631 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
632 | 632 | vmin=-1.e6, |
|
633 | 633 | vmax=1.e6, |
|
634 | 634 | cmap=plt.get_cmap(self.colormap) |
|
635 | 635 | ) |
|
636 | 636 | else: |
|
637 | 637 | ax.plt.set_array(out_i.T.ravel()) |
|
638 | 638 | self.titles.append( |
|
639 | 639 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
640 | 640 | |
|
641 | 641 | class RTIPlot(Plot): |
|
642 | 642 | ''' |
|
643 | 643 | Plot for RTI data |
|
644 | 644 | ''' |
|
645 | 645 | |
|
646 | 646 | CODE = 'rti' |
|
647 | 647 | colormap = 'jet' |
|
648 | 648 | plot_type = 'pcolorbuffer' |
|
649 | 649 | titles = None |
|
650 | 650 | channelList = [] |
|
651 | 651 | elevationList = [] |
|
652 | 652 | azimuthList = [] |
|
653 | 653 | |
|
654 | 654 | def setup(self): |
|
655 | 655 | self.xaxis = 'time' |
|
656 | 656 | self.ncols = 1 |
|
657 | 657 | self.nrows = len(self.data.channels) |
|
658 | 658 | self.nplots = len(self.data.channels) |
|
659 | 659 | self.ylabel = 'Range [km]' |
|
660 | 660 | #self.xlabel = 'Time' |
|
661 | 661 | self.cb_label = 'dB' |
|
662 | 662 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
663 | 663 | self.titles = ['{} Channel {}'.format( |
|
664 | 664 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
665 | 665 | |
|
666 | 666 | def update_list(self,dataOut): |
|
667 | 667 | |
|
668 | 668 | if len(self.channelList) == 0: |
|
669 | 669 | self.channelList = dataOut.channelList |
|
670 | 670 | if len(self.elevationList) == 0: |
|
671 | 671 | self.elevationList = dataOut.elevationList |
|
672 | 672 | if len(self.azimuthList) == 0: |
|
673 | 673 | self.azimuthList = dataOut.azimuthList |
|
674 | 674 | |
|
675 | 675 | |
|
676 | 676 | def update(self, dataOut): |
|
677 | 677 | |
|
678 | 678 | if len(self.channelList) == 0: |
|
679 | 679 | self.update_list(dataOut) |
|
680 | 680 | data = {} |
|
681 | 681 | meta = {} |
|
682 | 682 | data['rti'] = dataOut.getPower() |
|
683 | 683 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
684 | 684 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
685 | 685 | data['noise'] = noise |
|
686 | 686 | |
|
687 | 687 | return data, meta |
|
688 | 688 | |
|
689 | 689 | def plot(self): |
|
690 | 690 | |
|
691 | 691 | self.x = self.data.times |
|
692 | 692 | self.y = self.data.yrange |
|
693 | 693 | self.z = self.data[self.CODE] |
|
694 | 694 | self.z = numpy.array(self.z, dtype=float) |
|
695 | 695 | self.z = numpy.ma.masked_invalid(self.z) |
|
696 | 696 | |
|
697 | 697 | try: |
|
698 | 698 | if self.channelList != None: |
|
699 | 699 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
700 | 700 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
701 | 701 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
702 | 702 | else: |
|
703 | 703 | self.titles = ['{} Channel {}'.format( |
|
704 | 704 | self.CODE.upper(), x) for x in self.channelList] |
|
705 | 705 | except: |
|
706 | 706 | if self.channelList.any() != None: |
|
707 | 707 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
708 | 708 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
709 | 709 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
710 | 710 | else: |
|
711 | 711 | self.titles = ['{} Channel {}'.format( |
|
712 | 712 | self.CODE.upper(), x) for x in self.channelList] |
|
713 | 713 | |
|
714 | 714 | if self.decimation is None: |
|
715 | 715 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
716 | 716 | else: |
|
717 | 717 | x, y, z = self.fill_gaps(*self.decimate()) |
|
718 | 718 | |
|
719 | 719 | for n, ax in enumerate(self.axes): |
|
720 | 720 | |
|
721 | 721 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
722 | 722 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
723 | 723 | data = self.data[-1] |
|
724 | 724 | if ax.firsttime: |
|
725 | 725 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
726 | 726 | vmin=self.zmin, |
|
727 | 727 | vmax=self.zmax, |
|
728 | 728 | cmap=plt.get_cmap(self.colormap) |
|
729 | 729 | ) |
|
730 | 730 | if self.showprofile: |
|
731 | ax.plot_profile = self.pf_axes[n].plot( | |
|
732 | data[self.CODE][n], self.y)[0] | |
|
731 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] | |
|
733 | 732 | if "noise" in self.data: |
|
733 | ||
|
734 | 734 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
735 | 735 | color="k", linestyle="dashed", lw=1)[0] |
|
736 | 736 | else: |
|
737 |
ax.collections.remove(ax.collections[0]) |
|
|
737 | ax.collections.remove(ax.collections[0]) | |
|
738 | 738 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
739 | 739 | vmin=self.zmin, |
|
740 | 740 | vmax=self.zmax, |
|
741 | 741 | cmap=plt.get_cmap(self.colormap) |
|
742 | 742 | ) |
|
743 | 743 | if self.showprofile: |
|
744 | 744 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
745 | 745 | if "noise" in self.data: |
|
746 |
ax.plot_noise |
|
|
747 | color="k", linestyle="dashed", lw=1)[0] | |
|
746 | ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) | |
|
748 | 747 | |
|
749 | 748 | class SpectrogramPlot(Plot): |
|
750 | 749 | ''' |
|
751 | 750 | Plot for Spectrogram data |
|
752 | 751 | ''' |
|
753 | 752 | |
|
754 | 753 | CODE = 'Spectrogram_Profile' |
|
755 | 754 | colormap = 'binary' |
|
756 | 755 | plot_type = 'pcolorbuffer' |
|
757 | 756 | |
|
758 | 757 | def setup(self): |
|
759 | 758 | self.xaxis = 'time' |
|
760 | 759 | self.ncols = 1 |
|
761 | 760 | self.nrows = len(self.data.channels) |
|
762 | 761 | self.nplots = len(self.data.channels) |
|
763 | 762 | self.xlabel = 'Time' |
|
764 | 763 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
765 | 764 | self.titles = [] |
|
766 | 765 | |
|
767 | 766 | self.titles = ['{} Channel {}'.format( |
|
768 | 767 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
769 | 768 | |
|
770 | 769 | |
|
771 | 770 | def update(self, dataOut): |
|
772 | 771 | data = {} |
|
773 | 772 | meta = {} |
|
774 | 773 | |
|
775 | 774 | maxHei = 1620#+12000 |
|
776 | 775 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
777 | 776 | hei = indb[0][-1] |
|
778 | 777 | |
|
779 | 778 | factor = dataOut.nIncohInt |
|
780 | 779 | z = dataOut.data_spc[:,:,hei] / factor |
|
781 | 780 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
782 | 781 | |
|
783 | 782 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
784 | 783 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
785 | 784 | |
|
786 | 785 | data['hei'] = hei |
|
787 | 786 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
788 | 787 | data['nProfiles'] = dataOut.nProfiles |
|
789 | 788 | |
|
790 | 789 | return data, meta |
|
791 | 790 | |
|
792 | 791 | def plot(self): |
|
793 | 792 | |
|
794 | 793 | self.x = self.data.times |
|
795 | 794 | self.z = self.data[self.CODE] |
|
796 | 795 | self.y = self.data.xrange[0] |
|
797 | 796 | |
|
798 | 797 | hei = self.data['hei'][-1] |
|
799 | 798 | DH = self.data['DH'][-1] |
|
800 | 799 | nProfiles = self.data['nProfiles'][-1] |
|
801 | 800 | |
|
802 | 801 | self.ylabel = "Frequency (kHz)" |
|
803 | 802 | |
|
804 | 803 | self.z = numpy.ma.masked_invalid(self.z) |
|
805 | 804 | |
|
806 | 805 | if self.decimation is None: |
|
807 | 806 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
808 | 807 | else: |
|
809 | 808 | x, y, z = self.fill_gaps(*self.decimate()) |
|
810 | 809 | |
|
811 | 810 | for n, ax in enumerate(self.axes): |
|
812 | 811 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
813 | 812 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
814 | 813 | data = self.data[-1] |
|
815 | 814 | if ax.firsttime: |
|
816 | 815 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
817 | 816 | vmin=self.zmin, |
|
818 | 817 | vmax=self.zmax, |
|
819 | 818 | cmap=plt.get_cmap(self.colormap) |
|
820 | 819 | ) |
|
821 | 820 | else: |
|
822 |
|
|
|
821 | ax.collections.remove(ax.collections[0]) # error while running | |
|
823 | 822 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
824 | 823 | vmin=self.zmin, |
|
825 | 824 | vmax=self.zmax, |
|
826 | 825 | cmap=plt.get_cmap(self.colormap) |
|
827 | 826 | ) |
|
828 | 827 | |
|
829 | 828 | |
|
830 | 829 | |
|
831 | 830 | class CoherencePlot(RTIPlot): |
|
832 | 831 | ''' |
|
833 | 832 | Plot for Coherence data |
|
834 | 833 | ''' |
|
835 | 834 | |
|
836 | 835 | CODE = 'coh' |
|
837 | 836 | titles = None |
|
838 | 837 | |
|
839 | 838 | def setup(self): |
|
840 | 839 | self.xaxis = 'time' |
|
841 | 840 | self.ncols = 1 |
|
842 | 841 | self.nrows = len(self.data.pairs) |
|
843 | 842 | self.nplots = len(self.data.pairs) |
|
844 | 843 | self.ylabel = 'Range [km]' |
|
845 | 844 | self.xlabel = 'Time' |
|
846 | 845 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
847 | 846 | if self.CODE == 'coh': |
|
848 | 847 | self.cb_label = '' |
|
849 | 848 | self.titles = [ |
|
850 | 849 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
851 | 850 | else: |
|
852 | 851 | self.cb_label = 'Degrees' |
|
853 | 852 | self.titles = [ |
|
854 | 853 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
855 | 854 | |
|
856 | 855 | def update(self, dataOut): |
|
857 | 856 | |
|
858 | 857 | data = {} |
|
859 | 858 | meta = {} |
|
860 | 859 | data['coh'] = dataOut.getCoherence() |
|
861 | 860 | meta['pairs'] = dataOut.pairsList |
|
862 | 861 | |
|
863 | 862 | return data, meta |
|
864 | 863 | |
|
865 | 864 | class PhasePlot(CoherencePlot): |
|
866 | 865 | ''' |
|
867 | 866 | Plot for Phase map data |
|
868 | 867 | ''' |
|
869 | 868 | |
|
870 | 869 | CODE = 'phase' |
|
871 | 870 | colormap = 'seismic' |
|
872 | 871 | |
|
873 | 872 | def update(self, dataOut): |
|
874 | 873 | |
|
875 | 874 | data = {} |
|
876 | 875 | meta = {} |
|
877 | 876 | data['phase'] = dataOut.getCoherence(phase=True) |
|
878 | 877 | meta['pairs'] = dataOut.pairsList |
|
879 | 878 | |
|
880 | 879 | return data, meta |
|
881 | 880 | |
|
882 | 881 | class NoisePlot(Plot): |
|
883 | 882 | ''' |
|
884 | 883 | Plot for noise |
|
885 | 884 | ''' |
|
886 | 885 | |
|
887 | 886 | CODE = 'noise' |
|
888 | 887 | plot_type = 'scatterbuffer' |
|
889 | 888 | |
|
890 | 889 | def setup(self): |
|
891 | 890 | self.xaxis = 'time' |
|
892 | 891 | self.ncols = 1 |
|
893 | 892 | self.nrows = 1 |
|
894 | 893 | self.nplots = 1 |
|
895 | 894 | self.ylabel = 'Intensity [dB]' |
|
896 | 895 | self.xlabel = 'Time' |
|
897 | 896 | self.titles = ['Noise'] |
|
898 | 897 | self.colorbar = False |
|
899 | 898 | self.plots_adjust.update({'right': 0.85 }) |
|
900 | 899 | self.titles = ['Noise Plot'] |
|
901 | 900 | |
|
902 | 901 | def update(self, dataOut): |
|
903 | 902 | |
|
904 | 903 | data = {} |
|
905 | 904 | meta = {} |
|
906 | 905 | noise = 10*numpy.log10(dataOut.getNoise()) |
|
907 | 906 | noise = noise.reshape(dataOut.nChannels, 1) |
|
908 | 907 | data['noise'] = noise |
|
909 | 908 | meta['yrange'] = numpy.array([]) |
|
910 | 909 | |
|
911 | 910 | return data, meta |
|
912 | 911 | |
|
913 | 912 | def plot(self): |
|
914 | 913 | |
|
915 | 914 | x = self.data.times |
|
916 | 915 | xmin = self.data.min_time |
|
917 | 916 | xmax = xmin + self.xrange * 60 * 60 |
|
918 | 917 | Y = self.data['noise'] |
|
919 | 918 | |
|
920 | 919 | if self.axes[0].firsttime: |
|
921 | 920 | self.ymin = numpy.nanmin(Y) - 5 |
|
922 | 921 | self.ymax = numpy.nanmax(Y) + 5 |
|
923 | 922 | for ch in self.data.channels: |
|
924 | 923 | y = Y[ch] |
|
925 | 924 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
926 | 925 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
927 | 926 | else: |
|
928 | 927 | for ch in self.data.channels: |
|
929 | 928 | y = Y[ch] |
|
930 | 929 | self.axes[0].lines[ch].set_data(x, y) |
|
931 | 930 | |
|
932 | 931 | class PowerProfilePlot(Plot): |
|
933 | 932 | |
|
934 | 933 | CODE = 'pow_profile' |
|
935 | 934 | plot_type = 'scatter' |
|
936 | 935 | |
|
937 | 936 | def setup(self): |
|
938 | 937 | |
|
939 | 938 | self.ncols = 1 |
|
940 | 939 | self.nrows = 1 |
|
941 | 940 | self.nplots = 1 |
|
942 | 941 | self.height = 4 |
|
943 | 942 | self.width = 3 |
|
944 | 943 | self.ylabel = 'Range [km]' |
|
945 | 944 | self.xlabel = 'Intensity [dB]' |
|
946 | 945 | self.titles = ['Power Profile'] |
|
947 | 946 | self.colorbar = False |
|
948 | 947 | |
|
949 | 948 | def update(self, dataOut): |
|
950 | 949 | |
|
951 | 950 | data = {} |
|
952 | 951 | meta = {} |
|
953 | 952 | data[self.CODE] = dataOut.getPower() |
|
954 | 953 | |
|
955 | 954 | return data, meta |
|
956 | 955 | |
|
957 | 956 | def plot(self): |
|
958 | 957 | |
|
959 | 958 | y = self.data.yrange |
|
960 | 959 | self.y = y |
|
961 | 960 | |
|
962 | 961 | x = self.data[-1][self.CODE] |
|
963 | 962 | |
|
964 | 963 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
965 | 964 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
966 | 965 | |
|
967 | 966 | if self.axes[0].firsttime: |
|
968 | 967 | for ch in self.data.channels: |
|
969 | 968 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
970 | 969 | plt.legend() |
|
971 | 970 | else: |
|
972 | 971 | for ch in self.data.channels: |
|
973 | 972 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
974 | 973 | |
|
975 | 974 | |
|
976 | 975 | class SpectraCutPlot(Plot): |
|
977 | 976 | |
|
978 | 977 | CODE = 'spc_cut' |
|
979 | 978 | plot_type = 'scatter' |
|
980 | 979 | buffering = False |
|
981 | 980 | heights = [] |
|
982 | 981 | channelList = [] |
|
983 | 982 | maintitle = "Spectra Cuts" |
|
984 | 983 | flag_setIndex = False |
|
985 | 984 | |
|
986 | 985 | def setup(self): |
|
987 | 986 | |
|
988 | 987 | self.nplots = len(self.data.channels) |
|
989 | 988 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
990 | 989 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
991 | 990 | self.width = 4.5 * self.ncols + 2.5 |
|
992 | 991 | self.height = 4.8 * self.nrows |
|
993 | 992 | self.ylabel = 'Power [dB]' |
|
994 | 993 | self.colorbar = False |
|
995 | 994 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08}) |
|
996 | 995 | |
|
997 | 996 | if len(self.selectedHeightsList) > 0: |
|
998 | 997 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) |
|
999 | 998 | |
|
1000 | 999 | |
|
1001 | 1000 | |
|
1002 | 1001 | def update(self, dataOut): |
|
1003 | 1002 | if len(self.channelList) == 0: |
|
1004 | 1003 | self.channelList = dataOut.channelList |
|
1005 | 1004 | |
|
1006 | 1005 | self.heights = dataOut.heightList |
|
1007 | 1006 | #print("sels: ",self.selectedHeightsList) |
|
1008 | 1007 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: |
|
1009 | 1008 | |
|
1010 | 1009 | for sel_height in self.selectedHeightsList: |
|
1011 | 1010 | index_list = numpy.where(self.heights >= sel_height) |
|
1012 | 1011 | index_list = index_list[0] |
|
1013 | 1012 | self.height_index.append(index_list[0]) |
|
1014 | 1013 | #print("sels i:"", self.height_index) |
|
1015 | 1014 | self.flag_setIndex = True |
|
1016 | 1015 | #print(self.height_index) |
|
1017 | 1016 | data = {} |
|
1018 | 1017 | meta = {} |
|
1019 | 1018 | |
|
1020 | 1019 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints |
|
1021 | 1020 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1022 | 1021 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
1023 | 1022 | |
|
1024 | 1023 | |
|
1025 | 1024 | z = [] |
|
1026 | 1025 | for ch in range(dataOut.nChannels): |
|
1027 | 1026 | if hasattr(dataOut.normFactor,'shape'): |
|
1028 | 1027 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
1029 | 1028 | else: |
|
1030 | 1029 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
1031 | 1030 | |
|
1032 | 1031 | z = numpy.asarray(z) |
|
1033 | 1032 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1034 | 1033 | spc = 10*numpy.log10(z) |
|
1035 | 1034 | |
|
1036 | 1035 | |
|
1037 | 1036 | data['spc'] = spc - noise |
|
1038 | 1037 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
1039 | 1038 | |
|
1040 | 1039 | return data, meta |
|
1041 | 1040 | |
|
1042 | 1041 | def plot(self): |
|
1043 | 1042 | if self.xaxis == "frequency": |
|
1044 | 1043 | x = self.data.xrange[0][0:] |
|
1045 | 1044 | self.xlabel = "Frequency (kHz)" |
|
1046 | 1045 | elif self.xaxis == "time": |
|
1047 | 1046 | x = self.data.xrange[1] |
|
1048 | 1047 | self.xlabel = "Time (ms)" |
|
1049 | 1048 | else: |
|
1050 | 1049 | x = self.data.xrange[2] |
|
1051 | 1050 | self.xlabel = "Velocity (m/s)" |
|
1052 | 1051 | |
|
1053 | 1052 | self.titles = [] |
|
1054 | 1053 | |
|
1055 | 1054 | y = self.data.yrange |
|
1056 | 1055 | z = self.data[-1]['spc'] |
|
1057 | 1056 | #print(z.shape) |
|
1058 | 1057 | if len(self.height_index) > 0: |
|
1059 | 1058 | index = self.height_index |
|
1060 | 1059 | else: |
|
1061 | 1060 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1062 | 1061 | #print("inde x ", index, self.axes) |
|
1063 | 1062 | |
|
1064 | 1063 | for n, ax in enumerate(self.axes): |
|
1065 | 1064 | |
|
1066 | 1065 | if ax.firsttime: |
|
1067 | 1066 | |
|
1068 | 1067 | |
|
1069 | 1068 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1070 | 1069 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1071 | 1070 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
1072 | 1071 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
1073 | 1072 | |
|
1074 | 1073 | |
|
1075 | 1074 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
1076 | 1075 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1077 | 1076 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) |
|
1078 | 1077 | ax.minorticks_on() |
|
1079 | 1078 | ax.grid(which='major', axis='both') |
|
1080 | 1079 | ax.grid(which='minor', axis='x') |
|
1081 | 1080 | else: |
|
1082 | 1081 | for i, line in enumerate(ax.plt): |
|
1083 | 1082 | line.set_data(x, z[n, :, index[i]]) |
|
1084 | 1083 | |
|
1085 | 1084 | |
|
1086 | 1085 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
1087 | 1086 | plt.suptitle(self.maintitle, fontsize=10) |
|
1088 | 1087 | |
|
1089 | 1088 | |
|
1090 | 1089 | class BeaconPhase(Plot): |
|
1091 | 1090 | |
|
1092 | 1091 | __isConfig = None |
|
1093 | 1092 | __nsubplots = None |
|
1094 | 1093 | |
|
1095 | 1094 | PREFIX = 'beacon_phase' |
|
1096 | 1095 | |
|
1097 | 1096 | def __init__(self): |
|
1098 | 1097 | Plot.__init__(self) |
|
1099 | 1098 | self.timerange = 24*60*60 |
|
1100 | 1099 | self.isConfig = False |
|
1101 | 1100 | self.__nsubplots = 1 |
|
1102 | 1101 | self.counter_imagwr = 0 |
|
1103 | 1102 | self.WIDTH = 800 |
|
1104 | 1103 | self.HEIGHT = 400 |
|
1105 | 1104 | self.WIDTHPROF = 120 |
|
1106 | 1105 | self.HEIGHTPROF = 0 |
|
1107 | 1106 | self.xdata = None |
|
1108 | 1107 | self.ydata = None |
|
1109 | 1108 | |
|
1110 | 1109 | self.PLOT_CODE = BEACON_CODE |
|
1111 | 1110 | |
|
1112 | 1111 | self.FTP_WEI = None |
|
1113 | 1112 | self.EXP_CODE = None |
|
1114 | 1113 | self.SUB_EXP_CODE = None |
|
1115 | 1114 | self.PLOT_POS = None |
|
1116 | 1115 | |
|
1117 | 1116 | self.filename_phase = None |
|
1118 | 1117 | |
|
1119 | 1118 | self.figfile = None |
|
1120 | 1119 | |
|
1121 | 1120 | self.xmin = None |
|
1122 | 1121 | self.xmax = None |
|
1123 | 1122 | |
|
1124 | 1123 | def getSubplots(self): |
|
1125 | 1124 | |
|
1126 | 1125 | ncol = 1 |
|
1127 | 1126 | nrow = 1 |
|
1128 | 1127 | |
|
1129 | 1128 | return nrow, ncol |
|
1130 | 1129 | |
|
1131 | 1130 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1132 | 1131 | |
|
1133 | 1132 | self.__showprofile = showprofile |
|
1134 | 1133 | self.nplots = nplots |
|
1135 | 1134 | |
|
1136 | 1135 | ncolspan = 7 |
|
1137 | 1136 | colspan = 6 |
|
1138 | 1137 | self.__nsubplots = 2 |
|
1139 | 1138 | |
|
1140 | 1139 | self.createFigure(id = id, |
|
1141 | 1140 | wintitle = wintitle, |
|
1142 | 1141 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1143 | 1142 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1144 | 1143 | show=show) |
|
1145 | 1144 | |
|
1146 | 1145 | nrow, ncol = self.getSubplots() |
|
1147 | 1146 | |
|
1148 | 1147 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1149 | 1148 | |
|
1150 | 1149 | def save_phase(self, filename_phase): |
|
1151 | 1150 | f = open(filename_phase,'w+') |
|
1152 | 1151 | f.write('\n\n') |
|
1153 | 1152 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1154 | 1153 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1155 | 1154 | f.close() |
|
1156 | 1155 | |
|
1157 | 1156 | def save_data(self, filename_phase, data, data_datetime): |
|
1158 | 1157 | f=open(filename_phase,'a') |
|
1159 | 1158 | timetuple_data = data_datetime.timetuple() |
|
1160 | 1159 | day = str(timetuple_data.tm_mday) |
|
1161 | 1160 | month = str(timetuple_data.tm_mon) |
|
1162 | 1161 | year = str(timetuple_data.tm_year) |
|
1163 | 1162 | hour = str(timetuple_data.tm_hour) |
|
1164 | 1163 | minute = str(timetuple_data.tm_min) |
|
1165 | 1164 | second = str(timetuple_data.tm_sec) |
|
1166 | 1165 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1167 | 1166 | f.close() |
|
1168 | 1167 | |
|
1169 | 1168 | def plot(self): |
|
1170 | 1169 | log.warning('TODO: Not yet implemented...') |
|
1171 | 1170 | |
|
1172 | 1171 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1173 | 1172 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1174 | 1173 | timerange=None, |
|
1175 | 1174 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1176 | 1175 | server=None, folder=None, username=None, password=None, |
|
1177 | 1176 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1178 | 1177 | |
|
1179 | 1178 | if dataOut.flagNoData: |
|
1180 | 1179 | return dataOut |
|
1181 | 1180 | |
|
1182 | 1181 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1183 | 1182 | return |
|
1184 | 1183 | |
|
1185 | 1184 | if pairsList == None: |
|
1186 | 1185 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1187 | 1186 | else: |
|
1188 | 1187 | pairsIndexList = [] |
|
1189 | 1188 | for pair in pairsList: |
|
1190 | 1189 | if pair not in dataOut.pairsList: |
|
1191 | 1190 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1192 | 1191 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1193 | 1192 | |
|
1194 | 1193 | if pairsIndexList == []: |
|
1195 | 1194 | return |
|
1196 | 1195 | |
|
1197 | 1196 | # if len(pairsIndexList) > 4: |
|
1198 | 1197 | # pairsIndexList = pairsIndexList[0:4] |
|
1199 | 1198 | |
|
1200 | 1199 | hmin_index = None |
|
1201 | 1200 | hmax_index = None |
|
1202 | 1201 | |
|
1203 | 1202 | if hmin != None and hmax != None: |
|
1204 | 1203 | indexes = numpy.arange(dataOut.nHeights) |
|
1205 | 1204 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1206 | 1205 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1207 | 1206 | |
|
1208 | 1207 | if hmin_list.any(): |
|
1209 | 1208 | hmin_index = hmin_list[0] |
|
1210 | 1209 | |
|
1211 | 1210 | if hmax_list.any(): |
|
1212 | 1211 | hmax_index = hmax_list[-1]+1 |
|
1213 | 1212 | |
|
1214 | 1213 | x = dataOut.getTimeRange() |
|
1215 | 1214 | |
|
1216 | 1215 | thisDatetime = dataOut.datatime |
|
1217 | 1216 | |
|
1218 | 1217 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1219 | 1218 | xlabel = "Local Time" |
|
1220 | 1219 | ylabel = "Phase (degrees)" |
|
1221 | 1220 | |
|
1222 | 1221 | update_figfile = False |
|
1223 | 1222 | |
|
1224 | 1223 | nplots = len(pairsIndexList) |
|
1225 | 1224 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1226 | 1225 | for i in range(nplots): |
|
1227 | 1226 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1228 | 1227 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1229 | 1228 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1230 | 1229 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1231 | 1230 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1232 | 1231 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1233 | 1232 | |
|
1234 | 1233 | if dataOut.beacon_heiIndexList: |
|
1235 | 1234 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1236 | 1235 | else: |
|
1237 | 1236 | phase_beacon[i] = numpy.average(phase) |
|
1238 | 1237 | |
|
1239 | 1238 | if not self.isConfig: |
|
1240 | 1239 | |
|
1241 | 1240 | nplots = len(pairsIndexList) |
|
1242 | 1241 | |
|
1243 | 1242 | self.setup(id=id, |
|
1244 | 1243 | nplots=nplots, |
|
1245 | 1244 | wintitle=wintitle, |
|
1246 | 1245 | showprofile=showprofile, |
|
1247 | 1246 | show=show) |
|
1248 | 1247 | |
|
1249 | 1248 | if timerange != None: |
|
1250 | 1249 | self.timerange = timerange |
|
1251 | 1250 | |
|
1252 | 1251 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1253 | 1252 | |
|
1254 | 1253 | if ymin == None: ymin = 0 |
|
1255 | 1254 | if ymax == None: ymax = 360 |
|
1256 | 1255 | |
|
1257 | 1256 | self.FTP_WEI = ftp_wei |
|
1258 | 1257 | self.EXP_CODE = exp_code |
|
1259 | 1258 | self.SUB_EXP_CODE = sub_exp_code |
|
1260 | 1259 | self.PLOT_POS = plot_pos |
|
1261 | 1260 | |
|
1262 | 1261 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1263 | 1262 | self.isConfig = True |
|
1264 | 1263 | self.figfile = figfile |
|
1265 | 1264 | self.xdata = numpy.array([]) |
|
1266 | 1265 | self.ydata = numpy.array([]) |
|
1267 | 1266 | |
|
1268 | 1267 | update_figfile = True |
|
1269 | 1268 | |
|
1270 | 1269 | #open file beacon phase |
|
1271 | 1270 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1272 | 1271 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1273 | 1272 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1274 | 1273 | |
|
1275 | 1274 | self.setWinTitle(title) |
|
1276 | 1275 | |
|
1277 | 1276 | |
|
1278 | 1277 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1279 | 1278 | |
|
1280 | 1279 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1281 | 1280 | |
|
1282 | 1281 | axes = self.axesList[0] |
|
1283 | 1282 | |
|
1284 | 1283 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1285 | 1284 | |
|
1286 | 1285 | if len(self.ydata)==0: |
|
1287 | 1286 | self.ydata = phase_beacon.reshape(-1,1) |
|
1288 | 1287 | else: |
|
1289 | 1288 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1290 | 1289 | |
|
1291 | 1290 | |
|
1292 | 1291 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1293 | 1292 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1294 | 1293 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1295 | 1294 | XAxisAsTime=True, grid='both' |
|
1296 | 1295 | ) |
|
1297 | 1296 | |
|
1298 | 1297 | self.draw() |
|
1299 | 1298 | |
|
1300 | 1299 | if dataOut.ltctime >= self.xmax: |
|
1301 | 1300 | self.counter_imagwr = wr_period |
|
1302 | 1301 | self.isConfig = False |
|
1303 | 1302 | update_figfile = True |
|
1304 | 1303 | |
|
1305 | 1304 | self.save(figpath=figpath, |
|
1306 | 1305 | figfile=figfile, |
|
1307 | 1306 | save=save, |
|
1308 | 1307 | ftp=ftp, |
|
1309 | 1308 | wr_period=wr_period, |
|
1310 | 1309 | thisDatetime=thisDatetime, |
|
1311 | 1310 | update_figfile=update_figfile) |
|
1312 | 1311 | |
|
1313 | 1312 | return dataOut |
|
1314 | 1313 | |
|
1315 | 1314 | ##################################### |
|
1316 | 1315 | class NoiselessSpectraPlot(Plot): |
|
1317 | 1316 | ''' |
|
1318 | 1317 | Plot for Spectra data, subtracting |
|
1319 | 1318 | the noise in all channels, using for |
|
1320 | 1319 | amisr-14 data |
|
1321 | 1320 | ''' |
|
1322 | 1321 | |
|
1323 | 1322 | CODE = 'noiseless_spc' |
|
1324 | 1323 | colormap = 'jet' |
|
1325 | 1324 | plot_type = 'pcolor' |
|
1326 | 1325 | buffering = False |
|
1327 | 1326 | channelList = [] |
|
1328 | 1327 | last_noise = None |
|
1329 | 1328 | |
|
1330 | 1329 | def setup(self): |
|
1331 | 1330 | |
|
1332 | 1331 | self.nplots = len(self.data.channels) |
|
1333 | 1332 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
1334 | 1333 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
1335 | 1334 | self.height = 3.5 * self.nrows |
|
1336 | 1335 | |
|
1337 | 1336 | self.cb_label = 'dB' |
|
1338 | 1337 | if self.showprofile: |
|
1339 | 1338 | self.width = 5.8 * self.ncols |
|
1340 | 1339 | else: |
|
1341 | 1340 | self.width = 4.8* self.ncols |
|
1342 | 1341 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12}) |
|
1343 | 1342 | |
|
1344 | 1343 | self.ylabel = 'Range [km]' |
|
1345 | 1344 | |
|
1346 | 1345 | |
|
1347 | 1346 | def update_list(self,dataOut): |
|
1348 | 1347 | if len(self.channelList) == 0: |
|
1349 | 1348 | self.channelList = dataOut.channelList |
|
1350 | 1349 | |
|
1351 | 1350 | def update(self, dataOut): |
|
1352 | 1351 | |
|
1353 | 1352 | self.update_list(dataOut) |
|
1354 | 1353 | data = {} |
|
1355 | 1354 | meta = {} |
|
1356 | 1355 | |
|
1357 | 1356 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1358 | 1357 | n0 = (dataOut.getNoise()/norm) |
|
1359 | 1358 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
1360 | 1359 | noise = 10*numpy.log10(noise) |
|
1361 | 1360 | |
|
1362 | 1361 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
1363 | 1362 | for ch in range(dataOut.nChannels): |
|
1364 | 1363 | if hasattr(dataOut.normFactor,'ndim'): |
|
1365 | 1364 | if dataOut.normFactor.ndim > 1: |
|
1366 | 1365 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
1367 | 1366 | else: |
|
1368 | 1367 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
1369 | 1368 | else: |
|
1370 | 1369 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
1371 | 1370 | |
|
1372 | 1371 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1373 | 1372 | spc = 10*numpy.log10(z) |
|
1374 | 1373 | |
|
1375 | 1374 | |
|
1376 | 1375 | data['spc'] = spc - noise |
|
1377 | 1376 | #print(spc.shape) |
|
1378 | 1377 | data['rti'] = spc.mean(axis=1) |
|
1379 | 1378 | data['noise'] = noise |
|
1380 | 1379 | |
|
1381 | 1380 | |
|
1382 | 1381 | |
|
1383 | 1382 | # data['noise'] = noise |
|
1384 | 1383 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
1385 | 1384 | |
|
1386 | 1385 | return data, meta |
|
1387 | 1386 | |
|
1388 | 1387 | def plot(self): |
|
1389 | 1388 | if self.xaxis == "frequency": |
|
1390 | 1389 | x = self.data.xrange[0] |
|
1391 | 1390 | self.xlabel = "Frequency (kHz)" |
|
1392 | 1391 | elif self.xaxis == "time": |
|
1393 | 1392 | x = self.data.xrange[1] |
|
1394 | 1393 | self.xlabel = "Time (ms)" |
|
1395 | 1394 | else: |
|
1396 | 1395 | x = self.data.xrange[2] |
|
1397 | 1396 | self.xlabel = "Velocity (m/s)" |
|
1398 | 1397 | |
|
1399 | 1398 | self.titles = [] |
|
1400 | 1399 | y = self.data.yrange |
|
1401 | 1400 | self.y = y |
|
1402 | 1401 | |
|
1403 | 1402 | data = self.data[-1] |
|
1404 | 1403 | z = data['spc'] |
|
1405 | 1404 | |
|
1406 | 1405 | for n, ax in enumerate(self.axes): |
|
1407 | 1406 | #noise = data['noise'][n] |
|
1408 | 1407 | |
|
1409 | 1408 | if ax.firsttime: |
|
1410 | 1409 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1411 | 1410 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1412 | 1411 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
1413 | 1412 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
1414 | 1413 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1415 | 1414 | vmin=self.zmin, |
|
1416 | 1415 | vmax=self.zmax, |
|
1417 | 1416 | cmap=plt.get_cmap(self.colormap) |
|
1418 | 1417 | ) |
|
1419 | 1418 | |
|
1420 | 1419 | if self.showprofile: |
|
1421 | 1420 | ax.plt_profile = self.pf_axes[n].plot( |
|
1422 | 1421 | data['rti'][n], y)[0] |
|
1423 | 1422 | |
|
1424 | 1423 | |
|
1425 | 1424 | else: |
|
1426 | 1425 | ax.plt.set_array(z[n].T.ravel()) |
|
1427 | 1426 | if self.showprofile: |
|
1428 | 1427 | ax.plt_profile.set_data(data['rti'][n], y) |
|
1429 | 1428 | |
|
1430 | 1429 | |
|
1431 | 1430 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
1432 | 1431 | |
|
1433 | 1432 | |
|
1434 | 1433 | class NoiselessRTIPlot(RTIPlot): |
|
1435 | 1434 | ''' |
|
1436 | 1435 | Plot for RTI data |
|
1437 | 1436 | ''' |
|
1438 | 1437 | |
|
1439 | 1438 | CODE = 'noiseless_rti' |
|
1440 | 1439 | colormap = 'jet' |
|
1441 | 1440 | plot_type = 'pcolorbuffer' |
|
1442 | 1441 | titles = None |
|
1443 | 1442 | channelList = [] |
|
1444 | 1443 | elevationList = [] |
|
1445 | 1444 | azimuthList = [] |
|
1446 | 1445 | last_noise = None |
|
1447 | 1446 | |
|
1448 | 1447 | def setup(self): |
|
1449 | 1448 | self.xaxis = 'time' |
|
1450 | 1449 | self.ncols = 1 |
|
1451 | 1450 | #print("dataChannels ",self.data.channels) |
|
1452 | 1451 | self.nrows = len(self.data.channels) |
|
1453 | 1452 | self.nplots = len(self.data.channels) |
|
1454 | 1453 | self.ylabel = 'Range [km]' |
|
1455 | 1454 | #self.xlabel = 'Time' |
|
1456 | 1455 | self.cb_label = 'dB' |
|
1457 | 1456 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1458 | 1457 | self.titles = ['{} Channel {}'.format( |
|
1459 | 1458 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
1460 | 1459 | |
|
1461 | 1460 | def update_list(self,dataOut): |
|
1462 | 1461 | if len(self.channelList) == 0: |
|
1463 | 1462 | self.channelList = dataOut.channelList |
|
1464 | 1463 | if len(self.elevationList) == 0: |
|
1465 | 1464 | self.elevationList = dataOut.elevationList |
|
1466 | 1465 | if len(self.azimuthList) == 0: |
|
1467 | 1466 | self.azimuthList = dataOut.azimuthList |
|
1468 | 1467 | |
|
1469 | 1468 | def update(self, dataOut): |
|
1470 | 1469 | if len(self.channelList) == 0: |
|
1471 | 1470 | self.update_list(dataOut) |
|
1472 | 1471 | |
|
1473 | 1472 | data = {} |
|
1474 | 1473 | meta = {} |
|
1475 | 1474 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) |
|
1476 | 1475 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt |
|
1477 | 1476 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1478 | 1477 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1479 | 1478 | data['noise'] = n0 |
|
1480 | 1479 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1481 | 1480 | noiseless_data = dataOut.getPower() - noise |
|
1482 | 1481 | |
|
1483 | 1482 | #print("power, noise:", dataOut.getPower(), n0) |
|
1484 | 1483 | #print(noise) |
|
1485 | 1484 | #print(noiseless_data) |
|
1486 | 1485 | |
|
1487 | 1486 | data['noiseless_rti'] = noiseless_data |
|
1488 | 1487 | |
|
1489 | 1488 | return data, meta |
|
1490 | 1489 | |
|
1491 | 1490 | def plot(self): |
|
1492 | 1491 | from matplotlib import pyplot as plt |
|
1493 | 1492 | self.x = self.data.times |
|
1494 | 1493 | self.y = self.data.yrange |
|
1495 | 1494 | self.z = self.data['noiseless_rti'] |
|
1496 | 1495 | self.z = numpy.array(self.z, dtype=float) |
|
1497 | 1496 | self.z = numpy.ma.masked_invalid(self.z) |
|
1498 | 1497 | |
|
1499 | 1498 | |
|
1500 | 1499 | try: |
|
1501 | 1500 | if self.channelList != None: |
|
1502 | 1501 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1503 | 1502 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1504 | 1503 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1505 | 1504 | else: |
|
1506 | 1505 | self.titles = ['{} Channel {}'.format( |
|
1507 | 1506 | self.CODE.upper(), x) for x in self.channelList] |
|
1508 | 1507 | except: |
|
1509 | 1508 | if self.channelList.any() != None: |
|
1510 | 1509 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1511 | 1510 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1512 | 1511 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1513 | 1512 | else: |
|
1514 | 1513 | self.titles = ['{} Channel {}'.format( |
|
1515 | 1514 | self.CODE.upper(), x) for x in self.channelList] |
|
1516 | 1515 | |
|
1517 | 1516 | |
|
1518 | 1517 | if self.decimation is None: |
|
1519 | 1518 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1520 | 1519 | else: |
|
1521 | 1520 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1522 | 1521 | |
|
1523 | 1522 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
1524 | 1523 | #print("plot shapes ", z.shape, x.shape, y.shape) |
|
1525 | 1524 | #print(self.axes) |
|
1526 | 1525 | for n, ax in enumerate(self.axes): |
|
1527 | 1526 | |
|
1528 | 1527 | |
|
1529 | 1528 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
1530 | 1529 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
1531 | 1530 | data = self.data[-1] |
|
1532 | 1531 | if ax.firsttime: |
|
1533 | 1532 | if (n+1) == len(self.channelList): |
|
1534 | 1533 | ax.set_xlabel('Time') |
|
1535 | 1534 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1536 | 1535 | vmin=self.zmin, |
|
1537 | 1536 | vmax=self.zmax, |
|
1538 | 1537 | cmap=plt.get_cmap(self.colormap) |
|
1539 | 1538 | ) |
|
1540 | 1539 | if self.showprofile: |
|
1541 | 1540 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
1542 | 1541 | |
|
1543 | 1542 | else: |
|
1544 |
|
|
|
1543 | ax.collections.remove(ax.collections[0]) # error while running | |
|
1545 | 1544 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1546 | 1545 | vmin=self.zmin, |
|
1547 | 1546 | vmax=self.zmax, |
|
1548 | 1547 | cmap=plt.get_cmap(self.colormap) |
|
1549 | 1548 | ) |
|
1550 | 1549 | if self.showprofile: |
|
1551 | 1550 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
1552 | 1551 | # if "noise" in self.data: |
|
1553 | 1552 | # #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
1554 | 1553 | # ax.plot_noise.set_data(data['noise'][n], self.y) |
|
1555 | 1554 | |
|
1556 | 1555 | |
|
1557 | 1556 | class OutliersRTIPlot(Plot): |
|
1558 | 1557 | ''' |
|
1559 | 1558 | Plot for data_xxxx object |
|
1560 | 1559 | ''' |
|
1561 | 1560 | |
|
1562 | 1561 | CODE = 'outlier_rtc' # Range Time Counts |
|
1563 | 1562 | colormap = 'cool' |
|
1564 | 1563 | plot_type = 'pcolorbuffer' |
|
1565 | 1564 | |
|
1566 | 1565 | def setup(self): |
|
1567 | 1566 | self.xaxis = 'time' |
|
1568 | 1567 | self.ncols = 1 |
|
1569 | 1568 | self.nrows = self.data.shape('outlier_rtc')[0] |
|
1570 | 1569 | self.nplots = self.nrows |
|
1571 | 1570 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1572 | 1571 | |
|
1573 | 1572 | |
|
1574 | 1573 | if not self.xlabel: |
|
1575 | 1574 | self.xlabel = 'Time' |
|
1576 | 1575 | |
|
1577 | 1576 | self.ylabel = 'Height [km]' |
|
1578 | 1577 | if not self.titles: |
|
1579 | 1578 | self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)] |
|
1580 | 1579 | |
|
1581 | 1580 | def update(self, dataOut): |
|
1582 | 1581 | |
|
1583 | 1582 | data = {} |
|
1584 | 1583 | data['outlier_rtc'] = dataOut.data_outlier |
|
1585 | 1584 | |
|
1586 | 1585 | meta = {} |
|
1587 | 1586 | |
|
1588 | 1587 | return data, meta |
|
1589 | 1588 | |
|
1590 | 1589 | def plot(self): |
|
1591 | 1590 | # self.data.normalize_heights() |
|
1592 | 1591 | self.x = self.data.times |
|
1593 | 1592 | self.y = self.data.yrange |
|
1594 | 1593 | self.z = self.data['outlier_rtc'] |
|
1595 | 1594 | |
|
1596 | 1595 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1597 | 1596 | |
|
1598 | 1597 | if self.decimation is None: |
|
1599 | 1598 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1600 | 1599 | else: |
|
1601 | 1600 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1602 | 1601 | |
|
1603 | 1602 | for n, ax in enumerate(self.axes): |
|
1604 | 1603 | |
|
1605 | 1604 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1606 | 1605 | self.z[n]) |
|
1607 | 1606 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1608 | 1607 | self.z[n]) |
|
1609 | 1608 | data = self.data[-1] |
|
1610 | 1609 | if ax.firsttime: |
|
1611 | 1610 | if self.zlimits is not None: |
|
1612 | 1611 | self.zmin, self.zmax = self.zlimits[n] |
|
1613 | 1612 | |
|
1614 | 1613 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1615 | 1614 | vmin=self.zmin, |
|
1616 | 1615 | vmax=self.zmax, |
|
1617 | 1616 | cmap=self.cmaps[n] |
|
1618 | 1617 | ) |
|
1619 | 1618 | if self.showprofile: |
|
1620 | 1619 | ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0] |
|
1621 | 1620 | self.pf_axes[n].set_xlabel('') |
|
1622 | 1621 | else: |
|
1623 | 1622 | if self.zlimits is not None: |
|
1624 | 1623 | self.zmin, self.zmax = self.zlimits[n] |
|
1625 |
|
|
|
1624 | ax.collections.remove(ax.collections[0]) # error while running | |
|
1626 | 1625 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1627 | 1626 | vmin=self.zmin, |
|
1628 | 1627 | vmax=self.zmax, |
|
1629 | 1628 | cmap=self.cmaps[n] |
|
1630 | 1629 | ) |
|
1631 | 1630 | if self.showprofile: |
|
1632 | 1631 | ax.plot_profile.set_data(data['outlier_rtc'][n], self.y) |
|
1633 | 1632 | self.pf_axes[n].set_xlabel('') |
|
1634 | 1633 | |
|
1635 | 1634 | class NIncohIntRTIPlot(Plot): |
|
1636 | 1635 | ''' |
|
1637 | 1636 | Plot for data_xxxx object |
|
1638 | 1637 | ''' |
|
1639 | 1638 | |
|
1640 | 1639 | CODE = 'integrations_rtc' # Range Time Counts |
|
1641 | 1640 | colormap = 'BuGn' |
|
1642 | 1641 | plot_type = 'pcolorbuffer' |
|
1643 | 1642 | |
|
1644 | 1643 | def setup(self): |
|
1645 | 1644 | self.xaxis = 'time' |
|
1646 | 1645 | self.ncols = 1 |
|
1647 | 1646 | self.nrows = self.data.shape('integrations_rtc')[0] |
|
1648 | 1647 | self.nplots = self.nrows |
|
1649 | 1648 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1650 | 1649 | |
|
1651 | 1650 | |
|
1652 | 1651 | if not self.xlabel: |
|
1653 | 1652 | self.xlabel = 'Time' |
|
1654 | 1653 | |
|
1655 | 1654 | self.ylabel = 'Height [km]' |
|
1656 | 1655 | if not self.titles: |
|
1657 | 1656 | self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)] |
|
1658 | 1657 | |
|
1659 | 1658 | def update(self, dataOut): |
|
1660 | 1659 | |
|
1661 | 1660 | data = {} |
|
1662 | 1661 | data['integrations_rtc'] = dataOut.nIncohInt |
|
1663 | 1662 | |
|
1664 | 1663 | meta = {} |
|
1665 | 1664 | |
|
1666 | 1665 | return data, meta |
|
1667 | 1666 | |
|
1668 | 1667 | def plot(self): |
|
1669 | 1668 | # self.data.normalize_heights() |
|
1670 | 1669 | self.x = self.data.times |
|
1671 | 1670 | self.y = self.data.yrange |
|
1672 | 1671 | self.z = self.data['integrations_rtc'] |
|
1673 | 1672 | |
|
1674 | 1673 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1675 | 1674 | |
|
1676 | 1675 | if self.decimation is None: |
|
1677 | 1676 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1678 | 1677 | else: |
|
1679 | 1678 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1680 | 1679 | |
|
1681 | 1680 | for n, ax in enumerate(self.axes): |
|
1682 | 1681 | |
|
1683 | 1682 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1684 | 1683 | self.z[n]) |
|
1685 | 1684 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1686 | 1685 | self.z[n]) |
|
1687 | 1686 | data = self.data[-1] |
|
1688 | 1687 | if ax.firsttime: |
|
1689 | 1688 | if self.zlimits is not None: |
|
1690 | 1689 | self.zmin, self.zmax = self.zlimits[n] |
|
1691 | 1690 | |
|
1692 | 1691 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1693 | 1692 | vmin=self.zmin, |
|
1694 | 1693 | vmax=self.zmax, |
|
1695 | 1694 | cmap=self.cmaps[n] |
|
1696 | 1695 | ) |
|
1697 | 1696 | if self.showprofile: |
|
1698 | 1697 | ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0] |
|
1699 | 1698 | self.pf_axes[n].set_xlabel('') |
|
1700 | 1699 | else: |
|
1701 | 1700 | if self.zlimits is not None: |
|
1702 | 1701 | self.zmin, self.zmax = self.zlimits[n] |
|
1703 |
|
|
|
1702 | ax.collections.remove(ax.collections[0]) # error while running | |
|
1704 | 1703 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1705 | 1704 | vmin=self.zmin, |
|
1706 | 1705 | vmax=self.zmax, |
|
1707 | 1706 | cmap=self.cmaps[n] |
|
1708 | 1707 | ) |
|
1709 | 1708 | if self.showprofile: |
|
1710 | 1709 | ax.plot_profile.set_data(data['integrations_rtc'][n], self.y) |
|
1711 | 1710 | self.pf_axes[n].set_xlabel('') |
|
1712 | 1711 | |
|
1713 | 1712 | |
|
1714 | 1713 | |
|
1715 | 1714 | class RTIMapPlot(Plot): |
|
1716 | 1715 | ''' |
|
1717 | 1716 | Plot for RTI data |
|
1718 | 1717 | |
|
1719 | 1718 | Example: |
|
1720 | 1719 | |
|
1721 | 1720 | controllerObj = Project() |
|
1722 | 1721 | controllerObj.setup(id = '11', name='eej_proc', description=desc) |
|
1723 | 1722 | ##....................................................................................... |
|
1724 | 1723 | ##....................................................................................... |
|
1725 | 1724 | readUnitConfObj = controllerObj.addReadUnit(datatype='AMISRReader', path=inPath, startDate='2023/05/24',endDate='2023/05/24', |
|
1726 | 1725 | startTime='12:00:00',endTime='12:45:59',walk=1,timezone='lt',margin_days=1,code = code,nCode = nCode, |
|
1727 | 1726 | nBaud = nBaud,nOsamp = nosamp,nChannels=nChannels,nFFT=NFFT, |
|
1728 | 1727 | syncronization=False,shiftChannels=0) |
|
1729 | 1728 | |
|
1730 | 1729 | volts_proc = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
1731 | 1730 | |
|
1732 | 1731 | opObj01 = volts_proc.addOperation(name='Decoder', optype='other') |
|
1733 | 1732 | opObj01.addParameter(name='code', value=code, format='floatlist') |
|
1734 | 1733 | opObj01.addParameter(name='nCode', value=1, format='int') |
|
1735 | 1734 | opObj01.addParameter(name='nBaud', value=nBaud, format='int') |
|
1736 | 1735 | opObj01.addParameter(name='osamp', value=nosamp, format='int') |
|
1737 | 1736 | |
|
1738 | 1737 | opObj12 = volts_proc.addOperation(name='selectHeights', optype='self') |
|
1739 | 1738 | opObj12.addParameter(name='minHei', value='90', format='float') |
|
1740 | 1739 | opObj12.addParameter(name='maxHei', value='150', format='float') |
|
1741 | 1740 | |
|
1742 | 1741 | proc_spc = controllerObj.addProcUnit(datatype='SpectraProc', inputId=volts_proc.getId()) |
|
1743 | 1742 | proc_spc.addParameter(name='nFFTPoints', value='8', format='int') |
|
1744 | 1743 | |
|
1745 | 1744 | opObj11 = proc_spc.addOperation(name='IncohInt', optype='other') |
|
1746 | 1745 | opObj11.addParameter(name='n', value='1', format='int') |
|
1747 | 1746 | |
|
1748 | 1747 | beamMapFile = "/home/japaza/Documents/AMISR_sky_mapper/UMET_beamcodes.csv" |
|
1749 | 1748 | |
|
1750 | 1749 | opObj12 = proc_spc.addOperation(name='RTIMapPlot', optype='external') |
|
1751 | 1750 | opObj12.addParameter(name='selectedHeightsList', value='95, 100, 105, 110 ', format='int') |
|
1752 | 1751 | opObj12.addParameter(name='bField', value='100', format='int') |
|
1753 | 1752 | opObj12.addParameter(name='filename', value=beamMapFile, format='str') |
|
1754 | 1753 | |
|
1755 | 1754 | ''' |
|
1756 | 1755 | |
|
1757 | 1756 | CODE = 'rti_skymap' |
|
1758 | 1757 | |
|
1759 | 1758 | plot_type = 'scatter' |
|
1760 | 1759 | titles = None |
|
1761 | 1760 | colormap = 'jet' |
|
1762 | 1761 | channelList = [] |
|
1763 | 1762 | elevationList = [] |
|
1764 | 1763 | azimuthList = [] |
|
1765 | 1764 | last_noise = None |
|
1766 | 1765 | flag_setIndex = False |
|
1767 | 1766 | heights = [] |
|
1768 | 1767 | dcosx = [] |
|
1769 | 1768 | dcosy = [] |
|
1770 | 1769 | fullDcosy = None |
|
1771 | 1770 | fullDcosy = None |
|
1772 | 1771 | hindex = [] |
|
1773 | 1772 | mapFile = False |
|
1774 | 1773 | ##### BField #### |
|
1775 | 1774 | flagBField = False |
|
1776 | 1775 | dcosxB = [] |
|
1777 | 1776 | dcosyB = [] |
|
1778 | 1777 | Bmarker = ['+','*','D','x','s','>','o','^'] |
|
1779 | 1778 | |
|
1780 | 1779 | |
|
1781 | 1780 | def setup(self): |
|
1782 | 1781 | |
|
1783 | 1782 | self.xaxis = 'Range (Km)' |
|
1784 | 1783 | if len(self.selectedHeightsList) > 0: |
|
1785 | 1784 | self.nplots = len(self.selectedHeightsList) |
|
1786 | 1785 | else: |
|
1787 | 1786 | self.nplots = 4 |
|
1788 | 1787 | self.ncols = int(numpy.ceil(self.nplots/2)) |
|
1789 | 1788 | self.nrows = int(numpy.ceil(self.nplots/self.ncols)) |
|
1790 | 1789 | self.ylabel = 'dcosy' |
|
1791 | 1790 | self.xlabel = 'dcosx' |
|
1792 | 1791 | self.colorbar = True |
|
1793 | 1792 | self.width = 6 + 4.1*self.nrows |
|
1794 | 1793 | self.height = 3 + 3.5*self.ncols |
|
1795 | 1794 | |
|
1796 | 1795 | |
|
1797 | 1796 | if self.extFile!=None: |
|
1798 | 1797 | try: |
|
1799 | 1798 | pointings = numpy.genfromtxt(self.extFile, delimiter=',') |
|
1800 | 1799 | full_azi = pointings[:,1] |
|
1801 | 1800 | full_elev = pointings[:,2] |
|
1802 | 1801 | self.fullDcosx = numpy.cos(numpy.radians(full_elev))*numpy.sin(numpy.radians(full_azi)) |
|
1803 | 1802 | self.fullDcosy = numpy.cos(numpy.radians(full_elev))*numpy.cos(numpy.radians(full_azi)) |
|
1804 | 1803 | mapFile = True |
|
1805 | 1804 | except Exception as e: |
|
1806 | 1805 | self.extFile = None |
|
1807 | 1806 | print(e) |
|
1808 | 1807 | |
|
1809 | 1808 | |
|
1810 | 1809 | def update_list(self,dataOut): |
|
1811 | 1810 | if len(self.channelList) == 0: |
|
1812 | 1811 | self.channelList = dataOut.channelList |
|
1813 | 1812 | if len(self.elevationList) == 0: |
|
1814 | 1813 | self.elevationList = dataOut.elevationList |
|
1815 | 1814 | if len(self.azimuthList) == 0: |
|
1816 | 1815 | self.azimuthList = dataOut.azimuthList |
|
1817 | 1816 | a = numpy.radians(numpy.asarray(self.azimuthList)) |
|
1818 | 1817 | e = numpy.radians(numpy.asarray(self.elevationList)) |
|
1819 | 1818 | self.heights = dataOut.heightList |
|
1820 | 1819 | self.dcosx = numpy.cos(e)*numpy.sin(a) |
|
1821 | 1820 | self.dcosy = numpy.cos(e)*numpy.cos(a) |
|
1822 | 1821 | |
|
1823 | 1822 | if len(self.bFieldList)>0: |
|
1824 | 1823 | datetObj = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
1825 | 1824 | doy = datetObj.timetuple().tm_yday |
|
1826 | 1825 | year = datetObj.year |
|
1827 | 1826 | # self.dcosxB, self.dcosyB |
|
1828 | 1827 | ObjB = BField(year=year,doy=doy,site=2,heights=self.bFieldList) |
|
1829 | 1828 | [dcos, alpha, nlon, nlat] = ObjB.getBField() |
|
1830 | 1829 | |
|
1831 | 1830 | alpha_location = numpy.zeros((nlon,2,len(self.bFieldList))) |
|
1832 | 1831 | for ih in range(len(self.bFieldList)): |
|
1833 | 1832 | alpha_location[:,0,ih] = dcos[:,0,ih,0] |
|
1834 | 1833 | for ilon in numpy.arange(nlon): |
|
1835 | 1834 | myx = (alpha[ilon,:,ih])[::-1] |
|
1836 | 1835 | myy = (dcos[ilon,:,ih,0])[::-1] |
|
1837 | 1836 | tck = splrep(myx,myy,s=0) |
|
1838 | 1837 | mydcosx = splev(ObjB.alpha_i,tck,der=0) |
|
1839 | 1838 | |
|
1840 | 1839 | myx = (alpha[ilon,:,ih])[::-1] |
|
1841 | 1840 | myy = (dcos[ilon,:,ih,1])[::-1] |
|
1842 | 1841 | tck = splrep(myx,myy,s=0) |
|
1843 | 1842 | mydcosy = splev(ObjB.alpha_i,tck,der=0) |
|
1844 | 1843 | alpha_location[ilon,:,ih] = numpy.array([mydcosx, mydcosy]) |
|
1845 | 1844 | self.dcosxB.append(alpha_location[:,0,ih]) |
|
1846 | 1845 | self.dcosyB.append(alpha_location[:,1,ih]) |
|
1847 | 1846 | self.flagBField = True |
|
1848 | 1847 | |
|
1849 | 1848 | if len(self.celestialList)>0: |
|
1850 | 1849 | #getBField(self.bFieldList, date) |
|
1851 | 1850 | #pass = kwargs.get('celestial', []) |
|
1852 | 1851 | pass |
|
1853 | 1852 | |
|
1854 | 1853 | |
|
1855 | 1854 | def update(self, dataOut): |
|
1856 | 1855 | |
|
1857 | 1856 | if len(self.channelList) == 0: |
|
1858 | 1857 | self.update_list(dataOut) |
|
1859 | 1858 | |
|
1860 | 1859 | if not self.flag_setIndex: |
|
1861 | 1860 | if len(self.selectedHeightsList)>0: |
|
1862 | 1861 | for sel_height in self.selectedHeightsList: |
|
1863 | 1862 | index_list = numpy.where(self.heights >= sel_height) |
|
1864 | 1863 | index_list = index_list[0] |
|
1865 | 1864 | self.hindex.append(index_list[0]) |
|
1866 | 1865 | self.flag_setIndex = True |
|
1867 | 1866 | |
|
1868 | 1867 | data = {} |
|
1869 | 1868 | meta = {} |
|
1870 | 1869 | |
|
1871 | 1870 | data['rti_skymap'] = dataOut.getPower() |
|
1872 | 1871 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1873 | 1872 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1874 | 1873 | data['noise'] = noise |
|
1875 | 1874 | |
|
1876 | 1875 | return data, meta |
|
1877 | 1876 | |
|
1878 | 1877 | def plot(self): |
|
1879 | 1878 | |
|
1880 | 1879 | self.x = self.dcosx |
|
1881 | 1880 | self.y = self.dcosy |
|
1882 | 1881 | self.z = self.data[-1]['rti_skymap'] |
|
1883 | 1882 | self.z = numpy.array(self.z, dtype=float) |
|
1884 | 1883 | |
|
1885 | 1884 | if len(self.hindex) > 0: |
|
1886 | 1885 | index = self.hindex |
|
1887 | 1886 | else: |
|
1888 | 1887 | index = numpy.arange(0, len(self.heights), int((len(self.heights))/4.2)) |
|
1889 | 1888 | |
|
1890 | 1889 | self.titles = ['Height {:.2f} km '.format(self.heights[i])+" " for i in index] |
|
1891 | 1890 | for n, ax in enumerate(self.axes): |
|
1892 | 1891 | |
|
1893 | 1892 | if ax.firsttime: |
|
1894 | 1893 | |
|
1895 | 1894 | self.xmax = self.xmax if self.xmax else numpy.nanmax(self.x) |
|
1896 | 1895 | self.xmin = self.xmin if self.xmin else numpy.nanmin(self.x) |
|
1897 | 1896 | self.ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
1898 | 1897 | self.ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
1899 | 1898 | self.zmax = self.zmax if self.zmax else numpy.nanmax(self.z) |
|
1900 | 1899 | self.zmin = self.zmin if self.zmin else numpy.nanmin(self.z) |
|
1901 | 1900 | |
|
1902 | 1901 | if self.extFile!=None: |
|
1903 | 1902 | ax.scatter(self.fullDcosx, self.fullDcosy, marker="+", s=20) |
|
1904 | 1903 | |
|
1905 | 1904 | ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin, |
|
1906 | 1905 | s=60, marker="s", vmax = self.zmax) |
|
1907 | 1906 | |
|
1908 | 1907 | |
|
1909 | 1908 | ax.minorticks_on() |
|
1910 | 1909 | ax.grid(which='major', axis='both') |
|
1911 | 1910 | ax.grid(which='minor', axis='x') |
|
1912 | 1911 | |
|
1913 | 1912 | if self.flagBField : |
|
1914 | 1913 | |
|
1915 | 1914 | for ih in range(len(self.bFieldList)): |
|
1916 | 1915 | label = str(self.bFieldList[ih]) + ' km' |
|
1917 | 1916 | ax.plot(self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8], |
|
1918 | 1917 | label=label, linestyle='--', ms=4.0,lw=0.5) |
|
1919 | 1918 | handles, labels = ax.get_legend_handles_labels() |
|
1920 | 1919 | a = -0.05 |
|
1921 | 1920 | b = 1.15 - 1.19*(self.nrows) |
|
1922 | 1921 | self.axes[0].legend(handles,labels, bbox_to_anchor=(a,b), prop={'size': (5.8+ 1.1*self.nplots)}, title='B Field β₯') |
|
1923 | 1922 | |
|
1924 | 1923 | else: |
|
1925 | 1924 | |
|
1926 | 1925 | ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin, |
|
1927 | 1926 | s=80, marker="s", vmax = self.zmax) |
|
1928 | 1927 | |
|
1929 | 1928 | if self.flagBField : |
|
1930 | 1929 | for ih in range(len(self.bFieldList)): |
|
1931 | 1930 | ax.plot (self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8], |
|
1932 | 1931 | linestyle='--', ms=4.0,lw=0.5) |
|
1933 | 1932 | |
|
1934 | 1933 | |
|
1935 | 1934 |
@@ -1,819 +1,820 | |||
|
1 | 1 | import os |
|
2 | 2 | import time |
|
3 | 3 | import datetime |
|
4 | 4 | |
|
5 | 5 | import numpy |
|
6 | 6 | import h5py |
|
7 | 7 | |
|
8 | 8 | import schainpy.admin |
|
9 | 9 | from schainpy.model.data.jrodata import * |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class HDFReader(Reader, ProcessingUnit): |
|
16 | 16 | """Processing unit to read HDF5 format files |
|
17 | 17 | |
|
18 | 18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
19 | 19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
20 | 20 | attributes. |
|
21 | 21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
22 | 22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
23 | 23 | |
|
24 | 24 | Parameters: |
|
25 | 25 | ----------- |
|
26 | 26 | path : str |
|
27 | 27 | Path where files are located. |
|
28 | 28 | startDate : date |
|
29 | 29 | Start date of the files |
|
30 | 30 | endDate : list |
|
31 | 31 | End date of the files |
|
32 | 32 | startTime : time |
|
33 | 33 | Start time of the files |
|
34 | 34 | endTime : time |
|
35 | 35 | End time of the files |
|
36 | 36 | description : dict, optional |
|
37 | 37 | Dictionary with the description of the HDF5 file |
|
38 | 38 | extras : dict, optional |
|
39 | 39 | Dictionary with extra metadata to be be added to `dataOut` |
|
40 | 40 | |
|
41 | 41 | Attention: Be carefull, add attribute utcoffset, in the last part of reader in order to work in Local Time without time problems. |
|
42 | 42 | |
|
43 | 43 | ----------- |
|
44 | 44 | utcoffset='-18000' |
|
45 | 45 | |
|
46 | 46 | |
|
47 | 47 | Examples |
|
48 | 48 | -------- |
|
49 | 49 | |
|
50 | 50 | desc = { |
|
51 | 51 | 'Data': { |
|
52 | 52 | 'data_output': ['u', 'v', 'w'], |
|
53 | 53 | 'utctime': 'timestamps', |
|
54 | 54 | } , |
|
55 | 55 | 'Metadata': { |
|
56 | 56 | 'heightList': 'heights' |
|
57 | 57 | } |
|
58 | 58 | } |
|
59 | 59 | |
|
60 | 60 | desc = { |
|
61 | 61 | 'Data': { |
|
62 | 62 | 'data_output': 'winds', |
|
63 | 63 | 'utctime': 'timestamps' |
|
64 | 64 | }, |
|
65 | 65 | 'Metadata': { |
|
66 | 66 | 'heightList': 'heights' |
|
67 | 67 | } |
|
68 | 68 | } |
|
69 | 69 | |
|
70 | 70 | extras = { |
|
71 | 71 | 'timeZone': 300 |
|
72 | 72 | } |
|
73 | 73 | |
|
74 | 74 | reader = project.addReadUnit( |
|
75 | 75 | name='HDFReader', |
|
76 | 76 | path='/path/to/files', |
|
77 | 77 | startDate='2019/01/01', |
|
78 | 78 | endDate='2019/01/31', |
|
79 | 79 | startTime='00:00:00', |
|
80 | 80 | endTime='23:59:59', |
|
81 | 81 | utcoffset='-18000' |
|
82 | 82 | # description=json.dumps(desc), |
|
83 | 83 | # extras=json.dumps(extras), |
|
84 | 84 | ) |
|
85 | 85 | |
|
86 | 86 | """ |
|
87 | 87 | |
|
88 | 88 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
89 | 89 | |
|
90 | 90 | def __init__(self): |
|
91 | 91 | |
|
92 | 92 | ProcessingUnit.__init__(self) |
|
93 | 93 | self.ext = ".hdf5" |
|
94 | 94 | self.optchar = "D" |
|
95 | 95 | self.meta = {} |
|
96 | 96 | self.data = {} |
|
97 | 97 | self.open_file = h5py.File |
|
98 | 98 | self.open_mode = 'r' |
|
99 | 99 | self.description = {} |
|
100 | 100 | self.extras = {} |
|
101 | 101 | self.filefmt = "*%Y%j***" |
|
102 | 102 | self.folderfmt = "*%Y%j" |
|
103 | 103 | self.utcoffset = 0 |
|
104 | 104 | self.flagUpdateDataOut = False |
|
105 | 105 | self.dataOut = Parameters() |
|
106 | 106 | self.dataOut.error=False ## NOTE: Importante definir esto antes inicio |
|
107 | 107 | self.dataOut.flagNoData = True |
|
108 | 108 | |
|
109 | 109 | def setup(self, **kwargs): |
|
110 | 110 | |
|
111 | 111 | self.set_kwargs(**kwargs) |
|
112 | 112 | if not self.ext.startswith('.'): |
|
113 | 113 | self.ext = '.{}'.format(self.ext) |
|
114 | 114 | |
|
115 | 115 | if self.online: |
|
116 | 116 | log.log("Searching files in online mode...", self.name) |
|
117 | 117 | |
|
118 | 118 | for nTries in range(self.nTries): |
|
119 | 119 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
120 | 120 | self.endDate, self.expLabel, self.ext, self.walk, |
|
121 | 121 | self.filefmt, self.folderfmt) |
|
122 | 122 | pathname, filename = os.path.split(fullpath) |
|
123 | 123 | try: |
|
124 | 124 | fullpath = next(fullpath) |
|
125 | 125 | except: |
|
126 | 126 | fullpath = None |
|
127 | 127 | |
|
128 | 128 | if fullpath: |
|
129 | 129 | break |
|
130 | 130 | |
|
131 | 131 | log.warning( |
|
132 | 132 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
133 | 133 | self.delay, self.path, nTries + 1), |
|
134 | 134 | self.name) |
|
135 | 135 | time.sleep(self.delay) |
|
136 | 136 | |
|
137 | 137 | if not(fullpath): |
|
138 | 138 | raise schainpy.admin.SchainError( |
|
139 | 139 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
140 | 140 | |
|
141 | 141 | pathname, filename = os.path.split(fullpath) |
|
142 | 142 | self.year = int(filename[1:5]) |
|
143 | 143 | self.doy = int(filename[5:8]) |
|
144 | 144 | self.set = int(filename[8:11]) - 1 |
|
145 | 145 | else: |
|
146 | 146 | log.log("Searching files in {}".format(self.path), self.name) |
|
147 | 147 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
148 | 148 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
149 | 149 | |
|
150 | 150 | self.setNextFile() |
|
151 | 151 | |
|
152 | 152 | return |
|
153 | 153 | |
|
154 | 154 | # def readFirstHeader(self): |
|
155 | 155 | # '''Read metadata and data''' |
|
156 | 156 | |
|
157 | 157 | # self.__readMetadata() |
|
158 | 158 | # self.__readData() |
|
159 | 159 | # self.__setBlockList() |
|
160 | 160 | |
|
161 | 161 | # if 'type' in self.meta: |
|
162 | 162 | # self.dataOut = eval(self.meta['type'])() |
|
163 | 163 | |
|
164 | 164 | # for attr in self.meta: |
|
165 | 165 | # setattr(self.dataOut, attr, self.meta[attr]) |
|
166 | 166 | |
|
167 | 167 | # self.blockIndex = 0 |
|
168 | 168 | |
|
169 | 169 | # return |
|
170 | 170 | |
|
171 | 171 | def readFirstHeader(self): |
|
172 | 172 | '''Read metadata and data''' |
|
173 | 173 | |
|
174 | 174 | self.__readMetadata2() |
|
175 | 175 | self.__readData() |
|
176 | 176 | self.__setBlockList() |
|
177 | if 'type' in self.meta: | |
|
178 | self.dataOut = eval(self.meta['type'])() | |
|
177 | # if 'type' in self.meta: | |
|
178 | # self.dataOut = eval(self.meta['type'])() | |
|
179 | 179 | |
|
180 | 180 | for attr in self.meta: |
|
181 | 181 | if "processingHeaderObj" in attr: |
|
182 | 182 | self.flagUpdateDataOut=True |
|
183 | 183 | at = attr.split('.') |
|
184 | 184 | if len(at) > 1: |
|
185 | 185 | setattr(eval("self.dataOut."+at[0]),at[1], self.meta[attr]) |
|
186 | 186 | else: |
|
187 | 187 | setattr(self.dataOut, attr, self.meta[attr]) |
|
188 | 188 | self.blockIndex = 0 |
|
189 | 189 | |
|
190 | 190 | if self.flagUpdateDataOut: |
|
191 | 191 | self.updateDataOut() |
|
192 | 192 | |
|
193 | 193 | return |
|
194 | 194 | |
|
195 | 195 | def updateDataOut(self): |
|
196 | 196 | |
|
197 | 197 | self.dataOut.azimuthList = self.dataOut.processingHeaderObj.azimuthList |
|
198 | 198 | self.dataOut.elevationList = self.dataOut.processingHeaderObj.elevationList |
|
199 | 199 | self.dataOut.heightList = self.dataOut.processingHeaderObj.heightList |
|
200 | 200 | self.dataOut.ippSeconds = self.dataOut.processingHeaderObj.ipp |
|
201 | 201 | self.dataOut.elevationList = self.dataOut.processingHeaderObj.elevationList |
|
202 | 202 | self.dataOut.channelList = self.dataOut.processingHeaderObj.channelList |
|
203 | 203 | self.dataOut.nCohInt = self.dataOut.processingHeaderObj.nCohInt |
|
204 | 204 | self.dataOut.nFFTPoints = self.dataOut.processingHeaderObj.nFFTPoints |
|
205 | 205 | self.flagUpdateDataOut = False |
|
206 | 206 | self.dataOut.frequency = self.dataOut.radarControllerHeaderObj.frequency |
|
207 | 207 | #self.dataOut.heightList = self.dataOut.processingHeaderObj.heightList |
|
208 | 208 | |
|
209 | 209 | def __setBlockList(self): |
|
210 | 210 | ''' |
|
211 | 211 | Selects the data within the times defined |
|
212 | 212 | |
|
213 | 213 | self.fp |
|
214 | 214 | self.startTime |
|
215 | 215 | self.endTime |
|
216 | 216 | self.blockList |
|
217 | 217 | self.blocksPerFile |
|
218 | 218 | |
|
219 | 219 | ''' |
|
220 | 220 | |
|
221 | 221 | startTime = self.startTime |
|
222 | 222 | endTime = self.endTime |
|
223 | 223 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
224 | 224 | # self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
225 | 225 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
226 | 226 | self.startFileDatetime = thisDatetime |
|
227 | 227 | thisDate = thisDatetime.date() |
|
228 | 228 | thisTime = thisDatetime.time() |
|
229 | 229 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
230 | 230 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
231 | 231 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
232 | 232 | |
|
233 | 233 | self.blockList = ind |
|
234 | 234 | self.blocksPerFile = len(ind) |
|
235 | 235 | # self.blocksPerFile = len(thisUtcTime) |
|
236 | 236 | if len(ind)==0: |
|
237 | 237 | print("[Reading] Block No. %d/%d -> %s [Skipping]" % (self.blockIndex, |
|
238 | 238 | self.blocksPerFile, |
|
239 | 239 | thisDatetime)) |
|
240 | 240 | self.setNextFile() |
|
241 | 241 | |
|
242 | 242 | return |
|
243 | 243 | |
|
244 | 244 | def __readMetadata(self): |
|
245 | 245 | ''' |
|
246 | 246 | Reads Metadata |
|
247 | 247 | ''' |
|
248 | 248 | |
|
249 | 249 | meta = {} |
|
250 | 250 | |
|
251 | 251 | if self.description: |
|
252 | 252 | for key, value in self.description['Metadata'].items(): |
|
253 | 253 | meta[key] = self.fp[value][()] |
|
254 | 254 | else: |
|
255 | 255 | grp = self.fp['Metadata'] |
|
256 | 256 | for name in grp: |
|
257 | 257 | meta[name] = grp[name][()] |
|
258 | 258 | |
|
259 | 259 | if self.extras: |
|
260 | 260 | for key, value in self.extras.items(): |
|
261 | 261 | meta[key] = value |
|
262 | 262 | self.meta = meta |
|
263 | 263 | |
|
264 | 264 | return |
|
265 | 265 | |
|
266 | 266 | def __readMetadata2(self): |
|
267 | 267 | ''' |
|
268 | 268 | Reads Metadata |
|
269 | 269 | ''' |
|
270 | 270 | meta = {} |
|
271 | ||
|
271 | 272 | if self.description: |
|
272 | 273 | for key, value in self.description['Metadata'].items(): |
|
273 | 274 | meta[key] = self.fp[value][()] |
|
274 | 275 | else: |
|
275 | 276 | grp = self.fp['Metadata'] |
|
276 | 277 | for item in grp.values(): |
|
277 | 278 | name = item.name |
|
278 | 279 | if isinstance(item, h5py.Dataset): |
|
279 | 280 | name = name.split("/")[-1] |
|
280 | 281 | meta[name] = item[()] |
|
281 | 282 | else: |
|
282 | 283 | grp2 = self.fp[name] |
|
283 | 284 | Obj = name.split("/")[-1] |
|
284 | 285 | |
|
285 | 286 | for item2 in grp2.values(): |
|
286 | 287 | name2 = Obj+"."+item2.name.split("/")[-1] |
|
287 | 288 | meta[name2] = item2[()] |
|
288 | 289 | |
|
289 | 290 | if self.extras: |
|
290 | 291 | for key, value in self.extras.items(): |
|
291 | 292 | meta[key] = value |
|
292 | 293 | self.meta = meta |
|
293 | 294 | |
|
294 | 295 | return |
|
295 | 296 | |
|
296 | 297 | def __readData(self): |
|
297 | 298 | |
|
298 | 299 | data = {} |
|
299 | 300 | |
|
300 | 301 | if self.description: |
|
301 | 302 | for key, value in self.description['Data'].items(): |
|
302 | 303 | if isinstance(value, str): |
|
303 | 304 | if isinstance(self.fp[value], h5py.Dataset): |
|
304 | 305 | data[key] = self.fp[value][()] |
|
305 | 306 | elif isinstance(self.fp[value], h5py.Group): |
|
306 | 307 | array = [] |
|
307 | 308 | for ch in self.fp[value]: |
|
308 | 309 | array.append(self.fp[value][ch][()]) |
|
309 | 310 | data[key] = numpy.array(array) |
|
310 | 311 | elif isinstance(value, list): |
|
311 | 312 | array = [] |
|
312 | 313 | for ch in value: |
|
313 | 314 | array.append(self.fp[ch][()]) |
|
314 | 315 | data[key] = numpy.array(array) |
|
315 | 316 | else: |
|
316 | 317 | grp = self.fp['Data'] |
|
317 | 318 | for name in grp: |
|
318 | 319 | if isinstance(grp[name], h5py.Dataset): |
|
319 | 320 | array = grp[name][()] |
|
320 | 321 | elif isinstance(grp[name], h5py.Group): |
|
321 | 322 | array = [] |
|
322 | 323 | for ch in grp[name]: |
|
323 | 324 | array.append(grp[name][ch][()]) |
|
324 | 325 | array = numpy.array(array) |
|
325 | 326 | else: |
|
326 | 327 | log.warning('Unknown type: {}'.format(name)) |
|
327 | 328 | |
|
328 | 329 | if name in self.description: |
|
329 | 330 | key = self.description[name] |
|
330 | 331 | else: |
|
331 | 332 | key = name |
|
332 | 333 | data[key] = array |
|
333 | 334 | |
|
334 | 335 | self.data = data |
|
335 | 336 | return |
|
336 | 337 | |
|
337 | 338 | def getData(self): |
|
338 | 339 | |
|
339 | 340 | if not self.isDateTimeInRange(self.startFileDatetime, self.startDate, self.endDate, self.startTime, self.endTime): |
|
340 | 341 | self.dataOut.flagNoData = True |
|
341 | 342 | self.blockIndex = self.blocksPerFile |
|
342 | 343 | self.dataOut.error = True # TERMINA EL PROGRAMA |
|
343 | 344 | return |
|
344 | 345 | for attr in self.data: |
|
345 | 346 | |
|
346 | 347 | if self.data[attr].ndim == 1: |
|
347 | 348 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
348 | 349 | else: |
|
349 | 350 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
350 | 351 | |
|
351 | 352 | |
|
352 | 353 | self.blockIndex += 1 |
|
353 | 354 | |
|
354 | 355 | if self.blockIndex == 1: |
|
355 | 356 | log.log("Block No. {}/{} -> {}".format( |
|
356 | 357 | self.blockIndex, |
|
357 | 358 | self.blocksPerFile, |
|
358 | 359 | self.dataOut.datatime.ctime()), self.name) |
|
359 | 360 | else: |
|
360 | 361 | log.log("Block No. {}/{} ".format( |
|
361 | 362 | self.blockIndex, |
|
362 | 363 | self.blocksPerFile),self.name) |
|
363 | 364 | |
|
364 | 365 | if self.blockIndex == self.blocksPerFile: |
|
365 | 366 | self.setNextFile() |
|
366 | 367 | |
|
367 | 368 | self.dataOut.flagNoData = False |
|
368 | 369 | |
|
369 | 370 | return |
|
370 | 371 | |
|
371 | 372 | def run(self, **kwargs): |
|
372 | 373 | |
|
373 | 374 | if not(self.isConfig): |
|
374 | 375 | self.setup(**kwargs) |
|
375 | 376 | self.isConfig = True |
|
376 | 377 | |
|
377 | 378 | if self.blockIndex == self.blocksPerFile: |
|
378 | 379 | self.setNextFile() |
|
379 | 380 | |
|
380 | 381 | self.getData() |
|
381 | 382 | |
|
382 | 383 | return |
|
383 | 384 | |
|
384 | 385 | @MPDecorator |
|
385 | 386 | class HDFWriter(Operation): |
|
386 | 387 | """Operation to write HDF5 files. |
|
387 | 388 | |
|
388 | 389 | The HDF5 file contains by default two groups Data and Metadata where |
|
389 | 390 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
390 | 391 | parameters, data attributes are normaly time dependent where the metadata |
|
391 | 392 | are not. |
|
392 | 393 | It is possible to customize the structure of the HDF5 file with the |
|
393 | 394 | optional description parameter see the examples. |
|
394 | 395 | |
|
395 | 396 | Parameters: |
|
396 | 397 | ----------- |
|
397 | 398 | path : str |
|
398 | 399 | Path where files will be saved. |
|
399 | 400 | blocksPerFile : int |
|
400 | 401 | Number of blocks per file |
|
401 | 402 | metadataList : list |
|
402 | 403 | List of the dataOut attributes that will be saved as metadata |
|
403 | 404 | dataList : int |
|
404 | 405 | List of the dataOut attributes that will be saved as data |
|
405 | 406 | setType : bool |
|
406 | 407 | If True the name of the files corresponds to the timestamp of the data |
|
407 | 408 | description : dict, optional |
|
408 | 409 | Dictionary with the desired description of the HDF5 file |
|
409 | 410 | |
|
410 | 411 | Examples |
|
411 | 412 | -------- |
|
412 | 413 | |
|
413 | 414 | desc = { |
|
414 | 415 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
415 | 416 | 'utctime': 'timestamps', |
|
416 | 417 | 'heightList': 'heights' |
|
417 | 418 | } |
|
418 | 419 | desc = { |
|
419 | 420 | 'data_output': ['z', 'w', 'v'], |
|
420 | 421 | 'utctime': 'timestamps', |
|
421 | 422 | 'heightList': 'heights' |
|
422 | 423 | } |
|
423 | 424 | desc = { |
|
424 | 425 | 'Data': { |
|
425 | 426 | 'data_output': 'winds', |
|
426 | 427 | 'utctime': 'timestamps' |
|
427 | 428 | }, |
|
428 | 429 | 'Metadata': { |
|
429 | 430 | 'heightList': 'heights' |
|
430 | 431 | } |
|
431 | 432 | } |
|
432 | 433 | |
|
433 | 434 | writer = proc_unit.addOperation(name='HDFWriter') |
|
434 | 435 | writer.addParameter(name='path', value='/path/to/file') |
|
435 | 436 | writer.addParameter(name='blocksPerFile', value='32') |
|
436 | 437 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
437 | 438 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
438 | 439 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
439 | 440 | |
|
440 | 441 | """ |
|
441 | 442 | |
|
442 | 443 | ext = ".hdf5" |
|
443 | 444 | optchar = "D" |
|
444 | 445 | filename = None |
|
445 | 446 | path = None |
|
446 | 447 | setFile = None |
|
447 | 448 | fp = None |
|
448 | 449 | ds = None |
|
449 | 450 | firsttime = True |
|
450 | 451 | #Configurations |
|
451 | 452 | blocksPerFile = None |
|
452 | 453 | blockIndex = None |
|
453 | 454 | dataOut = None #eval ?????? |
|
454 | 455 | #Data Arrays |
|
455 | 456 | dataList = None |
|
456 | 457 | metadataList = None |
|
457 | 458 | currentDay = None |
|
458 | 459 | lastTime = None |
|
459 | 460 | timeZone = "ut" |
|
460 | 461 | hourLimit = 3 |
|
461 | 462 | breakDays = True |
|
462 | 463 | |
|
463 | 464 | def __init__(self): |
|
464 | 465 | |
|
465 | 466 | Operation.__init__(self) |
|
466 | 467 | return |
|
467 | 468 | |
|
468 | 469 | def set_kwargs(self, **kwargs): |
|
469 | 470 | |
|
470 | 471 | for key, value in kwargs.items(): |
|
471 | 472 | setattr(self, key, value) |
|
472 | 473 | |
|
473 | 474 | def set_kwargs_obj(self, obj, **kwargs): |
|
474 | 475 | |
|
475 | 476 | for key, value in kwargs.items(): |
|
476 | 477 | setattr(obj, key, value) |
|
477 | 478 | |
|
478 | 479 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, |
|
479 | 480 | description={},timeZone = "ut",hourLimit = 3, breakDays=True, **kwargs): |
|
480 | 481 | self.path = path |
|
481 | 482 | self.blocksPerFile = blocksPerFile |
|
482 | 483 | self.metadataList = metadataList |
|
483 | 484 | self.dataList = [s.strip() for s in dataList] |
|
484 | 485 | self.setType = setType |
|
485 | 486 | self.description = description |
|
486 | 487 | self.timeZone = timeZone |
|
487 | 488 | self.hourLimit = hourLimit |
|
488 | 489 | self.breakDays = breakDays |
|
489 | 490 | self.set_kwargs(**kwargs) |
|
490 | 491 | |
|
491 | 492 | if self.metadataList is None: |
|
492 | 493 | self.metadataList = self.dataOut.metadata_list |
|
493 | 494 | |
|
494 | 495 | self.metadataList = list(set(self.metadataList)) |
|
495 | 496 | |
|
496 | 497 | tableList = [] |
|
497 | 498 | dsList = [] |
|
498 | 499 | |
|
499 | 500 | for i in range(len(self.dataList)): |
|
500 | 501 | dsDict = {} |
|
501 | 502 | if hasattr(self.dataOut, self.dataList[i]): |
|
502 | 503 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
503 | 504 | dsDict['variable'] = self.dataList[i] |
|
504 | 505 | else: |
|
505 | 506 | log.warning('Attribute {} not found in dataOut'.format(self.dataList[i]),self.name) |
|
506 | 507 | continue |
|
507 | 508 | |
|
508 | 509 | if dataAux is None: |
|
509 | 510 | continue |
|
510 | 511 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float_)): |
|
511 | 512 | dsDict['nDim'] = 0 |
|
512 | 513 | else: |
|
513 | 514 | dsDict['nDim'] = len(dataAux.shape) |
|
514 | 515 | dsDict['shape'] = dataAux.shape |
|
515 | 516 | dsDict['dsNumber'] = dataAux.shape[0] |
|
516 | 517 | dsDict['dtype'] = dataAux.dtype |
|
517 | 518 | |
|
518 | 519 | dsList.append(dsDict) |
|
519 | 520 | |
|
520 | 521 | self.blockIndex = 0 |
|
521 | 522 | self.dsList = dsList |
|
522 | 523 | self.currentDay = self.dataOut.datatime.date() |
|
523 | 524 | |
|
524 | 525 | def timeFlag(self): |
|
525 | 526 | currentTime = self.dataOut.utctime |
|
526 | 527 | timeTuple = None |
|
527 | 528 | if self.timeZone == "lt": |
|
528 | 529 | timeTuple = time.localtime(currentTime) |
|
529 | 530 | else : |
|
530 | 531 | timeTuple = time.gmtime(currentTime) |
|
531 | 532 | dataDay = timeTuple.tm_yday |
|
532 | 533 | |
|
533 | 534 | if self.lastTime is None: |
|
534 | 535 | self.lastTime = currentTime |
|
535 | 536 | self.currentDay = dataDay |
|
536 | 537 | return False |
|
537 | 538 | |
|
538 | 539 | timeDiff = currentTime - self.lastTime |
|
539 | 540 | |
|
540 | 541 | # Si el dia es diferente o si la diferencia entre un |
|
541 | 542 | # dato y otro supera self.hourLimit |
|
542 | 543 | if (dataDay != self.currentDay) and self.breakDays: |
|
543 | 544 | self.currentDay = dataDay |
|
544 | 545 | return True |
|
545 | 546 | elif timeDiff > self.hourLimit*60*60: |
|
546 | 547 | self.lastTime = currentTime |
|
547 | 548 | return True |
|
548 | 549 | else: |
|
549 | 550 | self.lastTime = currentTime |
|
550 | 551 | return False |
|
551 | 552 | |
|
552 | 553 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
553 | 554 | dataList=[], setType=None, description={}, **kwargs): |
|
554 | 555 | |
|
555 | 556 | self.dataOut = dataOut |
|
556 | 557 | self.set_kwargs_obj(self.dataOut, **kwargs) |
|
557 | 558 | if not(self.isConfig): |
|
558 | 559 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
559 | 560 | metadataList=metadataList, dataList=dataList, |
|
560 | 561 | setType=setType, description=description, **kwargs) |
|
561 | 562 | |
|
562 | 563 | self.isConfig = True |
|
563 | 564 | self.setNextFile() |
|
564 | 565 | |
|
565 | 566 | self.putData() |
|
566 | 567 | return |
|
567 | 568 | |
|
568 | 569 | def setNextFile(self): |
|
569 | 570 | |
|
570 | 571 | ext = self.ext |
|
571 | 572 | path = self.path |
|
572 | 573 | setFile = self.setFile |
|
573 | 574 | timeTuple = None |
|
574 | 575 | if self.timeZone == "lt": |
|
575 | 576 | timeTuple = time.localtime(self.dataOut.utctime) |
|
576 | 577 | elif self.timeZone == "ut": |
|
577 | 578 | timeTuple = time.gmtime(self.dataOut.utctime) |
|
578 | 579 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
579 | 580 | fullpath = os.path.join(path, subfolder) |
|
580 | 581 | |
|
581 | 582 | if os.path.exists(fullpath): |
|
582 | 583 | filesList = os.listdir(fullpath) |
|
583 | 584 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
584 | 585 | if len(filesList) > 0: |
|
585 | 586 | filesList = sorted(filesList, key=str.lower) |
|
586 | 587 | filen = filesList[-1] |
|
587 | 588 | # el filename debera tener el siguiente formato |
|
588 | 589 | # 0 1234 567 89A BCDE (hex) |
|
589 | 590 | # x YYYY DDD SSS .ext |
|
590 | 591 | if isNumber(filen[8:11]): |
|
591 | 592 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
592 | 593 | else: |
|
593 | 594 | setFile = -1 |
|
594 | 595 | else: |
|
595 | 596 | setFile = -1 #inicializo mi contador de seteo |
|
596 | 597 | else: |
|
597 | 598 | os.makedirs(fullpath) |
|
598 | 599 | setFile = -1 #inicializo mi contador de seteo |
|
599 | 600 | |
|
600 | 601 | if self.setType is None: |
|
601 | 602 | setFile += 1 |
|
602 | 603 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
603 | 604 | timeTuple.tm_year, |
|
604 | 605 | timeTuple.tm_yday, |
|
605 | 606 | setFile, |
|
606 | 607 | ext) |
|
607 | 608 | else: |
|
608 | 609 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
609 | 610 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
610 | 611 | timeTuple.tm_year, |
|
611 | 612 | timeTuple.tm_yday, |
|
612 | 613 | setFile, |
|
613 | 614 | ext) |
|
614 | 615 | |
|
615 | 616 | self.filename = os.path.join(path, subfolder, file) |
|
616 | 617 | |
|
617 | 618 | |
|
618 | 619 | |
|
619 | 620 | def getLabel(self, name, x=None): |
|
620 | 621 | |
|
621 | 622 | if x is None: |
|
622 | 623 | if 'Data' in self.description: |
|
623 | 624 | data = self.description['Data'] |
|
624 | 625 | if 'Metadata' in self.description: |
|
625 | 626 | data.update(self.description['Metadata']) |
|
626 | 627 | else: |
|
627 | 628 | data = self.description |
|
628 | 629 | if name in data: |
|
629 | 630 | if isinstance(data[name], str): |
|
630 | 631 | return data[name] |
|
631 | 632 | elif isinstance(data[name], list): |
|
632 | 633 | return None |
|
633 | 634 | elif isinstance(data[name], dict): |
|
634 | 635 | for key, value in data[name].items(): |
|
635 | 636 | return key |
|
636 | 637 | return name |
|
637 | 638 | else: |
|
638 | 639 | if 'Metadata' in self.description: |
|
639 | 640 | meta = self.description['Metadata'] |
|
640 | 641 | else: |
|
641 | 642 | meta = self.description |
|
642 | 643 | if name in meta: |
|
643 | 644 | if isinstance(meta[name], list): |
|
644 | 645 | return meta[name][x] |
|
645 | 646 | elif isinstance(meta[name], dict): |
|
646 | 647 | for key, value in meta[name].items(): |
|
647 | 648 | return value[x] |
|
648 | 649 | if 'cspc' in name: |
|
649 | 650 | return 'pair{:02d}'.format(x) |
|
650 | 651 | else: |
|
651 | 652 | return 'channel{:02d}'.format(x) |
|
652 | 653 | |
|
653 | 654 | def writeMetadata(self, fp): |
|
654 | 655 | |
|
655 | 656 | if self.description: |
|
656 | 657 | if 'Metadata' in self.description: |
|
657 | 658 | grp = fp.create_group('Metadata') |
|
658 | 659 | else: |
|
659 | 660 | grp = fp |
|
660 | 661 | else: |
|
661 | 662 | grp = fp.create_group('Metadata') |
|
662 | 663 | |
|
663 | 664 | for i in range(len(self.metadataList)): |
|
664 | 665 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
665 | 666 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
666 | 667 | continue |
|
667 | 668 | value = getattr(self.dataOut, self.metadataList[i]) |
|
668 | 669 | if isinstance(value, bool): |
|
669 | 670 | if value is True: |
|
670 | 671 | value = 1 |
|
671 | 672 | else: |
|
672 | 673 | value = 0 |
|
673 | 674 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
674 | 675 | return |
|
675 | 676 | |
|
676 | 677 | def writeMetadata2(self, fp): |
|
677 | 678 | |
|
678 | 679 | if self.description: |
|
679 | 680 | if 'Metadata' in self.description: |
|
680 | 681 | grp = fp.create_group('Metadata') |
|
681 | 682 | else: |
|
682 | 683 | grp = fp |
|
683 | 684 | else: |
|
684 | 685 | grp = fp.create_group('Metadata') |
|
685 | 686 | |
|
686 | 687 | for i in range(len(self.metadataList)): |
|
687 | 688 | |
|
688 | 689 | attribute = self.metadataList[i] |
|
689 | 690 | attr = attribute.split('.') |
|
690 | 691 | if len(attr) > 1: |
|
691 | 692 | if not hasattr(eval("self.dataOut."+attr[0]),attr[1]): |
|
692 | 693 | log.warning('Metadata: {}.{} not found'.format(attr[0],attr[1]), self.name) |
|
693 | 694 | continue |
|
694 | 695 | value = getattr(eval("self.dataOut."+attr[0]),attr[1]) |
|
695 | 696 | if isinstance(value, bool): |
|
696 | 697 | if value is True: |
|
697 | 698 | value = 1 |
|
698 | 699 | else: |
|
699 | 700 | value = 0 |
|
700 | 701 | if isinstance(value,type(None)): |
|
701 | 702 | log.warning("Invalid value detected, {} is None".format(attribute), self.name) |
|
702 | 703 | value = 0 |
|
703 | 704 | grp2 = None |
|
704 | 705 | if not 'Metadata/'+attr[0] in fp: |
|
705 | 706 | grp2 = fp.create_group('Metadata/'+attr[0]) |
|
706 | 707 | else: |
|
707 | 708 | grp2 = fp['Metadata/'+attr[0]] |
|
708 | 709 | grp2.create_dataset(attr[1], data=value) |
|
709 | 710 | |
|
710 | 711 | else: |
|
711 | 712 | if not hasattr(self.dataOut, attr[0] ): |
|
712 | 713 | log.warning('Metadata: `{}` not found'.format(attribute), self.name) |
|
713 | 714 | continue |
|
714 | 715 | value = getattr(self.dataOut, attr[0]) |
|
715 | 716 | if isinstance(value, bool): |
|
716 | 717 | if value is True: |
|
717 | 718 | value = 1 |
|
718 | 719 | else: |
|
719 | 720 | value = 0 |
|
720 | 721 | if isinstance(value, type(None)): |
|
721 | 722 | log.error("Value {} is None".format(attribute),self.name) |
|
722 | 723 | |
|
723 | 724 | grp.create_dataset(self.getLabel(attribute), data=value) |
|
724 | 725 | |
|
725 | 726 | return |
|
726 | 727 | |
|
727 | 728 | def writeData(self, fp): |
|
728 | 729 | |
|
729 | 730 | if self.description: |
|
730 | 731 | if 'Data' in self.description: |
|
731 | 732 | grp = fp.create_group('Data') |
|
732 | 733 | else: |
|
733 | 734 | grp = fp |
|
734 | 735 | else: |
|
735 | 736 | grp = fp.create_group('Data') |
|
736 | 737 | |
|
737 | 738 | dtsets = [] |
|
738 | 739 | data = [] |
|
739 | 740 | |
|
740 | 741 | for dsInfo in self.dsList: |
|
741 | 742 | if dsInfo['nDim'] == 0: |
|
742 | 743 | ds = grp.create_dataset( |
|
743 | 744 | self.getLabel(dsInfo['variable']), |
|
744 | 745 | (self.blocksPerFile,), |
|
745 | 746 | chunks=True, |
|
746 | 747 | dtype=numpy.float64) |
|
747 | 748 | dtsets.append(ds) |
|
748 | 749 | data.append((dsInfo['variable'], -1)) |
|
749 | 750 | else: |
|
750 | 751 | label = self.getLabel(dsInfo['variable']) |
|
751 | 752 | if label is not None: |
|
752 | 753 | sgrp = grp.create_group(label) |
|
753 | 754 | else: |
|
754 | 755 | sgrp = grp |
|
755 | 756 | for i in range(dsInfo['dsNumber']): |
|
756 | 757 | ds = sgrp.create_dataset( |
|
757 | 758 | self.getLabel(dsInfo['variable'], i), |
|
758 | 759 | (self.blocksPerFile,) + dsInfo['shape'][1:], |
|
759 | 760 | chunks=True, |
|
760 | 761 | dtype=dsInfo['dtype']) |
|
761 | 762 | dtsets.append(ds) |
|
762 | 763 | data.append((dsInfo['variable'], i)) |
|
763 | 764 | fp.flush() |
|
764 | 765 | |
|
765 | 766 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
766 | 767 | |
|
767 | 768 | self.ds = dtsets |
|
768 | 769 | self.data = data |
|
769 | 770 | self.firsttime = True |
|
770 | 771 | |
|
771 | 772 | return |
|
772 | 773 | |
|
773 | 774 | def putData(self): |
|
774 | 775 | |
|
775 | 776 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
776 | 777 | self.closeFile() |
|
777 | 778 | self.setNextFile() |
|
778 | 779 | self.dataOut.flagNoData = False |
|
779 | 780 | self.blockIndex = 0 |
|
780 | 781 | |
|
781 | 782 | if self.blockIndex == 0: |
|
782 | 783 | #Setting HDF5 File |
|
783 | 784 | self.fp = h5py.File(self.filename, 'w') |
|
784 | 785 | #write metadata |
|
785 | 786 | self.writeMetadata2(self.fp) |
|
786 | 787 | #Write data |
|
787 | 788 | self.writeData(self.fp) |
|
788 | 789 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) |
|
789 | 790 | elif (self.blockIndex % 10 ==0): |
|
790 | 791 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) |
|
791 | 792 | else: |
|
792 | 793 | |
|
793 | 794 | log.log('Block No. {}/{}'.format(self.blockIndex+1, self.blocksPerFile), self.name) |
|
794 | 795 | |
|
795 | 796 | for i, ds in enumerate(self.ds): |
|
796 | 797 | attr, ch = self.data[i] |
|
797 | 798 | if ch == -1: |
|
798 | 799 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
799 | 800 | else: |
|
800 | 801 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
801 | 802 | |
|
802 | 803 | self.blockIndex += 1 |
|
803 | 804 | |
|
804 | 805 | self.fp.flush() |
|
805 | 806 | self.dataOut.flagNoData = True |
|
806 | 807 | |
|
807 | 808 | def closeFile(self): |
|
808 | 809 | |
|
809 | 810 | if self.blockIndex != self.blocksPerFile: |
|
810 | 811 | for ds in self.ds: |
|
811 | 812 | ds.resize(self.blockIndex, axis=0) |
|
812 | 813 | |
|
813 | 814 | if self.fp: |
|
814 | 815 | self.fp.flush() |
|
815 | 816 | self.fp.close() |
|
816 | 817 | |
|
817 | 818 | def close(self): |
|
818 | 819 | |
|
819 | 820 | self.closeFile() |
@@ -1,565 +1,576 | |||
|
1 | 1 | """ |
|
2 | 2 | Utilities for IO modules |
|
3 | 3 | @modified: Joab Apaza |
|
4 | 4 | @email: roj-op01@igp.gob.pe, joab.apaza32@gmail.com |
|
5 | 5 | """ |
|
6 | 6 | ################################################################################ |
|
7 | 7 | ################################################################################ |
|
8 | 8 | import os |
|
9 | 9 | from datetime import datetime |
|
10 | 10 | import numpy |
|
11 | 11 | from schainpy.model.data.jrodata import Parameters |
|
12 | 12 | import itertools |
|
13 | 13 | import numpy |
|
14 | 14 | import h5py |
|
15 | 15 | import re |
|
16 | 16 | import time |
|
17 | 17 | from schainpy.utils import log |
|
18 | 18 | ################################################################################ |
|
19 | 19 | ################################################################################ |
|
20 | 20 | ################################################################################ |
|
21 | 21 | def folder_in_range(folder, start_date, end_date, pattern): |
|
22 | 22 | """ |
|
23 | 23 | Check whether folder is bettwen start_date and end_date |
|
24 | 24 | Args: |
|
25 | 25 | folder (str): Folder to check |
|
26 | 26 | start_date (date): Initial date |
|
27 | 27 | end_date (date): Final date |
|
28 | 28 | pattern (str): Datetime format of the folder |
|
29 | 29 | Returns: |
|
30 | 30 | bool: True for success, False otherwise |
|
31 | 31 | """ |
|
32 | 32 | try: |
|
33 | 33 | dt = datetime.strptime(folder, pattern) |
|
34 | 34 | except: |
|
35 | 35 | raise ValueError('Folder {} does not match {} format'.format(folder, pattern)) |
|
36 | 36 | return start_date <= dt.date() <= end_date |
|
37 | 37 | ################################################################################ |
|
38 | 38 | ################################################################################ |
|
39 | 39 | ################################################################################ |
|
40 | 40 | def getHei_index( minHei, maxHei, heightList): |
|
41 | 41 | try: |
|
42 | 42 | if (minHei < heightList[0]): |
|
43 | 43 | minHei = heightList[0] |
|
44 | 44 | if (maxHei > heightList[-1]): |
|
45 | 45 | maxHei = heightList[-1] |
|
46 | 46 | minIndex = 0 |
|
47 | 47 | maxIndex = 0 |
|
48 | 48 | heights = numpy.asarray(heightList) |
|
49 | 49 | inda = numpy.where(heights >= minHei) |
|
50 | 50 | indb = numpy.where(heights <= maxHei) |
|
51 | 51 | try: |
|
52 | 52 | minIndex = inda[0][0] |
|
53 | 53 | except: |
|
54 | 54 | minIndex = 0 |
|
55 | 55 | try: |
|
56 | 56 | maxIndex = indb[0][-1] |
|
57 | 57 | except: |
|
58 | 58 | maxIndex = len(heightList) |
|
59 | 59 | return minIndex,maxIndex |
|
60 | 60 | except Exception as e: |
|
61 | 61 | log.error("In getHei_index: ", __name__) |
|
62 | 62 | log.error(e , __name__) |
|
63 | 63 | ################################################################################ |
|
64 | 64 | ################################################################################ |
|
65 | 65 | ################################################################################ |
|
66 | 66 | class MergeH5(object): |
|
67 | 67 | """Processing unit to read HDF5 format files |
|
68 | 68 | This unit reads HDF5 files created with `HDFWriter` operation when channels area |
|
69 | 69 | processed by separated. Then merge all channels in a single files. |
|
70 | 70 | "example" |
|
71 | 71 | nChannels = 4 |
|
72 | 72 | pathOut = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/merged" |
|
73 | 73 | p0 = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/d2022240_Ch0" |
|
74 | 74 | p1 = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/d2022240_Ch1" |
|
75 | 75 | p2 = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/d2022240_Ch2" |
|
76 | 76 | p3 = "/home/soporte/Data/OutTest/clean2D/perpAndObliq/byChannels/d2022240_Ch3" |
|
77 | 77 | list = ['data_spc','data_cspc','nIncohInt','utctime'] |
|
78 | 78 | merger = MergeH5(nChannels,pathOut,list, p0, p1,p2,p3) |
|
79 | 79 | merger.run() |
|
80 | 80 | The file example_FULLmultiprocessing_merge.txt show an application for AMISR data |
|
81 | 81 | """ |
|
82 | 82 | # #__attrs__ = ['paths', 'nChannels'] |
|
83 | 83 | isConfig = False |
|
84 | 84 | inPaths = None |
|
85 | 85 | nChannels = None |
|
86 | 86 | ch_dataIn = [] |
|
87 | 87 | channelList = [] |
|
88 | 88 | def __init__(self,nChannels, pOut, dataList, *args): |
|
89 | 89 | self.inPaths = [p for p in args] |
|
90 | 90 | #print(self.inPaths) |
|
91 | 91 | if len(self.inPaths) != nChannels: |
|
92 | 92 | print("ERROR, number of channels different from iput paths {} != {}".format(nChannels, len(args))) |
|
93 | 93 | return |
|
94 | 94 | self.pathOut = pOut |
|
95 | 95 | self.dataList = dataList |
|
96 | 96 | self.nChannels = len(self.inPaths) |
|
97 | 97 | self.ch_dataIn = [Parameters() for p in args] |
|
98 | 98 | self.dataOut = Parameters() |
|
99 | 99 | self.channelList = [n for n in range(nChannels)] |
|
100 | 100 | self.blocksPerFile = None |
|
101 | 101 | self.date = None |
|
102 | 102 | self.ext = ".hdf5$" |
|
103 | 103 | self.dataList = dataList |
|
104 | 104 | self.optchar = "D" |
|
105 | 105 | self.meta = {} |
|
106 | 106 | self.data = {} |
|
107 | 107 | self.open_file = h5py.File |
|
108 | 108 | self.open_mode = 'r' |
|
109 | 109 | self.description = {} |
|
110 | 110 | self.extras = {} |
|
111 | 111 | self.filefmt = "*%Y%j***" |
|
112 | 112 | self.folderfmt = "*%Y%j" |
|
113 | 113 | self.flag_spc = False |
|
114 | 114 | self.flag_pow = False |
|
115 | 115 | self.flag_snr = False |
|
116 | 116 | self.flag_nIcoh = False |
|
117 | 117 | self.flagProcessingHeader = False |
|
118 | 118 | self.flagControllerHeader = False |
|
119 | 119 | def setup(self): |
|
120 | 120 | # if not self.ext.startswith('.'): |
|
121 | 121 | # self.ext = '.{}'.format(self.ext) |
|
122 | 122 | self.filenameList = self.searchFiles(self.inPaths, None) |
|
123 | 123 | self.nfiles = len(self.filenameList[0]) |
|
124 | 124 | def searchFiles(self, paths, date, walk=True): |
|
125 | 125 | # self.paths = path |
|
126 | 126 | #self.date = startDate |
|
127 | 127 | #self.walk = walk |
|
128 | 128 | filenameList = [[] for n in range(self.nChannels)] |
|
129 | 129 | ch = 0 |
|
130 | 130 | for path in paths: |
|
131 | 131 | if os.path.exists(path): |
|
132 | 132 | print("Searching files in {}".format(path)) |
|
133 | 133 | filenameList[ch] = self.getH5files(path, walk) |
|
134 | 134 | print("Found: ") |
|
135 | 135 | for f in filenameList[ch]: |
|
136 | 136 | print(f) |
|
137 | 137 | else: |
|
138 | 138 | self.status = 0 |
|
139 | 139 | print('Path:%s does not exists'%path) |
|
140 | 140 | return 0 |
|
141 | 141 | ch+=1 |
|
142 | 142 | return filenameList |
|
143 | 143 | def getH5files(self, path, walk): |
|
144 | 144 | dirnameList = [] |
|
145 | 145 | pat = '(\d)+.'+self.ext |
|
146 | 146 | if walk: |
|
147 | 147 | for root, dirs, files in os.walk(path): |
|
148 | 148 | for dir in dirs: |
|
149 | 149 | #print(os.path.join(root,dir)) |
|
150 | 150 | files = [re.search(pat,x) for x in os.listdir(os.path.join(root,dir))] |
|
151 | 151 | #print(files) |
|
152 | 152 | files = [x for x in files if x!=None] |
|
153 | 153 | files = [x.string for x in files] |
|
154 | 154 | files = [os.path.join(root,dir,x) for x in files if x!=None] |
|
155 | 155 | files.sort() |
|
156 | 156 | dirnameList += files |
|
157 | 157 | return dirnameList |
|
158 | 158 | else: |
|
159 | 159 | dirnameList = [re.search(pat,x) for x in os.listdir(path)] |
|
160 | 160 | dirnameList = [x for x in dirnameList if x!=None] |
|
161 | 161 | dirnameList = [x.string for x in dirnameList] |
|
162 | 162 | dirnameList = [x for x in dirnameList if x!=None] |
|
163 | 163 | dirnameList.sort() |
|
164 | 164 | return dirnameList |
|
165 | 165 | def readFile(self,fp,ch): |
|
166 | 166 | '''Read metadata and data''' |
|
167 | 167 | self.readMetadata(fp,ch) |
|
168 | #print(self.metadataList) | |
|
168 | # print(self.metadataList) | |
|
169 | 169 | data = self.readData(fp) |
|
170 | 170 | for attr in self.meta: |
|
171 | 171 | if "processingHeaderObj" in attr: |
|
172 | 172 | self.flagProcessingHeader=True |
|
173 | 173 | if "radarControllerHeaderObj" in attr: |
|
174 | 174 | self.flagControllerHeader=True |
|
175 | 175 | at = attr.split('.') |
|
176 | #print("AT ", at) | |
|
176 | # print("AT ", at) | |
|
177 | 177 | if len(at) > 1: |
|
178 | 178 | setattr(eval("self.ch_dataIn[ch]."+at[0]),at[1], self.meta[attr]) |
|
179 | 179 | else: |
|
180 | 180 | setattr(self.ch_dataIn[ch], attr, self.meta[attr]) |
|
181 | 181 | self.fill_dataIn(data, self.ch_dataIn[ch]) |
|
182 | 182 | return |
|
183 | 183 | def readMetadata(self, fp, ch): |
|
184 | 184 | ''' |
|
185 | 185 | Reads Metadata |
|
186 | 186 | ''' |
|
187 | 187 | meta = {} |
|
188 | 188 | self.metadataList = [] |
|
189 | 189 | grp = fp['Metadata'] |
|
190 | 190 | for item in grp.values(): |
|
191 | 191 | name = item.name |
|
192 | 192 | if isinstance(item, h5py.Dataset): |
|
193 | 193 | name = name.split("/")[-1] |
|
194 | 194 | if 'List' in name: |
|
195 | 195 | meta[name] = item[()].tolist() |
|
196 | 196 | else: |
|
197 | 197 | meta[name] = item[()] |
|
198 | 198 | self.metadataList.append(name) |
|
199 | 199 | else: |
|
200 | 200 | grp2 = fp[name] |
|
201 | 201 | Obj = name.split("/")[-1] |
|
202 | 202 | #print(Obj) |
|
203 | 203 | for item2 in grp2.values(): |
|
204 | 204 | name2 = Obj+"."+item2.name.split("/")[-1] |
|
205 | 205 | if 'List' in name2: |
|
206 | 206 | meta[name2] = item2[()].tolist() |
|
207 | 207 | else: |
|
208 | 208 | meta[name2] = item2[()] |
|
209 | 209 | self.metadataList.append(name2) |
|
210 | 210 | if not self.meta: |
|
211 | 211 | self.meta = meta.copy() |
|
212 | 212 | for key in list(self.meta.keys()): |
|
213 | 213 | if "channelList" in key: |
|
214 | 214 | self.meta["channelList"] =[n for n in range(self.nChannels)] |
|
215 | 215 | if "processingHeaderObj" in key: |
|
216 | 216 | self.meta["processingHeaderObj.channelList"] =[n for n in range(self.nChannels)] |
|
217 | 217 | if "radarControllerHeaderObj" in key: |
|
218 | 218 | self.meta["radarControllerHeaderObj.channelList"] =[n for n in range(self.nChannels)] |
|
219 | 219 | return 1 |
|
220 | 220 | else: |
|
221 | 221 | for k in list(self.meta.keys()): |
|
222 | 222 | if 'List' in k and 'channel' not in k and "height" not in k and "radarControllerHeaderObj" not in k: |
|
223 | 223 | self.meta[k] += meta[k] |
|
224 | 224 | #print("Metadata: ",self.meta) |
|
225 | 225 | return 1 |
|
226 | 226 | def fill_dataIn(self,data, dataIn): |
|
227 | 227 | for attr in data: |
|
228 | 228 | if data[attr].ndim == 1: |
|
229 | 229 | setattr(dataIn, attr, data[attr][:]) |
|
230 | 230 | else: |
|
231 | 231 | setattr(dataIn, attr, numpy.squeeze(data[attr][:,:])) |
|
232 | #print("shape in", dataIn.data_spc.shape, len(dataIn.data_spc)) | |
|
232 | # print("shape in", dataIn.data_spc.shape, len(dataIn.data_spc)) | |
|
233 | 233 | if self.flag_spc: |
|
234 | 234 | if dataIn.data_spc.ndim > 3: |
|
235 | 235 | dataIn.data_spc = dataIn.data_spc[0] |
|
236 | 236 | #print("shape in", dataIn.data_spc.shape) |
|
237 | 237 | def getBlocksPerFile(self): |
|
238 | 238 | b = numpy.zeros(self.nChannels) |
|
239 | 239 | for i in range(self.nChannels): |
|
240 | 240 | if self.flag_spc: |
|
241 | 241 | b[i] = self.ch_dataIn[i].data_spc.shape[0] #number of blocks |
|
242 | 242 | elif self.flag_pow: |
|
243 | 243 | b[i] = self.ch_dataIn[i].data_pow.shape[0] #number of blocks |
|
244 | 244 | elif self.flag_snr: |
|
245 | 245 | b[i] = self.ch_dataIn[i].data_snr.shape[0] #number of blocks |
|
246 | 246 | self.blocksPerFile = int(b.min()) |
|
247 | 247 | iresh_ch = numpy.where(b > self.blocksPerFile)[0] |
|
248 | 248 | if len(iresh_ch) > 0: |
|
249 | 249 | for ich in iresh_ch: |
|
250 | 250 | for i in range(len(self.dataList)): |
|
251 | 251 | if hasattr(self.ch_dataIn[ich], self.dataList[i]): |
|
252 | 252 | # print("reshaping ", self.dataList[i]) |
|
253 | 253 | # print(getattr(self.ch_dataIn[ich], self.dataList[i]).shape) |
|
254 | 254 | dataAux = getattr(self.ch_dataIn[ich], self.dataList[i]) |
|
255 | 255 | setattr(self.ch_dataIn[ich], self.dataList[i], None) |
|
256 | 256 | setattr(self.ch_dataIn[ich], self.dataList[i], dataAux[0:self.blocksPerFile]) |
|
257 | 257 | # print(getattr(self.ch_dataIn[ich], self.dataList[i]).shape) |
|
258 | 258 | else: |
|
259 | # log.error("Channels number error,iresh_ch=", iresh_ch) | |
|
259 | 260 | return |
|
260 | 261 | def getLabel(self, name, x=None): |
|
261 | 262 | if x is None: |
|
262 | 263 | if 'Data' in self.description: |
|
263 | 264 | data = self.description['Data'] |
|
264 | 265 | if 'Metadata' in self.description: |
|
265 | 266 | data.update(self.description['Metadata']) |
|
266 | 267 | else: |
|
267 | 268 | data = self.description |
|
268 | 269 | if name in data: |
|
269 | 270 | if isinstance(data[name], str): |
|
270 | 271 | return data[name] |
|
271 | 272 | elif isinstance(data[name], list): |
|
272 | 273 | return None |
|
273 | 274 | elif isinstance(data[name], dict): |
|
274 | 275 | for key, value in data[name].items(): |
|
275 | 276 | return key |
|
276 | 277 | return name |
|
277 | 278 | else: |
|
278 | 279 | if 'Metadata' in self.description: |
|
279 | 280 | meta = self.description['Metadata'] |
|
280 | 281 | else: |
|
281 | 282 | meta = self.description |
|
282 | 283 | if name in meta: |
|
283 | 284 | if isinstance(meta[name], list): |
|
284 | 285 | return meta[name][x] |
|
285 | 286 | elif isinstance(meta[name], dict): |
|
286 | 287 | for key, value in meta[name].items(): |
|
287 | 288 | return value[x] |
|
288 | 289 | if 'cspc' in name: |
|
289 | 290 | return 'pair{:02d}'.format(x) |
|
290 | 291 | else: |
|
291 | 292 | return 'channel{:02d}'.format(x) |
|
293 | ||
|
292 | 294 | def readData(self, fp): |
|
293 | #print("read fp: ", fp) | |
|
295 | # print("read fp: ", fp) | |
|
294 | 296 | data = {} |
|
295 | 297 | grp = fp['Data'] |
|
296 | 298 | for name in grp: |
|
297 | 299 | if "spc" in name: |
|
298 | 300 | self.flag_spc = True |
|
299 | 301 | if "pow" in name: |
|
300 | 302 | self.flag_pow = True |
|
301 | 303 | if "snr" in name: |
|
302 | 304 | self.flag_snr = True |
|
303 | 305 | if "nIncohInt" in name: |
|
304 | 306 | self.flag_nIcoh = True |
|
305 | ||
|
307 | # print("spc:",self.flag_spc," pow:",self.flag_pow," snr:", self.flag_snr) | |
|
306 | 308 | if isinstance(grp[name], h5py.Dataset): |
|
307 | 309 | array = grp[name][()] |
|
308 | 310 | elif isinstance(grp[name], h5py.Group): |
|
309 | 311 | array = [] |
|
310 | 312 | for ch in grp[name]: |
|
311 | 313 | array.append(grp[name][ch][()]) |
|
312 | 314 | array = numpy.array(array) |
|
313 | 315 | else: |
|
314 | 316 | print('Unknown type: {}'.format(name)) |
|
315 | 317 | data[name] = array |
|
316 | 318 | return data |
|
319 | ||
|
317 | 320 | def getDataOut(self): |
|
321 | # print("Getting DataOut") | |
|
318 | 322 | self.dataOut = self.ch_dataIn[0].copy() #dataIn #blocks, fft, hei for metadata |
|
319 | 323 | if self.flagProcessingHeader: |
|
320 | 324 | self.dataOut.processingHeaderObj = self.ch_dataIn[0].processingHeaderObj.copy() |
|
321 | 325 | self.dataOut.heightList = self.dataOut.processingHeaderObj.heightList |
|
322 | 326 | self.dataOut.ippSeconds = self.dataOut.processingHeaderObj.ipp |
|
323 | 327 | self.dataOut.channelList = self.dataOut.processingHeaderObj.channelList |
|
324 | 328 | self.dataOut.nCohInt = self.dataOut.processingHeaderObj.nCohInt |
|
325 | 329 | self.dataOut.nFFTPoints = self.dataOut.processingHeaderObj.nFFTPoints |
|
326 | 330 | if self.flagControllerHeader: |
|
327 | 331 | self.dataOut.radarControllerHeaderObj = self.ch_dataIn[0].radarControllerHeaderObj.copy() |
|
328 | 332 | self.dataOut.frequency = self.dataOut.radarControllerHeaderObj.frequency |
|
329 | 333 | #-------------------------------------------------------------------- |
|
330 | 334 | #-------------------------------------------------------------------- |
|
331 | 335 | if self.flag_spc: |
|
332 | 336 | if self.dataOut.data_spc.ndim < 3: |
|
333 | 337 | print("shape spc in: ",self.dataOut.data_spc.shape ) |
|
334 | 338 | return 0 |
|
335 | 339 | if self.flag_pow: |
|
336 | 340 | if self.dataOut.data_pow.ndim < 2: |
|
337 | 341 | print("shape pow in: ",self.dataOut.data_pow.shape ) |
|
338 | 342 | return 0 |
|
339 | 343 | if self.flag_snr: |
|
340 | 344 | if self.dataOut.data_snr.ndim < 2: |
|
341 | 345 | print("shape snr in: ",self.dataOut.data_snr.shape ) |
|
342 | 346 | return 0 |
|
343 | 347 | self.dataOut.data_spc = None |
|
344 | 348 | self.dataOut.data_cspc = None |
|
345 | 349 | self.dataOut.data_pow = None |
|
346 | 350 | self.dataOut.data_snr = None |
|
347 | 351 | self.dataOut.utctime = None |
|
348 | 352 | self.dataOut.nIncohInt = None |
|
349 | 353 | #-------------------------------------------------------------------- |
|
350 | 354 | if self.flag_spc: |
|
351 | 355 | spc = [data.data_spc for data in self.ch_dataIn] |
|
352 | 356 | self.dataOut.data_spc = numpy.stack(spc, axis=1) #blocks, ch, fft, hei |
|
353 | 357 | #-------------------------------------------------------------------- |
|
354 | 358 | if self.flag_pow: |
|
355 | 359 | pow = [data.data_pow for data in self.ch_dataIn] |
|
356 | 360 | self.dataOut.data_pow = numpy.stack(pow, axis=1) #blocks, ch, fft, hei |
|
357 | 361 | #-------------------------------------------------------------------- |
|
358 | 362 | if self.flag_snr: |
|
359 | 363 | snr = [data.data_snr for data in self.ch_dataIn] |
|
360 | 364 | self.dataOut.data_snr = numpy.stack(snr, axis=1) #blocks, ch, fft, hei |
|
361 | 365 | #-------------------------------------------------------------------- |
|
362 | 366 | time = [data.utctime for data in self.ch_dataIn] |
|
363 | 367 | time = numpy.asarray(time).mean(axis=0) |
|
364 | 368 | time = numpy.squeeze(time) |
|
365 | 369 | self.dataOut.utctime = time |
|
366 | 370 | #-------------------------------------------------------------------- |
|
367 | 371 | if self.flag_nIcoh: |
|
368 | 372 | ints = [data.nIncohInt for data in self.ch_dataIn] |
|
369 | 373 | self.dataOut.nIncohInt = numpy.stack(ints, axis=1) |
|
370 | 374 | if self.dataOut.nIncohInt.ndim > 3: |
|
371 | 375 | aux = self.dataOut.nIncohInt |
|
372 | 376 | self.dataOut.nIncohInt = None |
|
373 | 377 | self.dataOut.nIncohInt = aux[0] |
|
374 | 378 | if self.dataOut.nIncohInt.ndim < 3: |
|
375 | 379 | nIncohInt = numpy.repeat(self.dataOut.nIncohInt, self.dataOut.nHeights).reshape(self.blocksPerFile,self.nChannels, self.dataOut.nHeights) |
|
376 | 380 | #nIncohInt = numpy.reshape(nIncohInt, (self.blocksPerFile,self.nChannels, self.dataOut.nHeights)) |
|
377 | 381 | self.dataOut.nIncohInt = None |
|
378 | 382 | self.dataOut.nIncohInt = nIncohInt |
|
379 | 383 | if (self.dataOut.nIncohInt.shape)[0]==self.nChannels: ## ch,blocks, hei |
|
380 | 384 | self.dataOut.nIncohInt = numpy.swapaxes(self.dataOut.nIncohInt, 0, 1) ## blocks,ch, hei |
|
381 | 385 | else: |
|
382 | 386 | self.dataOut.nIncohInt = self.ch_dataIn[0].nIncohInt |
|
383 | 387 | #-------------------------------------------------------------------- |
|
384 | #print("utcTime: ", time.shape) | |
|
385 | #print("data_spc ",self.dataOut.data_spc.shape) | |
|
388 | # print("utcTime: ", time.shape) | |
|
389 | # print("data_spc ",self.dataOut.data_spc.shape) | |
|
386 | 390 | if "data_cspc" in self.dataList: |
|
387 | 391 | pairsList = [pair for pair in itertools.combinations(self.channelList, 2)] |
|
388 | 392 | #print("PairsList: ", pairsList) |
|
389 | 393 | self.dataOut.pairsList = pairsList |
|
390 | 394 | cspc = [] |
|
391 | 395 | for i, j in pairsList: |
|
392 | 396 | cspc.append(self.ch_dataIn[i].data_spc*numpy.conjugate(self.ch_dataIn[j].data_spc)) #blocks, fft, hei |
|
393 | 397 | cspc = numpy.asarray(cspc) # # pairs, blocks, fft, hei |
|
394 | 398 | #print("cspc: ",cspc.shape) |
|
395 | 399 | self.dataOut.data_cspc = numpy.swapaxes(cspc, 0, 1) ## blocks, pairs, fft, hei |
|
396 | 400 | #print("dataOut.data_cspc: ",self.dataOut.data_cspc.shape) |
|
397 | 401 | #if "data_pow" in self.dataList: |
|
398 | 402 | return 1 |
|
399 | 403 | # def writeMetadata(self, fp): |
|
400 | 404 | # |
|
401 | 405 | # |
|
402 | 406 | # grp = fp.create_group('Metadata') |
|
403 | 407 | # |
|
404 | 408 | # for i in range(len(self.metadataList)): |
|
405 | 409 | # if not hasattr(self.dataOut, self.metadataList[i]): |
|
406 | 410 | # print('Metadata: `{}` not found'.format(self.metadataList[i])) |
|
407 | 411 | # continue |
|
408 | 412 | # value = getattr(self.dataOut, self.metadataList[i]) |
|
409 | 413 | # if isinstance(value, bool): |
|
410 | 414 | # if value is True: |
|
411 | 415 | # value = 1 |
|
412 | 416 | # else: |
|
413 | 417 | # value = 0 |
|
414 | 418 | # grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
415 | 419 | # return |
|
416 | 420 | def writeMetadata(self, fp): |
|
417 | 421 | grp = fp.create_group('Metadata') |
|
418 | 422 | for i in range(len(self.metadataList)): |
|
419 | 423 | attribute = self.metadataList[i] |
|
420 | 424 | attr = attribute.split('.') |
|
421 | 425 | if '' in attr: |
|
422 | 426 | attr.remove('') |
|
423 | 427 | #print(attr) |
|
424 | 428 | if len(attr) > 1: |
|
425 | 429 | if not hasattr(eval("self.dataOut."+attr[0]),attr[1]): |
|
426 | 430 | print('Metadata: {}.{} not found'.format(attr[0],attr[1])) |
|
427 | 431 | continue |
|
428 | 432 | value = getattr(eval("self.dataOut."+attr[0]),attr[1]) |
|
429 | 433 | if isinstance(value, bool): |
|
430 | 434 | if value is True: |
|
431 | 435 | value = 1 |
|
432 | 436 | else: |
|
433 | 437 | value = 0 |
|
434 | 438 | grp2 = None |
|
435 | 439 | if not 'Metadata/'+attr[0] in fp: |
|
436 | 440 | grp2 = fp.create_group('Metadata/'+attr[0]) |
|
437 | 441 | else: |
|
438 | 442 | grp2 = fp['Metadata/'+attr[0]] |
|
439 | 443 | grp2.create_dataset(attr[1], data=value) |
|
440 | 444 | else: |
|
441 | 445 | if not hasattr(self.dataOut, attr[0] ): |
|
442 | 446 | print('Metadata: `{}` not found'.format(attribute)) |
|
443 | 447 | continue |
|
444 | 448 | value = getattr(self.dataOut, attr[0]) |
|
445 | 449 | if isinstance(value, bool): |
|
446 | 450 | if value is True: |
|
447 | 451 | value = 1 |
|
448 | 452 | else: |
|
449 | 453 | value = 0 |
|
450 | 454 | if isinstance(value, type(None)): |
|
451 | 455 | print("------ERROR, value {} is None".format(attribute)) |
|
452 | 456 | |
|
453 | 457 | grp.create_dataset(self.getLabel(attribute), data=value) |
|
454 | 458 | return |
|
459 | ||
|
455 | 460 | def getDsList(self): |
|
461 | # print("Getting DS List", self.dataList) | |
|
456 | 462 | dsList =[] |
|
463 | dataAux = None | |
|
457 | 464 | for i in range(len(self.dataList)): |
|
458 | 465 | dsDict = {} |
|
459 | 466 | if hasattr(self.dataOut, self.dataList[i]): |
|
460 | 467 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
461 | 468 | dsDict['variable'] = self.dataList[i] |
|
462 | 469 | else: |
|
463 | 470 | print('Attribute {} not found in dataOut'.format(self.dataList[i])) |
|
464 | 471 | continue |
|
465 | 472 | if dataAux is None: |
|
466 | 473 | continue |
|
467 |
elif isinstance(dataAux, (int, float, numpy.int |
|
|
474 | elif isinstance(dataAux, (int, float, numpy.int_, numpy.float_)): | |
|
468 | 475 | dsDict['nDim'] = 0 |
|
469 | 476 | else: |
|
470 | 477 | dsDict['nDim'] = len(dataAux.shape) -1 |
|
471 | 478 | dsDict['shape'] = dataAux.shape |
|
472 | 479 | if len(dsDict['shape'])>=2: |
|
473 | 480 | dsDict['dsNumber'] = dataAux.shape[1] |
|
474 | 481 | else: |
|
475 | 482 | dsDict['dsNumber'] = 1 |
|
476 | 483 | dsDict['dtype'] = dataAux.dtype |
|
477 | 484 | # if len(dataAux.shape) == 4: |
|
478 | 485 | # dsDict['nDim'] = len(dataAux.shape) -1 |
|
479 | 486 | # dsDict['shape'] = dataAux.shape |
|
480 | 487 | # dsDict['dsNumber'] = dataAux.shape[1] |
|
481 | 488 | # dsDict['dtype'] = dataAux.dtype |
|
482 | 489 | # else: |
|
483 | 490 | # dsDict['nDim'] = len(dataAux.shape) |
|
484 | 491 | # dsDict['shape'] = dataAux.shape |
|
485 | 492 | # dsDict['dsNumber'] = dataAux.shape[0] |
|
486 | 493 | # dsDict['dtype'] = dataAux.dtype |
|
487 | 494 | dsList.append(dsDict) |
|
488 | #print(dsList) | |
|
495 | # print("dsList: ", dsList) | |
|
489 | 496 | self.dsList = dsList |
|
497 | ||
|
490 | 498 | def clean_dataIn(self): |
|
491 | 499 | for ch in range(self.nChannels): |
|
492 | 500 | self.ch_dataIn[ch].data_spc = None |
|
493 | 501 | self.ch_dataIn[ch].utctime = None |
|
494 | 502 | self.ch_dataIn[ch].nIncohInt = None |
|
495 | 503 | self.meta ={} |
|
496 | 504 | self.blocksPerFile = None |
|
505 | ||
|
497 | 506 | def writeData(self, outFilename): |
|
498 | 507 | self.getDsList() |
|
499 | 508 | fp = h5py.File(outFilename, 'w') |
|
509 | # print("--> Merged file: ",fp) | |
|
500 | 510 | self.writeMetadata(fp) |
|
501 | 511 | grp = fp.create_group('Data') |
|
502 | 512 | dtsets = [] |
|
503 | 513 | data = [] |
|
504 | 514 | for dsInfo in self.dsList: |
|
505 | 515 | if dsInfo['nDim'] == 0: |
|
506 | 516 | ds = grp.create_dataset( |
|
507 | 517 | self.getLabel(dsInfo['variable']),(self.blocksPerFile, ),chunks=True,dtype=numpy.float64) |
|
508 | 518 | dtsets.append(ds) |
|
509 | 519 | data.append((dsInfo['variable'], -1)) |
|
510 | 520 | else: |
|
511 | 521 | label = self.getLabel(dsInfo['variable']) |
|
512 | 522 | if label is not None: |
|
513 | 523 | sgrp = grp.create_group(label) |
|
514 | 524 | else: |
|
515 | 525 | sgrp = grp |
|
516 | 526 | k = -1*(dsInfo['nDim'] - 1) |
|
517 | #print(k, dsInfo['shape'], dsInfo['shape'][k:]) | |
|
527 | # print(k, dsInfo['shape'], dsInfo['shape'][k:]) | |
|
518 | 528 | for i in range(dsInfo['dsNumber']): |
|
519 | 529 | ds = sgrp.create_dataset( |
|
520 | 530 | self.getLabel(dsInfo['variable'], i),(self.blocksPerFile, ) + dsInfo['shape'][k:], |
|
521 | 531 | chunks=True, |
|
522 | 532 | dtype=dsInfo['dtype']) |
|
523 | 533 | dtsets.append(ds) |
|
524 | 534 | data.append((dsInfo['variable'], i)) |
|
525 | 535 | #print("\n",dtsets) |
|
526 | 536 | print('Creating merged file: {}'.format(fp.filename)) |
|
527 | 537 | for i, ds in enumerate(dtsets): |
|
528 | 538 | attr, ch = data[i] |
|
529 | 539 | if ch == -1: |
|
530 | 540 | ds[:] = getattr(self.dataOut, attr) |
|
531 | 541 | else: |
|
532 | 542 | #print(ds, getattr(self.dataOut, attr)[ch].shape) |
|
533 | 543 | aux = getattr(self.dataOut, attr)# block, ch, ... |
|
534 | 544 | aux = numpy.swapaxes(aux,0,1) # ch, blocks, ... |
|
535 | 545 | #print(ds.shape, aux.shape) |
|
536 | 546 | #ds[:] = getattr(self.dataOut, attr)[ch] |
|
537 | 547 | ds[:] = aux[ch] |
|
538 | 548 | fp.flush() |
|
539 | 549 | fp.close() |
|
540 | 550 | self.clean_dataIn() |
|
541 | 551 | return |
|
552 | ||
|
542 | 553 | def run(self): |
|
543 | 554 | if not(self.isConfig): |
|
544 | 555 | self.setup() |
|
545 | 556 | self.isConfig = True |
|
546 | 557 | for nf in range(self.nfiles): |
|
547 | 558 | name = None |
|
548 | 559 | for ch in range(self.nChannels): |
|
549 | 560 | name = self.filenameList[ch][nf] |
|
550 | 561 | filename = os.path.join(self.inPaths[ch], name) |
|
551 | 562 | fp = h5py.File(filename, 'r') |
|
552 |
|
|
|
563 | print("Opening file: ",filename) | |
|
553 | 564 | self.readFile(fp,ch) |
|
554 | 565 | fp.close() |
|
555 | 566 | if self.blocksPerFile == None: |
|
556 | 567 | self.getBlocksPerFile() |
|
557 | 568 | print("blocks per file: ", self.blocksPerFile) |
|
558 | 569 | if not self.getDataOut(): |
|
559 | 570 | print("Error getting DataOut invalid number of blocks") |
|
560 | 571 | return |
|
561 | 572 | name = name[-16:] |
|
562 | #print("Final name out: ", name) | |
|
573 | # print("Final name out: ", name) | |
|
563 | 574 | outFile = os.path.join(self.pathOut, name) |
|
564 | #print("Outfile: ", outFile) | |
|
575 | # print("Outfile: ", outFile) | |
|
565 | 576 | self.writeData(outFile) No newline at end of file |
@@ -1,1737 +1,1738 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | |
|
16 | 16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | 17 | from schainpy.model.data.jrodata import Spectra |
|
18 | 18 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | 19 | from schainpy.model.data import _noise |
|
20 | 20 | from schainpy.utils import log |
|
21 | 21 | import matplotlib.pyplot as plt |
|
22 | 22 | from schainpy.model.io.utilsIO import getHei_index |
|
23 | 23 | import datetime |
|
24 | 24 | |
|
25 | 25 | class SpectraProc(ProcessingUnit): |
|
26 | 26 | |
|
27 | 27 | def __init__(self): |
|
28 | 28 | |
|
29 | 29 | ProcessingUnit.__init__(self) |
|
30 | 30 | |
|
31 | 31 | self.buffer = None |
|
32 | 32 | self.firstdatatime = None |
|
33 | 33 | self.profIndex = 0 |
|
34 | 34 | self.dataOut = Spectra() |
|
35 | 35 | self.dataOut.error=False |
|
36 | 36 | self.id_min = None |
|
37 | 37 | self.id_max = None |
|
38 | 38 | self.setupReq = False #Agregar a todas las unidades de proc |
|
39 | 39 | self.nsamplesFFT = 0 |
|
40 | 40 | |
|
41 | 41 | def __updateSpecFromVoltage(self): |
|
42 | 42 | |
|
43 | 43 | self.dataOut.timeZone = self.dataIn.timeZone |
|
44 | 44 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
45 | 45 | self.dataOut.errorCount = self.dataIn.errorCount |
|
46 | 46 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
47 | 47 | try: |
|
48 | 48 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
49 | 49 | except: |
|
50 | 50 | pass |
|
51 | 51 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
52 | 52 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
53 | 53 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
54 | 54 | self.dataOut.ipp = self.dataIn.ipp |
|
55 | 55 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
56 | 56 | self.dataOut.channelList = self.dataIn.channelList |
|
57 | 57 | self.dataOut.heightList = self.dataIn.heightList |
|
58 | 58 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
59 | 59 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
60 | 60 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
61 | 61 | self.dataOut.utctime = self.firstdatatime |
|
62 | 62 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
63 | 63 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
64 | 64 | self.dataOut.flagShiftFFT = False |
|
65 | 65 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
66 | 66 | self.dataOut.nIncohInt = 1 |
|
67 | 67 | self.dataOut.deltaHeight = self.dataIn.deltaHeight |
|
68 | 68 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
69 | 69 | self.dataOut.frequency = self.dataIn.frequency |
|
70 | 70 | self.dataOut.realtime = self.dataIn.realtime |
|
71 | 71 | self.dataOut.azimuth = self.dataIn.azimuth |
|
72 | 72 | self.dataOut.zenith = self.dataIn.zenith |
|
73 | 73 | self.dataOut.codeList = self.dataIn.codeList |
|
74 | 74 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
75 | 75 | self.dataOut.elevationList = self.dataIn.elevationList |
|
76 | 76 | self.dataOut.code = self.dataIn.code |
|
77 | 77 | self.dataOut.nCode = self.dataIn.nCode |
|
78 | 78 | self.dataOut.flagProfilesByRange = self.dataIn.flagProfilesByRange |
|
79 | 79 | self.dataOut.nProfilesByRange = self.dataIn.nProfilesByRange |
|
80 | 80 | self.dataOut.runNextUnit = self.dataIn.runNextUnit |
|
81 | 81 | try: |
|
82 | 82 | self.dataOut.step = self.dataIn.step |
|
83 | 83 | except: |
|
84 | 84 | pass |
|
85 | 85 | |
|
86 | 86 | def __getFft(self): |
|
87 | 87 | """ |
|
88 | 88 | Convierte valores de Voltaje a Spectra |
|
89 | 89 | |
|
90 | 90 | Affected: |
|
91 | 91 | self.dataOut.data_spc |
|
92 | 92 | self.dataOut.data_cspc |
|
93 | 93 | self.dataOut.data_dc |
|
94 | 94 | self.dataOut.heightList |
|
95 | 95 | self.profIndex |
|
96 | 96 | self.buffer |
|
97 | 97 | self.dataOut.flagNoData |
|
98 | 98 | """ |
|
99 | 99 | fft_volt = numpy.fft.fft( |
|
100 | 100 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
101 | 101 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
102 | 102 | dc = fft_volt[:, 0, :] |
|
103 | 103 | |
|
104 | 104 | # calculo de self-spectra |
|
105 | 105 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
106 | 106 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
107 | 107 | spc = spc.real |
|
108 | 108 | |
|
109 | 109 | blocksize = 0 |
|
110 | 110 | blocksize += dc.size |
|
111 | 111 | blocksize += spc.size |
|
112 | 112 | |
|
113 | 113 | cspc = None |
|
114 | 114 | pairIndex = 0 |
|
115 | 115 | if self.dataOut.pairsList != None: |
|
116 | 116 | # calculo de cross-spectra |
|
117 | 117 | cspc = numpy.zeros( |
|
118 | 118 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
119 | 119 | for pair in self.dataOut.pairsList: |
|
120 | 120 | if pair[0] not in self.dataOut.channelList: |
|
121 | 121 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
122 | 122 | str(pair), str(self.dataOut.channelList))) |
|
123 | 123 | if pair[1] not in self.dataOut.channelList: |
|
124 | 124 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
125 | 125 | str(pair), str(self.dataOut.channelList))) |
|
126 | 126 | |
|
127 | 127 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
128 | 128 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
129 | 129 | pairIndex += 1 |
|
130 | 130 | blocksize += cspc.size |
|
131 | 131 | |
|
132 | 132 | self.dataOut.data_spc = spc |
|
133 | 133 | self.dataOut.data_cspc = cspc |
|
134 | 134 | self.dataOut.data_dc = dc |
|
135 | 135 | self.dataOut.blockSize = blocksize |
|
136 | 136 | self.dataOut.flagShiftFFT = False |
|
137 | 137 | |
|
138 | 138 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, |
|
139 | 139 | zeroPad=False, zeroPoints=0, runNextUnit=0): |
|
140 | ||
|
140 | 141 | self.dataIn.runNextUnit = runNextUnit |
|
141 | 142 | try: |
|
142 | type = self.dataIn.type.decode("utf-8") | |
|
143 | self.dataIn.type = type | |
|
143 | _type = self.dataIn.type.decode("utf-8") | |
|
144 | self.dataIn.type = _type | |
|
144 | 145 | except Exception as e: |
|
145 |
# |
|
|
146 | #print("spc -> ",self.dataIn.type, e) | |
|
146 | 147 | pass |
|
147 | 148 | |
|
148 | 149 | if self.dataIn.type == "Spectra": |
|
149 | 150 | #print("AQUI") |
|
150 | 151 | try: |
|
151 | 152 | self.dataOut.copy(self.dataIn) |
|
152 | 153 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
153 | 154 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
154 | 155 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
155 | 156 | #self.dataOut.nHeights = len(self.dataOut.heightList) |
|
156 | 157 | except Exception as e: |
|
157 | 158 | print("Error dataIn ",e) |
|
158 | 159 | |
|
159 | 160 | if shift_fft: |
|
160 | 161 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
161 | 162 | shift = int(self.dataOut.nFFTPoints/2) |
|
162 | 163 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
163 | 164 | |
|
164 | 165 | if self.dataOut.data_cspc is not None: |
|
165 | 166 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
166 | 167 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
167 | 168 | if pairsList: |
|
168 | 169 | self.__selectPairs(pairsList) |
|
169 | 170 | |
|
170 | 171 | elif self.dataIn.type == "Voltage": |
|
171 | 172 | |
|
172 | 173 | self.dataOut.flagNoData = True |
|
173 | 174 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
174 | 175 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
175 | 176 | |
|
176 | 177 | if nFFTPoints == None: |
|
177 | 178 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
178 | 179 | |
|
179 | 180 | if nProfiles == None: |
|
180 | 181 | nProfiles = nFFTPoints |
|
181 | 182 | |
|
182 | 183 | if ippFactor == None: |
|
183 | 184 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
184 | 185 | else: |
|
185 | 186 | self.dataOut.ippFactor = ippFactor |
|
186 | 187 | |
|
187 | 188 | if self.buffer is None: |
|
188 | 189 | if not zeroPad: |
|
189 | 190 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
190 | 191 | nProfiles, |
|
191 | 192 | self.dataIn.nHeights), |
|
192 | 193 | dtype='complex') |
|
193 | 194 | zeroPoints = 0 |
|
194 | 195 | else: |
|
195 | 196 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
196 | 197 | nFFTPoints+int(zeroPoints), |
|
197 | 198 | self.dataIn.nHeights), |
|
198 | 199 | dtype='complex') |
|
199 | 200 | |
|
200 | 201 | self.dataOut.nFFTPoints = nFFTPoints |
|
201 | 202 | |
|
202 | 203 | if self.buffer is None: |
|
203 | 204 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
204 | 205 | nProfiles, |
|
205 | 206 | self.dataIn.nHeights), |
|
206 | 207 | dtype='complex') |
|
207 | 208 | |
|
208 | 209 | if self.dataIn.flagDataAsBlock: |
|
209 | 210 | nVoltProfiles = self.dataIn.data.shape[1] |
|
210 | 211 | zeroPoints = 0 |
|
211 | 212 | if nVoltProfiles == nProfiles or zeroPad: |
|
212 | 213 | self.buffer = self.dataIn.data.copy() |
|
213 | 214 | self.profIndex = nVoltProfiles |
|
214 | 215 | |
|
215 | 216 | elif nVoltProfiles < nProfiles: |
|
216 | 217 | |
|
217 | 218 | if self.profIndex == 0: |
|
218 | 219 | self.id_min = 0 |
|
219 | 220 | self.id_max = nVoltProfiles |
|
220 | 221 | |
|
221 | 222 | self.buffer[:, self.id_min:self.id_max, |
|
222 | 223 | :] = self.dataIn.data |
|
223 | 224 | self.profIndex += nVoltProfiles |
|
224 | 225 | self.id_min += nVoltProfiles |
|
225 | 226 | self.id_max += nVoltProfiles |
|
226 | 227 | elif nVoltProfiles > nProfiles: |
|
227 | 228 | self.reader.bypass = True |
|
228 | 229 | if self.profIndex == 0: |
|
229 | 230 | self.id_min = 0 |
|
230 | 231 | self.id_max = nProfiles |
|
231 | 232 | |
|
232 | 233 | self.buffer = self.dataIn.data[:, self.id_min:self.id_max,:] |
|
233 | 234 | self.profIndex += nProfiles |
|
234 | 235 | self.id_min += nProfiles |
|
235 | 236 | self.id_max += nProfiles |
|
236 | 237 | if self.id_max == nVoltProfiles: |
|
237 | 238 | self.reader.bypass = False |
|
238 | 239 | |
|
239 | 240 | else: |
|
240 | 241 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
241 | 242 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
242 | 243 | self.dataOut.flagNoData = True |
|
243 | 244 | else: |
|
244 | 245 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
245 | 246 | self.profIndex += 1 |
|
246 | 247 | |
|
247 | 248 | if self.firstdatatime == None: |
|
248 | 249 | self.firstdatatime = self.dataIn.utctime |
|
249 | 250 | |
|
250 | 251 | if self.profIndex == nProfiles or (zeroPad and zeroPoints==0): |
|
251 | 252 | |
|
252 | 253 | self.__updateSpecFromVoltage() |
|
253 | 254 | if pairsList == None: |
|
254 | 255 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
255 | 256 | else: |
|
256 | 257 | self.dataOut.pairsList = pairsList |
|
257 | 258 | self.__getFft() |
|
258 | 259 | self.dataOut.flagNoData = False |
|
259 | 260 | self.firstdatatime = None |
|
260 | 261 | self.nsamplesFFT = self.profIndex |
|
261 | 262 | #if not self.reader.bypass: |
|
262 | 263 | self.profIndex = 0 |
|
263 | 264 | #update Processing Header: |
|
264 | 265 | self.dataOut.processingHeaderObj.dtype = "Spectra" |
|
265 | 266 | self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints |
|
266 | 267 | self.dataOut.processingHeaderObj.nSamplesFFT = self.nsamplesFFT |
|
267 | 268 | self.dataOut.processingHeaderObj.nIncohInt = 1 |
|
268 | 269 | |
|
269 | 270 | elif self.dataIn.type == "Parameters": #when get data from h5 spc file |
|
270 | 271 | |
|
271 | 272 | self.dataOut.data_spc = self.dataIn.data_spc |
|
272 | 273 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
273 | 274 | self.dataOut.data_outlier = self.dataIn.data_outlier |
|
274 | 275 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
275 | 276 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
276 | 277 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
277 | 278 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
278 | 279 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt |
|
279 | 280 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
280 | 281 | self.dataOut.ProcessingHeader = self.dataIn.ProcessingHeader.copy() |
|
281 | 282 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
282 | 283 | self.dataOut.ipp = self.dataIn.ipp |
|
283 | 284 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
284 | 285 | #self.dataOut.spc_noise = self.dataIn.getNoise() |
|
285 | 286 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
286 | 287 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
287 | 288 | if hasattr(self.dataIn, 'channelList'): |
|
288 | 289 | self.dataOut.channelList = self.dataIn.channelList |
|
289 | 290 | if hasattr(self.dataIn, 'pairsList'): |
|
290 | 291 | self.dataOut.pairsList = self.dataIn.pairsList |
|
291 | 292 | self.dataOut.groupList = self.dataIn.pairsList |
|
292 | 293 | |
|
293 | 294 | self.dataOut.flagNoData = False |
|
294 | 295 | |
|
295 | 296 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
296 | 297 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
297 | 298 | else: self.dataOut.ChanDist = None |
|
298 | 299 | |
|
299 | 300 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
300 | 301 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
301 | 302 | #else: self.dataOut.VelRange = None |
|
302 | 303 | |
|
303 | 304 | else: |
|
304 | 305 | raise ValueError("The type of input object '%s' is not valid".format( |
|
305 | 306 | self.dataIn.type)) |
|
306 | 307 | # print("SPC done") |
|
307 | 308 | |
|
308 | 309 | def __selectPairs(self, pairsList): |
|
309 | 310 | |
|
310 | 311 | if not pairsList: |
|
311 | 312 | return |
|
312 | 313 | |
|
313 | 314 | pairs = [] |
|
314 | 315 | pairsIndex = [] |
|
315 | 316 | |
|
316 | 317 | for pair in pairsList: |
|
317 | 318 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
318 | 319 | continue |
|
319 | 320 | pairs.append(pair) |
|
320 | 321 | pairsIndex.append(pairs.index(pair)) |
|
321 | 322 | |
|
322 | 323 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
323 | 324 | self.dataOut.pairsList = pairs |
|
324 | 325 | |
|
325 | 326 | return |
|
326 | 327 | |
|
327 | 328 | def selectFFTs(self, minFFT, maxFFT ): |
|
328 | 329 | """ |
|
329 | 330 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
330 | 331 | minFFT<= FFT <= maxFFT |
|
331 | 332 | """ |
|
332 | 333 | |
|
333 | 334 | if (minFFT > maxFFT): |
|
334 | 335 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
335 | 336 | |
|
336 | 337 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
337 | 338 | minFFT = self.dataOut.getFreqRange()[0] |
|
338 | 339 | |
|
339 | 340 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
340 | 341 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
341 | 342 | |
|
342 | 343 | minIndex = 0 |
|
343 | 344 | maxIndex = 0 |
|
344 | 345 | FFTs = self.dataOut.getFreqRange() |
|
345 | 346 | |
|
346 | 347 | inda = numpy.where(FFTs >= minFFT) |
|
347 | 348 | indb = numpy.where(FFTs <= maxFFT) |
|
348 | 349 | |
|
349 | 350 | try: |
|
350 | 351 | minIndex = inda[0][0] |
|
351 | 352 | except: |
|
352 | 353 | minIndex = 0 |
|
353 | 354 | |
|
354 | 355 | try: |
|
355 | 356 | maxIndex = indb[0][-1] |
|
356 | 357 | except: |
|
357 | 358 | maxIndex = len(FFTs) |
|
358 | 359 | |
|
359 | 360 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
360 | 361 | |
|
361 | 362 | return 1 |
|
362 | 363 | |
|
363 | 364 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
364 | 365 | newheis = numpy.where( |
|
365 | 366 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
366 | 367 | |
|
367 | 368 | if hei_ref != None: |
|
368 | 369 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
369 | 370 | |
|
370 | 371 | minIndex = min(newheis[0]) |
|
371 | 372 | maxIndex = max(newheis[0]) |
|
372 | 373 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
373 | 374 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
374 | 375 | |
|
375 | 376 | # determina indices |
|
376 | 377 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
377 | 378 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
378 | 379 | avg_dB = 10 * \ |
|
379 | 380 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
380 | 381 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
381 | 382 | beacon_heiIndexList = [] |
|
382 | 383 | for val in avg_dB.tolist(): |
|
383 | 384 | if val >= beacon_dB[0]: |
|
384 | 385 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
385 | 386 | |
|
386 | 387 | data_cspc = None |
|
387 | 388 | if self.dataOut.data_cspc is not None: |
|
388 | 389 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
389 | 390 | |
|
390 | 391 | data_dc = None |
|
391 | 392 | if self.dataOut.data_dc is not None: |
|
392 | 393 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
393 | 394 | |
|
394 | 395 | self.dataOut.data_spc = data_spc |
|
395 | 396 | self.dataOut.data_cspc = data_cspc |
|
396 | 397 | self.dataOut.data_dc = data_dc |
|
397 | 398 | self.dataOut.heightList = heightList |
|
398 | 399 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
399 | 400 | |
|
400 | 401 | return 1 |
|
401 | 402 | |
|
402 | 403 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
403 | 404 | """ |
|
404 | 405 | |
|
405 | 406 | """ |
|
406 | 407 | |
|
407 | 408 | if (minIndex < 0) or (minIndex > maxIndex): |
|
408 | 409 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
409 | 410 | |
|
410 | 411 | if (maxIndex >= self.dataOut.nProfiles): |
|
411 | 412 | maxIndex = self.dataOut.nProfiles-1 |
|
412 | 413 | |
|
413 | 414 | #Spectra |
|
414 | 415 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
415 | 416 | |
|
416 | 417 | data_cspc = None |
|
417 | 418 | if self.dataOut.data_cspc is not None: |
|
418 | 419 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
419 | 420 | |
|
420 | 421 | data_dc = None |
|
421 | 422 | if self.dataOut.data_dc is not None: |
|
422 | 423 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
423 | 424 | |
|
424 | 425 | self.dataOut.data_spc = data_spc |
|
425 | 426 | self.dataOut.data_cspc = data_cspc |
|
426 | 427 | self.dataOut.data_dc = data_dc |
|
427 | 428 | |
|
428 | 429 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
429 | 430 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
430 | 431 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
431 | 432 | |
|
432 | 433 | return 1 |
|
433 | 434 | |
|
434 | 435 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
435 | 436 | # validacion de rango |
|
436 | 437 | if minHei == None: |
|
437 | 438 | minHei = self.dataOut.heightList[0] |
|
438 | 439 | |
|
439 | 440 | if maxHei == None: |
|
440 | 441 | maxHei = self.dataOut.heightList[-1] |
|
441 | 442 | |
|
442 | 443 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
443 | 444 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
444 | 445 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
445 | 446 | minHei = self.dataOut.heightList[0] |
|
446 | 447 | |
|
447 | 448 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
448 | 449 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
449 | 450 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
450 | 451 | maxHei = self.dataOut.heightList[-1] |
|
451 | 452 | |
|
452 | 453 | # validacion de velocidades |
|
453 | 454 | velrange = self.dataOut.getVelRange(1) |
|
454 | 455 | |
|
455 | 456 | if minVel == None: |
|
456 | 457 | minVel = velrange[0] |
|
457 | 458 | |
|
458 | 459 | if maxVel == None: |
|
459 | 460 | maxVel = velrange[-1] |
|
460 | 461 | |
|
461 | 462 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
462 | 463 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
463 | 464 | print('minVel is setting to %.2f' % (velrange[0])) |
|
464 | 465 | minVel = velrange[0] |
|
465 | 466 | |
|
466 | 467 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
467 | 468 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
468 | 469 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
469 | 470 | maxVel = velrange[-1] |
|
470 | 471 | |
|
471 | 472 | # seleccion de indices para rango |
|
472 | 473 | minIndex = 0 |
|
473 | 474 | maxIndex = 0 |
|
474 | 475 | heights = self.dataOut.heightList |
|
475 | 476 | |
|
476 | 477 | inda = numpy.where(heights >= minHei) |
|
477 | 478 | indb = numpy.where(heights <= maxHei) |
|
478 | 479 | |
|
479 | 480 | try: |
|
480 | 481 | minIndex = inda[0][0] |
|
481 | 482 | except: |
|
482 | 483 | minIndex = 0 |
|
483 | 484 | |
|
484 | 485 | try: |
|
485 | 486 | maxIndex = indb[0][-1] |
|
486 | 487 | except: |
|
487 | 488 | maxIndex = len(heights) |
|
488 | 489 | |
|
489 | 490 | if (minIndex < 0) or (minIndex > maxIndex): |
|
490 | 491 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
491 | 492 | minIndex, maxIndex)) |
|
492 | 493 | |
|
493 | 494 | if (maxIndex >= self.dataOut.nHeights): |
|
494 | 495 | maxIndex = self.dataOut.nHeights - 1 |
|
495 | 496 | |
|
496 | 497 | # seleccion de indices para velocidades |
|
497 | 498 | indminvel = numpy.where(velrange >= minVel) |
|
498 | 499 | indmaxvel = numpy.where(velrange <= maxVel) |
|
499 | 500 | try: |
|
500 | 501 | minIndexVel = indminvel[0][0] |
|
501 | 502 | except: |
|
502 | 503 | minIndexVel = 0 |
|
503 | 504 | |
|
504 | 505 | try: |
|
505 | 506 | maxIndexVel = indmaxvel[0][-1] |
|
506 | 507 | except: |
|
507 | 508 | maxIndexVel = len(velrange) |
|
508 | 509 | |
|
509 | 510 | # seleccion del espectro |
|
510 | 511 | data_spc = self.dataOut.data_spc[:, |
|
511 | 512 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
512 | 513 | # estimacion de ruido |
|
513 | 514 | noise = numpy.zeros(self.dataOut.nChannels) |
|
514 | 515 | |
|
515 | 516 | for channel in range(self.dataOut.nChannels): |
|
516 | 517 | daux = data_spc[channel, :, :] |
|
517 | 518 | sortdata = numpy.sort(daux, axis=None) |
|
518 | 519 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
519 | 520 | |
|
520 | 521 | self.dataOut.noise_estimation = noise.copy() |
|
521 | 522 | |
|
522 | 523 | return 1 |
|
523 | 524 | |
|
524 | 525 | class GetSNR(Operation): |
|
525 | 526 | ''' |
|
526 | 527 | Written by R. Flores |
|
527 | 528 | ''' |
|
528 | 529 | """Operation to get SNR. |
|
529 | 530 | |
|
530 | 531 | Parameters: |
|
531 | 532 | ----------- |
|
532 | 533 | |
|
533 | 534 | Example |
|
534 | 535 | -------- |
|
535 | 536 | |
|
536 | 537 | op = proc_unit.addOperation(name='GetSNR', optype='other') |
|
537 | 538 | |
|
538 | 539 | """ |
|
539 | 540 | |
|
540 | 541 | def __init__(self, **kwargs): |
|
541 | 542 | |
|
542 | 543 | Operation.__init__(self, **kwargs) |
|
543 | 544 | |
|
544 | 545 | def run(self,dataOut): |
|
545 | 546 | |
|
546 | 547 | noise = dataOut.getNoise(ymin_index=-10) #RegiΓ³n superior donde solo deberΓa de haber ruido |
|
547 | 548 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently |
|
548 | 549 | dataOut.snl = numpy.log10(dataOut.data_snr) |
|
549 | 550 | dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) |
|
550 | 551 | |
|
551 | 552 | return dataOut |
|
552 | 553 | |
|
553 | 554 | class removeDC(Operation): |
|
554 | 555 | |
|
555 | 556 | def run(self, dataOut, mode=2): |
|
556 | 557 | self.dataOut = dataOut |
|
557 | 558 | jspectra = self.dataOut.data_spc |
|
558 | 559 | jcspectra = self.dataOut.data_cspc |
|
559 | 560 | |
|
560 | 561 | num_chan = jspectra.shape[0] |
|
561 | 562 | num_hei = jspectra.shape[2] |
|
562 | 563 | |
|
563 | 564 | if jcspectra is not None: |
|
564 | 565 | jcspectraExist = True |
|
565 | 566 | num_pairs = jcspectra.shape[0] |
|
566 | 567 | else: |
|
567 | 568 | jcspectraExist = False |
|
568 | 569 | |
|
569 | 570 | freq_dc = int(jspectra.shape[1] / 2) |
|
570 | 571 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
571 | 572 | ind_vel = ind_vel.astype(int) |
|
572 | 573 | |
|
573 | 574 | if ind_vel[0] < 0: |
|
574 | 575 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
575 | 576 | |
|
576 | 577 | if mode == 1: |
|
577 | 578 | jspectra[:, freq_dc, :] = ( |
|
578 | 579 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
579 | 580 | |
|
580 | 581 | if jcspectraExist: |
|
581 | 582 | jcspectra[:, freq_dc, :] = ( |
|
582 | 583 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
583 | 584 | |
|
584 | 585 | if mode == 2: |
|
585 | 586 | |
|
586 | 587 | vel = numpy.array([-2, -1, 1, 2]) |
|
587 | 588 | xx = numpy.zeros([4, 4]) |
|
588 | 589 | |
|
589 | 590 | for fil in range(4): |
|
590 | 591 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
591 | 592 | |
|
592 | 593 | xx_inv = numpy.linalg.inv(xx) |
|
593 | 594 | xx_aux = xx_inv[0, :] |
|
594 | 595 | |
|
595 | 596 | for ich in range(num_chan): |
|
596 | 597 | yy = jspectra[ich, ind_vel, :] |
|
597 | 598 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
598 | 599 | |
|
599 | 600 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
600 | 601 | cjunkid = sum(junkid) |
|
601 | 602 | |
|
602 | 603 | if cjunkid.any(): |
|
603 | 604 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
604 | 605 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
605 | 606 | |
|
606 | 607 | if jcspectraExist: |
|
607 | 608 | for ip in range(num_pairs): |
|
608 | 609 | yy = jcspectra[ip, ind_vel, :] |
|
609 | 610 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
610 | 611 | |
|
611 | 612 | self.dataOut.data_spc = jspectra |
|
612 | 613 | self.dataOut.data_cspc = jcspectra |
|
613 | 614 | |
|
614 | 615 | return self.dataOut |
|
615 | 616 | class getNoiseB(Operation): |
|
616 | 617 | """ |
|
617 | 618 | Get noise from custom heights and frequency ranges, |
|
618 | 619 | offset for additional manual correction |
|
619 | 620 | J. Apaza -> developed to amisr isr spectra |
|
620 | 621 | |
|
621 | 622 | """ |
|
622 | 623 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') |
|
623 | 624 | def __init__(self): |
|
624 | 625 | |
|
625 | 626 | Operation.__init__(self) |
|
626 | 627 | self.isConfig = False |
|
627 | 628 | |
|
628 | 629 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
629 | 630 | |
|
630 | 631 | self.warnings = warnings |
|
631 | 632 | if minHei == None: |
|
632 | 633 | minHei = self.dataOut.heightList[0] |
|
633 | 634 | |
|
634 | 635 | if maxHei == None: |
|
635 | 636 | maxHei = self.dataOut.heightList[-1] |
|
636 | 637 | |
|
637 | 638 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
638 | 639 | if self.warnings: |
|
639 | 640 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
640 | 641 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
641 | 642 | minHei = self.dataOut.heightList[0] |
|
642 | 643 | |
|
643 | 644 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
644 | 645 | if self.warnings: |
|
645 | 646 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
646 | 647 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
647 | 648 | maxHei = self.dataOut.heightList[-1] |
|
648 | 649 | |
|
649 | 650 | |
|
650 | 651 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
651 | 652 | minIndexFFT = 0 |
|
652 | 653 | maxIndexFFT = 0 |
|
653 | 654 | # validacion de velocidades |
|
654 | 655 | indminPoint = None |
|
655 | 656 | indmaxPoint = None |
|
656 | 657 | if self.dataOut.type == 'Spectra': |
|
657 | 658 | if minVel == None and maxVel == None : |
|
658 | 659 | |
|
659 | 660 | freqrange = self.dataOut.getFreqRange(1) |
|
660 | 661 | |
|
661 | 662 | if minFreq == None: |
|
662 | 663 | minFreq = freqrange[0] |
|
663 | 664 | |
|
664 | 665 | if maxFreq == None: |
|
665 | 666 | maxFreq = freqrange[-1] |
|
666 | 667 | |
|
667 | 668 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
668 | 669 | if self.warnings: |
|
669 | 670 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
670 | 671 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
671 | 672 | minFreq = freqrange[0] |
|
672 | 673 | |
|
673 | 674 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
674 | 675 | if self.warnings: |
|
675 | 676 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
676 | 677 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
677 | 678 | maxFreq = freqrange[-1] |
|
678 | 679 | |
|
679 | 680 | indminPoint = numpy.where(freqrange >= minFreq) |
|
680 | 681 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
681 | 682 | |
|
682 | 683 | else: |
|
683 | 684 | |
|
684 | 685 | velrange = self.dataOut.getVelRange(1) |
|
685 | 686 | |
|
686 | 687 | if minVel == None: |
|
687 | 688 | minVel = velrange[0] |
|
688 | 689 | |
|
689 | 690 | if maxVel == None: |
|
690 | 691 | maxVel = velrange[-1] |
|
691 | 692 | |
|
692 | 693 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
693 | 694 | if self.warnings: |
|
694 | 695 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
695 | 696 | print('minVel is setting to %.2f' % (velrange[0])) |
|
696 | 697 | minVel = velrange[0] |
|
697 | 698 | |
|
698 | 699 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
699 | 700 | if self.warnings: |
|
700 | 701 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
701 | 702 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
702 | 703 | maxVel = velrange[-1] |
|
703 | 704 | |
|
704 | 705 | indminPoint = numpy.where(velrange >= minVel) |
|
705 | 706 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
706 | 707 | |
|
707 | 708 | |
|
708 | 709 | # seleccion de indices para rango REEMPLAZAR FOR FUNCION EXTERNA LUEGO |
|
709 | 710 | # minIndex = 0 |
|
710 | 711 | # maxIndex = 0 |
|
711 | 712 | # heights = self.dataOut.heightList |
|
712 | 713 | # inda = numpy.where(heights >= minHei) |
|
713 | 714 | # indb = numpy.where(heights <= maxHei) |
|
714 | 715 | # try: |
|
715 | 716 | # minIndex = inda[0][0] |
|
716 | 717 | # except: |
|
717 | 718 | # minIndex = 0 |
|
718 | 719 | # try: |
|
719 | 720 | # maxIndex = indb[0][-1] |
|
720 | 721 | # except: |
|
721 | 722 | # maxIndex = len(heights) |
|
722 | 723 | # if (minIndex < 0) or (minIndex > maxIndex): |
|
723 | 724 | # raise ValueError("some value in (%d,%d) is not valid" % ( |
|
724 | 725 | # minIndex, maxIndex)) |
|
725 | 726 | # if (maxIndex >= self.dataOut.nHeights): |
|
726 | 727 | # maxIndex = self.dataOut.nHeights - 1 |
|
727 | 728 | |
|
728 | 729 | minIndex, maxIndex = getHei_index(minHei,maxHei,self.dataOut.heightList) |
|
729 | 730 | |
|
730 | 731 | |
|
731 | 732 | #############################################################3 |
|
732 | 733 | # seleccion de indices para velocidades |
|
733 | 734 | if self.dataOut.type == 'Spectra': |
|
734 | 735 | try: |
|
735 | 736 | minIndexFFT = indminPoint[0][0] |
|
736 | 737 | except: |
|
737 | 738 | minIndexFFT = 0 |
|
738 | 739 | |
|
739 | 740 | try: |
|
740 | 741 | maxIndexFFT = indmaxPoint[0][-1] |
|
741 | 742 | except: |
|
742 | 743 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
743 | 744 | |
|
744 | 745 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT |
|
745 | 746 | self.isConfig = True |
|
746 | 747 | self.offset = 1 |
|
747 | 748 | if offset!=None: |
|
748 | 749 | self.offset = 10**(offset/10) |
|
749 | 750 | |
|
750 | 751 | |
|
751 | 752 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
752 | 753 | self.dataOut = dataOut |
|
753 | 754 | |
|
754 | 755 | if not self.isConfig: |
|
755 | 756 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) |
|
756 | 757 | |
|
757 | 758 | self.dataOut.noise_estimation = None |
|
758 | 759 | noise = None |
|
759 | 760 | if self.dataOut.type == 'Voltage': |
|
760 | 761 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
761 | 762 | elif self.dataOut.type == 'Spectra': |
|
762 | 763 | noise = numpy.zeros( self.dataOut.nChannels) |
|
763 | 764 | norm = 1 |
|
764 | 765 | |
|
765 | 766 | for channel in range( self.dataOut.nChannels): |
|
766 | 767 | if not hasattr(self.dataOut.nIncohInt,'__len__'): |
|
767 | 768 | norm = 1 |
|
768 | 769 | else: |
|
769 | 770 | norm = self.dataOut.max_nIncohInt[channel]/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] |
|
770 | 771 | |
|
771 | 772 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] |
|
772 | 773 | daux = numpy.multiply(daux, norm) |
|
773 | 774 | sortdata = numpy.sort(daux, axis=None) |
|
774 | 775 | noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt[channel])/self.offset |
|
775 | 776 | |
|
776 | 777 | else: |
|
777 | 778 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
778 | 779 | |
|
779 | 780 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise |
|
780 | 781 | |
|
781 | 782 | return self.dataOut |
|
782 | 783 | |
|
783 | 784 | def getNoiseByMean(self,data): |
|
784 | 785 | #data debe estar ordenado |
|
785 | 786 | data = numpy.mean(data,axis=1) |
|
786 | 787 | sortdata = numpy.sort(data, axis=None) |
|
787 | 788 | pnoise = None |
|
788 | 789 | j = 0 |
|
789 | 790 | |
|
790 | 791 | mean = numpy.mean(sortdata) |
|
791 | 792 | min = numpy.min(sortdata) |
|
792 | 793 | delta = mean - min |
|
793 | 794 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes |
|
794 | 795 | #print(len(indexes)) |
|
795 | 796 | if len(indexes)==0: |
|
796 | 797 | pnoise = numpy.mean(sortdata) |
|
797 | 798 | else: |
|
798 | 799 | j = indexes[0] |
|
799 | 800 | pnoise = numpy.mean(sortdata[0:j]) |
|
800 | 801 | |
|
801 | 802 | return pnoise |
|
802 | 803 | |
|
803 | 804 | def getNoiseByHS(self,data, navg): |
|
804 | 805 | #data debe estar ordenado |
|
805 | 806 | #data = numpy.mean(data,axis=1) |
|
806 | 807 | sortdata = numpy.sort(data, axis=None) |
|
807 | 808 | |
|
808 | 809 | lenOfData = len(sortdata) |
|
809 | 810 | nums_min = lenOfData*0.2 |
|
810 | 811 | |
|
811 | 812 | if nums_min <= 5: |
|
812 | 813 | |
|
813 | 814 | nums_min = 5 |
|
814 | 815 | |
|
815 | 816 | sump = 0. |
|
816 | 817 | sumq = 0. |
|
817 | 818 | |
|
818 | 819 | j = 0 |
|
819 | 820 | cont = 1 |
|
820 | 821 | |
|
821 | 822 | while((cont == 1)and(j < lenOfData)): |
|
822 | 823 | |
|
823 | 824 | sump += sortdata[j] |
|
824 | 825 | sumq += sortdata[j]**2 |
|
825 | 826 | #sumq -= sump**2 |
|
826 | 827 | if j > nums_min: |
|
827 | 828 | rtest = float(j)/(j-1) + 1.0/navg |
|
828 | 829 | #if ((sumq*j) > (sump**2)): |
|
829 | 830 | if ((sumq*j) > (rtest*sump**2)): |
|
830 | 831 | j = j - 1 |
|
831 | 832 | sump = sump - sortdata[j] |
|
832 | 833 | sumq = sumq - sortdata[j]**2 |
|
833 | 834 | cont = 0 |
|
834 | 835 | |
|
835 | 836 | j += 1 |
|
836 | 837 | |
|
837 | 838 | lnoise = sump / j |
|
838 | 839 | |
|
839 | 840 | return lnoise |
|
840 | 841 | |
|
841 | 842 | class removeInterference(Operation): |
|
842 | 843 | |
|
843 | 844 | def removeInterference2(self): |
|
844 | 845 | |
|
845 | 846 | cspc = self.dataOut.data_cspc |
|
846 | 847 | spc = self.dataOut.data_spc |
|
847 | 848 | Heights = numpy.arange(cspc.shape[2]) |
|
848 | 849 | realCspc = numpy.abs(cspc) |
|
849 | 850 | |
|
850 | 851 | for i in range(cspc.shape[0]): |
|
851 | 852 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
852 | 853 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
853 | 854 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
854 | 855 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
855 | 856 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
856 | 857 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
857 | 858 | |
|
858 | 859 | |
|
859 | 860 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
860 | 861 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
861 | 862 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
862 | 863 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
863 | 864 | |
|
864 | 865 | self.dataOut.data_cspc = cspc |
|
865 | 866 | |
|
866 | 867 | def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): |
|
867 | 868 | |
|
868 | 869 | jspectra = self.dataOut.data_spc |
|
869 | 870 | jcspectra = self.dataOut.data_cspc |
|
870 | 871 | jnoise = self.dataOut.getNoise() |
|
871 | 872 | num_incoh = self.dataOut.nIncohInt |
|
872 | 873 | |
|
873 | 874 | num_channel = jspectra.shape[0] |
|
874 | 875 | num_prof = jspectra.shape[1] |
|
875 | 876 | num_hei = jspectra.shape[2] |
|
876 | 877 | |
|
877 | 878 | # hei_interf |
|
878 | 879 | if hei_interf is None: |
|
879 | 880 | count_hei = int(num_hei / 2) |
|
880 | 881 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
881 | 882 | hei_interf = numpy.asarray(hei_interf)[0] |
|
882 | 883 | # nhei_interf |
|
883 | 884 | if (nhei_interf == None): |
|
884 | 885 | nhei_interf = 5 |
|
885 | 886 | if (nhei_interf < 1): |
|
886 | 887 | nhei_interf = 1 |
|
887 | 888 | if (nhei_interf > count_hei): |
|
888 | 889 | nhei_interf = count_hei |
|
889 | 890 | if (offhei_interf == None): |
|
890 | 891 | offhei_interf = 0 |
|
891 | 892 | |
|
892 | 893 | ind_hei = list(range(num_hei)) |
|
893 | 894 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
894 | 895 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
895 | 896 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
896 | 897 | num_mask_prof = mask_prof.size |
|
897 | 898 | comp_mask_prof = [0, num_prof / 2] |
|
898 | 899 | |
|
899 | 900 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
900 | 901 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
901 | 902 | jnoise = numpy.nan |
|
902 | 903 | noise_exist = jnoise[0] < numpy.Inf |
|
903 | 904 | |
|
904 | 905 | # Subrutina de Remocion de la Interferencia |
|
905 | 906 | for ich in range(num_channel): |
|
906 | 907 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
907 | 908 | power = jspectra[ich, mask_prof, :] |
|
908 | 909 | power = power[:, hei_interf] |
|
909 | 910 | power = power.sum(axis=0) |
|
910 | 911 | psort = power.ravel().argsort() |
|
911 | 912 | |
|
912 | 913 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
913 | 914 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
914 | 915 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
915 | 916 | |
|
916 | 917 | if noise_exist: |
|
917 | 918 | # tmp_noise = jnoise[ich] / num_prof |
|
918 | 919 | tmp_noise = jnoise[ich] |
|
919 | 920 | junkspc_interf = junkspc_interf - tmp_noise |
|
920 | 921 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
921 | 922 | |
|
922 | 923 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
923 | 924 | jspc_interf = jspc_interf.transpose() |
|
924 | 925 | # Calculando el espectro de interferencia promedio |
|
925 | 926 | noiseid = numpy.where( |
|
926 | 927 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
927 | 928 | noiseid = noiseid[0] |
|
928 | 929 | cnoiseid = noiseid.size |
|
929 | 930 | interfid = numpy.where( |
|
930 | 931 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
931 | 932 | interfid = interfid[0] |
|
932 | 933 | cinterfid = interfid.size |
|
933 | 934 | |
|
934 | 935 | if (cnoiseid > 0): |
|
935 | 936 | jspc_interf[noiseid] = 0 |
|
936 | 937 | |
|
937 | 938 | # Expandiendo los perfiles a limpiar |
|
938 | 939 | if (cinterfid > 0): |
|
939 | 940 | new_interfid = ( |
|
940 | 941 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
941 | 942 | new_interfid = numpy.asarray(new_interfid) |
|
942 | 943 | new_interfid = {x for x in new_interfid} |
|
943 | 944 | new_interfid = numpy.array(list(new_interfid)) |
|
944 | 945 | new_cinterfid = new_interfid.size |
|
945 | 946 | else: |
|
946 | 947 | new_cinterfid = 0 |
|
947 | 948 | |
|
948 | 949 | for ip in range(new_cinterfid): |
|
949 | 950 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
950 | 951 | jspc_interf[new_interfid[ip] |
|
951 | 952 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
952 | 953 | |
|
953 | 954 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
954 | 955 | ind_hei] - jspc_interf # Corregir indices |
|
955 | 956 | |
|
956 | 957 | # Removiendo la interferencia del punto de mayor interferencia |
|
957 | 958 | ListAux = jspc_interf[mask_prof].tolist() |
|
958 | 959 | maxid = ListAux.index(max(ListAux)) |
|
959 | 960 | |
|
960 | 961 | if cinterfid > 0: |
|
961 | 962 | for ip in range(cinterfid * (interf == 2) - 1): |
|
962 | 963 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
963 | 964 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
964 | 965 | cind = len(ind) |
|
965 | 966 | |
|
966 | 967 | if (cind > 0): |
|
967 | 968 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
968 | 969 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
969 | 970 | numpy.sqrt(num_incoh)) |
|
970 | 971 | |
|
971 | 972 | ind = numpy.array([-2, -1, 1, 2]) |
|
972 | 973 | xx = numpy.zeros([4, 4]) |
|
973 | 974 | |
|
974 | 975 | for id1 in range(4): |
|
975 | 976 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
976 | 977 | |
|
977 | 978 | xx_inv = numpy.linalg.inv(xx) |
|
978 | 979 | xx = xx_inv[:, 0] |
|
979 | 980 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
980 | 981 | yy = jspectra[ich, mask_prof[ind], :] |
|
981 | 982 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
982 | 983 | yy.transpose(), xx) |
|
983 | 984 | |
|
984 | 985 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
985 | 986 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
986 | 987 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
987 | 988 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
988 | 989 | |
|
989 | 990 | # Remocion de Interferencia en el Cross Spectra |
|
990 | 991 | if jcspectra is None: |
|
991 | 992 | return jspectra, jcspectra |
|
992 | 993 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
993 | 994 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
994 | 995 | |
|
995 | 996 | for ip in range(num_pairs): |
|
996 | 997 | |
|
997 | 998 | #------------------------------------------- |
|
998 | 999 | |
|
999 | 1000 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1000 | 1001 | cspower = cspower[:, hei_interf] |
|
1001 | 1002 | cspower = cspower.sum(axis=0) |
|
1002 | 1003 | |
|
1003 | 1004 | cspsort = cspower.ravel().argsort() |
|
1004 | 1005 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1005 | 1006 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1006 | 1007 | junkcspc_interf = junkcspc_interf.transpose() |
|
1007 | 1008 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1008 | 1009 | |
|
1009 | 1010 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1010 | 1011 | |
|
1011 | 1012 | median_real = int(numpy.median(numpy.real( |
|
1012 | 1013 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1013 | 1014 | median_imag = int(numpy.median(numpy.imag( |
|
1014 | 1015 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1015 | 1016 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1016 | 1017 | junkcspc_interf[comp_mask_prof, :] = numpy.complex_( |
|
1017 | 1018 | median_real, median_imag) |
|
1018 | 1019 | |
|
1019 | 1020 | for iprof in range(num_prof): |
|
1020 | 1021 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1021 | 1022 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1022 | 1023 | |
|
1023 | 1024 | # Removiendo la Interferencia |
|
1024 | 1025 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1025 | 1026 | :, ind_hei] - jcspc_interf |
|
1026 | 1027 | |
|
1027 | 1028 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1028 | 1029 | maxid = ListAux.index(max(ListAux)) |
|
1029 | 1030 | |
|
1030 | 1031 | ind = numpy.array([-2, -1, 1, 2]) |
|
1031 | 1032 | xx = numpy.zeros([4, 4]) |
|
1032 | 1033 | |
|
1033 | 1034 | for id1 in range(4): |
|
1034 | 1035 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1035 | 1036 | |
|
1036 | 1037 | xx_inv = numpy.linalg.inv(xx) |
|
1037 | 1038 | xx = xx_inv[:, 0] |
|
1038 | 1039 | |
|
1039 | 1040 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1040 | 1041 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1041 | 1042 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1042 | 1043 | |
|
1043 | 1044 | # Guardar Resultados |
|
1044 | 1045 | self.dataOut.data_spc = jspectra |
|
1045 | 1046 | self.dataOut.data_cspc = jcspectra |
|
1046 | 1047 | |
|
1047 | 1048 | return 1 |
|
1048 | 1049 | |
|
1049 | 1050 | |
|
1050 | 1051 | def run(self, dataOut, interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None, mode=1): |
|
1051 | 1052 | |
|
1052 | 1053 | self.dataOut = dataOut |
|
1053 | 1054 | |
|
1054 | 1055 | if mode == 1: |
|
1055 | 1056 | self.removeInterference(interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None) |
|
1056 | 1057 | elif mode == 2: |
|
1057 | 1058 | self.removeInterference2() |
|
1058 | 1059 | |
|
1059 | 1060 | return self.dataOut |
|
1060 | 1061 | |
|
1061 | 1062 | |
|
1062 | 1063 | class deflip(Operation): |
|
1063 | 1064 | |
|
1064 | 1065 | def run(self, dataOut): |
|
1065 | 1066 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1066 | 1067 | self.dataOut = dataOut |
|
1067 | 1068 | |
|
1068 | 1069 | # JULIA-oblicua, indice 2 |
|
1069 | 1070 | # arreglo 2: (num_profiles, num_heights) |
|
1070 | 1071 | jspectra = self.dataOut.data_spc[2] |
|
1071 | 1072 | jspectra_tmp=numpy.zeros(jspectra.shape) |
|
1072 | 1073 | num_profiles=jspectra.shape[0] |
|
1073 | 1074 | freq_dc = int(num_profiles / 2) |
|
1074 | 1075 | # Flip con for |
|
1075 | 1076 | for j in range(num_profiles): |
|
1076 | 1077 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1077 | 1078 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1078 | 1079 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1079 | 1080 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1080 | 1081 | # canal modificado es re-escrito en el arreglo de canales |
|
1081 | 1082 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1082 | 1083 | |
|
1083 | 1084 | return self.dataOut |
|
1084 | 1085 | |
|
1085 | 1086 | |
|
1086 | 1087 | class IncohInt(Operation): |
|
1087 | 1088 | |
|
1088 | 1089 | __profIndex = 0 |
|
1089 | 1090 | __withOverapping = False |
|
1090 | 1091 | |
|
1091 | 1092 | __byTime = False |
|
1092 | 1093 | __initime = None |
|
1093 | 1094 | __lastdatatime = None |
|
1094 | 1095 | __integrationtime = None |
|
1095 | 1096 | |
|
1096 | 1097 | __buffer_spc = None |
|
1097 | 1098 | __buffer_cspc = None |
|
1098 | 1099 | __buffer_dc = None |
|
1099 | 1100 | |
|
1100 | 1101 | __dataReady = False |
|
1101 | 1102 | |
|
1102 | 1103 | __timeInterval = None |
|
1103 | 1104 | incohInt = 0 |
|
1104 | 1105 | nOutliers = 0 |
|
1105 | 1106 | n = None |
|
1106 | 1107 | |
|
1107 | 1108 | _flagProfilesByRange = False |
|
1108 | 1109 | _nProfilesByRange = 0 |
|
1109 | 1110 | def __init__(self): |
|
1110 | 1111 | |
|
1111 | 1112 | Operation.__init__(self) |
|
1112 | 1113 | |
|
1113 | 1114 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1114 | 1115 | """ |
|
1115 | 1116 | Set the parameters of the integration class. |
|
1116 | 1117 | |
|
1117 | 1118 | Inputs: |
|
1118 | 1119 | |
|
1119 | 1120 | n : Number of coherent integrations |
|
1120 | 1121 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1121 | 1122 | overlapping : |
|
1122 | 1123 | |
|
1123 | 1124 | """ |
|
1124 | 1125 | |
|
1125 | 1126 | self.__initime = None |
|
1126 | 1127 | self.__lastdatatime = 0 |
|
1127 | 1128 | |
|
1128 | 1129 | self.__buffer_spc = 0 |
|
1129 | 1130 | self.__buffer_cspc = 0 |
|
1130 | 1131 | self.__buffer_dc = 0 |
|
1131 | 1132 | |
|
1132 | 1133 | self.__profIndex = 0 |
|
1133 | 1134 | self.__dataReady = False |
|
1134 | 1135 | self.__byTime = False |
|
1135 | 1136 | self.incohInt = 0 |
|
1136 | 1137 | self.nOutliers = 0 |
|
1137 | 1138 | if n is None and timeInterval is None: |
|
1138 | 1139 | raise ValueError("n or timeInterval should be specified ...") |
|
1139 | 1140 | |
|
1140 | 1141 | if n is not None: |
|
1141 | 1142 | self.n = int(n) |
|
1142 | 1143 | else: |
|
1143 | 1144 | |
|
1144 | 1145 | self.__integrationtime = int(timeInterval) |
|
1145 | 1146 | self.n = None |
|
1146 | 1147 | self.__byTime = True |
|
1147 | 1148 | |
|
1148 | 1149 | |
|
1149 | 1150 | |
|
1150 | 1151 | def putData(self, data_spc, data_cspc, data_dc): |
|
1151 | 1152 | """ |
|
1152 | 1153 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1153 | 1154 | |
|
1154 | 1155 | """ |
|
1155 | 1156 | if data_spc.all() == numpy.nan : |
|
1156 | 1157 | print("nan ") |
|
1157 | 1158 | return |
|
1158 | 1159 | self.__buffer_spc += data_spc |
|
1159 | 1160 | |
|
1160 | 1161 | if data_cspc is None: |
|
1161 | 1162 | self.__buffer_cspc = None |
|
1162 | 1163 | else: |
|
1163 | 1164 | self.__buffer_cspc += data_cspc |
|
1164 | 1165 | |
|
1165 | 1166 | if data_dc is None: |
|
1166 | 1167 | self.__buffer_dc = None |
|
1167 | 1168 | else: |
|
1168 | 1169 | self.__buffer_dc += data_dc |
|
1169 | 1170 | |
|
1170 | 1171 | self.__profIndex += 1 |
|
1171 | 1172 | |
|
1172 | 1173 | return |
|
1173 | 1174 | |
|
1174 | 1175 | def pushData(self): |
|
1175 | 1176 | """ |
|
1176 | 1177 | Return the sum of the last profiles and the profiles used in the sum. |
|
1177 | 1178 | |
|
1178 | 1179 | Affected: |
|
1179 | 1180 | |
|
1180 | 1181 | self.__profileIndex |
|
1181 | 1182 | |
|
1182 | 1183 | """ |
|
1183 | 1184 | |
|
1184 | 1185 | data_spc = self.__buffer_spc |
|
1185 | 1186 | data_cspc = self.__buffer_cspc |
|
1186 | 1187 | data_dc = self.__buffer_dc |
|
1187 | 1188 | n = self.__profIndex |
|
1188 | 1189 | |
|
1189 | 1190 | self.__buffer_spc = 0 |
|
1190 | 1191 | self.__buffer_cspc = 0 |
|
1191 | 1192 | self.__buffer_dc = 0 |
|
1192 | 1193 | |
|
1193 | 1194 | |
|
1194 | 1195 | return data_spc, data_cspc, data_dc, n |
|
1195 | 1196 | |
|
1196 | 1197 | def byProfiles(self, *args): |
|
1197 | 1198 | |
|
1198 | 1199 | self.__dataReady = False |
|
1199 | 1200 | avgdata_spc = None |
|
1200 | 1201 | avgdata_cspc = None |
|
1201 | 1202 | avgdata_dc = None |
|
1202 | 1203 | |
|
1203 | 1204 | self.putData(*args) |
|
1204 | 1205 | |
|
1205 | 1206 | if self.__profIndex == self.n: |
|
1206 | 1207 | |
|
1207 | 1208 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1208 | 1209 | self.n = n |
|
1209 | 1210 | self.__dataReady = True |
|
1210 | 1211 | |
|
1211 | 1212 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1212 | 1213 | |
|
1213 | 1214 | def byTime(self, datatime, *args): |
|
1214 | 1215 | |
|
1215 | 1216 | self.__dataReady = False |
|
1216 | 1217 | avgdata_spc = None |
|
1217 | 1218 | avgdata_cspc = None |
|
1218 | 1219 | avgdata_dc = None |
|
1219 | 1220 | |
|
1220 | 1221 | self.putData(*args) |
|
1221 | 1222 | |
|
1222 | 1223 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1223 | 1224 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1224 | 1225 | self.n = n |
|
1225 | 1226 | self.__dataReady = True |
|
1226 | 1227 | |
|
1227 | 1228 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1228 | 1229 | |
|
1229 | 1230 | def integrate(self, datatime, *args): |
|
1230 | 1231 | |
|
1231 | 1232 | if self.__profIndex == 0: |
|
1232 | 1233 | self.__initime = datatime |
|
1233 | 1234 | |
|
1234 | 1235 | if self.__byTime: |
|
1235 | 1236 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1236 | 1237 | datatime, *args) |
|
1237 | 1238 | else: |
|
1238 | 1239 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1239 | 1240 | |
|
1240 | 1241 | if not self.__dataReady: |
|
1241 | 1242 | return None, None, None, None |
|
1242 | 1243 | |
|
1243 | 1244 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1244 | 1245 | |
|
1245 | 1246 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1246 | 1247 | if n == 1: |
|
1247 | 1248 | return dataOut |
|
1248 | 1249 | |
|
1249 | 1250 | if dataOut.flagNoData == True: |
|
1250 | 1251 | return dataOut |
|
1251 | 1252 | |
|
1252 | 1253 | if dataOut.flagProfilesByRange == True: |
|
1253 | 1254 | self._flagProfilesByRange = True |
|
1254 | 1255 | |
|
1255 | 1256 | dataOut.flagNoData = True |
|
1256 | 1257 | dataOut.processingHeaderObj.timeIncohInt = timeInterval |
|
1257 | 1258 | if not self.isConfig: |
|
1258 | 1259 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) |
|
1259 | 1260 | self.setup(n, timeInterval, overlapping) |
|
1260 | 1261 | self.isConfig = True |
|
1261 | 1262 | |
|
1262 | 1263 | |
|
1263 | 1264 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1264 | 1265 | dataOut.data_spc, |
|
1265 | 1266 | dataOut.data_cspc, |
|
1266 | 1267 | dataOut.data_dc) |
|
1267 | 1268 | |
|
1268 | 1269 | self.incohInt += dataOut.nIncohInt |
|
1269 | 1270 | |
|
1270 | 1271 | |
|
1271 | 1272 | if isinstance(dataOut.data_outlier,numpy.ndarray) or isinstance(dataOut.data_outlier,int) or isinstance(dataOut.data_outlier, float): |
|
1272 | 1273 | self.nOutliers += dataOut.data_outlier |
|
1273 | 1274 | |
|
1274 | 1275 | if self._flagProfilesByRange: |
|
1275 | 1276 | dataOut.flagProfilesByRange = True |
|
1276 | 1277 | self._nProfilesByRange += dataOut.nProfilesByRange |
|
1277 | 1278 | |
|
1278 | 1279 | if self.__dataReady: |
|
1279 | 1280 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) |
|
1280 | 1281 | dataOut.data_spc = avgdata_spc |
|
1281 | 1282 | dataOut.data_cspc = avgdata_cspc |
|
1282 | 1283 | dataOut.data_dc = avgdata_dc |
|
1283 | 1284 | dataOut.nIncohInt = self.incohInt |
|
1284 | 1285 | dataOut.data_outlier = self.nOutliers |
|
1285 | 1286 | dataOut.utctime = avgdatatime |
|
1286 | 1287 | dataOut.flagNoData = False |
|
1287 | 1288 | self.incohInt = 0 |
|
1288 | 1289 | self.nOutliers = 0 |
|
1289 | 1290 | self.__profIndex = 0 |
|
1290 | 1291 | dataOut.nProfilesByRange = self._nProfilesByRange |
|
1291 | 1292 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) |
|
1292 | 1293 | self._flagProfilesByRange = False |
|
1293 | 1294 | # print("IncohInt Done") |
|
1294 | 1295 | return dataOut |
|
1295 | 1296 | |
|
1296 | 1297 | |
|
1297 | 1298 | class IntegrationFaradaySpectra(Operation): |
|
1298 | 1299 | |
|
1299 | 1300 | __profIndex = 0 |
|
1300 | 1301 | __withOverapping = False |
|
1301 | 1302 | |
|
1302 | 1303 | __byTime = False |
|
1303 | 1304 | __initime = None |
|
1304 | 1305 | __lastdatatime = None |
|
1305 | 1306 | __integrationtime = None |
|
1306 | 1307 | |
|
1307 | 1308 | __buffer_spc = None |
|
1308 | 1309 | __buffer_cspc = None |
|
1309 | 1310 | __buffer_dc = None |
|
1310 | 1311 | |
|
1311 | 1312 | __dataReady = False |
|
1312 | 1313 | |
|
1313 | 1314 | __timeInterval = None |
|
1314 | 1315 | n_ints = None #matriz de numero de integracions (CH,HEI) |
|
1315 | 1316 | n = None |
|
1316 | 1317 | minHei_ind = None |
|
1317 | 1318 | maxHei_ind = None |
|
1318 | 1319 | navg = 1.0 |
|
1319 | 1320 | factor = 0.0 |
|
1320 | 1321 | dataoutliers = None # (CHANNELS, HEIGHTS) |
|
1321 | 1322 | |
|
1322 | 1323 | _flagProfilesByRange = False |
|
1323 | 1324 | _nProfilesByRange = 0 |
|
1324 | 1325 | |
|
1325 | 1326 | def __init__(self): |
|
1326 | 1327 | |
|
1327 | 1328 | Operation.__init__(self) |
|
1328 | 1329 | |
|
1329 | 1330 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): |
|
1330 | 1331 | """ |
|
1331 | 1332 | Set the parameters of the integration class. |
|
1332 | 1333 | |
|
1333 | 1334 | Inputs: |
|
1334 | 1335 | |
|
1335 | 1336 | n : Number of coherent integrations |
|
1336 | 1337 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1337 | 1338 | overlapping : |
|
1338 | 1339 | |
|
1339 | 1340 | """ |
|
1340 | 1341 | |
|
1341 | 1342 | self.__initime = None |
|
1342 | 1343 | self.__lastdatatime = 0 |
|
1343 | 1344 | |
|
1344 | 1345 | self.__buffer_spc = [] |
|
1345 | 1346 | self.__buffer_cspc = [] |
|
1346 | 1347 | self.__buffer_dc = 0 |
|
1347 | 1348 | |
|
1348 | 1349 | self.__profIndex = 0 |
|
1349 | 1350 | self.__dataReady = False |
|
1350 | 1351 | self.__byTime = False |
|
1351 | 1352 | |
|
1352 | 1353 | self.factor = factor |
|
1353 | 1354 | self.navg = avg |
|
1354 | 1355 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1355 | 1356 | self.ByLags = False |
|
1356 | 1357 | self.maxProfilesInt = 0 |
|
1357 | 1358 | self.__nChannels = dataOut.nChannels |
|
1358 | 1359 | if DPL != None: |
|
1359 | 1360 | self.DPL=DPL |
|
1360 | 1361 | else: |
|
1361 | 1362 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1362 | 1363 | self.DPL=0 |
|
1363 | 1364 | |
|
1364 | 1365 | if n is None and timeInterval is None: |
|
1365 | 1366 | raise ValueError("n or timeInterval should be specified ...") |
|
1366 | 1367 | |
|
1367 | 1368 | if n is not None: |
|
1368 | 1369 | self.n = int(n) |
|
1369 | 1370 | else: |
|
1370 | 1371 | self.__integrationtime = int(timeInterval) |
|
1371 | 1372 | self.n = None |
|
1372 | 1373 | self.__byTime = True |
|
1373 | 1374 | |
|
1374 | 1375 | |
|
1375 | 1376 | if minHei == None: |
|
1376 | 1377 | minHei = self.dataOut.heightList[0] |
|
1377 | 1378 | |
|
1378 | 1379 | if maxHei == None: |
|
1379 | 1380 | maxHei = self.dataOut.heightList[-1] |
|
1380 | 1381 | |
|
1381 | 1382 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1382 | 1383 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
1383 | 1384 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
1384 | 1385 | minHei = self.dataOut.heightList[0] |
|
1385 | 1386 | |
|
1386 | 1387 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1387 | 1388 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
1388 | 1389 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
1389 | 1390 | maxHei = self.dataOut.heightList[-1] |
|
1390 | 1391 | |
|
1391 | 1392 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) |
|
1392 | 1393 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) |
|
1393 | 1394 | self.minHei_ind = ind_list1[0][0] |
|
1394 | 1395 | self.maxHei_ind = ind_list2[0][-1] |
|
1395 | 1396 | |
|
1396 | 1397 | def putData(self, data_spc, data_cspc, data_dc): |
|
1397 | 1398 | """ |
|
1398 | 1399 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1399 | 1400 | |
|
1400 | 1401 | """ |
|
1401 | 1402 | |
|
1402 | 1403 | self.__buffer_spc.append(data_spc) |
|
1403 | 1404 | |
|
1404 | 1405 | if self.__nChannels < 2: |
|
1405 | 1406 | self.__buffer_cspc = None |
|
1406 | 1407 | else: |
|
1407 | 1408 | self.__buffer_cspc.append(data_cspc) |
|
1408 | 1409 | |
|
1409 | 1410 | if data_dc is None: |
|
1410 | 1411 | self.__buffer_dc = None |
|
1411 | 1412 | else: |
|
1412 | 1413 | self.__buffer_dc += data_dc |
|
1413 | 1414 | |
|
1414 | 1415 | self.__profIndex += 1 |
|
1415 | 1416 | |
|
1416 | 1417 | return |
|
1417 | 1418 | |
|
1418 | 1419 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): |
|
1419 | 1420 | #data debe estar ordenado |
|
1420 | 1421 | #sortdata = numpy.sort(data, axis=None) |
|
1421 | 1422 | #sortID=data.argsort() |
|
1422 | 1423 | lenOfData = len(sortdata) |
|
1423 | 1424 | nums_min = lenOfData*factor |
|
1424 | 1425 | if nums_min <= 5: |
|
1425 | 1426 | nums_min = 5 |
|
1426 | 1427 | sump = 0. |
|
1427 | 1428 | sumq = 0. |
|
1428 | 1429 | j = 0 |
|
1429 | 1430 | cont = 1 |
|
1430 | 1431 | while((cont == 1)and(j < lenOfData)): |
|
1431 | 1432 | sump += sortdata[j] |
|
1432 | 1433 | sumq += sortdata[j]**2 |
|
1433 | 1434 | if j > nums_min: |
|
1434 | 1435 | rtest = float(j)/(j-1) + 1.0/navg |
|
1435 | 1436 | if ((sumq*j) > (rtest*sump**2)): |
|
1436 | 1437 | j = j - 1 |
|
1437 | 1438 | sump = sump - sortdata[j] |
|
1438 | 1439 | sumq = sumq - sortdata[j]**2 |
|
1439 | 1440 | cont = 0 |
|
1440 | 1441 | j += 1 |
|
1441 | 1442 | #lnoise = sump / j |
|
1442 | 1443 | #print("H S done") |
|
1443 | 1444 | #return j,sortID |
|
1444 | 1445 | return j |
|
1445 | 1446 | |
|
1446 | 1447 | |
|
1447 | 1448 | def pushData(self): |
|
1448 | 1449 | """ |
|
1449 | 1450 | Return the sum of the last profiles and the profiles used in the sum. |
|
1450 | 1451 | |
|
1451 | 1452 | Affected: |
|
1452 | 1453 | |
|
1453 | 1454 | self.__profileIndex |
|
1454 | 1455 | |
|
1455 | 1456 | """ |
|
1456 | 1457 | bufferH=None |
|
1457 | 1458 | buffer=None |
|
1458 | 1459 | buffer1=None |
|
1459 | 1460 | buffer_cspc=None |
|
1460 | 1461 | #print("aes: ", self.__buffer_cspc) |
|
1461 | 1462 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1462 | 1463 | if self.__nChannels > 1 : |
|
1463 | 1464 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1464 | 1465 | |
|
1465 | 1466 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) |
|
1466 | 1467 | |
|
1467 | 1468 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1468 | 1469 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1469 | 1470 | |
|
1470 | 1471 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers |
|
1471 | 1472 | |
|
1472 | 1473 | for k in range(self.minHei_ind,self.maxHei_ind): |
|
1473 | 1474 | if self.__nChannels > 1: |
|
1474 | 1475 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1475 | 1476 | |
|
1476 | 1477 | outliers_IDs_cspc=[] |
|
1477 | 1478 | cspc_outliers_exist=False |
|
1478 | 1479 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1479 | 1480 | |
|
1480 | 1481 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1481 | 1482 | indexes=[] |
|
1482 | 1483 | #sortIDs=[] |
|
1483 | 1484 | outliers_IDs=[] |
|
1484 | 1485 | |
|
1485 | 1486 | for j in range(self.nProfiles): #frecuencias en el tiempo |
|
1486 | 1487 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1487 | 1488 | # continue |
|
1488 | 1489 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1489 | 1490 | # continue |
|
1490 | 1491 | buffer=buffer1[:,j] |
|
1491 | 1492 | sortdata = numpy.sort(buffer, axis=None) |
|
1492 | 1493 | |
|
1493 | 1494 | sortID=buffer.argsort() |
|
1494 | 1495 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) |
|
1495 | 1496 | |
|
1496 | 1497 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) |
|
1497 | 1498 | |
|
1498 | 1499 | # fig,ax = plt.subplots() |
|
1499 | 1500 | # ax.set_title(str(k)+" "+str(j)) |
|
1500 | 1501 | # x=range(len(sortdata)) |
|
1501 | 1502 | # ax.scatter(x,sortdata) |
|
1502 | 1503 | # ax.axvline(index) |
|
1503 | 1504 | # plt.show() |
|
1504 | 1505 | |
|
1505 | 1506 | indexes.append(index) |
|
1506 | 1507 | #sortIDs.append(sortID) |
|
1507 | 1508 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1508 | 1509 | |
|
1509 | 1510 | #print("Outliers: ",outliers_IDs) |
|
1510 | 1511 | outliers_IDs=numpy.array(outliers_IDs) |
|
1511 | 1512 | outliers_IDs=outliers_IDs.ravel() |
|
1512 | 1513 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1513 | 1514 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1514 | 1515 | indexes=numpy.array(indexes) |
|
1515 | 1516 | indexmin=numpy.min(indexes) |
|
1516 | 1517 | |
|
1517 | 1518 | |
|
1518 | 1519 | #print(indexmin,buffer1.shape[0], k) |
|
1519 | 1520 | |
|
1520 | 1521 | # fig,ax = plt.subplots() |
|
1521 | 1522 | # ax.plot(sortdata) |
|
1522 | 1523 | # ax2 = ax.twinx() |
|
1523 | 1524 | # x=range(len(indexes)) |
|
1524 | 1525 | # #plt.scatter(x,indexes) |
|
1525 | 1526 | # ax2.scatter(x,indexes) |
|
1526 | 1527 | # plt.show() |
|
1527 | 1528 | |
|
1528 | 1529 | if indexmin != buffer1.shape[0]: |
|
1529 | 1530 | if self.__nChannels > 1: |
|
1530 | 1531 | cspc_outliers_exist= True |
|
1531 | 1532 | |
|
1532 | 1533 | lt=outliers_IDs |
|
1533 | 1534 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1534 | 1535 | |
|
1535 | 1536 | for p in list(outliers_IDs): |
|
1536 | 1537 | #buffer1[p,:]=avg |
|
1537 | 1538 | buffer1[p,:] = numpy.NaN |
|
1538 | 1539 | |
|
1539 | 1540 | self.dataOutliers[i,k] = len(outliers_IDs) |
|
1540 | 1541 | |
|
1541 | 1542 | |
|
1542 | 1543 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1543 | 1544 | |
|
1544 | 1545 | |
|
1545 | 1546 | if self.__nChannels > 1: |
|
1546 | 1547 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1547 | 1548 | |
|
1548 | 1549 | |
|
1549 | 1550 | if self.__nChannels > 1: |
|
1550 | 1551 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1551 | 1552 | if cspc_outliers_exist: |
|
1552 | 1553 | |
|
1553 | 1554 | lt=outliers_IDs_cspc |
|
1554 | 1555 | |
|
1555 | 1556 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1556 | 1557 | for p in list(outliers_IDs_cspc): |
|
1557 | 1558 | #buffer_cspc[p,:]=avg |
|
1558 | 1559 | buffer_cspc[p,:] = numpy.NaN |
|
1559 | 1560 | |
|
1560 | 1561 | if self.__nChannels > 1: |
|
1561 | 1562 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1562 | 1563 | |
|
1563 | 1564 | |
|
1564 | 1565 | |
|
1565 | 1566 | |
|
1566 | 1567 | nOutliers = len(outliers_IDs) |
|
1567 | 1568 | #print("Outliers n: ",self.dataOutliers,nOutliers) |
|
1568 | 1569 | buffer=None |
|
1569 | 1570 | bufferH=None |
|
1570 | 1571 | buffer1=None |
|
1571 | 1572 | buffer_cspc=None |
|
1572 | 1573 | |
|
1573 | 1574 | |
|
1574 | 1575 | buffer=None |
|
1575 | 1576 | |
|
1576 | 1577 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1577 | 1578 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) |
|
1578 | 1579 | if self.__nChannels > 1: |
|
1579 | 1580 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1580 | 1581 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) |
|
1581 | 1582 | else: |
|
1582 | 1583 | data_cspc = None |
|
1583 | 1584 | data_dc = self.__buffer_dc |
|
1584 | 1585 | #(CH, HEIGH) |
|
1585 | 1586 | self.maxProfilesInt = self.__profIndex - 1 |
|
1586 | 1587 | n = self.__profIndex - self.dataOutliers # n becomes a matrix |
|
1587 | 1588 | |
|
1588 | 1589 | self.__buffer_spc = [] |
|
1589 | 1590 | self.__buffer_cspc = [] |
|
1590 | 1591 | self.__buffer_dc = 0 |
|
1591 | 1592 | self.__profIndex = 0 |
|
1592 | 1593 | #print("cleaned ",data_cspc) |
|
1593 | 1594 | return data_spc, data_cspc, data_dc, n |
|
1594 | 1595 | |
|
1595 | 1596 | def byProfiles(self, *args): |
|
1596 | 1597 | |
|
1597 | 1598 | self.__dataReady = False |
|
1598 | 1599 | avgdata_spc = None |
|
1599 | 1600 | avgdata_cspc = None |
|
1600 | 1601 | avgdata_dc = None |
|
1601 | 1602 | |
|
1602 | 1603 | self.putData(*args) |
|
1603 | 1604 | |
|
1604 | 1605 | if self.__profIndex >= self.n: |
|
1605 | 1606 | |
|
1606 | 1607 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1607 | 1608 | self.n_ints = n |
|
1608 | 1609 | self.__dataReady = True |
|
1609 | 1610 | |
|
1610 | 1611 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1611 | 1612 | |
|
1612 | 1613 | def byTime(self, datatime, *args): |
|
1613 | 1614 | |
|
1614 | 1615 | self.__dataReady = False |
|
1615 | 1616 | avgdata_spc = None |
|
1616 | 1617 | avgdata_cspc = None |
|
1617 | 1618 | avgdata_dc = None |
|
1618 | 1619 | |
|
1619 | 1620 | self.putData(*args) |
|
1620 | 1621 | |
|
1621 | 1622 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1622 | 1623 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1623 | 1624 | self.n_ints = n |
|
1624 | 1625 | self.__dataReady = True |
|
1625 | 1626 | |
|
1626 | 1627 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1627 | 1628 | |
|
1628 | 1629 | def integrate(self, datatime, *args): |
|
1629 | 1630 | |
|
1630 | 1631 | if self.__profIndex == 0: |
|
1631 | 1632 | self.__initime = datatime |
|
1632 | 1633 | |
|
1633 | 1634 | if self.__byTime: |
|
1634 | 1635 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1635 | 1636 | datatime, *args) |
|
1636 | 1637 | else: |
|
1637 | 1638 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1638 | 1639 | |
|
1639 | 1640 | if not self.__dataReady: |
|
1640 | 1641 | return None, None, None, None |
|
1641 | 1642 | |
|
1642 | 1643 | #print("integrate", avgdata_cspc) |
|
1643 | 1644 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1644 | 1645 | |
|
1645 | 1646 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): |
|
1646 | 1647 | self.dataOut = dataOut |
|
1647 | 1648 | if n == 1: |
|
1648 | 1649 | return self.dataOut |
|
1649 | 1650 | self.dataOut.processingHeaderObj.timeIncohInt = timeInterval |
|
1650 | 1651 | |
|
1651 | 1652 | if dataOut.flagProfilesByRange: |
|
1652 | 1653 | self._flagProfilesByRange = True |
|
1653 | 1654 | |
|
1654 | 1655 | if self.dataOut.nChannels == 1: |
|
1655 | 1656 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS |
|
1656 | 1657 | #print("IN spc:", self.dataOut.data_spc.shape, self.dataOut.data_cspc) |
|
1657 | 1658 | if not self.isConfig: |
|
1658 | 1659 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) |
|
1659 | 1660 | self.isConfig = True |
|
1660 | 1661 | |
|
1661 | 1662 | if not self.ByLags: |
|
1662 | 1663 | self.nProfiles=self.dataOut.nProfiles |
|
1663 | 1664 | self.nChannels=self.dataOut.nChannels |
|
1664 | 1665 | self.nHeights=self.dataOut.nHeights |
|
1665 | 1666 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1666 | 1667 | self.dataOut.data_spc, |
|
1667 | 1668 | self.dataOut.data_cspc, |
|
1668 | 1669 | self.dataOut.data_dc) |
|
1669 | 1670 | else: |
|
1670 | 1671 | self.nProfiles=self.dataOut.nProfiles |
|
1671 | 1672 | self.nChannels=self.dataOut.nChannels |
|
1672 | 1673 | self.nHeights=self.dataOut.nHeights |
|
1673 | 1674 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1674 | 1675 | self.dataOut.dataLag_spc, |
|
1675 | 1676 | self.dataOut.dataLag_cspc, |
|
1676 | 1677 | self.dataOut.dataLag_dc) |
|
1677 | 1678 | self.dataOut.flagNoData = True |
|
1678 | 1679 | |
|
1679 | 1680 | if self._flagProfilesByRange: |
|
1680 | 1681 | dataOut.flagProfilesByRange = True |
|
1681 | 1682 | self._nProfilesByRange += dataOut.nProfilesByRange |
|
1682 | 1683 | |
|
1683 | 1684 | if self.__dataReady: |
|
1684 | 1685 | |
|
1685 | 1686 | if not self.ByLags: |
|
1686 | 1687 | if self.nChannels == 1: |
|
1687 | 1688 | #print("f int", avgdata_spc.shape) |
|
1688 | 1689 | self.dataOut.data_spc = avgdata_spc |
|
1689 | 1690 | self.dataOut.data_cspc = None |
|
1690 | 1691 | else: |
|
1691 | 1692 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1692 | 1693 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1693 | 1694 | self.dataOut.data_dc = avgdata_dc |
|
1694 | 1695 | self.dataOut.data_outlier = self.dataOutliers |
|
1695 | 1696 | |
|
1696 | 1697 | |
|
1697 | 1698 | else: |
|
1698 | 1699 | self.dataOut.dataLag_spc = avgdata_spc |
|
1699 | 1700 | self.dataOut.dataLag_cspc = avgdata_cspc |
|
1700 | 1701 | self.dataOut.dataLag_dc = avgdata_dc |
|
1701 | 1702 | |
|
1702 | 1703 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] |
|
1703 | 1704 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1704 | 1705 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1705 | 1706 | |
|
1706 | 1707 | self.dataOut.nIncohInt *= self.n_ints |
|
1707 | 1708 | |
|
1708 | 1709 | self.dataOut.utctime = avgdatatime |
|
1709 | 1710 | self.dataOut.flagNoData = False |
|
1710 | 1711 | |
|
1711 | 1712 | dataOut.nProfilesByRange = self._nProfilesByRange |
|
1712 | 1713 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) |
|
1713 | 1714 | self._flagProfilesByRange = False |
|
1714 | 1715 | |
|
1715 | 1716 | return self.dataOut |
|
1716 | 1717 | |
|
1717 | 1718 | class dopplerFlip(Operation): |
|
1718 | 1719 | |
|
1719 | 1720 | def run(self, dataOut, chann = None): |
|
1720 | 1721 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1721 | 1722 | self.dataOut = dataOut |
|
1722 | 1723 | # JULIA-oblicua, indice 2 |
|
1723 | 1724 | # arreglo 2: (num_profiles, num_heights) |
|
1724 | 1725 | jspectra = self.dataOut.data_spc[chann] |
|
1725 | 1726 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1726 | 1727 | num_profiles = jspectra.shape[0] |
|
1727 | 1728 | freq_dc = int(num_profiles / 2) |
|
1728 | 1729 | # Flip con for |
|
1729 | 1730 | for j in range(num_profiles): |
|
1730 | 1731 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1731 | 1732 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1732 | 1733 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1733 | 1734 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1734 | 1735 | # canal modificado es re-escrito en el arreglo de canales |
|
1735 | 1736 | self.dataOut.data_spc[chann] = jspectra_tmp |
|
1736 | 1737 | |
|
1737 | 1738 | return self.dataOut No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now